
Enhancing Scalability of Sparse Direct Methods

X.S. Li1, J. Demmel2, L. Grigori3, M. Gu4, J. Xia5, S. Jardin6, C.
Sovinec7, L.-Q. Lee8

1One Cyclotron Road, Lawrence Berkeley National Laboratory, MS 50F-1650, Berkeley, CA
94720.
2Computer Science Division, University of California at Berkeley, Berkeley CA 94720-1776.
3INRIA Rennes, Campus Universitaire Beaulieu, Rennes, 35042, France.
4Mathematics Department, University of California at Berkeley, Berkeley CA 94720-3840.
5Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095.
6Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543.
7Engineering Physics Department, University of Wisconsin, Madison, WI 53706.
8Stanford Linear Accelerator Center, 2575 Sand Hill Road, Mail Stop 27, Menlo Park, CA
94025.

E-mail: xsli@lbl.gov

Abstract. TOPS is providing high-performance, scalable sparse direct solvers, which have
had significant impacts on the SciDAC applications, including fusion simulation (CEMM),
accelerator modeling (COMPASS), as well as many other mission-critical applications in DOE
and elsewhere. Our recent developments have been focusing on new techniques to overcome
scalability bottleneck of direct methods, in both time and memory. These include parallelizing
symbolic analysis phase and developing linear-complexity sparse factorization methods. The
new techniques will make sparse direct methods more widely usable in large 3D simulations on
highly-parallel petascale computers.

1. The SciDAC applications

1.1. Fusion energy research

The Center for Extended Magnetohydrodynamic Modeling (CEMM) [1] is developing simulation
codes for studying the nonlinear macroscopic dynamics of MHD-like phenomena in fusion
plasmas, and address critical issues facing burning plasma experiments such as ITER. Their
code suite includes M3D-C1, NIMROD. The PDEs include many more physical effects than the
standard MHD equations; they involve large, multiple time-scales, and are very stiff temporally,
therefore requiring implicit methods. The linear systems are extremely ill-conditioned, and 50-
90% of the execution time is spent in linear solvers. TOPS sparse direct solver SuperLU has
played significant roles in both codes. For the large 3D matrix-free formulation in NIMROD,
SuperLU is also used as an effective preconditioner for the global GMRES solver.

1.2. Accelerator design

The Community Petascale Project for Accelerator Science and Simulation (COMPASS) [2]
is developing parallel simulation tools with integrated capabilities in beam dynamics,
electromagnetics, and advanced accelerator concept modeling for accelerator design, analysis,
and discovery. Their code suite includes Omega3P eigenanalysis. The eigen computations for
cavity mode frequencies and field vectors are on the critical path of the shape optimization
cycles. These need to be done repeatedly, accurately, and quickly. Another challenge is that a
large number of small nonzero eigenvalues, which are tightly clustered, is desired. The matrix



Name Codes Type Order (N) nnz(A)/N Fill-ratio
matrix181 M3D-C1 Real 589,698 161 9.3
matrix211 M3D-C1 Real 801,378 161 9.3
cc linear2 NIMROD Complex 259,203 109 7.5
dds15 Omega3P Real 834,575 16 40.2

Table 1. Characteristics of the sample matrices. The sparsity is measured as average number
of nonzeros per row (i.e., nnz(A)/N), and the Fill-ratio shows the ratio of number of nonzeros
in L+U over that in A. Here, MeTiS is used to reorder the equations to reduce fill.

1 8 32 128 256

20

40

60

80

100

120

140

160

180

200

IBM power5 processors

S
ec

on
ds

Factorization

 

 

matrix181
matrix211
cc_linear2
dds15

(a) Factorization time.

1 8 32 128 256

0.5

1

1.5

2

2.5

3

IBM power5 processors

S
ec

on
ds

Triangular solution

 

 

matrix181
matrix211
cc_linear2
dds15

(b) Triangular solution time.

Figure 1. SuperLU runtime (seconds) for the linear systems from the SciDAC applications.
This was done on the IBM Power 5 machine at NERSC. The factorization reached 161 Gflops/s
flop rate for matrix211.

dimensions can be tens to hundreds of millions. The main method used is shift-invert Lanczos,
for which the shifted linear systems are solved with a combination of direct and iterative methods.

1.3. SuperLU efficiency with these applications

SuperLU [6] is a leading scalable solver for sparse linear systems using direct methods, of which
the development is mainly funded through the TOPS SciDAC project (led by David Keyes) [7].

Table 1 shows the characteristics of a few typical matrices taken from these simulation codes.
Figure 1 shows the parallel runtime of the two important phases of SuperLU: factorization and
triangular solution. The experiments were performed on an IBM Power 5 parallel machine at
NERSC. In strong scaling sense, the factorization routine scales very well, although performance
varies with applications. The triangular solution takes very small fraction of the total time. On
the other hand, it does not scale as well as factorization, mainly due to large communication to
computation ratio and higher degree of sequential dependencies. One of our future tasks is to
improve scalability of this phase, since in these application codes, the triangular solution often
needs to be done several times with respect to one factorization.

In the last year or so, we have been focusing on developing new algorithms to enhance
scalability of our direct solvers. The new results are summarized in the next two sections.

2. Improving memory scalability of SuperLU – parallelizing symbolic factorization
Symbolic factorization is a phase to determine the nonzero locations of the L. U factors. In most
parallel sparse direct solvers, this phase is performed in serial, with matrix A being available on



��
��
��
��
��

��
��
��
��
��

����
����
����
����
����

����
����
����
����
����

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

P0 P P P1 2 3

P0 P1 P2

P0 P3

P0 P1 P2 P3

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

����������
����������
����������

����������
����������
����������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�������������������

�����������
�����������
�����������
�����������

����������������������

������������������������

����������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��������
��������
��������

��������
��������
��������

Level 0

Level 1

Level 2

P3

Figure 2. Subtree-to-subgroup processor to matrix mapping. The figure on the right illustrates
the separator tree.

matrix181 P=8 P=256

Fill (millions) Sequential 888.1 888.1
Parallel 1094.2 1445.3

Symbolic Sequential 365.5 365.5
Parallel 18.0 8.1
Ratio Seq/Par 20 45

Entire solver Old 1445.1 377.2
New 1262.8 84.3

dds15 P = 8 P = 256

Fill (millions) Sequential 526.6 526.6
Parallel 528.9 583.7

Symbolic Sequential 295.8 295.8
Parallel 27.2 10.8
Ratio Seq/Par 11 27

Entire solver Old 1061.9 341.3
New 817.0 113.1

Table 2. Memory usage (Megabytes) (maximum among all processors). “Old” or “New” solver
means using the serial or parallel symbolic factorization algorithm, respectively.

one node . The reasons for not doing it in parallel are: 1) the algorithm involves only integer
operations and is very fast in practice—the complexity is larger than the nonzero count of L+U ,
but much smaller than the flops for LU decomposition, and 2) it is very difficult to design an
efficient parallel algorithm, which is partly due to sequentiality of the tasks—computation of
the i-th column/row depends on results of the previous columns/rows, and partly due to lower
computation-to-communication ratio.

Obviously, with this sequential part, the solver’s scalability will suffer by the Amdahl’s law.
Another reason we have to do this in parallel is that when the simulations increase in size, A

itself will not fit in one node. Motivated mainly by memory scalability, we have designed and
implemented a an efficient parallel algorithm for this phase. Our approach is based on a graph
partitioning for reordering/partitioning the input matrix. Specifically, we apply ParMeTiS [5] to
the structure of A + AT . We exploit parallelism given by this partition (coarse level with the
separator tree) and by a block cyclic distribution (fine level at each separator). We also identify
dense separators, dense columns of L and rows of U to decrease the algorithmic complexity, see
details in [4]. The processors-to-matrix assignment is based on a top-down subtree-to-subgroup
mapping scheme, as shown in Figure 2.

Table 2 compares, for two matrices, the memory water marks before and after parallelizing the
symbolic factorization phase. Considering only the symbolic phase itself, the memory reduction
is dramatic, up to a factor of 45 for matrix181 and 27 for dds15. When all the other phases are
included (entire solver), the new solver reduces the memory usage by nearly 5-fold for matrix
181. Now, the numerical phase consumes more memory.

Table 3 shows the runtime of the parallel symbolic algorithm, and that reasonable speedups
are obtained.

One remark worth noting is that the fill quality of ParMeTiS is worsening with increasing
processor count. This remains an open problem for future research.



matrix181 P = 8 P = 256

Symbolic Sequential 6.8 6.8
Parallel 2.6 2.7

Entire solver Old 84.7 26.6
New 159.2 26.5

dds15 P = 8 P = 256

Symbolic Sequential 4.6 4.6
Parallel 1.6 0.5

Entire solver Old 64.1 43.2
New 66.3 31.4

Table 3. Parallel runtime (seconds). “Old” or “New” solver means using the serial or parallel
symbolic factorization algorithm, respectively.

3. Linear-complexity sparse factorization
As is well known, sparse Gaussian elimination has super-linear time complexity. For example,
for a Laplacian-type of PDE model problem with 2D n × n mesh or 3D n × n × n mesh, using
nested dissection numbering, the operation counts are O(n3) and O(n6), respectively. This was
shown to be optimal when performing exact elimination. However, we have observed that by
exploiting numerical low rankness in Schur complements, we can design a nearly-linear time,
and sufficiently accurate factorization algorithm.

The idea comes from structured matrix computations. Specifically, we use semi-separable

matrices in our study. For example, a semi-separable matrix with 4× 4 blocks has the following
structure:

A ≃











D1 U1V
T
2 U1W2V

T
3 U1W2W3V

T
4

V2U
T
1 D2 U2V

T
3 U2W3V

T
4

V3W
T
2 UT

1 V3U
T
2 D3 U3V

T
4

V4W
T
3 W T

2 UT
1 V4W3U

T
2 V4U

T
3 D4











where,

• The first and second off-diagonal blocks of A are

U1

(

V T
2 W2V

T
3 W2W3V

T
4

)

and
U1W2

U2

(

V T
3 W3V

T
4

)

.

• For general i < j, the (i, j) block-entry is UiWi+1Wi+2 · · ·Wj−1V
T
j .

• Every upper off-diagonal block has the form










U1W2W3 · · ·Wi

U2W3 · · ·Wi

...
Ui











(

V T
i+1 Wi+1V

T
i+2 · · · Wi+1Wi+2 · · ·WN−1V

T
N

)

.

D,U,W and V matrices have dimensions k×k. A is n×n with n = Nk and uses O(nk) memory,
which is very economical for k ≪ n. The examples of semi-separable matrix include banded
matrices and their inverses. This representation can be numerically constructed.

We can devise many fast algorithms based on this compressed representation. For example,
Figure 3 compares the fast semi-separable Cholesky factorization (SS-Cholesky) to the standard
Cholesky in LAPACK (DPOTRF), with the rank k chosen to be 16 and 64. For large matrices,
we see orders of magnitude speedups.

This SS-Cholesky kernel can be used in a sparse factorization. Consider using a nested
dissection ordering for the discretization mesh, then the submatrix corresponding to the
separator node is essentially dense during Schur complement updates. Furthermore, the
maximum off-diagonal rank of those matrices are small and nearly constant. Based on this
observation, we devised a new multifrontal factorization scheme, which compresses the frontal
matrix in semi-separable form, and performs SS-Cholesky on it. The superfast multifrontal
method works as follows [3]:



256 512 1024 2048 4096 8192
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

matrix size

lo
g 10

(t
im

e 
ra

tio
 D

P
O

T
R

F
/S

S
−

C
ho

le
sk

y)
 

 

k=16
k=64

Figure 3. Speedup of fast semi-separable Cholesky factorization over DPOTRF.

Mesh 255 × 255 511 × 511 1023 × 1023 2047 × 2047 4095 × 4095
MF 0.22 1.4 8.7 55.8 383.6

fast MF 0.24 1.3 6.1 27.0 113.4

Table 4. Superfast solver runtime (seconds) on a SGI Altix.

• Perform traditional Cholesky factorization at the bottom levels of the separator tree.

• At the higher levels, convert the fill-in submatrices into semi-separable structures, and
perform structured semi-separable Cholesky factorizations at these levels.

The overall operation count is reduced from O(n3) operations to O(n2k) for 2D problems, where
k is tolerance-dependent constant. Table 3 compares the performance of traditional multifrontal
(MF) solver to that of the superfast multifrontal (fast MF) solver. As can be seen, with increasing
problem size, the superfast solver can be more than three times faster than the traditional one.

Our fast solver framework can be extended to construct effective and robust preconditioners
for more general, non-elliptic PDEs.

4. Acknowledgments
This work was partly supported by the US Department of Energy under contract No. DE-AC03-
6SF00098.

5. References
[1] Center for Extended MHD Modeling (CEMM). URL: http://w3.pppl.gov/cemm/.
[2] The Community Petascale Project for Accelerator Science and Simulation (COMPASS). URL:

http://www.scidac.gov/.
[3] S. Chandrasekaran, M. Gu, X.S. Li, and J. Xia. Superfast multifrontal method for structured linear systems

of equations. Technical Report LBNL-62898, Lawrence Berkeley National Laboratory, June 2007.
[4] Laura Grigori, James W. Demmel, and Xiaoye S. Li. Parallel symbolic factorization for sparse LU with

static pivoting. SIAM J. Scientific Computing, 2007. To appear.
[5] G. Karypis, K. Schloegel, and V. Kumar. ParMeTiS: Parallel Graph Partitioning and Sparse Matrix

Ordering Library – Version 3.1. University of Minnesota, August 2003. http://www-users.cs.umn.

edu/~karypis/metis/parmetis/.
[6] Xiaoye S. Li. An overview of SuperLU: Algorithms, implementation, and user interface. ACM Trans.

Mathematical Software, 31(3):302–325, September 2005. http://crd.lbl.gov/~xiaoye/LBNL-53848.pdf.
[7] Towards Optimal Petascale Simulations, URL: http://www-unix.mcs.anl.gov/scidac-tops/.


