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Executive Summary 
 

 Municipal wastewater treatment plants in the United States produce over 6.2 

million metric tons of dried sewage sludge every year. This microorganism rich sludge is 

often land filled or used as fertilizer. Recent restrictions on the use of sewage sludge, 

however, have resulted in increased disposal problems. Extraction of lipids from sludge 

yields an untapped source of cheap feedstock for biodiesel production. Solvents used for 

extraction in this study include n-hexane, methanol, acetone, and supercritical CO2. 

Gravimetric yield of oil was low for non-polar solvents but addition of polar solvents 

gave a considerably increased yield. However, the percent of saponifiable material was 

less. Extraction of lipids with a mixture of n-hexane, methanol, and acetone gave the 

largest conversion to biodiesel for a solvent system, 4.41% based on total dry weight of 

sludge. In Situ transesterification of dried sludge resulted in a yield of 6.23%. Assuming a 

10% dry weight yield of FAMEs the amount of biodiesel available for production in the 

United States is 1.4 million cubic meters per year. Outfitting 50% of municipal 

wastewater plants for lipid extraction and transesterification could result in enough 

biodiesel production to replace 0.5% of the national petroleum diesel demand (0.7 million 

cubic meters). 

 Other sources of lipids investigated were Black mustard, birdseed rape, canola, 

Camelina, Crambe, flax, and Hesperis.  These plants were selected based on their oil 

content and their capability to grow in the US Southeast.  Genetic procedures were 

developed to increase the oil content of these plants.  Of the species investigated, canola, 

sunflower, and okra have the greatest potential.  However, it should be noted that even 
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record yields of all the crops mentioned above will not come close to fully replacing the 

U.S. need for oil/petroleum. 

 Extraction procedures were developed to recover nutritional components, such as 

omega-3 fatty acid eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), from 

oil and biodiesel.  Additionally, a method was developed to isolate another value added 

product, Vitamin E, from oils.  The methods developed were based on differences in 

binding between polyunsaturated fatty acid methyl esters and the transition metal ions.  

More than 90% EPA was recovered using AgBF4/SiO2●Im+●PF6¯.  After a consecutive 

two-step stripping by ethyl ether and then 1-hexene, the concentration of EPA increased 

from 7% in the feed stock solution to about 90% in the 1-hexene stripping solvent.  After 

five recycles, the sorbent is still usable.    

 Ordered mesoporous adsorbents were prepared by physically coating 

functionalized ionic liquids onto mesoporous silica gel.  These adsorbents were 

successfully applied to the selective extraction and separation of vitamin E from a model 

mixture of soybean oil deodorizer distillate.  Five adsorbent recycle tests showed good 

reusability of this ionic liquid-modified mesoporous adsorbent. 

 Another approach to improve the overall economic feasibility of biodiesel 

production is the conversion of glycerine into value added chemicals.  Microorganisms 

capable of converting glycerine to 1,3-propanediol and lactic acid were isolated from 

various environments ranging from manure to sewage treatment plants.  There was one 

notable isolate that co-produce both products and one in particularly high concentrations.  

This culture with more understanding of its metabolic pathways could prove a useful 

biological agent for the conversion of glycerol. 
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 Homogeneous acid or base catalysts dissolve fully in the glycerol layer and 

partially in the fatty acid methyl esters (biodiesel) layer in the triglyceride 

transesterification process. Heterogeneous (solid) catalysts, on the other hand, can 

prevent catalyst contamination making product separation much simpler. In the present 

work, the transesterification kinetics of five different solid catalysts with soybean oil is 

presented.  It was determined that heterogeneous catalysts require much higher 

temperatures and pressure to achieve acceptable conversion levels when compared to 

using homogeneous catalysts. Subsequent to preliminary investigations, 

transesterification was conducted for selected high performance solid catalysts, i.e.,  

MgO, CaO, BaO, PbO, and MnO2 in a high pressure reactor up to a temperature of 

215°C. The yield of the fatty acid methyl esters and the kinetics (rate constant and order) 

of the reaction were estimated and compared for each catalyst. 

 Meeting sustainable energy demand with minimum environmental impact is a 

major area of concern in the energy sector. Alternative fuels such as biodiesel, ethanol 

etc. have been quite promising for fulfilling both these aspects. While biodiesel reduces 

emissions of CO, life cycle CO2, SOx, volatile organic compounds (VOC) and particulate 

matter (PM) significantly, the propensity for the production of NOx is an important 

problem that requires extensive research. NOx emission from a direct-injection diesel 

engine is mainly due to formation of thermal NO that is described by Zeldovich 

mechanism. Thus, studying temperature profile during biodiesel combustion can provide 

useful insights to the formation and destruction of NOx. The main objective of this work 

is to investigate the effect of component methyl esters of biodiesel on open air flame 

temperature distribution and the effect of blending biodiesel with diesel and oxygenates 
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(ethanol and methyl acetate) on open air flames. This objective was achieved by 

obtaining thermocouple measurements and thermal infrared imaging of local flame 

temperatures of wick-generated open air flames. A relationship between blend 

proportions and relative flame temperatures were obtained. In general, it was found that 

blending oxygenates such as ethanol and methyl acetate into petroleum diesel tended to 

increase the flame temperature in comparison with straight diesel fuel. The analyses of 

relative flame temperatures of different components of biodiesel were performed to 

evaluate the effect of unsaturation level and the hydrocarbon chain length on the flame 

temperature.  It was found that the saturated methyl esters resulted in greater flame 

temperatures in comparison to unsaturated methyl esters. It was also revealed that shorter 

chained fatty acid methyl esters lead to higher flame temperatures as compared to its 

longer chained counterparts. 

 The monoalkylesters of fatty acids derived from vegetable oils or animal fats, are 

considered as an attractive alternative fuel for diesel engines. This interest is based on a 

number of properties of biodiesel including the fact that it is produced from a renewable 

resource and its potential to reduce exhaust emissions. Although several studies have 

been performed on biodiesel emissions, the results have been contradictory with some 

studies reporting a reduction of NOx emissions while others reporting an increase. Also, 

thus far, there has been no promising method on record which has been successful in 

reducing biodiesel related NOx emissions. The objective of this study was to evaluate the 

effect of blending biodiesel and ethanol into conventional diesel fuel on exhaust gas 

emissions. Ethanol could be added to diesel in limited quantities along with biodiesel 

since biodiesel stabilizes the ternary system by acting as an amphiphile. This paper 
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illustrates the emission characteristics of diesel-biodiesel-ethanol (DBE) fuel blends on 

one used and two brand new engines. DBE is a new form of oxygenated diesel fuel blend 

and has a potential to reduce NOx emissions and to be an alternative to diesel fuel. The 

blend ratio (diesel: Biodiesel: ethanol) by volume used in this study was 70:25:5, 

70:20:10 and 70:15:15. The results from the operation of diesel engine with DBE showed 

a significant reduction in NOx emissions in new engines with increased ethanol 

concentration where as with the old engine under similar conditions, an increased NOx 

emissions profile was observed. CO emission increased with increasing ethanol 

proportion in the blends in both new and old engines. 

List of Peer Reviewed Publications 

1. Paraschivescu, M.C., Alley, E.G., French, W.T., Hernandez, R, Armbrust, K., 
“Determination of Methanol in Biodiesel by Headspace Solid-Phase 
Microextraction,” Bioresource Technology, Accepted for Publication, September 
2007. 

2. Liang, K., Toghiani, H., Hernandez, R., French, W.T., Dufreche, S., Mondala, A., 
“Biodiesel Production by In-Situ Transesterification of Primary and Secondary 
Sludge,” Bioresource Technology, Submitted June 2007. Conditionally accepted.  
Revision required. 

3. Dufreche, S., Hernandez, R., French, T., Sparks, D., Zappi, M., and Alley, E., 
“Extraction of Lipids from Municipal Wastewater Plant Microorganisms for 
Production of Biodiesel,” J. Amer Oil Chem Soc, 2007, 84, 181-187. 

4. Singh, A.K., Fernando, S., and Hernandez, R., “Base-Catalyzed Fast 
Transesterification of Soy Bean Oil Using Ultrasonication,” Energy & Fuels, 2007, 
21, 1161-1164. 

5. Li, M., Wang, T., Pham, P.J., Pittman, Jr., C.U., Li, T., “Liquid Phase Extraction and 
Separation of Noble Organometallic Catalysts by Functionalized Ionic Liquids,”  
Separation Science and Technology, 2008, 43, 1-14.   

6. Li, M., Pham, P.J., Li, T., “Extraction and Concentration of Omega-3 Fatty Acid 
Methyl Esters by Ionic Liquids Containing Silver Salt,” Separation Science and 
Technology. Conditionally accepted.  Revision required.  

 
Technical Presentations at National and State Conferences 
 
1. French, W.T., Hernandez, R., Zappi, M., Dufreche, S.T., Sparks, D.L., “Production of 

Biodiesel from Wastewater Treatment Sludge,” World Renewable Energy Congress 
IX, 19-25 August 26 Florence, Italy. 



 8 
 

2. Hernandez, R., “Novel Processes and Feedstocks for Producing Biodiesel,” Energy 
Summit Sponsored by Congressman Chip Pickering, Pearl, Mississippi. 

3. Hernandez, R., Sparks, D., French, T., Toghiani, H., Toghiani, R., Zappi, M., 
“Production of Value-Added Chemicals via Oxidation of Lipids in Supercritical 
Carbon Dioxide,” 97th AOCS Annual Meeting & Expo, April 30-May 3, 2006, 
St.Louis, Missouri. 

4. Dufreche, S., Hernandez, R., Zappi, M., French, T., Sparks, D., Alley, E., “Production 
of Low-Cost Biodiesel Using a Novel Bacterial-Based Feedstocks,” 97th AOCS 
Annual Meeting & Expo, April 30-May 3, 2006, St.Louis, Missouri. 

5. Hernandez, R., “Biodiesel from Non-Traditional Feedstocks,” Southeast Diesel 
Collaborative Meeting Sponsored by the Environmental Protection Agency, April 26, 
Atlanta, GA. 

6. Hernandez, R., French, T., Dufreche, S., Sparks, D., Zappi, M., “MSU Biodiesel 
Production Process,” 2006 Bioproducts Conference Sponsored by the Mississippi 
Biomass Council, April 23, 2006, Philadelphia, Mississippi. 

7. Hernandez, R., and French, W.T., “Overview of the Biodiesel Industry,” Mississippi 
Young Farmers Association, 21st January, 2006, Jackson MS. 

8. Hernandez, R., French, T., Sparks, D., Dufreche, S., “Biodiesel Production Using 
Alternative Feedstocks,” 87th Annual Convention of the Southern Seed Association,” 
January 15, 2006, San Antonio, TX. 

9. Benson, T., Hernandez, R., French, T., and Zappi, M., “Production of Biodiesel from 
Wastes Associated with Meat Butchering Processes,” Presented at the 2005 AIChE 
Annual Meeting, Cincinnati OH. 

10. French, T., Hernandez, R., Easterling, E., and Zappi, M., “Extraction and Production 
of Value-Added Products from Waste Feedstocks,” Presented at the 2005 AIChE 
Annual Meeting, Cincinnati OH. 

11. Dufreche, S., Hernandez, R., French, T., Zappi, M., Sparks, D., and Alley, E., 
“Production of Low-Cost Biodiesel Using a Novel Bacterial-Based Feedstock,” 
Presented at the 2005 AIChE Annual Meeting, Cincinnati OH. 

12. Hernandez, R., Zappi, M., French, T., Whitlock, J., and Alley, E., “Production of 
Biodiesel Using an Integrated Extraction Reaction Method,” Presented at the 2005 
AIChE Annual Meeting, Cincinnati OH. 

 
Refereed Proceedings 
 
1. Holmberg, K.B., K.D. Jones, B.S. Baldwin, J.L. Douglas, J.M. Grabowski.  2006.  

Progress and Problems in Selecting Six Native Grass Species.  Pp.  (Proc.) Fifth 
Eastern Native Grass Symposium.  Harrisburg, PA. Oct 10-13. 

 
Edited Proceedings 
 
1. Oldham, L.O., B.S. Baldwin, D.J. Lang, and M. Collins.  Biofuel research efforts in 

Mississippi. In Carl Crozier ed. Southern Plant Nutrient Management Conference 
Proceedings. October 2-3, 2007. Olive Branch, MS. Publisher: The Noble 
Foundation.  

 



 9 
 

Other Publications: 
 
1. National Winter Canola Variety Trail.  2007.  Report of Progress 973.  Kansas State 

Uni. Agric. Expt. Stat. And Coop. Ext. Ser.  Contribution No. 07-187-S. 
2. National Winter Canola Variety Trail.  2006.  Report of Progress 973.  Kansas State 

Uni. Agric. Expt. Stat. And Coop. Ext. Ser.  Contribution No. 07-187-S. 
 
Theses and Dissertations:  
1. Holmberg, Kyle B.  Selection for reduced seed dormancy in seven native grass 

species.  M.Sc.  Mississippi State Univ. Plant and Soil Sci. Dec. 2007.  
 



 10 
 

Table of Contents 
 

Disclaimer ............................................................................................................................1 
Executive Summary .............................................................................................................2 

List of Peer Reviewed Publications .........................................................................6 
Technical Presentations at National and State Conferences ....................................6 
Refereed Proceedings ...............................................................................................7 
Edited Proceedings...................................................................................................7 
Other Proceedings ....................................................................................................8 
Theses and Dissertations ..........................................................................................8 

List of Tables .....................................................................................................................12 

List of Figures ....................................................................................................................13 

Project Background ............................................................................................................15 

Project Goals and Objectives .............................................................................................16 

Introduction ........................................................................................................................17 

New Feedstocks .................................................................................................................18 

Wastewater Treatment Plants ............................................................................................20 

Wastewater Types ..................................................................................................21 
Wastewater Treatment Plant Hydraulic Capacities ...............................................22 
Overview of the Activated Sludge Process ............................................................23 
System Management ..............................................................................................25 

Municipal Treatment Plants .......................................................................25 
Industrial Treatment Plants ........................................................................26 
Agricultural Treatment Plants ....................................................................26 

 
Lipid Origins in Wastewater Treatment Facilities .............................................................26 

 
Lipid Extraction and Analysis ...............................................................................32 
Lipids in Other Microorganisms ............................................................................33 
 

MSU Research on Southeast Oil Crops .............................................................................35 
 
MSU Research on Genetics of Oil Bearing Plants ............................................................37 
 
Research on Sludge Oil Extraction and Biodiesel Production ...........................................42 
 



 11 
 

Materials and Methods ...........................................................................................42 
Extraction of Lipids from Sewage Sludge .................................................42 

Chemicals .......................................................................................42 
Sewage Sludge ...............................................................................42 
Sample Preparation ........................................................................42 
Organic Solvent Extraction ............................................................43 

In Situ Transesterification ..........................................................................44 
Analysis of Fatty Acid Methyl Esters ........................................................44 

Results ....................................................................................................................46 
Solvent Effects ...........................................................................................47 
Lipid Extraction .........................................................................................52 
 

Research on Extraction of Nutritional Components from Biodiesel .................................57 
 

Part 1: Extractive Separation of Polyunsaturated Fatty Acid Methyl Esters .........57 
Part 2: Separation of Vitamin E from Soybean Oil ...............................................60 

 
Research on Glycerol Fermentation ...................................................................................61 
 

Materials and Methods ...........................................................................................62 
Glycerol-Fermenting Cultures ...................................................................62 
Isolation of Glycerol-Fermenting Cultures ................................................64 
Glycerol GC-FID Analytical Method ........................................................66 
Lactic Acid and 1,3-Propanediol Analysis with HPLC .............................66 
Correlating Cell Mass to Optical Density ..................................................67 

Results ....................................................................................................................68 
Glycerol Conversion by C. acetobutylicum, C. beijerinckii, and C. 
pasteurianium ............................................................................................68 
Glycerol Conversion by MSU Isolates ......................................................70 
 

Research on Reaction Kinetics of Soybean Oil Transesterification Using Heterogeneous 
Metal Oxide Catalysts ............................................................................................72 
 
Biodiesel Production Using Solid Catalysts ..........................................................73 
Reaction Kinetics of Transesterification Reaction ................................................75 
Materials and Methods ...........................................................................................76 

Reagents .....................................................................................................76 
Equipment ..................................................................................................76 
Soybean Oil and Methanol Solution ..........................................................76 
Transesterification......................................................................................76 
Gas Chromatography Analysis ..................................................................77 
Determination of Reaction Kinetics ...........................................................77 
Determination of Surface Area of the Catalysts ........................................80 

Results ....................................................................................................................80 
Biodiesel Yield ...........................................................................................80 
Reaction Kinetics .......................................................................................83 



 12 
 

Surface Area of the Catalysts .....................................................................83 
Conclusions ............................................................................................................83 
 

Research on Flame Temperature Analysis of Biodiesel Blends and Components ............88 
 

Materials and Methods ...........................................................................................88 
Thermodynamics of Combustion Using Fatty Acid Methyl Esters ...........90 
Energy Flow Analysis ................................................................................91 
Sources of Error .........................................................................................92 

Results ....................................................................................................................94 
 
Research on Exhaust Emissions Using Diesel-Biodiesel-Ethanol Blends in New and Used 

Compression Ignition Engines .............................................................................100 
 

Materials and Methods .........................................................................................103 
Engine and Instrumentation .....................................................................103 
Fuel Blends ..............................................................................................104 
Testing Procedures ...................................................................................106 

Results ..................................................................................................................107 
CO Emissions...........................................................................................107 
CO2 Emissions .........................................................................................109 
Oxides of Nitrogen ...................................................................................111 

 
References ........................................................................................................................116 
 

 

 

 

 

 

 

 

 

 

 
 



 13 
 

List of Tables 
 
 

Table 
 

1 Comparison of Fatty Acid Distribution of Wastewater vs. Microalgae .............33 

2 Lipid Biosynthesis Genes of Interest Names, Sequence Source Species, and  
      Functions. ...........................................................................................................41 

3 Extraction and Transesterification Yield of Waste Activated Sludge ................48 

4 Solvent Solubility Parameters for Extraction Systems .......................................49 

5 Production Cost Estimate for Sludge Lipids .......................................................56 

6 Final Concentration of 1,3-Propanediol and Lactic Acid in the Fermentation 
Medium When the ATCC Cultures Were Offered ATCC 1500 Glycerol 
Medium ..............................................................................................................69 

 
7 Final Concentration of 1,3-Propanediol and Lactic Acid in the Fermentation 

Medium When Offered ATCC 1500 Glycerol Medium to the MSU isolates ...71 
 

8 The Value of Coefficient of Correlation (R2) of All Eight Cases for Each 
Catalyst ..............................................................................................................84 
 

9 Reaction Order of the Transesterification w.r.t. Each of the Reactant as well as 
Overall and the Rate Constant ...........................................................................84 

 
10 Surface Area of the Metal Oxides .......................................................................85 

11 Calorific Values (kJ/kg) of Different Blends ......................................................89 

12 Engine Specifications ........................................................................................104 

13 Fuel properties of diesel, biodiesel, and blends ................................................105 

 

 

 

 



 14 
 

List of Figures 
 
 

Figure 
 

1 Standard Municipal Wastewater Treatment Plant ..............................................29 

2 Impact of Extraction Medium on Fatty Acid Composition of Oil ......................54 

3  Comparison of Saturated vs. Unsaturated Fatty Acids Present in Waste  
          Activated Sludge Samples ....................................................................................55 

4  Comparison of Various Extraction Systems ........................................................58 
 
5 Comparison of Extraction of EPA (20:5) in Hexane with Metal Ions in Ionic 

 Liquids .................................................................................................................59 
 
6  Fully Developed Winogradsky Column with Distinct Biofilm Layers and     
          Glycerol-Fermenting Microorganisms Label Clostridium ..................................63 
 
7  Worker Transferring Cultures in the Coy Flexible Anaerobic Chamber .............65 
 
8 Correlation of Absorbance to Dry Mass Concentration for Clostridium 

 acetobutylicum .....................................................................................................67 
 
9 Correlation of Absorbance to Dry Mass Concentration for Clostridium 
   beijerinckii ...........................................................................................................68 
 
10 Correlation of Absorbance to Dry Mass Concentration for Clostridium 
   pasteurianium ......................................................................................................68 
 
11   Transesterification of Soybean Oil into Biodiesel ...............................................72 
 
12  FAME Yield for PbO, MgO, MnO2, BaO and CaO ............................................82 
 
13  FAME Yield for BaO and CaO ...........................................................................82 
 
14  Schematic Diagram of Experimental Set-Up .......................................................88 
 
15  Thermal Image of Flames ....................................................................................90 
 
16 Estimates of Stoichiometric Air-Fuel Ratio for Different Fatty Acid Methyl  
        Esters ....................................................................................................................91 

 
17 Lower Heating Value and Adiabatic Flame Temperature of FAMEs .................92 

 



 15 
 

18 Effect of Blending Soybean Biodiesel with Ethanol, Methyl Acetate and  
        Diesel on Flame Temperature ..............................................................................95 
 

19 Comparative Fuel Consumption Rate of Soybean Biodiesel Blends with  
  Ethanol, Methyl Acetate and Diesel with Respect to Pure Soybean  
 Biodiesel ..............................................................................................................96 

 
20 Flame Temperature and Calorific Value of Different Components of  
 Biodiesel ..............................................................................................................97 

 
21 Effect of Change in Unsaturated Methyl Ester Proportion in Fatty Acid  
 Methyl Ester Blends .............................................................................................97 

 
22 Comparative Fuel Consumption Rate of Biodiesel Components with Respect  
        to Pure Soybean Biodiesel ...................................................................................98 

 
23 Comparison of the Carbon Monoxide Level .....................................................108 

 
24 Comparison of the Carbon Dioxide Level .........................................................110 

 
25 Comparison of the NOx Level ............................................................................114 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 



 16 
 

Project Background:  Biodiesel is widely considered to be a renewable transportation 

fuel that holds some promise as a means of displacing appreciable quantities of 

petroleum-based diesel fuel.  Biodiesel is produced via the transesterification of lipid 

feedstocks that are extracted from plant or animal sources.  Unfortunately, the future of 

this fuel based on its current status appears to provide limited impacts to truly reducing 

foreign oil dependency because of high production costs (approximately $4.00 per gallon 

for soy oil) and relatively low US production capability (if all of the existing 

oleochemical capability within the US is utilized only 500 million gallons of biodiesel 

could be produced per year; yet, the US burned over 60 billion gallons of petroleum-

based biodiesel last year).  Lipid feedstocks represent over 75% of biodiesel production 

costs.  This project focused significant research efforts on developing several potential 

candidate lipid feedstocks for their applicability for use in the production of biodiesel. 

Additionally, innovative extraction techniques, such as co-solvent amended supercritical 

extraction, were studied as potential replacement processing steps that may offer reduced 

production costs, improved extraction efficiency (phospholipids capture), and a much 

more environmentally friendly process.  To increase the profitability of biodiesel 

production, the extraction and separation of novel secondary products, such as selected 

lipids (lecithin) and fatty acids (DHA and EPA), prior to transesterification were 

researched; thus moving this proposed second generation processing approach to 

biodiesel production toward the status of a true biorefinery.  As a means of further 

enhancing the market appeal of biodiesel, several techniques to improve environmental 

performance were evaluated including reducing oxide emissions and utilization of more 

environmentally friendly process chemical reagents.  To accomplish the above stated 



 17 
 

efforts, developmental tasks were performed by a research team consisting of process 

engineers, mechanical engineers, plant scientists, biochemists, economists, chemists, 

biologists, and microbiologists.  

Project Goals and Objectives 

Biodiesel holds significant promise as a potential displacement fuel for 

petroleum-based diesel fuel.  However, due to high production costs using commonly 

used feedstocks, such as soybeans and rapeseed, its utilization rate has been marginal at 

best.  The two biggest culprit costs causing this high production cost are raw feedstock 

and extraction/processing costs.  Within the Southeastern United States (SE-US), the 

establishment of a viable biodiesel industry has been particularly very slow.  The reasons 

for this are the high level of heterogeneity of feedstocks within this region, the relatively 

low density of soybean cultivation, and limited expertise on the application developing 

design concepts for biodiesel production.   

 The overall goal of this effort was to develop a research base within Mississippi 

that can address key technology hindrances to process maturation within the SE-US that 

are associated with technology, economic, and agricultural limitations and data gaps. To 

accomplish the above stated overall goal, a multi-disciplined research team consisting of 

process engineers, mechanical engineers, plant scientists, biochemists, economists, 

chemists, biologists, and microbiologists has been organized.   Academic units from 

Mississippi State University (MSU) participating with this project include those from the 

MSU Bagley College of Engineering (Dave C. Swalm School of Chemical Engineering 

and the Agricultural, Mechanical Engineering, and Biological Engineering Department); 

Mississippi Agricultural and Forestry Experiment Station (Departments of Plant and Soil 
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Science, Biochemistry, Agricultural Economics, and Food Sciences); and The MSU 

College of Arts and Science (Chemistry Department).   

Introduction 

Biodiesel is typically defined as the alkyl ester of a fatty acid.  The production of 

these chemicals involves the esterification of a fatty acid or the trans-esterification of a 

glycerin-bound fatty acid (in the form of a di- or tri-glyceride).  The primary reagents for 

the very common transesterification reaction are a lipid (fat and/or oil), a simple aliphatic 

alcohol – methanol or ethanol are almost exclusively used (with methanol being by far 

the most commonly used), and a base (potassium or sodium hydroxides).  When 

methanol is used, the biodiesel may be called a fatty acid methyl ester or FAME.  The 

two key products (almost exclusive from a mass perspective) of the transesterification of 

a triglyceride are the FAME and the free glycerin.  The mass yield ratio of FAME to 

glycerin is approximately 10:1.  Given the stoichiometric requirement of the alcohol and 

the amount of glycerin produced, approximately one volume of the lipid yields about one 

volume of FAME.   Hence, the lipid source is a key reagent for the production of 

biodiesel.  In fact, it represents the single most expensive feedstock of the biodiesel 

production process.  Using most commonly available oilseeds from the US, the lipid 

costs amount to approximately 80% of production costs (production cost have most 

recently ranged from $3.50 to over $4.00 per gallon).  During the early 2000’s, domestic 

biodiesel production was about 40 Mgal per year with plants running at about 60% of 

total production capacity.   

The US Congress during the 2005 session passed a biodiesel tax incentive (a 

blender’s credit) which amounted to $1.00 per gallon blended if the lipid derived from 
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most major oilseeds grown within the US or animal-based lipids (the law provides a list 

of all involved lipid feedstocks eligible for the $1.00 per gallon).  All other lipid 

feedstocks receive $0.50 per gallon when blended.  This tax incentive has sparked a 

dramatic growth in the biodiesel industry.  The 2006 production saw the total production 

capacity grow to over 80 Mgal with production using approximately 75% of available 

capacity.  Another boom that was experienced was in the construction of biodiesel plants.  

It is estimated that 2007 will result in the total US biodiesel production capacity to be 

well in excess of 300 Mgal.     

This dramatic growth in both production and production capacity may cool down 

due to regional shortages of lipids and increasing methanol prices.  In fact, many new 

biodiesel facilities are being constructed with the flexibility to produce biodiesel using 

either acid esterification or base transesterification.  Additionally, many lipid feedstocks 

overlooked as poor sources during the early 2000’s (such as palm oil) have seen 

tremendous market growth spurred by the US biodiesel industry.  Many regions of the 

US, like the Deep South, will have much more production capacity than the total volume 

of acceptable lipids produced within that region.  The lack of viable lipid feedstocks 

(economically and technically) will very likely stifle the realization of biodiesel as a 

significant fuels displacement option for the US.  With the US burning approximately 60 

Bgal of petrol diesel each year, clearly, either significant volumes of new lipid feedstocks 

must be found or the US biodiesel industry will stagnate.   

New Feedstocks  

The foremost issue with current feedstocks is limited availability in the face of 

increasing demand.  A common theme is the use of food crops to produce fuel, a non-
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sustainable long-term model.  Large amounts of corn grown in the heartland are turned 

into ethanol, and most surplus soybean oil is converted to biodiesel  [1].  Replacement 

feedstocks are therefore needed that will not place unreasonable demands on the nation’s 

foodstuffs.  New technologies are currently being developed to augment the feedstocks 

used today.  Processes such as fermentation of cellulosic sugars for ethanol production 

are expanding the pool of available feedstocks to materials which were previously 

ignored by industry. 

For diesel replacement, new plant oil sources are constantly evaluated on their 

properties as a transesterified product.  These range from trees, such as the Chinese 

tallow tree, to plants such as Castor.   

Microbial sources have also caught the attention of several researchers as a new 

feedstock.  Work on farming algae for lipids was started during the oil crunch of the 70’s, 

but declined after the drop in crude oil prices.  While interest has recently picked up in 

using harvested lipids as biodiesel feedstock, problems still exist regarding the cost of 

raising the algae since they must be grown for harvest [2]. 

One of the most novel and promising feedstocks, however, involves the use of 

readily available microorganisms as a lipid source.  Municipal wastewater treatment 

facilities (MWWTF) in the USA produce  (dry basis) of microbial sludge 

annually [3].  This sludge is composed of a variety of organisms which consume organic 

matter in wastewater.  The content of phospholipids in these cells have been estimated at 

24% to 25% of dry mass [4,5].  Since phospholipids can be transesterified they could 

serve as a ready source of biodiesel.  The sludge produced is currently viewed as a waste 

product and disposed of through landfills, land application on farms, or incineration.  
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Since the sludge is produced through an established, necessary process, there is no extra 

cost associated with raising the microorganisms. 

Wastewater Treatment Plants 

Since the process under development involves the use of sludges produced at wastewater 

treatment plants (aka. sewage treatment plants) a brief overview of these plants is 

presented.  Wastewaters whether produced from municipal or industrial sources typically 

require some form of treatment prior to discharge into environmental receptors.  

Wastewater treatment systems may be classified as either aerobic or anaerobic systems.  

Aerobic systems utilize microorganisms that produce much larger quantities of biomass 

during treatment than the anaerobic systems (approximately 30 times more for the same 

amount of waste carbon added to the treatment plant).  Hence, from a pure tonnage 

produced standpoint, aerobic systems should provide more biomass and hence lipids than 

would the anaerobic systems.  This is true unless archea (the key organisms within 

anaerobic systems) produce more lipids, or possibly, better lipid profiles than would the 

aerobic organisms – albeit, this is doubtful, thus indicating that aerobic systems are likely 

the better treatment plants to focus on at this time.   

Aerobic treatment plants are actually a category of many designs that all utilize 

aerobic microorganisms as the biocatalyst that degrades the carbon within the wastewater 

influent.  A technique commonly used for classifying aerobic treatment plants is based on 

the physical state of the microorganisms – whether they are suspended (or highly motile) 

or attached onto a support media.  Among the suspended systems activated sludge is by 

far the most commonly used design within the US.  Others include oxidation ditches, 

sequential batch reactors (SBRs), and lagoons.  Attached growth systems commonly used 
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in the US are trickling filters, rotating contactors, and packed reactors.  In any treatment 

system in which the carbon within the influent or “food” enters the system, the result is 

respiration (production of energy used for cell maintenance) and reproduction (growth of 

the total biomass due to more cells being produced).  Within any of these systems, the 

primary microorganisms found within the reactors are bacterial species.  Additionally, 

bacteria-grazers are also found, such as rotifiers, ciliates, etc.  However, still the vast 

majority of the active biomass within the systems is bacteria and as such the discussion 

herein will use biomass interchangeably with bacteria (do note that in the case of lagoons, 

algae can be a primary biomass component as well – discussed later).    

Most of the aerobic systems result in the production of vast quantities of biomass 

as waste carbon is added into the system.  However, these systems often operate 

hydraulically such that the bacteria are reproducing faster than they die-off or are 

consumed by grazers – often called indigenous decay.  Thus, the systems can reproduce 

to a point where biomass must be “wasted” or removed to maintain a consistent 

population of bacteria.  This wasted sludge is often referred to as “waste sludge” or 

“secondary sludge”.  In essence, waste sludge is produced to keep the system or 

bioreactor at a microorganism population steady-state condition.   

Wastewater Types 

There are a wide variety of wastewaters produced.  The three most common are 

municipal, industrial, and agricultural.  Municipal wastewater is generated as input into a 

municipality’s sewage collection system.  Often miles of pipeline are used to collect this 

wastewater.  Most of this pipeline system is gravity flow, but some components are 

pressurized to overcome negative hydraulic gradients and/or accelerate transport of 
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wastewater to the treatment plant.  Typically the average amount of wastewater volume 

produced within the US falls within the 100 to 200 gallons per day per person (per capita 

input basis).  The biochemical oxidation demand (BOD) of these waters often found in 

the 200 to 600 mg/l range with a BOD to chemical oxidation demand (COD) in the 0.6 to 

0.9 range (thus, indicating a highly biodegradable material).  The bulk of the organics 

making up the carbon causing the BOD or COD is primarily human fecal matter, kitchen 

wastes, and rinse-waters (aka. grey waters) from washing.  Grease and oils are common 

components of this carbon – often found in the 100 mg/l range as measured using 

separations-based, gravimetric methods.  Hence, influents can input quantities of 

significant lipids into wastewater plants. 

While per capita inputs are most often the most significant input into municipal 

wastewaters, industrial inputs can also be significant.  Both the hydraulic and chemical 

composition of these wastewater influents can vary quite dramatically depending on the 

industrial activity on-going within the industry generating the input stream.  However, 

with food processing and petroleum-based industrial inputs, the introduction of lipids 

and/or recoverable hydrocarbons can be significant.  One interesting aspect of the 

petroleum-based hydrocarbons would be the impact of these chemicals on subsequent 

lipid extraction activities.  Initially, there does not appear to be concern, but it is worthy 

of further consideration. 

Wastewater Treatment Plant Hydraulic Capacities  

The flow rate of influent (incoming water requiring treatment) into wastewater 

treatment plants can vary dramatically depending on the population of the municipality, 

production capacity of the factory, or the population of animals serviced at the farm.  
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From a municipality standpoint, small plants fall in the less than 5 Mgal/day or MGD; 

medium tend to be less than 100 MGD; and large systems can be as large as 500 MGD.  

Most industries will have an influent flow rate less than 5 MGD with many being less 

than 1 MGD.  Confined animal feeding operations or CAFOs typically utilize intermittent 

flows with equalized flow rates ranging in the less than 5 MGD range. 

Overview of the Activated Sludge Process 

Once wastewater influents are collected and transferred to the wastewater plant, 

the influents enter the “Headworks” of the plant.  Here the influent may be divided up 

into within redundant plant process lines and/or passed through an equalization stage.  

Equalization basins or holding tanks are used to provide increased hydraulic handling 

during storm events and/or with smaller plants provide a more consistent flow through 

the plant.    

The first actual active processing step into the plant is “Screening”.  Within this 

process large objects are physically removed via passage of the influent through a bar 

screen or grate.  These captured items are usually disposed of within a landfill without 

any further treatment.  The lipid or petroleum content of these solids is not reported to be 

very high. 

The next processing step is “Degritting” which is a processing step which remove 

inert solids, such as sand, gravel, and other heavy residuals (typically none of these have 

a high organic composition).  The collected solids or grit typically do not go further 

treatment and are then disposed within a landfill.  Grit will likely not have appreciable 

lipid or oil content to warrant any consideration as a potential feedstock source for 

biofuels production. 
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After degritting, the liquid influent enters the “Primary Treatment” stage.  During 

primary clarification settling is used to remove the organic solids from the liquid influent 

– typically separated as insoluble BOD and soluble BOD.  Separation is accomplished via 

the use of clarifiers (both round and rectangular are used).  The clarifiers are often 

equipped with “slimmer” which collects floating materials off the surface of the clarifier 

volume.  The primary components of the skim or scum are non-aqueous floating 

hydrocarbons (such as fats, oils, and grease [aka. FOG]), small floating inert materials, 

and light foam.  The insoluble BOD or primary solids are then sent to the plant’s sludge 

digestion facility.  Note that not all plants use primary treatment – many smaller 

operations are starting to by-pass this option (however, by-passing primary treatment is 

still not a popular choice among plant designers).  The Starkville, MS plant is an example 

of a facility that skips primary treatment. 

After primary treatment, the influent, containing at this point water and soluble 

BOD, undergoes “Secondary Treatment”.  Within secondary treatment, the influent 

enters the aeration chambers or tanks.  Within the aeration tank, aerobic microorganisms 

degrade the soluble BOD resulting in the conversion of the BOD into either new 

microorganisms (catabolism) or conversion into cell maintenance energy (anabolism).  

The microorganism population within the aeration tank is so large (typically ranging from 

2,000 to 5,000 mg/l) that this “living” biomass is often called “Activated Sludge” – 

hence, the name of the process.  From the aeration tank, the water containing the 

activated sludge (often referred to as “Mixed Liquor”) enters the “Secondary 

Clarification” stage.  Here the thickened mixed liquor is recirculated back to the head of 
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the aeration tank.  The pipes used to accomplish this transfer are called the sludge return 

lines. 

Since the aeration tank is operated at steady-state conditions in terms of biomass 

concentrations within the tank, then the amount of new cells produced is “wasted” 

periodically (often daily).  The activated sludge wasted is referred to as “Waste Sludge”.  

At this point in treatment, the waste sludge is almost completely composed of active 

bacteria and a small portion of inert solids and not raw sewage.  Wasting is done by 

redirecting a portion of the sludge return to the waste sludge line often to a sludge 

thickener which concentrates the sludge to a solids concentration of about 3% (w/w).   

After thickening, the sludge is transferred to the digestion stage where either aerobic or 

anaerobic microorganisms degrade the sludge (achieve about 60% degradation).  After 

digestion, the residuals are dewatered to about 25% solids then are disposed off.   

System Management 

The MSU Process will be dependent on the ability to access the sludges generated 

at wastewater treatment plants.  It is critical that some understanding of how these 

systems are managed be gained prior to attempting to approach these facilities requesting 

access to their sludges.  The management strategies used for each of the three-wastewater 

treatment plants are briefly detailed below: 

Municipal Treatment Plants – Cities and towns tend to utilize a separate wastewater 

division or department within their governments.  Often the head of this unit is an 

engineer with actual plant operations performed by highly trained operators.  Over the 

past 20 years, some municipalities have contracted operations via a private contractor 

(referred to as “privatization”).  However, it is expected that any agreements with a 
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municipality will have to be approved by the major and/or council after a positive 

approval from the wastewater engineer.  It is interesting to note that among the several 

challenges facing cities today with regard to wastewater treatment that sludges disposal 

and conversion of the sludges to Class A is among the most pressing.  The MSU Process 

may actually greatly assist the city with these issues – yet, it is expected that getting 

approval from a municipality will be fairly more difficult than with the other two sources 

(industrial and agricultural) due to the bureaucracies associated with municipalities. 

Industrial Treatment Plants – These facilities are usually run by their environmental 

departments.  Often an engineer(s) oversees highly trained operators.  However, any 

contact or decisions made will likely have to be done via corporate headquarters; 

however, negotiations should be easier than with a municipality.  Liability associated 

with releasing their waste and any danger that this waste could later cause either personal 

or environmental damage will likely be a key issue. 

Agricultural Treatment Plants – With these facilities there is not the layers of 

administrative levels that must be addressed.  Typically, a farmer is the owner, operator, 

and manager of the facility.  Therefore, negotiations involve only one person with that 

person used to dealing with commodities generated on-site.  Unfortunately, unless 

treatment systems other than lagoons are used, the amount of bacterial-based sludge 

generated will be minor. 

Lipid Origins in Wastewater Treatment Facilities 

It has always been known that municipal, and even some industrial wastewater 

contains lipids.  A cursory glance at wastewater entering a plant allows one to see oil and 

grease floating on top of the influent wastewater.  This is due to the influent water 
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bringing free lipids into the plant in the form of vegetable or animal wastes.  An often 

overlooked source of lipids, however, is the microorganisms which inhabit the treatment 

plant.  Like all animal cells, the microbes in a MWWTF are surrounded by a cell wall 

composed of lipids.  Some of these cells also store energy in the form of lipids.  Although 

some information was known about modeling of MWWTFs, the demand for a more 

complete operational picture called for increased model complexity.  For example, it was 

found that long-chain fatty acids produce various toxic effects during anaerobic digestion 

[6,7].  Anaerobic digestion refers to the reduction of sludge mass through bacterial 

metabolism in the absence of oxygen.  Bacteria produce methane gas as a metabolic 

waste product, which leaves the digester in the gas phase.  Due to this and other pressing 

reasons there have been several attempts to document the amount and composition of 

lipids in the entire treatment process. 

 A typical MWWTF consists of several different sections working in sequence to 

take large amounts of organic waste and reduce it to manageable levels for release back 

into the environment.  The standard measure of how much effect wastewater will have if 

released into the environment is the Biochemical Oxygen Demand (BOD).  This is the 

amount of oxygen needed by organisms to degrade organics in the water.  Figure 1 shows 

a standard MWWTF.  Raw influent wastewater typically enters at the headworks, where 

large debris is removed to avoid clogging the system.  The water then travels to primary 

clarification, where the majority of influent Biochemical Oxygen Demand (BOD) is 

removed through settling out of solids from the water.  The primary solids are then 

thickened and dewatered for anaerobic digestion.  The clarified water enters the activated 

sludge process, where aerobic microorganisms degrade organics in the water.  These 
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organisms conglomerate to form clusters of microbial mass which remove the organic 

load, converting it to lipids and other cellular material [8].  They are not a single species, 

but rather a consortium of different microbes.  A delicate balance must be maintained 

between types filamentous organisms and those which remove nitrogen and phosphorous 

[9,10].   
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 The water is passed through a secondary clarifier to remove the microbial cells, 

with the clarified water being clean enough for discharge in most cases.  Part of the 

settled material is recycled back into the activated sludge process to maintain a steady 

state concentration of microorganisms, while the remainder is either disposed of or 

digested anaerobically.  Both primary and secondary sludge are often digested 

anaerobically to reduce the mass of sludge which must be disposed of.  In the aerobic 

process of activated sludge treatment, organisms remove BOD and convert it to energy 

and cellular material, as well as residual solids.  This generates a large amount of 

biomass.  In the anaerobic digestion process organisms convert waste microbial cells to 

energy and small molecules such as methane and hydrogen.  This has the effect of 

reducing the mass of sludge left after digestion.  Any remaining sludge is then dewatered 

for disposal. 

 It has been reported by Barttelbort and others that MWWTF influent is over 50% 

organic material, and composed of 20 to 25% lipids by mass [11,12].  Of these, kitchen 

waste is responsible for 14 to 36% of the total [13].  Feces themselves contain between 4 

to 23% lipids by mass [14].  In an average plant 45% of the total influent lipid content is 

derived from feces, while 55% is from kitchen wastes [15].  The overall goal of a 

treatment plant is to reduce the organic load exiting after treatment.  This removal 

process takes place at several stages throughout the treatment plant, where organisms 

consume the lipids and other organic matter for energy [16]. 

 The types of lipids, or lipid profile, also changes as influent material travels 

through the treatment plant.  Lipids in raw wastewater are composed mainly of 

triglycerides, the dominant lipid type in animal and plant oils.  This composition 



 32 
 

continues into the primary clarification step.  As the treatment process moves toward the 

activated sludge tank, the lipid profile changes to include more phospholipids, 

glycolipids, and sterols [17].  This reflects the change from free lipids in solution to 

cellular lipids which were created by microorganisms feeding on organic matter in the 

waste.  A major part of cells within the activated sludge system is the extracellular 

polymeric system (EPS).  The EPS helps to bind organisms together and form flocs, to 

increase settling of the sludge.  EPS varies between species of microorganisms, but 

normally contains carbohydrates, proteins, and lipids [8].  One significant difference is 

that pure bacterial cultures produced an EPS high in carbohydrates, while samples take in 

MWWTFs are higher in protein [18].  Martinez analyzed variations of carbohydrate, 

protein, and lipids over long periods; finding that while protein fluctuated from 7 - 40%, 

the levels of carbohydrate and lipids remained constant at 40% by weight for lipids [19]. 

A byproduct of the activated sludge process is foam created by the microorganisms.  This 

foam was also found to be a source of lipids, with some plants showing a concentration 

of up to 29% [20].  The wastewater lipid profile changes once again when aerobic 

microorganisms are replaced with anaerobic in the digester.  The digester contains lower 

amounts of lipids than other parts of the process, but the lipids present have a much 

different composition than those found elsewhere in the plant [21].  Bacteria which 

inhabit an anaerobic digester contain specialized fatty acids, such as branched-chain fatty 

acids, which are not found in aerobic processes such as that of the activated sludge 

process. 
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Lipid Extraction and Analysis 

 Most research on lipids in wastewater focus on extraction for laboratory work 

rather than commercial utilization.  In microbiology, scientists often identify bacterial 

cultures by the types of fatty acids in their cells.  The procedure required to prepare lipids 

for analysis, however, is the same chemical reaction used to produce crude biodiesel from 

lipids.  In this sense, researchers are creating biodiesel every time they analyze a sample.  

The standard method consists of lysing the cells through physical or mechanical means 

[22,23].  The extraction of lipids is then performed through use of a solvent, followed by 

conversion to fatty acid methyl esters (FAMEs).  Solvent used can range from hexane to 

toluene, isopropyl alcohol, methanol, and benzene [24-26].  In an experiment performed 

by Casado [23], the cells were mechanically lysed using sonication and extracted with 

methylene chloride.  Others use the method of Bligh and Dier which involves extracting 

lipids in a single-phase system, then separating it into two phases [25,27,28].  The 

extracted lipids were transesterified with a solution of BF3 in methanol and analyzed 

through mass spectrometry [23].  One can substitute sulfuric acid or sodium hydroxide 

for BF3 without significant changes in lipid profiles or conversion efficiencies, but the 

chromatograms obtained have larger amounts of byproducts [29].  It is also possible to 

use other alcohols besides methanol in deriving lipids, although the products will not be 

methyl esters.  A common alternative is isopropyl alcohol (IPA).  Werker analyzed 

microbial communities in MWWTFs using sulfuric acid and IPA [30].  Dried cells were 

lysed in IPA with sulfuric acid, and then extracted with hexane for analysis.  Table 1 

shows common values for lipid composition in sewage sludge as reported in literature. 
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 In a sample without large numbers of microorganisms the lipids can be extracted 

from the sample without any lysing steps.  When analyzing lipid concentrations in foam 

produced from the activated sludge process, Fahmy extracted free lipids with a 

combination of water washing and solvent extraction [20].  Work has also been 

performed on extracting lipids and other chemicals from biomass using supercritical 

fluids [31].  The use of supercritical fluids allows for easily tuning the extraction to 

maximize the yield of desired products. 

Table 1.  Comparison of Fatty Acid Distribution of Wastewater vs. Microalgae. 

Fatty Acid Percent Total Lipid Fraction 

  Wastewater Microalgae 

C14 9.3 10.1 

C16 22.1 41.7 

C18 46.3 11.4 

C20 1.2 22.6 

C22 1.2 8.4 

Others 19.9 5.8 

Wastewater Data from Casado [23] 

Microalgae Data from Grima [32] 

Lipids in Other Microorganisms 

There are other sources of microbial lipids than just sewage sludge.  Algae, for 

example, have often been harvested for their oil production; although it was not always 

for fuel use.  From 1978 to 1996 the U.S. Department of Energy conducted a study on 

obtaining microbial oil from various algal species with the intent of biodiesel production 
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[2].  This study spawned a 328 page report detailing advances made in algae to fuel 

conversion over two decades of research.  Researchers worked on over 3,000 different 

algae species, trying to find oil producers able to thrive in various conditions.  The final 

organisms showed high growth rates and oil levels of up to 50% by weight [2].  Unlike 

organisms in a MWWTF, modifying the amounts of available nitrogen did not seem to 

have a significant effect on increasing the amount of oil produced.  Although great 

breakthroughs were made in the large-scale production of oil from algae, including the 

use of CO2 as a carbon source, the cost of production remains too high for fuel use.  Even 

using assumptions of photosynthetic efficiency near the theoretical limit, the projected 

cost of oil is twice that of petroleum derived fuel.  Most of the cost was attributed to 

maintaining the organisms and pond systems required for large-scale production.  The 

county of San Francisco conducted its own research into the problem, growing algae on 

municipal wastewater.  This removed the requirement of feeding the algae expensive 

feedstock to produce oil.  While oil production was favorable problems were still 

encountered with environmental conditions [33].  In both cases, the amount of land 

required to produce significant amounts of oil is still prohibitive to national replacement 

of petroleum fuel. 

Other companies have grown algae for oil harvesting purposes other than fuel 

production.  Martek Biosciences Corp. is a commercial company which grows algae for 

the purpose of extracting nutritional fatty acids such as docosahexaenoic acid (DHA) and 

arachidonic acid (ARA) [34].  Their organisms produce around 20% lipids by weight, 

only 25% of which are nutritional fatty acids of commercial interest for their market.  

When using corn syrup as the carbon source in industrial fermenters, the operating cost 
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are high.  However, the market for DHA and ARA is so strong that the company is 

consistently meeting profit goals.  This is partly due to the FDA announcing in 2004 that 

adding omega-3 fatty acids to one’s diet may reduce the risk of coronary heart disease 

[35].  Interestingly enough, after extracting DHA and ARA Martek disposes of most 

remaining oil, which may be suitable for fuel production. 

Extraction of lipids is often carried out through simultaneous saponification and 

extraction of the oil using ethanol, with some researchers adding hexane as a co solvent 

[36].  Purities of up to 97% have been reported using this method when combined with 

urea fractionation [37].  Chloroform can also be used alone or in a Bligh-Dyer extraction, 

but chlorinated solvents are not regularly used in industry [32,38].  Lysing the algae cells 

through sonication or grinding increases extraction yield of lipids, as it does for sewage 

sludge [39].  Care must be taken, however, to keep lipid degradation to a minimum.  

To date, research in alternative oil production is fairly active.  However, the 

involvement of commercial backers and large-scale production plants for lipid-based 

renewable fuels will not occur until fundamental problems with production are solved.  

These include production of the lipid containing material, plants or microorganisms, as 

well as extraction and transportation of the final lipid product. 

MSU Research on Southeast Oil Crops 

Twelve plant species with potential for oil production were tested at Mississippi 

State, MS  Selection of the species was based on potential and actual yield, potential 

economic return, and ability to fit into existing crop rotation programs.  A predominance 

of warm winters with few cold fronts makes the production of winter annuals an 

attractive option in the Southeast.  Black mustard, birdseed rape, canola, Camelina, 
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Crambe, flax, and Hesperis were tested.  Date of planting studies indicated that regardless 

of planting date and irrigation, these species were cued to germinate when soil 

temperatures dropped below 20°C.  Of the species tested, canola, rapeseed and birdseed 

rape appear to have potential in Mississippi as winter annual crops because of yield.  Flax 

may also be possible if markets could be secured for the linen.  Focusing on oil yield per 

acre, winter-grown canola has the potential to yield three times the oil of soybeans grown 

during the summer on the same acreage.  None of the winter annual species tolerate water 

logged soil (a common occurrence in the South during the winter), with the exception of 

birdseed rape.  The other high yielding species would have to be planted on beds to allow 

drainage.  Crambe contains especially desirable erusic acic (C22) in its seed.  However, 

crambe only tolerates temperatures of negative 8°C.  A selection and breeding program 

were begun to screen for cold hardy genotypes from ‘Meyer’ crambe. 

To grow summer annual species in the South, an existing crop would have to be 

displaced.  With corn and soy at near record prices, that is unlikely.  However, castor, 

sunflower and okra appear to be possible oilseed crops.  Castor is a full-season crop and 

would be the one summer crop that would, in order to achieve production, displace 

existing crops like cotton, corn, or soy.  The percentage oil in its seed (55-60%) makes it 

hard to ignore as a potential oil feedstock crop.  Mean yields of 2000 kg/ha of castor seed 

were achieved at locations at, or north of Starkville.  However, the presence of ricin in 

the extracted meal raises substantial safety concerns.  Sunflower and okra were 

investigated as short season “catch” crops.  These two species would be planted after a 

winter annual was harvested (June) to utilize the land for the balance of the summer 

growing season (June to October).  Both these species have short cycle/determinate 
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cultivars.  Bird damage on sunflower is location dependent and caused as much as 70% 

reduction in yield at some locations.  Okra only had a single years’ data, but yields due to 

close planting density make it worthy of additional research. 

Two perennial crops were investigated, Chinese tallow tree and tung tree.  High 

seed yields from these species are possible because, there stature allows for a third 

dimension in yield (up).  Tung has been in Mississippi for decades and has gone feral 

since hurricane Camille.  Oil percentage of tung is 20%, but tonnage yield is rough 8,000 

kg/ha.  Harvest regimes have already been worked out with tung, and the large seed 

makes shedding of the seed with tree shakers possible.  While tallow tree seed yields can 

be mind boggling (12,000 kg seed/ha at 40% oil), genotypes that shed seed easily are 

currently not known.  The trees noticed in the landscape are those that retain their seed 

late into the season.  This characteristic is not desirable for a domestic crop.  Add to that, 

the current “noxious weed” classification of tallow tree, getting this species into the main 

stream of production will be a challenge. 

Of the species investigated, canola, sunflower, and okra have the greatest 

potential.  However, it should be noted that even record yields of all the crops mentioned 

above won’t come close to fully replacing the U.S. need for oil/petroleum. 

MSU Research on Genetics of Oil Bearing Plants 

At the onset of this project much research was devoted toward identifying critical 

enzymes and proteins necessary for lipid biosynthesis.  The first objective was to data 

mine the corresponding gene sequences if available as a means to develop primers for the 

amplification of gene sequences which were to be subsequently cloned into a vector. A 

database of the enzymes essential for lipid biosynthesis was created by querying NCBI 
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for genes having to do with lipid biosynthesis (see Table 2 below).  This task was 

accomplished by constructing an automatic query algorithm using the Perl programming 

language.  When the entire set of useful genes had been assembled it was necessary to 

sort them so that redundant entries and incomplete sequences could be eliminated.  The 

organization was handled by a separate Perl script that sorted entries based on which gene 

they represent as well as the organism that the sequence came from.  These sequences 

were assembled in order to generate a consensus sequence of all of the genes so that PCR 

primers could be constructed and used in many different species.  The purpose of this was 

to find the organism that would provide the best gene for the desired enzyme.  The longer 

range goal was to insert the amplified genes into a vector under the control of specific 

promoters.  This way the proper set of genes and promoters could be found that would 

increase the oil yield from a plant without compromising the plant’s viability or integrity. 

 Sample specimens of Brassica napus, Riccinus communis, and Simmondsia 

chinensis seeds were germinated to provide tissue for RNA extraction.  These three 

species were chosen because according to the literature they produce high quantities oils 

and the oil produced has unique characteristics.  RNA isolation procedures were 

optimized for each separate organism to provide the best quality and highest yield of 

RNA for additional procedures.  First-strand cDNA was then synthesized for use as 

template for PCR.  Both one-step and two-step cDNA synthesis procedures were 

implemented in order to find the optimal protocol for cDNA production.  Validation 

primers were generated for genes of interest and PCR was used to amplify the desired 

gene fragments using the cDNA as template.  The wax synthase and oleic 12-hydorxylase 
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genes were the first fragments to be amplified.  These genes were chosen first because of 

their unique qualities. 

 Unfortunately the progress of the project was severely hindered early on due to 

issues involving a material transfer agreement (MTA) for a vector that was to be used for 

this project.  This setback resulted in the reduction of efforts to isolate and extract the 

genes of interest and a shift to searching for an alternative source for another suitable 

vector which could be attained commercially or through collaboration.  The intended 

expression vector was designed for inserting the genes into a host plant with proper 

temporal expression, and since no suitable alternative could be found the project was 

further shifted toward constructing a suitable vector from scratch.  The new vector was 

designed to have a reporter element that would be constitutively expressed in the host for 

simple selection of transform individuals.  Seed specific promoters would control the 

gene of interest so that the gene would only be expressed in the seed, where the oil is 

concentrated.  Two seed specific promoters (napin and phaseolin) were researched and 

amplified by PCR.  The cauliflower mosaic virus 35S promoter was chosen for 

constitutive expression and a reporter gene was obtained from a collaborator.  Restriction 

enzyme digestions and subsequent ligation protocols underwent extensive optimization in 

order to ensure that the vector was being properly assembled.  Troubles with the ligation 

of certain elements further hindered the project. 

 The objective of finding a suitable host organism was accomplished.  Dr. Brian 

Baldwin concluded from his concurrent evaluation of suitable oil seed crops for the 

Southeastern US that Ricinus communis (common name: castor) would be the best host 

crop for the over-expression of lipid biosynthesis genes.  The reasoning for this is that 
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castor seed is intrinsically high in oil content and the oil produced by castor has unique 

properties that make it a good candidate for biodiesel production.  Beginning with a 

naturally high oil seed crop indicated that it could then be further improved by the 

addition of the over-expressed lipid biosynthesis genes.  This would provide a crop that a 

maximum amount of usable oil per acre of land.   

The goals of this research have identified plausible metabolic pathways to 

enhance oil seed yield and have been designed to remain flexible to adapt to a variety of 

hosts.  This work has carried over to a separately funded project as part of the South 

Eastern Renewable Energy Center at Mississippi State University.  
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Table 2.  Lipid Biosynthesis Genes of Interest Names, Sequence Source Species, and  
    Functions. 

 
Gene Species Function 
Acetyl-CoA Carboxylase (ACCase) Carboxylation of acetyl-CoA in malonyl-CoA 
 A. thaliana  
 B. napus  
 H. sapiens  
 L. multiflorum  
ACP-desaturase Desaturation of fatty acids 
 A. thaliana  
 B. napus  
 B. oleracea  
 L. usitatissimum  
 L. luteus  
 S. chinensis  
 T. majus  
Acyl-CoA Reductase Coverts acyl-CoA to fatty alcohol 
 S. chinensis  
Acyl-ACP Thioesterase Releases the acyl-ACP from the FAS complex 
 A. thaliana  
 H. sapiens  
Carnitine Palmitoyl Transferase (CPT) Movement of fatty acids from cytosol into 

mitochondria 
 C. familiaris  
 M. lucifugus  
 S. scrofa  
Fatty acid Elongase (FAE) Elongates C18 fatty acids to C20 and C22 
 A. thaliana  
 B. campestris  
 B. juncea  
 B. napus  
 B. oleracea  
 B. rapa  
Fatty acid Synthase (FAS) Synthesis of palmitate from acetyl- and malonyl-

CoA (multifunctional enzyme) 
 H. sapiens  
Beta-ketoacyl-ACP synthetase 1 & 2 (KAS 1&2) Condenses acyl group with malonyl group 
 A. thaliana  
 H. vulgare  
 B. napus  
 R. communis  
 G. max  
 P. frutescens  
Lysophosphatidic acid Acyltransferase (LPAAT) Converts lysophosphatidic acid to phosphatidic acid 

for phosopolipid synthesis 
 B. taurus  
 H. sapiens  
 M. musculus  
 R. norvegicus  
Wax Synthase Esterifies fatty alcohol to acyl CoA to form wax 

ester 
 S. chinensis  
Oleate 12-Hydroxylase Ricinoleic acid production 
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Research on Sludge Oil Extraction and Biodiesel Production 

In light of the rapidly expanding biofuels market, it is imperative that new sources 

of renewable feedstock be discovered and commercialized.  One overlooked source of 

renewable feedstock is lipid extraction from microorganisms.  It is hypothesized that 

microorganisms present in sewage sludge will provide a ready source of lipids from 

which biofuels, such as biodiesel could be produced.   

The objective of this phase of the project is to: 

• Evaluate the ability of microbial lipid sources to produce a quality biofuel. This 

includes yield of extractable oil and economics relating to feedstock generation for 

green diesel production. 

Materials and Methods 

Extraction of Lipids from Sewage Sludge 

 Several different methods were used to collect and process sludge used in this 

study, depending on origin and type of material. 

Chemicals 

Methanol, acetone, 1,3-dichlorobenzene, sulfuric acid, sodium chloride, and n-

hexane were purchased from Fisher Scientific, Atlanta, GA. Industrial grade carbon 

dioxide was provided by NexAir, Memphis, TN. These chemicals were used as received.  

Sewage Sludge 

Secondary sewage sludge was collected from a municipal wastewater treatment 

plant (MWWTP) located in Tuscaloosa, AL.  It was collected from the aerobic waste 

sludge line, which fed into the anaerobic digester. 

Sample Preparation 
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Upon collection at the facility, the sludge flocks were allowed to gravity settle. 

Separation of the clarified water resulted in a sludge containing 2% solids. This sludge 

was dewatered by centrifugation or pressure filtration. Centrifugation was performed 

with a Marathon 3000 centrifuge, manufactured by Fisher Scientific, and operated at 

3000 rpm for 20 minutes. Removal of the free water resulting from this step gave a 

sludge containing 7-8% solids. Pressure filtration was conducted with a Millipore 1.5 L 

pressure filter pressurized in 69 kPa increments from 103-517 kPa. Sludge was first 

filtered using an 80 µm nylon filter with the filter cake collected for later use. The filtrate 

was then filtered again with a 20 µm nylon filter and the cake combined with that from 

the 80 µm run. The remaining sludge cake contained 12-14% solids.  

Organic Solvent Extraction 

Prior to organic solvent extraction, dewatered sludge was mixed with 

Hydromatrix (manufactured by Varian, Inc., Palo Alto, CA) and loaded into a steel 

sample vessel. The Hydromatrix absorbed residual free water in the sample and competed 

for bound water during extraction. Hydromatrix was added until the sample formed small 

pellets and flowed freely. Solvent extraction was conducted using a 200 Series 

Accelerated Solvent Extraction system (ASE) (manufactured by Dionex, Sunnyvale, 

CA), which included a multi-solvent control system.  The system was operated at 10.3 

MPa and 100°C for 1 hour per extraction. Single or sequential (2 or 3 times) extractions 

were examined using the following solvent mixtures (% by volume) or pure solvents: 

1. 60% hexane/20% methanol/20% acetone (HMA) (same mixture 3 times) 

2. Pure methanol followed by pure hexane (MH)  

3. Pure hexane (single extraction) 
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4. Pure methanol (single extraction) 

After extraction, the sample vessel was drained into a glass collection vial followed 

by a solvent flush equal to 50% of the sample vessel’s volume. The lipid-containing 

solvent vial was then stored at -15°C until further analysis.  Each experiment was 

performed in duplicate except for extraction with pure hexane, which was a singlet. 

In Situ Transesterification 

A fluidized bed drier was used in the same manner as the supercritical CO2 

extraction unit to achieve a sample with 5% moisture content.  The dried sludge was then 

ground in a mortar and pestle until a fine powder was obtained.  A screw-top vial was 

then charged with 1 mL of 1% sulfuric acid in methanol and 200 mg of powdered 

sample. The vial was then capped and heated overnight at 50°C. Then, a 5 mL aliquot of 

5% NaCl (w/v) in water was added and the FAMEs were extracted with hexane (2 x 5 

mL), vortexing the vial between extractions to provide efficient mixing. The hexane 

phase was washed with 2% sodium bicarbonate and dried over sodium sulfate. The 

experiment was performed in duplicate. 

Analysis of Fatty Acid Methyl Esters 

After extraction, the lipid-containing solvent phase was removed under vacuum in 

a Büchi R205 Rotary Evaporator (rotovap) at 40°C and 15-30 kPa of vacuum. The 

resulting liquid oil was weighed using an Ohaus analytical balance. The yield of extracted 

material was then determined and expressed as grams of extractable lipid per gram of dry 

solid. 

Conversion of the lipids to FAMEs for extraction with organic solvents was 

carried out through acid catalysis using a modified version of Christie’s method [40]. 20 
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mg of lipids were dissolved in 1 mL of hexane containing 1,3-dichlorobenzene as an 

internal standard and added to a vial with 2 mL of 1% sulfuric acid in methanol. The vial 

was then capped and heated overnight at 50°C. Then, a 5 mL aliquot of 5% NaCl in water 

was added and the FAMEs were extracted with hexane (2 x 5 mL), vortexing the vial 

between extractions to provide efficient mixing. The hexane phase was washed with 2% 

sodium bicarbonate and dried over sodium sulfate.  

Transesterification of lipids from SC-CO2 extractions was performed in an 

Erlenmeyer flask. The flask was charged with 0.1-0.2 g of lipid and 10.0 mL of n-hexane. 

4.0 mL of 0.5 N sodium methoxide was then added and the mixture refluxed for 10 

minutes. The flask was allowed to cool and 5.0 mL of 14.0% BCl3 was added. The 

mixture was refluxed for 10 minutes and was dried by filtering through sodium sulfate. 

The FAMEs produced by transesterification were analyzed on an Agilent gas 

chromatograph (Model 6890; Palo Alto, CA) with a flame-ionization detector. Helium 

was used as the carrier gas. The separation was achieved with a fused silica capillary 

column composed of stabilized 90% polybiscyanopropyl/10% cyanopropylphenyl 

siloxane (SP-2380; Supelco, Bellefonte, PA). The dimensions of the column were 100 m 

x 0.25 mm with a phase thickness of 0.2 μm. A calibration curve was prepared by 

injecting known concentrations of an external standard mixture comprised of 37 fatty 

acid methyl esters (47885-U, 37 Component FAME Mix, Supelco, Bellefonte, PA). All 

calibration curves were linear with a correlation coefficient of 0.99 or better. 1,3-

Dichlorobenzene was used as an internal standard. The method consisted of injecting 1 μl 

of sample into the GC with a split ratio of 100:1. The temperature program began at 

110°C, holding for 2 minutes. It then increased by 10°C per minute to 140°C, where it 
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was held for 4 minutes. After 9 minutes of total run time, the temperature increased 2°C 

per minute until reaching 240°C. The temperature was then held constant until a total run 

time of 99 minutes was achieved. Concentration data obtained from GC runs were used 

to calculate the amount of saponifiable material in extracted lipids. Only compounds with 

a concentration greater than 1% were counted toward the total FAME.  Software bundled 

with the instrument was used to analyze the data. 

Results 

One overlooked source for renewable oils is the harvesting of bacteria from 

municipal wastewater treatment facilities (MWWTF).  MWWTF facilities in the USA 

produce  (dry basis) of sludge annually [3].  This sludge is composed of a 

variety of organisms which consume organic matter in wastewater.  The content of 

phospholipids in these cells have been estimated at 24% to 25% of dry mass [4,5].  This 

phosphorous may need to be removed before production of green diesel due to poisoning 

effects on the catalyst.  The most common type of treatment at a MWWTF is the 

activated sludge process.  Activated sludge is the solid or semi-solid produced during 

biological treatment of industrial and municipal wastewaters.  It contains a variety of 

microorganisms, which utilize the organic and inorganic compounds in the water as a 

source of energy, carbon, and nutrients.  A reactor, settling tank, solid recycle and sludge 

wasting line comprise the unit operations of the activated sludge process.  The waste 

sludge containing 1% to 2% solids is usually concentrated via gravity thickening or air 

floatation to approximately 10% solids.  In many cases, the concentrated sludge is 

introduced into an aerobic or anaerobic digester to reduce the level of pathogens and 

odors (stabilization).   
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In a wastewater treatment facility, activities associated with sludge treatment 

represent from 30-80% of electrical power consumed at the plant [3].  Prior to or after 

stabilization, the sludge may be dewatered and disposed of via incineration, land 

application, or placement in landfills.  However, several environmental health and safety 

concerns restrict the feasibility of these options. 

Research has recently indicated that the lipids of microorganisms contained in 

sewage sludge are a potential feedstock for lipid based fuels.  Literature indicates that 

sewage sludge contains approximately 20% ether soluble grease and fats [21].  

Additionally the cell membrane of microorganisms, a main component of sewage sludge, 

is composed mostly of phospholipids [41].  Both sources could be converted to renewable 

fuels.  Assuming that cells are 2% phosphorous by dry weight with 50% of phosphorous 

in the cell membrane, calculations on the estimated mass of phospholipids in cells place 

them at 24% by dry mass of the cell.  This is in agreement with literature values of 25% 

for E. Coli [4].  

 In this work, lipids were extracted using organic solvents with different polarities 

or supercritical carbon dioxide.  The following text provides results on the lipid and fatty 

acid methyl ester yields obtained with several extraction strategies. 

Solvent Effects 

The amounts of oil, saponifiable material, and the overall yield obtained through 

different extraction methods can be found in Table 3.  Different solvents were used 

during extraction to determine which system gave the best yield.  An explanation of the 

difference in extraction yield by solvent can be rationalized through use of the 

Hildebrand Solubility Parameter (δ), which is a measure of the “strength” of the solvent 



 49 
 

[42].  This can be thought of as the energy required to create a “hole” in the solvent for 

another molecule to fit in.  It can be broken into three parts called the Hansen parameters, 

which describe forces acting on a molecule.  The dispersion force is a measure of London 

dispersion forces, or non-polar interaction, given by δd.   

Table 3.  Extraction and Transesterification Yield of Waste Activated Sludgea. 

Extraction Medium % Oil Yieldf % of Oil 
Saponifiableg % FAME Yieldh

100% Hexaneb  1.94  19.7  0.38 

100% Methanolb    19.39±3.20  14.25±1.66  2.76±0.39 

60% Hexanec 

 

Extraction 1 21.20 

27.43±0.98 

16.22 

16.18±3.21 

3.44 

4.41±0.63 20% Methanol Extraction 2 5.37 15.57 0.84 

20% Acetone Extraction 3 0.86 15.92 0.14 

100% Methanold — Extraction 1 19.39 
21.96±2.28 

14.25 
14.21±1.53 

2.76 
3.07±0.33 

100% Hexane — Extraction 2 2.57 12.03 0.31 

In Situ Transesterificatione  -  -  6.23±0.11 
  aAll extractions carried out at 100°C for 1 hour, solvent to solids ratio 40:1 (wt.) 
  bSample extracted once 
  cSolvent mixture extracted three times 
  dSequential extraction using Methanol followed by Hexane 
  eDried to 95 weight percent solids. Solvent was Methanol with 1% Sulfuric Acid 
  fGravimetric yield of oil in grams of oil per gram of dry sludge 
  gPercent of extracted oil saponifiable on a mass basis. 

hGrams of FAME produced per 100 grams of dry sludge 
g,hValues on left indicate individual extraction yields. Values on the right indicate 
total yield. 
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Table 4.  Solvent Solubility Parameters for Extraction Systems. 

Solvent δd
a

MPa½ 
δp

b  
MPa½ 

δh
c  

MPa½ 
δd  
MPa½ 

Acetonee 15.5 10.4 7.0 20.0 
Methanole 15.1 12.3 22.3 29.6 
n-Hexanee 14.9 0.0 0.0 14.9 
HMAe 15.1 7.1 10.6 19.8 
aMagnitude of London Dispersion Forces 
bMagnitude of Dipole Moment Contribution 
cMagnitude of Hydrogen Bonding Contribution 
dCombined Solubility Parameter 
eCalculated using values from Hansen, C. [100] 

 

The magnitude of the dipole moment contribution is given by δp, and the 

hydrogen bonding contribution is represented as δh.  The summed squares of these 

parameters are equal to the square of the total Hildebrand solubility parameter, 

.  Solvents with similar Hildebrand parameters are usually miscible 

with each other, although the individual Hansen parameters must also be taken into 

account.  The behavior of solutes can also be predicted in the same way [42]. Table 4 

gives values for the solvents used in extraction of lipids from sludge. 

As Table 4 shows, all of the solvents have roughly equal contributions from 

dispersion forces with the exception of SC-CO2.  It is also evident that acetone and 

methanol are almost equal in strength regarding polarity while n-hexane has no polar 

force at all.  The degree of hydrogen bonding is greatest for methanol and is less for 

acetone.  The difference in solvents can thus be summed up as follows.  n-Hexane 

contains only dispersion forces and may be considered a standard solvent used for 

comparison.  Acetone and methanol are used to examine the effect of highly polar 

solvents on extraction and low and high hydrogen bonding strengths.  SC-CO2 has the 
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smallest dispersion value with a polarity around half that of acetone and methanol and 

hydrogen bonding near acetone. 

Table 3 shows that when used in a single solvent extraction, hexane achieves an 

oil yield of 1.94%.  However, the addition of a polar co-solvent results in an increase of 

extracted oil.  Compared to pure hexane, a single extraction using a mixture of hexane, 

methanol, and acetone increased the oil yield from 1.94% to 21.20%.  In addition, the 

sequential extraction experiment of a hexane, methanol, and acetone mix shows that a 

significant amount of material is left behind after the first extraction.  However, the 

amount of extractable oil decreases sharply with each subsequent extraction.  The 

increase in yield due to addition of polar co-solvents could be due to high phospholipid 

levels in the sample. Phospholipids have a polar head and non-polar tail.  Secondary 

sludge is mainly composed of microorganisms whose cell membranes contain 

phospholipids.  Addition of the methanol/acetone mix would expose phospholipids to a 

solvent with high Hansen values for polarity and hydrogen bonding.  It is hypothesized 

that the solvent mixture helps to disrupt the lipid membrane, which is held together 

through hydrophobic interactions and is protected by polar head groups.  Samples 

analyzed through thin-layer chromatography indicated the presence of phospholipids but 

could not give quantitative amounts.  

If one extracts with a pure polar solvent instead of non-polar the oil yield is much 

larger.  An extraction with pure methanol gives 19.39% yield compared to the 1.94% of 

pure hexane.  This reinforces the idea of polar lipids being extracted more easily with a 

polar solvent.  Following the pure methanol extraction with pure hexane gives a yield for 

hexane of 2.57%, which is slightly higher than extraction with hexane on a virgin sample.  
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This is intuitive if one considers that hexane extracts mainly non-polar lipids with low 

values of δp and δh, while methanol prefers polar lipids with larger values of δp and δh.  

Extraction with a polar solvent first may help destroy the cellular membrane and allow a 

subsequent non-polar extraction access to previously unreachable lipids within the cell. 

While polar solvents show a large increase in extractable oil yield, the percent of 

saponifiable material is lower.  Conversion of a pure hexane extract to FAMEs gives 

19.70% saponification by weight of the material extracted, while pure methanol only 

gives 14.25%.  Extracting with a mixture of solvents such as the HMA system results in a 

transesterification yield of 16.22% of material extracted, lower than pure hexane but 

higher than pure methanol.  Repeated extraction with the HMA system shows that the 

percentage of saponifiable material in extracted oil does not change much with 

subsequent extractions.  The percentage of saponifiable material extracted in the MH 

system is greater for methanol than for hexane.  However, the percent of saponifiable 

material for hexane on a sample already extracted with methanol is lower than a virgin 

hexane extraction.  This suggests that treatment with a polar solvent will help disrupt cell 

walls, releasing more extractable material than just non-polar lipids.  The trend of 

decreasing transesterification yield with increasing amounts of polar solvent can also be 

rationalized through use of the Hildebrand solubility parameters.  Hexane has no Hansen 

components for polarity or hydrogen bonding, and a low total Hildebrand value.  This 

gives hexane the ability to extract compounds with similar Hildebrand parameters, 

including non-polar lipids such as triglycerides.  In contrast, methanol is highly polar and 

has a high degree of hydrogen bonding.  This allows for extraction of polar groups such 

as those found on phospholipids and non-lipid compounds found throughout the bacterial 
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cell.  The more polar solvents extract larger amounts of non-lipid material causing a 

sharp increase in oil yield, which is measured on a weight basis.  This is accompanied by 

a decrease in the percentage of saponifiable material. 

Lipid Extraction 

Calculations based on the amount of oil extracted and the percent of saponifiable 

material in the oil gives an overall yield of saponifiable material extracted from the 

sludge.  This is represented as the mass of biodiesel produced per mass of dry sludge.  

Although the percent of saponifiable material in a pure hexane extraction was higher than 

that of a pure methanol extraction, the methanol has a higher overall yield due a much 

larger amount of oil extracted.  This shows that while an extraction with polar solvent 

will produce oil heavily contaminated with non-saponifiable material, the total amount of 

saponifiable material is larger.  The increase can be contributed to greater extraction of 

phospholipids with methanol than with hexane.  Since phospholipids contain a maximum 

of two fatty acid groups per molecule the yield of biodiesel is reduced.  A comparison of 

the HMA extraction with MH shows that the first HMA extraction gives a slightly higher 

overall yield than the MH.  Combining the last two HMA extractions gives the system a 

significantly larger yield than MH. 

The last row in Table 3 refers to In Situ transesterification of dried sludge.  This is 

a method in which the lipids are converted to FAMEs without extracting them from the 

sludge.  Since the reagents have access to all oil in the sludge instead of just what was 

extracted the yield should be higher than the other methods.  Indeed, the yield of 6.23% is 

the highest of all methods tried.  
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An analysis of the fatty acid profile in Figure 2 shows differences in lipid 

composition as a function of various extraction methods.  The profile for hexane and 

methanol shows that hexane extracts a larger ratio of unsaturated fatty acids than 

methanol for all compounds except the C16s. 

Comparison of sludge fatty acid profiles by various extraction methods to a 

standard soybean sample shows that all sewage sludge samples have a much larger 

concentration of saturated fatty acids, as seen in Figure 3.  Although the higher levels of 

saturated fatty acids may present a problem in cold weather due to gelling, the higher 

saturated content will produce a better fluidized catalytic cracking feedstock.  Feedstocks 

high in saturated compounds produce less coke and slurry products during the cracking 

reaction.  They are therefore preferred as reactants. 
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Figure 2.  Impact of Extraction Medium on Fatty Acid Composition of Oil. 
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Figure 3.  Comparison of Saturated vs. Unsaturated Fatty Acids Present in Waste  
     Activated Sludge Samples. 
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Examination of the various transesterification methods shows that in situ 

conversion of lipids to FAMEs provides the highest overall yield of biodiesel.  A 

breakdown of processing cost is shown in Table 5.  It is assumed that sludge will be 

centrifuged to 35% solid content, then dried to 95% solids content via an indirect heat 

paddle drum.  If one then assumes a 7.0% overall yield of FAMEs from dry sewage 

sludge on a weight basis, the cost per gallon of extracted lipid would be $3.11.  Since the 

lipid is converted to FAMEs, also known as biodiesel, in the in Situ extraction process, 

the product can be used as is for renewable fuel.  As transesterification efficiency 

increases the cost per gallon drops quickly, hitting $2.01 at 15.0% overall yield.  An 

overall yield of 10.0% is required to obtain biodiesel at $2.50 per gallon, allowing it to 

compete with soybean oil in the marketplace.  The extraction of lipids from sewage 

sludge is possible without a transesterification reaction.  This would reduce the overall 

cost of extraction, although at a tradeoff to total lipid extracted.  The use of in situ 

conversion, however, may be beneficial in that phospholipids would be converted to 

FAMEs.  The phosphate head group could then be removed through a water wash 

process, rendering the feedstock safe for cracking in an industrial catalytic cracker. 

Table 5.  Production Cost Estimate for Sludge Lipidsa 
 

Centrifuge O&M   $0.43 /gal 
Drying O&M   $1.29 /gal 
Extraction O&M   $0.34 /gal 
Lipid Processing O&M   $0.60 /gal 
Labor   $0.10 /gal 
Insurance   $0.03 /gal 
Tax   $0.02 /gal 
Depreciation   $0.12 /gal 
Capital P&I Service   $0.18 /gal 
Total Cost   $3.11 /gal 
aAssuming 7.0% overall transesterification yield 
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Research on Extraction of Nutritional Components from Biodiesel 

The goal of this phase of the project was the extraction and separation of novel 

secondary products, such as polyunsaturated fatty acid methyl esters (including DHA and 

EPA) from bio-diesel (and bio oils).   

Efficient methods were developed to isolate polyunsaturated fatty acid methyl 

esters from bio-diesel.  Additionally, a method was developed to isolate another value 

added product, Vitamin E, from bio-oils, which was not in the original proposed 

statement of work. 

Part 1:  Extractive separation of polyunsaturated fatty acid methyl esters including 

omega-3 fatty acid eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). 

The hypothesis to isolate this class of fatty acids, which are used as popular 

dietary supplements and prescription medicine (OMACOR), was that they bind transition 

metal ions much stronger than their harmful saturated analogs.  To solve the solubility 

problem associated with these metal ions, a biphasic extraction system involving novel 

ionic liquids was devised.  In the procedure, fatty acid methyl esters dissolved in hexanes 

are extracted with transition metal ions dissolved in ionic liquids.  Because of the binding 

between polyunsaturated fatty acid methyl esters and the transition metal ions, the 

polyunsaturated fatty acids methyl esters are extracted selectively into ionic liquids, thus 

separated from the saturated fatty acid methyl esters which stayed in hexanes.  After layer 

separation, polyunsaturated fatty acid methyl esters could be back extracted with 1-

hexene.   
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The first experiment was done using silver salt (Ag+) as the transition metal ion.  Ionic 

liquid proved essential in this extraction, as other solvents worked poorly (Figure 4). 
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Figure 4.  Comparison of Various Extraction Systems.  Column 1, percent of DHA in  
      hexane before extraction; 2, pure [hmim][PF6](no silver salt); 3, AgBF4/water;    
      4, AgBF4/ethylene glycol; 5, AgNO3/water; 6, AgNO3/(water: methanol=1:4);   
      7, AgBF4/(water: methanol=1:4); 8, AgBF4/[hmim][PF6].  Initial fatty acid   
      methyl ester compositions in hexane: 16:0=21.70%, 18:0=22.66%,      
      18:1=25.50%, 18:2=24.25%, DHA (22:6) = 5.95%.  10 mg of silver salt (0.05   
      mmol) was used. 

 

Different metal ions were also evaluated for the extraction of omega-3 fatty acid 

methyl esters (Figure 5), since it is known that other transition metals could also exhibit 

some coordination ability with the double bond.  Seven metal complexes in ionic liquids 

were selected to extract unsaturated fatty acid methyl esters in hexane solvent. The 

extraction ability of the metal complex was assayed by the EPA (20:5) concentration in 

hexane.  The stronger the extraction ability, the lower the concentration of EPA in hexane 

becomes.  PdCl2, NiCl2 and CuCl showed low extraction ability for EPA in ionic liquids 

[hmim][PF6]. The latter transition metal complex, H2PtCl6, PdCl2(TPP)3 and RhCl(TPP)3 
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exhibited moderate extraction for EPA in [hmim][PF6].  AgBF4 in [hmim][PF6] showed 

very high extraction for EPA.  It is apparent that AgBF4 has the highest extraction ability 

among all the metal ions tested.   
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Figure 5.  Comparison of extraction of EPA (20:5) in hexane with metal ions in ionic  
      liquids. 0, no metal, control experiment; 1, PdCl2; 2, H2PtCl6; 3, NiCl2;         
      4,CuCl; 5, PdCl2(TPP)3; 6, RhCl(TPP)3; 7, AgBF4.  n.d, not determinable. 

 

The isolation of EPA and DHA was studied by covalently immobilizing ionic 

liquids (ILs) onto silica gel and then coating this silica-supported ILs with silver salts.  

These sorbents were successfully applied to extract and enrich polyunsaturated fatty acid 

methyl esters (PUFAMEs) including EPA and DHA with both high selectivity and high 

capacity.  The enrichment of PUFAMEs was investigated using a simple three-step 

procedure consisting of (1) sorbent pretreatment, (2) sample extraction onto the sorbent 
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and (3) stripping the sorbent by 1-hexene.  Only 5 mg of the sorbent 

(AgBF4/SiO2●Im+●PF6¯) completely adsorbed 0.33 mg of EPA (20:5) in 5 min from 

the feed mixture solution.  The saturated extraction capacity for EPA by using this 

AgBF4/SiO2●Im+●PF6¯ sorbent was 120.0 mg/g as determined by its adsorption 

isotherm.  After a consecutive two-step stripping by ethyl ether and then 1-hexene, the 

concentration of EPA increased from 7% in the feed stock solution to about 90% in the 1-

hexene stripping solvent.  After five recycles, the sorbent is still usable.    

To further increase the extraction capacity, mesoporous silica gel complexing 

sorbents were studied.  For this purpose, mesoporous silica gel was prepared and 

characterized.  Compared with similar experiment described in the last paragraph, much 

higher extraction capacities were obtained.   

Part 2.  Separation of Vitamin E from soybean oil 

Ordered mesoporous adsorbents were prepared by physically coating 

functionalized ionic liquids onto mesoporous silica gel.  These adsorbents were 

successfully applied to the selective extraction and separation of vitamin E from a model 

mixture of soybean oil deoderizer distillate.  Various parameters affecting the adsorption 

process, such as adsorption time, ionic liquid structures and loadings, the adsorption 

isotherm, and adsorbent reusability were investigated using liquid-solid extraction. α-

Tocopherol capacities as high as 211 mg/g adsorbent were obtained through the 

adsorption isotherm tests using [emim][Gly]/SBA-15 as the adsorbent.  The anion of 

glycine was employed as the counteranion to 1-ethyl-3methyl-imidazolium ([emim]). 

When this functionalized ionic liquid was coated on traditional microporous silica gel, 

the extraction capacity of the [emim][Gly]/SiO2 dropped to 105 mg/g adsorbent. The 
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substantial extraction capacity enhancement of [emim][Gly]/SBA-15 adsorbent was 

ascribed to its larger pore size and surface area versus traditional silica gel. 

[emim][Gly]/SBA-15 also exhibited a very high adsorption selectivity for α-tocopherol. 

The ratio of distribution coefficients between α-tocopherol and the major interfering 

component glyceryl triundecanate (Kd(α-tocopherol) /Kd(triglyceride)) was 10.5. The 

concentration of α-tocopherol was significantly increased from 15.6 (wt%) in original 

feedstock solution to 73.0% after stripping the adsorbed product with diethyl ether. The 

original feedstock solution also contained fatty acid methyl esters, triglyceride and α-

tocopherol.  Five adsorbent recycle tests showed good reusability of this ionic liquid-

modified mesoporous adsorbent. The distribution coefficient for α-tocopherol, Kd(α-

tocopherol), went down from 199 mL/g in the first cycle to 148 mL/g in the fifth cycle.  

Research on Glycerol Fermentation  

Due to the world’s decreasing supply of fossil fuels, alternative fuel sources must 

be found.  Biodiesel fuel is steadily becoming a viable alternative to petroleum diesel.  

Glycerol is a key product from the production of biodiesel.  It is produced during the 

transesterification process by cleaving the fatty acids from the glycerol backbone (the 

fatty acids are used as part of the biodiesel, which is a fatty acid methyl ester).  Glycerol 

is a non-toxic compound with many uses; however, if a surplus exists in the future, more 

uses for the produced glycerol needs to be found.  Also, for biodiesel production 

processes that incorporate animal wastes, the glycerol byproduct could negatively impact 

the quality of the glycerol and require expensive cleaning steps.  As a consequence the 

crude glycerol form these feedstocks would not be desirable for use in many of its current 
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applications in foods, cosmetics, pharmaceuticals, etc.  These limitations again illustrate 

the need for new, more profitable uses of glycerol to be discovered. 

The goal of this phase of the project was to find an add-on process to the biodiesel 

production process that will convert the glycerol by-product into more valuable 

substances for end uses other than food or cosmetics, focusing at present on 1,3-

propanediol and lactic acid.  Experiments using bacteria that are known to ferment 

glycerol into these compounds has been performed in order to establish a benchmark for 

comparison against other types of bacteria.  For this work the three benchmark cultures 

(Clostridium acetobutylicum, Clostridium beijerinckii, and Clostridium pasteurianium) 

were utilize as benchmark organisms to compare to MSU isolates producing these 

compounds.  Some of the isolates tested from MSU’s Chemical Engineering culture 

collection were isolated during a US DOE EPSCoR project whose focus was to find a 

microorganism capable of economically converting syngas to ethanol.  During the 

EPSCoR project >20 cultures were isolated from various environments ranging from 

manure to sewage treatment plants.  In addition to these microorganisms as potential 

glycerol-fermenting microorganisms, attempts were made to isolate glycerol-fermenting 

microorganisms from Winogradsky columns.  Winogradsky columns are an old 

technique of developing microbial biofilms that allows microorganisms to develop in 

their native state thereby encouraging the growth of larger variety of microorganisms.  

Reported here are the findings of those experiments. 

Materials and Methods 

Glycerol-Fermenting Cultures:  Clostridium acetobutylicum ATCC 824, Clostridium 

beijerinckii ATCC 14823, and Clostridium pasteurianium ATCC 6013 were purchased 
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from the American Type Culture Collection and cultivated on ATCC 1500 culture 

medium.  Isolates from the previous EPSCoR work were removed from storage at 0ºC on 

slants and placed into fresh ATCC 1500 medium and incubated at 35ºC and 100 rpm.   In 

order to increase the genetic pool of glycerol-fermenting microorganisms other 

microorganisms with this ability were also screened.  The sources of these 

microorganisms were the biofilms that had formed in the Winogradsky columns that 

MSU had been developing for several years (Figure 6).  These cultures were isolated by 

first selecting a Winogradsky column that distinctly developed biofilms (this is an 

indication of fully developed column).  Based on the known the development of colors in 

the columns samples were selected from a zone in the columns known to be anaerobic.  

Since this was the early phase little efforts were placed on identification of the isolates. 

Emphasis was placed on the ability of each organism to convert glycerol into industrial 

products and the efficiencies of these conversions.   

 

Figure 6.  Fully Developed Winogradsky Column with Distinct Biofilm Layers and  
      Glycerol-Fermenting Microorganisms Label Clostridium. 
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Isolation of Glycerol-Fermenting Cultures: Traditional enrichment techniques were 

utilized to isolate candidate cultures.  Using a modified ATCC 1500 medium (glycerol as 

the carbon source instead of corn starch) either 1 mL of inoculum or 1 g of soil was 

initially added to 30 mL of the sterile medium contained in 40mL volatile organic acid 

(VOA) vials under anaerobic conditions.  Vials were initially allowed to incubate for 5 

days before the first enrichment transfer was made.  Enrichments of this culture were 

made by transferring 1 mL of the fluid to sterile ATCC 1500 glycerol medium under 

anaerobic conditions followed by a 3 day incubation period.  Anaerobic conditions were 

maintain via the use of a Coy Flexible Anaerobic Chamber that was equipped with an 

automatic airlock system and 4 sets of arm ports (Figure 7).  The chamber contains an 

atmosphere of 95% N2 and 5% H2. Workers were able to transfer cultures into fresh 

medium via pipette inside the anaerobic chamber and avoid the cultures from being 

exposed to oxygen for which they are very sensitive to it.   
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Figure 7.  Worker Transferring Cultures in the Coy Flexible Anaerobic Chamber. 
 

 Following three enrichments, an aliquot of the cell suspension was transferred to 

100 mm diameter Petri plates containing ~25 mL of ATCC 1500 medium solidified with 

18 g/L bacto agar.  Using traditional streak plate techniques the individual cultures were 

isolated from members of their consortium.  These cultures were incubated in the glove 

bag to ensure anaerobic conditions for a minimum of five days.  Using an inoculation 

loop individual colonies from the surface of the solidified medium were transferred to 

liquid 40 mL VOA vials containing 30 mL of fresh sterile ATCC 1500 glycerol medium.  

These cultures were incubated for 3 days before being transferred to fresh ATCC 1500 

glycerol medium.  After the third transfer cultures were tested for the presences of lactic 

acid and/or 1,3-propanediol. 
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Glycerol GC-FID Analytical Method:  These samples were shot in triplicates for GC-

FID analysis.  An Agilent 6890 gas chromatography (GC) system with a Flame 

Ionization Detector (FID) and autosampler (Agilent Inc., Palo Alto, CA) was used. The 

system was controlled by the Agilent GC Chemstation software; version B.01.03.  The 

system was operated with Ultra High Purity hydrogen gas (NexAir LLC, Columbus, MS) 

and compressed air (NexAir) at flow rate of 40 mL/min and 400 mL/min respectively.  

Ultra High Purity hydrogen gas was used as makeup gas on the system. The final 

combined flow was regulated to 35.0 mL/min.  A Restek Stabilwax-DA capillary column 

(30 m length, 250 um inner diameter, 0.25 um film thickness, and maximum temperature 

of 260ºC) was used for separation of the compounds. During the injection cycle, the 

syringe was washed twice with a 50% Acetonitrile solvent, and injections of 1 μl were 

made with a 10 μl syringe. Post injection, the syringe was washed again twice with the 

solvent.  The inlet was run in split mode in a 40:1 ratio with an initial temperature of 

255ºC.  The oven was programmed to hold the initial temperature of 50ºC for 2 minutes 

and then ramp with 22ºC/min to the final temperature of 250ºC and hold for 7 minutes. 

The total runtime was 18.09 minutes. 

Lactic Acid and 1,3-Propanediol Analysis with HPLC:  Lactic acid and 1,3-propanediol 

in the liquid phase was quantified using a Waters HPLC System (Milford, 

Massachusetts). The Waters System consisted of a 515 Pump, a 717-Plus Autosampler, 

and a 2487 Dual λ Absorbance Detector. The HPLC used a Waters YMC ODS-AQ S-5 

120 Å column (150 x 4.6 I.D., S-5 μm, 12nm), and the corresponding Waters YMC 

ODS-AQ S-5 120 Å guard column (4.0 x 23 mm threaded guard). The mobile phase for 

the HPLC was 20 mM NaH2PO4 with a pH of 3.5.  



 68 
 

Correlating Cell Mass to Optical Density:  Cultures were inoculated for growth into 200 

mL of ATCC 1500 glycerol medium under anaerobic conditions.  These cultures were 

grown for three weeks to achieve a large amount of cell mass.  After this period the 

cultures were placed in a centrifuge at 2000 rpm for 20 minutes.  This sample was 

resuspended in 50 mL of medium without glycerol.  At this point a serial dilution was 

made by placing volumes of the cell suspension into blank medium to achieve dilutions 

of 1:1, 1:2, 1:5, and 1:10.  Ten mL of the resuspend cell pellet was placed on aluminum 

weigh dishes and dried overnight at 60ºC.  Dilutions were examined for optical density 

using a Genesys 20 spectrophotometer at 546 nm wavelength.  A curve was generated by 

plotting optical density measurements vs cell mass concentrations for all three of the 

ATCC purchased cultures.  These curves are presented in Figures 8-10. 

Figure 8.  Correlation of Absorbance to Dry Mass Concentrations for Clostridium  
     acetobutylicum. 
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Figure 9.  Correlation of Absorbance to Dry Mass Concentrations for Clostridium  
     beijerinckii. 

Figure 10.  Correlation of Absorbance to Dry Mass Concentrations for Clostridium  
       pasteurianium. 

 

Results 

Glycerol Conversion by C. acetobutylicum, C. beijerinckii, and C. pasteurianium:  The 

results of these experiments are given in Table 6 below.  These assays were conducted in 

40 mL VOA vials containing 30 mL of ATCC glycerol medium.  The concentration of 
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glycerol used in this study was 2.5 g/L.  The results of these experiments demonstrate the 

ability of C. acetobutylicum and C. beijerinckii to convert glycerol into lactic acid at 

concentration greater than 100 mg/L.  However C. beijerinckii was capable of 

simultaneously producing 1,3-propanediol from the fermentation of glycerol.  With a 

more fundamental understanding of the genetic regulations this microorganism offers the 

potential to produce either product depending on the market price.  C. pasteurianum by 

far produced the largest concentration of 1,3-propanediol of all the microbes purchased 

from ATCC or isolated by MSU.  C. pasteurianum failed to produce any detectable 

amounts of lactic acid during the time tested. 

 
Table 6.  Final Concentration of 1,3-Propanediol and Lactic Acid in the Fermentation  

    Medium When the ATCC Cultures Were Offered ATCC 1500 Glycerol    
    Medium (2.5 g/L glycerol). 

 

 The yield of product per mole of glycerol also demonstrated that C. pasteurianum 

was much more efficient at converting glycerol to 1,3-propanediol than was C. 

acetobutylicum or C. beijerinckii at converting glycerol to either product.  C. 

pasteurianum yielded 0.27 mol of 1,3-propanediol per mol of glycerol. Where C. 

acetobutylicum only yielded 0.06 mol of lactic acid per mol of glycerol and C. 

BACTERIA 1,3-PROPANEDIOL 

PRODUCED (ppm) 

LACTIC ACID 

PRODUCED (ppm) 

Clostridium 

acetobutylicum 

none 145.35 

Clostridium beijerinckii 43.32  179.31 

Clostridium pasteurianum 545.58  none 
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beijerinckii yielded 0.08 mol and 0.02 of lactic acid and 1,3-propanediol respectively per 

mol of glycerol.  Of these three tested C. pasteurianum produced the highest yield and 

final concentration of product when offered 2.5 g/L glycerol. 

Glycerol Conversion by MSU Isolates:  Of the >20 cultures tested only 8 showed any 

measurable amounts of either lactic acid or 1,3-propanediol in the fermentation broth.  

These cultures were designated J1, J2, J6, J7, J8, J9, J10, and J13 and the concentration 

of either lactic acid or 1,3-propanediol is given in Table 7.  It is very apparent that the 

cultures isolated were very well suited for the conversion of glycerol to lactic acid as all 

but 2 of the MSU isolates produced the compound.  Three cultures (J6, J1, and J13) 

produced more lactic acid than the benchmark organisms.  With yields greater than 20 

mol lactic acid per mol of glycerol for all three microorganisms.  Three cultures (J6, J7, 

and J9) demonstrated the ability to produce 1,3-propanediol during glycerol fermentation.  

However all three MSU cultures produced products at concentrations below that of the 

benchmark microorganisms.  There was one notable isolate the caught the eye of the 

investigators and that was culture J6 due to the ability of this microorganism to co-

produce both products and one in particularly high concentrations.  This culture with 

more understanding of its metabolic pathways could prove a useful biological agent for 

the conversion of glycerol. 

These results demonstrate the potential for undiscovered microorganisms to 

carryout significant biochemical pathways.  It also demonstrates the importance of being 

able to culture the microorganisms from its environment as was demonstrated using the 

Winogradsky columns.  The metabolic ability of the microbial community is vast and 

could have tremendous potential. 
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All of the cultures isolated during this study were placed in the freezer in glycerol 

medium for use in subsequent experiments. 

 

Table 7.  Final Concentration of 1,3-Propanediol and Lactic Acid in the Fermentation  
   Medium When Offered ATCC 1500 Glycerol Medium (2.5 g/L glycerol) to the      
   MSU Isolates. 

 

  

 

BACTERIA  1,3-PROPANEDIOL 
PRODUCED (ppm) 

LACTIC ACID 
PRODUCED (ppm) 

J6 78.89 509.56 
J7 214.22 none 
J9 50.89 none 
J1 none 476.43 
J2 none 131.12 
J8 none 148.41 
J10 none 119.78 
J13 none 794.44 
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Research on Reaction Kinetics of Soybean Oil Transesterification Using 
Heterogeneous Metal Oxide Catalysts. 
 
 Biodiesel is generally produced by the transesterification of a triglyceride 

(vegetable oil, animal fat etc.) with alcohol in the presence of a catalyst (basic, acidic, 

enzymatic etc).  The products are fatty acid alkyl esters (biodiesel) and glycerol.  The 

stoichiometric reaction requires 1 mol of a triglyceride and 3 moles of alcohol.  However, 

excess alcohol is used in order to drive the reaction forward (since the transesterification 

is a reversible reaction) to increase the yields of the alkyl esters and to allow phase 

separation from the glycerol formed. Figure 11 depicts a generalized reaction for the 

transesterification reaction.  

 

Figure 11.  Transesterification of soybean oil into biodiesel. 

 In transesterification, the selection of catalyst depends on the amount of free fatty 

acid present in the source oil. When the free fatty acid content is less than approximately 

1% , an alkali catalyzed reaction is preferred due to better conversion rates. For higher 

amounts of free fatty acid content, acid catalyzed esterification followed by 

transesterification is better suited.  Conventionally homogeneous catalysts (like NaOH, 

KOH etc.) are used for the transesterification. However, there are drawbacks associated 

with homogeneously catalyzed processes. The catalyst dissolves fully in the glycerin 

layer and partially in the FAME layer. As a result, biodiesel should be cleaned through a 

slow, tedious and environmentally unfriendly water washing process. Catalyst 
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contaminated glycerin has little value in today’s market and is increasingly becoming a 

disposal issue. Another negative aspect of the homogeneously catalyzed process is that 

the catalysts are not re-usable.  Heterogeneous catalysts, on the other hand, makes 

product separation easier and makes catalysts re-usable. Also, heterogeneous catalysts 

have the potential to simplify the production process by enabling usage of continuous 

packed bed reactors.  

In most of the solid catalyzed experiments, the reaction proceeded at a relatively 

slow rate [43]. The presence of heterogeneous catalysts makes the reaction mixture a 

three-phase system, oil-methanol-catalyst, which for mass transfer reasons, protracts the 

reaction. At the same time, heterogeneous catalysis requires relatively harsher reaction 

conditions, i.e., high pressures and high temperatures. For example, some experiments 

have been carried out at temperatures as low as 78 K and as high as 1000 K and high 

pressures, with high pressure and temperature favoring better conversion [44]. The 

overall goal of this study was to identify a heterogeneous oxide catalyst that gives 

satisfactory FAME yields at intermediate conditions compared to above.  

Biodiesel Production Using Solid Catalysts 

 There have been several studies on the transesterification of vegetable oils using 

heterogeneous catalysts. In one study, rapeseed oil was transesterified by methanol using 

basic alkaline-earth metal compounds: calcium oxide, calcium methoxide and barium 

hydroxide [43]. It was found that these were effective in the transesterification reaction 

and the reaction rate could be enhanced by ultrasound as well as by introducing an 

appropriate reagent into a reactor to promote methanol solubility in the triglyceride [43].  
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 Biodiesel from jatropha curcas oil was produced with a heterogeneous solid super 

base catalyst, calcium oxide [45].  The results showed that the base strength, pKB, of 

calcium oxide was more than 26.5 after calcination, following immersion in an 

ammonium carbonate solution.  Optimization of reaction conditions were studied for the 

transesterification of jatropha curcas oil.  It was found that under the optimum conditions 

for catalyst calcinations, i.e. a temperature of 900°C, reaction temperature of 70°C, 

reaction time of 2.5 h, catalyst loading of 1.5%, and a methanol/oil molar ratio of 9, the 

oil conversion was 93%.  However, a different study [46] concluded that using calcium 

oxide calcined in air only resulted in a 10% methyl esters yield after 4h. The catalyst 

samples were prepared by calcination of the precipitated calcium carbonate at 900°C in 

the prescribed atmosphere, an ambient air or helium gas flow.    Calcination in a helium 

gas flow markedly intensified the activity of calcium oxide yielding acceptable ester 

yields in 2 h.  

 In a different study, biodiesel was produced by transesterification of soybean oil with 

methanol using ZnO loaded with KF as a solid base catalyst [47].  The catalyst with 15% 

KF loading and calcined at 873°K showed the best activity.  The results also showed that 

the activity of the catalysts correlated with their basicity.  The transesterification of 

soybean oil using alumina loaded with potassium iodide (35% w/w) as a solid base 

catalyst [48] showed that after calcination at 773 K for 3 h, the catalyst gave the highest 

basicity and the best catalytic selectivity for this reaction.  The conversion was found to 

be 96% under the optimum reaction conditions. In other work, a heterogeneous base 

catalyst, Na/NaOH/γ-Al2O3, showed comparable results to a homogenously catalyzed 

NaOH process [49].  Although screening studies have been carried out on potential 
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heterogeneous catalysts, the kinetics of the heterogeneously catalyzed process has not yet 

been analyzed in depth. This study is an attempt to fill this gap in knowledge to a selected 

group of solid oxide catalysts.  

Reaction Kinetics of Transesterification Reaction 

 Although the importance of biodiesel as an alternative fuel has grown during the 

last twenty years, the chemical kinetics of transesterification, very important for process 

design, remain controversial. Kinetics describes the rate of chemical reactions. Rate 

equations are typically written in terms of the concentration of the reactants. In the past, it 

has been observed that the base catalyzed transesterification is a second order reaction 

[50]. This has been confirmed in a different work for the transesterification of soybean oil 

with methanol using sodium hydroxide a homogeneous catalyst [51]. In this work, it was 

assumed that transesterification is a three-step, reversible process, and the reaction rate 

constants and activation energies were determined for all the forward and reverse 

reactions.   

In a different work, the rate constants and the reaction order were determined for 

each of the steps in the presence of a catalyst with a computerized kinetics program [52].  

It was found that the forward reactions appear to be pseudo-1st order or 2nd order 

depending upon conditions used.  Reverse reactions appeared to be 2nd order.  At a 

MeOH/oil molar ratio of 6:1, a shunt reaction was observed.  Activation energies were 

determined for all forward and reverse reactions under a variety of experimental 

conditions for plots of log k vs. 1/T (where k = rate constant and T =temperature).  

In the present work, the fatty acid methyl esters yields from the transesterification 

of soybean oil with methanol in the presence of different solid catalysts were determined. 
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The reaction kinetics (rate constant and reaction order) of the transesterification reactions 

was proposed. 

Materials and Methods 

Reagents 

 Solvent-extracted degummed soybean oil donated by Bungi Corporation Marks, 

MS, USA, was used as the triglyceride. The basic catalysts (PbO, MgO, MnO2, BaO & 

CaO) and methanol (99.9 %) used in the study was purchased from Fisher Scientific, 

USA.  

Equipment 

 The transesterification was carried in a fully automated high-pressure high-

temperature batch reactor (PARR Instrument, 4843). The equipment consists of a high 

pressure cylindrical chamber, a heater, a water line (in order to control the temperature) 

and a stirrer. 

Soybean oil and Methanol solution 

 A mixture of 30 mL methanol and 100 mL of soybean oil and 2 g of solid catalyst 

was used in each experimental unit. 

Transesterification 

 Two different methods of transesterification were followed. For the first three 

catalysts, (PbO, MgO & MnO2), the mixture (oil, methanol and catalyst) was first heated 

to 215°C (it was found that there was a very little conversion of 3 to 4% in the ramping 

period).  Then the reaction was carried out for 2 hours in the high-pressure reactor. 

Samples were taken out in 15-minute intervals and the fatty acid methyl esters yield was 

measured with gas chromatography. For the last two catalysts, (CaO, BaO), it was 
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observed that significant conversions took place during the first few minutes of the 

reaction (46% and 20% respectively) while ramping up the temperature to 215°C. 

Accordingly, the method was changed for these two, in this case the oil was first heated 

with the catalyst to 215°C, then 30 mL of methanol was injected using a HPLC pump at a 

flow rate of 10 mL/min for 3 minutes. Then the experiments were carried out for the next 

14 minutes at a sampling interval of 2 minutes. The product (a mixture of fatty acid 

methyl esters and glycerol) was separated and then was transferred to a freezer before 

being sent for gas chromatography (GC) analysis.   

Gas Chromatography Analysis 

 The top layer of each sample, after stabilization, was analyzed for FAME 

composition at the Mississippi State Chemical Laboratory, Mississippi State University, 

with gas chromatography.  

Determination of Reaction Kinetics 

 The transesterification reaction is a reversible reaction and therefore, excess 

methanol is used to drive the reaction forward. Equation 1 shows the generalized 

transesterification reaction, where A is the triglyceride, B is methanol, C is FAME and D 

is glycerol. The equation also shows the stoichiometric relationship between the reactants 

and the products. 

  DCBA +⇔+ 3         (1) 

 The general rate equation for the Equation 1 will be, 

    
βα

BA
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d
                                  (2) 

 Where, 
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t

C A

d
d

−  = the consumption of reactant A per unit time 

       k     = rate constant 

      AC   = concentration of A after time t 

      BC   = concentration of B after time t 

      α     = reaction order of reactant A 

      β     = reaction order of reactant B 

 Also, 

    )1(0 XCC AA −=                                   (3) 

    )3(0 XCC BAB −= θ                             (4) 

    00 / ABB CC=θ                                       (5) 

 Where, 

  0AC  = initial concentration of A 

  0BC  = initial concentration of B 

  X     = conversion 

  θB    = the ratio of CB0 to CA0    

 Equation 2 can be written as 

  βαβα θ )3()1(1
d

d )(
0

XXkC
t
X

BA
−−−= +

          (6) 

 In the present work, 8 different cases were analyzed in order to get the reaction 

order. These case were, 

  (α =0, β =0) ; (α =1, β =0) ; (α =0, β =1) ; (α =1, β =1) ; (α =2, β =0) ; 

(α =0, β =2) ; (α =2, β =1) ; (α =1, β =2).  
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 For each case, definite integrals of Equation 6 were calculated from a conversion 

of X=0 to a conversion of X=X in the time span of t = 0 to t = t. Then the calculated 

equation for each case was transferred into a linier equation passing through origin 

(y=mx). The transferred equations for all the 8 cases are as follows: 

Case 1: (α =0, β =0) 

    ktXCA =0                                              (7) 

Case 2: (α =1, β =0) 
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Case 3: (α =0, β =1) 
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Case 4: (α =1, β =1) 
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Case 5: (α =2, β =0) 
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Case 6: (α =0, β =2) 
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Case 7: (α =2, β =1) 
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Case 8: (α =1, β =2) 
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 For Equations 7 through 14, if it is assumed that the left side component is an 

ordinate (y variable) and t (for Eq. 7 to 9), CA0t (for Eq. 10 to 12) and CA0
2t (for Eq. 13 to 

14) are abscissas (x variable) respectively, the equations are in the form of y=mx  (a 

straight line passing through origin). For all 8 cases, the y variable was plotted against the 

corresponding x variable and the coefficient of determination was determined. In all the 

cases (Eq. 7 to 14), the slope of the straight line is the rate constant (k) for the reaction. 

The highest correlation coefficient (R2) for each case was observed and the case that gave 

the highest correlation coefficient was used to determine the reaction order. 

Determination of Surface Area of the Catalysts 

 Surface area is an attribute that is used by catalyst manufacturers and users to 

monitor the activity and stability of catalysts. There are different methods used to 

measure surface area, most methods are based on the isothermal adsorption of nitrogen. 

Either a single point or multipoint method can be used to calculate the surface area. In 

our case the multipoint Brunauer, Emmett and Teller (BET) method was used to measure 

total surface area of these metal oxides by the use of nitrogen adsorption/desorption 

isotherms at liquid nitrogen temperature and relative pressures (P/Po) ranging from 0.04-

0.4. 

Results 

Biodiesel Yield 

The biodiesel yield (FAME %) from gas chromatography analysis showed a large 

variation among different solid catalysts.  Figure 12 shows the biodiesel yield (FAME) 
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for all the catalysts, PbO, MgO, MnO2, BaO and CaO, over 2 hours of transesterification. 

For PbO the yield was found to be more than 84% after 1 hour, for MgO the maximum 

yield was found to be approximately 66% after 2 hours and for MnO2 the yield surpassed 

80% after 2 hours.  

For BaO and CaO, the biodiesel yield was found to be more than 95% and 75% 

within 15 and 30 minutes respectively. Cracking of the methyl esters was observed 

subsequent to these time periods. The initiation of reduction of methyl esters yield could 

be attributed to the pretense that the rate of cracking exceeded the rate of 

transesterification for BaO and CaO after 15 and 30 minutes respectively under the 

provided reaction conditions. As a result, only 2 data points for BaO and 3 data points for 

CaO were at hand to calculate the reaction order and rate constant - which was not 

sufficient (Figure 12). Consequently, in order to capture the trend, the method was 

modified for these two catalysts. The data was collected in 2 min intervals for 14 minutes 

after attaining a temperature of 215°C. It could be noted that according to Figure 13, the 

FAME yield for the BaO catalyst surpassed 85% after 14 minutes and for catalyst CaO, 

the yield was found to be approximately 78% after 2 minutes.  
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Figure 12.  FAME Yield for PbO, MgO, MnO2, BaO and CaO (reaction times denoted  
        represent time after reactants reached 215°C).  

 
Figure 13.  FAME Yield for BaO and CaO (reaction times denoted represent time after  
         reactants reached 215°C). 
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Reaction Kinetics 

 Based on the principle discussed above, all eight cases for each catalyst were 

plotted and the coefficient of correlation (R2) was determined for each case. Finally the 

case with the highest coefficient of correlation (R2) was selected for the determination of 

rate constant and reaction order. Table 8 gives the R2 values of all eight cases for each of 

the 5 catalysts. 

 For some experimental units, Table 8 renders an array of R2 values because the 

data has been transferred in the form of y=mx in order to model the reaction order based 

on Equation 7 to 14. For each catalyst, the highest R2 value is selected out of the 8 cases 

and the corresponding values of slope were determined. Table 9 gives the reaction order 

of the transesterification w.r.t. each of the reactants, as well as the overall reaction order 

and the value of rate constant for each of the 5 catalysts. 

Surface Area of the Catalysts 

 Table 10 shows the surface area of the catalysts based on the nitrogen adsorption 

/desorption method (multipoint BET), and it was found that MgO had the largest area of 

157.4 m2/g whereas the PbO had the minimum of 0.55 m2/g. 

Conclusions 

 The base catalyzed transesterification of soybean oil using solid catalysts 

produces biodiesel under high pressure and high temperature conditions. A maximum 

biodiesel yield of 85% was obtained by BaO in 14 minutes, whereas, PbO, MnO2, CaO 

and MgO gave a maximum yields of 84%, 80%, 78% and 66% respectively at 215°C. 

The overall reaction order of PbO, MnO2, BaO, CaO and MgO was found to be 1, 1, 3, 1 
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and 1 respectively. The highest rate constant was observed for BaO which was 0.0085 

g2.mole-2.min-1.  

 

Table 8.  The Value of Coefficient of Correlation (R2) of All Eight Cases for Each  
    Catalyst.  

 
Catalysts→  
Cases 
↓  

PbO MgO MnO2 BaO CaO 

1 0.90 0.91 0.87 0.39 0.48 
2 0.89 0.90 0.85 0.49 0.45 
3 0.91 0.93 0.88 0.41 0.49 
4 0.88 0.88 0.83 0.51 0.44 
5 0.83 0.83 0.77 0.61 0.41 
6 0.90 0.91 0.86 0.42 0.46 
7 0.81 0.80 0.74 0.63 0.41 
8 0.86 0.85 0.80 0.53 0.44 
 

 
 
 
Table 9.  Reaction Order of the Transesterification w.r.t. Each of the Reactant as well as  

    Overall and the Rate Constant. 
 
Catalyst Order w.r.t. 

Triglyceride 

Order w.r.t. 

Methanol 

Overall 

Order 

Rate Constant 

PbO 0 1 1 0.0032, min-1 

MgO 0 1 1 0.0011, min-1 

MnO2 0 1 1 0.0014, min-1 

BaO 2 1 3 0.0085, g2.mole-2.min- 

CaO 0 1 1 0.0046, min-1 
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Table 10.  Surface Area of the Metal Oxides 

Catalyst Surface area, 

m2/g 

PbO 0.55 

MgO 157.4 

MnO2 50.55 

BaO 0.76 

CaO 61.39 

 

 

Research on Flame Temperature Analysis of Biodiesel Blends and Components 

Meeting the growing energy demand without adversely affecting the environment 

is a great challenge. Alternatives to petroleum-derived fuels such as biodiesel, ethanol 

and hydrogen have the potential, at least in part, to satisfy these energy needs while 

coercing minimal impact to the environment. In particular, biodiesel reduces emissions 

such as life cycle CO2, particulate matter, CO, SOx, volatile organic compounds (VOCs), 

and unburned hydrocarbons significantly [53-55]. However, biodiesel has portended to 

increase oxides of nitrogen (NOx) emissions by as much as 10.3% for B100 fueling 

(100% biodiesel) [56]. Biodiesel, in general, is an oxygenated fuel with inherently high 

cetane numbers. Although these properties suggest lower flame temperature and thus 

lower NOx emissions, the reality is the total antithesis. The effects of primary techniques 

for reducing NOx emissions from diesel engines are given by [57], [58] and [59]. 

Likewise reasons for the variation in the NOx emissions from these alternate fuels have 
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been proposed [60] and [61]. However, none of previous work has adequately explained 

the enigma of increased NOx emissions from biodiesel fuels. This research is a 

preliminary approach to fundamentally understand the combustion characteristics of 

component methyl esters and a few selected oxygenates when combusted in open air 

conditions. 

Thermal, fuel, and prompt NO are three pathways that contribute to the overall 

NOx emissions [62]. Thermal NO formation is the main contributor to NOx emissions 

formed in the combustion chamber [63]. This type of NOx is generally formed during fuel 

combustion such as gas or diesel [64]. The formation rate is primarily a function of 

temperature, oxygen availability, and the residence time of the air-fuel mixture at a 

particular temperature [65]. NOx from a direct-injection diesel engine is resulted via 

thermal NO that is described by Zeldovich mechanism [66]. Thus, studying temperature 

profiles of combustion flames can be helpful in diagnosing the formation of NOx during 

combustion of biodiesel and its blends. The thermal and chemical behavior of 

combustion flames depends on fuel properties; preheat temperature and oxygen 

concentration [67]. The combustion phenomena of diesel engines using combustion 

chamber visualization techniques have been widely studied [68,69]. However, flame 

analysis in open-air conditions is the easiest, cheapest and the most fundamental means of 

diagnosing the effect of fuel properties on flame temperature. Although combustion 

inside a diesel engine cylinder is quite different from what that occurs in atmospheric 

conditions, the present work will yield valuable benchmark insights to uncover complex 

mechanisms that occur in an engine environment.  
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The main objective of this work is to study the open air flame temperature 

distribution of biodiesel components and blends (with diesel, ethanol and methyl acetate). 

The results of this study is expected to provide some insights into understanding the 

correlation between flame temperature and the fuel properties like volatility, chemically 

bound oxygen content, hydrocarbon chain length and degree of unsaturation.    
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Materials and Methods 

 

 

Figure 14.  Schematic Diagram of Experimental Set-Up.  

 

The experiments were carried out using fuel blends prepared by blending different 

proportions of soybean biodiesel in ethanol, methyl acetate and diesel (as shown in Table 

11). Fuel blends were combusted using cotton wicks in atmospheric conditions. The 

combustion set-up was enclosed in a black colored chamber as shown in Figure 14 to 

reduce extraneous impacts from the surrounding environment.  Wicks used for burning 

fuel components were of same length (10 cm) and same diameter (7.5 mm). A type-K 

thermocouple having a probe diameter of 1 mm was used to measure the flame 

temperature.  Thermal images were taken using an infrared thermal camera (camera 

model DSC-S60).  Fuel consumption rate was measured using a digital balance and was 

recorded using RS232 in a computer.  The calorific value of each blend was measured 

using bomb calorimeter. Each experiment was replicated three times. 
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Table 11.  Calorific Values (kJ/kg) of Different Blends. 

Blend 

proportion Ethanol:Biodiesel

Methyl 

Acetate:Biodiesel Diesel:Biodiesel 

100:0 28540 26670 42650 

80:20 30774 29278 42062 

60:40 33009 31887 41475 

40:60 35244 34496 40888 

20:80 37479 37105 40301 

 

The goal of this study was to uncover flame temperature trends of different blends 

and compositions with respect to soybean biodiesel.  The temperature at 90% height of 

total flame was used to calibrate the thermal images. The two-dimensional thermal 

images, as given in Figure 15, depict the surface temperature of the flame body. The 

color scale beside the flame illustrates the variation of temperature on the flame surface. 

In order to reduce the error associated with temperature measurement using the 

thermocouple, the temperature difference was chosen for analysis instead of absolute 

temperatures. The thermal images of flames of different fuels were analyzed and 

compared as can be seen in Figure 15. A relationship between blend proportions and 

flame temperature was then obtained.  

A separate analysis of flame temperatures of different component soybean methyl 

esters was performed. Methyl palmitate, methyl stearate, methyl oleate, methyl linoleate 

and methyl linolinate, the five methyl esters that are predominantly present in soybean 

oil, were tested in a similar manner to observe flame temperatures. In order to verify the 
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effect of unsaturation on flame temperature, methyl linoleate (an unsaturated component) 

was mixed in different proportions with methyl palmitate (a saturated FAME) and methyl 

stearate (a saturated FAME) and the flame temperature was measured in a similar 

manner.  

     

 

      

 

Figure 15.  Thermal image of flames (A. Flame arrangement; B. Soybean biodiesel; C.  
                   Ethanol; D. Methyl Acetate; E. Diesel; F. Methyl Palmitate; G. Methyl            
                   Stearate; H. Methyl Oleate; I. Methyl Linoleate; and J. Methyl Linolinate). 
 

Thermodynamics of combustion using fatty acid methyl esters (FAMEs): 

Assuming a typical FAME has a general chemical formula CxH2yO2z. The 

chemical equation for stoichiometric combustion can be written as follows: 

 

[ ]2 2 2 2 2 2 23.76 (3.76 )x y zC H O a O N xCO yH O a N+ + → + +     (15) 

F G JI

A B C D E

H
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Conservation of atomic species gives the following equation for “a” in terms of x, y and 

z: 

2
ya x z= + −           (16) 

The stoichiometric air-fuel ratio (AFgrav,s on mass basis) can be written as follows: 

( )
,

32 3.76 28 2 234.32
12 2 32 6 16grav s

a x y zAF
x y z x y z

⎡ ⎤+ ⎛ ⎞+ −⎣ ⎦= = ⎜ ⎟+ + + +⎝ ⎠
     (17) 

Air-fuel ratio for different FAMEs is depicted in Figure 16. 
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Figure 16.  Estimates of Stoichiometric Air-Fuel Ratio for Different Fatty Acid Methyl  
       Esters. 

 

Energy Flow Analysis  

The adiabatic flame temperature was obtained by equating the enthalpy of the 

reactants to the enthalpy of the products. On simplification, an approximation of the 

adiabatic flame temperature can be given by [70]: 

( )0 1P
grav p

LHVT T
AF C

= +
+

        (18) 

Where Tp is adiabatic flame temperature, T0 is ambient temperature, LHV is lower 

heating value of fuel and Cp is the average specific heat of the products. Hence, when 
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comparing one fuel with another, a higher stoichiometric flame temperature does not 

necessarily solely dependent on higher large heating value, but air-fuel ratio must also be 

considered. Using equation 18, adiabatic flame temperatures for stoichiometric 

combustion of the fuels are depicted in Figure 17. 
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Figure 17.  Lower heating value [71] and adiabatic flame temperature of FAMEs 

 

Sources of Error 

 Despite repeated measurements, a significant difference was observed in recorded 

flame temperatures and the expected flame temperatures and could be attributed to the 

effect of the thermocouple probe on the flame. In this study, diameter of the 

thermocouple used was 1 mm where as the flame diameter varied in between 4-6 mm. 

The diameter of the thermocouple probe is expected to change the flame profile while the 

probe was inserted to measure the flame temperature. This leads to the variation in 

aerodynamics and thermal properties of flame zone. Consequently, to obtain the trend 

associated with flame temperatures, relative flame temperature, ∆T with respect to 

soybean biodiesel was calculated using actual point temperatures of blend (Tblend) and 

point temperature of biodiesel (TBD).  
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blend blend BDT T TΔ = −         (19) 

 

FAME FAME BDT T TΔ = −         (20) 

 

Similarly, relative fuel consumption rate, ( )dm
dtΔ  was calculated as the flow 

consumption rate varied for each fuel combination.  

( ) ( ) ( )
blend blend BD

dm dm dm
dt dt dtΔ = −       (21) 

 

( ) ( ) ( )
FAME FAME BD

dm dm dm
dt dt dtΔ = −       (22) 

 

Furthermore, we speculate that the difference in temperatures may have been due to 

radiation and conduction losses. These corrections can be estimated by making a balance 

between energy received by conduction from the gas and that lost by radiation and 

conduction along the supports. The radiation correction for the thermocouple lead was 

done by using the following equation [72]: 

 

( )4 4
tc tc

c

T T T T
h
σε

∞= − +
         (23) 

Where T is the corrected thermocouple temperature, σ is the Stefan Boltzman constant, 

emissivity factor, ε = 0.21 for NiCr-Ni, Ttc is the recorded thermocouple temperature, 

T∞ is the ambient temperature and hc is determined by heat transfer correlations [73]: 
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( )1/ 2 2 /3 2 /52 0.4Re 0.06Re Prc

air

h dNu
k

= = + +       (24) 

Where Nu is the nusselt number, d is the diameter of the thermocouple bead, Kair is the 

thermal conductivity of air, Pr = .68 for air and the Reynolds number, Re is: 

Re
air

ud
ν

=
          (25) 

Where υair is the kinematic viscosity of air, and u is the velocity of the plume [74]. 

.

3.9
p

g Qu
T c Z∞

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

         (26) 

Where cp is the specific heat of air, Q is the heat input, and z is the height above the 

source. 

 

Results 

The theoretical analysis of fatty acid methyl esters shows that the required 

stoichiometric air-fuel ratio increases with increasing hydrocarbon chain length and 

FAMEs saturation level. Increasing hydrocarbon chain length in the FAMEs leads to 

increased lower heating value and a simultaneous decrease in the adiabatic flame 

temperature.  

Figure 18 shows the relative trends of flame temperature with varying proportions 

of blends of soybean biodiesel.  As mentioned earlier, flame temperatures were measured 

using a K type thermocouple and corrected for radiation losses.  However, since the 

errors associated with these measurements were observed to be substantial, temperature 

differences with respect to straight soybean biodiesel flames are reported. It can be seen 

that as the proportion of ethanol and methyl acetate increased in the blends, the difference 
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in flame temperature with respect to soybean biodiesel increased. The reason for this 

increase may be due to the more volatile nature of ethanol and methyl acetate in 

comparison to soybean biodiesel. On the contrary, blending diesel with soybean biodiesel 

showed a decrease in flame temperature difference (Figure 18). Pure diesel had a lower 

flame temperature than the pure soybean biodiesel. It should be noted that the oxygen 

content in ethanol and methyl acetate is greater than that of soybean biodiesel. 

Consequently, soybean biodiesel, having a more oxygen content than diesel, may have 

led to a more complete combustion and hence leading to a greater flame temperature. 

Accordingly, it could be speculated that the increase/decrease of flame temperature is 

associated more with oxygen content of the fuel being used than the calorific value of a 

fuel. An experimental error of 3-5% was observed as can be seen in Figure 18 and Figure 

19. 
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Figure 18.  Effect of Blending Soybean Biodiesel with Ethanol, Methyl Acetate and  
       Diesel on Flame Temperature. 
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Figure 19.  Comparative Fuel Consumption Rate of Soybean Biodiesel Blends with  
            Ethanol, Methyl Acetate and Diesel with Respect to Pure Soybean  

Biodiesel. 
 

The trend observed in maximum flame temperatures can be attributed to the fuel 

consumption rates of the fuel blends. Figure 19 shows the trend in difference of fuel 

consumption rates of biodiesel blends with ethanol, methyl acetate and diesel with 

respect to pure biodiesel.  

It was observed that while combusting a fuel, the wick also burnt - although at a 

relatively insignificant rate. To circumvent the error associated with this phenomenon, 

the difference in fuel consumption rate was compared. It was observed that as the ethanol 

and methyl acetate percentage increased in the biodiesel blend, fuel consumption rate 

increased. The reason for this may be the distinct capillary flow rate due to lower density 

and viscosity of ethanol and methyl acetate in comparison to biodiesel causing better 

adsorption and capillary motion of fuel through the cotton wick.  
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Figure 20.  Flame Temperature and Calorific Value of Different Components of  
       Biodiesel. 

 

-10

0

10

20

30

40

50

60

0 25 50 75 100

Blend Proportion (%)

R
el

at
iv

e 
Fl

am
e 

te
m

pe
ra

tu
re

 w
ith

re
sp

ec
t t

o 
bi

od
ie

se
l, 

K

Methyl Linoleate:Methyl Palmitate
Methyl Linoleate:Methyl Stearate

 

Figure 21.  Effect of Change in Unsaturated Methyl Ester Proportion in Fatty Acid  
      Methyl Ester Blends. 
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Figure 22.  Comparative Fuel Consumption Rate of Biodiesel Components with Respect  
        to Pure Soybean Biodiesel. 

 

Figure 20 shows the variation of calorific value and the difference in flame 

temperature of different fatty acid methyl esters with respect to soybean biodiesel. An 

experimental error of 1-2% was observed for calorific value where as 3-5% error was 

observed for relative flame temperature values.  The flame temperature obtained by 

component biodiesel FAMEs revealed that the saturated methyl esters resulted in higher 

flame temperatures than unsaturated FAMEs. In addition, it can be seen that as the degree 

of unsaturation increased, the flame temperature decreased. Likewise, it can be observed 

in Figure 21 that as the percentage of an unsaturated component increased, the flame 

temperature decreased. Thus, it shows that saturated methyl esters may be the main 

contributor to temperature increase in the combustion zone while using soybean 

biodiesel. Also, the shorter chained methyl ester, methyl palmitate, resulted in a higher 

temperature in comparison to the longer chained methyl stearate on mixing with 

unsaturated component methyl linoleate.  

Figure 22 shows comparative fuel consumption rate of fatty acid methyl esters 

with respect to soybean biodiesel. It was found that the fuel consumption rate increased 

with increase in degree of unsaturation. This is evident from the difference in volumetric 
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flow rate due to capillary motion through the wick due to decreasing density and 

viscosity of fatty acid methyl esters with increasing unsaturation [75].  

A qualitative analysis on soot formation based on visual observation and 

verification from the thermal images indicated that the greater the proportion of ethanol 

and methyl acetate, lesser was the shoot formation. A similar trend was observed in the 

blends of soybean biodiesel with diesel. Soybean biodiesel being more oxygenated 

produced less soot than diesel.  This can be related to incomplete combustion. Thus, a 

reduction in shoot formation was observed as the proportion of an oxygenated compound 

in the blend was increased. It was observed that soot formation and flame temperature 

had an inverse relationship (more the soot formation, lesser was the flame temperature). 

Soot formation also increased with the increase in the degree of unsaturation. It was also 

observed that as the unsaturation increased, the flame length increased.  

 Literature suggests a direct relationship between NOx release and flame 

temperature during combustion [66,76-78]. Thus it can be conferred from the 

observations of this study that saturated components like methyl palmitate and methyl 

stearate could be associated with a higher tendency to produce NOx than unsaturated 

components. Also lesser the carbon chain length more was the flame temperature and 

consequently it could be conjectured that smaller chained oxygenated hydrocarbons may 

lead to higher NOx formation. However, since this study was performed at atmospheric 

conditions, further studies are required in diesel engine environments to confirm this 

hypothesis and elucidate the effect of FAME chemistry on NOx behavior. 

 The presence of saturated components, the degree of unsaturation, volatility and 

the oxygen content in an oxygenated hydrocarbon fuel plays an important role in 
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determining its open air flame temperature characteristics. It was observed that more the 

calorific value, lesser was the flame temperature of a particular fuel. Presence of 

saturated components and lower carbon chain length components led to increased flame 

temperatures suggesting an association with and a higher tendency for thermal NOx 

formation. With the increase in the degree of unsaturation, the fuel consumption rate 

increased. Insights obtained from this study coupled with an in-depth study in an engine 

environment will be helpful to underpin NOx emissions behavior of soybean biodiesel 

fuel blends.  

Research on Exhaust Emissions Using Diesel-Biodiesel-Ethanol Blends in New and 
Used Compression Ignition Engines 
 

The current scenario of rapidly increasing energy demand across the world has led 

many countries to search for renewable fuel sources other than fossil fuels. Also, the 

heightened awareness of harmful effects associated with ambient air pollution compels 

introduction of more stringent environmental regulations worldwide. Beginning in 2007, 

the United States, heavy-duty diesel engine emission regulations will be phased in with a 

NOx standard of 0.27 g/kW-hr (0.2 g/bhp-hr) and a particulate standard of 0.01 g/kW-hr 

(0.01 g/bhp-hr). In Europe, the 2005 European Union (EU) 4 standard is 3.5 g/kW-hr (2.6 

g/bhp-hr) for NOx and 0.2 g/kW-hr (0.15 g/bhp-hr) for particulate with a change (EU 5 

standard) to 2 g/kW-hr (1.5 g/bhp-hr) for NOx in 2008 [79,80].   

Although discrepancies exist, there is a general agreement in the research 

community that biodiesel reduces particulates, emissions of CO, SO2 and HC. However, 

it has been reported that biodiesel increases oxides of nitrogen (NOx) emissions by as 

much as 10.3% for 100% biodiesel [81]. McCormick stated that newer engines increase 

NOx emission in comparison to older engines, where the increase in the emissions level 
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could be as high as 31% vs 10% [82]. NOx emissions in a Detroit Diesel 2-stroke engine 

increased with the addition of methyl soyester while particulate emissions decreased [83]. 

Using a 1991 6V-92TA DDEC II engine, NOx emissions were found to increase by 3.5%, 

5.5%, 13.4% and 15% respectively for 10%, 20%, 30% and 40% blends. Graboski and 

coworkers tested methyl soyate and diesel blends in a 1991 Detroit Diesel Series 60 (4-

stroke) engine. For 35% biodiesel, the composite NOx emissions increased by nearly 1%, 

while the composite particulate emissions decreased by 26% relative to the reference 

diesel. For 100% biodiesel, the composite NOx increased by 11% while PM was 

decreased by 66% [84]. Signer and coworkers reported a 3 to 4% increase in NOx for a 

3.5% increase in fuel density using the EEC 13-mode test cycle [85]. Cetane number and 

fuel aromatic content are well known to influence NOx and PM emissions from diesel 

engines [86].  

There are various effective engine direct-emission control methods used in the 

past, but they are still inadequate to guarantee meeting the proposed emissions reduction 

regulations. Some catalytic devices have been devised to purify the exhaust from engines. 

Due to additional cost, they are not practical nor do they prove satisfactory for engine 

manufacturers to meet the 2007 emission standards. Changing the fuel properties of 

biodiesel using different blends of oxygenates is another approach which is found to be 

economic and efficient in reduction of emissions [87-89]. This study, attempted to 

understand the effect of adding ethanol as an oxygenate into biodiesel on the tailpipe 

emissions profile. Ethanol has a much lower cetane number and energy value (26.98 

MJ/kg) than biodiesel, yet, it has beneficial fuel properties. One of the disadvantages of 
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biodiesel is its high cloud point, which makes it unsuitable for cold weather conditions. 

Ethanol tends to reduce the cloud point when blended with biodiesel [90,91].  

Due to the low calorific value of ethanol, E-diesel blend is believed to reduce 

engine power. Interestingly, some studies have shown that not much variation is observed 

in brake horsepower, depending on blend concentrations. There was no significant power 

reduction in an engine operated on E-diesel blends up to 20% [92]. Abu-Qudais and 

group found an increase of 3.6% in brake thermal efficiency and 43.3%, 34%, and 32% 

reductions in CO, HC, and soot emissions, respectively at an optimum percentage of 15% 

E-diesel blends [93]. E-diesel yielded significant reductions in particulate matter (PM) 

[94,95]. Recent studies conducted on E-diesel confirmed substantial reductions in PM, at 

times up to 40%, depending on the test methods, operating conditions, and ethanol 

concentrations [96-100]. Marek and Evanoff also found reductions in NOx emissions 

ranged from 0-5% and 0-4% for 15% and 10% ethanol blends respectively [98]. 

However, another engine test showed considerable variations in both PM and NOx over 

the load-speed range of the engine with reductions varying 22-75% and 60-84% 

respectively. Ajiv and coworkers observed a reduction in the carbon monoxide (CO) and 

nitrogen oxides (NOx) emissions when a 20% blend of E-diesel was used in a constant-

speed stationary diesel engine as opposed to diesel fuel [101].  

The major drawback of adding ethanol into diesel is its immiscibility in diesel 

over a wide range of temperatures. Additionally, the miscibility of ethanol in diesel 

depends on factors such as pressure, relative humidity, and ethanol concentration. 

Buchholz et al. reported that the limited solubility of ethanol in diesel fuel required either 

an emulsifier (Span 85) or co-solvent (n-butanol) to prepare ethanol-in-diesel blends 
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[102]. Commercially, various surfactants are used as emulsifiers to form an ethanol-

diesel emulsion. Ali and Hanna determined the ratio of beef tallow (methyl tallowate) to 

ethanol that gave the same viscosity as No. 2 diesel fuel [103]. They found that tallow 

ester:ethanol:diesel should be 16.25:8.75:75 to get a stable emulsion that had a viscosity 

similar to that of diesel fuel. Looking into the phase behavior of the biodiesel-ethanol-

diesel ternary system, Fernando and Hanna suggested that biodiesel could be effectively 

used as an amphiphile in an ethanol-diesel blend [104]. Aforementioned work laid the 

foundation for investigating the concept of using ethanol to reduce NOx emissions.  

The objective of this study is to evaluate the effect of neat biodiesel and blends of diesel-

biodiesel-ethanol (DBE) emulsions on exhaust gas emissions 

Materials and Methods 

Engine and Instrumentation 

The study was performed using the following three engines: Ford 4000, John 

Deere 5103 and John Deere 4039DF008 multi-fuel engine. The Ford was a 45 year old 

engine with less than 200 hours run time and the two John Deere engines were brand 

new.  Each of the engines was a direct injection type.  Specifications of the engines are 

presented in Table 12. The engines were coupled to a hydraulic dynamometer. Engine 

torque was adjusted and set using the dynamometer. Engine speed was controlled using 

the throttle. A NOVA Logger II analytical gas analyzer was used to investigate the 

emissions from the engines.  
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Table 12.  Engine Specifications.  

Specification Ford 4000 John Deere 5103 John Deere 4039DF008 

No. of Cylinder 3 3 4 

Bore, mm 111.75 106.5 106.5 

Stroke, mm  111.76 110 110 

Displacement, litre  3.294 2.9 3.9 

Compression ratio 16.5:1 17.8:1 17.8:1 

Rated HP 42.7 38 41 

Rated speed 2200 2400 1800 

Fuel Injection Pump Distributor-type Stanadyne K5 Stanadyne K5 

 

Fuel Blends  

The experiments were carried out using pure diesel, neat biodiesel, diesel-

biodiesel (70:30) blend and three different DBE (Diesel-Biodiesel-Ethanol) blends in 

proportions of 70:25:5 (D70BD25E5), 70:20:10 (D70BD20E10) and 70:15:15 

(D70BD15E15) respectively.  The fuel properties tests such as flash point, kinematic 

viscosity, cloud point, carbon residue, copper corrosion, calorific value, density, cetane 

number, acid number and Reid vapor pressure of each fuel combination were performed. 

Specific blend compositions and their properties are given in Table 13. 

The methyl soy ester employed was a commercially available biodiesel known as 

“Soygold” that conformed to the ASTM D 6751-03 biodiesel standard. The following 

tests were conducted at the Biodiesel Testing Facility in Swalm School of Chemical 

Engineering at Mississippi State University: Carbon Residue Test (ASTM D 4530), 
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Cloud Point (ASTM D 2500), Copper Corrosion (ASTM D 130), Flash Point (ASTM D 

93A) and Viscosity (ASTM D 445). Tests of other parameters like Cetane Number 

(ASTM D613), Acid Number (ASTM D664) and Reid Vapor pressure were conducted at 

Southwest Research Institute, San Antonio, TX. 

Table 13. Fuel Properties of Diesel, Biodiesel, and Blends. 

 
Property 
 

 
Diesel 

 
Biodiesel 

 
D70BD30 

 
D70BD25E5 

 
D70BD20E10 

 
D70BD15E15 
 

Calorific Value, 
kJ/kg 

42026 33622 39364 39098 38827 38554 

Cetane Number 43.3 51.7 46.7 42.6 40.8 36.2 
Flash point 71 145 95 39 30 23 
Acid Number <0.05 0.21 0.08 0.11 0.07 0.06 
Reid Vapor 
Pressure, kPa 

1.68 0.33 0.41 1.67 2.96 3.44 

Density, g/litre 846.2 915.0 866.84 861.24 854.74 848.69 
Kinematic 
Viscosity, cSt 

2.677 4.127 3.04 2.767 2.42 2.29 

Carbon residue, 
% 

0.0759 0.185 0.076 0.0623 0.0487 0.0778 

Cloud Point, °C -29 1 -9 -11 -12 -14 
Copper 
Corrosion 

1A 1A 1A 1A 1A 1A 

 

Several concerns have been raised regarding potential adverse effects of the use of 

ethanol on engine performance and durability. Ethanol has fuel properties that are 

different than both biodiesel and diesel fuel, and does not meet either ASTM D 6751-03 

for biodiesel fuel or ASTM D975 specification for diesel fuel. Thus, addition of ethanol 

in diesel-biodiesel blends may fail to meet standard fuel specifications. The data in Table 

13 show that flash point decreased significantly with the rise in ethanol proportions. 

Adding ethanol increased the Ried vapor pressure of the blend extensively, making the 

fuel blends more volatile and vapor lock can be a problem. This means that DBE has 

more stringent storage requirements than conventional diesel. In fact, DBE must be 

stored and handled more like gasoline. 
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Biodiesel and ethanol, with low calorific values resulted in a reduction of blend 

calorific value. D70BD15E15 has lower cetane number than the diesel fuel specifications 

i.e. less than 40. The kinematic viscosity of D70BD20E10 and D70BD15E15, while 

being slightly lower than that for a typical diesel, met both the diesel and biodiesel 

specifications. The corrosivity as measured by copper strip corrosion method for each 

blends were the same as typical diesel, and also within specifications. The cloud points 

for the biodiesel and all the other blends were significantly higher than for typical diesel. 

However, it can be seen that addition of ethanol into diesel-biodiesel blends resulted in a 

decrease of the cloud point. 

Testing Procedures:  

The NOVA gas analyzer was turned on 10 minutes prior to collection of data to 

allow the instruments to stabilize. The engine was started and warmed-up, at low idle, 

long enough to establish correct oil pressure and was checked for any fuel, oil, water and 

air leaks. 

The speed was then increased to chosen engine rpm and load was set using the 

dynamometer. Data were taken while the engine was at constant load for different speeds. 

For the John Deere 5103, the selected engine speeds were 1400, 1700, 2000 and 2400 

rev/min. Engine rpm of 1600, 1800, 2000 and 2200 were selected for Ford 4000. For 

John Deere multi-fuel engine, there was an automatic engine rpm set at 1800.  The engine 

was run at the specified speeds and loads for a minimum of 15 min before data were 

collected during the last one hour of operation. The procedure was repeated for all the 

selected fuel types. The experiment was replicated three times and the average values 
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were reported. The testing was done at the Mississippi State University Department of 

Agricultural and Biological Engineering. 

Results 

CO Emissions  

Ethanol has the potential to significantly lower CO emissions from diesel engines 

due to the high oxygen content. This has not been systematically observed since ethanol 

simultaneously both increases oxygen content and decreases the cetane number of a fuel. 

In some cases, the adverse impacts of a lower cetane number outweigh the benefits of an 

increased oxygenate content. A comparison of emissions using different fuel 

combinations in the three engines is shown in Figure 23. Compared to diesel fuel, the CO 

emissions of the biodiesel-diesel-ethanol blends increased with the increase in blend 

ethanol proportions. The increase of CO emissions with the increase of ethanol 

percentage in the blend could be attributed to respective reduction of the cetane numbers. 

It can be seen that biodiesel causes significantly less CO emissions. These lower emission 

levels were likely due to the fact that biodiesel contains about ten percent oxygen by 

weight, and this ample availability of oxygen helps to completely oxidize hydrocarbons 

in the cylinder. Also as engine rpm increased at the same load level, the CO emission 

level increased significantly.  
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Figure 23.  Comparison of the Carbon Monoxide Level. 
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CO2 Emissions 

Figure 24 shows the variation of engine-out CO2 emissions caused by the 

differences in fuel compositions in the presence of ethanol and biodiesel. CO2 emissions 

increased with the increase in engine speed. It was found that the CO2 emissions among 

different fuel combinations were not significantly different.   
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Figure 24.  Comparison of the Carbon Dioxide Level. 
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Oxides of Nitrogen 

Nitrogen oxides (NOx) collectively refer to both NO and NO2. Nitrogen oxides formation 

generally increases with the increase in flame temperature and slower flame speed. 

Nitrogen oxide emissions also increase with reduced engine speed. While high 

temperatures and pressures are desirable for high efficiency operation of a diesel engine, 

they are also the prime cause for the formation of NOx gasses. According to literature, the 

NOx emissions behavior of biodiesel in unmodified diesel engines varies widely. Several 

reports show NOx is increased with biodiesel. However, in chassis dynamometer tests 

with the Cummins B 5.9 L, a reduction in NOx with a corresponding increase in PM was 

found [105,106]. The variability in NOx response for biodiesel may be due to individual 

variables in the engines themselves. Sharp and co-workers stated that there is “a strong 

link between increasing cetane numbers and reducing NOx emissions, but the response 

varies from engine to engine [107,108].” 

The NOx exhaust emissions are shown in Figure 25. The NOx emissions were 

higher for biodiesel and DBE blends in respect to diesel fuel in old ford 4000 engine. The 

increased NOx emissions could be associated with the oxygen content of the methyl 

esters, since the fuel oxygen may provide additional oxygen for NOx formation. 

Mittelbach and Tritthart tested used frying oil methyl ester and they found increased NOx 

emissions compared to No. 2 diesel fuel [109]. Rickeard and Thompson [110] and 

Monyem [111] stated that the NOx emissions increased for the biodiesel fuels.  

Increasing ethanol fraction increased both NO and NO2 emission and 

simultaneously raised NO2/NO in the old Ford 4000 engine. NOx emission and NO2/NO 

reduced with increase in rpm. When compared with D70BD30, the D70BD25E5 blend 
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showed an average increase in NOx emission of 16%. On similar comparison, 

D70BD20E10 indicated an average increase of 21% and a 24% rise using D70BD15E15.  

In contrast to the old Ford 4000 engine, the new John Deere 5103 tractor engine 

showed a reduction in NO and NO2 emissions with increasing ethanol proportions in the 

fuel blend. An increment in NO2/NO was observed in this case. NOx level and NO2/NO 

ratio declined with increase in engine speed. There was an average reduction of 12% of 

NOx emission using D70BD25E5 in comparison to D70BD30. Similarly, a drop of 16% 

NOx emission was observed using D70BD20E10 while a decrease of 22% was found 

using D70BD15E15. This clearly indicates that within the ranges tested, increased 

ethanol concentrations favor a reduction in NOx emissions.   

The John Deere multi-fuel engine also showed a similar trend - increased ethanol 

concentrations resulted in a reduction of levels of NOx and NO2/NO. When compared 

with D70BD30, 12%, 21% and 29% reduction in NOx was observed using D70BD25E5, 

D70BD20E10 and D70BD15E15 respectively. 

The three engines were obtained at different times and therefore it is not 

statistically accurate to compare results between the engines. However, the difference can 

be attributed to different engine specifications in three different engines. Dissimilar 

Compression ratios and fuel injection systems can be the vital explanations for the 

dissimilar trend in different engines. The increase in NO2/NO level with addition of 

ethanol can be accredited to the fact that on addition of ethanol, a greater amount of NO 

was oxidized to NO2. This may be due to the better oxidizing ability of ethanol. 

Moreover, it was noted that an increase in engine rpm at the same load level reduced the 

NOx emission level significantly. This may be due to reduced air:fuel mixture at a higher 
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speed. A super-lean mixture at low rpm burns very hot and produces a lot of NOx. The 

richer the mix, the cooler the combustion zone and hence, lower NOx at higher rpm. Also, 

this could be the reason behind the reduced NO2/NO level with increase in engine rpm. 
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Figure 25.  Comparison of the NOx Level  

 

Based on the data collected, several general conclusions may be reached 

regarding the effect of ethanol-biodiesel-diesel emulsions on exhaust emissions. Increase 

in the ethanol percentage in the biodiesel-diesel blends caused significant changes in fuel 

properties like cetane number, flash point and Reid vapor pressure demanding more 

stringent storage requirements than conventional diesel. Biodiesel was associated with 

lower CO emissions levels compared to levels associated with diesel fuel. Adding ethanol 

however increased CO emissions. Using biodiesel generally tended to increase NOx 

emissions. Substituting neat biodiesel for diesel fuel, resulted in an increase of NOx 

emissions by roughly 10-20 percent. Adding ethanol showed two different trends in NOx 

emissions. With new engines, increase in ethanol proportion in the fuel blend resulted in 

a decline of NOx emissions, although the old Ford 4000 engine demonstrated an almost 

reverse trend in NOx emissions. It is possible that other properties of ethanol and 

biodiesel or interaction with characteristics of the combustion process and combustion 

chamber dynamics may have caused this variation in the expected trend toward NOx 

emissions. More research is needed to fully understand the dependence of NOx emissions 

on the diesel-biodiesel-ethanol and other parameters. 
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