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We quantify the variability of faint unresolved optical sources using a catalog
based on multiple SDSS imaging observations. The catalog covers SDSS Stripe
82, which lies along the celestial equator in the Southern Galactic Hemisphere
(22h 24m < @00 < 04h 08m, —1.27° < 8000 < +1.27°, ~ 290 deg?), and
contains 58 million photometric observations in the SDSS ugriz system for 1.4
million unresolved sources that were observed at least 4 times in each of the
gri bands (with a median of 10 observations obtained over ~5 years). In each
photometric bandpass we compute various low-order lightcurve statistics such as
root-mean-square scatter (rms), x> per degree of freedom, skewness, minimum
and maximum magnitude, and use them to select and study variable sources.
We find that 2% of unresolved optical sources brighter than ¢ = 20.5 appear
variable at the 0.05 mag level (rms) simultaneously in the g and r bands. The
majority (2/3) of these variable sources are low-redshift (< 2) quasars, although
they represent only 2% of all sources in the adopted flux-limited sample. We
find that at least 90% of quasars are variable at the 0.03 mag level (rms) and
confirm that variability is as good a method for finding low-redshift quasars as
is the UV excess color selection (at high Galactic latitudes). We analyze the
distribution of lightcurve skewness for quasars and find that is centered on zero.
We find that about 1/4 of the variable stars are RR Lyrae stars, and that only
0.5% of stars from the main stellar locus are variable at the 0.05 mag level. The
distribution of lightcurve skewness in the g — r vs. u — g color-color diagram
on the main stellar locus is found to be bimodal (with one mode consistent with
Algol-like behavior). Using over six hundred RR Lyrae stars, we demonstrate rich
halo substructure out to distances of 100 kpc. We extrapolate these results to
expected performance by the Large Synoptic Survey Telescope and estimate that
it will obtain well-sampled 2% accurate, multi-color lightcurves for ~ 2 million
low-redshift quasars, and will discover at least 50 million variable stars.

Subject headings: Galaxy: halo — Galaxy: stellar content — quasars: general
— RR Lyrae

1. Introduction

Variability is an important phenomenon in astrophysical studies of structure and evolu-
tion, both stellar and galactic. Some variable stars, such as RR Lyrae, are an excellent tool
for studying the Galaxy. Being nearly standard candles (thus making distance determina-
tion relatively straightforward) and being intrinsically bright, they are a particularly suitable
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tracer of Galactic structure. In extragalactic astronomy, the optical continuum variability of

quasars is utilized as an efficient method for their discovery (Ivan den Bergh, Herbst & Pritchet

1923; Hawkiné m; Koo, Kron & QZJJdeH |L9§d; Hawkins & Veron M), and is also fre-
quently used to constrain the origin of their emission (Kawaguchi et alJ M; Trevese et alJ

2001; Martini & Schneidex 2003).

Despite the importance of variability, the variable optical sky remains largely unex-
plored and poorly quantified, especially at the faint end. To what degree different variable
populations contribute to the overall variability, how they are distributed in magnitude and
color, what the characteristic time-scales and the dominant mechanisms of variability are,
are just some of the questions that still remain to be answered. To address these questions,

several contemporary projects aimed at regular monitoring of the optical sky were started.
Some of the more prominent surveys in terms of the sky coverage, depth, and cadence are:

e The Faint Sky Variability Survey (Groot et al. |2L)Dj) is a very deep (17 < V < 24)
BV survey of 23 deg? of sky, containing about 80,000 sources sampled at timescales
ranging from minutes to years.

e The QUEST Survey (Vivas et al. [2011]]) monitors 700 deg? of sky from V = 13.5 to a
limit of V' = 21.

e ROTSE-I (IAJ@er_fﬁualJ |20Dd monitors the entire observable sky twice a nlght from
V = 10 to a limit of V = 15.5. The Northern Sky Variability Survey
) is based on ROTSE-T data.

e OGLE (most recently OGLE III; h.hial&kuﬁuﬂjbﬂlj) monitors ~ 100 deg? towards the
Galactic bulge from I = 11.5 to a limit of / = 20. Due to the very high stellar density
towards the bulge, OGLE II has detected about 270,000 variable stars (WozZniak et alJ

2002; Zebrui et all 2002).

e The MACHO Project monitored the brightness of ~ 60 million stars in ~ 90 deg? of

sky toward the Magellanic Clouds and the Galactic bulge for ~ 7 years to a limit of
V ~ 24 (Alcock et all 2001).

A comprehensive review of past and ongoing variability surveys can be found in

Recognizing the outstanding importance of variable objects, the last Decadal Survey Re-
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Synoptic Survey Telescope (LSST; Tyson et al.2002; Walker [2003). The LSS will offer an
unprecedented view of the faint variable sky: according to the current designs it will scan
the entire accessible sky every three nights to a limit of V' ~ 25 with two observations per
night in two different bands (selected from a set of six). One of the LSST science goals@ will
be the exploration of the transient optical sky: the discovery and analysis of rare and exotic
objects (e.g. neutron star and black hole binaries), gamma-ray bursts, X-ray flashes, and of
new classes of transients, such as binary mergers and stellar disruptions by black holes. The
observed volume of space, and the requirement to recognize and monitor these events — in
real time — on a “normally” variable sky, will present a challenge to the project.

Since LSST will utilize@ the Sloan Digital Sky Survey (SDSS; [York et all2000) photo-
metric system (ugriz, Fukugita et al.[1996), multiple photometric observations obtained by
the SDSS represent an excellent dataset for a pre-LSST study that characterizes the faint
variable sky and quantifies the variable population and its distribution in magnitude-color-
variability space. Here we present such a study of unresolved sources in a region that has
been imaged multiple times by the SDSS.

In Section 2l we give a brief overview of the SDSS imaging survey and repeated scans
of a ~ 290 deg? region called Stripe 82. In Section B, we describe methods used to select
candidate variable sources from the SDSS Stripe 82 data assembled, averaged and recal-
ibrated by |Ivezi¢ et al. (2007), and present tests that show the robustness of the adopted
selection criteria. In the same section, we discuss the distribution of selected variable sources
in magnitude-color-variability space. The Milky Way halo structure traced by selected can-
didate RR Lyrae stars is discussed in Section [4] and in Section [B] we estimate the fraction of
variable quasars. Implications for surveys such as the LSST are discussed in Section [0, and
our main results are summarized in Section [7

2. Overview of the SDSS Imaging and Stripe 82 Data

The quality of photometry and astrometry, as well as the large area covered by the
survey, make the SDSS stand out among available optical sky surveys (Sesar et all 2006).
The SDSS is providing homogeneous and deep (r < 22.5) photometry in five bandpasses

1See [[HREF]http://www.lsst.org
2For more details see [HREF]http://www.lsst.org/Science/science_goals.shtml

3LSST will also use the Y band at ~ 1 um. For more details see the LSST Science Requirement Document
at | [HREF]http://www.lsst.org/Science/lsst_baseline.shtml
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(u, g, r, i, and z, Gunn et al. [1998; Hogg et all2002; [Smith et al. 2002; |Gunn et al. [2006;
Tucker et all2006) accurate to 0.02 mag (root-mean-square scatter, hereafter rms) for un-
resolved sources not limited by photon statistics (Scranton et al. 2002; Ivezié et all2003a),
and with a zeropoint uncertainty of 0.02 mag (Ivezié¢ et al.|2004a). The survey sky coverage
of 10,000 deg? in the northern Galactic cap, and 300 deg? in the southern Galactic cap will
result in photometric measurements for well over 100 million stars and a similar number
of galaxies (Stoughton et al. 2002). The recent Data Release 5 (Adelman-McCarthy et al.
2007)H lists photometric data for 215 million unique objects observed in 8000 deg? of sky as
part of the “SDSS-1” phase that ran through June 2005. Astrometric positions are accu-
rate to better than 0.1” per coordinate (rms) for sources with r < 20.5 (Pier et all 2003),
and the morphological information from the images allows reliable star-galaxy separation to
r ~ 21.5 (Lupton et all[2002). In addition, the 5-band SDSS photometry can be used for
very detailed source classification; e.g. separation of quasars and stars (Richards et al!2002),
spectral classification of stars to within 1-2 spectral subtypes (Lenz et al.[1998;|Finlator 2000;
Hawley et al.l2002), and even remarkably efficient color selection of the horizontal branch and
RR Lyrae stars (Yanny et al. [2000; [Sirko et al. [2004; Ivezié¢ et al)2005) and low-metallicity
G and K giants (Helmi et al. 2003).

The equatorial Stripe 82 region (22h 24m < a0 < 04h 08m, —1.27° < o000 <
+1.27°, ~ 290 deg?), observed in the southern Galactic cap, presents a valuable data source
for variability studies. The region was repeatedly observed (65 imaging runs by July 2005,
but not all cover the entire region), and it is the largest source of multi-epoch data in the
SDSS-I phase. Another source of the large number of scans is the SDSS-II Supernova Survey
(Frieman et al. 2007). By averaging the repeated observations of Stripe 82 sources, more
accurate photometry than the nominal 0.02 mag single-scan accuracy can be achieved. This
motivated Ivezi¢ et al! (2007) to produce a catalog of recalibrated Stripe 82 observations.
The catalog lists 58 million photometric observations for 1.4 million unresolved sources that
were observed at least 4 times in each of the gri bands (with a median of 10 observations
obtained over ~ 5 years). The random photometric errors for PSF (point spread function)
magnitudes are below 0.01 mag for stars brighter than 19.5, 20.5, 20.5, 20, 18.5 in ugriz,
respectively (about twice as accurate for individual SDSS runs), and the spatial variation of
photometric zeropoints is not larger than ~0.01 mag (rms). Following Ivezi¢ et all (2007),
we use PSF magnitudes because they go deeper at a given signal-to-noise ratio than aperture
magnitudes, and have more accurate photometric error estimates than model magnitudes.
In addition, various low-order statistics such as root-mean-square scatter (), x? per degree
of freedom (x?), lightcurve skewness (7), minimum and maximum PSF magnitude, were

4Please see [[HREF]http://www.sdss.org/dr5
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computed for each ugriz band and each source. We compute x? per degree of freedom as

n

= 2
n—1 i—1 S
and lightcurve skewness aEEI
- )
T =1 -2)%3
1 n
s = 3 (i — (2) )

1
5= > (@i — (2))? (4)
i=1
where n is the number of detections, x; is the magnitude, (z) is the mean magnitude, and
&; is the photometric error.

Separation of quasars and stars, as well as efficient color selection of horizontal branch
and RR Lyrae stars, depend on accurate v band photometry. To ensure this, we select
748,084 unresolved sources from the [Ivezi¢ et all (2007) catalog with at least 4 detections in
the u band. A catalog of variable sources selected from this sample is analyzed in Section [3]
below.

3. Analysis of Stripe 82 Catalog of Variable Sources

In this section we describe methods for selecting candidate variable sources, and present
tests that show the robustness of the adopted selection criteria. The distribution of selected
variable sources in magnitude-color-variability space is also presented.

3.1. Methods and Selection Criteria

Due to a relatively small number of observations per source and random sampling, we
do not perform lightcurve fitting, but instead use low order statistics to select candidate
variables and study their properties. There are four parameters (median PSF magnitude,
root-mean-square scatter 3, x?, and lightcurve skewness 7) measured in five photometric

SWe use equations from [[HREF]http://www.xycoon.com/skewness_small_sample_test_1.htm.
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bands (u, g, r, i, and z), for a total of 20 parameters. In the analysis presented here, we
utilize eight of them:

e median PSF magnitudes in the ugr bands (corrected for interstellar extinction using
the map from |Schlegel, Finkbeiner & Davis [1998) because the g — r vs. u — g color-
color diagram has the most classification power (e.g. Smolécié¢ et al/2004 and references
therein).

e Y and x? in the ¢ and r bands, and

e lightcurve skewness v(g) (the g band combines a high signal-to-noise ratio and large
variability amplitude for the majority of variable sources).

The observed root-mean-square scatter X includes both the intrinsic variability ¢ and
the mean photometric error ({(m)) as a function of magnitude. The dependence of 3 on
magnitude in the ugriz bands, is shown in Figure[ll For sources brighter than 18, 19.5, 19.5,
19, and 17.5 mag in the ugriz, respectively, the SDSS delivers 2% photometry with little or
no dependence on magnitude. We determine (£(m)) by fitting a fourth degree polynomial
to median ¥ values in 0.5 mag wide bins (here we assume that the majority of sources are
not variable). The theoretically expected (£(m)) function (Strateva et al!2001)

(€(m)) = a + b10%4™ 4 1008 (5)

provides equally good fits. We define the intrinsic variability o (hereafter rms scatter o) as

o= (52— (¢(m))*)'/? (6)
for ¥ > (¢(m)), and o = 0 otherwise.

As the first variability selection criterion, we adopt o(g) > 0.05 mag and o(r) > 0.05
mag (hereafter written as o(g, ) > 0.05 mag). At the bright end, this criterion is equivalent
to selecting sources with rms scatter greater than 2.50(, where oy = 0.02 mag is the mea-
surement noise. Selection cuts are applied simultaneously in the g and r bands to reduce
the number of “false positives” (intrinsically non-variable sources selected as candidate vari-
able sources due to measurement noise). About 6% of sources pass the o cut in each band
separately, and ~ 3% of sources pass the cut in both bands simultaneously. By selecting
sources with o(g,r) > 0.05 mag, we also select faint sources that have large o due to large
photometric errors at the faint end. To only select faint sources with statistically significant
rms scatter, we apply the y? test as the second selection cut.
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In the x? test, the value of y? per degree of freedom (calculated with respect to a
weighted mean magnitude and using errors computed by the photometric pipeline) deter-
mines whether the observed lightcurve is consistent with the Gaussian distribution of er-
rors. Large y? values show that the rms scatter is inconsistent with random fluctuations.
Ivezié¢ et all (20034, 2007) used multi-epoch SDSS observations to show that the photometric
error distribution in the SDSS roughly follows a Gaussian distribution. A comparison of >
distributions in the g and r bands with a reference Gaussian y? distribution is shown in
Figure 2l As evident, y? distributions in both bands roughly follow the reference Gaussian
x? distribution for y? < 1, demonstrating that median photometric errors are correctly de-
termined. The discrepancy for larger x? is due to variable sources rather than non-Gaussian
error distributions, as we demonstrate below.

The second selection cut, x*(g) = 3 and x?(r) > 3 (hereafter written as x%(g,r) > 3),
selects ~ 90% of o(g,r) > 0.05 mag sources, as shown in Figure 2 (middle panels). The
effectiveness of the x? test is demonstrated in the bottom panel of Figure 2l For magnitudes
fainter than ¢ = 20.5, the fraction of candidate variables decreases as photometric errors
increase. The selection is relatively uniform for sources brighter than ¢ = 20.5, and we
adopt this value as the flux limit for the selected variable sample.

There are 662,195 sources brighter than g = 20.5 in the full sample. Using (g, 7) > 0.05
mag and x?(g,7) > 3 as the selection criteria, we select 13,051 candidate variable source@.
Therefore, at least 2% of unresolved optical sources brighter than g = 20.5 appear variable
at the > 0.05 mag level (rms) simultaneously in the g and r bands. The fraction of selected
variable sources is not a strong function of the minimum required number of observations,
but it does depend on the stellar density because the number of stars increases at lower
Galactic latitudes (see Fig. 5 in [Ivezi¢ et al.2007) while the quasar count remains the same.

3.2. The Counts of Variable Sources

In this section we estimate the completeness and efficiency of the candidate variable
sample, and discuss the dependence of counts, rms scatter, o(g)/o(r) ratio, and the lightcurve
skewness 7(g) on the position in the g — r vs. u — g color-color diagram.

6A list of candidate variable sources and their data from [Ivezi¢ et al. (2007) are publicly available from
[HREF]http://www.sdss.org/dr5/products/value_added/index.html
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3.2.1. Completeness

The selection completeness, defined as the fraction of true variable sources recovered by
the algorithm, depends on the lightcurve shape and amplitudes. Due to a fairly large number
of observations (median of 10), and small o(g,r) cutoff compared to typical amplitudes of
variable sources (e.g. most RR Lyrae stars and quasars have peak-to-peak amplitudes ~ 1
mag), we expect the completeness to be fairly high for RR Lyrae stars (2 95%, see Section [))
and quasars (~ 90%, see Section [l). The completeness for other types of variable sources,
such as flares and eclipsing binaries, is hard to estimate, but is probably low due to sparse
sampling.

3.2.2.  Efficiency

The selection efficiency, defined as the fraction of true variable sources in the candidate
variable sample, determines the robustness of the selection algorithm. The main diagnostic
for the robustness of the adopted selection criteria is the distribution of selected candidates
in the SDSS color-magnitude and color-color diagrams. The position of a source in these
diagrams is a good proxy for its spectral classification (Lenz et all[1998; [Fan [1999; [Finlator
2000; ISmolcié et all2004).

Figure [3] compares the distribution of candidate variable sources to that of all sources
in the g — r vs. u — g color-color diagram. Were the selection a random process, the se-
lected candidates would have the same distribution as the full sample. The distributions of
candidate variables and of the full sample are remarkably different, demonstrating that the
candidate variables are not randomly selected from the parent sample.

The three dominant classes of variable objects are quasars, RR Lyrae stars, and stars
from the main stellar locus. The most obvious difference between the variable and the full
sample distributions is a much higher fraction of low-redshift quasars (< 2.2, recognized by
their UV excess, u — g < 0.7, see Richards et all2002) and RR Lyrae stars (v — g ~ 1.15,
g —r < 0.3, see Ivezié¢ et al/2005) in the variable sample, and vividly shown in the bottom
panel of Figure

Another interesting feature visible in this panel is a gradient in the fraction of variable
main stellar locus stars (perpendicular to the main stellar locus). We investigate this gradient
by first defining principal colors

P, =0.91u — 0.495g — 0.415r — 1.28 (7)
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and
s = —0.249u + 0.7949 — 0.555r + 0.234 (8)

where P, and s are principal axis parallel and perpendicular to the main stellar locus,
respectively (Lvezié et all2004d). The s color is a measure of metallicity (Lenz et al.[1998),
and s > 0.05 stars are expected to be metal poor (Helmi et all2003). Sources with r < 19
and 0 < P; < 0.9 are selected and binned in four s bins. For each bin we calculate the
fraction of source with o(g) > 0.05 mag, the fraction of variable sources (selected with
a(g,r) = 0.05 mag and x*(g,r) > 3), median o(g), and the total number of sources in the
bin (see Table 2]). A greater fraction of variable sources in the last bin (s > 0.06) indicates
that, on average, metal-poor main stellar locus stars are more variable than the metal-rich
stars. This could be because this sample of metal-poor stars is expected to have a high
fraction of giants.

In order to quantify the differences between the full and the variable sample, we follow
Sesar et all (2006) and divide the g — r vs. u — g color-color diagram into six characteristic
regions, each dominated by a particular type of source, as shown in Figure [d. The fractions
and counts of variable and all sources in each region are listed in Table [l for g < 19, g < 20.5,
and g < 22 flux-limited samples. Notably, in the adopted g < 20.5 flux limit, the fraction
of Region II sources (dominated by low-redshift quasars) in the variable sample is 63%, or
~ 30 times greater than the fraction of Region II sources in the full sample (~ 2%). The
fraction of Region IV sources (which include RR Lyrae stars) in the variable sample is also
high when compared to the full sample (~ 6 times higher).

As shown in Table [, in the ¢ = 20.5 flux-limited sample, we find that low-redshift
quasars and RR Lyrae stars (i.e. Regions II and IV) make 70% of the variable population,
while representing only 3% of all sources. Quasars alone account for 63% of the variable
population. Stars from the main stellar locus represent 95% of all sources and 25% of the
variable sample: about 0.5% of the stars from the locus are variable at the > 0.05 mag level.

3.3. The Properties of Variable Sources

Various lightcurve properties, such as shape and amplitude, are expected to be correlated
with stellar types. In this section we study the distribution of the rms scatter in the u and g
bands, and o(g)/o(r) ratio as a function of the u — g and g —r colors. To emphasize trends,
we bin sources and present median values for each bin.

The distribution of the median o(u) and o(g) values in the g — r vs. u — g color-color
diagram is shown in the top two panels of Figure[Bl RR Lyrae stars show larger rms scatter
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(2 0.3 mag) in the u and g bands, than low-redshift quasars or stars from the main stellar
locus. Quasars also show slightly larger rms scatter in the u band (~ 0.1 mag) than in
the ¢ band (~ 0.07 mag), as discussed by [Kinney et al. (1991),Ivezi¢ et all (2004h), and
Vanden Berk et all (2004). If we define the degree of variability as the root-mean-square
scatter in the g band, then on average RR Lyrae stars show the greatest variability, followed
by quasars and the main stellar locus stars.

Another distinctive characteristic of variable sources is the ratio of flux changes in
different bandpasses. This property can be used to select different types of variable sources.
For example, RR Lyrae stars are bluer when brighter, a behavior used by [Ivezi¢ et all (2000)
to select RR Lyrae using 2-epoch SDSS data. Here we define a new parameter, o(g)/o(r), to
express the ratio of flux changes in the g and r bands, and study its distribution in the g —r
vs. u — g color-color diagram. In particular, we examine this distribution and its median
values for three dominant classes of variable sources: quasars, RR Lyrae stars, and stars
from the main stellar locus.

The bottom left panel in Figure [f shows the distribution of median o(g)/o(r) values as
a function of u — g and g — r colors. Using Fig. [l we note that on average:

e RR Lyrae stars have o(g)/o(r) ~ 1.4
e Main stellar locus stars have o(g)/o(r) ~ 1, and

e Quasars show a o(g)/o(r) gradient in the g — r vs. u — g color-color diagram.

The average value of o(g)/o(r) ~ 1.4 in Region IV indicates that RR Lyrae stars
dominate the variable source count in this region. The ratio of 1.4 for RR Lyrae stars was
also previously found by [Ivezi¢ et al! (2000). While Figure [l only presents median values of
the rms scatter, Figure [6] shows how the rms scatter in the g and r bands correlates with the
u — g color for individual sources. Variable sources that follow the o(g) = 1.40(r) relation
also correlate with the u — g color, and have u — g ~ 1, as expected for RR Lyrae stars.

The average ratio of o(g)/o(r) ~ 1 (i.e. gray flux variations) for stars in the main stellar
locus suggests that the variability could be caused by eclipsing systems. The distribution of
7(g) for main stellar locus stars further strengthens this possibility, as discussed in Section [3.4]
below.

The gradient in the o(g)/o(r) ratio observed for low-redshift quasars in the g—r vs. u—g
color-color diagram suggests that the variability correlation between the g and r bands is
more complex than in the case of RR Lyrae or main stellar locus stars. [Wilhite et al. (2006)
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show that the photometric color changes for quasars depend on the combined effects of con-
tinuum changes, emission-line changes, redshift, and the selection of photometric bandpasses.
They note that due to the lack of variability of the lines, measured photometric color is not
always bluer in brighter phases, but depends on redshift and the filters used. To verify the
dependence of broad-band photometric variability on redshift, we plot o(g)/o(r) vs. redshift
for all spectroscopically confirmed unresolved quasars from [Schneider et al! (2005) which are
in Stripe 82, as shown in Figure []l. We confirm that the broad-band photometric variability
depends on the redshift, and that the o(g)/o(r) gradient in the g — r vs. u — g color-color
diagram can be explained by the increase in o(g)/o(r) from ~ 1 to ~ 1.6 in the 1.0 to 1.6
redshift range. This effect is due to the Mg II emission line (more stable in flux than the con-
tinuum) moving through the r band filter over this redshift range. The implied correlation
of the u — g and g — r colors with redshift is consistent with the discussion by [Richards et al.
(2002). The lack of noticeable correlation of o(g) with redshift is due to the combined effects
of the dependence of o(g) on the rest-frame wavelength and time which cancel out (for a
detailed model see [Ivezi¢ et al. 2004h).

3.4. Skewness as a Proxy for Dominant Variability Mechanism

Lightcurve skewness, a measure of the lightcurve asymmetry, provides additional in-
formation on the type of variability. Negatively skewed, asymmetric lightcurves indicate
variable sources that spend more time fainter than (M, + Mmaz) /2, Wwhere my,;, and my,q.
are magnitudes at the minimum and maximum. Type ab RR Lyrae stars, for example,
have negatively skewed lightcurves (v ~ —0.5, Wils, Lloyd & Bernhard 2006). Positively
skewed, asymmetric lightcurves indicate variable sources that spend more time brighter
than (Mmin + Mmaez)/2 (e.g. eclipsing systems). Sources with symmetric lightcurves will
have v ~ 0.

The bottom right panel in Figure [§ shows the distribution of the median ~(g) as a
function of the position in the g — r vs. u — g color-color diagram. On average, quasars
and ¢ type RR Lyrae stars (u — g ~ 1.15, g — r < 0.15) have y(g) ~ 0, ab type RR Lyrae
(u—g ~ 1.15, g —r > 0.15) have negative skewness (y(g) ~ —0.5), and stars in the main
stellar locus have positive skewness.

Figure [§ shows the distribution of the lightcurve skewness in the ugi bands for spec-
troscopically confirmed unresolved quasars from [Schneider et al. (2005) which are in Stripe
82, candidate RR Lyrae stars (selection details are discussed in Section ]l below), and main
stellar locus stars from our variable sample. Stars in the main stellar locus show a bimodal
v(g) distribution. This distribution suggests at least two, and perhaps more, different popu-
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lations of variables. Indeed, when spectroscopically confirmed M dwarfs are selected, a third
peak appears at v(g) —2.5, possibly associated with flaring M dwarfs (Kowalski et al/2007).
The bimodality similar to the one in the g band is also discernible in the r band, while it is
less pronounced in the ¢ band and not detected in the u and z bands (the r and z data are
not shown).

A comparison of the u — g and g — r color distributions for variable main stellar locus
stars brighter than g = 19 and a subset with highly asymmetric lightcurves (v(g) > 2.5)
is shown in Figure [@l The subset with asymmetric lightcurves has an increased fraction of
stars with colors u —g ~ 2.5 and g —r ~ 1.4, that correspond to M stars. This may indicate
that M stars have a higher probability of being associated with an eclipsing companion than
stars with earlier spectral types. However, the selection effects are probably important since
a_companion is easier to detect (due to the low luminosity of M dwarfs). [Kowalski et al.
(2007) examine these issues using lightcurve data on a sample of spectroscopically confirmed
M dwarfs. Finally, quasars have symmetric lightcurves (7 ~ 0) and their distribution of
skewness does not change between bands.

4. The Milky Way Halo Structure Traced by Candidate RR Lyrae Stars

Studies of substructures in the Galactic halo, such as clumps and streams, can constrain
the formation history of the Milky Way. One of the best tracers to study the outer halo
are RR Lyrae stars because they are nearly standard candles, are sufficiently bright to be
detected at large distances (5 — 100 kpc for 14 < r < 20.7), and are sufficiently numerous to
trace the halo substructure with a high spatial resolution. The General Catalog of Variable
Stars (GCVS; [Kholopov et al! [1988) listsﬂ RR Lyrae stars as RR Lyrae type ab (RRab)
and type ¢ (RRc) stars. RRab stars have asymmetric lightcurves, periods from 0.3 to 1.2
days, and amplitudes from V ~ 0.5 to V' ~ 2. RRc stars have nearly symmetric, sometimes
sinusoidal, lightcurves, with periods from 0.2 to 0.5 days, and amplitudes not greater than
V ~ 0.8. In this work we assume My = 0.7 as the absolute V' band magnitude of RRab and
RRc stars. A comprehensive review of RR Lyrae stars can be found in [Smith (1995).

In this section we fine tune criteria for selecting candidate RR Lyrae stars, and estimate
the selection completeness and efficiency. Using selected candidate RR Lyrae stars, we
recover a known halo clump associated with the Sgr dwarf tidal stream, and find several new
halo substructures.

A list of GCVS variability types can be found at|[HREF]http://www.sai.msu.su/groups/cluster/gcvs/gcvs /iii /vartype.txt
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4.1. Criteria for Selecting RR Lyrae Stars

Figures B, @, and Bl show that RR Lyrae stars occupy a well-defined region (Region IV)
in the g —r vs. u — g color-color diagram, and Figure [0l shows how RR Lyrae stars follow the
o(g) = 1.40(r) relation. Motivated by these results, we introduce color and o(g)/o(r) cuts
to specifically select candidate RR Lyrae stars from the variable sample, and study their
distribution in the rms scatter-color-lightcurve skewness parameter space.

RR Lyrae stars have distinctive colors and can be selected with the following criteria
(Lvezic¢ et all2005):

098 <u—g<1.30 (9)
—0.05 < D,y <0.35 (10)
0.06 < Dy, < 0.55 (11)
—0.15<r—i<0.22 (12)
—021<i—2<0.25 (13)

where
Dyy = (u—g)+0.67(g —r) — 1.07 (14)

and

D, =0.45(u—g) — (g —r) —0.12. (15)

We apply these cuts to our sample of candidate variables and select 846 sources. It is
implied by [Ivezi¢ et all (2005) that RR Lyrae should always stay within these color bound-
aries, even though their colors change as a function of phase. Their distribution in the g — r
vs. u — g color-color diagram and rms scatter in the g band are shown in Figure [0 (top
left panel). The distribution of sources in the RR Lyrae region is inhomogeneous. Sources
with large rms scatter in the g band (2 0.2 mag) are centered around u — g ~ 1.15, and are
separated by g — r ~ 0.12 into two groups. A comparison with Figure 3 from [Ivezi¢ et al.
(2005) suggests that these large rms scatter sources might be RR Lyrae type ab (RRab,
g —r > 0.12) and type ¢ stars (RRc, g —r < 0.12). Small rms scatter sources (< 0.1 mag)
have a fairly uniform distribution, and are slightly bluer with v — g < 1.1.

The distribution of sources from the RR Lyrae region in the o(r) vs. o(g) diagram is
presented in the top right panel of Figure [[0l The majority of large rms scatter sources
follow the o(g) = 1.40(r) relation, as expected for RR Lyrae stars. Since RR Lyrae stars
are bluer when brighter, or equivalently, have greater rms scatter in the g band than in the
r band, we require 1 < o(g)/o(r) < 2.5 and select 683 candidate RR Lyrae stars.
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A comparison of u — g color distributions for candidate RR Lyrae stars and of sources
with RR Lyrae colors, but not tagged as RR Lyrae stars, presented in the bottom left panel
of Figure [10, demonstrates the robustness of the RR Lyrae selection. The two distributions
are very different (the probability that they are the same is 107, as given by the KS test),
with the candidate RR Lyrae distribution peaking at u —g ~ 1.15, as expected for RR Lyrae
stars.

One property that distinguishes RRab from RRec stars is the shape (or skewness) of their
lightcurves (in addition to lightcurve amplitude and period). RRab stars have asymmetric
lightcurves, while RRc lightcurves are symmetric. In the top left panel of Figure [0, we
noted that g —r ~ 0.12 seemingly separates high rms scatter sources into two groups. If
g — 1 ~ 0.12 is the boundary between the RRab and RRc stars, then the same boundary
should show up in the distribution of lightcurve skewness as a function of the g — r color.
As shown in Figure [I0 (bottom left panel), this is indeed the case. On average, sources with
g—r < 0.12 have v(g) ~ 0 (symmetric lightcurves), as RRe stars, while g —r > 0.12 sources
have y(g) ~ —0.5 (asymmetric lightcurves) typical of RRab stars.

We show in Section that candidate RR Lyrae stars with «(g) > 1 are contaminated
by eclipsing variables. Therefore, to reduce the contamination by eclipsing variables, we also
require y(g) < 1, and select 634 sources as our final sample of candidate RR Lyrae stars.

4.2. Completeness and efficiency

The selection completeness, defined as the fraction of recovered RR Lyrae stars, will
depend on the color cuts, o(g,r) cutoff, and the number of observations. The color cuts
(Egs. @ to [MH) applied in Section Bl were chosen to minimize contamination by sources
other than RR Lyrae stars while maintaining an almost 100% completeness (Ivezi¢ et al.
2005). With the o(g,r) cutoff at 0.05 mag (small compared to the ~ 1 mag typical peak-
to-peak amplitudes of RR Lyrae stars), and a fairly large number of observations per source
(median of 10), we estimate the RR Lyrae selection completeness to be 2 95% (see Appendix
in [Ivezi¢ et all2000).

To determine the selection efficiency, defined as the fraction of true RR Lyrae stars in the
RR Lyrae candidate sample, we positionally match 683 candidate RR Lyrae stars selected
by 1 < o(g)/o(r) < 2.5 to a sample of RR Lyrae sources selected from the SDSS Light-
Motion-Curve Catalog (LMCC; Bramich et alll2007). This catalog covers the same region of
the sky as the one discussed here, but includes more recent SDSS-II observations that allow
the construction of lightcurves. We match 613 candidates, while 70 candidate RR Lyrae
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stars from our sample, for some reason, do not have a match in the LMCC (De Lee, private
communication). Following the classification based on phased lightcurves by [De Lee et al.
(2007), we find that 71% of sources in our candidate RR Lyrae sample are classified as RRab
and RRe, 28% are classified as variable non-RR Lyrae stars, and only 1% are spurious, non-
variable sources. The most significant contamination comes from a population of variable
sources bluer than u—g ~ 1.1 (dotted line, bottom left panel Figure [[Tl), possibly Population
IT § Scuti stars, also known as SX Phoenicis stars (Hoffmeister, Richter & Wenzel 1985).

The top left and the bottom right panels in Figure [II, show that RRab and RRec-
dominated regions are separated by g—r ~ 0.12, as already hinted in Figure[I0. Also, variable
non-RR Lyrae sources with v(g) > 1 are classified by [De Lee et all (2007) as eclipsing
variables, justifying our v(g) < 1 cut.

To summarize, using color criteria and criteria based on o(g), o(r), and 7(g) RR Lyrae
stars are selected with 2 95% completeness and ~ 70% efficiency.

4.3. The Spatial Distribution of Candidate RR Lyrae Stars

Using the selection criteria from Section [4.I] we isolate 634 RR Lyrae candidates. The
magnitude-position diagram for these candidates within 2.5° from the Celestial Equator is
shown in Figure 12l

As discussed by [Ivezi¢ et all (2005), an advantage of the data representation utilized
in Figure (magnitude-right ascension diagram) is its simplicity — only “raw” data are
shown, without any post-processing. However, the magnitude scale is logarithmic and thus
the spatial extent of structures is heavily distorted. In order to avoid these shortcomings,
we have applied a Bayesian method for estimating continuous spatial density distribution
developed by [Ivezié¢ et all (2005) (see their Appendix B). The resulting density map is shown
in the right panel in Figure[I3] The advantage of that representation is that it better conveys
the significance of various local overdensities. For comparison, we also show a map of the
northern part of the equatorial strip constructed using 2-epoch data discussed by Ivezié et al.
(2000).

We detect several new halo substructures at 2 3o significance (compared to expected
Poissonian fluctuations) and present their approximate locations and properties in Table [3
The most distant clump is at 100 kpc from the Galactic center. The strongest clump in
the left wedge belongs to the Sgr dwarf tidal stream as does the clump marked by C' in
the right wedge (ILvezi¢ et all2003a). We note that the apparent “clumpiness” of the candi-
date RR Lyrae distribution increases with increasing radius, similar to CDM predictions by
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Bullock, Kravtsov & Weinberg (2001). A detailed comparison of their models with the data
presented here will be discussed elsewhere (Sesar et al., in prep).

5. Are All Quasars Variable?

The optical continuum variability of quasars has been recognized since their first op-
tical identification (Matthews & Sandage [1963), and it has been proposed and utilized as
an efficient method for their discovery (van den Bergh, Herbst & Pritchet [1973; [Hawkins
1983; Koo, Kron & Cudworth 1986; [Hawkins & Veron [1995). The observed characteristics
of the variability of quasars are frequently used to constrain the origin of their emission
(e.g. [Kawaguchi et al.[1998 and references therein; Martini & Schneider 2003; [Pereyra et al.
2006). Recently, significant progress in the description of quasar variability has been made by
employing the SDSS data (de Vries, Becker & Whitd2003; Ivezié¢ et al/2004b; Vanden Berk et al.
2004; lde Vries et all2005; [Sesar et al. 2006). Here we expand these studies by quantifying
the efficiency of quasar discovery using variability.

A preliminary comparison of color and variability based methods for selecting quasars
using SDSS data was presented by [Ivezi¢ et al! (2003h). They found that 47% of spectroscop-
ically confirmed unresolved quasars with UV excess have the g band magnitude difference
between two observations obtained two years apart larger than 0.15 mag. We can improve on
their analysis because now there are significantly more observations obtained over a longer
time period. Since quasars vary erratically and the rms scatter of their variability (the so-
called structure function) increases with time (e.g. [Vanden Berk et al! 2004 and references
therein), the variability selection completeness is expected to be higher than ~ 50% obtained
by [Ivezi¢ et al! (2003b).

First, although the adopted variability selection criteria discussed above are fairly con-
servative, we find that at least 63% of low-redshift quasars are variable at the > 0.05 mag
level (simultaneously in the g and r bands over observer’s time scales of several years) in
the g < 20.5 flux-limited sample. Second, even this estimate is only a lower limit: given the
spectroscopic confirmation for a large flux-limited sample of quasars, it is possible to relax
the adopted variability selection cutoff without a prohibitive contamination by non-variable
sources.

There are 2,492 unresolved quasars in the catalog of spectroscopically confirmed SDSS
quasars (Schneider et al/l2005) from Stripe 82. The fraction of these objects that vary more
than ¢ in the g and r bands, as a function of o, is shown in Figure 14l We also show the
analogous fraction for stars from the stellar locus. About 93% of quasars vary with o > 0.03
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mag. For a small fraction of these objects the measured rms scatter is due to photometric
noise, and the stellar data limit this fraction to be at most 3%. Conservatively assuming that
none of these 3% of stars is intrinsically variable, we estimate that at least 90% of quasars
are variable at the 0.03 mag level on time scales up to several years.

6. Implications for Surveys such as LSST

The Large Synoptic Survey Telescope (LSST) is a proposed imaging survey that aims
to obtain repeated multi-band imaging to faint limiting magnitudes over a large fraction of
the sky. The LSST Science Requirement DocumentH calls for ~ 1000 repeated observations
of a solid angle of ~ 20,000 deg? distributed over the six ugrizY photometric bandpasses
and over 10 years. The results presented here can be extrapolated to estimate the lower
limit on the number of variable sources that the LSST would discover.

The single-epoch LSST images will have a 5o detection limitH at r ~ 24.7. Hence, 2%
accurate photometry, comparable to the subsample with g < 20.5 discussed here, will be
available for stars with r < 22. The USNO-B catalog (Monet et all2003) shows that there
are about 10 stars with r < 21 across the entire sky. About half of these stars are in the
parts of the sky to be surveyed by the LSST. The simulations based on contemporary Milky
Way models, such as those developed by [Robin et al) (2003) and lJuri¢ et al/ (2007), predict
that there are about twice as many stars with r < 22 than with » < 21 across the whole
sky. Hence, it is expected that the LSST will detect about a billion stars with r < 22. This
estimate is uncertain to within a factor of two or so due to unknown details in the spatial
distribution of dust in the Galactic plane and towards the Galactic center.

We found that at least 0.5% of stars from the main stellar locus can be detected as
variable with photometry accurate to ~ 2%. This is only a lower limit because a much
larger number of LSST observations obtained over a longer timespan than the SDSS data
discussed here would increase this fraction. Hence, our results imply that the LSST will
discover at least 50 million variable stars (without accounting for the fact that stellar counts
greatly increase closer to the Galactic plane). Unlike the SDSS sample, where RR Lyrae
stars account for ~ 25% of all variable stars, the number of RR Lyrae stars in the LSST
sample will be negligible compared to other types of variable stars.

As estimated by lJurié¢ et al. (2007) using deeper coadded SDSS photometry, there are

8 Available at [HREF]http://www.lsst.org/Science/lsst_baseline.shtml

9An LSST Exposure Time Calculator is available at [[HREF]www.lsst.org


[
[

- 19 —

about 100 deg™? low-redshift quasars with r < 22 (see also Beck-Winchatz & Anderson 2007
and references therein). Therefore, with a sky coverage of ~ 20,000 deg?, the LSST will
obtain well-sampled accurate multi-color lightcurves for ~ 2 million low-redshift quasars.
Even at the redshift limit of ~ 2, this sample will be complete to M, ~ —24, that is,
almost to the formal quasar luminosity cutoff, and will represent an unprecedented sample
for studying quasar physics.

7. Conclusions and Discussion

We have designed and tested algorithms for selecting candidate variable sources from
a catalog based on multiple SDSS imaging observations. Using a sample of 13,051 selected
candidate variable sources in the adopted g < 20.5 flux-limited sample, we find that at least
2% of unresolved optical sources appear variable at the > 0.05 mag level, simultaneously
in the ¢ and r bands. A similar fraction of variable sources (~ 1%) was also found by
Sesar et _al. (2006) using recalibrated photometric POSS and SDSS measurements, and by
Morales-Rueda et al. (2006) using the Faint Sky Variability Survey data (~ 1%).

Thanks to the multi-color nature of the SDSS photometry, and especially to the u band
data, we can obtain robust classification of selected variable sources. The majority (2/3)
of variable sources are low-redshift (< 2) quasars, although they represent only 2% of all
sources in the adopted g < 20.5 flux-limited sample. We find that about 1/4 of variable stars
are RR Lyrae stars, and that only 0.5% of stars from the main stellar locus are variable at
the 0.05 mag level.

The distribution of v(g) for main stellar locus stars is bimodal, suggesting at least two,
and perhaps more, different populations of variables. About a third of variable stars from
the stellar locus show gray flux variations in the g and r bands (o(g)/o(r) ~ 1), and positive
lightcurve skewness, suggesting variability caused by eclipsing systems. This population has
an increased fraction of M type stars.

RR Lyrae stars show the largest rms scatter in the w and g bands, followed by low-
redshift quasars. The ratio of rms scatter in the g and r bands for RR Lyrae is ~ 1.4, in agree-
ment with [Ivezi¢ et all (2000) results based on 2-epoch photometry. The mean lightcurve
skewness for RR Lyrae stars is ~ —0.5, in agreement with (Wils, Lloyd & Bernhard (2006).
We selected a sample of 634 candidate RR Lyrae stars, with an estimated = 95% complete-
ness and ~ 70% efficiency. Using these stars, we detected rich halo substructure out to
distances of 100 kpc. The apparent “clumpiness” of the candidate RR Lyrae distribution in-
creases with increasing radius, similar to CDM predictions by Bullock, Kravtsov & Weinberg
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(2001).

Low-redshift quasars show a dependence of o(g)/o(r) on redshift, consistent with dis-
cussions in [Richards et al. (2002) and [Wilhite et all (2006). The lightcurve skewness dis-
tribution for quasars is centered on zero in all photometric bands. We find that at least
90% of quasars are variable at the 0.03 mag level (rms) on time scales up to several years.
This confirms that variability is as a good a method for finding low-redshift quasars at high
(|b] > 30) Galactic latitudes as is the UV excess color selection. The fraction of variable
quasars at the > 0.1 mag level obtained here (30%, see Figure [I4]) is comparable to 36%
found by [Rengstorf, Brunner & Wilhite (2006).

The multiple photometric observations obtained by the SDSS represent an excellent
dataset for estimating the impact of surveys such as the LSST on studies of the variable
sky. Our results indicate that the LSST will obtain well-sampled 2% accurate multi-color
lightcurves for ~ 2 million low-redshift quasars, and will discover at least 50 million variable
stars. The number of variable stars discovered by the LSST will be of the same order as the
number of all stars detected by the SDSS. With about 1000 data points in six photometric
bands, it will be possible to recognize and classify variable objects using lightcurve mo-
ments of higher order than skewness discussed here, including lightcurve folding for periodic
variables.
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Table 1.

The distribution of candidate variable sources in the g — r vs u — g diagram

g<19 g < 20.5 g <22

Region® Name? % all¢ % var?  var/all® NMT/N({” % all¢ % var®  var/all® NMT/N({” % all¢ % var®  var/all® NMT/N({”
I  white dwarfs 0.14 0.59 4.25 3.50 0.24 0.40 1.69 3.34 0.28 0.45 1.64 4.51

II  low-redshift QSOs 0.45 30.88 68.83 56.58 1.90 62.90 33.03 65.10 4.07 70.01 17.22 47.30

III  dM/WD pairs 0.08 0.53 6.54 5.37 0.83 2.08 2.50 4.92 1.21 3.79 3.13 8.61

IV RR Lyrae stars 1.28 16.81 13.11 10.78 1.33 7.95 5.99 11.81 1.48 6.41 4.33 11.90

V  stellar locus stars 96.27 48.77 0.51 0.42 94.49 25.15 0.27 0.52 91.89 18.33 0.20 0.55

VI  high-redshift QSOs 1.78 2.42 1.36 1.12 1.21 1.52 1.26 2.48 1.07 1.01 0.95 2.60

total count 411,667 3,384 662,195 13,051 748,067 20,553

aThese regions are defined in the g — r vs. u — g color-color diagram, with their boundaries shown in Fig. @]

b An approximate description of the dominant source type found in the region

°The fraction of all sources in a magnitude-limited sample found in this color region, with the magnitude limits listed on top.

dThe number of candidate variables from the region, expressed as a fraction of all variable sources

®The ratio of values listed in columns d) and c)

fThe number of candidate variables from the region, expressed as a fraction of all sources in that region



Table 2. The fraction of variable main stellar locus stars as a function of the s color

Bin % o(g) > 0.05% % var® (o(g))® Counts?

s < —0.02 3.23 0.36 0.017 46,836
—0.02 < 5 < 0.02 2.92 0.28 0.017 136,910
0.02 < s < 0.06 4.61 1.18 0.019 29,106
s > 0.06 11.50 4.10 0.027 4,547

aFraction of sources with o(g) > 0.05 mag

PFraction of variable sources (selected using o(g,) > 0.05 mag and
x%(g,7) = 3)

°Median o(g)

dNumber of sources in the bin



Table 3.  Approximate locations and properties of detected overdensities

Label® N° (RA)® (d)? (r)° (u—g)f (979 (" No/N}

A 84 330.95 21 17.02 1.14 0.18 -0.50 0.62
B 144 309.47 22 16.76 1.12 0.16 -0.57 0.64
C 54 33.69 25 17.61 1.13 0.20 -0.68 0.29
D 8 347.91 29 18.02 1.14 0.23 -0.50 0.38
E 11 314.06 43  18.84 1.09 0.20 -0.41 0.75
F 11 330.26 48  19.16 1.07 0.20 -0.46 0.38
G 10 354.81 55 19.46 1.10 0.22 -0.69 0.38
H 7 43.57 57  19.32 1.05 0.04 0.06 1.34
I 4 311.34 72 19.98 1.08 0.11 -0.10 2.0
J 26 353.58 81 20.21 1.11 0.20 -0.27 0.58
K 8 28.39 84  20.35 1.10 0.20 0.14 0.44
L 3 339.01 92  20.45 1.06 0.16 0.08 0.67
M 5 39.45 102 20.73 1.07 0.11 0.36 1.67

aQverdensity’s label from Fig. [[3]

bNumber of candidate RR Lyrae in the overdensity
“Median Right Ascension

dMedian distance (in kpc)

®Median r band magnitude

fMedian u — g color

&Median g — r color

hMedian v(g)

iThe number ratio of candidate RR Lyrae with g —r < 0.12 and g — r > 0.12
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Fig. 1.— The dependence of the median root-mean-square (rms) scatter ¥ in SDSS ugrz

bands on magnitude (symbols). The vertical bars show the rms scatter of ¥ in each bin
(not the error of the median). The dependence of ¥ in the ¢ band is similar to the r band
dependence. In each band, a fourth-degree polynomial is fitted through medians and shown
by the solid line.
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Fig. 2— Top: The cumulative distribution of x? g and r values for all sources (solid line)

and a reference Gaussian x? distribution with 9 degrees of freedom (dashed line). Vertical
dashed lines show adopted selection cuts on x?(g) and x?(r) values. Middle: The fraction
of o(g,r) > 0.05 mag sources with y? per degree of freedom greater than x? (only in the
g or r band: solid line, both in the g and r bands: dashed line). Bottom: The fraction of
o(g,r) > 0.05 mag sources with x?(m) > 2 (dashed line) or x?(m) > 3 (solid line) as a
function of magnitude for m = g, r bands, respectively.
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Fig. 3.— The distribution of counts for the full sample (top), candidate variable sample
(middle), and the ratio of two counts (bottom) in the g —r vs. u — g color-color diagram for
sources brighter than g = 20.5, binned in 0.05 mag bins. Contours outline distributions of
unbinned counts. Note the remarkable difference between the distribution of all sources and
that of the variable sample, which demonstrates that the latter are robustly selected.
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Fig. 4— The distribution of 18,329 candidate variable sources brighter than g = 21 in
representative SDSS color-magnitude and color-color diagrams. Candidate variables are
color-coded by their rms scatter in the g band (0.05-0.2, see the legend, red if larger or equal
than 0.2). Only sources brighter than g = 20 are plotted in color-color diagrams. Note
how RR Lyrae stars (u — g ~ 1.15, red dots, o(g) 2 0.2 mag) and low-redshift quasars
(u—g < 0.7, green dots, o(g) 2 0.1 mag) stand out as highly variable sources. The regions
marked in the top right panel are used for quantitative comparison of the overall and variable
source distributions (see Table [I).
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Fig. 5.— The distribution of the rms scatter o(u) (top left), rms scatter o(g) (top right),
o(g)/o(r) ratio (bottom left), and (g) (bottom right) for the variable sample in the g — r
vs. u — g color-color diagram. Sources are binned in 0.05 mag wide bins and the median
values are color-coded. Color ranges are given at the top of each panel, going from blue to
red, where the green color is in the mid-range. Values outside the range saturate in blue or
red. Contours outline the count distributions on a linear scale in steps of 15%. Flux limit is
g < 20.5, with an additional v < 20.5 limit in the top left panel. Bottom left: On average,
RR Lyrae stars have o(g)/o(r) ~ 1.4, main stellar locus stars have o(g)/o(r) ~ 1, while
low-redshift quasars show a gradient of o(g)/o(r) values. Bottom right: On average, quasars
and ¢ type RR Lyrae stars (u — g ~ 1.15, g — r < 0.15) have v(g) ~ 0, ab type RR Lyrae
(u—g ~ 1.15, g —r > 0.15) have negative skewness, and stars in the main stellar locus have
positive skewness.
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Fig. 6.— The distribution of candidate variable sources in the g < 20.5 flux-limited sample
is shown by linearly-spaced contours, and by symbols color-coded by the u — g color for
sources with o(g) > 0.05 mag and o(r) > 0.05 mag. The dotted lines show the adopted
o(g,r) selection cut. The thick solid line shows o(g) = o(r), while the dashed line shows
o(g) = 1.40(r) relation representative of RR Lyrae stars. Note that sources following the
o(g) = 1.40(r) relation tend to have u—g ~ 1, as expected for RR Lyrae stars. The greyscale
background shows the fraction of x?(g,r) > 3 sources which also have o(g) > = and o(r) > y
and demonstrates that large y? sources also have large o.
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Fig. 8— The lightcurve skewness distribution in the ugi bands for spectroscopically con-
firmed unresolved quasars (dotted line), candidate RR Lyrae stars (dashed line), and variable
main stellar locus stars (solid line, Region V, see Fig. @l for the definition). The distribution
of the skewness in the r band is similar to the g band distribution, and the distribution of
skewness in the z band is similar to the u band distribution (therefore the r and z data
are not shown). Stars in the main stellar locus show bimodality in the (g) suggesting at
least two, and perhaps more, different populations of variables. Similar bimodality is also
discernible in the r band, while it is less pronounced in the ¢ band and not detected in the u
and z bands. Quasars have symmetric lightcurves (v ~ 0) and their distribution of skewness
does not change between bands.
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Fig. 9.— A comparison of the u—g (left) and g—r (right) color distributions for variable main
stellar locus stars brighter than g = 19 (dashed lines), and a subset with highly asymmetric
lightcurves (y(g) > 2.5, solid lines). The subset with highly asymmetric lightcurves has an
increased fraction of stars with colors u — g ~ 2.5 and g —r ~ 1.5, characteristic of M stars.
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Fig. 10.— Top left: The distribution of 846 candidate variable sources from the RR Lyrae
region (dashed lines, see Fig. 3 in [Ivezi¢ et al. |201)ﬂ) in the g —7r vs. u — g color-color diagram.
The symbols mark the time-averaged values and are color-coded by a(g) (0.05 to 0.2, blue to
red). The dotted horizontal line shows the boundary between the RRab and RRe-dominated
regions. Top right: Sources from the top left panel divided into 3 groups according to their
o(g)/o(r) values: candidate RR Lyrae stars with 1 < o(g)/o(r) < 2.5 (large dots), sources

with o(g)/o(r) < 1 (triangles), and sources with o(g)/o(r) > 2.5 (squares). Small dots show
sources with RR Lyrae colors that fail the variability criteria. The dashed lines show the
o(g) = o(r) and o(g) = 2.50(r) relations, while the dotted line shows the o(g) = 1.40(r)
relation. Bottom left: A comparison of the u — g color distributions for candidate RR Lyrae
stars (solid line) and sources with RR Lyrae colors but not tagged as RR Lyrae stars (dashed
line). Bottom right: The dependence of v(g) on the g —r color for candidate RR Lyrae stars.
The boundary g — r = 0.12 (vertical dotted line) separates candidate RR Lyrae stars into
those with asymmetric (y(g) ~ —0.5) and symmetric (y(g) ~ 0) lightcurves, corresponding
to RRab and RRc stars, respectively. The condition v(g) < 1 (horizontal dashed line) is
used to reduce the contamination of the RR Lyrae sample by eclipsing variables.



— 38 —

:I T 1T I L I L I LI T I: 0.4 _I TTT L T 11T I TT I}‘I T 1T I:
r - r &
03 F b - & -
£ E 03 [ 7
. 02 ¢ 7 r ]
u ] L i
I o1 | 3 <~ o02[ ]
o f i ® - ;
0F - C ]
E ] 01 [ 7]
01 F B 3 L 2T ]
_I 11 1 I 11 1 1 I I\I/I 1 I 11 1 1 I 1 I- _‘I"/II 1 I 1111 I 111 1 I 1111 I 11 1 I_
0
0.9 1 11 12 13 0 01 02 03 04 05
u-g o(g)
T 7T L L I LI 1] 3 _I TT IIIIIII.I T I I.I T I'I LI I TT I_
1 r Ve e
or ] 25 [ . .. ‘ ]
o . 2k R
8t ] 15 F .. AR
- C ] 1™ T ¥ 80 7%, 2 5
2 e[ 1 ~o05 [ oyt Ff‘.'.ﬁ'.:p:"f's -]
pd L i ()] or o '.‘@o:"l . —
~ - i X C .'ﬁ"’ RO -
c ar 4 ™05 ¢ ~ SRR
N ] -1 [ oo- [ . ':“g'.. ﬁ 1
o 1 15 F S BT S
2 ] 2 F A
_I 11 I- -2-5 _I 11 I 1111 I 1111 I.i 111 I 1111 I 11 I_
0 -3
0.9 1 11 12 13 01 0 01 02 03
u — g g —r

Fig. 11.— The distribution of candidate RR Lyrae stars selected with 1 < o(g)/o(r) < 2.5
and classified by [De Lee et al. (|2DD_ﬂ), shown in diagrams similar to Fig. [0l Symbols show
RRab stars (red dots), RRc stars (blue dots), variable non-RR Lyrae stars (green dots),
and non-variable sources (open squares, only four sources). A comparison of the u — g
color distribution for RRab (solid line), RRc (dashed line), and variable non-RR Lyrae stars
(dotted line) is shown in the bottom left panel.
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Fig. 12.— The magnitude-position distribution of 634 Stripe 82 RR Lyrae candidates within
—55° < R.A. < 60° and |Dec| < 1.27°. Approximate distance (shown on the right y-axis)
is calculated assuming M, = 0.7 mag for RR Lyrae stars. Dashed lines show where sample
completeness decreases from approximately 99% to 60% due to the x? cut (see the bottom
right panel in Fig. [J). Closed curves are remapped ellipses and circles from Fig. [[3] that
mark halo substructure.
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Fig. 13.— Left: The spatial distribution of candidate RR Lyrae stars discovered by SDSS
along the Celestial Equator. Distance is calculated assuming Eq. 3 from [Ivezi¢ et all (|2D£ld)
and My = 0.7 mag as the absolute magnitude of RR Lyrae in the V band. The right
wedge corresponds to candidate RR Lyrae selected in this work (634 candidates, shown in
Fig.[[2)) and the left wedge is based on the sample from [Ivezi¢ et al. (Ilﬂ)ﬂ) (296 candidates).
Right: The number density distribution of candidate RR Lyrae stars shown in the left panel,
computed using an adaptive Bayesian density estimator developed by [vezi¢ et a|.| ).
The color scheme represents the number density multiplied by the cube of the galactocentric

radius, and displayed on a logarithmic scale with a dynamic range of 300 (from light blue to
red). The green color corresponds to the mean density — both wedges with the data would
have this color if the halo number density distribution followed a perfectly smooth r»~3 power-
law. The purple color marks the regions with no data. The yellow regions are formally ~ 3o
significant overdensities, and orange/red regions have an even higher significance (using
only the counts variance). The strongest clump in the left wedge belongs to the Sgr dwarf
tidal stream as does the clump marked by C' in the right wedge (Ivezié 1 ML?@I) An
approximate location and properties of labeled overdensities are listed in Table [l The

(lZDDd) sample is based on only 2 epochs and thus has a much lower completeness
(~ 56%) resulting in a lower density contrast.
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Fig. 14.— The fraction of spectroscopically confirmed unresolved QSOs (fgso, solid line)
and the fraction of sources from the stellar locus ( fj,., dashed line) brighter than g = 19.5 and
r = 19.5 that have rms scatter larger than o in the g and r bands. The ratio foso/(1+ fioc)
(dotted line), which corresponds to the implied fraction of variable QSOs, peaks at a level
of 90% for o = 0.03 mag.
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