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The equilibrium of an infinitely long, strongly magnetized, non-neutral plasma 

confined in a Penning–Malmberg trap with an additional mirror coil has been 

solved analytically [J. Fajans, Phys. Plasmas 10, 1209 (2003)] and shown to 

exhibit unusual features. Particles not only reflect near the mirror in the low 

field region, but also may be weakly trapped in part of in the high field region. 

The plasma satisfies a Boltzmann distribution along field lines; however, the 

density and the potential vary along field lines.   Some other simplifying 

assumptions were employed in order to analytically characterize the 

equilibrium; for example the interface region between the low and high field 

regions was not considered. The earlier results are confirmed in the present 

study, where two-dimensional particle-in-cell simulations are performed with 

the Warp code in a more realistic configuration with an arbitrary (but physical) 

density profile, realistic trap geometry and magnetic field. A range of 

temperatures and radial plasma sizes are considered.  Particle tracking is used to 

identify populations of trapped and untrapped particles. The present study also 

shows that it is possible to obtain local equilibria of non-neutral plasmas using a 

collisionless PIC code, by a scheme that uses the inherent numerical 

collisionality as a proxy for physical collisions.
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I. INTRODUCTION 

 

The equilibrium of a non-neutral plasma in a Penning-Malmberg trap has been the 

subject of many studies.1,2,3 A mirror field has been suggested to cause transport in such 

traps1. Thermal equilibrium in Malmberg-Penning traps has been studied4, but without a 

detailed analysis of mirror fields. A hollow electron column with axial mirrors has also 

been considered5. Penning-Malmberg traps have been recently used in experiments for 

the production of anti-hydrogen6,7 and are considered, with mirror fields added to confine 

the anti-hydrogen itself, for future experiments as well 8,9.  

Recently the effects of a multipole magnetic field intended to trap the anti-hydrogen 

radially in such a trap have been studied experimentally10, theoretically11, and with 

simulations.12-13 This work was conducted at UC Berkeley as part of the ALPHA8 

collaboration.  Future ALPHA experiments will use a mirror field. The results presented 

here are not meant to study the ALPHA geometry, but, rather are motivated by the study 

of how the non-neutral plasma equilibrium self-consistently changes as the mirror field is 

applied.  

 

These numerical studies are motivated in part by earlier work14, where it was shown 

analytically that a non-neutral plasma exhibits unusual features when a magnetic mirror 

field is added to the longitudinal field of the trap. In contrast to neutral plasmas, the 

density and potential along field lines is not constant. There are two trapping regions, one 

in the low field side and one in the high field side. Assuming that the velocity distribution 

is a Maxwellian, the density distribution obeys the Boltzmann relation (written for 

positrons),:  
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A typical trap configuration is shown in Fig. 1. 

 

Fig. 1: Typical Penning-Malmberg trap with a mirror field. The magnetic field 
strength and field lines of the mirror are plotted as well as the plasma profile. 
 

In Ref. 14, an infinitely long plasma is assumed and the transition between the high 

field and low field region is idealized via the conservation of magnetic moment. 

Additional assumptions were made in Ref. 14 in order to analytically characterize the 

equilibrium: the field variation was assumed small and a flat-top density profile was 

considered. Numerical solutions in the same paper14 extend those results to broader 

regimes, however still considering an infinite plasma and ignoring the transition region 

between high and low field.  In this paper we study plasma equilibria in a realistic two-

dimensional geometry with finite plasma lengths and realistic magnetic field variations.  

We use the WARP simulation code15 with a two-dimensional field solver (r-z). Thus, the 

simplifications required for the analytical study are not required.  The plasma density 

decreases radially towards the plasma boundary. Initially the plasma is loaded, following 

the technique described in Refs. 12-13, into an equilibrium distribution which satisfies 

Eq. 1 along field lines in an initially uniform axial field. The mirror field is then ramped 

slowly until it reaches the desired value. The plasma appears to be in a new equilibrium, 

whose properties we investigate in detail.  
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We show the existence of two trapping regions and examine the deviations from 

constant density and potential along field lines; the Boltzmann distribution is obtained all 

along the field lines, including in the transition region between the high and low field, 

which is ignored in Ref. 14.   

We previously used the same code to simulate the positron confinement in a proposed 

anti-hydrogen trap with an octupole magnetic field for the radial trapping of the anti-

hydrogen12. We found that a proper equilibrium can be achieved with the Warp code, 

although it does not take realistic collisions into account. We employ the same techniques 

as in Refs. 12-13, in order to find the positron/electron equilibrium in the Penning-

Malmberg trap with a magnetic mirror. Thus we show that by using the scheme described 

above, a local unknown equilibrium (with a nonuniform field) can be found from the 

uniform field equilibrium with a collisionless PIC code, using the collisionallity of the 

method to facilitate relaxation of the system. 

It is not clear that a Maxwellian distributions in PIC simulations should be obtained 

as the result of numerical collisions. Numerical effects such as non-conservation of 

energy, unrealistic fluctuation levels associated with the reduced particle number, finite 

size macroparticles with an effective shape influenced by the grid, etc., could lead to 

different results. Early work by Dawson16 showed that the plasmas modeled in a simple 

class of particle codes exhibit relaxation toward a Maxwellian state, as a result of three-

body interactions; however, because entropy is (in general) continuously generated in 

PIC codes, there is formally no steady state.  A detailed discussion of relaxation and 

related effects can be found in Chapters 12 and 13 of Ref. 17.  We intend to explore these 

issues more thoroughly in future work, where we hope to be able to employ the 

physically-correct number of particles along with fine zoning. In this paper we emplyed a 

limited number of macroparticles, and so deliberately enhanced the numerical collisional 

effects in order to achieve more rqapid damping; the Boltzmann distribution obtained as a 

result indicates that Maxwelization is obtained to a very large degree for the present 

simulation parameters. 

The Warp code15 was designed, originally, for heavy ion beam simulations. This is a 

three-dimensional Particle-In-Cell (PIC) code that considers the self electrostatic fields of 

the particles, together with many external magnetic and electric field elements. One 
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feature that makes Warp a very suitable code for the present simulations is that the time 

step can be larger than the gyro period while the various drifts and Larmor radius are 

calculated properly18. Within these strongly magnetized plasmas, the motion is primarily 

determined by the guiding center dynamics. Another special feature of Warp is the 

Python-based user programmable (“steerable”) capability that enables us to, for example, 

gradually turn on a mirror coil or add particles during the a simulation run.  

The paper is organized as follows. In Section II the simulation set-up is described. In 

III we present the results for different plasma configurations, namely; plasmas of 

different density profiles and various temperatures. In IV we discuss the particle trapping. 

Finally, our conclusions are given in Section V. 

 

II. SIMULATION GEOMETRY AND PARAMETERS 

We describe here the set-up for the PIC simulations done with Warp. A 

representative simulation produces particles distributed in r-z as shown in Fig. 2.  The 

trap geometry and parameters are apparent. Thus, the plasma is confined axially by two 

voltage rings of 100 V each. The plasma is confined radially by an axial magnetic field 

which, in the low field region, is 1T. The trap wall radius is 21 mm, the plasma column 

width at the high field region is 7 mm. The field is approximately a factor of 2.2 higher in 

the high field region due to the existence of a solenoid in the right half of the plasma. The 

plasma length is ~300 mm and the computational field grid’s spacing is 1 mm. The time 

step for the simulation is 1·10-10 s. The plasma density in the low field is of the order of 

1·107 cm-3; it decreases towards its radial boundary. The initial density distribution is 

loaded with the previousely calculated trap equilibrium. The particles have an initial 

Maxwellian velocity distribution. After computational equilibrium is obtained (following 

the technique described in Refs. 13), the mirror field is then ramped slowly (over several 

bounce times) until it reaches the desired value. We tracked the trajectories of selected 

particles; their motion along constant field lines was observed, allowing us to identify 

trapped particle regions and note their characteristic features 
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Fig. 2: Particles (and marked particles) in the Penning-Malmberg trap with a 
mirror field. The potential appears as a color map. Note that only a subset of the 
particles is shown, in order to prevent saturation. Trapped particle orbits were 
observed. 

III. PARTICLE DISTRIBUTIONS  

 

We here show the simulation results for various density profiles and plasma 

temperatures. The first case is for plasma temperature of 1 eV.  For these parameters the 

Debye length is of the order of 2.5 mm. This length is much smaller than the plasma 

length and significantly smaller that the plasma radius.  

In Fig. 3a we show a color map of the magnitude of the magnetic field, together with 

the corresponding field lines in the r-z plane. If 
L
B  is the magnetic field in the low field 

value side, and 
H
B  is the field at the high field side, then we define β via

LH
BB )1( !+" . 

In this simulation 2.1!" .  In Fig. 3b we show the density color map in the r-z plane and 

in Fig. 4a we show the value of the density on the axis. In the case of a cold, infinitely 

long plasma with an initially flat top density distribution and for for small Debye length 

compared to the wall radius the density should scale approximately with the field strength 

along the field line. 14 We can see from Fig. 3 that, in the interior of our plasma, for small 
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radii (where a flat-top and infinitely long plasma is a good approximation to our initial 

distribution) the density scales approximately as the magnetic field. On the axis the 

density in the high field region is ≈1.9 times the low region value. We can see that our 

density distribution increases along each field line over most of the plasma. In Figs. 4 and 

5 we show the potential distribution. This result can appear at first sight as 

counterintuitive; however, the high-density region’s outer radius is smaller than that of 

the low density region (due to the convergence of field lines), leading to a smaller 

potential than in the low field region, for the same field lines14. The potential decreases 

over most of the plasma region, and this is the reason that it is possible to obtain trapped 

particles in the high field region; they are reflected by the electrostatic potential as they 

move to lower field region. Along the axis, the potential decrease is of order 0.4V.  

However, at larger radii, there is a general trend for the potential variation along field 

lines to decrease. Along a field line that originates at a radius of ≈7±1 mm (marked with a 

dashed line in Fig. 5), the potential is constant and for larger radii it increases along field 

lines. We denote the field line with zero potential variation as the critical line; it defines a 

critical radius in both the high and in the low field regions. In the high field region 

particles cannot be trapped beyond the high field critical radius. 
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Fig. 3: (a) Color map of the magnetic field magnitude B (T) of the mirror field in the 
simulated non-neutral plasma trap. (b)  Color map of the density (1/cm3) and 
magnetic field lines for the case of a plasma at 1eV.  
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Fig. 4: (a) The density at the axis for the case of a plasma at 1eV.  Averaged densities 
values in the low and high field region are shown (b)  The potential at the axis for 
the same case. 

 

 

 

Fig. 5: Color map of the potential (V) and magnetic field lines for the case of a 
plasma at 1eV. 
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We evaluated the expression: 
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where )(),(),(
L
rzrzr !!! "=#  on each field line, which is expected to be equal to 1.  In 

Fig. 6 we show contour maps of G in the rL-z plane. We have interpolated the different 

values over a finer grid, using the “Spline” function of Matlab.  G is plotted in the region 

where the Boltzmann distribution is satisfied. Comparing with the density Fig. 3a, it 

appears that in our simulation the Boltzmann distribution is satisfied over most of the 

higher density region. i.e rL<6 mm. The fact that in this simulation the Boltzmann 

distribution is not satisfied in the region of low densities, does not mean that the 

Boltzmann distribution is not satisfied there; rather, we believe that the results in this 

region are inaccurate.   The main reason for this localized inaccuracy is that there are 

very few macroparticles here, resulting in very large numerical noise and heating. The 

effective temperature in this region is thus higher. The use of more macroparticles is an 

imperfect solution. Since the equilibration process is then slower in the high density 

region, the simulation time becomes much longer. This leads, in turn, to more heating in 

the high density region. Also a differential macroparticle charge could be used according 

to the density, leaving the number of particles per cell uniform. This could lead to other 

numerical problems due to particle mixing. Since we are mainly interested in the region 

of higher density, we did not attempt to develop the advanced numerics nor carry out the 

long simulations required to analyze the boundary regions in detail  

In Ref. 14 the Boltzmann distribution was not solved for in the interface between 

the low and high density regions. Here, in the region where the Boltzmann distribution is 

shown to be satisfied, we show the expected result: the Boltzmann distribution is valid 

along field lines. We also remark that the values of G are not trivially uniform. If, for 

instance, )(
LL
rn  is replaced by )0(

L
n , G(z;rL) can deviate significantly from unity over 

most of the plasma, also if the temperature is replaced by even slightly different values, 

this value deviates easily by a factor of several. 
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Fig. 6: Color map of )G(z;rL for the 1eV plasma.  It should be noted that this is not a 
depiction of the physical r-z plane. 

We also consider two cases with a larger plasma radius (14 mm). The first case has 

the same plasma density as before, and a temperature of 0.5 eV. For these parameters the 

Debye length is even smaller, about 1.7 mm.  However, we still resolve it with the grid 

spacing in the high density region.  The second case has a higher temperature (2eV).   In 

Fig. 7 we show the initial density distribution for the 2eV case. The radial fall-off is 

clearly seen (the choice of radial profile is somewhat arbitrary).   

 

 

Fig. 7: Color map of the initial density distribution (1/cm3). 

For the 0.5eV temperature case, we expect that the density will scale as the field 

strength with even higher accuracy than for the higher temperatures. In Fig. 8a, we plot 
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the density color map and the field lines. In this case, the density on the axis is 2.05 times 

its value in the low field region, as can be seen from Fig. 9a. This is close to the 2.2 ideal 

value for a cold plasma. In Fig. 8b, we show the potential color map. We can see that the 

critical radius occurs at rL=10±1 mm.  The decrease of the potential on the axis is of order 

0.3V (Fig. 9b). 

In the case of a 2eV plasma, the density increase on the axis, as expected, is 

somewhat smaller than in the previous cases. The density is ≈1.8 times larger in the high 

field region than in the low field region (see Fig. 9a). The potential decrease along the 

axis is about 0.8V (Fig. 9b), higher than in the colder case. In Fig. 10a, the density color 

map is shown and in Fig. 10b the potential is plotted. We can see that the critical radius 

occurs at rL=9±1 mm. Clearly, as the temperature decreases the transition between the 

density in the low and high field region occurs on a smaller scale.  

In Fig. 11 we plot color maps of the function G in the rL-z plane for both cases. We 

observe that the Boltzmann equation is satisfied over a similar region in both cases. This 

region is roughly within the critical radius. On the plasma boundaries, there is some 

numerical heating, so that a rough Boltzmann distribution is satisfied, but at an increased 

temperature. The somewhat discontinuous lines are due to the finite grid and the 

existence of numerical noise.  

 

Fig. 8: (a) Color map of the density  n (1/cm3) and magnetic field lines for T=0.5 eV. 
(b) Color map of the potential (V)!  and magnetic field lines for the same plasma.  



  13 

 

 

Fig. 9: (a) The density n (1/cm3) and on axis, T= 0.5 eV (red) and T=2 eV (blue) 
cases. .  Averaged densities values in the low and high field region are shown. (b) the 
potential  (V)! on axis for the same cases. 

 

 

Fig. 10:  (a) Color map of the density  n (1/cm3)  and magnetic field lines for T=2.0 
eV. (b) Color map of the potential (V)!  and magnetic field lines for the same 
plasma.  
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Fig. 11: Color map of )G(z;rL  (defined in Eq. 2) for (a) T=0.5eV and (b) T=2.0eV.  

IV. PARTICLE TRAPPING  

The simulations show that some particles are trapped in the low field region, others 

(relatively few) are transiently trapped in the high field region, and most oscillate 

between the two potential barriers at the ends of the plasma. A typical untrapped particle 

trajectory is shown in Fig. 12. The axial position is plotted as function of time in Fig. 12a 

and the orbit in r-z is plotted in Fig. 12b (the orbit follows a field line). 
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Fig. 12: Typical untrapped particle trajectory for a T=0.5eV plasma.  (a) axial 
position as a function of time. (b) Particle trajectory in r-z plane. 

 

Energy and magnetic momemt conservation yields14 a useful expression in 

approximation where the plasma is long, and the transition region between the high and 

low fields and plasma boundary are neglected:  

 

            (3) 

Here ||VV ,!  are the transverse and axial velocities of the particles, respectively, 

normalized by the thermal velocity given by mkTV
T

/= . This gives a hyperbolic 

shape of the separatrix between the particles trapped in the low field region and those that 

are untrapped. For sufficiently large perpendicular velocities particles are trapped.  In 

case where there is zero potential variation along the field lines the separatrices reduce to 
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the cold limit of straight lines originating at the origin.  Thus, the trapping of particles is 

favored at larger radii, where the potential variation is smaller or even positive. At the 

smaller radii, the trapping is favored at lower temperatures since the potential difference 

is smaller. In our examples, the potential variation is, at most, of the order of 0.3-0.8 V 

(for the 0.5 eV - 2eV cases, respectively). For the potential term in Eq. 3, this gives a 

value of <0.6 in the 0.5 eV case and 0.8 in the 2 eV case. Since 1!" , particles 

reflected in the low field region should have perpendicular velocity of at least the value 

of the parallel velocity (for radii lower than the critical radius). They can have lower 

values only for radii larger than the critical radius. These features are observed. There is 

large number of trapped particles in the low field region and more particles are trapped at 

larger radii (also as expected). A typical result for a trapped particle for a T=0.5 eV 

plasma is shown In Fig. 13a-b. The particle is inside the critical radius, therefore its 

perpendicular velocity should be larger than its parallel velocity. Indeed, the highest 

parallel velocity is 5·105 m/s, while the perpendicular velocity is at most 9·105 m/s. The 

particle follows a field line trajectory. 
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Fig. 13: Trapped particles trajectories.  (a-b) a trapped particle orbit in the low field 
region in a T= 0.5eV plasma.  (c-d) a particle is weakly trapped (for a few 
oscillations) in the high field region (T=1 eV).  In (a) and (c) the axial position is 
plotted as function of time.  In (b) and (d) the radial position versus the axial 
position are plotted.  

 

In the high field region,  

 

           (4) 

This yields an elliptical shape for the separatrices, which for the analytical top hat 

distribution decrease in size as the radius increases.  For our parameters, the value of the 

second term is positive only for radii less than the critical, and is relatively large only for 

small radii (see, for example, the potential in the 1 eV case of Fig. 5). Thus, particles can 

be trapped in the high field region only if the parallel velocity is sufficiently small.  In 

Fig. 13c-d we show a particle reflected while traversing from the high to low field region 

for the 1 eV plasma. In fact, this occurs near the origin, where the potential rise in the low 
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field region is highest. The parallel velocity of this particle is in fact small, 3·105- m/s, 

giving rise to a positive term in the square root in Eq. 4.  

We tracked the motion of a small number (18) of particles, with randomly chosen 

initial conditions consistent with the initial thermal distribution. Since particles can be de-

trapped and trapped due to numerical collisions, the observed fraction (0.3-0.5) of 

trapped particles is only an estimate. This is consistent with the expected number of 

trapped particles in this region14 ( ( )1+! ""  which is the value in the cold limit). 

We observed only few particles that were trapped in the high field region (and they were 

trapped only for short times. This is expected to be a small fraction on the basis of the 

phase space analysis for the idealized case. 

 

V. CONCLUSIONS  

We have performed Warp simulations of two-dimensional plasma dynamics in a 

Malmberg trap with a mirror field. We use a technique to relax the simulated plasma to 

an equilibrium in a uniform field that was developed13 for anti-hydrogen traps. We then 

ramp the mirror field and find numerical agreement with a basic theory that describes the 

equilibrium distribution in the mirror geometry. Thus, we show that the local equilibrium 

(with a nonuniform field) can be found from the uniform field equilibrium with a 

collisionless PIC code, as a consequence of the numerical noise. The Boltzmann 

distribution is shown to describe the plasma distribution along field lines. The density and 

potential need not be and are not constant along field lines. Moving beyond the earlier 

theory, the simulation shows that the Boltzmann distribution is satisfied in the transition 

region between the high and low fields. The unusual behavior of the non-neutral plasma, 

with some degree of trapping in both the high and low field regions, is demonstrated. 
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