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Abstract

We developed a new fluid property module for TOUGH2, called EOSN, to simulate

transport of noble gases in the subsurface. Currently, users may select any of five different

noble gases as well as CO2, two at a time. For the three gas components (air and two user­

specified noble gases) in EOSN, the Henry's coefficients and the diffusivities in the gas

phase are no longer assumed constants, but are temperature dependent. We used the

Crovetto et al. (1982) model to estimate Henry's coefficients, and the Reid et al. (1987)

correlations to calculate gas phase diffusivities. The new module requires users to provide

names of the selected noble gases, which properties are provided internally. There are

options for users to specify any (non-zero) molecular weights and half-lives for the gas

components. We provide two examples to show applications of TOUGH2IEOSN. While

temperature effects are relatively insignificant for one example problem where advection is

dominant, they cause almost an order of magnitude difference for the other case where

diffusion becomes a dominant process and temperature variations are relatively large. It

appears that thermodynamic effects on gas diffusivities and Henry's coefficients can be

important for low-permeability porous media and zones with large temperature variations.
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1. Introduction

Among many TOUGH2 fluid property modules, EOS7R is the one that can

simulate two-phase, five-component flow and transport problems. The two phases are the

water and gas phases, and the five components are water, brine, air and two radionuclides

(Oldenburg and Pruess, 1995). Pruess et al. (2000) used TOUGH2 with the EOS7R module

to simulate the transport of different tracers in a geothermal reservoir. These tracers

included R-134a, tritium, neon, and xenon. The natural availability and chemical stability

make some gases, especially noble gases, good tracers in studying transport processes in

the subsurface. Phase partitioning and gas diffusion are two important mechanisms that

affect transport processes. For trace gases, phase partitioning can be described using

Henry's law, and gas diffusion using Fick's law. Each law is characterized by a coefficient:

the Henry's coefficient and the gas diffusivity. Laboratory experiments have shown that

both coefficients are temperature dependent. For noble gases and some other gases such as

carbon dioxide (C02), this thermodynamic effect is so strong that it may significantly affect

results in cases of large temperature variations. In fact, the dependence of noble gas

solubility on temperature is sufficiently strong as to make monitoring of noble gas

concentration in subsurface water of meteoric origin a useful tool for determining recharge

temperature (Ballentine and Hall, 1999). Information on multi-phase processes (boiling,

condensation) can also be obtained.

TOUGH2IEOS7R requires users to input Henry's coefficients and gas diffusivities

as constant values, which is both inconvenient and inaccurate for strongly non-isothermal

systems. In applying TOUGH2IEOSN, users only need to give the names of the two gases;

all required thermodynamic properties are provided internally. There are, however, options

for users to overwrite internal molecular weights for modeling user-specified isotopes.

Currently there are six user-selectable gases: He (helium), Ne (neon), Ar (argon), Kr

(krypton), Xe (xenon), and CO2 (carbon dioxide). The capability to model radioactive

decay by means of half-life is already included in EOSN. We provide the new capabilities

by adding two subroutines into TOUGH2: NOHEN for calculating the temperature­

dependent Henry's coefficients for the three gas components (air and two user-selected
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gases), and GASDIF for calculating their temperature- and pressure- dependent

diffusivities in the gas phase. We set diffusivities for the two other components (water and

brine) to zero in both (aqueous and gas) phases. We also set a default value of 10-9 m2/s for

diffusivities of the three gas components (air and two user selected gases) in the aqueous

phase. There is an option, however, for users to specify aqueous phase diffusivities for all

five components through the data block, DIFFU (Pruess et al., 1999).
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2. Treatment of Diffusion in TOUGH2

TOUGH2 uses an "advective-diffusive model" (ADM) in which total mass flux of a

component is computed as the sum of advective and diffusive fluxes. It is well established

that for gases the advective and diffusive fluxes are coupled, as given by the dusty gas

model (Mason and Malinauskas, 1983; Webb, 1998). However, Webb and Pruess (2001)

have shown that for trace gases the dusty gas model reduces to the ADM, and this is the

approximation used here. The diffusive flux of component Kin phase fl (= aqueous, gas) is

written as (Pruess et aI., 1999)

(1)

where ¢J is porosity, to'rfJ is the tortuosity which includes a porous medium-dependent factor

to and a coefficient 'rfJ that depends on phase saturation SfJ [i.e., ·'rfJ = 'rfJ (5fJ)] , PfJ is density,

d; is the diffusion coefficient of component K in the bulk fluid phase' fl, and X; is the

mass fraction of component K in phase fl. According to Eq. (1), each fluid component

diffuses separately under its own mass fraction gradient and with its own diffusion

coefficient. Diffusion coefficients for gases are calculated internally as functions of

pressure and temperature (see Section 3), while aqueous phase diffusion coefficients are

taken as constants, with no provisions for temperature dependence of these parameters.

It is convenient to define a single diffusion strength factor that combines all

material constants and tortuosity factors into a single effective multiphase diffusion

coefficient, as follows.

(2)

For general two-phase conditions, the total diffusive flux can then be written as the sum of

diffusive fluxes in aqueous and gas phases.

(3)

Space discretization of Eq. (3) in multiphase conditions raises some subtle issues

(Pruess et aI., 1999). Generally speaking, it is not permissible to evaluate space-discretized
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expressions separately in gas and aqueous phases and then add them, because this ignores

the coupling between diffusion and phase partitioning. The default option in TOUGH2,

selected with MOP(24) = 0, fully accounts for such coupling and can cope with the most

general case of diffusion across a phase boundary. As an alternative, by setting MOP(24) =

1, diffusive fluxes can be evaluated separately in gas and aqueous phases and then added.

Tortuosity effects have a porous medium-dependent part to and a saturation­

dependent part TfJ, as indicated in Eq. (1). The following three alternative formulations are

available.

1. Relative permeability model

For domains whose tortuosity parameter to =TORTX "*°is specified in data block

ROCKS, tortuosity will be taken as ToTfJ (SfJ) = TokrfJ (SfJ). Here, krfJ is the relative

permeability to phase fJ.
2. Millington model

For domains where TORTX = 0, the Millington (1959) model will be used

ToTp = ¢J1/3S~O/3 (4)

3. Constant diffusivity model

Diffusivities dpmay optionally be user-specified as negative numbers. Then ToTfJ =

SfJ will be used for tortuosity, and the absolute values of the users' input will be

taken as the diffusivities.

Alternative 3 corresponds to the formulation for gas diffusion in earlier versions of

TOUGH2. In the absence of phase partitioning and adsorptive effects, it amounts to

effective diffusivity being approximately equal to d p, independent of saturation. This can

be seen by noting that in the mass balance equation for component K (Pruess et al., 1999)

the contribution to the accumulation term from phase fJ is given by ¢JSfJpfJ Xp,
approximately canceling out the ¢JSfJpfJ coefficient in the diffusive flux.
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A crude (saturation-independent) enhancement of vapor diffusion can be chosen by

specifying a suitable value, typically of order 1, for the parameter group B = rjrroTfJo This is

to be entered as parameter BE in the first record in data block PARAMo
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3. Gas Diffusivity Model

The thermodynamic noble gas diffusivity is calculated using the following equation

modified from Reid et a1. (1987):

(5)

Equation (5) requires fixed units for all parameters. DAB is the diffusivity of Gas A (air or

the noble gas of interest) in Gas B (water vapor in TOUGH2), in m 2/s. T is temperature, in

K. P is pressure, in Pa. MAB is defined by:

(6)

where MA and MB are the molecular weights of Gases A and B, respectively.

The other two parameters in (5) are: (JAB, a characteristic length, in angstrom; and

flD, a dimensionless coefficient defined by

-B -DT* -FT* -HT*Q D = A . (T*) + C .e + E . e + G . e (7)

where A through H are eight gas-independent constants, and T* is a modified temperature

that is defined by:

T*=TI(cAB lk ) (8)

where CAB is the geometric mean characteristic Lennard-Jones energy of gas A and B (Reid

et a1., 1987); k is the Boltzmann constant.

The values of the eight constants are given in Table 1.

Table 1. Constants for calculating the dimensionless parameter flD

A B C D E F G H

1.06036 0.1561 0.193 0.47635 1.03587 1.52996 1.764744 3.89411

10



The other three parameters, M AB, (JAB, and £AsIk are gas-specific. Their values for

five noble gases, CO2, and air are given in Table 2. Although air is a mixture of different

gases (mainly nitrogen and oxygen), here we treat it as a single pseudo-component.

Table 2. Gas parameters

He Ne Ar Kr Xe CO2 Air

MAB 0.552594 0.317797 0.288662 0.259692 0.251205 0.279742 0.300064

(JAB 2.596 2.7305 3.0915 3.148 3.344 3.291 3.176

£AsIk 90.93405 162.9064 274.7527 380.4576 432.3218 397.412 252.181

We define water vapor as Gas B and calculate these gas-specific constants. The

rationale is that the thermodynamic effect on gas diffusivity is significant only in an

environment with large temperature variation such as in geothermal reservoirs, where water

vapor is the dominant component in the gas phase. For most other groundwater problems,

temperature is in the range of 10 °c to 20°C, and air is likely the dominant component in

the gas phase. As a result, using the above constants may cause some error. However, the

thermodynamic effect is usually insignificant for those problems and users may not want to

consider it at all.

Equation (5) is programmed in the subroutine GASDIF of TOUGH2IEOSN, and

the constants listed in the two tables are used in the subroutine GASDIF. For two-phase

conditions in a pure water system, P is a function of T so that DAB in (5) is actually a

function of temperature only. Figure 1 shows the calculated temperature-dependent

diffusivity in saturated water vapor for all seven gases.
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4. Model for Henry's Coefficients

According to Henry's law, the partial pressure of a non-condensable gas (NCG) in

the gas phase is proportional to the mole fraction of the dissolved NCG in the aqueous

phase (Prausnitz et aI., 1986)

P K NCG
NCG = II' xaq (9)

The coefficient Kh in (9) is the Henry's coefficient and has units of pressure (Pa in

TOUGH2). We use the model introduced by Crovetto et al. (1982) to calculate the Henry's

coefficient as a function of temperature for gases.

where the variable t is one thousandth of temperature in K, i.e.

t =O.OOlxT

(10)

(11)

Equation (10) is an empirical one that is fitted against the calculated Kh using

experimental data of Crovetto et al. (1982). The four coefficients in (10) are gas-specific,

and their values for seven gases used in TOUGH2 are given in Table 3.

Table 3. Coefficients used to calculate Henry's coefficients for seven gases

He Ne Ar Kr Xe CO2 Air

ao -8.792806 -7.2590 -9.5200 -6.2920 -3.9020 -18.0239 -20.0899

aj 7.847946 6.9500 8.8300 5.6120 2.4390 18.6643 21.6153

a2 -1.573777 -1.3826 -1.8959 -0.8881 0.3863 -6.1679 -6.8549

a3 0.075541 0.0538 0.0698 -0.0458 -0.2211 0.6078 0.7116

The coefficients for Ne, Ar, Kr, and Xe are taken directly from Crovetto et al.

(1982). The coefficients for He are obtained by fitting the Smith (1985) data for He to the

Crovetto et al. (1982) model. For CO2 and air we chose four data points for each gas from

Naumov et al. (1974), and substituted them into (10). This provided four linear equations

for ao through a3, which were solved simultaneously to obtain the coefficients for CO2 and
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air as shown in Table 3. Naumov et al. (1974) only provided the Henry's coefficient data

for oxygen and nitrogen (D'Amore and Truesdell, 1988). We assumed that air is simply a

mixture of 21 % oxygen and 79% nitrogen, and used the following formula to estimate the

Henry's coefficient for air (Pruess and Battistelli, 2002):

Kh(Air) =1/(0.211 Kh(O,) + 0.79/ Kh(N,») (12)

The data points used for calculating the coefficients for CO2 and air are listed in

Tables 4a, and 4b, respectively.

Table 4a. Set of data points used for calculating the coefficients for CO2

T (0C) 10 90 170 350

Kh (MPa) - CO2 103.76 492.95 718.60 235.88

Table 4b. Set of data points used for calculating the coefficients for air

T(°C) 50 80 210 350

Kh (MPa) - air 9439.48 10083.7 4918.15 1017.06

The coefficients of Table 3 are stored in data blocks in subroutine NOHEN of

TOUGH2IEOSN for calculating Kh using (10). The resulting Henry's coefficients as

functions of temperature are shown in Figure 2.
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5. New Data Block

A major change in preparing TOUGH2IEOSN input files is the new data block

NOBLE that requires two records, one for the two user-selected gases. Users need to

choose two gases from the six gases: He, Ne, Ar, Kr, Xe, and CO2, and input one name on

each line. Users may also specify the molecular weight and half-life of the selected gases,

partly or wholly.

In most cases, the new data block NOBLE is sufficient for providing modeling data.

In some rare cases, users may want to use two optional data blocks SELEC and DIFFU.

SELEC is needed only when brine properties are different from internally provided data. If

there is a need for such a specification, users are recommended to specify lE(1) = 1 or 2 in

Record SELEC.1 such that only the required number of additional records (SELEC.2 and

SELEC.3) will be read. The use of DIFFU is for specifying the diffusivities in water for

the five components: water, brine, noble gas #1, noble gas #2, and air, respectively. If

DIFFU is not used, default diffusivities for five components (1 - water, 2 - brine, 3 - noble

gas #1, 4 - noble gas #2, and 5 - air) in water will be used as follows: DW1 =DW2 =0, Dw3 =
DW4 =Dws = 10-9 m2/s. The formats of SELEC, DIFFU, and all other data blocks are the

same as those in standard TOUGH2 (Pruess et al., 1999). The data formats and instructions

for NOBLE are as follows.

NOBLE: keyword to introduce a data block with names of two user-selected gases, as well

as (optionally) their molecular weights and half-lives.

Record NOBLE. 1

Format (A3, 7X, 2ElOA, 12)

GASNAME(1), GMW1, THALF1, INOBLE

GASNAME(1): the name of the first selected gas. Currently users may choose from only

six gases. They are He, Ne, Ar, Kr, Xe, and C02. Names are case-sensitive and

must be entered exactly as indicated. All names must be typed starting from the first

column.
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GMW1: the molecular weight (g/mole) of the first selected gas. This input is optional and

can be left blank (or set 0) so that TOUGH2IEOSN will use the internally stored

standard value for the first selected gas.

THALF1: the half-life of the first selected gas, in seconds. This input is optional and can

be left blank (or set 0) so that TOUGH2IEOSN will use the internally stored default

value of 1050, which implies no decay.

INOBLE: an optional index to turn off temperature dependence of Henry's coefficients

and gas phase diffusivities. If users input a non-zero integer such as 1, the program

will keep using the Henry's coefficients and gas phase diffusivities that are

calculated at the user-specified initial temperature. This option is provided for

comparison only, and should not be used for field applications.

Record NOBLE.2

Format (A3, 7X, 2ElO.4)

GASNAME(2), GMW2, THALF2

GASNAME(2): the name of the second selected gas. Currently users may choose from

only six gases. They are He, Ne, Ar, Kr, Xe, C02. Names are case-sensitive and

must be entered exactly as indicated. All names must be typed starting from the first

column.

GMW2: the molecular weight (g/mole) of the second selected gas. This input is optional

and can be left blank (or set 0) so that TOUGH2IEOSN will use the internally

stored standard value for the second selected gas.

THALF2: the half-life of the second selected gas, in seconds. This input is optional and

can be left blank (or set 0) so that TOUGH2IEOSN will use the internally stored

default value of 1050, which implies no decay.
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6. Sample Problems

Here we use TOUGH2IEOSN to demonstrate temperature effects in two different

problems under different conditions. The first problem was previously presented by Pruess

et al. (2000). The second is a simple one-dimensional advection-diffusion problem with

relatively large temperature variations. For both problems, we ran the simulation twice:

with full temperature dependence of gas diffusivities and Henry's coefficients (INOBLE =

0) and without such temperature dependence (INOBLE = 1).

6.1. Sample Problem 1 - Transport ofNoble Gases to an Extraction Well

A central well in a geothermal reservoir with a uniform thickness of 500 meters

produces at a constant rate of 20 kg/so The reservoir is homogeneous and the flow is radial.

An impermeable boundary is set at a radial distance of 1000 meters. The reservoir has the

following initial conditions: pressure of 33.479 bar, gas saturation of 20%, temperature of

240°C, and aqueous phase mass fractions of 10-12
, 2.44xlO- 11

, and 2.142xlO-11 for brine,

neon (Ne), and xenon (Xe), respectively. The mass fractions of the noble gases correspond

to equilibrium solubility at T = 10 °c for atmospheric abundances of isotopes, 22Ne and

I32Xe. Our interests are the variations of mass fractions (in the gas phase) of Ne and Xe at

the production well.

Using MESHMAKER we divided the domain into 31 elements along the radial

direction. We then simulated the production process for 30 years. The input file for the case

with full temperature dependence (INOBLE = 0) is given in Figure 3A.

Part of the printout after 50 time steps is given in Figure 3B, where we see clear

decreasing trends for pressure, temperature, water saturation, and mass fractions of noble

gases towards the production well.
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r
I
I *SAM1B* ... 1-D radial flow with Ne & Xe. Case B: INOBLE=O

MESHMAKER1----*----2----*----3----*----4----*----S----*----6----*----7----*----8
RZ2D
RADII

1
S.46

EQUID
1 0.3

LOGAR
20 1.e2

LOGAR
10 1.e3

LAYER----1----*----2----*----3----*----4----*----S----*----6----*----7----*----8
1

SOO.

ROCKS----1----*----2----*----3----*----4----*----S----*----6----*----7----*----8
POMED 2 2600. .04 43.2e-15 43.2e-1S 43.2e-1S 2.S1 1000 .

7
7

. 4438

.4438
0.80 1.

0.00E-2 8.734e-OS
.OS

S.e8 1.0

2.142e-ll2.440e-ll

1. e3
1.e-S

MULTI----1----*----2----*----3----*----4----*----S----*----6----*----7----*----8
S 628

START----1----*----2----*----3----*----4----*----S----*----6----*----7----*----8
PARAM----1 MOP: 1234S6789*1234S6789*1234 ---*----S----*----6----*----7----*----8

2 300 S01000 000000000 30 2
946.728e6 -1. 31.SS76e6

9.e3
1.e-S

33.47geS 1.e-12
10.20 240.

SOLVR----1----*----2----*----3----*----4----*----S----*----6----*----7----*----8
S Zl 00 8.0e-1 1.0e-7
SELEC----1----*----2----*----3----*----4----*----S----*----6----*----7----*----8

1
-1.eS

NOBLE----1----*----2----*----3----*----4----*----S----*----6----*----7----*----8
Ne 22. O. 0
Xe 132. O.
INCON----1----*----2----*----3----*----4----*----S----*----6----*----7----*----8

FOFT ----1----*----2----*----3----*----4----*----S----*----6----*----7----*----8
A1 1

GOFT ----1----*----2----*----3----*----4----*----S----*----6----*----7----*----8

GENER----1----*----2----*----3----*----4----*----S----*----6----*----7----*----8
A1 1we1 1 MASS -20.

ENDCY----1----*----2----*----3----*----4----*----S----*----6----*----7----*----8

Figure 3A. TOUGH2 input file for sample problem 1
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· .. ITERATING ... AT ( I, 1] OELTEX 0.100000E+04 MAX. RES. 0.103827E+02 AT ELEMENT A1 1 EQUATION 5
· .. ITERATING ... AT ( 1, 2J OELTEX 0.100000E+04 MAX. RES. 0.758958E+00 AT ELEMENT Al 5 EQUATION 5
· .. ITERATING ... AT ( I, 3] OELTEX 0.100000E+04 MAX. RES. 0.80B232E-01 AT ELEMENT Al 2 EQUATION 5
A1 2 ( I, 4) ST = O.100000E+04 DT = 0.100000E+04 DX!= -.216495E+05 DX2= o.213710E-13 T = 239.632 P 3326250. S O.217241E+00
· .. ITERATING ... AT ( 2, 1] OELTEX 0.900000E+04 MAX. RES. o.257404E+01 AT ELEMENT Al 1 EQUATION 5
· .. ITERATING ... AT ( 2, 2J --- OELTEX = 0.900000E+04 MAX. RES. = 0.751154E+00 AT ELEMENT Al 10 EQUATION 5
... ITERATING ••. AT ( 2, 3) --- OELTEX = 0.900000E+04 MAX. RES. = 0.958358E-01 AT ELEMENT Al 1 EQUATION 5
A1 2 ( 2, 41 ST = o.100000E+05 DT= 0.900000E+04 OX1= -.548908E+05 OX2= 0.589594E-13 T = 238.689 P 3271360. S 0.261158E+00
· .. ITERATING ..• AT ( 3, 11 OELTEX 0.900000E+04 MAX. RES. O.223814E+00 AT ELEMENT Al B EQUATION 5
· . . ITERATING_ AT [ 3, 2] --- DELTEX = 0.900000E+04 MAX. RES. = 0.777234E+-00 AT ELEMENT Al 9 EQUATION 5
· .. ITERATING ... AT [ 3, 3 J --- DELTEX = 0.900000E+04 MAX. RES. = 0.679020E-02 AT ELEMENT Al 1 EQUATION 5
Al 4( 3, 41 ST = 0.190000E+05 DT = 0.900000E+04 OX1= -.277743E+05 DX2= 0.313204E-13 T = 238.53B P 326261B. S 0.26B169E+00
_ . _ITERATING .. _ AT ( 4, 1J DELTEX 0.900000E+04 MAX. RES. 0.937637E-01 AT ELEMENT Al 12 EQUATION 5
· .. ITERATING ... AT ( 4. 2 ) --- OELTEX = 0.900000E+04 MAX. RES. = 0.661534E+00 AT ELEMENT A1 9 EQUATION 5
· .. ITERATING ... AT ( 4, 3 J --- DELTEX = 0.900000E+04 MAX. RES. = 0.2064B6E-02 AT ELEMENT Al 1 EQUATION 5
Al 2 ( 4, 4) ST = o.2BOOOOE+05 DT = 0.900000E+04 OX1= -.200681E+05 OX2= 0.250557E-13 T = 237. B32 P 3222075. S 0.300755E+00
· .. ITERATING ... AT [ 5. 1J OELTEX 0.900000E+04 MAX. RES. 0.65B156E-01 AT ELEMENT Al 13 EQUATION 5
· .. ITERATING ... AT [ 5, 2] --- OELTEX = 0.900000E+04 MAX. RES. = 0.619BOBE+00 AT ELEMENT Al 9 EQUATION 5
· .. ITERATING ... AT [ 5. 3 J --- OELTEX = 0.900000E+04 MAX. RES. = o.105861E-02 AT ELEMENT Al 1 EQUATION 5
Al 1( 5, 4) ST = O. 370000E+05 DT = 0.900000E+04 OX1= - .154866E+05 DX2= 0.218244E-13 T = 237.405 P 3197132. S 0.322943E+00
· .. ITERATING ... AT [ 6, 1J OELTEX = 0.900000E+04 MAX. RES. 0.514660E-01 AT ELEMENT Al 14 EQUATION 5
· •. ITERATING .•. AT ( 6, 2] --- OELTEX = 0.900000E+04 MAX. RES. = 0.438910E+00 AT ELEMENT Al 8 EQUATION 5
· .. ITERATING ... AT ( 6, 3] --- OELTEX ~ O. 900000E+04 MAX. RES. = 0.687613E-03 AT ELEMENT Al 1 EQUATION 5
Al 3 ( 6, 4) ST = 0.460000E+05 DT = 0.900000E+04 OX1= - .125018E+05 DX2= o.164330E-13 T = 237.520 P 3204262. S o.315107E+00
· .. ITERATING ..• AT ( 7, 1] OELTEX 0.900000E+04 MAX. RES. 0.405896E-01 AT ELEMENT A1 15 EQUATION 5
· .. ITERATING .•. AT [ 7, 2] --- OELTEX = 0.900000E+04 MAX. RES. = 0.471397E+00 AT ELEMENT A1 7 EQUATION 5
· . . ITERATING ... AT [ 7, 31 --- DELTEX = 0.900000E+04 MAX. RES. = 0.508508E-03 AT ELEMENT Al 1 EQUATION 5
A1 2 ( 7, 4) ST = O. 550000E+05 DT = 0.900000E+04 OX1= - .106709E+05 DX2= o.147948E-13 T = 237.153 P 3183400. S 0.331941E+00
· . _ITERATING ... AT [ B, 1J OELTEX 0.900000E+04 MAX. RES. 0.3670B2E-01 AT ELEMENT A1 15 EQUATION 5
· . . ITERATING ... AT ( 8, 2J --- OELTEX = 0.900000E+04 MAX. RES. = 0.404409E+00 AT ELEMENT A1 4 EQUATION 5
· . . ITERATING ... AT ( 8, 3 J --- DELTEX = 0.900000E+04 MAX. RES. = O. 416910E-03 AT ELEMENT Al 1 EQUATION 5
Al 4( 8, 4) ST = O. 640000E+05 DT = 0.900000E+04 oXl= -.915444E+04 OX2= o.123266E-13 T = 237.375 P 3196015. S 0.321759E+00

·SAMIB* ... 1-0 radial flow with Ne & Xe. Case B: rNOBLE=Q

OUTPUT DATA AFTER ( 50, 41-2-TIME STEPS THE TIME IS 0.IBB657E+02 DAYS

@@@@@8988@@@888Q@@@@@@@@@@@@@@@@8@@@@@@8@8@@@@@@@@8@@@@@Q@@@@@Q@@@@@@@@@@@@@@@8@@@@@@@@@@@8@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@8@@

TOTAL TIME
o.163000E+07

KCYC ITER ITERC KON
SO 4 197 2

DXIM DX2M DX) M
0.37293E+04 0.60890E-13 0.60865E-12

MAX. RES.
0.52701E-OB

NER
5

KER
5

OELTEX
0.72000E+05

@@@@@@9@9@@@8@@@@@@@@@@@@@8@89@@8@@@@@@@@8@@@8@@@@@@@@@@@@@@@@@@@@88@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@8

ELEM. INDEX P T SL XBRINE(LIQ) XRN1(LIQ) XRN2(LIQI XAIRG XRN1(GAS) XRN2(GASI OL
(PA) (OEG-C) (KGIW*31

A1 1 1 0.29276E+07 0.23249E+03 0.33348E+00 0.23688E-ll 0.28355E-ll 0.27980E-11 0.40060E-05 0.36952E-08 0.16850E-OB 0.82397E+03
A1 2 2 0.29374E+07 0.23267E+03 0.46688E+00 o.16925E-11 0.28533E-11 0.28141E-11 0.40103E-05 0.36991E-OB o.1686BE-08 0.82372E+03
A1 3 3 0.29486E+07 0.232B8E+03 0.47620E+00 0.16599E-11 0.28717E-ll 0.28306E-11 0.40122E-05 0.37009E-OB o.16876E-08 O. B2344E+03
A1 4 4 0.29613E+07 0.23312E+03 0.4B671E+00 0.16245E-ll 0.28930E-11 0.28496E-11 0.40147E-05 0.37032E-OB o.16887E-08 0.82312E+03
A1 5 5 0.29756E+07 0.23339E+03 0.49862E+00 o .15866E-11 0.29174E-ll 0.28714E-ll 0.40179E-05 0.37062E-OB o.16901E-08 0.82275E+03
Al 6 6 0.29916E+07 o.23369E+03 0.51178E+00 o .15466E-11 0.29451E-ll o.28962E-11 0.40223E-05 0.37102E-OB o.16919E-08 0.82235E+03
Al 7 7 0.30091E+07 0.23401E+03 0.52622E+00 0.15049E-ll 0.29766E-ll o.29245E-11 0.40281E-05 0.37156E-OB o.16943E-08 0.82191E+03
Al 8 8 0.30283E+07 0.23436E+03 0.54190E+00 o.14622E-ll 0.30123E-11 0.29565E-ll 0.40361E-05 0.37229E-08 o.16977E-08 0.82143E+03
Al 9 9 0.30488E+07 o.23474E+03 0.55874E+00 o.14191E-11 0.30527E-ll 0.29929E-11 0.40469E-05 0.37329E-OB 0.17022E-08 0.82091E+03
Al 10 10 0.30707E+07 o.23514E+03 0.57662E+00 o.13760E-ll o.30987E-11 o.30345E-ll 0.40619E-05 0.3746BE-08 0.17085E-OB 0.82037E+03
Al 11 11 0.30938E+07 0.23555E+03 0.59539E+00 o.13335E-ll 0.31516E-11 0.30826E-11 0.40829E-05 0.37661E-OB o.17173E-08 0.81980E+03
A1 12 12 0.31178E+07 0.23598E+03 0.61491E+00 o.12921E-11 0.32133E-11 0.31391E-11 0.41125E-05 0.37934E-08 o .17298E-OB 0.81920E+03
Al 13 13 0.31425E+07 o.23643E+03 0.63498E+00 o.12522E-ll 0.32871E-11 0.32071E-ll 0.41547E-05 0.3B324E-08 o .17475E-08 0.81859E+03
Al 14 14 O.31677E+07 o.236B8E+03 0.65538E+OO o.12142E-ll 0.33776E-ll 0.32911E-ll 0.42157E-05 0.388B6E-OB 0.17731E-08 0.81797£+03
Al 15 15 0.31931E+07 o .23732E+03 0.67586E+00 0.11783£-11 0.34925E-11 0.33986E-11 0.43045E-05 0.39706E-08 0.lB104E-OB 0.81735£+03
Al 16 16 0.32182E+07 0.23777E+03 0.69614E+00 o .1l44BE-ll 0.36440E-11 o.35414E-ll 0.4435BE-05 0.40917E-OB o.18656E-08 0.81674E+03
Al 17 17 0.32427E+07 0.23819E+03 0.71585E+00 o.1l141E-ll 0.38517E-11 o.37383E-ll 0.46326E-05 0.42734E-OB o.19482E-08 0.81614E+03
Al 1B 1B 0.32660E+07 0.23 B60E+03 0.73456E+00 0.10865E-ll 0.41488E-ll 0.40212E-ll 0.49336E-05 0.45512E-OB o .20744E-OB 0.8155BE+03
Al 19 19 0.32875E+07 0.23897E+03 0.75178E+00 o.10623E-ll 0.45931E-ll 0.44455E-ll 0.54053E-05 0.49867E-08 0.22720E-OB 0.81506E+03
Al 20 20 0.33064E+07 0.23929E+0] 0.76693E+00 o.10419E-ll 0.52910E-ll 0.51121E-ll 0.61696E-05 0.56925E-08 0.25914E-08 0.81461E+03
Al 21 21 0.33220E+07 0.23956E+03 0.77940E+00 o.10256E-ll 0.644BOE-ll 0.62136E-ll 0.74607E-05 0.68860E-08 0.31288E-OB 0.8142]E+03
A1 22 22 0.33340E+07 0.2]977E+03 0.78899E+00 o.10135E-11 0.84772E-ll 0.81268E-ll 0.97457E-05 0.90017E-08 0.40713E-OB o. B1394E+03
Al 23 23 0.33420E+07 o.23990E+03 0.79532E+00 o .10057E-11 0.12364E-10 o.11700E-10 0.14132E-04 0.13080E-07 0.58416E-OB 0.81375£+03
Al 24 24 0.33461E+07 0.23997E+03 0.79856E+00 o.10018E-ll 0.18681E-10 o.17022E-10 0.21174E-04 o.19726E-07 0.B4B47E-08 0.81366E+03
Al 25 25 0.]3475E+07 0.23999E+03 0.79971E+00 0.10004E-ll 0.23034E-10 0.20394E-10 0.25955E-04 0.24306E-07 o .10159E-07 0.81362E+03
Al 26 26 0.33479E+07 0.24000E+03 0.79996E+00 o.10000E-ll 0.24227E-10 0.21290E-10 0.27258E-04 0.25561E-07 o .10604E-07 0.81361E+03
Al 27 27 0.33479E+07 o.24000E+03 0.80000E+00 o.10000E-ll 0.24388E-10 o.21411E-10 0.27433E-04 0.25730E-07 o.10664E-07 0.81361E+03
Al 2B 2B 0.33479E+07 0.24000E+03 0.80000E+00 o.10000E-ll 0.24400E-10 0.21420E-10 0.27446E-04 0.25743E-07 o.1066BE-07 0.81361E+03
Al 29 29 0.33479E+07 0.24000E+03 0.80000E+00 o.10000E-ll 0.24400E-10 0.21420E-10 0.27447E-04 o .25743E-07 o.10668E-07 0.81361E+03
Al 30 30 0.33479E+07 0.24000E+03 0.80000E+00 o.10000E-ll 0.24400E-10 0.21420E-10 0.27447E-04 0.25743E-07 o .10668E-07 0.81361E+03
A1 31 31 0.33479E+07 0.24000E+03 O.BOOOOE+OO o.10000E-ll 0.24400E-10 0.21420E-10 0.27447E-04 0.25743E-07 o .1066BE-07 0.81361E+03

@@@@@@@8@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@8@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@9@@@

Figure 3B. Selected output for sample problem 1
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A time series of simulation variables at the production well were recorded in file

FOFT, and gas phase mass fractions of noble gases are plotted in Figure 3C. Results with

and without temperature dependence are virtually identical in this problem.

1.E-08 -:r-------------------,

. ·~·~·-X-)(-~.~. ·x-~-~·"*~ .~~-~. * *-)(- )("
1.E-09

t:
0
~
0
Cl3
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A Ne (INOBLE=O)~
1.E-11 x Xe (INOBLE=O)
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Time (seconds)

Figure 3C. Produced noble gas mass fractions
in the gas phase for sample problem 1

21



6.2. Sample Problem 2 - One-Dimensional Noble Gas Transport

In this hypothetical problem we have a la-meter long horizontal homogeneous

porous rock column with a uniform cross-sectional area of 1 m2
. The column has a low

permeability of 10-18 m2 (l microdarcy) and is initially at equilibrium conditions with a

pressure of 24 bar, a gas saturation of 10%, and a temperature of 200 °C. The initial mass

fractions for brine and two noble gases (Ne and Xe) are exactly the same as those in sample

problem 1. Mass and heat are removed at the surface of one end of the column by setting

constant pressure of 1 bar and temperature of 50 °c at the surface, where noble gas

concentrations are assumed to be zero (Figure 4A). A no-flow boundary condition is

assigned to the other end of soil column. We are interested in the variations of mass

fractions of Ne and Xe in the column.

Starting from the no-flow end we divided the domain into 10 elements along its

length. Each element is one meter long, numbered sequentially from the no-flow end. The

input file is given in Figure 4A.

Part of the printout after 100 time steps is given in Figure 4B, where we see a clear

decreasing trend for pressure, temperature, and water saturation towards the discharge

boundary at BND 1. The mass fractions of air and noble gases in the gas phase, however,

show a non-monotonic behavior. This occurs because the lowered temperature causes

water vapor condensation and thus the mass fractions for non-condensable components to

increase. The process is simulated for 5 years.
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*SAM2B* ... 1-0 diffusion with Ne & Xe. Case B: INOBLE=O
ROCKS----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
MATRX 2 2600. 0.25 1.e-18 1.e-18 1.e-18 2.51 1000.

7
7

0.5
0.5

0.1
0.09

1.
1.e-04

0.05
5.e8 1.0

MULTI----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
5 6 2 8

START----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
PARAM----1-MOP:-123456789*123456789*1234 ---*----5----*----6----*----7----*----8

29000 1001000 000000000 30 2
1.5768e8 600. 360000.

1.e-5
24. e5 1. e-12 2. 440e-ll 2.142e-ll
10.10 200.

ELEME----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
AAA1 9 1 1 1.
BND 1 1

CONNE----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
AAA 1AAA 2 8 1 1 1 0 . 5 0 . 5 1. 0
AAA10BND 1 1 0.5 1. e-10 1. 0

INCON----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
BND 1

1.e5
10.10

1.e-12
50.

O. O.

SOLVR----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
5 Zl 00 8.0e-1 1.0e-7
SELEC----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8

1
-1.e5

NOBLE----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
Ne 22. o. 0
Xe 132. O.
FOFT ----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8
AAA10

GOFT ----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8

GENER----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8

ENDCY----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8

Figure 4A. TOUGH2 input file for sample problem 2
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· . ITERATING. AT [ 1- 1J --- DELTEX = 0.600000E+03 MAX. RES. = 0.820lJ3E-03 AT ELEMENT MAIO EQUATION 6
AAA10( 1, 2) ST = 0.600000E+03 DT= 0.600000E+03 OX1= -.678788E+04 OX2= -.644325E-18 T = 199.840 P 2393212. S 0.1002lJE+00
· . _ITERATING. AT [ 2, I] --- DELTEX = o.120000E+04 MAX. RES. = 0.163889E-02 AT ELEMENT AAAlO EQUATION 6
· .. ITERATING. AT [ 2, 2] --- DELTEX = 0.120000E+04 MAX. RES. = 0.840432E-04 AT ELEMENT AAAlO EQUATION 5
AAA10( 2, 3 I ST = o.180000E+04 DT= o. 120000E+04 OXl= - . 131450E+05 OX2= - .102950E-17 T = 199.521 P 2380067. S 0.100637E+00

· . ITERATING ... AT [ 3, I] --- DELTEX = 0.240000E+04 MAX. RES. = 0.327231E-02 AT ELEMENT AAA10 EQUATION 6
· . ITERATING ... AT [ 3, 2] --- OELTEX = 0.240000E+04 MAX. RES. = 0.183286E-03 AT ELEMENT AAA10 EQUATION 5

AAA10( 3, 3 ) ST = 0.420000E+04 DT= o.240000E+04 OXl= -.258947E+05 OX2= -.218106E-17 T = 198.888 P 2354172. S o .101476E+00
· . . ITERATING ... AT [ 4, I] --- OELTEX = 0.480000E+04 MAX. RES. = 0.652281E-02 AT ELEMENT AAA10 EQUATION 6
· . . ITERATING . .. AT [ 4, 2] --- OELTEX = O. 480000E+04 MAX. RES. = 0.424592E-03 AT ELEMENT AAA10 EQUATION 5
AAA10( 4, 3 I ST = 0.900000E+04 DT= 0.480000E+04 OXl= -.502583E+05 OX2= -.481425E-17 T = 197.636 P 2303914 . S o .103114E+00
· .. ITERATING . AT [ 5, 1) --- OELTEX = 0.960000E+04 MAX. RES. = o.129590E-01 AT ELEMENT MAIO EQUATION 6

· ITERATING _ .. AT [ 5, 2J --- OELTEX = 0.960000E+04 MAX. RES. = o.106128E-02 AT ELEMENT AAA10 EQUATION 5
AAA10 ( 5, 31 ST = o.166000E+05 DT= 0.960000E+04 OX1= -.947639E+05 OX2= - .111766E-16 T = 195.194 P 2209150. S o.106247E+00
· . . ITERATING. AT [ 6, 1) --- OELTEX = o. 192000E+05 MAX. RES. = 0.255768E-01 AT ELEMENT AAAlO EQUATION 6

· ITERATING .. AT [ 6, 2] --- DELTEX = 0.192000E+05 MAX. RES. = O.282569E-02 AT ELEMENT AAA10 EQUATION 5
AAA10 I 6, 31 ST = 0.378000E+05 OT = o.192000E+05 OX1= - .169126E+06 OX2= -.268198E-16 T = 190.541 P 2040025. S o.111992E+00

· ITERATING. AT [ 7, 1] DELTEX 0.384000E+05 MAX. RES. 0.498277E-01 AT ELEMENT AAA10 EQUATION 6
· . . ITERATING ... AT [ 7, 2] --- OELTEX = 0.384000E+05 MAX. RES. = 0.753809E-02 AT ELEMENT MAIO EQUATION 5
· . . ITERATING. AT [ 7, 3 J --- DELTEX = 0.384000E+05 MAX. RES. = o.103458E-04 AT ELEMENT AAA10 EQUATION 5
AAA10( 7, 41 ST = 0.762000E+05- DT = 0.384000E+05 DX1= -.273028E+06 DX2= -.622423E-16 T = 182.073 P 1766997 . S 0.121767E+00
· . . ITERATING .. AT ( 8, 1] --- DELTEX = 0.384000E+05 MAX. RES. = 0.473175E-01 AT ELEMENT AAA10 EQUATION 6

· ITERATING ... AT [ 8, 2] --- OELTEX = 0.384000E+05 MAX. RES. = 0.706127E-02 AT ELEMENT AAAlO EQUATION 5
AAA10( 8, 3 ) ST = o. 114600E+06 DT= 0.384000E+05 OX1= -.210699E+06 OX2= -.601664E-16 T = 174.359 P 1556298. S o .lJ0056E+00
· . . ITERATING ... AT [ 9, 1] OELTEX 0.768000E+05 MAX. RES. 0.897857E-01 AT ELEMENT AAA10 EQUATION 6
· . . ITERATING ... AT [ 9, 2) --- OELTEX = 0.768000E+05 MAX. RES. = 0.138344E-01 AT ELEMENT AAA10 EQUATION 5
· . . ITERATING ... AT [ 9, 3] --- OELTEX = 0.768000E+05 MAX. RES. = 0.3263 06E-04 AT ELEMENT AAA10 EQUATION 5
AAA10 ( 9, 41 ST = o.191400E+06 DT= 0.768000E+05 OX1= -.298292E+06 OX2= - . 117253E-15 T = 161. 421 P 1258005. S o .142666E+00
· . . ITERATING .. . AT [ 10, 1J OELTEX 0.768000E+05 MAX. RES. 0.810462E-01 AT ELEMENT MAlO EQUATION 6
· . . ITERATING ... AT [ 10, 2J --- OELTEX = 0.768000E+05 MAX. RES. = 0.988582E-02 AT ELEMENT AAA10 EQUATION 5
· .. ITERATING ..• AT [ 10, 3] --- OELTEX = 0.768000E+05 MAX. RES. = 0.150359E-04 AT ELEMENT AAA10 EQUATION 5
AAA10 ( 10, 4) ST = 0.268200E+06 DT= 0.768000E+05 OX1= -.196902E+06 OX2= -.904798E-16 T = 150.532 P 1061104. S 0.152281E+00

· . ITERATING... AT [ 11, I] --- OELTEX = 0.768000E+05 MAX. RES. = 0.729294E-01 AT ELEMENT AAA10 EQUATION 6
· . . ITERATING .. . AT [ 11, 2J --- OELTEX = 0.768000E+05 MAX. RES. = 0.631091E-02 AT ELEMENT AAA10 EQUATION 5
AAA10 ( 11, 3) ST = O.345000E+06 DT= 0.768000E+05 OX1= -.137479E+06 OX2= -.719525E-16 T = 141. 336 P 923625. S o.159755E+00

· . ITERATING . .. AT [ 12, 1] OELTEX o.153600E+06 MAX. RES. o.lJ0917E+00 AT ELEMENT AAA10 EQUATION 6
· . . ITERATING ... AT [ 12, 2] --- OELTEX = o.153600E+06 MAX. RES. = 0.103361E-01 AT ELEMENT AAAlO EQUATION 5
· . . ITERATING ... AT [ 12, 3] --- OELTEX = 0.153600E+06 MAX. RES. = 0.224911E-04 AT ELEMENT AAAlO EQUATION 5
AAA10 I 12, 4 ) ST = 0.498600E+06 DT= o.153600E+06 OX1= -.164505E+06 OX2= -.977301E-16 T = 127.725 P 759119. S 0.169785E+00

*SAM2B* 1-0 diffusion with Ne & Xe. Case B: INOBLE=O

OUTPlIT DATA AFTER (100, 3)-2-TIME STEPS THE TIME IS 0.368826£+03 DAYS

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

TOTAL TIME
o .318666E+08

KCYC
100

ITER ITERC KON
3 304 2

OXLM OX2M OX3M
0.10952E+05 0.62976E-17 0.99511E-lJ

MAX. RES.
0.55567E-09

NER
1

KER
5

DELTEX
O.36000E+06

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

ELEM. INDEX P T SL XBRINE(LIQ) XRN1(LIQI XRN2 (LIQ) XAIRG XRN11GASI XRN2(GAS) DL
(PAl (DEG-C) (KG/M**3)

AAA 1 1 0.95048E+06 o. 14434E+03 0.83629E+00 0.99960E-12 o.10174E-10 o.12057E-10 O.67245E+00 0.70087E-07 0.28381E-07 0.92228E+03
AAA 2 2 0.92099E+06 o. 14205E+03 0.83522E+00 0.99958E-12 0.99395E-11 o.11899E-10 0.68503E+00 0.71479E-07 0.28942E-07 0.92435E+03
AAA 3 3 0.86646E+06 o.lJ750E+03 0.83320E+00 0.99954E-12 0.94810E-11 o.11604E-10 0.70958E+00 0.74085E-07 0.30036E-07 0.92837E+03
AAA 4 4 O.79433E+06 o.lJ082E+03 0.83018E+00 0.99948E-12 0.87817E-11 o.11201E-10 0.74450E+00 0.77204E-07 0.31589E-07 0.93414E+03
AAA 5 5 0.71332E+06 o.12214E+03 0.82615E+00 O.99942E-12 0.77720E-11 o.10729E-10 0.78699E+OO 0.79013E-07 0.33457E-07 0.9413 6E+03
AAA 6 6 O.63142E+06 o.11167E+03 0.82117E+00 0.99936E-12 0.63929E-11 o.10202E-10 O.83301E+00 0.76562E-07 0.35312E-07 0.94965E+03
AAA 7 7 0.55418£+06 0.99659E+02 0.81548£+00 0.99931E-12 0.47318E-11 0.94996E-ll 0.87773E+00 0.67393E-07 0.36198E-07 0.95859E+03
AAA 8 8 0.48262E+06. 0.86397£+02 0.809188+00 0.99927£-12 0.30230E-11 0.81855E-11 0.91651E+00 0.51432E-07 0.33732E-07 0.967718+03
AAA 9 9 0.40155E+06 0.72215E+02 0.80076E+00 O.99924E-12 o .14777E-11 0.54904E-11 0.94474E+00 0.31165E-07 0.24681E-07 0.97654E+03
AAA10 10 0.22815E+06 0.574698+02 0.78928E+00 O.99924E-12 o .26968E-12 o .13116E-ll 0.95005E+00 o.10221E-07 0.89868E-08 O.98453E+03
BND 1 11 O.10000E+06 O.50000E+02 0.90000E+00 o.10000E-11 O.OOOOOE+OO O.OOOOOE+OO 0.91924E+00 0.000008+00 0.000008+00 O.98807E+03

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

Figure 4B. Selected output for sample problem 2
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The transient conditions close to the surface grid block AAA10 were recorded in

the file FOFT, from which we obtained the data for Figure 4C that shows the mass

fractions of Ne and Xe in the gas phase as functions of time. Results with temperature

dependence (INOBLE = 0) and those without temperature dependence (INOBLE = 1)

agree at early times (note that both axes are logarithmic) when both diffusion and

temperature drop are insignificant, and start departing later when both diffusion and

temperature drop become significant. The temperature in the column falls to about 50 DC at

the end of the simulation, when diffusivities for both neon and xenon are more than 50

times larger than the corresponding diffusivities at 200 DC (Figure 1). That is why the mass

fractions accounting for temperature effects (the markers) decrease faster in Figure 4C.

1.E-07 r------------::::=::::::-------,

s:::
o..
o
co
~ 1.E-08
III
III
co
~

--Ne (INOBLE=1)
...... Xe (INOBLE=1)

----f:r- Ne (INOBLE=O)

)( Xe (INOBLE=O)

1.E-09 +-,.....,....,..,.,.,.".,---,-...,...,..,..,."".......,.....I'""'rO"rmr-...,.....,....T"TTT'l""........,...,..,..,..,.."".--,-"I"TT"m,.,.--r-r~

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

Time (seconds)

Figure 4C. Noble gas mass fractions in the gas phase
at production end for sample problem 2
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7. Conclusions

TOUGH2fEOSN can simulate noble gas transport in the subsurface, which may

provide useful information on reservoir processes and conditions. The temperature effect

may play an important role in gas diffusion-dominated processes and in fluid exchange

between matrix blocks and surrounding fractures. The solubility/diffusivity difference

between two different noble gases leads to a difference in resulting noble gas mass

fractions (or concentrations), which may provide additional information for subsurface

studies. Vaporization and condensation of water may greatly affect mass fracti6ns of gases,

which is a factor to be considered in data analyses. The study of noble gases may be

extended to any other non-condensable gases or even volatile organic chemicals (VOCs).
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