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ABSTRACT: We study supersymmetric QCD in the conformal window as a laboratory for
unparticle physics, and analyze couplings between the unparticle sector and the Higgs sector.
These couplings can lead to the unparticle sector being pushed away from its scale invariant
fixed point. We show that this implies that low energy experiments will not be able to
see unparticle physics, and the best hope of seeing unparticles is in high energy collider
experiments such as the Tevatron and the LHC. We also demonstrate how the breaking of

scale invariance could be observed at these experiments.
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1. Introduction and Conclusions

Recently there has been a lot of interest [1-8] in unparticle theories [9,10] in which the
Standard Model (SM) is coupled to a conformal sector (called the unparticle sector). As
shown in [9,10], the conformal sector can have interesting and unexpected consequences. In
this note, we shall investigate the effects on the conformal sector from the Higgs sector, and
we will show that this leads to surprising new bounds on unparticle physics.

The main point of our analysis is that the coupling to the Higgs sector is the most
important operator; in fact, if there is a scalar unparticle operator of dimension less than 2,
the coupling to the Higgs sector is through a relevant operator. When the Higgs gets a vacuum
expectation value, this operator breaks the conformal invariance of the hidden sector. For
unparticle physics to be relevant, this breaking scale should be sufficiently low. This operator
may also lead to strong effects on Higgs physics from unparticles, which would be interesting
to investigate.

This requirement imposes strong constraints on the unparticle sector. If these constraints
are satisfied, low energy experiments will not be able to probe any aspects of unparticle
physics. The only place where unparticle physics will be relevant is in high energy experiments
like the Tevatron and the LHC, which can indeed probe unparticle physics. In fact, the
breaking of conformal invariance may also be measurable as deviations from the predictions
of unparticle physics.

We will begin by discussing a model of unparticle physics, which is different from the
previously suggested models. We take the conformal sector to be a supersymmetric gauge
theory, which at low energies flows to a conformal theory. Using supersymmetry, we will be
able to explicitly calculate the dimensions of chiral operators in this theory, and show that
this is a good model for unparticle physics. We note that anomalous dimensions in these
theories can be large, in contrast to Banks-Zaks fixed points which are weakly coupled.



We then couple this sector to the Standard Model, focusing on the Higgs sector. We
show that conformal invariance is broken at low energies, and for reasonable choices of scales
the inclusion of the Higgs-unparticle operator means that low energy experiments are unable
to see the effects of unparticles. Finally, we propose a toy model for a theory with unparticles
and a breaking of scale invariance and calculate experimental predictions of this effect.

2. Supersymmetric QCD as a model of unparticle physics

We would like to have an example of a conformal field theory in which it is possible to do
semi-quantitative calculations. This is challenging since we also require the theory be strongly
coupled in order that anomalous dimensions can be large. Remarkably such an example exists
in the literature [11,12], in the form of supersymmetric QCD (SQCD)in a certain regime. We
will therefore consider SQCD in the conformal window as a laboratory for unparticle physics.

We briefly review the results of SQCD (for a comprehensive review see [13]). Consider
SQCD with gauge group SU(N¢) and Nf vector-like quark superfields (Q, Q) with %Nc <
Np < 3N¢ (we call this the electric theory). Such a theory flows to a strongly coupled
conformal fixed point in the infrared (IR). At the fixed point the theory has a dual (magnetic)
description, with gauge group SU(Nr — N¢), Nr dual-quark superfields (g, §), a gauge singlet
meson superfield M (transforming in the bifundamental representation of the SU(Np) x
SU(Np) flavor symmetry, and superpotential,

Winag = qMq . (2.1)

The meson of the magnetic description corresponds to the gauge invariant composite (QQ)
of the electric theory.

The magnetic conformal theory can now be coupled to the Standard Model, and will
then be a candidate for the unparticle sector. In general, we can write the UV coupling of an
operator of dimension dyy in the unparticle sector to a SM operator of dimension [:

1

7M£{+de—4 OsmOuv (2.2)

and below the strong coupling scale, these couplings flow to

AdUV —dy
i OsmOrr (2.3)
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(in the notation of Georgi k =1 + dyy — 4).
Supersymmetric QCD allows us to make this explicit. For example adding superpotential
coupling in the UV regime of the magnetic description

1
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leads, among others to the following terms in in the Lagrangian
L mre e M+ <LHEéq*q* + h.c.> (2.5)
My My ’
which have the form (2.2) with Oyy = Tr M of dimension dyy = 1 and Oyy = ¢q of
dimension dyy = 2. Below the strong coupling scale, once the theory reaches its conformal
fixed point, the dimensions of these operators can be computed from R-charges to be dyy =
3Nc=NF 01\7 FN E and dy = 3%—? respectively. Furthermore, in the conformal window the dimension
of both operators lie between 1 and 2, making them perfect candidates for the operator Oy
of the unparticle conformal sector [9].
A couple of comments are in order:

1. For generic choices of N¢ and Np, in the conformal window, the dimensions of the
operators qq, M significantly differ from integer values. This is unlike the Banks-Zaks
theory [14] which has a weakly coupled fixed point where all operators have dimension
close to their classical value. In particular, all gauge invariant operators in BZ theory
have almost integer dimensions.

2. We can perturb the theory by adding a term to the action \O;gp = A Tr M. This
corresponds to adding a mass term for the quarks of the electric description. The result
of this mass term is that at low energies, the quarks can be integrated out, and the
theory becomes a pure super-Yang Mills theory, which is no longer conformal.

3. Operator analysis and experimental constraints

The couplings of the unparticle sector and the SM sector can have interesting effects. Most
interest has concentrated on operators involving SM fermions and gauge bosons (with the
goal of determining low energy signatures of unparticles) and consequently on operators with
I > 3 . Because the operator of lowest dimension in the unparticle sector has dimension
greater than 1 this means that the coupling operator is irrelevant [ + dyy — 4 > 0.

However there is another type of coupling between the SM and the unparticle sector,
involving the SM Higgs boson. The coupling is of the form

1 2
MV [H|*Ouy (3.1)
which flows in the IR to
AZC/l{Uv—du )
Cu—G~=HI"O1r (3.2)
MZ/{

The dimension of Oyp is usually assumed to lie between 1 and 2 [10], as is indeed the case for
SQCD. For such operators, this coupling is relevant in the CFT and can significantly change
the low energy physics of the unparticle sector. We note there is no symmetry that can forbid



this operator without simultaneously forbidding fermion and gauge boson operators coupling
to the unparticle sector.

It is clear that once the Higgs acquires a vev, this operator introduces a scale into the
CFT. This relevant operator will cause the unparticle sector to flow away from its conformal
fixed point and the theory will become non-conformal at a scale A, where

dyv —du
a—dy [ Au 2—dy 2
AZ/{ U — <M—u> MZ/{ Z/{’U . (33)
Below this scale the unparticle sector presumably becomes a traditional particle sector. For
consistency Ay < Ay and if there is to be any sense in which the theory is truly conformal
the two scales should be well separated. This means that is does not make sense to talk of

Ay < UzMil_dUV m.

We note that if there is no scalar operator of dimension less than 2 in the unparticle
sector, then the operator (3.2) is irrelevant. Any operator with dimension less than 2 would
then have to be a vector or higher tensor operator. Such scenarios are difficult to realize in
SQCD, but may be realized in more exotic theories. (For example, one may use AdS/CFT
and consider the CFT dual of an AdS theory which only contains vector fields.) We will not
consider this possibility further.

Breaking of the conformal invariance due to the new operators has important implications
for unparticle phenomenology. For any given experiment, unparticle physics will only be
relevant if

AZ/{ <Q (34)

where @ is the typical energy of the experiment. For lower energies, the unparticle sector can
be treated as a particle sector. With this observation the constraint of (3.4) takes the form

A dyv —dy
Q> (ﬁ’) M2 (3.5)
u

This suggests that low energy experiments may not be sensitive to unparticle physics. To
see this explicitly we note that any observable effect of the operator (2.3) will be proportional

2dyy —2dy 2(du +l—4)
= <;\>—“> <MQ> . (3.6)
U U

Then the effects of the unparticle sector on observables are bounded by

¢ < <M%>21 (?)4 . (3.7)

Note that this constraint is completely independent® of both the UV and IR scaling dimension

to

of the CF'T operator and the potential effects of the unparticle sector are constrained by only

!This is not entirely true, there is dependence on dy; due to the modification of phase space. This results
in order 1 numbers but the dependence on energy scales remains the same.



3 parameters: the experimental energy, scale of the electroweak symmetry breaking and the

energy scale at which the interactions between the SM and unparticle sector are generated.
Let us now concentrate on the measurement of (g-2) of the electron. In this case the

SM operator is simply? Ogys = ée and the relevant energy scale is m.. Therefore eqn. (3.7)

becomes 6
m

[
2.4
Muv

Since effective field theory works at the electroweak scale, we expect My, 2 100 GeV. We

€< (3.8)

then find € < 10728, This should be contrasted with the existing experimental constraint
given in [15], € < 107!, Therefore the effects of the unparticle sector are completely invisible
in (g-2) experiments.

It is clear from (3.6) that signals of unparticle physics increase with energy and the LHC
is the most likely place where it can be discovered. For such an experimental discovery,
My should not be too high. Assuming that we can detect deviations from the Standard
Model of order € ~ 1%, we see that unparticle physics will be visible at the LHC as long as
My ~ 10° GeV.

As an example, we may take Ay ~ 10*°GeV and dyy = 1.5, then Ay =~ 40 GeV, showing
that unparticle physics will indeed be a valid description at LHC scales for this choice of
parameters. On the other hand, if Ay ~ My = 10° GeV and dyy = 1.5 we will find Ay =~
400 GeV which is large and will imply deviations from unparticle physics. In Figure 1 we
show how the breaking scale Ay varies with dy and Ay for two different choices of dyy; in
both cases My, = 10° GeV, although for dyy = 2 there is no dependence on M. From
these plots we can see that the range over which the unparticle sector is conformal can be
made large only at the expense of increasing the UV dimension of the unparticle operator or
the scale M;;. The former then requires very large anomalous dimensions to allow di; to lie
between 1 and 2, and the latter may make the discovery of unparticles beyond the reach of
any experiment. On the other hand, as we will see in the next section if Ay is not very small,
then the deviations from both from particle and unparticle physics may be measurable.

4. New effects in non-unparticle physics

In a pure conformal theory, the correlator can be written as

4
(Oul)0u() = [ G5

e”"P(0|Oy| P)*p(P?) (4.1)
with
(0[Ou| P)[* p(P?) = Ag, 0(P°)0(P?)(P?)% 2. (4.2)

We propose a simple toy model where conformal invariance is broken at a low energy pu
by modifying the above equation to

|010u| P)*p(P?) = A, 0(P)0(P? — 1) (P? — )2, (4.3)

2There is also the possibility of a pseudoscalar operator éyse but this follows the same scaling arguments.
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Figure 1: Contours of fixed CFT breaking scale, Ay, as a function of the IR dimension of the
unparticle operator, dy;, and the scale at which it becomes conformal, A;;. Two particular choices for
the UV dimension of the unparticle operator are made, dyy = 2, 3.

This modification corresponds to shifting the spectrum to remove modes with energy less
than g. This model maintains the unparticle nature of the hidden sector whilst including the
effects of the breaking of scale invariance. There are other possibilities for instance, once scale
invariance is broken there may be particle-like modes that would appear as isolated poles in
the spectral function, but we ignore these effects in this simple model.

This modification can produce observable effects. To illustrate this, we will reconsider
the effects of unparticle physics on the decay of the top through processes like t — u O;;. The
decay rate for this process can be computed following [9] to be

legF_ 2 mye 6 Eu 2 my 2Eu du=2
Jb = dduld 1) (M) (E) <1_2<M) E) (4.4)

with M2 = m? — p?. In Figure 2 we show this modification for various choices of y and dy.

my

Notice that the end point of the distribution is no longer m;/2 but is now mgn;f * and that
the normalisation of the distribution changes.

This is one simple modification from non-unparticle physics but it may be possible to
look for effects of the breaking of scale invariance in other collider signatures, for instance
the interference between unparticle and SM propogators in simple processes such as ete™ —
w~+ p~ [10]. It would also be interesting to see how the inclusion of the coupling between the

SM Higgs and the unparticle sector affects Higgs physics.
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