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ABSTRACT

cross

Angular distribution and kinetic-energy spectra of fragments, and

sections for fission of gold with 68- to 124-Mev C
12

ions have been

obtained by observation of the fragments in two type s of detector s, gas

scintillation chambers and silicon p-n junctions. From the parameters used

to fit the angular distributions to the theoretical curves of\:a:alpern and Stru­

tinski, we have obtained the average excitation ener gy of the fis sioning

nucleus at the time of fission. This quantity is approximately 25 Mev, which

is nearly independent of bombarding energy, suggesting that fission is pre-

ceded by the emission of several particles from the compound nucleus. The

fission cross section increases from a value of 100 mb at 68 Mev to 1.28 b.

at 124 Mev. Over this range of bombarding ener gie s, the total fragment

kinetic-energy release rises from 142±6 to 146±6 Mev. At all bombarding

energie s, the variation of laboratory- system kinetic energy of the fragments

with laboratory- system angle indicates full momentum transfer by the bom-

barding particle to the fissioning system.
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L INTRODU CTION

In 1955, A. Bohr proposed a model which explained the then

existing data on angular distributibns of fragments from low-energy photon­

and neutron-induced fission of heavy elements. 1 More recently, Griffin
Z

and, independently, Halpern and Strutinski
3

have extended Bohr l s model to

include fission induced by higher-energy particles. The treatment used by

the latter authors has been rather successful in explaining the angular distri­

butions of fragments from 43 -Mev He
4

-induced fis sion of several heavy ele­

ments.
4

In this work it was of intere st to te st these theoretical treatments

by studying the fission of nuclei formed with extremely large angular momenta

by heavy-ion bombardment. For large values of the angular momentum of the

- -compound nucleus (I) and small value s of the projection of I along the direction

of the separating fragments, Halpern and Strutinski l s model predicts angular

distributions that follow aI/sin e curve in the region around 90 deg (center-

of-mass system) and fall below l/sin e near 0 and 180 deg. Griffirrs predicted

angular distributions are sill1ilar but in some cases go above the l/sin e curve.

*This work was done under the auspices by the U. S. Atoll1ic Energy Commission.

tpresent address: Departll1ent of Chemistry, Massachusetts Institute of Tech-

nology, Cambridge, Mass.
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The parameter s obtained by fitting the experimental angular distributions

with theoretical curves were used to estimate the average excitation energy

of the fissioning nucleus at the time of fission. By obtaining this quantity,

one is able to determine an average number of particles emitted prior to

fission. Fairhall ~ al. have interpreted their results as indicating that for

compound nuclei with Z <90 produced in helium-ion bombardments, r fir n

(ratio of level width for fission to that for neutron emission) increases with

excitation energy at least to approximately 35 Mev. 5 Therefore, they sugge st

that most of the fission observed from the compound nuclei at these excitation

energies must occur before neutron evaporation reduces the excitation energy

and fission probability.

In addition to the angular distributions, we have also obtained

information on the total fragment kinetic-energy release and on the cross

sections for fission of gold with carbon ions at energies between 68 and 124 Mev.

The results of some of the early phases of l:ihis study have been reported else­

6
where.
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II. EXPERIMENTAL PROCEDURES
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Carbon-ion beams were obtained from the Berkeley heavy-ion

linear accelerator (Hilac), a resonant-cavity machine that accelerates

heavy ions to 10 .4 Mev/nucleon. Angular -distribution experiments were

performed in the vacuum tank shown in Fig. 1. During the experiments,

the tank was connected to the Hilac vacuum system in which pressures were

of the order of 5X10 -6mm Hg. The targets, consisting of approximately

200IJ.g/cm
2

of gold vaporized onto O.l-mil aluminum backing foil, were

oriented at 45 deg to the beam, with the gold facing toward or away from

the beam when fragments were observed at backward or forward angles,

respectively. The energy of the carbon ions was varied by placing aluminum

degrading foils in the beam path ahead of the vacuum tank. The resulting

particle energies were determined by use of the range-energy curves of

J. R. Walton.
7

Before striking the target, the beam passed through two

l/8-in. diam. collimators, 4 in. apart. Beam particles were collected in

a Faraday cup at the rear of the vacuum tank. A simpler arrangement, in

which a gas scintillation counter was fixed at 90 deg to the beam, was used

for experiments in which it was necessary to observe fragments only at

90 deg to the beam.

The gas-scintillation technique has been discussed by several

authors.
8

-
10

Fragments entered the gas scintillation chamber through a

0.03-mil nickel window, which was supported by a grid that transmitted 49%

of the impinging particles. The scintillating gas, argon, was flushed

through the chamber at 1 atmos. i!Tygon H paint and diphenyl stilbene served

as the reflector and wave -length shifter, re spectively.
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MU-19022
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Co pper gas lines

High-voltage coble
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------- Beam ----------------
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from lid)

Fig. 1. Schematic diagram of the vacuum tank.
chamber is shown in counting position.

The gas scintillation



-7-

A more detailed account of the propertie s of

The solid-state detectors were made by diffusion of n- or p-type

impurities into one face of a silicon wa,fer containing an excess of the oppo-

. f"' 11,12s1te type 0 1mpur1ty.

h d .. 1 h 13t ese etectors 1S gIven e sew ere.

The electronic system used with the solid- state detector s is shown

m Fig. 2. The same system was used with the gas scintillation chambers,

except that pulses from the photomultiplier tube were fed directly into the

cathode follower. The pulse generator was used to check the gain and noise

level of the system and to make corrections for coincidence losses. A

signal from the Hilac electronic system could be used to trigger the pulse

generator during the 2-msec bursts of particles.

252
A Cf spontaneous fis sion sample was used to calibrate the

detectors. A typical kinetic-energy spectrum of Cf
252

fission fragments

obtained with a solid-state detector is shown in Fig. 3. Energies corres­

ponding to the peaks of the Cf
252

spectrum were taken from the time-of­

flight data of Fraser and Milton. 14 Corrections for energy loss in the

detector windows were made with the help of the fragment range -energy data

15. 16
of Fulmer and Schm1tt and Leachman. Corrections for self-absorption

in the targets were determined empirically by bombardment of targets of

various thicknesses.

Figure 4 shows a typical fragment-kinetic-energy spectrum ob­

ta,ined at 9 a deg to the beam with a gold tar get bombarded with 93 -Mev C 12

ions. The large number of counts at the Jlow-energy end of the spectrum

resulted from pile-up of pulses produced by scattered beam particles and

other light particles. Individual pulses from these light particles were

clearly distinguishable from the pulses produced by fission fragments, be-

cause the sensitive counting regions of both types of counter s could be made
1

slightly longer than the range of the densely ionizing fission fragments.
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Fig. 2. Electronic system used with the solid-state detectors.
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Fig. 3. ~ectrum of fragment kinetic energies from spontaneous fis sion
of Cf 52. Observed with a solid-state detector reverse-biased by
9 v.
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Fig. 4. Spectrum of frag~1nt kinetic energies from fission of Au 197
induced by 93.3-Mev C ions. Observed at 90 deg to the beam
with a solid-state detector reverse-biased by 9 v.
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Thus, the lighter particles deposited only small amounts of energy in the

counting region. However, "pile_up" of several of the small pulse s in the

electronic system could result in pulses of the size produced by the fission

fragments. This difficulty became serious only at forward angles less

than about 40 deg. At those angles, a log-arithmic subtraction of the pile-up

background was often necessary. The gas scintillation chamber was mechani­

cally limited to angles between 17 and 163 deg. The physically smaller

solid-state detectors could be used between 8 and 172 deg.
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III. EXPERIMENTAL RESULTS
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The fragment kinetic -energy spectra obtained at various angle s

to the beam were integrated, corrected for coincidence loss, and normalized

to the same number of beam particle s in order to obtain fragment angular

distributions in the laboratory system. Two of the angular distributions are

6shown in our earlier report. We have as sumed that the peaks of the kinetic-

energy distributions represent the energy per fragment when symmetric

division occur s. From the change in energy of the peak with laboratory-

system angle, we were able to obtain a value for the ratio ", given by

_ velocity of the fissioning nucleus in the beam direction (1)
,,- velocity of the fragment in the center -of -mass system .

The values for " obtained in this way are listed in Table 1. These value,s

have been used in transforming the laboratory- system angular distributions

into the center -of-mass system. Within our limits of error, this procedure

yields angular distributions that are symmetric about 90 deg in the center-

of-mass system. The re sulting angular distributions obtained with 123.3 -,

93.3-, and 72.4-Mev C
12

ions on Au 197 are shown in Figs. 5 to 7. The

statistic s on the points obtained at 72.4 Mev are poor owing to the small

fission cross section and large e~astic-scatteringcross sections at that

energy.

Table I

Values of the quantity".

Laboratory Energy
of carbon ion

(Mev)

123.3

93.3

72.4

From lab. energy
vs lab. angle

0.223±0.01

0.188±0.01

o.164±0.0 1

For full momentum
transfer

0.218

0.. 191

0.169
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Fig. 5. q~~er-of-mass angular distribution of fragments from fission
of Au induced by 123.3-Mev Cl2 ions. The solid curve represents
Halpern and Strutinski's theoretical angular distribution with p= 10
(see text).
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Fig. 7. :{i~nter-of-mass angular distribution of fragments from fission
of Au 7 induced by 72.4-Mev e l2 ions. The solid curve represents
Halpern and Strutinski's theoretical angular dist:dbution with p=6
(see text).
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Two types of experiments were done to obtain the fission cross

sections as a function of bombarding energy. All fragment angular distri­

butions were obtained at the energies indicated above. At closely spaced

intervening energies, fragments were observed only at 90 deg to the beam.

It is as sumed that the integration factor from the angular -distribution

experiments varies smoothly with bombarding energy. The absolute fission

cross sections were obtained by relating the number of fragment counts to

the number of elastically scattered carbon particles observed at small angles

to the beam (40 to 60 deg). At these angles it is assumed that, for 72.4-Mev

C 12 particles on gold, the scattering cross sections are equal to those cal­

culated according to the Rutherford formula. The fission cross sections

obtained by this procedure are shown in Fig. 8.

We have also obtained the most probable fission-fragment kinetic

energy as a function of energy of the bombarding particle. This quantity

increases from a value of 7l±3 Mev with 70 -Mev C 12 ions to 73±3 Mev with

lZ4-Mev C 12 particles. With the assumption of symmetric binary fission,

this result indicates a rise in total fragment kinetic energy release from

142±6 to l46±6 Mev over the range of bombarding energies. The values of

the most probable fragment kinetic energy have been used to calculate the

values of " corresponding to full momentum transfer by the bombarding

particle to the fissioning system. The results of these calculations, given

in Table I, indicate that the " values derived from the dependence of frag­

ment kinetic energie s on laboratory- system angle are consistent with full

momentum transfer at all three bombarding energies.
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Fig. 8. Cross section for fission of Au l97 induced by e l2 ions as a
function of bOll1barding energy.
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IV. INTERPRETATION OF RESULTS
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The fragment angular distributions have been compared with theo­

retical curves calculated according to the treatments by Griffin
3

and by

Halpern and StrutinskL 1 In the region between approximately 105 and 160

deg (and the corresponding forward angles), the points obtained with

123.3-Mev C
12

particles On gold lie slightly above the I/sin8 curve. This

feature is in agreement with the Griffin curves. Near 180 deg, the experi-

mental angular distributions exhibit some tendencies toward the curvature

predicted by Halpern and Strutinski, rather than the linear shape given by

Gri££in......s equations. With our limits of error, it is not possible to rule out

either of the theoretical treatment. However, this is not too important as

there is no fundamental difference between them, and the end results--the

derived excitation energies at the time of fission--are nearly the same

regardless of the treatment used. We have used Halpern and Strutinski' s

method in our interpretations because it should be more applicable to the

large angular momenta and excitation energies present in the compound

nuclei that were formed in our experiments.

In Figs. 5 to 7, we have

that best fit the experimental data.

shown the Halpern-and-Strutinski curves

2 2
The parameter p is equal to I~4KO

where I IS approximately the maximum angular momentum of the com-
m

pound nuclei, and K
O

is the mean value of the projection of the angular

momentum of the fissioning nucleus along the direction of the separating

fission fragments (see Ref. 1). We have estimated 1
2

from the compound-
m

nucleus-formation calculations of Thomas, assuming the square-well

potential with a radius parameter of 1. 5Xl 0 -13 cm ~ 7 In accord with Halpern

and Strutinski, we assure that there is no change in the angular momentum

of the compound nucleus if small particles are evaporated prior to fission.
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From the resulting value of K~ and the curve of Ref. 1 (Fig" 2), we deter-

mine the value of the quantity (E - E
f

), where E is the excitation
ex ex

energy of the fissioning nucleus, and E
f

is the height of the fission barrier.

The fission-barrier heights have been estimated by using the equations of

Pik-Pichak
18

and Hiskes
19

for fission of rotating nucleL In this framework,

the fission-barrier height is equal to the energy difference between the

stable rotating nucleus and the fissioning nucleus at the saddle poinL The

calculated fission barriers are of the order of 10 to 15 Mev and seem

reasonable when compared to those calculated according to Swiatecki l s

method that involves the difference between actual ground-state masses and

20
a smooth mass surface" The results of this analysis of the angular-distri-

bution data are given in Table II.

From the results presented in Table II, it would appear that

fission occurs at about the same average excitation energy regardless of

the excitation energy of the original compound nucleus. This observation

implies the evaporation of a higher average number of particle s prior to

fission with increasing bombarding energy. For example, at the highest

bombarding energy, this treatment of the angular-distribution data indicates

that the following sequences of particles could be emitted before reaching

the average fissioning nucleus: 7n; p6n; a5n; pa4n; 2a 3n. These results are

consistent with Blann's radiochemical mass-yield data for fission of gold

. h b . 21Wlt car on lons"
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Table II

Quantitie s obtained from the angular -distribution data
for fission of gold with carbon ions.

E
C

12
E of 1

2 K2
E -E Calc.

a
Ep

ex m 0 ex f
E

f
ex

(Mev) initial (Mev) (Mev)
compo nucl. (Mev)

(Mev)

123.3 98.6 10 4600 115 13.5 8-13 21.5-26.5

93.3 71 .4 7.2 2530 87.8 12 10-16 22-28

72.4 51.6 6 1118 46.6 9 11-14 20-23

a Calculated according to Refs. 18 and 19. Includes lowering of barrier due
to rotation. Upper and lower limits refer to nuclei having the lowe st and
highest values of Z 2 /A energetically obtainable by emission of particles
prior to reaching the observed value of E -E

f
.

ex

Unfortunately, there are two possible effects that make this

interpretation somewhat uncertain. According to both theoretical treatments,

the fis sion probability is independent of the angular momentum of a nucleus; 1, 3

however, Pik-Pichak's calculations indicate that r firn is an increasing

function of angular momentum. 18 If this is true, fission takes place with higher

relative probability from the high-spin nuclei than from those in low-spin states.

Thus, the average angular momentum of the fissioning nuclei may be considerably

larger than the average angular momentum of all the compound nuclei. Also,

2
it has been suggested that the value of K

O
for a given value of (E

ex
-E

f
) may

be lower in the astatine region than among the heavier elements. 22 Such an

effect could arise from the influence of the closed shells of 82 protons and 126

neutrons. Both effects would tend to cause the angular distributions to be

more anisotropic than
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predicted strictly by the Halpern and Strutinski modeL Consequently, this

would yield value s for (E - E
f

) that are too smalL This trend would
ex

tend to cancel any errors introq.uced as a result of the assumption that the

angular momentum of the compound nucleus is not reduced by evaporation

of particles prior to fissiono

To obtain information about the prolDability of fission, we have

divided the fission cross sections shown in Figo 8 by the cross sections for

calculated by using a square -wellcompound-nucleus formation, u ,
camp

nuclear potential with a radius parameter of L5XlO- 13
cmo

17
The

resulting values of uflu are plotted as a function of excitation energy
comp

of the initial compound nucleus in Fig 0 90 If r fir T (rT is the total level

width) remain~d constant with increasing excitation energy, u lu
! f comp

would increase at the higher energies because there are more stages in the

chain of de-exciting nuclei at which fission could compete with other decay

modes 0 From the experimental results, one can infer that above about

70 Mev, rf/r T decreases with increasing excitation energyo This obser­

vation is at least in qualitative agreement with the results of the angular -

distribution experiments 0

A note of caution should be addedo It is certainly not clear that

the calculation cross sections for compound-nucleus formation are correct.

Whereas the " values that we obtain for fission of gold with carbon ions

are consistent with the concept of formation of a compound nucleus, pre-

liminary measurements in the uranium -plus -carbon system indicate that,

at higher bombarding energies (?-90 Mev), the average forward momentum

of the fissioning system is considerably less than that of the bombarding

particleo 23 Such an effect could arise if fission were, in some cases, the

result of reactions in which not all of the bombarding particle entered
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Fig. 9. Re1~ced fission cross section (0'£/0' ) for Au 197 bombarded
wit h C ions as a function of excitahonct:?~.£!gy of the initial compound
nucleus.
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nuclear potential with radius parameter of

the target nucleus. On the other ·hand, the total fis sion cros s sections for

uranium (but not gold) at bombarding energies between 70 and 124 Mev are

in agreement with the calculated cross sections for compound-nucleus

formation. These two observations suggest that the cross sections cal-

culated for the formation of compound nuclei (by using the square -well

-13 17
1. 5 XIO cm) are larger

than the observed cross sections for fission by compound nuclei. Although

in non-compound-nuc~eusreactions excitation energy sufficient to cause

fission may be deposited in the nucleus formed by bombardment of uranium

the intermediate state formed in these reactions with gold targets may not

have enough excitation energy or sufficiently large atomic number to undergo

fission with appreciable probability. From the results of a study of fission

of Bi209 carbon and oxygen ions induced by Britt and Quinton have also

suggested that the calculated cross sections for the formation of compound

1 . h" h 24nuc el are too Ig .

The interpretations of the results of the angular-distribution and

cros s - section measurements suggest that fission re sulting from carbon

bombardment of gold occurs at low excitation energies following the emission

of several nucleons. Three possible explanations for the apparent decrease

in fission probability at high excitation energies are:

(a) Charged-particle emission. One expects the competition

from charged-particle evaporation to increase rapidly with excitation energy.25

This effect has been observed by Quinton ~~., who found a ratio of approxi-

mately two alpha particles (in addition to protons) per three fission events

when Au 197 was bombarded with 160-Mev 0
16

ions. 26
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(b) Mas s -number dependence of fis sion probability. Many authors

have observed an increase in rf!rn with decreasing mass number for a

27-30
given atomic number. In work not reported here, we have measured

the fission cross sections of platinum (enriched in pt
198

) bombarded with

nitrogen ions to produce an initial compound nucleus of At
2

12. For the

same initial excitation energy, the value of er !er is lower than the
f comp

corresponding value in the gold-plus-carbon system, in which the initial

d 1 A 209 , h l' h Al hcompoun nuc eus, t ,1S tree neutrons 19 ter. so, t e cross

sections for neutron-evaporation reactions decrease in going from the com-

2IZ ZlO 196 14 Z09 31
pound nucleus At to At (from Pt +N ) to At. Both trends

are in agreement with the notion of increasing relative fis sion probability

with decreasing mass number of the compound nucleus.

(c) Angular momentum and level densities. The calculations of

Eric son and Strutinski indicate that at some given excitation energy,

the density of levels of spin .,;. is
17"

where J is the moment of inertia,

E ,
ex

proportional to (Zll )exH -ll
Z

etl,(j+ 1)!ZJTl ,

and T is the rt,uclear temperature, which

is given by (10 E /pJl!Z, 3Z
ex

At very low excitation energies, this model

predicts small probabilities for state s with spins of the order of the average

value of those formed in the initial interaction between the bombarding

particle and the target nucleus. In the early stages of evaporation of par-

tides from the compound nucleus, the excitation energy, and thus the density

of high-spin states, is large. Therefore, it is expected that in early stages

of the evaporation process, the average angular momentum of the compound

33
nucleus may be reduced by only small amounts. Thus it is possible that

particle evaporation may proceed to an excitation energy only slightly above

the neutron binding energy while retaining most of the angular momentum of

the initial compound nucleus. Emission Bf neutron will be greatly hindered
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because of the small density of high-spin states in the residual nucleus and

the decreasing probability for transmission of neutrons through the nuclear

surface with higher orbital angular momentum. 34 Because of the hindrance

of neutron emission in the final stages of de-excitation, the probability for

fission (a process in which large amounts of angular momentum can be easily

carried off) may be greatly enhanced over its value for low-spin states,

other conditions being the same. Pik-Pichak i s predicted decrease in fis sion

barriers with increasing angular momentum would also contribute to this

18
trend.

We feel that these three trends produced the observed results of

fission at low excitation energies. However, it is not possible, on the basis

of our results alone, to determine the relative importance of the three

factors.

The value obtained for the total fragment kinetic -energy release

agrees well with Terrell i s correlation of energy release with Z2/A 1/3 of

h f · .. 1 35t e Isslonlng nuc eus. The angular -distribution experiments indicate

that the average excitation energy at which fis sion occur s is approximately

independent of bombarding energy. Thus, our data do not provide a check

on the variation of kinetic-energy release with excitation energy of the

fissioning nucleus. The slight increase in kinetic -energy release with bom-

barding energy is apparently the result of emission of a larger average

number of neutrons prior to fission. Thus, fission at higher bombarding

energies occurs from nuclei that are more neutron-deficient and have larger

values of the quantity Z2/A 1/3.
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In summary, we find that the shape s of the theoretical angular

distributions predicted by Griffin
3

and Halpern and Strutinski I agree 'Well

with those of the fragment angular distributions that we have determined for

fission of gold with carbon ions. It should be noted, however, that for gold

bombarded with 123.3-Mev C 12, the points between approximately 105 and

160 deg (and the corresponding forward angles) in the center-of-mass system

lie slightly above aI/sin e curve. This is in better agreement with Griffin's

predictions than those of Halpern and Styutinski.

The anisotropies of the angular distributions and the fission cross

sections as functions of bombarding energy are consistent with the occurrence

of fission at low average excitation energies (about 25 Mev) following eva-

poration of particles from the initial compound nucleus. This observation is

explained on the basis of (a) an increase in probability for charged-particle

evaporation with increasing excitation energy, (b) an increase in relative

fission probability with decreasing mass number for a given atomic number,

and (c) hindrance of neutron evaporation at low excitation energies as a

result of angular -momentum and level-density effects. Our data do not

suffice to determine the relative importance of the three effects.

At all bombarding energies, we find that for reactions that lead

to fis sion, the full momentum of the carbon ion is transferred to the gold

target nucleus. From this result, it is inferred that fission results only

from reactions in which a compound nucleus is formed from the carbon

particle and the gold nucleus. This observation is in contrast to those in

the uranium-pIus-carbon system, in which, at higher bombarding energies

( ;:. 90 Mev), there is incomplete momentum transfer in some of the reactions

that lead to fission. 23
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The slight increase in fragment kinetic-energy release with

increasing bombarding energy is attributed to an increase in the average

number of neutrons evaporated prior to fission. Thus, the fissioning nuclei

produced in the higher-energy bombardments have higher values of the quan­

tity Z2/A 1/3 and would be expected, on the basis of Terrell's correlation

of kinetic energy release with z2/A 1/3, 35 to yield higher kinetic energies.
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