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Abstract

The B-model topological string theory on a Calabi-Yau threefold X has a symmetry
group I', generated by monodromies of the periods of X. This acts on the topological string
wave function in a natural way, governed by the quantum mechanics of the phase space
H3(X). We show that, depending on the choice of polarization, the genus g topological
string amplitude is either a holomorphic quasi-modular form or an almost holomorphic
modular form of weight 0 under I'. Moreover, at each genus, certain combinations of genus
g amplitudes are both modular and holomorphic. We illustrate this for the local Calabi-
Yau manifolds giving rise to Seiberg-Witten gauge theories in four dimensions and local 1P,
and IP; xIP;. As a byproduct, we also obtain a simple way of relating the topological string
amplitudes near different points in the moduli space, which we use to give predictions for

Gromov-Witten invariants of the orbifold C*/Z3.
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1. Introduction

Topological string theory has led to many insights in both physics and mathematics.
Physically, it computes non-perturbative F-terms of effective supersymmetric gauge and
gravity theories in string compactifications. Moreover, many dualities of superstring theory
are better understood in terms of topological strings. Mathematically, the A-model ex-
plores the symplectic geometry and can be written in terms of Gromov-Witten, Donaldson-
Thomas or Gopakumar-Vafa invariants, while the mirror B-model depends on the complex
structure deformations and usually provides a more effective tool for calculations.

The topological string is well understood for non-compact toric Calabi-Yau manifolds.
For example, the B-model on all non-compact toric Calabi-Yau manifolds was solved to all
genera in [l using the W, symmetries of the theory. Geometrically, the W, symmetries
are the w-preserving diffeomorphisms of the Calabi-Yau manifold, where w is the (3,0)
holomorphic volume form. By contrast, for compact Calabi-Yau manifolds the genus ex-
pansion of the topological string is much harder to compute and so far only known up to
genus four in certain cases, for instance for the quintic Calabi-Yau threefold. It is natural
to think that understanding quantum symmetries of the theory may hold the key in the
compact case as well.

In this paper, we will not deal with the full diffeomorphism group, but we will ask
how does the finite subgroup I' of large, w-preserving diffeomorphisms, constrain the am-
plitudes. In other words, we ask: what can we learn from the study of the group of
symmetries I' generated by monodromies of the periods of the Calabi-Yau? For this, we
need to know how I' acts in the quantum theory. The remarkable fact about the topo-
logical string is that its partition function Z = exp(d_, g2972F,) is a wave function in a
Hilbert space obtained by quantizing H3(X), where g2 plays the role of n Classically, T’
acts on H3(X) as a discrete subgroup of the group Sp(2n,Z) of symmetries that preserve
the symplectic form, where n = %bg (X). This has a natural lift to the quantum theory.

The answer turns out to be beautiful. Namely, the F,’s turn out to be (almost) mod-
ular forms of I'. By “(almost) modular form” we mean one of two things: a form which is
holomorphic, but quasi-modular (i.e. it transforms with shifts), or a form which is modular,
but not quite holomorphic. By studying monodromy transformations of the topological
string partition function in “real polarization”, where Z depends holomorphically on the

moduli space, we find that it is a quasi-modular form of ' of weight 0. The symmetry

1 This fact was also recently explored in [[[§,[4,81B9].
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transformations under I' imply that the genus g partition function Fj is fixed recursively
in terms of lower genus data, up to the addition of a holomorphic modular form. Thus,
modular invariance constrains the wave function, but does not determine it uniquely. The
holomorphic modular form that is picked out by the topological string can be deduced (at
least in principle) by its behavior at the boundaries on the moduli space. On the other
hand, if we consider the topological string partition function in “holomorphic polariza-
tion”, this turns out to be a modular form of weight 0, which is not holomorphic on the
moduli space. While it fails to be holomorphic, it turns out to be “almost holomorphic”
in a precise sense. Moreover, it is again determined recursively, up to the holomorphic
modular form. Thus, the price to pay for insisting on holomorphicity is that the F,’s fail
to be precisely modular, and the price of modularity is failure of holomorphicity!

The recursive relations we obtain contain exactly the same information as what was
extracted in [f] from the holomorphic anomaly equation. In [fjf], through a beautiful study
of topological sigma models coupled to gravity, the authors extracted a set of equations
that the genus g partition function F, satisfies, expressing an anomaly in holomorphicity
of F4. The equations turn out to fix F, in terms of lower genus data, up to an holomor-
phic function with a finite set of undetermined coefficients. Here, we have formulated the
solutions to the holomorphic anomaly equation by exploiting the underlying symmetry
of the theory. In the context of [f], solving the equations was laborious, the particularly
difficult part being the construction of certain “propagators”. From our perspective, the
propagators are simply the “generators” of (almost) modular forms, that is the analogues
of the second Eisenstein series of SL(2,Z) and its non-holomorphic counterpart! That a
reinterpretation of [f] in the language of (almost) modular forms should exist was antici-
pated by R. Dijkgraaf in [L3]. For local Calabi-Yau manifolds, the relevant modular forms
are Siegel modular forms. In the compact Calabi-Yau manifold case, our formalism seems
to predict the existence of a new theory of modular forms of (subgroups of) Sp(2n,Z),
defined on spaces with Lorentzian signature (instead of the usual Siegel upper half-space).

The paper is structured as follows. In section 2, we describe the B-model topological
string theory, from a wave function perspective, for both compact and non-compact target
spaces. In section 3, we take a first look at how the topological string wave function
behaves under the symmetry group I' generated by the monodromies. Then, we give a
more precise analysis of the resulting constraints on the wave function in section 4. We
also explain the close relationship between the topological string amplitudes and (almost)

modular forms in this section. In the remaining sections we give examples of our formalism:
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in section 5 we study SU () Seiberg-Witten theory, in section 6 local IP? — where we also
use the wave function formalism to extract the Gromov-Witten invariants of the orbifold
C?/Zs, and in section 7 local IP* x IP*. To conclude our work, in section 8 we present some
open questions, speculations and ideas for future research. Finally, Appendix A and B are
devoted to a review of essential facts and conventions about modular forms, quasi-modular

forms and Siegel modular forms.

2. B-model and the Quantum Geometry of H3(X )

The B-model topological string on a Calabi-Yau manifold X can be obtained by
a particular topological twisting of the “physical” string theory, two-dimensional (2,2)
supersymmetric sigma model on X coupled to gravity. The genus zero partition function
of the B-model Fj is determined by the variations of complex structures on X. The higher
genus amplitudes F,~o can be thought of as quantizing this. When X has a mirror Y,
this is dual to the A-model topological string, which is the Gromov-Witten theory of Y,
obtained by an A-type twist of the physical theory on Y. As is often the case, many
properties of the theory become transparent when the moduli of X and Y are allowed
to vary, and the global structure of the fibration of the theory over its moduli space is
considered. This is quite hard to do in the A-model directly, but the mirror B-model is
ideally suited for these types of questions.

2.1. Real Polarization

Let us first recall the classical geometry of H3(X,C) = H3*(X,Z) ® C. In the fol-
lowing, we will assume that X is a compact Calabi-Yau manifold, and later explain the
modifications that ensue in the non-compact, local case.

Choose a complex structure on X by picking a particular 3-form w in H3(X,C).
Any other 3-form differing from this by a multiplication by a non-zero complex number
determines the same complex structure. The set of (3, 0)-forms is a line bundle £ over the

moduli space M of complex structures. Given a symplectic basis of H3(X, Z),
Al'n By = 55,

%bg (X), we can parameterize the choices of complex struc-

a:I:/ w, p1:/ w.
AT B

3

where I,J =1,...n, and n =

tures by the periods



The periods are not independent, but satisfy the special geometry relation:

pr(x) = %f(}(ﬂ?). (2.1)

As is well known, F{ turns out to be given in terms of the classical, genus zero, free energy
of the topological strings on X.

In the above, we picked a symplectic basis of Hz. Different choices of symplectic basis

differ by Sp(2n, Z) transformations:

pr=A;"py + Brya’

(2.2)
# =y, + D!y’
where
A B
M = <C D) € Sp(2n,Z).
For future reference, note that the period matrix 7, defined by
o
IJ = &CJPI
transforms as
7= (AT + B)(CT+ D)%, (2.3)

For a discrete subgroup I' C Sp(2n, Z), the changes of basis can be undone by picking a
different 3-form w. Conversely, we should identify the choices of complex structure that are
related by changes of basis of H3(X, Z). The z’s can be viewed as projective coordinates on
the Teichmuller space 7 of X, on which I' acts as the mapping class group. Consequently,

the space of inequivalent complex structures is
M=T/T.

Generically, the moduli space M has singularities in complex codimension one, and IT" is
generated by monodromies around the singular loci.

It is natural to think of H3(X,Z) as a classical phase space, with symplectic form,
dz! A dpy,

and (BJ]) as giving a lagrangian inside it. In fact, the analogy is precise. As shown in [A{],

in the quantum theory z! and p; become canonically conjugate operators

[pr, 2] = g7 67 (2.4)
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where g2 plays the role of &, and the topological string partition function

(0.@]
X1 _
Z(a') =¥ exp[ Y g2 F,(a"), (2.5)
g=0
where F, is the genus g free energy of the topological string, becomes a wave function.
More precisely, the B-model topological string theory determines a particular state

|Z) in the Hilbert space obtained by quantizing H3(X,Z). The wave function,
(@!12) = Z(a")

describes the topological string partition function in one, “real” polarizafciomE of H3(X).
The semi-classical, genus zero approximation to the topological string wave function is

determined by the classical geometry of X, and the lagrangian (R.)):

pi2() = g2 2(w) ~ (g Fo) 2().

The lagrangian does not determine the full quantum wave function. In general, there
are normal ordering ambiguities, and to resolve them, the full topological B-model string
theory is 1(1eeded.E

The partition function Z implicitly depends on the choice of symplectic basis. Clas-
sically, changes of basis (p,z) — (p,Z) which preserve the symplectic form are canonical
transformations of the phase space. For the transformation in (B.9), the corresponding

generating function S(x,Z) that satisfies
ds = p]d{l?] - ﬁ]d&?f (26)
is given byE

g 1, . _ g 1 _ T~
S(z,7) = —5(0 D) s’ a® + (C7Y) g2’ z® — §<AO Yoxalik. (2.7)

2 For us, w naturally lives in the complexification H?(X,C) =C ® H?(X,IR), so “real” polar-
ization is a bit of a misnomer.

3 Note that due to (B4), gs is a section of £, so that Fy is a section of £>729. The full partition
function is a section of E%*I, where x is the Fuler characteristic of the Calabi-Yau, due to the
prefactor.

4 Note that (B-9) only defines S up to an addition of a constant on the moduli space. This

ambiguity can be absorbed in Fi, since only derivatives of it are physical anyhow.
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This has an unambiguous lift to the quantum theory, with the wave function transforming

aSE
2(3) = / dz e=S@D/5E 7). (2.8)

We should specify the contour used to define (P-§); however, as long as we work with
the perturbative g2 expansion of Z(z), the choice of contour does not enter. To make sense
of (-§) then, consider the saddle point expansion of the integral.

Given #!, the saddle point of the integral ! = z; solves the classical special geometry
relations that follow from (B.9) :

0S
@hcz = pr(xa).

Expanding around the saddle point, and putting

I _ I I
T =x,t+y,

we can compute the integral over y by summing Feynman diagrams where
Ary=—(t1+C7 D)y (2.9)
is the inverse propagator, and derivatives of Fy,
Or, ...0r, Fg(xa), (2.10)
the vertices. As a short hand we summarize the saddle point expansion by
Fy=F,+T (A 0y, .05, Frey(za))

where Fg(AU, Or, ...0r1,Fr<g(xc)) is a functional that is determined by the Feynman
rules in terms of the lower genus vertices 9y, ...0;, F.(x.) for r < g and the propagator
A7, The latter is related to the inverse propagator Ay in (29) by A A = 6%. For
example, at genus 1 the functional is simply

Iy (AY) = %logdet(—A),

5 Tt is important to note that this makes sense only on the large phase space, where the integral
is over the n-dimensional space spanned by the z’s. In particular, the choice of section of £ does

not enter.



where by A we mean the propagator A’/ in matrix form. At genus two one has

1 1
PQ(AIJ, (911 . .8lnﬂ<2) = AI‘] (5818Jf1 + 5 8If1 8Jf.l)

1 1
+ AI‘]AKL( 56[.7:1 050K O0LFo + g 6[6J6K6Lf0)
(2.11)
+ AIJAKLAMN(% 01070 Fo Or,0nONFo

1

where we suppressed the argument x.; for clarity.

It is easy to see from the path integral that this describes all possible degenerations
of a Riemann surface of genus g to “stable” curves of lower genera, with A’/ being the
corresponding contact term, as shown in the figure below. Stable here means that the
conformal Killing vectors were removed by adding punctures, so that every genus Z€ero

component has at least three punctures, and every genus one curve, one puncture

@—@m@@
(OGO

Fig. 1. Pictorial representation of the Feynman expansion at genus 2 in terms of degenerations

r-n—

m—

of Riemann surfaces.

Mirror symmetry and Gromov-Witten theory picks out the real polarization which is
natural at large radius where instanton corrections are suppressed, and where the classical
geometry makes sense. However, also by mirror symmetry, there is a larger family of
topological A-model theories which exist, though they may not have an interpretation as
counting curves.

For a generic element M of Sp(2n, Z), (B.§) simply takes one polarization into another.
However, for M in the mapping class group I' C Sp(2n, Z), the transformation (2.§) should

6 Note that in particular this implies that at each genus, the equations are independent of the

choice of section of £ we made, the left and the right hand side transforming in the same way.
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translate into a constraint on F , since I' is a group of symmetries of the theory. We will

explore the consequences of this in the rest of this paper.
2.2. Holomorphic Polarization

Instead of picking a symplectic basis of H3(X) to parameterize the variations of com-
plex structure on X, we can choose a fixed background complex structure Q € H3(X,C),
and use it to define the Hodge decomposition of H?3(X,C):

H3 — H3,0 D H2,1 D H1,2 D HO’B.

Here  is the unique H3° form and the D;Q’s span the space of H?! forms, where
D; = 0; — 0;K and K is the Kéhler potential K = log]i fX Q A Q]. This implies that:

w=pQ+2DQ+7 DA+ pQ, (2.12)

where (¢, 2*), and (@, z%) become coordinates on the phase space.ﬁ Correspondingly we

can express |Z) as a wave function in holomorphic polarization

<Zi7(10|Z> = Z(Ziv 90)'

The topological string partition function Z(z¢, ¢) depends on the choice of background
2, and this dependence is not holomorphic. This is the holomorphic anomaly of [[f]. One
way to see this is through geometric quantization of H3(X) in this polarization [fI0]. We
will take a different route, and exhibit this by exploring the canonical transformation from

real to holomorphic polarizations. Using special geometry relations it is easy to see that

93]: w:zI—l— c.c
AI

pI:/ w:T[JZJ+ c.c
By

where we defined
=X 4D X!

X’:/ Q, PI:/ Q,
Al By

7 Since w for us does not live in H*(X,IR), but rather in H*(X,C), @ and z° are not honest

complex conjugates of ¢, 2°.

in terms of




and where

0

= —Pj.
B

From this it easily follows that
dpy Ndx! = (1 —7)pdz" A dz’
and hence the canonical transformation from (z!,pr) to (27, z!) is generated by
dS(z,z) = prdz! + (1 — 7) 1521 d2" .

This corresponds to

~

1 1
S(z,z) = iﬁJxI:cJ —|—.’L‘I(T —7_—)IJZJ — 521(7 —f)UzJ + ¢,

where ¢ is a constant, but which can now depend on the background.
In the quantum theory, this implies that the topological string partition function in

the holomorphic polarization is related to that in real polarization by:
Z(zt,1) = / dz e 5@2)/9% 7(z) (2.13)

where t? are local coordinates on the moduli space, parameterizing the choice of back-
ground, i.e. X! = X!(t). Note that all the background dependence of Z (z) comes from
the kernel of S H Let

(X, X) = —F1(X) — % logfdet (r — 7)](X, X) — (X — 1) log(s.), (2.14)

where y the Euler characteristic of the Calabi-Yau.

Consider now the perturbative expansion of the integral. For simplicity, let us pick

so that 2/ = X'. The saddle point equation, which can be written asE

(F(X) = 7(xet)) gy vy + (T(X) = F(X)) 1127 =0,

8 In what follows, we will use hats to label quantities which are not holomorphic.

9 We used here the special geometry relation pr = oz’

9



has then a simple solution,

I _ I
xcl—X.

Expanding around this solution,E we can compute the integral by summing Feynman
diagrams where
—(m(X) = 7(X))1s (2.15)

is the inverse propagator, and derivatives of F,
Or, ...0r, Fy(X),
the vertices. That is, we get
Fy(t, 1) = Fo(X) + T, (— (r=5", oy .. .afnfmg(X)) (2.16)

where the properties of the functionals I'j obtained by the Feynman graph expansion have
been discussed in the previous section.

Finally, one can show [BJ] that Z satisfies the holomorphic anomaly equations of [f].
Differentiating the left and the right hand side of (B.1J) the with respect to ¢ we get

-0

2 2
9 g (Ssgar 9

ot 2 1 021029

In the above equation, Cj; is the amplitude at genus zero with three punctures, Gj; is
the Kahler metric, and C’gj F= 2K C‘g;,;GEj G, Tt also satisfies the second holomorphic

anomaly eqmationEI

12
ot

0

o, 0 .. 4 - 1 A

24 2

S

The second anomaly equation implies that Z has the form

7 1 —27 i in, ,2—2g—7 X
Lozt d) =exp(Y — g2 PFy) 22T — (S~ 1) log )
g,n

101t should now be clear why (B.14) is natural. The above normalization of the integral ensures
that Z contains no one loop term without insertions (the vanishing of genus zero terms with zero,
one and two insertions is automatic in the saddle point expansion.)

1 We used here the explicit form of Fy from [E] , from which follows that 0 Fy + (2—91 —1)0,K =
iy — £0;log(1 — 7).
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where ‘7:";7?11” =D, ...Din]:"g for 29 — 2 +n > 0, and zero otherwise, for some ]:"g’s, a
fact that we will need later.

The holomorphic polarization, as explained in [BEJ] is the natural polarization of
the topological string theory, in the following sense. The topological string is obtained
by twisting a physical string on the Calabi-Yau at some point in the moduli space. The
physical string theory naturally depends not only on X, but also on X, so the space of
physical theories is labeled by (X, X). After twisting, it is natural to deform by purely
topological observables which are in one-to-one correspondence with the h*! moduli —
we have parameterized the resulting deformations by 2z’ above. While one would naively

expect the topological theory to depend only on z, this fails and the theory depends on
the background (X, X) that we used to define it as well.

2.3.  Local Calabi-Yau Manifolds

In the previous subsections we assumed that the Calabi-Yau X is compact. In this
subsection we explain the modifications required in the local case. We can derive the
results of this section by viewing the B-model on a local Calabi-Yau simply as a limit of
the compact one. This is the perspective that was taken in [[J,23]. Since today, there is
now far more known about the topological string in the local than in the compact case,
it is natural to work directly in the language of local Calabi-Yau manifolds. For a string
theory on a non-compact Calabi-Yau manifold, gravity decouples. As a consequence, the
moduli space is governed by rigid special geometry, and not local special geometry as in
the compact Calabi-Yau case. The partition functions are no longer sections of powers of
line bundle £; the latter disappears altogether.

Consider the local Calabi-Yau manifold given by the equation
X : uw=H(y,z) (2.17)

in C*. This has a holomorphic three-form w given by

du

w=— Ady A dz. (2.18)

The Calabi-Yau can be viewed as a C* fibration over the y — z plane where a generic fiber
is given by uw = const. It is easy to see that the 3-cycles on X descend to 1-cycles on a
Riemann surface ¥ given by

¥ :0=H(yz2),

11



and, moreover, that the periods of the holomorphic three-form w on X descend to the

3 CyCle 1 CyCle

A =ydz.

where

On a genus g Riemann surface there are 2g compact 1-cycles that form a symplectic
basis,@ 1=1,...,9,
A'NB; =6

Al B;

the z%’s are the normalizable moduli of the Calabi-Yau manifold. However, since the

Let

Calabi-Yau is non-compact, H(y, z) may depend on additional parameters which are non-
normalizable complex structure moduli s*. Corresponding to these, there are compact
3-cycles C, in H3(X) and 1-cycles on ¥ such that

so‘:/ .

But, since the homology dual cycles to the C“ are non-compact, the metric on the moduli
space along the corresponding directions will not be normalizable. As a consequence, the
s are parameters of the model, not moduli.
This implies that the monodromy group I' corresponds to elements of the form
Di = Az’jpj + Bijr? + E;08®
. g o . (2.19)

' =C"p;+ D! + F',s”
where 5%, being parameters which do not vary, are monodromy invariant. Since I" preserves
the symplectic form

dzt A dp;,

12 Thisis a slight over-simplification. Since the Riemann surface is non-compact, it can happen
that one cannot find compact representatives of the homology satisfying this, and that instead
one has to work with A* N B; = né», with n; integral. We will see examples of this in the later
sections. Since it is very easy to see how this modifies the discussion of this section, we will not

do this explicitly, but assume the simpler case for clarity of presentation.
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we have that
A B
(C D) € Sp(29,Z).

Note that, while p; and 27 transform in a somewhat unconventional way, the period matrix

0
Tij = 5 —=Di

oz

transforms as usual:

7= (AT + B)(CTt + D)%
The corresponding generator of canonical transformations is easily found to be

S(l‘,i‘) = — %(C_1D>jkxjxk + (C_1>jk$ji‘k _ %(Ac_l)jkifji‘k

_1 y y ~7
+ Cij ) s — Eijnx's®.

(2.20)

In the quantum theory, once again z’ and p; are promoted to operators with canonical

commutation relations
) 9 o
[z, pj] = g5 6;-

The B-model determines a state |Z), and a wave function
Z(z") = (2| 2).

The wave function depends on the choice of real polarization, the different polarization

choices being related in the usual way:
Z(i) = / dz e S@D/9: 7(2). (2.21)
Computing the path integral, in the saddle point expansion around (B.19), we find that
Ayj = —(1+C7'D); (2.22)
is the inverse propagator, and derivatives of F,
0y - .- 0i, Fg(xer), (2.23)
the vertices. This implies that

ﬁg — fg + I‘g(Aij, 6i1 .. .ainfr<g(xcl)) y

13



where the propagator A% is related to (2:22) by AYA;; = 6¢.

Now consider the holomorphic polarization. Once again, we pick a background com-
plex structure, this time by picking a meromorphic 1-form A on ¥. Since we are not
allowed to vary the C'* periods, any other choice of complex structure differing from this

one by normalizable deformations only corresponds to picking a 1-form
A=A+ 2" 0;A+ 2 O,

here the 9;A’s span a basis of holomorphic (1, 0)-forms on ¥ and correspond to infinitesimal
deformations of complex structures. This gives us a holomorphic set of coordinates on the
phase space (z%,z') which are canonically conjugate, and allows us to write the wave

function in the holomorphic polarization:
Z(2') = (| Z).

We also need the relation between the two polarizations. Let
Xi:/A, Pi:/A, sa:/ A.
At B; Co

dzt A dp; = (Tij — 77'1])6121 A dZ7

It is easy to see that

where 7,;(X) = 0P;/0X7 depends on the background and we put
7' =20;X".
The corresponding canonical transformation is easily found:
Sz, 2) = % s (@ = XY — XV + (7= 7)yy Zi(a — X — %(T )y 27 + P,
The wave functions in holomorphic and real polarizations are now simply related by
Z(z) = / dz e S@A/9% 7(z) (2.24)
The saddle point equation reads
T(X)ij(wa — X) + (7(X) = 7(X));;2’ — (p— P); =0,
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and if we put z* = 0, which corresponds to Z vanishing, it has a simple solution:

Expanding around this, we get a Feynman graph expansion with inverse propagator

~(r(X) = 7))

and derivatives of F,(X) as vertices. This gives the by now familiar expansion relating
the partition functions in holomorphic and real polarizations:
Folt,)) = Fot) + Ty (= (= 7)), 01, 01, Freg (X)) (2.25)
Before we go on, it is worth noting that the wave function in holomorphic polarization
satisfies a set of differential equations, expressing the dependence of Z on the background —
the local holomorphic anomaly equations. These can be derived easily by differentiating
both the left and the right hand side of (24) with respect to ¢ (here, t* is the local
coordinate parameterizing the choice of background, X = X (¢)). This is straightforward,

we state here only the answer:

_7 = 192 cI* " 4 (2.26)
' ST 02002k

where indices are raised by the inverse gﬁ of the Kéahler metric on the moduli space
9ij = 81Xk(7' — 71)]9@53)?[.

In summary, apart from a few subtleties, the quantum mechanics of the compact and

local Calabi-Yau manifolds are analogous. In the following section we will use the language
of the compact theory, but everything we will say will go over, without modifications, to

the non-compact case as well.

3. A First Look at the I' Action

In this section we take a first look at how topological string amplitudes behave under
monodromies. On general grounds, I' is a group of symmetries of the physical string
theory. This implies that the state |Z) in the Hilbert space that the topological string
partition function determines should be invariant under monodromies. The associated
wave functions, however, need not be. By definition, the wave function in real polarization
requires a choice of symplectic basis of H3 on which I' acts nontrivially; thus, it cannot be
monodromy invariant. By contrast, the wave function in the holomorphic polarization is
the physical partition function. It is a well defined functiont all over the moduli space;

however, it is not holomorphic.

13 We are assuming a definite choice of gauge, throughout. Of course, changing the gauge, the

amplitudes transform as sections of the apropriate powers of L.
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3.1. The Wave Function in Real Polarization

Given a symplectic basis {A!, Br}, I = 1,...n of H3(X,Z), with n = %bg, a pick a
definite 3-form w in H3(X,C). The topological string partition function determines a wave

function

Z(a") = (2"]2)

zl = w,
Al

and a corresponding state | Z) in the Hilbert space obtained by quantizing H3(X,C). Having

where

picked a definite section w of the line bundle £, z!’s and Z(x) are at least locally, functions

on the moduli space

e ()
where the n — 1 variables 1* are some arbitrary local coordinates on M. For definiteness,
we take here the Calabi-Yau manifold to be compact, but everything carries over to the
non-compact space as well, the only real modification being that there the moduli space
would have dimension n, instead.

The moduli space M has singular loci in complex codimension 1 around which the
cycles A, B; undergo monodromies in I'.  As one goes around the singular locus, by
sending v

Y=,

for v an element of I', the periods transform as

()@ = (%) o= (%) w)

where M, is a symplectic matrix corresponding to 7.
What happens in the quantum theory? The monodromy group I' is a symmetry of
the theory, so the state |Z) determined by the topological string partition function should

be invariant under it:

1Z) = 12).

The state (z(1))|, by contrast, is not invariant. There are two ways to express what happens
to (x| under monodromies. On the one hand, z! is a function of 9, so we get a purely

classical variation of the ket vector

(z()] = (v ).
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But on the other hand, we have seen in section 2 that any element M, € Sp(2n, Z) acting
classically on the period vector has a unique lift to the quantum theory as an operator U,

that acts on the Hilbert space. In particular,

(@(v- )l = () Uy

Putting these facts together implies that

(z(y-9)|Z) = (2(4)| Uy 12),

or, schematically in terms of wave functions,
Zaty- ) = [ 2 @) (3.1)

where exp(S,) computes the corresponding matrix element of U,. There is one such
equation for each monodromy transformation g and its corresponding element M, € I'.
Thus, the symmetry group I' imposes the constraints (B.1]) on Z, one for each generator.

Using the results of section 2, equation (B.I]) implies constraints on the free energy,

genus by genus. For example, (B.]]) implies that the free energies satisfy@

Folwly ) = Fya() + Ty (AN 01 01y Frey) (3.2)
with Apy given by
(M) == ((r+C'D)™H)", (3.3)
where
M’y:<é g) (3.4)

To summarize, non-trivial monodromy (with det(C') # 0) around a point in the moduli
space corresponds to choosing A-cycles which are not well defined there, but instead
transform by

ol = CcVp, + D ya’.

This leads to an obstruction to analytic continuation of the amplitudes all over the moduli
space. It also lead us to the notion of “good variables” in the moduli space, which are
implicit in Gromov-Witten computations: near a point in the moduli space, the “good”

variables are those with no non-trivial monodromy, meaning that C’/ = 0.

14 Tt is important to emphasize that this does not depend on the choice of section either. We
could have written here simply 2’ (¢) = 2’ and 2’ (y-¢) = C'p,;(z) + Dz’.
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3.2. Another Perspective

Consider instead the wave function in holomorphic polarization. Pick a background

complex structure €2, and write w as in (B.13)
w=pQ+2D;Q+Z D;Q+ 5.

Using ¢ and 2 as coordinates, we can write |Z) as a wave function in holomorphic polar-

ization
Z(p,2") = (p,7'|Z)

Note that 2z are coordinates on M, centered at €.

How does Z(ip, 2*) transform under I'? In real polarization, the non-trivial transfor-
mation law of the wave function came about from having to pick a basis of periods (z!],
which were not invariant under I'. In writing down the wave function in holomorphic
polarization, that is in defining (¢, z*|, we made no reference to the periods, so Z (i, 2%)
has to be invariant. There is another, independent reason why this has to be so. Namely,
Z(p, 2%) is the physical wave function everywhere on M and as such, it better be well
defined everywhere!

We have seen above that the wave function in real polarization has rather complicated
monodromy transformations under I', while the wave function in holomorphic polarization
is invariant. Since the two polarizations are related in a simple way, we could have derived
the transformation properties of one from that of the other. Consider for example the
genus two amplitudes in (B.16) for a compact Calabi-Yau, and in (B.25) for a non-compact
one. While on the left hand side F» is manifestly invariant under I', on the right hand side

all the ingredients have non-trivial monodromy transformations. In fact, we have
—\—1\1J I J —\—1\ KL IL J
((7‘—7) ) — (Ct+ D), (CT+ D) L((T—T) ) - (Ct+ D) ,, (3.5)

where C, D enter My as in (B.4)) , and analogously in the local case. These quasi-modular

1

transformations of (7 — 7)™ " must precisely cancel the transformations of the genus zero,

one and two amplitudes in real polarization. We will come back to this in the next section.
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4. Topological Strings and Modular Forms

In the previous section we took a first look at how the topological string partition
functions transform under I'. In this section we give a simple and precise description of
how, and to which extent, can the discrete symmetry group I' constrain the topological
string amplitudes. Along the way, we will discover a close relationship of topological string
partition functions and modular forms.

On the one hand, we have seen in the previous sections that the partition function in

holomorphic polarization satisfies
i. ]:"g (z, ) is invariant under I' — that is, it is a modular form of I" of weight zero.

1. ]:"g (z, ) is “almost” holomorphic — its anti-holomorphic dependence can be summa-
rized in a finite power series in (7 — 7) 7.
On the other hand, the topological string partition function in real polarization sat-

isfies

iii. Fg4(x) is holomorphic, but not modular in the usual sense.
iv. Fy(x) is the constant part of the series expansion of F,(z,7) in (1 — 7).

Forms of this type were considered by Kaneko and Zagier [@]@ In R3] forms sat-
isfying i. and 4i. (with arbitrary weight) are called almost holomorphic modular forms
of I'. Moreover, for every almost holomorphic modular form, [B3] defines the associated
quasi-modular form as that satisfying i7¢. and v. These are holomorphic forms which are
not modular in the usual sense. This suggests that the genus g amplitudes are in fact
naturally (almost) modular functions of 7 (and 7 in holomorphic polarization), which can
be extended from functions on the moduli space M of complex structures to the space Hx
parameterized by the period matrix 7;; on X modulo I'. In the following, we will mainly
study this in the local Calabi-Yau examples, and show that this indeed is the case, leaving
compact Calabi-Yau manifolds for future work.

Now, take a holomorphic, quasi-modular form Ej;(7) of I, such that

BV (r,7) = BV (1) + ((r —7)7Y)" (4.1)

15 To be precise, [23] considers only modular forms of SL(2, Z). However, this has an obvious

generalization, at least in principle, to (subgroups of) Sp(2n, Z).
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is a modular form, albeit an almost holomorphic one. Since (7 — 7)~! transforms under T

as in (B), for E/ to be modular, E’/ must transform as
EY(r) — (Cr+ D). (Cr+ D), EXX(r) + C'2(CT + D)’ ;. (4.2)
Then E transforms simply as
EY(7,7) = (CT+ D). (CT+ D)’ EXF(7,7) (4.3)

Of course, E'7 and F'7 are just T' C Sp(2n, Z) analogues (up to normalization) of the sec-
ond Eisenstein series Es(7) of SL(2,Z), and its modular but non-holomorphic counterpart
E3(1,7) — see Appendix A. It is important to note that the transformation properties
given above do not define E and E uniquely: shifting E7/ by any holomorphic modular
form e!” of T,

EY(r)y = EY (1) + ! (1)

with e (7) transforming as
e’/ (1) — (Ct 4+ D) . (C1+ D)7, F(7),

we still get a solution of ({.7).
With this in hand, one can reorganize each F, as a finite power series in £ with
coefficients that are strictly holomorphic modular forms [B3]. In particular, the free energy

at genus g in holomorphic polarization can be written as

Fo(r,7) = BO(T)+(h{)) 15 BM (1, 7)+. . A (BPI™ N1y dgy o BN (7,7) L Efos=T00m0 (7, 7),
(4.4)
where hs(]k)(T) are holomorphic modular forms of I' in the usual sense. Moreover, taking
F,(7,7) and sending 7 to inﬁnity,E
F (1) = lim F,(7,7)

T—00

16 By sending 7 to infinity what we really mean is keeping the constant term in the finite

power series in (1 — 7)~'. For SL(2,Z), this is simply the isomorphism between the rings of
almost holomorphic modular forms and quasi-modular forms described in [J], which can be

easily generalized to Sp(2n, Z).
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we recover the modular expansion of the partition function in real polarization:

fg<7') = héo)(T) + (hgl))jj EIJ(T) + ...+ (hé?’g_s))]lm[@_ﬁ ENI: (T) .. .EIﬁg_?Iﬁg_G(T).

This gives us a way to construct modular invariant quantities out of the free energy
and correlation functions. For example, it is easy to see that the highest order term in
the (7 — 7)~! expansion of .7:"9 is always modular. It is constructed solely out of genus
zero amplitudes, as it corresponds to the most degenerate genus g Riemann surface that
breaks up into (2g — 2) genus zero components with three punctures each. Moreover, it
follows that 0;0;0Kk Fo is itself modular and corresponds to an irreducible representation

— a third rank symmetric tensor:

’ /7

010,0KFy — (Cr+ D)™ ((Cr+ D)), ((Cr+ D))" 900,00 Fo,  (4.5)

which can be verified directly as well.

From hfc,o), we get a modular forms of weight zero, constructed out of 7, and lower

genus amplitudes via
(R (1) = Fy(r) + T(B™ (1), Or, ... 01y Frey), (4.6)

where T'y is the functional introduced in the previous sections. While none of the terms
on the right hand side is modular on its own, added together we get a modular invariant
of I'. We can turn this around and read this equation as follows: given the genus r < g
amplitudes and the propagator E?7, the free energy F,4(7) is fixed, up to the addition
of a precisely modular holomorphic form héo)! In practice, this means that héo) is a
meromorphic function on the moduli space.ﬁ

We can write this compactly as follows. Let

o0

H(r) =3 h0(r) 2~

g=1

1T As stated in section 2, throughout we assumed a definite choice of a gauge, and picked a
3-form w as a definite section of £. Like Fg’s, hgo) depend on this choice — they are sections of
L2729 5o hgo) is more precisely a meromorphic section of £2729. On a non-compact Calabi-Yau,

however, it is simply a meromorphic function.
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be the generating functional of weight zero modular forms, and define the generating

function of correlation functions
1
Wiy, 2) =) — ... 0L Fylx) y"...y™ g7
g,’l’l

where the sum over n runs from zero to infinity, except at genus zero and one, where it

starts at n = 3 and n = 1, respectively. Then, the above can be summarized by writing
1
exp(H(z)) = [ dy exp(— 3 Ersy'y’) exp(W(y,z))
where E;; is the inverse of B/,
E'E By, =k

This follows directly from the path integral of section 2 relating the wave functions in the

real and holomorphic polarizations, which we can be written as
. 1 R
2@.2) = [ dyl= 55 (B~ Bysy'y’) exp( W)

where one views F as a perturbation.
Furthermore, one can show that similar equations hold when F and E are replaced

by their non-holomorphic counterparts. To see this, note that the inverse of (B.13) is
Z(z) = / dz S@2)/a: Z(z X, X), (4.7)

with all the quantities as defined in section 2. If we choose the background X! = z7,

this has a saddle point at 2/ = x!. Expanding around it, by putting 2! = 2! + y! where
y! = —px! + 2'D;x!, and integrating over y, we get

~

Z(x) = / dy exp(—g—i (r — D) isy'y") exp(Wiy; 2, 7)),

S

where

Wiy; ,7) = Z 92972 Fy((1 = ) + ' Dy, 7)
= Z ~ ggg 21— )220 g 2Dy Dy Fy(z, @) — (55— 1) log(1 — ).
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From this, and thinking about Z(x) in terms of a power series in FE, it follows immediately

that

exp(H(z)) = / dy exp( —% EU(a;,a_;) yTy”) exp(W(y,x,a‘;) ). (4.8)

The equation (f.§) has appeared before. In the seminal paper [f] the authors derived a
set of equations that the physical free energies .7:"9 must satisfy, through analysis of the
worldsheet theory. These equations were interpreted in [ as saying that the topological
string partition function is a wave function in the Hilbert space obtained from the geomet-
ric quantization of H3(X,C), the fact that we used repeatedly here. Holomorphic anomaly
equations (and modular invariance) constrain what the topological string amplitudes can
be. Here we described the solutions to the equations using symmetry alone. The con-
struction of the propagators E, which was the guts of the method of [A for solving the
equations, was quite complicated. The answers were messy, with ambiguities that had no
clear interpretation. Now, the meaning of the propagators FE17 and E'7 is simple and
beautiful — they are simply generators of (almost) modular forms of the symmetry group
!

The only remaining thing to show is that the propagators of our expansion and of [fj]
agree. In [f] the authors gave a set of relations that the inverse propagators satisfy (p.
103 of [d]). It is easily shown that our propagators (f.I) satisfy these relations (for any
holomorphic form Ej;). Let

EM = EIJ x! x‘], Ew- = EIJ x! Dim‘], Eij = EIJ Diaj[ Dja;‘],
where D; is the Kéahler covariant derivative D; = 9; — 0; K and K is the Ké&hler form of
the special geometry of X. Then, with a bit of algebra it follows that these satisfy

+ Gy Bk + G By
5 E;p = C" By Fng + G, F oy (4.9)

where
a ~mn —2K ~xmm nn /v B N~I D = =K
ng = &18Jl<, OZ =e GG imns Cimn = Crix D; T Dj.'lf Dz

The equations ([I.9) are exactly the equations of [f] with obvious substitutions.
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4.1. A Mathematical Subtlety

As we have shown in the previous sections, our results are completely general and apply
to both non-compact and compact Calabi-Yau threefolds. However, to make contact with
the theory of modular forms in mathematics there is an important subtlety that we have
not mentioned yet.

In the theory of modular forms, the period matrix 777 acquires a crucial role. A
modular form is defined to be a holomorphic function f : Hi — C satisfying certain

transformation properties, where H;, is the Siegel upper half-space:
Hy = {1 € Matgxr(C)| 77 = 7,7 — 7 > 0},

which is the space of k x k symmetric matrices with positive definite imaginary part. The
period matrix is the 7 in the definition of the Siegel upper half-space. Note that strictly
speaking, this defines Siegel modular forms; proper modular forms are obtained for k = 1.E

For the non-compact case, the mirror symmetric geometry reduces to a family of
Riemann surfaces of a certain genus. Thus, it is clear that the period matrix 77; has
positive definite imaginary part. Therefore, in this case our results should be interpreted
mathematically as Siegel modular forms, where k depends on the genus g of the Riemann
surface. In particular, if the mirror geometry is a family of elliptic curves, k = 1, and we
recover proper modular forms.

However, in the compact case the situation changes slightly. The period matrix 77
does not have positive definite imaginary part anymore; it has signature (h%1,1), as ex-
plained for instance in [[[J]. Thus, in this case the Siegel upper half-space is not the relevant
object anymore, and we cannot make contact directly with Siegel modular forms. This
seems to call for a new theory of modular forms defined on spaces with indefinite signature.
It would be very interesting to develop this mathematically.

Another possibility, in order to make contact with already known mathematical con-
cepts in the compact case, is to replace the period matrix 7;; by a different but related
matrix N7; — see for instance [[J] for a definition — which has positive definite imaginary
part, but is not holomorphic. This is usually done in the context of supergravity. Roughly
speaking, it amounts to replacing the intersection pairing by the Hodge star pairing. In
that way perhaps we can come back into the realm of Siegel modular forms, perhaps along
the lines of what was done in [[J] in a related context.

In the following sections we will give applications of the modular approach we have

developed so far, for local Calabi-Yau threefolds.

18 See Appendix A and B for definitions and conventions.
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5. Seiberg-Witten Theory

As is well known, type II string theory compactified on local Calabi-Yau manifolds
gives rise to N = 2 gauge theories in four dimensions. The topological string theory on
these manifolds computes topological terms in the effective action of N = 2 Seiberg-Witten

theory with gauge group G [f,24]. These terms are summarized in a partition function
Zsw = exp(X92F,(a)) . (5.1)

where F, coincides with the genus g topological string free energy, and the a’s are local

parameters in the vacuum manifold of the gauge theory. Each term in (F.])) has a physical

meaning in the effective action of the N/ = 2 gauge theory. The genus zero topological

string amplitude yields the exact gauge coupling

B 0% F
da;0a; ’

Tij (5.2)
with 4,5 = 1,...7, where r = rank(G), while the higher genus topological string amplitudes
yield the gravitational coupling of the self-dual part of the curvature R, to the self-dual
part of the graviphoton field strength [ dx4ng3_Fig_2. The Fy(a)’s for g > 1 were in
fact extensively studied in the weak electric coupling limit [BJ].

The corresponding Calabi-Yau manifold is given by an equation of the form (B.I7) with
an appropriate H(y,z) depending on the theory. For example, for G = SU(n) without

matter,

H(y,z) =y> = (Pu(2))* +1 (5.3)

where P, (2) = 2™ 4+ u22" "2 + .. .uy,, and the holomorphic 3-form is given by (B-1§). The
parameters u; are complex coordinates on the moduli space of the Calabi-Yau. In the

gauge theory, they correspond to the expectation values of the gauge invariant observables

1
up = ETr(qSk) + products of lower order Casimirs, (5.4)

where ¢ is the adjoint valued Higgs field.

The family of Riemann surfaces obtained by setting
29 : H(yv Z) =0

is the Seiberg-Witten curve of the gauge theory. The genus g of the Riemann surface is

the rank of the gauge group r. The gauge coupling constant Im(7;;) is the period matrix
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of the Riemann surface. Alternatively, 7;; is the complex structure of the Jacobian of the

Riemann surface ¥4, which is an abelian variety. The abelian variety is spanned by the

(w)=()=(23) o

with ¢ = 1,...r, and where the A- and B-cycles generate the symplectic integer basis of

periods

H,(X4,Z). Here X is a meromorphic differential, which is part of the data of the theory.
As explained in section 2, in the string theory context, A comes from the reduction of the
holomorphic 3-form of the parent Calabi-Yau threefold to a one-form on ¥,. For theories
with matter, there can be additional periods on ¥, — A then has poles whose residues
correspond to the mass parameters.

The monodromy group I' of the curve 3, which is naturally a subgroup of Sp(2r, Z),
played the central role in [BY|. It is generated by the BPS particles going massless at
a codimension one loci in the moduli space and captures the non-perturbative duality
symmetries of the N' = 2 gauge theory, since it acts non-trivially on the coupling constant
7;5. From the monodromies of the periods around the perturbative limits in the moduli
space, [BY] showed that one can deduce the periods themselves everywhere in the moduli
space — this is the Riemann-Hilbert problem — and hence also 7;; and Fy. It is then
very natural to ask what does the group I' of symmetries imply about the full partition
function Zgw . In fact, this question, and the close relation of Seiberg-Witten theory and
topological strings in general, is what motivated this paper.

The topological string partition function is a wave function for both compact Calabi-
Yau threefolds, studied in [, and non-compact Calabi-Yau threefolds, as we have seen
in section 2. This implies that the Seiberg-Witten partition function [E0] Zsw is a wave
function, arising by geometric quantization of H;(X,) — see [2])]. In particular, in holo-
morphic polarization, it satisfies the local holomorphic anomaly equation (B.26). In fact,
it would be very interesting to derive this directly from the N' = 2 gauge theory.

Since the partition function Zgy is known, this gives us a testing ground for exploring
the restrictions that follow from the duality symmetries generated by I', but now acting

on the full quantum wave function Z SW.

19" The observation that duality transformations imply quasi-modular properties of the F,’s has
been made earlier in [[l2]. However, their results are different from ours in that their partition
function Z = exp F does not transform like a wave function; rather, it transforms by Legendre

transformations of F.

26



5.1. Seiberg- Witten Theory and Modular Forms

One crucial property of the abelian variety is that Im(7;;) > 0, which ensures positivity
of the kinetic terms of the vector multiplet. Thus, in this case the period matrix 7;; can

be used to define the Siegel upper half space H, as
H, = {1 € Mat,»,.(C)|77 = 7,Im(7) > 0}. (5.6)
The monodromy group I' C Sp(2r, Z) of the family of Riemann surfaces ¥, acts on 7;; as

7 — (AT + B)(CTt + D)™' for (g g)ef.

Thus, in principle, we should be able to give explicit expressions for the Seiberg-Witten
higher genus amplitudes in terms of Siegel modular forms under the corresponding sub-
group I' C Sp(2r, Z) (see appendix B for a brief review of Siegel modular forms). To start
with, however, let us consider SU(2) gauge theory, where the modular group I' C SL(2, Z),

and correspondingly standard modular forms suffice.
i. SU(2) Seiberg-Witten theory

The curve of the SU(2) gauge theory can be written askd

y? = (2% = 1)(z —u). (5.7)

There are three singular points in the moduli space, corresponding to u = 41,00 with

monodromies

acting on
-()- (1)

20 As explained in [BG there are two curves corresponding to this gauge theory, differing by

a factor of 2 in the normalization of the A-period and electric charge. The curve at hand has
#(AN B) = 2 between the generators of Hy (X, Z). The curve which is the n = 2 specialization of
(b-3) has the A-period A’ = A/2. Correspondingly, the modular groups will differ: in the second
case we would get the I'g(4) subgroup of SL(2,Z) instead of I'(2).
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where

#(ANB) = 2. (5.9)

The monodromies (b.§) generate the I'(2) subgroup of SL(2,Z); that is, the subgroup of
2 X 2 matrices congruent to the identity matrix, modulo 2. The x = a, p = ap are by now
canonical variables of Seiberg-Witten theory [BH], so we will mainly use that notation.

The periods a, ap solve the Picard-Fuchs equation
LII =0,

where £ =60(0 — 1) —u?(0 — 3)? and 6 = u-Z. From the previous sections, we can predict
that the genus g amplitudes F, of this theory are (almost) modular forms of I'(2), with
definite transformation properties. Since the higher genus amplitudes are known from
B3.BT, they will provide a direct check of our predictions.

The parameter 7 of the modular curve is defined by 7 = %, or in usual Seiberg-Witten
notation 5 o
ap
== =92 ) 5.10
T oa Oa? Fola) ( )

Solving the Picard-Fuchs equation for the periods, we can obtain 7 as a function of wu.
Alternatively, we can proceed as follows. Recall that the j-function of the elliptic curve,

which has the g-expansion
. 1
J(1) = — + 7444+ 196884g + . ..
q

27T

where ¢ = e“™'7, provides a coordinate independent way of characterizing the curve.

Roughly speaking, elliptic curves are the same if their j-functions are equal. Bringing

the equation (p.7) of the family of elliptic curves in Weierstrass form
y? = 4a® — gy — g3 (5.11)

the j function can be computed as

3
. 92
j=1728— %2 5.12
93 — 2793 512
For the family of elliptic curves (pb.1), this gives
64(3 2)3
— M (5.13)

j<7—) - <U2 o 1)2 :
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Then, using the g-expansion of the j-function, we get a g-expansion for u, in the large u
limit:
1

1
" gq—1/2+gql/2_ 3Zq3/2+27q5/2+0(q7/2).

However, what we want is an expression of u in terms of 7 which is valid everywhere
in the moduli space, not just a g-expansion when w is large; in other words, we want to find
the modular form of I'(2) which has the above g-expansion. Since u is a good coordinate
on the moduli space, which is the quotient of the Teichmuller space by I'(2), it has to be
invariant under I'(2); i.e., it must be a modular form of weight zero. For a brief review of
modular forms of I'(2), see Appendix A.

The modular forms of T'(2) are generated by the following #-constants:

which all have weight 2. These are not independent, but satisfy the relation

c=b+d.
It is easy to show that [21]
d
u(r) = 50), (5.14)
which is modular invariant, as claimed.
The genus one amplitude [B{]
1 da 1 9
Fi= —5 log (det (%)) D log(u® —1) (5.15)

can be rewritten, using the results we have obtained so far, as [2q]

Fi(r) = —logn(r) (5.16)

where 7(7) is the Dedekind n-function. Note that this transforms under modular transfor-

mation in I'(2) exactly as predicted in section 2, namely

AT+ B 1 1
& (m) =Amrgle T emp

(up to a constant that is irrelevant, as only 0F; is well deﬁned).El

21 In this case, F) transforms in this way under the whole SL(2,Z), but this is an accident
of the model. In particular, had we worked with T'g(4) (and hence with 7 = 7/2), F1 would
transform like this under I'g(4), but not under the full SL(2, Z).
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Next, from section 4, we expect that 883;0 = %% is a modular form of weight —3.

Using the fact that @ = gz S the modular expression for u (5.14) and the modular

expression for 9% obtalned by combining (b.15) and (b.16), we get

—fo(a) __ V7 (5.17)

which indeed transforms as expected.
Now, consider the genus two amplitude. In [RT] it was shown that this can be written

Fo(r) = b (r) + B (7) B(7) + b5 (7) (B(1))? + 1S (1) (B(r))? (5.18)

where the propagator E(7) is given in terms of the second Eisenstein series

B(r) = 2 By(r),

and the modular coefficients are

h = 310 (¢ + d)(166% + 19¢d) X

6
p = 2 b2+ ed) X
(27?2) (b7 + cd)

(2) 6\
hy) =3 d) X
(27m') (c+d)
3
@ _ %63\
hz 3 (m‘)

N
1728 2d?’

We will now see that this is exactly as predicted in section 4!

(5.19)

where we defined

First, consider how this transforms under modular transformations in I'. Note that

the coeflicients hék) are modular forms of I' of weight (—3k):
(k) _ —3k p, (k)
hy ' ((AT+B)/(CT+ D)) = (Ct+ D) " hy (1)

Moreover, k ranges from zero to 3g — 3, where g = 2 in this case.

On the other hand E(7) transforms as a quasi-modular form:

E((AT+ B)/(CT + D)) = (C1 + D)*E(7) + 2C(CT + D); (5.20)
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in other words it is a holomorphic form, modular up to shifts (cf. (f.J)). The fact that
F> is a finite power series in E(7), with coefficients that are strictly modular forms of
I'(2) means that F; is itself a quasi-modular form of I'(2), per definition. Note that the
propagator in (p.2() transforms by a factor of 2 relative to (f.2). This factor of two is a
consequence of the fact that the intersection number of the A and the B periods of the
curve is twice bigger than the conventional one (B.9). It is very easy to derive this from
section 2 and 3 (see footnote 6).

Moreover, it is easy to check, starting from (5.16), (p-17) and (p-1§) (with the help of
some standard modular formulae given in appendix A), that F» transforms under modular
transformations exactly as predicted in section 3. To do so, note that, looping around v = 1
for example, simply acts on 7 by the I'(2) C SL(2,Z) transformation M; given in (5.§).
Using the usual transformation properties of modular forms and the expression (p-1§) for
F> in terms of modular forms of I'(2), it is then easy to work out the transformation
property of Fo under M.

Furthermore, while the 7, and the vertices 0;,,...,0;,F, are not quite modular, the
combinations

Fo(T) + Ty(E(T), 03y ...0i, Freg) = (1) (5.21)
are exactly invariant under modular transformations and agree with héo)(T), as expected
from section 4.

We can trade quasi-modular forms for almost holomorphic forms by replacing E(T)

in all formulae by its modular, but not holomorphic counterpart

A

2
E(r,7)=F —
(1) = B(r) + ——
which transforms as
E((Ar+ B)/(CT + D), (A7 + B)/(C7+ D) ) = (Ct + D)?E(1,7).
Also, note that F; can be made exactly modular by writing

Fi(r,7) = —log((r = 7)2 In(7)) ).
This is exactly the one-loop amplitude of the local Calabi-Yau in holomorphic polarization.
More precisely, it is only the holomorphic derivatives %.7-"1, and %fl that are physical,
but this is the natural way to write it.

A

Finally, E(7,7T) is exactly the propagator of [f]! One has that
Fo(r,7) + Tg(E(1,7), Oiy, ..., 0, Frag(r, 7)) = BV (7) (5.22)
is strictly holomorphic, with the same modular form hg,o) (1) as in (B.2]).

In the next subsection, we consider gauge groups of higher rank, corresponding to

Riemann surfaces of genus higher than one.
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5.2. The SU(n), n > 2 Seiberg- Witten Theory

As mentioned earlier, the Riemann surface corresponding to SU(n) Seiberg Witten

theory is a genus ¢ = n — 1 curve
y? — (Pu(2))* + A" =0 (5.23)

where

Po(2) = 2" +up2" 2 4 .. Upg1.

The singular loci in the moduli space correspond to the zeroes of the discriminant
A =T](ei(w) — ej(u))? (5.24)

where e;(u) are roots of P,(z,u)? — A?". That is, at the values of the moduli u for which
any pair of roots come together e;(u) — e;(u), the curve becomes singular. There is a
natural basis of (n — 1) A-cycles corresponding to pairs of branch points that pair up as
A goes to zero. This corresponds to points where the non-abelian gauge bosons become
massless in the classical theory. The monodromy group I' C Sp(2g,Z) of the quantum
theory can be determined [R5, by following the exchange paths of the branch points.

We will leave the detailed analysis of this and the corresponding implications for the
structure of the topological string amplitudes as an interesting exercise, and only consider
briefly the one-loop amplitude.

On general grounds [(,f], the one-loop amplitude in the topological string theory has
the universal form

Fulr) = —% log(det(D; X)) — 1—12 log(A). (5.25)

This result was also derived in a purely gauge theory context in [B0,29]. There, the authors
computed the one-loop amplitude of the (twisted) N/ = 2 gauge theory on a curved four-
manifold, namely the coefficients of the [ R? term in the effective action. Restricting the
curvature to be anti-self dual, R_ = 0, this is precisely the term that the topological string

computes.@ This gives

Fi(r) = —% log (det (ngD . % log(A), (5.26)

22 Practically, in terms of [B,R9] this corresponds to setting the signature o of the four-manifold
equal to o = —%x where Y is its Euler character. One way to see this is that it holds exactly for

the K3, for example, where the curvature is anti-self dual.
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where A is the discriminant of the Seiberg-Witten curve. For example, for G = SU(n)
with curve given by (B.23), A is (5.24).

Note that the u’s are necessarily modular invariants of I', as they are just parameters
entering into the algebraic definition of the curve, and hence they do not ‘talk’ to its
periods. On the other hand, A is simply a rational function of u, so also necessarily a
Siegel modular form of I' of weight zero.

To write the full amplitude in terms of modular forms, note that from [BJ,29] we have

(det <gzﬂ>) : Af =9 [g} (0,7) (5.27)

where § = [%, ey %] and we defined the ‘generalized’ #-functions with characteristic in

appendix B. As a consequence we can write

Fi(r) = —log (9 {g} (0,7)) + i log(A) .

This is consistent with the transformation properties of Fi, since 6 [g} is a scalar Siegel

modular form of weight 1/2.

6. Local IP?

We now study the local IP?, from the mirror B-model point of view. In this case the
mirror is a family of elliptic curves ¥ with monodromy group I'(3). The Gromov-Witten
theory of the local IP? at large radius was solved in [B,f] . Using those results, we can show
explicitly that the predictions for modular properties of the topological string amplitudes
are satisfied.

Another interesting point in the moduli space of the local IP? is the €*/Z3 orbifold
point. One can in principle formulate the Gromov-Witten theory of the orbifold point as
well, however the amplitudes are not yet available [B4,[]. We now have a simple prescription
to carry over the large radius results to other points in the moduli space, the orbifold point

in particular, so we can make new predictions there.
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6.1. Mirror Family of Elliptic Curves

The mirror data is a family of elliptic curves X, given by the equation

3

3
Zx?—iﬂbnxi:O (6.1)
i=1 i=1

in IP3, and a meromorphic 1-form A = log(zs/x3)dx;/x;. This has an obvious Z3 symme-
try

v—oy,  a=em

since it can be undone by a coordinate transformation x; — a~!x; that affects neither ¥

nor A. The discriminant A of the curve is
A= (1-1%).

This vanishes at the three singular points 13 = 1, corresponding to conifold singularities.
To make contact with standard elliptic functions and their modular properties we

make a PGL(3,C) transform to bring the equation of the curve to its Weierstrass form
Y’ =42’ — gox — g3

with
a8+ 49 84 200° — g8
T 243 BT T s6ays

so that its j-function is given by

g2

' 27¢3 8—|—¢3 3
As usual, 5
_9p
T= o (6.3)

is the standard complex structure modulus of the family of elliptic curves, where we view

> as a quotient of a complex plane by a lattice generated by 1 and 7. Herekd

p= [ 2w, o= [ aw

We use x to denote both the coordinate on the Riemann surface and the period of A. It

23

should be clear from the context which meaning we assign to x.
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where A(¢) = log(x)dy/y. Our j-function is normalized to
1
j= p + 744 + 196884q + O(¢?), (6.4)

where ¢ = exp(2mi7T). Combining the two expressions for the j-function, we find a series

expansion for ¥ (q) in the large ¢ limit:
+5q5 —T¢53 +0(q3) . (6.5)

Alternatively, we can obtain the same expansion by first using the Picard-Fuchs equations
to find the periods z(v), p(v), and then computing 7(¢)) directly using the definition
(6-3). We will study in more details the Picard-Fuchs equation and its solutions in the
next subsection. For now, we only note one interesting aspect to this. Namely, as discussed
in section 2.3, due to the non-compactness of the Calabi-Yau, it may not be possible to
find a basis of periods that are normalized canonically. This occurs in the present example:
the compact B period satisfies

#(ANB)=-3. (6.6)

One way to see this is in the mirror A-model: the compact parts of Hy and Hs of the
manifold are generated by the IP?, which we take to be mirror to the B-period, and the
P! line inside it, mirror to the A period. In the Calabi-Yau, these do intersect, but the

intersection number is —3. Correspondingly, if we put x = t,

0
b= _3%f0(t)7

and therefore 7 = —3%.7:0(75).
The above expression for ¢(7) is valid for Im(7) — oo. In the next subsection, we will
show that the local IP? is governed by a T'(3) subgroup of SL(2,Z). This will allow us to

give a globally well defined expression for ¢ in terms of modular forms under I'(3).

6.2. The Monodromy Group

The meromorphic 1-form A turns out to have a non-vanishing residue: in addition to
the usual A and B periods — by this we mean the periods associated to the A and B
cycles — of the genus one Riemann surface, it has an additional period, which we will call
C. As discussed in section 2.3, the extra period does not correspond to a modulus of the

Riemann surface, but to an auxiliary parameter. While the monodromies mix up all the
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periods, the monodromy action on the extra period C should be highly constrained. To

derive the monodromy action on the full period vector

JpA
m={ [,

Jo X

we will solve the Picard-Fuchs (PF) differential equations that II satisfies
LI =0, (6.7)

everywhere in the moduli space. A certain linear combination of the solutions to equation
(6-1) will have the property that its monodromies are integral, and that gives II.

Before doing that, note that, since the additional period C is just an auxiliary pa-
rameter, the modular properties of the topological string amplitudes should be governed
by the monodromy group of the family of elliptic curves ¥. It is well known that this is
a I'(3) subgroup of SL(2,Z), when viewed as a fibration over the punctured 1 plane. We
will see below that this is indeed the case.

Now let us come back to the study of the full Picard-Fuchs equation. It is convenient

to work in the coordinate z, centered at large radius:

1
S COOER (6.8)

There are three special points in the z plane. In addition to the large radius point at z = 0,
there is also the conifold point, coming from 2 = 1, and the orbifold point z = co, with
Z 3 monodromy around it. In this coordinate the Picard-Fuchs differential operator £ has
the form

L=0%+32(30, +2)(30,+ 1)0 .

This has three independent solutions, one of which is a constant, corresponding to the
period of A around the C'—cycle. The corresponding new cycle C' encircles the residue of
A(®).

The solutions near large radius (z = 0) can be found by the Frobenius method from

the generating function

oo Zs—i—n
ZF 3n+s)+ 13 n+s+1)

n=1
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with Lw(z,s) = 0. This gives 3 independent solutions,

o d w(z, s)
YT amy dis Y|

271

the first orders are o1 = —6 2z + 4522 + O(23) and 05 = —18 2 + % + O(23).

Linear combinations of these solutions will give the periods over cycles in integer

ie. wyp =1, w = 5=(log(z) + o1(2)) and wy = ﬁ(leg(z’)2 + 207 log(2) + 02(2)), where

cohomology. This requires analytic continuation to all singular points. The result is

—38tf0 %WQ — %wl — %
Il = t = wi : (6.9)
1 1

The factor of —3 in the above equation comes from (f.6) as we explained earlier. From
above, we can read off the mirror map, giving the A-period in terms of the coordinates on

the moduli space, and its inverse:

2(Q)=Q+6Q*+9Q%+56Q*+ O(Q°) . (6.10)

where Q = €*™ and z is defined in ()@

From this, we can also read off the monodromy of the periods II around large radius,
i.e. around z = 0 (or ¢ = 00). From (p.I10) it follows that this is equivalent to shifting ¢
by one, and, since —30F, = %t2 — % — % + O(e™), this gives

My, = (6.11)

S O =
S~
— = O

Expanding the periods at the conifold point ¥* = 1, one finds the monodromy

1
M, =1 -3
0

(6.12)

o = O
— o O

24 For the genus zero partition function this gives

2t 1 450Q% 244Q°® 12333Q*
OFo=——+-+—5+3Q - A L <

5
6 6 12 4 3 16 +0(@),

which agrees with the Gromow-Witten large radius expansion. Using this, and the definition of 7
we can explicitly check (B.5).
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This is the Picard-Lefshetz monodromy around the shrinking B-cycle with intersection
form (f.6). The C-period corresponds to an auxiliary parameter, and correspondingly the
C-cycle does not intersect the A and B cycles.

From M., and M7, we can recover the monodromy around the orbifold point My, as

holomorphy requires

MoMy Mo = 1,
—2 -1 1

My=[3 1 -1]. (6.13)
0 0 1

This satisfies (Mg)3 = 1, as it should, since the monodromy is of third order. Note that
in all three cases, the monodromies act trivially on the C-period, which is consistent with
the fact that this corresponds simply to a parameter. Moreover, the monodromy action
on the A and the B periods generates the I'g(3) subgroup of SL(2,Z).

If instead of the z-plane, we choose to work with the 1-plane, then 1) = 0 is a regular
point, with trivial monodromy around it, but instead we have three conifold singularities,
at ¥ = 1, a, 0, with o = ¢*5" . The monodromies M in the 1-plane can be derived from

the expressions above. For example,

M, = My, M, = MM, M ", M,> = M2M, M >

with monodromy at infinity given by Mo, = M;MyM,=. These turn out to generate the
['(3) subgroup of SL(2,Z). Below, we will choose to work with modular forms of I'(3), in

terms of which both ¢ and z will be given by exactly modular forms.

6.3. Topological Strings on Local IP? and Modular Forms

To get modular expressions for the topological string amplitudes we need to know a
bit about modular forms of the subgroup I'(3) of SL(2,Z). Essential facts about them are
reviewed in Appendix A; for a detailed study of modular forms of I'(3), see [[7)].

|

The set of #-constants that generate modular forms of I'(3) is:

ool ool ol oo

which all have weight 3/2. They satisfy the relations [[7]

O O
N O
ot o=
O N

c=b-—a, d=a+ ab,
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and the Dedekind 7-function is given by n'? = 33%abcal. To begin with, note that since
1 is a coordinate on the moduli space, it has to be a weight zero modular form of I'(3).
Indeed, we find that

a—c—d
Y(r) = — (6.14)
From [f] we know that the genus one free energy is given by
1 ot 1
=——log | =— ) — —log(1—?) .
Fi QOg(ﬁw) B og(1l —1°)
It is easy to show, using the Q-expansion of z around z = 0, that
ot d
— =32, 6.15
oY U] (6.15)

and that, on the other hand,
12
_ 3 _ _qo37
A=1—-vy°>=-3 I

Combining these three expressions, we get

Fi(r) = —log(u(r) + o log(A) =~ log(dr®),

up to an irrelevant constant term. This transforms under I' as —log(n) does, since the
discriminant A is invariant, which is exactly what we predicted. As a consistency check,

if we use the @Q-expansion of ¢ and the modular expression for F; we get the expansion

B 1 Q 3Q2 23@3
Fr=rpplelt -~ 3

+0(Q%),

which is precisely the genus 1 amplitude of local IP2.

6.4. Higher Genus Amplitudes

To find the higher genus amplitudes, we need the modular expression for the Yukawa

coupling Cyyy = g—;fo. We know that

10 10y 0
Cie = = ———¢i

30t 30t 0w

Using the modular expressions for ¢ (B.14), for % (6-19), and the formulae for logarithmic

derivatives derived in Appendix A, we get

(6.16)



Another useful object is the I'(3)-invariant Yukawa coupling, expressed in terms of the
globally defined variable ). We obtain

o\’ 9

Using the results of the previous subsection, we can now find a modular expression for
higher genus amplitudes, through their Feynman expansions. The propagator E(7) must

transform under modular transformations as in ([£.2)
E((AT+ B)/(CT+ D)) = (Ct + D)*E(1) — 3C (CT + D);

the factor of —3 comes from the intersection numbers (f.g). For example, we can take

E = —TEQ(T).

We could have worked with the full £/ = 6%]—"1 as well, since the propagator is defined
up to a modular invariant piece; it would have only changed the modular invariant hg)).

We obtain that the general form of the higher genus amplitudes reads

3(g—1)
Fg=X9"1 3" EE39757R) (K, Ky, Ky) (6.18)
k=0

where we defined the weight —6 object

d? 1,

X= 293418 1536ttt

and the ring of modular forms of I'(3) generating the weight 2d forms hgd) is given by

— 2 20 —
5 (a ;ch) ’ Ky — 1 acla+c)(a‘a c), Ky —
n

(ac)*(a + ¢)?
a? -1 n* ’

K2 = —
776

The coefficients of E5 are fixed by the Feynman graph expansion and we obtain for example
1
W = F— X <5E3 + E2K, + §E2K22),
WY = Fy — X2(180ES + 240ES K, + AE2(145K2 — 1008K,)
32 4
+ §E§(199K§’ — 1908 Ko K4 + 648 K¢) + gE§(563K§ — 7936 K2 K4 + 26496 K7)

16
+ 1—5E2(149K§’ — 2536 K5 K4 + 11952 Ko K7 — 3456 K4 Kg)).
(6.19)
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Now, using known results for F; in the large radius limit (obtained for instance through
the topological vertex formalism), we can find the hgo)’s explicitly — this corresponds to

fixing the holomorphic ambiguity in the BCOV formalism. For instance, we obtain

o 11 n 1 B 1
2769120 34560A  7680A2° (6.20)
1(0) _ 17 269 19393 337 373 :

3~ 6280280  46448640A  27R691840A2 | 2211840A7  4128768A1
6.5. The C*/Zs3 Orbifold Point

In this section we explain how to extract the Gromov-Witten generating functions of
the orbifold C* /Z5 from the large radius amplitudes, through the wave function formalism.

Let us first discuss this theory from the mirror A-model point of view. The target
space X is an X :([33/23 orbifold, with Z3 acting on the three coordinates z;, 1 = 1,2,3
by

Z; — 0z, a=e 3 .

In quantizing string theory on X, the Hilbert space splits into 3 twisted sectors, corre-
sponding to strings closed up to o, k = 0,1,2 (and projecting onto Zs invariant states).
The supersymmetric ground states in the k-th sector correspond to the cohomology of
the fixed point set of a*. This has an interpretation in terms of the cohomology of X as
well. In the case at hand, the ground states in the sector twisted by a* correspond to the
generators of H**(X). Namely, the contribution to the cohomology of X is determined by
the U(1)r, x U(1)g charges of the states, where the charge (p;, ;) corresponds to HP#%.
In the twisted sectors, however, these receive a zero-point shift: in the sector twisted by
zi — €2™Fiz; with 0 < k; < 1 the shift is (3", ki, >, ki). As there is precisely one such
state for each k, the stringy cohomology of the orbifold agrees with the cohomology of the
smooth resolution of X, i.e. the O(—3) — IP?, as is generally true (see however [Bg)).

As explained in [B7], the orbifold theories have discrete quantum symmetries. In the
present case, this is the Z3 symmetry which sends a state in the k’th twisted sector to
itself times o*. This is respected by interactions, so it is a well defined symmetry of the
quantum theory. This implies that the only non-vanishing correlation functions are those
that have net charge zero (mod 3). In particular, if we consider correlation functions of n

insertions of topological observables O, corresponding to the generator of H11(X),

(05 Oy...0, ),

n
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at any genus g, this does not vanish only if n = 0 (mod 3) We will describe in this section
how to compute the generating functions of correlation functions at genus g
forb _ 1 ON" n
sP0) =Y = ((0)" )0

n!
n

and show that this is indeed the case. By ]-";’rb here, we mean the generating function at
the orbifold point — in this section, we will denote the generating function in the large
radius limit by F;° to avoid confusion.

From what we explained in section 3, the expectation is the following. The good
coordinate in one region of the moduli space generally fails to be good at other regions of
the moduli space. The good variable at large radius is ¢, as the corresponding monodromy
is trivial (B.11]), according to our criterion in section 3. However, the monodromy of
the period t is not trivial around the orbifold point, being given by (B.13), as 3 # 0.
Correspondingly, even though we know the topological string amplitudes near the large
radius point, we cannot simply analytically continue them to the orbifold point — the
resulting objects would have bad singularities. Changing to good variables at the orbifold
point involves a wave function transform that mixes up the genera.

What is the good variable at the orbifold point? Clearly, it is the mirror B-model
realization of the parameter o that enters the orbifold Gromov-Witten partition functions

in the A-model language and corresponds to H'''(X). The dual variable op

0
op — —3—f8rb

Jo

corresponds to H*2(X). To identify them in the B-model, note that, on the one hand,

under the quantum symmetry Z3 symmetry ¢ and op transform as
(1,0,0p) — (1,a0,0%0p).
On the other hand, the symmetry acts in the mirror theory by [B1]
Y — a).

The fixed point of this, ¢ = 0, corresponds to the elliptic curve with Z3 symmetry, which
is mirror to the €®/Z3 orbifold. We can easily find the solutions to the Picard-Fuchs

equations with these properties.
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A basis of solutions is given by the hypergeometric system 3F5

(1 s (5
By (v) = 2 (3¢)" Z Ww% ; (6.21)
n=0 =1 3 In
for k = 1,2, where we defined the Pochhammer symbols [a], := W We also set

By(1) = 1. The B’s diagonalize the monodromy around the orbifold point, namely ) — a
takes

(B07 B17 BQ) - (B07 aBl? OéQBQ)'

Consequently, we can identify

(17 g, UD) - (B07 B17 BQ)

. . . . oForb
The relative normalization of o and op can be fixed using op = —3=52

N 3
g—; = 88255 = —3Cyypyp (g—f) , since 1 is globally defined.
We can already make a prediction for the genus zero free energy at the orbifold point,

orb
up to an overall constant. By integrating op = 38?; , we get

and hence

orb - N;;%,n 3n
fO (U) = Z (371)' o
n=1

where, for example

1 o 1 o 1093

1
orb __ orb __
NO,l _57 N0,2 -

g MY = g NBY = -
Lo 119401 . 27428707
N0,5b: 37 N076b=—738 .

Let us now turn to higher genus amplitudes. The analytic continuation from the point
at infinity to the orbifold point can be done with the Barnes integral, as also explained in

[B]. This relates

—tac2 12za 3\ [op
II = Co c1 0 o (6.22)
0 0 1 1
with the coefficients (1) (2)
= — , = —— , 6.23
“TwT(E T () (02



which are not integers. This is because the natural basis (¢,0p) diagonalizes the mon-

odromy around the orbifold point, and this cannot be done in SL(Q,Z).@ Note that

Cc1Co = 02(207;1_)?, correspondingly the change of basis does not preserve the symplectic form,

we have rather that

dp N\ dx = %dap A do

where
B = —(2mi)3.

Because of this fact, the analysis of section 2 goes through, but one has to be careful with

normalizations. More precisely, it implies that the effective string coupling at the orbifold

(g°™®)? is renormalized relative to the large radius g2 by (g°™")? = Bg2.

Then, knowing the Gromov-Witten amplitudes at large radius, we can predict them
at the orbifold:

ﬂg_lfgrb = -7:;0 + PQ(A7 ai1 .. 81,1?7?29)7 (624)
where the coefficient G comes from the renormalization of the string coupling, and

3
T+ C-1D’

The coefficient 3 above comes from (p.f). The coefficients C' and D are computed from
(the inverse of) (p-29) as before, which gives

1

-1p = )
¢ 1«

(6.25)

In order to extract the o-expansion of F' grb such as we presented for fgrb, we compute the
right hand side of (p.24) in terms of the period ¢, and then use the relation between o and
t given in (B.27) to get expansions around o = 0.

25 We could have derived the change of basis in another way. There is another natural basis at
the orbifold, (Co,C1,C2), corresponding to the 3 fractional branes. This basis has monodromy

around the orbifold point, which is the cyclic Z3 permutations of the branes,

Co 0 1 0 Co
(Cl>—><0 0 1) <C1).
Cy 1 0 O Cs

The fractional brane basis is related to the large radius basis by an integral transformation —
respecting the integrality of the D-brane charges — and the symplectic form. On the other hand,
it is known [[[] how the fractional branes couple to the twisted sectors: in particular, the i-th
twisted sector corresponds to Zj a' C;. This reproduces (.23).
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Since 7 = 88%[’ vanishes at the orbifold point o = 0, it follows from ([6.22) that

T(o=0) = . (6.26)

Numerically, this corresponds to g(o = 0) = —e V3 ~ —0.16; at this value, the g-expansion
of the modular expression (B.1§) still converges rapidly. Indeed, since the coefficients of the
o-expansion of the topological string amplitude at the orbifold point are rational numbers,
they can be easily recovered from their convergent g-expansion.

At genus 1, we get

orb

forb :E 9 1” 3n

where, for instance,

1 14
orb orb orb
NPT =0, NP2’ =5, NI’ =55
13007 8354164
orb orb __
N _— T’ N1’5 —_ _T, PR

It is good to note that simply expanding F2°(7) near 7(oc = 0), that is, doing only the
analytic continuation of the amplitudes, would lead to non-rational coefficients in the o-
expansion.
Instead of (6.24) , it is faster to use the recursion relations at the orbifold point directly
in terms of the modular ambiguity (6.20) and the corresponding propagator,
E7r)= lim E(r,7)
T—7(0c=0)

where

7o =0)=-C"'D

(]

is just the complex conjugate of (b.26). This follows from the fact that .7:"9, on the one
hand, satisfies the same recursion relations as F° with E’s and F°’s replaced by their
hatted counterparts, and on the other hand fg(T, 7) at 7 set to T = —C 1D gives ]—";’rb.
In fact, the right hand side of (6-24) can be interpreted as computing just that. Either
way, for fgrb, we find that

oo Norb
forb(o_> g,m _3n
n=0 (371)'

b
with the numbers NP5,



g n=1 2 3 4 )
0 1 1 1 _ 1093 119401
3 33 32 36 37
1 0 1 _ 14 13007 8354164
35 35 38 310
) 1 13 20693 12803923 31429111
24.34.5 24.36 24.38.5 24.310.5 24310
3 31 11569 2429003 871749323 _ 1520045984887
25355.7 25395.7 253105.7 243115.7 253135.7
4 313 1889 115647179 209321809247 22766570703031
273952 2739 2631352 2831252 273155
5 _ _ 519961 196898123 339157983781 78658947782147 _ 1057430723091383537
29311527.11 29312527.11 29314527.11 293165.7 29317527.11
G _L4609730607 _ 258703053013 2453678654644313 _ 40015774193969601803 5342470197951654213739
212313537271 210315517211 212314537211 211318537211 2123195.7211

where we also included the genus 0 and 1 numbers obtained earlier for completeness.
The n = 0 numbers, corresponding to untwisted maps for g > 2 (these are not well-
defined for g =0, 1), read

-1 X 1 X 7 X
NOI‘b — Norb — _ NOI‘b —
20 =5160 T 57607 30 544320 14515207 ‘40 41090400  87091200°
orh 3161 X ob 6261257 691y

_ _ Notb —
50 777598259200 25546752007 60 317764871424000+31384184832000’

where y is the “Euler number” of local IP?. The natural value of  is 3.

Generally in Gromov-Witten theory the denominators come from dividing by the finite
automorphisms of the moduli space M, ,,. In the Z3 orbifold case there are obviously
various automorphisms of order 3, corresponding to the powers of 3 in the denominators.
We note that all other prime factors in the denominators do not exceed the prime factors
in %. Automorphism groups of this order arise already for the constant map

Gromov-Witten invariant.

7. Local P! x IP!

Our last example is the Gromov-Witten theory of the Calabi-Yau Y which is the total
space of the canonical bundle over IP' x IP'. We will study this using modularity of the
B-model topological string on the mirror manifold X.

To start with, let us review elementary facts about Y. Let A; and As denote the
classes of the two IP'’s in Ho(Y'). There is also one compact four cycle — the IP' x P!
itself, and denote by B the corresponding class in H4(Y'). The intersection numbers of the

cycles on Y are
#(A1NB)=-2=#(A,NB).
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The class C' = A; — Ay does not have a dual cycle in Hy(Y'), as it does not intersect B.
From our discussion in section 2, C' will correspond to a non-normalizable modulus of the

theory. For the normalizable modulus A we can take As, for example, so let us define
A=A, C=A— A,.

The mirror manifold is a family of elliptic curves ¥, which is given by the following
equation [[I0,20] in IP* x IP*:

:cgyg + zlx%yg + :(:(Q)y% + zza:%y% + zoz1Yyoyr = 0, (7.1)

where [z : z1] and [yo : y1] are homogeneous coordinates of the two IP'’s. The large radius
point corresponds to z; = 0 = 2.

Let t1 and t5 denote the periods of the one form A around the 1-cycles mirror dual to
A; and As (which we also denote by A; and As):

R
Al A2

and let tp be the period around the 1-cycle mirror dual to B:

=[x
B

The periods t; and to compute the physical Kéahler parameters, i.e. the masses of BPS
D2-branes wrapping the two ]Pl’s.@ At large radius the complex structure parameters z;

and zo are related to the Kahler parameters t1, to of Y by

21’2 ~ 627T2t1’2 .

More specifically, we can find the periods t; in terms of the parameters z; as the solutions

of the Picard-Fuchs equations of X

L= @% — 221(@1 + @2)(1 + 20 + 2@2),

(7.2)
Lo = @3 — 222(@1 + @2)(1 +20; + 2@2),

26 The IP'’s of the embedding space of the mirror will hopefully not be confused with the two
IP'’s generating Hz(Y) on the A-model side.
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where ©; = zia%i for ¢ = 1,2. The solutions around the large radius point z; = 0 = 25 can
be determined by the Frobenius method from

ri+m _ro+n

w(z1,22,71,72) 1= i SR
e D(=2(m+ry)—2n+r))+ DI2(m+r + DI (n+1re+ 1)

m,n=1

as
y 1 d ( )

P = : w(z1,22,71,T

(2mi) dr; bzt T2

r1,2=0
Thus
t1(z1,22) =log(z1) 4+ 221 + 220 + 3z% + 122129 + 3,2% + ...

and similarly for t5 with z; and zo exchanged. By inverting the above, we get the mirror

maps:

z1=q —2(q1 + q1q2) +3(¢} + 143) — 4(q1 + G2 + a1as + @) + - .

(7.3)
2o =q2— 2(q2 + 1q2) + 3(¢5 + 247) — 4(¢5 + B + 4105 + ¢2q7) + - ..

where ¢; = exp(2mit;) for i = 1,2.

In addition to this there are two other solutions to the Picard-Fuchs equations. First,
there is a double logarithmic solution, which is the period tp introduced previously. Sec-
ond, there is a constant solution, corresponding to the period mirror to the DO brane in

the A-model. This constant period, together with

m:tl—t2:/)\,
c

where C' is the 1-cycle of the curve mirror dual to the class C' of Y (again we use the
same letter to denote mirror dual objects), should be regarded as constant parameters
that enter in specifying the model. In fact, it is easy to see that the period m does not

receive instanton corrections, i.e. g,, = exp(2mwim) satisfies

dm = Q1/Q2 = 21/22,

which is consistent with the interpretation of m as an auxiliary parameter.

In the following we will denote the physical modulus by T’

T=ty= / A
A
and define @ = exp(2miT).
In order to find the modularity properties of the amplitudes, we now study in more

detail the family of elliptic curves X.
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7.1. The Family of Elliptic Curves

The family of elliptic curves X in ([2]]) can be brought into Weierstrass form,@

y2 = 4z° — g2 — g3

with
22/3
go = T(1625 + (1 — 422)% + 821 (—1 4 2825)),
2
g3 = §(64zi’ 4 (=1 +422)% — 4823 (1 4 4425) + 2, (12 + 4802, — 211223).

Its j-function reads

(1627 + (1 —422)? + 821 (—1 4 282,))?
 2129(1627 + (1 — 429)2 — 821 (1 + 429))2"

(7.6)

As usual, by j(7) we mean that the j-function is a function of the standard complex
parameter 7 of the family of elliptic curves ¥ =C/(Z ¢ 7Z).

As it turns out, we have met this curve before! Recall that the j-function of the I'(2)
modular curve, the SU(2) Seiberg-Witten curve, is (5.13)

j(r) = % (1.7)
2T To do so, we first use the Segre embedding of P! x P! into IP? given by the map
([zo = 1], [yo : 1]) = [Xo + Xu + Xo + Xs] = [woyo, T1y0, Toyr, T1y1],
where [zo : 1] and [yo : y1] are homogeneous coordinates of the two PYsand X;,i=0,...,3 are
homogeneous coordinates of IP?. Then IP! x IP! is given by the hypersurface
XoX3—X1X2=0 (7.4)

in IP3. The family of elliptic curves ¥ is now given by the complete intersection of ([7.4) and the
hypersurface defined by
X5+ 2 X7+ X5 + 2X5 + XoX3=0. (7.5)

After a linear change of variable, ([[.§) becomes linear in X3, so X3 can be eliminated from ([.5)
and ([T.4) to get a cubic equation in IP2. Then, given any cubic in IP? we can use Nagell’s algorithm

B to transform it into its Weierstrass form.
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If we make the substitution

q—1/2 1
_9m L1 1)2 -1/2 7.8

in ([7), we get exactly the j-function (), using the fact that ¢, = 2z1/z2. Since the
j-function captures all the coordinate-invariant data of the elliptic curve, the curves in the
family mirror to local IP' x P are in fact isomorphic to the curves in the SU(2) Seiberg-
Witten family, through reparameterization of the moduli space as in ([(.§). In particular,
it follows immediately that the curves in the family ¥ have monodromy group I'(2).

We could also have found the monodromy transformations of the periods directly
from the Picard-Fuchs equations, as we did for local IP?, but it requires more work. The
j-function approach, when the mirror geometry is a family of elliptic curves, provides a
simpler way to determine the monodromy group, at least the part of it restricted to the
physical periods. Fortunately, this is all that is relevant for our purposes.

Using this result, we can borrow heavily the results from the SU(2) theory. In par-
ticular, using the expression for u in terms of modular forms of I'(2) in (B.14) and relating

2o to the period T', we ﬁndE

Q(Gm, q) = ¢ 2q"* — (24 2¢,,1) g+ 47,2 % (5 — dgm +5¢%) ¢** + ... (7.9)

where ¢ = €?™7, ¢,, = 2™ and Q = ?>™*T. From this expansion, we see that the period
T does not only depend on 7; the coefficients of the power series in g depend explicitly on

the auxiliary parameter m (or ¢,).

7.2. Genus 0, 1 and Yukawa Coupling

Let us start by finding the partition function at genus 1. Recall that F; is fixed by
its modular properties and its behavior at the discriminant of the family of elliptic curves

Y. In the local IP* x IP! case, we can show that

Fy = —logn(r) (7.10)

28 Note that we could invert the series because ¢, is just a parameter, i.e. it must be 7-

independent.
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transforms as required and has precisely the good behavior at the discriminant — this
is the same expression as in SU(2) Seiberg-Witten theory. As a consistency check, if we

expand ([-I0) using the expansion of ¢ in terms of g, and @ we get

1 1 1
=——1 m 2 ——=(1 m — —(1 4m 2 2
Fi 51 0g(qmQ~) 6( + @m)@Q 12( + 4gm + ¢;,)Q
1
- 1_8(1 + 9¢m + 9q2, + ¢2,)Q° + 0(Q"),

which reproduces precisely the genus one partition function of local IP* x P
Now consider the Yukawa coupling, i.e. the third derivative of Fy(m,T) with respect
to T', which we will need to compute higher genus amplitudes. Using

83

10
W}—O(m, T) = ———T<m, T)

20T

and the expansion for 7 in terms of ¢, and ) we get the following expansion

3

Wfo(m,T) = —1—2(14¢n)Q — 2(1 4 16¢m + ¢2,)Q* + O(Q>). (7.11)

However, what we would like to obtain is a modular expression for 88—;3]-"0 defined globally
over the moduli space of complex structures, such as our expression ([[.10) for F;, not just
an expansion in the large complex structure limit.

To identify the modular form we make use of the change of variable ([.§), which relates
the usual I'(2) curve to our curve with the auxiliary parameter ¢,,. Through this change of
variable, we identify the j-functions of the two curves, and correspondingly the parameter
7, via the g-expansion of the j-function. In particular, this implies a relation between the
periods

a=a(T,m),

where a is the usual Seiberg-Witten period, coming from the identification of the j-

functions, which we write schematically as

jla) = j(r) = (T, m).

As a result, acting on any function of 7 (at fixed m), we get

9 _9ad
OT 0T da’
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For instance, we can write

93 Fo 107 1 0a OT

T3 ~ 20T 29T da’

Now, we saw in section 5 that
0
or _ _2@(7)
da cd

and we can compute that

=20 p Rl 12
Fim g = (a2 + @t 420 (7.12)
using (.11]) and ([.9). In the above equations we used the modular forms b, ¢ and d as
defined in the I'(2) part of Appendix A. Putting all this together, we get

m

*Fo _ 1Vb
oT3  2c¢d

0 + g% + dec(f))m
which is a modular form of I'(2) of weight (—3), as expected. Note that f itself has weight
Zero.

To summarize, given the function f = g—% in (7.12), which relates the a-period of the
I'(2) curve to the T and m periods of the IP* x IP* curve, we directly obtain modular
expressions for the higher genus amplitudes in terms of the modular expressions already

obtained for SU(2) Seiberg-Witten theory.

7.3. Higher genus amplitudes

First, we can take the propagator to be

B(r) =~ Ex(r)

which is the same propagator as in SU(2) Seiberg-Witten theory, up to a sign (see section
5). The sign comes from the different conventions for the relative orientation of the A and
the B-cycles.

To get higher genus amplitudes, we use the by now familiar Feynman expansions with
the above propagator. To relate the expansions to the SU(2) Seiberg-Witten expansions,
we simply use the chain rule for derivatives: whenever we need to take derivatives with

respect to T' in the Feynman expansions, we use the function f given in ([.12) to write

9 _ .9
oT 7 da’
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This relates the amplitudes on the local IP* x P! to those in the SU(2) Seiberg-Witten
theory, up to an exactly modular form. Plugging all these results in the Feynman expansion
for the genus 2 partition function F5 we get the nice and simple expression for the modular
function héo) in terms of the partition functions ]—"SW, g < 2 of SU(2) Seiberg-Witten
theory:

1 d 1 E2
h§°)=f2+1f§w<%{2+q,;1/2+26+ ) 2

b 576 cd

This is an interesting result. Through our modular formalism, we can express higher
genus amplitudes of local Calabi-Yau manifolds in a very simple way in terms of higher
genus amplitudes of the corresponding theory with no auxiliary parameters — in this
case SU(2) Seiberg-Witten theory. More precisely, given two theories governed by elliptic
curves with j-functions related by a change of variables (that generically also involves the
auxiliary parameters), all one needs to do is to determine the function f = g—% relating the
physical periods, and everything else follows from the formalism.

Finally, by plugging in the known expansion for F» (obtained for instance through

éo), and show that it is a modular

the topological vertex formalism) we could determine h
form of weight 0, as we did for local IP>. We could also go to higher genera, and relate the
expressions to the Seiberg-Witten expressions; we will not present the explicit formulae

here, but it is straightforward to calculate them.

7.4. Seiberg- Witten Limit

Let us end this section by showing that the double scaling limit to recover SU(2)
Seiberg-Witten theory from the local P! x IP! topological string amplitude is consistent
with our results above. Since we know the j-function of the mirror family of elliptic curves
in terms of the complex moduli z; and z,, we first express the limit in these parameters,
and then show that taking the limit gives the j-function of the SU(2) Seiberg-Witten
curve.

The double scaling limit was explained in details in [PA24]. Define first new parameters
x and y satisfying z; = 1/42? and 2o = y/4, and then parameters x; and x5 such that
_ VY

1—2z

The double scaling limit is given by letting 1 = €?u and 22 = 1/u, and then sending ¢ — 0.

x1 = (1—x), To

Taking this limit in our j-function ([-g) for the elliptic curve mirror to local P x P*, we

get
L 643+ u?)?
](T)_ ('LL2—1)2 ’

which is indeed exactly the j-function of the SU(2) Seiberg-Witten curve.
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8. Open Questions and Speculations

In this paper we showed how to use symmetries to constrain the topological string
amplitudes. As a result, we obtained nice expressions for the amplitudes in terms of
(almost) holomorphic modular forms. However, various open questions remained, and

new ideas for future research emerged.

1. Compact case. Our formalism is completely general, and applies to both compact
and non-compact Calabi-Yau threefolds. However, all the examples that we worked out
explicitly consisted in non-compact target spaces. As explained in section 4.1, the reason
is that in the compact case the period matrix 7757 does not have positive definite imaginary
part. It would be interesting to understand how to get modular expressions in this case,

perhaps using the closely related matrix N7, as also explained in section 4.1.

1. Full group of symmetries. In this paper, we considered the group of symmetries of the
topological string generated by monodromies of the periods. However, as explained in the
introduction, this is just a subgroup of the full group of symmetries, which consists in the
group of w-preserving diffeomorphisms. In the local case, the w preserving diffeomorphisms
were used in [f] to solve completely the topological string. It would be very interesting to

see if this generalizes to compact Calabi-Yau manifolds.

1. Away from the weak coupling. In this work we obtained nice modular expressions for
the topological string amplitudes genus by genus. However, the main object of study was
the topological string wave function Z(gs, z), which should make sense at any value of the
string coupling. It would be interesting to use the symmetries to constrain the topological
string amplitude for all values of the string coupling. This would correspond to solving
the equations (BJ]) away from the weak coupling regime. However, this may be hard, as

one has to pick the correct non-perturbative definition of (B.])).
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Appendix A. Modular Forms and Quasi-Modular Forms

In this appendix we review essential facts in the theory of modular forms and quasi-
modular forms, mainly in order to fix our conventions.
Denote by H = {7 €C|Im(7) > 0} the complex upper half-plane, and let I' C SL(2, Z)
be a subgroup of finite index.
The action of the modular group I' on H is given by
|—>AT7+B for v = (A B) el.
Cr+D’ C D

A modular form of weight k on I" is a holomorphic function f : H —C satisfying

F(vr) = (Cr+ DY f(r) for all v = (é g) er,

and growing at most polynomially in 1/Im(7) as Im(7) — 0.

We can also define an almost holomorphic modular form of weight k on I' as a function
f : H — C satisfying the same transformation property and growth condition as above,
but with the form

. M
@7 =" fm(r)Im(r)™™,
m=0

for some integer M > 0, where the functions f,,(7)’s are holomorphic. The constant term
in the series, fo(7), is a quasi-modular form of weight k; it is holomorphic, but not quite

modular. It has the form "
fo(r) =) hm(T)Ea(T)™,
m=0

where the h,,(7)’s are holomorphic modular forms and we defined the second Eisenstein

series -
nqg"
EQ('T) = ]_ — 242 m,
n=1 q

which is itself quasi-modular of weight 2. Its almost holomorphic counterpart is defined as
3
mlm(7)’

Note that there is an isomorphism between the ring of almost holomorphic modular forms

E;(1,7) = Eo(T)

and the ring of quasi-modular forms.
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A.1. Modular Forms of T'(2)

Our conventions for the theta functions with characteristics are as follows:

0 [Z} (z,7) = Zq%("“)zez”(”*“)(b“).

n

As usual, we denote the I'(2) theta constants by

1

5 0
0 =

| o)

9229H(0|7>, egze[g}mm, 94=9[

1
2

We also define the fourth powers

which satisfy the identity ¢ = b+d. Also, n'? = 27*bed, where 7 is the Dedekind 7-function.

Here are some useful formulae involving derivatives of modular forms:

d
24q—1 —E
9 og(n) 2,

d
6qd_q log(d) = E5 — b —c,

d
6qd—qlog(c):E2—|—b—d,
6il (b)=Es+c+d
Ggg o8 = B2 tetd

A.2. Modular Forms of T'(3)

For the congruence subgroup I'(3), the relevant theta constants (taking their third

] 0,7), c:=6° [

b=a+c, d=a+ ab,

powers) areld

a::93[

satisfying the identities

N[—= O

] 0,7), d:=6° [ ] (0,7),

O~ O
(N[ F=NI=N
O~ NI

] (0,7), b:=6> [

29 We use the same variables to denote the fourth powers of the I'(2) theta constants and the
third powers of the I'(3) theta constants, but it should always be clear from the context which

subgroup we are considering.
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27i

with o« = €73

. Moreover, the Dedekind n-function is given by 1'% = 33%abcd.
We need derivative formulae for these theta constants as well. Let us first define the

six following modular forms of weight 2:

ac ab _ b
tl_ﬁv t2_?7 t3_ﬁ7
bd ad cd
t4—?7 ts_ﬁ’ t6—?~
Then we found the relations:
d 1 T+1 2
8g—1 =_-F =F — —(t t t
17,1080 = 3 2( 3 ) 2(7) 3(4+ 6 + at3),
d 1 T 2
8¢ 1 b:—E(—):E 2ty —ts + 1),
qdq og 352 (3 2(7')-1-3(1 5+ te)
d 1 T+2 2 9
8g—1 = _—F =F —(t ts — t
i tose= 38 (152 ) = Balr) + 20+ 15— %),

d 2
8qd—q logd = 3E5(37) = Eo(7) + g(—tl + oty + at3).

Note that the second equality in each line are ‘triple’ analogs of the doubling identities for

the Eisenstein series Ea(T).

Appendix B. Siegel modular forms

A good reference on Siegel modular forms is Ghitza’s elementary introduction [L9]
and the more complete textbook [Bg].
Let T" be a subgroup of finite index of the symplectic group Sp(2r, Z) defined by

Sp(2r,Z) = { <é g) € GL(2r,Z)|AT"C = CTA,B"D = DT"B,A"™D - C"B = I} :

where [ is the r x r identity matrix. Define the Siegel upper half space
H, = {1 € Mat,».(C)|7" = 7,Im(7) > 0};

this is the space of r X r symmetric matrices with positive definite imaginary part. The

action of I' on H,. is given by

7+ (AT + B)(CTt+ D)™ ! for v= (é IB;) el

o7



A weight k (scalar-valued) Siegel modular form of T' is a holomorphic function f :

H, —C satistying

f(y7) = det(Ct 4+ D)*f(r) for all vy = (é g) crT.

Note that for » > 1 we do not need to impose the condition of holomorphicity at infinity
in the definition of a modular form, as was the case for r = 1.

Moreover, for » > 1 one can define more general objects, which transform under
irreducible representations of GL(r,C). Given such a representation p : GL(r,C) — GL(V),
where V' is a finite-dimensional vector space, we say that a function transforming under p
is a Siegel modular form of weight p — see for instance [[9].

We can also defined ‘generalized’ theta functions as

0 [Z] (2, 7) = Z exp mZ(nl +a") i (n? +a) + 27riZ(zZ- +b)n' |,

nezZ" ij

where a, b and z are vectors of length 7.
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