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Abstract:

The Sayers and Kachanov (1991) crack-influence parameters are shown to be directly related to Thomsen
(1986) weak-anisotropy seismic parameters for fractured reservoirs when the crack density is small
enough. These results are then applied to seismic wave propagation in reservoirs having H71 symmetry
due to aligned vertical fractures. The approach suggests a method of inverting for fracture density from
wave speed data.

INTRODUCTION

Aligned vertical fractures provide a commonly recognized source of azimuthal (surface angle dependent)
seismic anisotropy in oil and gas reservoirs (Lynn et al., 1995). For analysis, VTI earth media are much
easier to understand and analyze than H7I media. Nevertheless, when the source of the anisotropy is
aligned vertical fractures, we can make very good use of the simpler case of horizontal fracture analysis
by making a rather minor change of our point of view that easily gives all the needed results. We can
also understand very directly the sources of the anisotropy due to fractures by considering a method
introduced by Sayers and Kachanov (1991). Elastic constants, and therefore the Thomsen (1986)
parameters, can be conveniently expressed in terms of the Sayers and Kachanov (1991) formalism.
Furthermore, in the low crack density limit [which is also consistent with the weak anisotropy approach
of Thomsen (1986)], we obtain direct links between the Thomsen parameters and the fracture properties.
These links suggest a method of inverting for fracture density from wave speed data.

THOMSEN'S SEISMIC WEAK ANISOTROPY METHOD

Thomsen's weak anisotropy method (Thomsen, 1986), being an approximation designed specifically for
use in velocity analysis for exploration geophysics, is clearly not exact. Approximations incorporated
into the formulas become most apparent for greater angles 8 from the vertical, especially for
compressional and vertically polarized shear velocities v,(8) and vg,(6), respectively. Angle 6 is
measured from the z-vector pointing into the earth.

Exact velocity formulas for P, SV, and SH seismic waves at all angles in a V77 elastic medium are known
and available in many places (Ruger, 2002; Musgrave, 2003), so will not be listed here. Expressions for
phase velocities in Thomsen's weak anisotropy limit can also be found in many places, including
Thomsen (1986) and Ruger (2002). The pertinent expressions for phase velocities in VTI media as a
function of angle 6 are:
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In our present context, vg(0) = ’Z‘—“, and v,(0) = ’?—3, where ¢33, €44, and p, are two stiffnesses of the
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cracked medium and the mass density of the isotropic host elastic medium. We assume that the cracks
have insufficient volume to affect the mass density significantly.



In each case, Thomsen's approximation has included a step that removes the square on the left-hand side
of the exact equation, by then expanding a square root on the right hand side. This step introduces a

factor of % multiplying the sin?@ terms on the right hand side, and --- for example --- immediately

explains how equation (3) is obtained from the exact result. The other two equations for v,,(8) and
v, (0), i.e., (1) and (2), involve additional approximations we will not attempt to explain here.

The three Thomsen (1986) seismic parameters for weak anisotropy with VTT symmetry are y = C(’;Cﬂ,
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three of these parameters can play important roles in the velocities given by (1)-(3) when the crack
densities are high enough. If crack densities are very low, then the SV shear wave will actually have no
dependence on angle of wave propagation. Note that the so-called anellipticity parameter A = € — §,
vanishes when € = §, which we will soon see does happen for low crack densities.

HORIZONTAL FRACTURES, CRACK-INFLUENCE PARAMETERS, & VITI SYMMETRY

To illustrate the Sayers and Kachanov (1991) crack-influence parameter method, consider the situation in
which all the cracks in the system have the same vertical (or z-)axis of symmetry. (We use 1,2,3 and
X,Y, z notation interchangeably for the axes.) Then, the cracked/fractured system is not isotropic, and we
have the first-order compliance correction matrix for horizontal fractures, which is:
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where i,j = 1,2,3. The two lowest order crack-influence parameters from the Sayers and Kachanov (1991)
approach are 4 and 17,. The scalar crack density parameter is defined -- for penny-shaped cracks having
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number density n = v and radius in the plane of the crack equal to a -- to be p, = na®. The aspect ratio

. b S . . . . . . .
of the cracks is - Considering orientational averages of (4) provides a direct connection to the isotropic
case, which is of great practical importance, because it permits us to estimate the parameters 74 and 7, by

studying isotropic cracked/fractured systems, using well-understood effective medium theories
(Zimmerman, 1991; Berryman and Grechka, 2006).

Now consider horizontal fractures, as just illustrated by the correction matrix ASl-lj. The axis of fracture
symmetry is uniformly vertical, and so such a reservoir would exhibit V77 symmetry. The resulting
expressions for the Thomsen parameters in terms of the Sayers and Kachanov (1991) parameters 7, and
7, are given by
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Background shear modulus is G, with corresponding Poisson ratio is vy. Young's modulus is Ey =

2(1 4+ vy)Gy. Also & = € to the lowest order in crack density parameters. We chose to neglect the term
74 in the final expression of (6), as this is on the order of a 1% correction to the term retained. Values of
1, and 1, can be determined from simulations and/or effective medium theories (Zimmerman, 1991;
Berryman and Grechka, 2006). They depend on the elastic constants of the background medium, and on
the shape of the cracks (assumed to be penny-shaped in these examples).



HTI RESERVOIR SYMMETRY FROM ALIGNED VERTICAL FRACTURES

The trick to get from horizontal fractures and V7T to aligned vertical fractures and HTI symmetry is
relatively simple. We need not relabel the ¢;;'s. Instead we change the meaning of the labels. As long as
we stay mentally oriented in the reference frame of the fractures themselves, we can view the z-direction
as the symmetry axis and the xy-plane, as the plane of the fractures. The only change we need to make
arises because we shoot our seismic survey on the earth surface at 90° from the fracture plane. This
observation implies that, wherever the angle 8 (measured in radians) appeared in our previous formulas,
now we replace it by g — @ radians. Thus, sin%6 = cos?6, and vice versa in the formulas. This

algorithm is exactly right only for those planes that are vertical and also perpendicular to the fracture
plane, i.e., at azimuthal angles ¢ = +m/2. For all angles, we actually need to replace sin? 8 by

c0s20 sin®¢. Then, when ¢ = 0 or 7, there is no angular dependence, as our point of view is within the
plane of the fracture itself. Backing up one step in the Thomsen derivation and restoring squares, thereby
“unexpanding” the square root is also helpful. Certain approximations are then undone, and final
formulas are more accurate.

If €, 8, and y are the Thomsen parameters for the V7T symmetry (horizontal fracture), then, for example,
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equation (7) considered. Then, in the weak anisotropy limit we have y — —y. But this final step is
neither necessary nor recommended for some of the higher crack densities considered here.

From this result, we deduce that, for HTI, y — This statement is rigorous for the form of
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S =€ 6. Similarly, the pertinent wave speeds are:
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v,(0) - \[{—p } = \/{ 5 }& vs(0) = /{caa(1 + 2y)/p} = { ; } in (7), but the remaining

velocity [vs, (6)] does not change at all since Thomsen’s approximation (2) for vy, (6) is completely

symmetric in 8 and, therefore, must remain so, also having the same end points, after the switch from 6

to g — 6. These results were all previously known and can be found in Ruger (2002), p. 75.

Similar calculations for v; and vg, lead to the results € - — ﬁ ~ —¢,and § -
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As a consistency check, note that € — § — ;2

Examples of these results for small (p, = 0.05) and higher (p, = 0.1, 0.2) crack densities are presented
in Figure 1. See Berryman and Grechka (2006) for details of the methods used to obtain higher order
Sayers and Kachanov (1991) parameters from simulation data, and Berryman (2007) for a full discussion
of the reservoir applications.

CONCLUSIONS

The Sayers and Kachanov (1991) crack-influence parameters are ideally suited to analyzing mechanics in
reservoirs having aligned fractures and exhibiting H71 symmetry. Detailed discussion of results obtained
for the higher crack density examples presented in Figure 1 will be provided in the oral presentation, but
the main ideas are all contained in Berryman and Grechka (2006) and Berryman (2007). Modeling
presented here shows that Thomsen’s weak anisotropy method is valid for crack densities up to about

pc = 0.05, but should be replaced by more exact calculations if the crack density is p. =~ 0.1 or higher.
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FIG. 1: For aligned vertical cracks, examples of anisotropic compressional wave speed, SH shear wave speed, and SV shear wave speed
for two values of Poisson’s ratio v, of the host medium: (a)-(c) vy = 0.00, (d)-(f) vy = 0.4375. Velocities in black are exact for the
fracture model discussed. Thomsen weak anisotropy velocity curves for the same model (i.e., the same ¢;; ‘s) were then overlain in blue.
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