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ABSTRACT

On December 4, 1997, the US Department of Energy (USDOE), the New En-
ergy and Industrial Technology Development Organization of Japan (NEDO), and
the Norwegian Research Council (NRC) entered into a Project Agreement for Inter-
national Collaboration on COy Ocean Sequestration. Government organizations from
Japan, Canada, and Australia, and a Swiss/Swedish engineering firm later joined the
agreement, which outlined a research strategy for ocean carbon sequestration via di-
rect injection. The members agreed to an initial field experiment, with the hope that
if the initial experiment was successful, there would be subsequent field evaluations
of increasingly larger scale to evaluate environmental impacts of sequestration and
the potential for commercialization. The evolution of the collaborative effort, the
supporting research, and results for the International Collaboration on CO, Ocean
Sequestration were documented in almost 100 papers and reports, including 18 peer-
reviewed journal articles, 46 papers, 28 reports, and 4 graduate theses. These efforts
were summarized in our project report issued January 2005 and covering the period
August 23, 1998 - October 23, 2004. An accompanying CD contained electronic copies
of all the papers and reports.

This report focuses on results of a two-year sub-task to update an environmental
assessment of acute marine impacts resulting from direct ocean sequestration. The
approach is based on the work of Auerbach et al. [6] and Caulfield et al. [20] to as-
sess mortality to zooplankton, but uses updated information concerning bioassays,
an updated modeling approach and three modified injection scenarios: a point re-
lease of negatively buoyant solid CO. hydrate particles from a moving ship; a long,
bottom-mounted diffuser discharging buoyant liquid CO, droplets; and a stationary
point release of hydrate particles forming a sinking plume. Results suggest that in
particular the first two discharge modes could be successfully designed to largely avoid
zooplankton mortality. Sub-lethal and ecosystem effects are discussed qualitatively,

but not analyzed quantitatively.



EXECUTIVE SUMMARY

On December 4, 1997, the US Department of Energy (USDOE), the New En-
ergy and Industrial Technology Development Organization of Japan (NEDO), and
the Norwegian Research Council (NRC) entered into a Project Agreement for Inter-
national Collaboration on COy Ocean Sequestration. Government organizations from
Japan, Canada, and Australia, and a Swiss/Swedish engineering firm later joined the
agreement, which outlined a research strategy for ocean carbon sequestration via di-
rect injection. The members agreed to an initial field experiment, with the hope that
if the initial experiment was successful, there would be subsequent field evaluations
of increasingly larger scale to evaluate environmental impacts of sequestration and
the potential for commercialization. The evolution of the collaborative effort, the
supporting research, and results for the International Collaboration on CO, Ocean
Sequestration were documented in almost 100 papers and reports, including 18 peer
reviewed journal articles, 46 papers, 28 reports, and 4 graduate theses. These efforts
were summarized in our project report issued January 2005 and covering the period
August 23, 1998 - October 23, 2004. An accompanying CD contained electronic copies
of all the papers and reports.

This report focuses on results of a two-year sub-task to update an environmental
assessment of acute marine impacts resulting from direct ocean sequestration. In
1996, MIT conducted a study for DOE/FE on the Environmental Impacts of Ocean
Disposal of COy (Adams and Herzog [1]). Among other things, the report compiled
available data on acute impacts of lowered pH on marine organisms. At the time,
most data were from laboratory studies in which coastal (near surface) fauna, mainly
zooplankton, were subjected to constant pH for fixed durations. The study modified
existing plume models to describe the spatial pH distributions resulting from various
discharge scenarios (falling dry ice cubes, rising liquid droplets released either as fixed
point sources or from a pipe towed by a moving ship, dense gravity currents created
from COg-enriched seawater, and deep lakes). A probabilistic exposure model was

then used to convert the spatial pH distributions into time-varying levels of pH that



would be experienced by passive organisms moving through the respective plumes. In
the process, a new approach was developed to utilize the constant concentration data
from laboratory assays to evaluate acute impacts from time-varying field exposures.
The report produced two journal articles: Auerbach et al. [6] and Caulfield et al. [20].
Since this study a number of newer biological studies on a variety of species have
been reported, which have improved on the earlier ones, e.g., by focusing on elevated
CO, as well as depressed pH as stressors, and by studying animals acclimated to
higher pressures and lower temperatures more representative of the intermediate and
deep ocean depths into which CO5 might potentially be released. Some researchers
have also studied time-varying stress, while others have adopted modified approaches
for integrating constant exposure data with time-varying exposures. Finally, current
thinking has changed regarding optimal discharge designs: some options have been
dismissed because of high cost (e.g., dry ice) or high CO, concentration (e.g., dense
current), other options have been modified to produce greater dilution (e.g., use
of a bottom-mounted diffuser to increase the dilution of buoyant liquid droplets),
while still other approaches are being developed (e.g., various ways besides dry ice to
produce sinking plumes that achieve high dilution and long sequestration time).
This report summarizes results of a two-year sub-task to update the previous
environmental assessment, incorporating the more recent biological and engineering
data. Data on the CO, tolerance of all species are considered, although quantita-
tive estimates of acute impacts focus on zooplankton, using copepods as represen-
tative target organisms. Impact is evaluated for three injection scenarios: a point
release of negatively buoyant solid CO, hydrate particles from a moving ship; a long,
bottom-mounted diffuser discharging buoyant liquid CO4 droplets; and a stationary
point release of hydrate particles forming a sinking plume. Results suggest that in
particular the first two of these discharges could be successfully designed to avoid
zooplankton mortality. The applicability of this result to other pelagic organisms
is considered. Sub-lethal and ecosystem effects are discussed qualitatively, but not
analyzed quantitatively. Recommendations for future work and some discussion of

policy implications are given in the final chapter.



With minor modification, this report is part of the thesis work of MIT graduate
student Peter H. Israelsson (2007, [62] and 2008, [63]). Interim results from this study
were also presented at the Annual Fall Meeting of AGU (December 2005) and the
Annual DOE Meeting on Carbon Capture and Sequestration (May, 2006).
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Chapter 1

Introduction

Carbon capture and storage (CCS) is increasingly being mentioned as one of
the major options available to help reduce the build-up of greenhouse gases in the
atmosphere [96, 56]. The ocean is potentially the largest carbon sink, and has the
distinction that it is already being “used” under business as usual (BAU) operation:
the net carbon flux from the atmosphere to the ocean is about one-third of the
anthropogenic emission to the atmosphere, and over time more than two-thirds of
the carbon we emit to the atmosphere will eventually wind up in the ocean. As a
result of this practice, the surface ocean has already experienced a depression of about
0.1 pH units, which carries concern over impacts to coral and other near surface biota
[56].

The logic behind direct ocean storage is that some of the CO, that we now put in
the atmosphere could be input directly to the ocean, thus eliminating its deleterious
effects on climate. One general strategy calls for isolating the COs, e.g., in a deep lake
where its negative buoyancy would reduce the exchange of COs with the overlying
water column. The COs could also react with seawater to form solid COq hydrates,
which would further inhibit mass exchange. However, even with a hydrate covering,
diffusion from the lake surface to the overlying water column would render such
storage temporary [37, 49]. The other strategic endpoint, and the one considered
herein, is to dilute the CO5 by dispersing if over the largest possible volume such that

the excess pCOy concentrations, and the changes in pH, will be as small as possible.
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In order that the sequestration be effective (i.e., that the CO5 be retained in the ocean
for as long as possible before being exchanged with the atmosphere), injection would
need to be into intermediate and deep ocean depths, and away from areas of strong
upwelling. Numerical simulations with ocean general circulation models suggest that
most CO, injected at a depth of 3000 m over a range of representative sites would be
retained for more than 500 years [94, 56].

Clearly direct ocean injection is only worth considering if the impacts to organ-
isms residing at intermediate and deep depths are substantially less than the avoided
climatic impacts, plus impacts to near surface marine biota, that would accrue un-
der BAU. Such environmental impacts constitute the general objective of this study.
There are several other attributes of direct ocean injection. It has already been men-
tioned that the storage is temporary. However, while several centuries is certainly
short by geological time scales, it should be long enough to help us find alternatives
to fossil fuels. Second, while the ocean is not infinite, it is large. Over 500 GTC
could theoretically be dispersed uniformly over the entire ocean, without depressing
the average pH by more than 0.1 units [56] presumably causing a small effect that is
comparable to that currently experienced by near surface waters [9]. As a point of
reference, Pacala and Socolow [96] identify 175 GTC as the emissions needed to be
avoided over the next 50 years in order to stabilize atmospheric concentrations below
500 ppm. Of course, the engineering task of dispersing the CO uniformly is far from
trivial. Finally, injection would be transparent. Unlike geological storage, where the
COs is hidden underground, the concentration of COs injected into the ocean would
gradually increase in ways that could be easily monitored. If an environmentally
acceptable endpoint can be established, relatively simple monitoring can be used to
determine when this endpoint is met.

From the above discussion it seems clear that any policy that includes direct
ocean injection should be linked to a policy of substantially and quickly reducing
CO2 emissions. Policy implications of ocean injection are discussed further in the
concluding chapter.

Marine impacts associated with direct injection can be categorized in several ways.

18



First is the type of organism, which include fish, plankton, benthic organisms and
micro-organisms. Our interest is mainly on plankton, because they can generally not
avoid a plume, and because they generally reside within the water column where the
exposure is greatest. Data also suggest that they are the most sensitive. Marine
impacts can also be categorized in terms of degree and extent of impact, including
acute impacts (mortality), sub-lethal impacts (e.g., reproductive effects), and ecosys-
tem effects. Our interest, here, is mainly on acute effects, partly because these are
the most dramatic, and also because they are easiest to measure. Some discussion of
sub-lethal and ecosystems impacts is provided in Chapters 2 and 5.

Auerbach et al. (1997, [6]) examined available data on the acute impacts to plank-
tonic marine organisms exposed to low pH. As part of this analysis they developed
a procedure to integrate constant-concentration laboratory assay data with variable-
concentration field exposures. In a companion study, Caulfied et al. (1997, [20])
simulated the time-variable concentrations seen by passive organisms that were trans-
ported through plumes resulting from several scenarios for direct ocean injection. Us-
ing the approach of Auerbach et al. [6], they identified regions of expected mortality
for each scenario.

The bioassay data used by Auerbach et al. [6] were collected largely to explore the
impacts of acidic wastes in the coastal zone, and not COs discharge in the deep ocean.
However, within the past decade a large number of studies have been conducted to
directly examine the biological impacts associated with ocean sequestration. Addi-
tional work has also been conducted to optimize injection scenarios to reduce CO,
concentrations. The specific objective of the current research is to review these more
recent studies and to re-evaluate impacts using the approach of Auerbach et al. [6] and
Caulfield et al. [20]. Accordingly, Chapter 2 summarizes available data concerning
acute impacts to marine organisms, and Chapter 3 describes the modeling approach
used herein, which is adapted from the work of Auerbach et al. [6], Caulfield et al.
[20], and several other studies. Chapter 4 presents and interprets the predicted impact
for the modeled discharge scenarios. Lastly, Chapter 5 summarizes the conclusions,

provides recommendations for future investigation, and discusses policy implications.
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Chapter 2
COy Toxicity Studies

Auerbach et al. [6] and Caulfield et al. [20] provided quantitative estimates of
the acute biological impact of a COs injection into a marine environment. These
studies were based on compiled toxicity data on the mortality of marine organisms,
mainly zooplankton, due to a decrease in pH. Because none of these toxicity studies
used CO; as the acidifying agent, the relevance of these data to carbon sequestration
depends on the extent to which the mortality due to a CO, release is caused by the
accompanying decrease in pH. Numerous studies over the past decade suggest that
mortality for a given level of pH reduction is significantly enhanced when COy is the
acidifying agent, thus implying that hypercapnia is a more important effect than the
accompanying acidosis.

Another shortcoming of the data available to Auerbach et al. [6] and Caulfield
et al. [20] is that they were limited to organisms that inhabit the upper ocean. Re-
cent studies suggest that the CO,y tolerance of organisms in the upper ocean may
be less than that of organisms in the deep ocean. Given that most ocean seques-
tration scenarios involve discharging CO, into the deep ocean, this is an important
distinction.

Before proceeding it is important to briefly describe the analytical framework
that will be used so that it is clear to the reader what type of data are needed. The
isomortality approach developed by Auerbach is a way of adding up the exposure

history of an organism (e.g., a zooplankter) and translate it into an acute impact.
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This is accomplished by constructing isomortality curves, i.e., lines of equal mortality,
such as the ones shown in Figure 2-1, and using the exposure history to map out a
cumulative harm trajectory in exposure time - stress level space (see Chapter 3 for
details). Such curves can be mapped out using mortality statistics such as LC values,
i.e., a concentration that is lethal to a certain percentage of the test population within
a fixed exposure time (e.g., LCyq for 50% mortality), or equivalently LT values, i.e.,
an exposure time at which a fixed concentration will be lethal to a certain percentage
of the test population (see [38, 118] for an overview). Thus, the primary goal of the
following literature review is to identify sources of acute toxicity data for as many
species as possible, which can then be used to construct revised isomortality functions.
In addition, the review will attempt to synthesize the current state of knowledge
regarding the acute response of various organisms such that the isomortality analysis

can be adjusted and evaluated accordingly.

2.1 pH toxicity studies

The existing dataset on the mortality of marine organisms in the presence of
lowered pH due to an acidifying agent other than CO, is reviewed first. This consists
mainly of the dataset compiled by Auerbach et al. [6] and a more recent study by
Yamada and Ikeda [144].

Auerbach et al. (1997)

The following studies were included in Auerbach et al. [6]:

e Bamber (1987, [7]) studied the pH mortality of young carpet-shell clams.

e Bamber (1990, [8]) studied the pH mortality of three commercial bivalve mollusc

species.
e Brownell [13] studied the pH mortality of the larvae of 8 marine fish species.

e Calabrese and Davis [15] looked at the pH tolerance of embryos and larvae of

two commercial bivalve mollusc species.
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Figure 2-1: pH mortality data for the combined dataset of Auerbach et al. [6] for a
variety of marine zooplankton and benthic species. Also shown are the isomortality
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lines developed by [6] from these data.

e Grice et al. [47] looked at the mortality and reproductive effects of three zoo-

plankton when exposed to acid waste of varying pH levels.

e Rose et al. [106] looked at the pH mortality of a marine copepod.

e Portmann [100] studied the pH mortality of brown shrimp.

Auerbach [5] provides little explanation as to how he extracted and condensed
the data to arrive at a “representative” dataset. It is however clear that the dataset
presented does not consist solely of the raw data but is rather a subset that has
been manipulated to some extent. For example, some mortality data were adjusted
based on observed decreases in reproductive rates. For the present purpose, we will
simply take his compiled data as given. Looking ahead, these data will not be used in
the present analysis since more appropriate (COy-induced mortality) data now exist.

Figure 2-1 shows the data extracted by Auerbach along with the isomortality curves

developed from these data.
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Yamada and Ikeda (1999)

Given the fact that the mortality dataset that existed at the time of Auerbach
was restricted to shallow-water organisms, Yamada and Tkeda [144] looked at the pH
sensitivity of 10 marine zooplankton. Plotted in Figure 2-2 is a comparison of the
Auerbach et al. [6] dataset and the data collected by Yamada and Ikeda [144]. The
combined dataset is compared to COs-induced toxicity data later in this chapter,
which shows that marine organism are more sensitive to CO, than pH depression
alone. This unfortunately makes the dataset plotted in Figure 2-2 of limited value to

the present analysis.
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2.2 CO, toxicity studies of fish

The fish studies are divided into two groups: adult and developmental. The
developmental group includes eggs, larvae, and juvenile/young fish. Although the
set of fish articles reviewed below are restricted to those with original data, there
exist a number of in-depth review articles on the biological effects of CO5 on fish.
In particular, Ishimatsu et al. [59, 61] synthesized much (but not all) of the data
presented below on fish (developmental and adult stages) and offered insight into the

state of knowledge on the effects of hypercapnia on fish.

2.2.1 CO, toxicity studies of adult fish

Four main studies of lethal hypercapnia on adult fish were found: Grgttum and
Sigholt [48]; Lee et al. [81]; Hayashi et al. (2004a, [52]); and Hayashi et al. (2004b,
[51]). In addition, there are some data in Takeda and Itazawa [123]. These studies
were not limited to overall mortality of marine fish species; in each case various indica-
tors of blood composition were measured in an effort to understand the physiological
response of the fish to lethal and sub-lethal exposures. Of the four main studies, all
except Grgttum and Sigholt [48] were motivated by carbon sequestration. The COq
exposures tested were similar in each case, with a maximum pCQO; of nearly 8 kPa.

There have been many studies of sub-lethal effects of CO5 on fish; Grgttum and
Sigholt [48] refer to this body of work as comprehensive and recommend [53] for an
overview. For example, sub-lethal exposures have been studied in freshwater species
such as carp [27, 146, 122, 145], tench [68], channel catfish [14], brown bullhead
[45], European eel [31, 87], white sturgeon [28, 29], and multiple species of rainbow
trout [115, 17, 67, 97, 99, 66, 11, 98]. Examples of marine species for which sub-
lethal hypercapnic effects have been studied include Pacific spiny dogfish [30, 26, 86],
Conger conger (a marine teleost) [130], the seawater salmon [97], Atlantic salmon
(39, 40], spotted wolffish [42], larger spotted dogfish [103], spotted skate [46] and cod
[80]. Additional references may be found in the literature review provided by Kita

and Ohsumi [74].
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The studies of lethal effects are described briefly below. In each case, crude
estimates of L.Csy values have been generated whenever possible by simple linear
interpolation between the reported mortalities. This approach was used for the adult
fish dataset in favor of a more rigorous method (e.g., [38, 118]) for two reasons. First,
the data are sparse with generally few partial kills making curve fitting problematic,
and second, these values are not used further in the present study in any isomortality-
type analysis. The resulting data for all adult fish species are combined and discussed

at the end of this section.

Grgttum and Sigholt (1996)

Motivated by the potential buildup of COy that may occur during commercial
farming of European seabass (Dicentrarchus labraz, a pelagic teleost [107]), Grettum
and Sigholt [48] studied the acute toxicity of carbon dioxide on this species, measuring
mortality as well as plasma ion levels. 14 adult fish were placed in each of 7 flow-
through tanks and were exposed to different steady concentrations of CO, for a period
of 120 hours. The maximum pCOs studied was 62.3 mmHg (8.31 kPa), and pH values
were also reported for each pCO; studied. LCsy values were reported for 48, 72, 96,
and 120 hour exposures, and the mortality curve for the 120 hour exposure was given.

The study also reports plasma Cl~, Na*t, and lactate concentrations.

Lee et al. (2003)
Lee et al. [81] studied the lethal and sub-lethal effects of CO4 on yellowtail (Seriola

quinqueradiata, a pelagic teleost [51]). 5 and 6 yellowtail were exposed to a steady
pCO; of 7 mmHg (0.93 kPa) and 38 mmHg (5.07 kPa), respectively, for a period of
72 hours. Most of the discussion in the study is devoted to the cardiorespiratory and
blood-gas responses of the fish, based on data such as heartrate, cardiac output, blood
pressure and pH, and blood levels of Oy, CO,, lactate, hematocrit, and bicarbonate.
The authors tentatively conclude that cardiac failure is the primary cause of mortality

induced by high CO, concentrations.
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Hayashi et al. (2004a)

Hayashi et al. (2004a, [52]) compared the responses of Japanese flounder (Par-
alichthys olivaceous, a benthic teleost [51]) to high CO5 exposure with the response
to acidification using sulfuric acid. The goal of the study was to determine whether
the toxicity of aquatic hypercapnia is due to the CO, exposure or to the accompany-
ing decrease in ambient pH. Of the 11 flounder included in the study, 6 were exposed
to seawater equilibrated with an air mixture containing 5% CO,, and the remaining
5 were exposed to seawater to which 1 N HySO, had been added. The resulting pH
in both cases was 6.18 (2 pH units lower than the unaltered seawater). Although the
authors did not report the resulting aqueous pCO, value, it is reported as 4.95 kPa
in Hayashi et al. (2004b, [51]) using the same experimental setup. The differences
in mortality for the two groups is dramatic: all of the fish in the COy group died
between 3 and 48 hours of exposure, while none of the fish in the HySO4 group died
after 72 hours of exposure. A similar difference was noted in the response of arterial

pH, hematocrit, pCO,, and plasma ion concentrations (HCO3, C1~, Nat, and K™).

Hayashi et al. (2004b)

The same authors as in the preceding article publish additional data in Hayashi et
al. (2004b, [51]), focusing only on toxicity due to hypercapnia. Three fish species were
studied: Japanese flounder (Paralichthys olivaceous), yellowtail (Seriola quinquera-
diata), and starspotted dogfish (Mustelus manazo, a demersal elasmobranch). All
three species were subjected to seawater equilibrated with an air mixture containing
1, 3, and 5% COs, and the dogfish were also exposed to an air mixture containing
7% CO4 (the exposures correspond to pCO, values of 0.99, 2.97, 4.95, and 6.96 kPa,
respectively). The pH of the unaltered seawater was 8.18, and the 1, 3, 5, and 7%
exposures resulted in pHs of 7.01, 6.41, 6.18, and 6.02, respectively. The mortality

results were:

e For the 18 Japanese flounder tested, there was no mortality for the 1 and 3%
CO, cases after 48 and 72 hours of exposure, respectively. For the 5% CO, case,
mortality was 17, 33, and 100% at 8, 24, and 48 hours of exposure, respectively.
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e For the 15 yellowtail tested, there was no mortality for the 1 and 3% CO, cases
after 72 hours of exposure. For the 5% CO, case, mortality was 20 and 100%

after 3 and 8 hours of exposure, respectively.

e For the 20 dogfish tested, there was no mortality for the 1, 3, and 5% CO,
cases after 72 hours of exposure. For the 7% CO, case, mortality was 20% at

72 hours.

Thus, the data indicate that the CO4 toxicity is in this case species specific; the
yellowtail were more susceptible than the Japanese flounder, and the starspotted
dogfish had considerably higher resistance than the other two species.

Physiological parameters measured during the study included arterial pH, hemat-
ocrit, pCOg, and plasma ion concentrations (HCOj3, C17, Na*, and KT). The authors
found a difference between the acid-base regulatory mechanism in the two teleosts and
the elasmobranch, and also concluded that the observed acid-base regulation mech-
anisms differ from the generally accepted model for marine fish. The physiological
response factors are discussed at length in [51].

It should be noted that these data are also presented in review articles by Ishimatsu

et al. [61, 59], which contain some additional discussion of sub-lethal effects.

Takeda and Itazawa (1983)

Takeda and Itazawa [123] studied methods for sedating fish for the purpose of
live transport. One of these methods involved bubbling COy and Oy through water
throughout the transport. Two species were tested, carp and porgie (scientific names
not given in English; the article is in Japanese). This sedation approach proved
feasible for carp but not for porgies as the latter group exhibited mortality at the
pCOs required to induce sedation. Mortality statistics are reported for exposure
periods of 4, 8, and 22 hours, with pCO, values ranging from 4 to 104 mmHg (0.53
- 13.9 kPa) and pH values ranging from 5.72 to 7.48. Exposure pCOy and pH were
reported as observed ranges as opposed to specific values, making the data less precise

than the other studies on adult fish. According to Hayashi et al. (2004b, [51]) the
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porgie species is actually red sea bream (Pagrus magjor), which is assumed to be

correct in the present study.

Combined adult fish dataset

Figure 2-3 shows all of the adult fish LCs, data together as a function of pCO,
and pH. Based on the data from [52], hypercapnia appears to be a stronger stressor
than the accompanying decrease in pH. However, the other studies did not consider
mortality due to pH depression by another acid, and thus only one datapoint on the
hypercapnia vs. acidosis issue is available from the adult fish dataset. The issue will
instead be addressed in the developmental stage fish and copepod datasets. The adult
fish data are compared to the other data later in this chapter.
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Figure 2-3: Mortality data for adult fish as a function of pCO; (top) and pH (bottom).
Dataset includes European seabass (Dicentrarchus labraz, squares [48]); Japanese
flounder (Paralichthys olivaceus, circles [52, 51]); yellowtail (Seriola quinqueradiata,
triangles [81, 51]); and red sea bream (Pagrus major, diamonds [123]). Reported
values are shown as filled symbols; estimated values are shown as open symbols.
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The adult fish dataset is augmented with two studies relevant to evaluating the
expected acute effects of COq discharges on fish, Tamburri et al. [126] and Vetter
and Smith [134]. Both studies attempted to observe the effect of high in situ pCOq
on nektonic animals (i.e., species that can swim enough to overcome the ambient
current), and in particular to determine whether or not they avoided regions of high
pCO,. Although the species studied were not all fish, their findings are included
here because fish are the only nektonic organisms considered in the literature re-
view. Tamburri et al. [126] attracted benthic macrofauna to beakers on the seafloor
by releasing an odor solution and, once enough animals had gathered, the odor so-
lution was passed through CO, hydrate to enrich the seawater. Avoidance of the
plume was not observed for fish or invertebrates; fish swam through the plume in
a zigzag fashion following the odor regardless of whether or not the elevated pCO4
had been introduced. One species of fish, a hagfish, was observed to repeatedly enter
the beaker and become anaesthetized, and then eventually recover and swim away.
Acute toxicity was not observed even though the pH was lowered by about 2 pH
units; respiratory distress was, however, noted in some species. Overall the authors
conclude that fish and invertebrates do not avoid high CO, regions, and speculate
that the induced mortality by CO, discharges could be significantly enhanced if nek-
tonic scavengers seek out dead animals in high COs regions and perish themselves.
These findings were contradicted by the observations of Vetter and Smith [134] on the
behavior of amphipods and synaphobranchid eels (the latter being a member of the
fish family) near a natural hydrothermal vent discharging seawater with high pCOs.
They observed avoidance of baited traps near the vent, relative to a control site with
additional baited traps, indicating avoidance for all species in the region. They did,
however, note significant narcotic effects to amphipods placed in the vent which they
attributed to high pCO,. Once removed from the vent, the amphipods recovered.
Overall, their observations did not support the creation of a mortality sink in the
vicinity of a CO, discharge. Thus, the data are inconclusive regarding whether or not

fish and other nektonic creatures would avoid or seek out CO, discharges.
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2.2.2 CO, toxicity studies of developmental stage fish

Four articles with original data on the tolerance of developmental stage fish to
high levels of COy were found, all by the same lead author: Kikkawa et al. (2003,
[71]), Kikkawa et al. (2004, [72]), Kikkawa et al. (2006a, [73]), and Kikkawa et al.
(2006b, [70]).

Kikkawa et al. (2003)

Kikkawa et al. (2003, [71]) compared the mortality of red sea bream (Pagrus
magjor) eggs and larvae due to hypercapnia with the mortality due to an equivalent
level of acidification using another acid. In the acidification portion of the study,
pH levels of 6.2 and 5.9 were achieved by adding varying amounts of 1 N HCI to
seawater. In the hypercapnia portion of the study, these same pH levels were achieved
by equilibrating seawater with air mixtures containing 5 and 10% CO,, corresponding
to pCOy values of 4.95 and 9.90 kPa, respectively. The eggs (embryos) used in the
study were at the stage where auditory vesicles form (21 hours after fertilization)
and were subjected to a 6-hour exposure time; the larvae were at the preflexion stage
(10-12 days after hatching) and were given a 24-hour exposure time.

The differences in mortality between the strong acid and COs exposures were
dramatic for both eggs and larvae. For eggs, the HCl and CO, exposure cases resulted
in mortalities of 3.6 and 85.8% for a pH of 6.2, and 0.9 and 97.4% for a pH of 5.9,
respectively. For larvae, the HCl and CO, exposure cases resulted in mortalities of
1.6 and 61.2% for a pH of 6.2, and 5.0 and 100% for a pH of 5.9, respectively. These
findings are consistent with the findings of Hayashi et al. [52] for adult Japanese
flounder, for which hypercapnia and not the accompanying acidification was the cause

of toxicity.

Kikkawa et al. (2004)

By far the largest dataset on the CO, toxicity of developmental fish comes from
Kikkawa et al. (2004, [72]). In total four species were studied: red sea bream (Pagrus
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Figure 2-4: Reported COy LCjy data from Kikkawa et al. (2004, [72]) for develop-
mental stages of red sea bream (Pagrus major), Japanese sillago (Sillago japonica),
Japanese flounder (Paralichthys oliaceus), and eastern tuna (Euthymnus affinis). All
developmental stages that were tested are combined in the figure.

magor), Japanese sillago (also known as Japanese whiting, Sillago japonica), Japanese
flounder (also known as bastard halibut, Paralichthys oliaceus), and eastern tuna
(Euthymnus affinis). For red sea bream and Japanese sillago, developmental stages
tested included egg (cleavage and embryo), larva (preflexion, flexion, and postflexion),
and juvenile. For Japanese flounder, egg (cleavage) and young were tested; for eastern
tuna, only the egg (cleavage) stage was tested. Exposure tests for three of the species
generally lasted 24 hours; Japanese flounder tests went as long as 72 hours. In most
cases mortality data were collected after 15 minutes, 90 minutes, 6 hours, and 24
hours. Exposure concentrations were for the most part in the 1-10 kPa range, except
for the more COy tolerant eastern tuna where they reached nearly 15 kPa. The
authors reported LCsy concentrations in each case, as well as the mortality curves for
the red sea bream and Japanese sillago experiments.

Taken as a whole, the combined dataset from this study (see Figure 2-4) does not
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reveal a clear trend. The data are more revealing when plotted by species and by
developmental stage, as shown in Figure 2-5. Note that in the case of red sea bream
and Japanese sillago, the eggs at cleavage stage and the juvenile fish are most sensitive
to hypercapnia. The Japanese flounder egg data are similar to these, and the young
data suggest a slightly higher tolerance, but this could also be due to slightly older
fish (young flounder vs juvenile bream/sillago). The eastern tuna egg data show a

higher CO; tolerance, as noted by [72].
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Figure 2-5: Kikkawa et al. (2004, [72]) COy LCsq data by development stage for red
sea bream (Pagrus major, top left); Japanese sillago (Sillago japonica, top right);
Japanese flounder (Paralichthys oliaceus, bottom left); and eastern tuna (Euthymnus
affinis, bottom right - note the different vertical scale). Symbols refer to different
stages: filled triangles = egg (cleavage); filled squares = egg (embryo); filled diamonds
= preflexion larva; filled circle = flexion larva; open squares = postflexion larva; x =
juvenile (juv) or young (yng). All values were reported by the authors.
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Kikkawa et al. (2006a)

Building on previous results, Kikkawa et al. (2006a, [73]) investigated how the
CO, toxicity of juvenile Japanese sillago (Sillago japonica) differs when the exposure
concentration is time variable. As a baseline, Kikkawa et al. conducted a series of
18-hour experiments in which fish were immediately placed in seawater equilibrated
with air mixtures containing 1, 3, 5, 7, and 9% fCO, (approximately 1, 3, 5, 7, and
9 kPa). This one-step exposure approach is the same as in all COy mortality studies
previously described. Kikkawa et al. then conducted a set of four step-wise exposures
in which fish were exposed to CO, levels that were gradually increased in a series of
discrete steps from 1% and 7-10% fCO,, and then suddenly reintroduced into natural
(normocapnic) seawater. The resulting CO, toxicity was markedly different, and
two general observations were made. First, in all cases the mortality at peak CO,
concentration was reduced when the exposure was gradual rather than sudden. For
example, while mortality was near 100% after 15 minutes of the one-step 7% and 9%
fCO4 exposures, mortality in the first step-wise experiment was not observed until
the maximum 9% fCOq was reached (6 hours into the experiment) and at 18 hours
the mortality was only 67%. Second, the fish were very sensitive to a sudden drop
of CO, concentration; of the fish that survived the peak CO, concentration, 100%
died within 15 minutes of exposure to normocapnic seawater in three of the four
experiments and 76.7% died in the last experiment.

The step-wise exposure data from [73] are not plotted as they are not compatible
with one-step exposure data. However, the step-wise exposure findings cast doubt
over the validity of the Auerbach et al. [6] isomortality approach as it pertains to fish

and are considered later in this analysis.

Kikkawa et al. (2006Db)
The general findings of [73] were confirmed in Kikkawa et al. (2006b, [70]), where

tomato clownfish embryos (Amphipron frenatus) were subjected to one-step and two-

step exposures. One-step exposures of 14.3, 9.6, 6.8, 4.8, and 2.9 kPa were adminis-
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tered for experiment durations of 6, 24, 48, 72, and 96 hours. For these experiments,
an LCxq of 14.3 kPa, 10.3 kPa, and 7.0 kPa was reported for 48, 72, and 96 hour ex-
posures. During the two-step exposure experiments, where embryos were first placed
for 48 hours in one concentration and then moved suddenly to a second concentration
for another 48 hours, a substantial difference in response was observed. When going
from 2.9 kPa to normocapnic water, the mortality after 96 hours was about 40%,
compared to 0% for a constant one-step exposure. Likewise, mortality is about 75%
after 96 hours when going from 4.8 kPa to normocapnia, compared to 5-35% for a
one-step exposure of 4.8 kPa for 96 hours. Thus, embryos of tomato clownfish exhibit
a sensitivity to sudden changes in pCO; akin to that observed for juvenile Japanese
sillago in Kikkawa et al. (2006(a), [73]), albeit to a lesser degree. The adaptive abil-
ity observed in [73], whereby fish survived longer when gradually exposed to higher

concentrations in multiple steps, was not observed here.

Combined developmental fish dataset

The combined CO, mortality dataset for developmental fish is plotted in Figure
2-6, where the red sea bream data of [71], the Japanese sillago data of [73], and
the tomato clownfish data of [70] have been added to the data from [72]. The large
variability across developmental stages is apparent in the red sea bream and Japanese
sillago data, and it is interesting to note that in these case the cleavage stage eggs

and the juvenile fish show the highest sensitivity.
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Figure 2-6: Combined CO, LC5y dataset for developmental fish for red sea bream ( Pa-
grus magor, top left); Japanese sillago (Sillago japonica, top right); Japanese flounder
(Paralichthys oliaceus, bottom left); and eastern tuna cleavage-stage eggs (Futhymnus
affinis, bottom right) with tomato clownfish embryos (Amphipron frenatus, bottom
right). Note the different vertical scale used for the bottom right panel. Symbols
refer to different stages: filled triangles = egg (cleavage); filled squares = egg (em-
bryo); filled diamonds = preflexion larva, filled circle = flexion larva; open squares =
postflexion larva; x = juvenile (juv) or young (yng). Includes reported and estimated
data from [70], [71], [72], and [73].
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2.2.3 Combined fish CO, toxicity dataset

Data for developmental as well as adult fish are available for two species, red
sea bream and Japanese flounder. The combined LCs, dataset for these species is
shown in Figure 2-7. The adult dataset only adds a small number of datapoints to
each plot, and in each case exhibits more tolerance than most of the developmental
dataset. With regard to constructing a revised isomortality curve of the type in [6]
(see Chapter 3 for details), the following conclusions are drawn from the combined

developmental and adult fish dataset:

e Fish are much more sensitive to hypercapnia than to an equivalent level of pH
depression caused by another acid, as confirmed by [71] for developmental fish
and by [52] for adult fish. Thus, acute impact estimates of COs injection should
be based on CO, mortality data rather than pH mortality data as in [6].

e Fish seem to be most sensitive to hypercapnia during the early and late de-
velopmental stages, as demonstrated for red sea bream and Japanese sillago
by [72]. Thus, a conservative isomortality curve should be based on these life

stages rather than the combined dataset.

e COg tolerance is variable between different fish species. For example, adult
starspotted dogfish were notably more tolerant than adult Japanese flounder
and yellowtail [51] and eastern tuna eggs were more tolerant than red sea bream,
Japanese sillago or Japanese flounder eggs [72]. Thus, a conservative isomortal-
ity curve should be based on the most sensitive species rather than the combined

dataset.

e Hypercapnic mortality is strongly influenced by the time variability of the am-
bient COq concentrations, as demonstrated by [73] and [70]. Mortality due to
peak COy concentrations may be reduced when the concentration is increased
gradually, and a sudden return to normocapnic conditions can induce mortal-
ity. This casts doubt on the relevance of the integrated mortality concept, upon

which the isomortality method of [6] is based, to fish.
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Figure 2-7: Combined CO, LCs dataset for adult and developmental fish for red sea
bream (Pagrus magor, top) and Japanese flounder (Paralichthys oliaceus, bottom).
Symbols refer to different stages: filled triangles = egg (cleavage); filled squares = egg
(embryo); filled diamonds = preflexion larva; filled circle = flexion larva; open squares
= postflexion larva; x = juvenile (juv) or young (yng); + = adult. Developmental
stages include reported and estimated data from [71], [72], and [73]; adult data are
estimated from [51], [52], and [123].
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2.3 CO, toxicity studies of pelagic copepods

Three main studies have been identified which provide insight into the acute tox-
icity of pelagic copepods (a type of zooplankton): Kurihara et al. (2004(a), [76]),
Watanabe [138] and Watanabe et al. [139]. The studies provide data on both devel-
oping and adult copepods, but are here treated as a group because the distinction is

not as clear as in the fish studies.

Kurihara et al. (2004a)

Kurihara et al. [76] looked at the impacts of elevated CO5 concentrations on the
survival, egg production rates, and early development of Acartia steuer: and Acartia
erythraea, both shallow-water marine copepods. In the first part of the study, the
survival rate of adult females and their egg production rate were measured during an
8-day exposure to seawater with pCO, values of 0.236, 0.536, and 1.036 kPa (control
pCO, was 0.036 kPa). Although observed mortality increased with time in each case,
this trend was also observed in the control samples, where mortality exceeded 60 and
40% for A. steueri and A. erythraea, respectively. For A. steueri, the differences
in mortality between all elevated CO, cases and the control were not statistically
significant. For A. erythraea, the 1.036 kPa exposure had slightly higher mortality
rates but the difference from the control was only statistically significant in the early
portion of the experiment. In contrast, the egg production rates were clearly impacted
by elevated CO5 exposure, decreasing with both time and CO5 concentration. At the
highest exposure tested (1.036 kPa), A. steueri and A. erythraea egg production
rates were 40% and 5% of their control values, respectively, indicating a significant
but different response by the two species.

The second part of the study looked at the hatch rate and survival of nauplii
(larvae) of A. erythraea only. Eggs produced in each of the COy conditions above
were placed in vials of the same concentration, and the number of hatched and dead
nauplii were counted after 24 hours. The hatch rate declined and the nauplii mortality

increased when exposed to high CO,, with differences from the control on the order
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of 30 and 20%, respectively (hatch rate was significantly different from the control at
1.036 kPa; nauplii survival at 0.536 and 1.036 kPa).

In terms of mortality data of the type collected for adult and developmental fish,
this study does not yield much data. An egg mortality rate could be inferred by
combining the hatch rate and nauplii mortality observations (e.g., a 30% decline in
hatch rate plus a 20% decline in nauplii survival, could be interpreted as a 44% mor-
tality even though adult female mortality was statistically similar to the control).
Such adjustments are not made here since it would be inconsistent with the previous
interpretations of adult and developing fish mortality. This issue is, however, revis-
ited in Section 3.3.2 and Chapter 5 since the observed reproduction impacts imply

intergenerational consequences of COs exposure.

Watanabe (2001)

The recuperation of several different species of copepods was studied after high
pCO; exposure (200,000 patm for 3-30 minutes) by Watanabe [138]. Each experiment
used about 5 copepods of the same species, and their level of activity was observed
and assigned a ranking based on a qualitative assessment. The scale went from 1 (not
moving or reacting, appearing dead) to 7 (sensitive to touch stimulus). This activity
or behavioral index was logged at regular intervals during and after the exposure.
Because the metric is qualitative and the data are published only in Japanese with a
short overview explanation provided by the author, certain assumptions regarding the
interpretation of the data were necessary here. The most obvious result is that in most
cases, the copepods generally returned to normal activity (7) within a relatively short
time after being returned to normocapnic seawater (10-40 minutes) after reaching
the lowest activity rank of 1 in the high pCO; environment. In some cases the
longest exposed group activity only returned to about 4 after 40 minutes (when
the experiment apparently ended). Taking the plotted behavioral index as a mean
response, this suggests that mortality was minimal for short exposures to this pCOs,
and on the order of 0-50% for exposures up to 30 minutes over a fairly large range of

copepod species. The study also looked at several reproductive factors but these are
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not interpreted here due to the language barrier.

The data provided in this study are highly relevant to understanding the fate
of a copepod encountering the plume, but do not lend themselves to inclusion in
an isomortality analysis. A constant toxicity test would have identified an LT5, as
being very short if the non-moving animals were assumed to be dead, but this would
be incorrect. As described in Section 3.1.3, Chen et al. [24] used this activity data
to construct a model of copepod response to elevated pCO, which allowed recovery
of organisms but not mortality. The implications of the observed recovery for the
validity of an isomortality approach is open to debate and should be the focus of
more study. Still, the data are not used quantitatively in the present study for the

reasons noted above.

Watanabe et al. (2006)

The largest source of copepod (zooplankton) mortality data comes from Watan-
abe et al. [139]. The purpose of the study was to remedy the lack of existing COq
toxicity data on deep-sea zooplankton species, i.e., for species that dwell in the depth
ranges considered by some CO, injection schemes. Samples were collected from five
stations in the Western North Pacific: three stations were in the subtropical region
({25° 26’N, 144° 50’E}; {24°N, 155°E}; {14°N, 155°E}), one was in the subarctic
region (43°N, 155°E), and the remaining station was in the transitional region (36°N,
155°E). At each station, deep and shallow samples were collected using a vertical tow
method (i.e., vertically integrating the sample over a depth range). Depth ranges
for the shallow and deep samples were 0-150 and 0-1000 m for the subarctic sta-
tion; 0-500 and 500-1500 m for the other four stations. COs exposure experiments
were conducted on the ship soon after collection. Sample specimens were placed in
seawater of varying CO, concentrations and incubated in the dark at temperatures
similar to their native environments (at atmospheric pressure). Animal behavior and
mortality was assessed after 6 and 12 hours, and at 12-hour intervals thereafter. A
total of 16 exposure experiments were conducted (2-5 experiments per station, with

at least one shallow sample and one deep sample), where each experiment consisted
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of a control (530 < pCO, < 1,600 patm, 8.02 > pH > 7.64) and multiple high CO,
exposures (1,100 < pCOy < 98,000 patm; 7.65 > pH > 6.02). Zooplankton species
were classified taxonomically and assigned to one of three groups: epipelagic (in-
habiting shallow water), meso/bathypelagic (inhabiting deep water), and eurybathic
(inhabiting a large depth range). The authors reported LT, values for each exposure
level for all experiments and provided complete mortality curves for experiments 1,

3, 15, and 16. The taxonomical breakdowns of each experiment are also included.

Watanabe et al. [139] make the following general conclusions from the dataset:

e Copepods do exhibit increased mortality when exposed to high COs concentra-
tions, and the mortality increases with increasing exposure time. The sensitivity
to exposure time seems much greater for zooplankton than for fish, which are

thought to adjust to external hypercapnic stress through the action of gill cells.

e Mortality to CO, exposure is significantly higher than mortality due to acifica-
tion by another agent, based on a comparison of the pH mortality data of [6]

and [144] with the data collected in this study.

e Deep-living copepods appear to be have better tolerance of high CO, concentra-
tions than shallow-water copepods, which is contrary to the generally held belief
that deep-sea organisms would be more sensitive. While observed differences
can perhaps in part be attributed to the fact that some deep-living copepods
go through a dormant stage or to the fact that toxicity of most chemicals is
generally lower at lower temperatures such as the ones found in the deep ocean,
the authors argue that these factors alone do not explain the observed differ-
ence in tolerance between deep- and shallow-water copepods. It is suggested
that deep-sea organisms are adapted to better tolerate COy because they are
naturally exposed to higher COy concentrations than surface organisms (pCOq
peaks at about 1,000 m depth due to remineralization of sinking organic matter
from primary production in the upper ocean). The higher tolerance of deep-sea
organisms is most pronounced in the subarctic and transitional regions; in the

subtropical region, there is a smaller but still significant difference between the
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Figure 2-8: Reported LT5, values for copepods in the Western North Pacific from
Watanabe et al. [139]. Filled squares: shallow-living copepods from the subarctic and
transitional regions; hatched squares: shallow-living copepods from the subtropical
region; open squares: deep-living copepods.

COy tolerance of deep- and shallow-water copepods (see Figure 5 in [139]).

The combined Watanabe dataset is plotted in Figure 2-8, where the data for the
various regions can be distinguished. The lead author of [139] has kindly provided
the remaining raw mortality data not included in the original paper. The treatment
of this additional data and their application to the development of a new isomortality

function is described in Section 3.3.2.

2.4 CO, toxicity studies of benthic organisms

The isomortality curves developed by Auerbach et al. [6] were partially based on
studies of benthic organisms. The response of such organisms to CO, exposure is

relevant not only to sequestration schemes in which CO; is introduced on the sea
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floor, but also to mid-depth releases since some benthic organisms are planktonic in
their developmental stages. Only one of the benthic studies, Sato et al. (2005, [112]),
yields data directly relevant to isomortality modeling. For the other studies reviewed
below, there is little in the way of controlled toxicity data that would be useful in the
evaluation of discharge scenarios in the next chapter. Nonetheless, the studies are
reviewed below because they have general relevance to acute impact modeling across

a range of species.

Sato et al. (2005)

The Sato et al. [112] study is highly relevant to the present discussion for two
reasons. First, the authors report COy mortality data on the harpacticoid (benthic)
copepod Metamphiascopsis hirsutus for steady and time-variable exposures. Second,
a more general form of the isomortality method of [6], the extended probit mortality
model of Sato and Sato [111] and Sato et al. (2004, [109]) is tested using the ex-
perimental mortality data. The discussion below is restricted to the mortality data
yielded by the study and its use in validating their model; theoretical considerations
of how the probit model differs from the Auerbach et al. [6] isomortality calculations
are discussed in Section 3.3.

The experimental portion of [112] consisted of 5 experiments of elevated pCO5 and
one control. In each case, 19-20 copepods were placed in individual vials containing
seawater equilibrated with varying pressures of CO5. Three of the experiments were
one-step exposures to 2, 4, and 9% fCO, that lasted 96 hours. The other two exper-
iments were two-step exposures; a fCO, of 4% was used for the first 48 hours of the
experiments, followed by another 48 hours at 2 or 8% fCO,. The raw mortality data
are provided by the authors, from which mortality statistics have been estimated for
the three one-step exposures.

The purpose of the two two-step exposure experiments was to test whether probit
model mortality calculations based on one-step exposure data could accurately pre-
dict two-step exposure mortality. Sato et al. [112] found that the model performed

“moderately well” in this respect and conclude that the time integration of COq
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mortality data is valid for zooplankton (Metamphiascopsis hirsutus was chosen as a
model organism for pelagic copepods based on unpublished observations, and pelagic
copepods were taken to represent zooplankton in general). Although the two-step
exposure data are not directly useful in constructing new isomortality curves, they
provide an interesting comparison to the time variable exposure of juvenile Japanese
sillago in [73]. While the fish showed greater tolerance to high COy levels during
step-wise exposures than one-step exposures, the mortality of M. hirsutus during a
4 to 8% two-step exposure seemed more additive, i.e., more consistent with the as-
sumptions behind the time integration of the probit calculations in this study and of
the calculations in [6]. This conclusion is qualitative at best since the corresponding
one-step experiment accidentally used 9% fCO, instead of 8%, and there is only one
datapoint. Nonetheless, the authors suggest that the ability of fish to compensate
for gradual exposure to otherwise lethal pCO, (by accumulating bicarbonate ions in
the blood) is not as well-developed in zooplankton, and thus the isomortality method

(probit method in their parlance) may be valid for zooplankton but not fish.

Barry et al. (2004), Carman et al. (2004), and Thistle et al. (2005)

The in situ response of sediment-dwelling meiofaunal communities to small scale
CO; releases has been studied by Barry et al. [10], Carman et al. [18], and Thistle
et al. [127]. In each case, small corrals (48 cm in diameter) were filled with liquid
CO5 and meiofaunal abundance in sediment cores after roughly month-long exposures
was compared to control samples (taken far away from the COq sources). Barry et
al. [10] observed a significant mortality of meiofaunal organisms in the CO, exposed
cores, most notably for flagellates, amoebae, and nematodes (ciliates and allogromid
foraminifera did not decrease in biovolume, but since these taxa have much lower
abundances it was thought that the experimental design was inadequate to detect
small changes in abundance/biovolume of these organisms). Carman et al. [18] did
not detect significant declines in the abundances of the major groups (harpacticoid
copepods, nematodes, nauplii, kinorhynchs, polychaetes) or total meiofauna, but this

was attributed to slow decomposition of meiofaunal carcasses which rendered the
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experimental procedure incapable of detecting mortality due to CO, exposure. Us-
ing the same samples, Thistle et al. [127] showed significant differences in mortality
between control and CO, exposed harpacticoid copepods, using a new technique in
which copepods were classified as alive or dead at the time of collection based on the
appearance of striated muscles. Based on these results, Thistle et al. [127] and Car-
man et al. [18] concluded that meiofaunal communities were likely strongly impacted
by CO, exposure, even though traditional abundance indicators failed to detect the
signal due to slowly decaying carcasses. Thus, [10], [18], and [127] are consistent
in their overall conclusion, namely that hypercapnia can induce high mortality on

meiofaunal communities.

Takeuchi et al. (1997)

Takeuchi et al. (1997, [124]) looked at the impact of high CO, concentrations on
three species of nematodes and eleven species of marine bacteria. These were selected
as representative of marine organisms because nematodes are the most abundant
taxa and have the highest species diversity in the benthic ecosystem, and because
bacteria are a major decomposer and an important genetic resource. For nematodes,
7-day exposure experiments were conducted under starvation conditions at varying
concentrations of CO, and compared to a control. Mortality curves are provided by
the authors, but as a function of pH and not CO,. The CO, concentrations used to
achieve the given pH levels are not reported, and insufficient supplemental information
is given to estimate corresponding COs concentrations after the fact. For the bacteria,
12-hour incubations under eutrophic conditions at various pH levels were performed
and compared to control incubations, but again the CO, concentrations used were
not reported. All eleven bacteria species were tested at atmospheric pressure, and
two were also tested at 350 atm which is more typical of pressures in a deep ocean

environment. The following results were obtained:

e No significant nematode mortality in excess of the control (pH 8.0) was ob-
served during exposures of pH 7.0 and 6.2. At pH 5.4, all three species showed

significantly higher mortality, and the effect was more pronounced in two of the
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three species (Mesacanthion sp. and Symplocostoma sp. were more sensitive

than Metachromadora sp.).

e Bacterial growth was strongly affected by CO, exposure, dropping to less than
50% of the control (pH 7.7) for pH < 6.0 for all bacteria, and for one species
this decrease was achieved at pH < 6.5. The authors suggest that the in situ
sensitivity of bacteria may be higher because of the oligotrophic conditions

(leading to higher stress) that prevail in the ocean.

e Bacterial sensitivity to CO, exposure was similar at high pressure, although
growth rates were generally lower than at atmospheric pressure. The results
did not support the generally held belief that deep-sea species are more sen-
sitive than shallow-water species because they experience less environmental

variability.

e Overall, the nematodes and bacteria showed acute effects when CO, concen-
trations were high enough to effect a pH of 6.0 or lower; above pH 6.0, acute

effects were generally not observed.

The nematode mortality and bacteria growth rate decline data of Takeuchi et al.
[124] are not used in developing new isomortality curves due to COy exposure for
two reasons. First, COy concentrations were not reported and cannot be estimated
without making assumptions regarding the seawater and incubation medium used in
the experiments. Second, and more importantly, the CO4 tolerance of the nematodes
and bacteria in this study was apparently greater than that of pelagic copepods
and fish, based on a comparison of observed mortalities and pH ranges. Thus, not
using these data seems conservative from the standpoint of COs-induced mortality
assessment.

Additional data on the microbial response to elevated CO5 can be found in a series
of mesocosm experiments reported in Sugimori et al. (2000, [120]), Takeuchi et al.
(2002, [125]), and Sugimori et al. (2004, [119]); shifts in bacterial populations were
noted for pCO, values in the range of approximately 1-10 kPa. For the reasons noted

above, these data are not used further in the present analysis.
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Ishida et al. (2005)

Ishida et al. (2005, [58]) used a benthic chamber to conduct one short (about 3
days) and two long (about two weeks) in situ COq exposure experiments on benthic
communities. In each experiment, the abundances of benthic meiofauna, nanofauna,
and bacteria were observed for average CO5 exposures of 5,000 ppm and 20,000 ppm
and compared to the control. The results were mixed: meiofauna showed for the
most part significantly decreased abundance at the highest CO, exposure when com-
pared to the control; nanofauna showed decreased abundance only in one long-term
experiment; and bacteria showed a significant increase in abundance in the two long-
term experiments. Of the meiofauna, nematodes showed decreased abundance for
the two long-term experiments with highest CO,, and foraminifers showed decreased
abundance in one long and the short experiment. The observed sensitivity of the
meiofauna to high COy exposure seems consistent with the conclusions of [10], [18],
and [127], and the sensitivity of nematodes in particular seems consistent with the
findings of [124]. The increase in bacterial growth in the presence of high CO, is not
consistent with the findings of [124], and is thought to be caused the growth of bacte-
ria adapted to the new environmental conditions, i.e., high CO5 and reduced feeding
pressure from nano and meiofauna. Taking the benthic community as a whole, Ishida
et al. point out that the response to CO, perturbations was neither simple nor linear;
the variable responses to CO, among the different trophic groups led to non-linear
effects. Although the data do not lend themselves to isomortality modeling, they
do suggest that biological impact calculations using mortality data collected on indi-
vidual species may be inadequate as these will not capture impacts on the relative

abundance of different trophic levels such as those noted herein.

Ishida et al. (2006)
Ishida et al. (2006, [57]) augment the above study with additional data from Stor-

fjorden, a Norwegian fjord, using the same experimental setup. Somewhat different

trends were observed. Meiobenthos abundance varied greatly, nanobenthos abun-
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dance increased, and bacterial abundance was unchanged. As in [58], the response

among the various trophic groups was neither simple nor linear.

Langenbuch and Pértner (2004)

Langenbuch and Portner [79] studied the COs sensitivity of the eurybathic sediment-
dwelling marine worm Sipunculus nudus. They found that although the species can
alter its metabolic rates to survive short-term exposure to hypercapnic conditions,
long-term mortality is sensitive to sustained high COs levels even when these lev-
els are within the natural range experienced by the organism. Mortality curves are
provided, but have not been incorporated into the isomortality analysis because the
discharge scenarios studied herein are in the water column and because Portner et al.
[101] identify Sipunculus nudus as showing exceptional tolerance to acutely elevated

pCOs, at least in the short term.

2.5 Combined mortality dataset for all species

The combined mortality dataset for all data (CO2 and non-COs) is plotted in
Figure 2-9 as a function of pH. The distinction between reported and estimated
mortality statistics is not shown in this figure, although the reader is reminded that
most of the adult fish data were estimated in the present study. The data in Figure 2-9
clearly indicate that marine organisms tend to be more sensitive to hypercapnia than
the equivalent acidosis caused by another acidifying agent, as has been previously
noted for a variety of species.

The dataset for COs-induced mortality is shown in Figure 2-10. Looking ahead to
Section 3.3.2, it is noted that the adult fish data indicate a higher tolerance to CO,
exposure than zooplankton (copepods). Also, if the adult fish data are excluded, then
the remaining dataset is dominated by developmental stage fish for short exposures
and by copepods for longer exposures; this has implications for the development of
isomortality relationships in Section 3.3.2.

It should be noted that acute mortality data have apparently been collected for
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Figure 2-9: Combined LCjq dataset for mortality due to pH depression by CO (filled
symbols) and other acids (open symbols). The non-CO, dataset is mainly comprised
of zooplankton [6, 144]; the CO, dataset consists of adult fish (AF, filled diamonds
[48, 51, 52, 81, 123]), developmental fish (DF, filled triangles [70, 71, 72, 73]), and
copepods (C, filled squares [112, 139]).

a number of other species as well, including cephalopods (Sepia lycidas [75], Sepio-
teuthis lessoniana [75], and the common octopus Octopus vulgaris [60]) and decapods
(the prawn Penaeus japonica [75] and the western rock lobster Panulirus cygnus [60]).
These species are not included in the present analysis as the data could not be found in
the peer-reviewed literature, and the above sources only mention mortality statistics
briefly. Moreover, with the exception of the common octopus, these species appear

to be significantly more tolerant of CO, than copepods.
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consists of adult fish (AF, open triangles [48, 51, 52, 81, 123]), developmental fish
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2.6 Sub-lethal impacts

The focus of the preceding literature review has been to identify sources of toxic-
ity data that are well-suited for the specific objective of the study, namely to update
the isomortality analysis provided by Auerbach [5] and Caulfield [19]. In addition, a
sampling of closely related studies was reviewed in an attempt to provide a more com-
plete picture of ongoing CO,-related research and a better qualitative picture of the
potential biological impacts of ocean sequestration. To that end, it would be remiss
of us to not at least mention the substantial body of literature on sub-lethal effects
of increased ocean CO, as well as the existence of a number of comprehensive review
articles which attempt to integrate lethal and sub-lethal effects with physiological and
ecosystem perspectives. In particular, the reader is referred to IPCC [56], Portner et
al. [101, 102], Ishimatsu et al. [59, 61], Siebel and Walsh [114], and Kurihara et al.
[77].

The potential importance of sub-lethal effects on both the organism and ecosystem
level must be taken into consideration, and findings of some recent work in this area
are discussed briefly below as an illustration. Kurihara and Shirayama [78] studied
the effect of CO, on the early development of the sea urchins Hemicentrotus pulcher-
rimus and FEchinometra mathaei, looking specifically at fertilization rate, cleavage
rate, developmental speed, and pluteus morphology. Also, the effect of CO, and HCI
were compared to differentiate between the effect of increased CO4 and pH depression.
COs partial pressures of 10,000 patm were used in the study, resulting in about a 1.2
unit drop in pH. All of the studied factors decreased with increased CO5 concentra-
tion, but only fertilization rates showed a greater impact when CO, rather than HCI
is used as the acifidying agent. From this the authors conclude that both reduced pH
and increased CO, can significantly affect the development of these organisms and
consequently alter the marine ecosystem. The study suggests, much like Kurihara et
al. [76] did for pelagic copepods, that there can be deleterious, sub-lethal effects with
intergenerational and ecosystem consequences. Such a conclusion is also supported by

a longer term investigation of Shirayama and Thornton [113] on the effects of mildly
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elevated pCOy (4200 patm) on the growth rates of gastropods and sea urchins (both
calcifying organisms). They demonstrate that adverse effects can be identified even
at this low level. Growth rate impacts have also been observed for marine mussels for
somewhat higher exposure levels [88]. Although such considerations are beyond the
capacity of an isomortality-type analysis, results of the present study are interpreted

in this context in the concluding chapter.
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Chapter 3

Modeling Approach and Scenarios

The following section describes the approach taken to simulating the acute impact
of three discharge scenarios, which are based on the scenarios put forth in Adams and
Wannamaker [2], and which seek to maximize near-field dilution of the injected COq
in different ways. Previous investigations are first reviewed, in particular Auerbach
[5], Caulfield [19], and Sato et al. [109], and then these methodologies are adapted to
the present study. The specific discharge scenarios considered are also described in

this section.

3.1 Previous studies

Since the goal of the present study is to update the original work of Auerbach [5, 6]
and Caulfield [19, 20] with new biological data and enhanced discharge approaches,
these studies are first reviewed in detail. Two additional acute impact modeling
studies are also reviewed briefly, Sato et al. [109] and Chen et al. [22]. As discussed
in Section 3.3, much of the biological impact modeling approach of Sato et al. [109]
is ultimately adopted in favor of the Auerbach [5] approach, although many elements

of the original framework of [5] and [19] are retained in the present study.
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3.1.1 Awuerbach et al. (1997) and Caulfield et al. (1997)

Together these studies simulated the acute biological impact to clusters of organ-

isms due to a variety of discharges. Their approach consisted of three parts:
e (Calculation of the CO5 concentration and pH field due to the discharge.

e Simulation of the exposure history of each organism cluster, i.e., its trajectory

through the plume.
e Calculation of cumulative impact to each organism cluster (% mortality).

The overall impact of a discharge scenario was calculated by considering the fate of
a large number of organism clusters entering the discharge area at different locations.
Each of these steps is described below. Note that the terms organism and organism
cluster are used interchangeably even though the model technically simulates the

latter (since a percent mortality does not make sense for a single organism).

Discharge scenarios (plume modeling)

Although Caulfield et al. [20] reports on only two discharge scenarios, the original
work by Caulfield [19] considered four scenarios. A brief outline of each scenario is
given below; details of the plume calculations can be found in [19] but will not elab-
orated on here as the present study considers different scenarios. For each scenario,
CO; loadings of 130 and 1,300 kg/s were considered, which was taken as the COq
produced by 1 and 10 500-MW coal-fired power plants including an energy penalty
for capture and storage. Summary statistics of the plumes modeled by [19] are shown

in Table 3.1.

Dry ice release: Dry ice cubes would be released from a fixed location at the
surface of the ocean. For the 3-meter cubes considered, this corresponds to one cube
every 5.4 minutes for a single power plant release. Plume calculations assumed that
the descending cubes form a two dimensional line source (extending to the sea-floor)

spread by a combination of ambient and cube-induced (wake) turbulence.
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Towed pipe release: Liquid COy would be released from a pipe which is towed by
a ship traveling at 5 m/s using a 1-m diameter pipe with diffusers which distribute
the CO5 over a depth range of 1000-1500 m. As in the dry ice scenario, plume
calculations assumed a two dimensional line source spread by the combination of

ambient and pipe-induced (wake) turbulence.

Unconfined droplet plume release: Liquid CO,; would be released from a fixed
multiport diffuser at 1000-1500 m, forming a buoyant plume which distributes the
COg vertically. CO4 enters the surrounding water column through a series of discrete
peeling events caused by the entrainment of seawater by the plume as the droplets rise.
Here the entrainment dilutes the outer portion of the plume, causing it to detach from
the more buoyant inner core of the plume and sink until it reaches neutral buoyancy,
forming an intrusion layer. Although it is unclear what spacing between diffuser ports
was used in the calculation, a flow of 13 kg/s was specified for each port and plumes
from neighboring ports were assumed to interact only in the diffusive regime, i.e., after
intrusion. All peeling events were combined into a single intrusion layer, forming a
relatively thin but wide two-dimensional plane source. The maximum thickness of
the intrusion layer was calculated as 23 m in each case, with widths of 880 m and
8800 m for the 1 and 10 plant releases (reflecting the fact that a longer diffuser was
used in the 10 plant case).

Descending confined dense plume release: Here seawater would first be en-
riched with COs in a confined vessel, and the resulting dense mixture would be
released along the sea floor in a confined trench. The plume would eventually reach
a level of neutral buoyancy and form an intrusion layer, which was modeled as a two-
dimensional plane in a manner similar to the droplet plume. A single plant release
created an intrusion layer 23 m thick (at its maximum) and 520 m wide at 1,000 m
depth when released from 855 m; a ten plant release from 755 m reached the same

depth and thickness but with a width of 3,000 m.
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Volume with | Distance to

pH < 7 (km?) | pH 7 (km) | Min pH
Dry Ice, 1 plant 0.001 0.09 6.1
Dry Ice, 10 plants 1.1 2.2 5.8
Towed pipe, 1 plant 0.00004 0.2 6.5
Towed pipe, 10 plants 0.3 14 5.7
Droplet plume, 1 plant 1.8 23 5.9
Droplet plume, 10 plants 130 60 5.5
Dense plume, 1 plant 7.2 94 4.0
Dense plume, 10 plants 510 690 4.0

Table 3.1: Plume characteristics modeled by Caulfield [19]

The relative dilution achieved by each scenario modeled by Caulfield [19] is demon-
strated by her plot of centerline dilution as a function of time (equivalent to distance
assuming a current velocity of 0.05 m/s or a ship speed of 5 m/s), as shown in Figure
3-1. Caulfield attributes the advantage of the dry ice and towed pipe scenarios to
their large plume thicknesses, but also points out the likely higher cost of these ap-
proaches. For the two fixed plume scenarios, she notes the advantage of the droplet

plume in achieving greater dilution and allowing more design flexibility.

Organism exposure history

The exposure history of an organism cluster was obtained by simulating its tra-
jectory through the plume. Caulfield [19] considered only planktonic organisms, i.e.,
floating organisms that move with ambient currents and exhibit little to no ability to
influence their horizontal position. Although some planktonic organisms can migrate
vertically hundreds of meters per day (diel migration), this effect was conservatively
ignored as it was thought to lessen impact by allowing organisms to escape the plume.
Thus, organisms were assumed to move only in the horizontal plane.

The fate of organisms drifting through the plume was modeled as a relative dif-
fusion problem between the organism and the plume. Specifically, the separation

distance y between the organism cluster and the plume centerline was modeled using
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Figure 3-1: Centerline dilution over time for the base case scenarios considered by
Caulfield [19].

a modified version of Richardsons’s distance neighbor equation [104]:

oply) _ 0 Ip(y)
=5 (0% .

where p(y) is the probability that an organism is at y at time ¢ given an initial

separation of yo, and F'(y) is a scale-dependent distance-neighbor diffusivity given by
F(y) = 0.0017y"1° (3.2)

where F' and y have units of m? /s and m, respectively. The diffusivity defined by (3.2)
is based on the data from Okubo [93] on the radial spreading of dye releases in surface
layers of coastal waters. Caulfield [19] describes simulating (3.1) with a Monte Carlo
technique, although few details are given. Implementation of this modeling approach

in the present study is given in Section 3.3.1.
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Figure 3-2: Compiled pH mortality dataset and derived isomortality curves from
Auerbach [5].

Cumulative impact to the organism (isomortality modeling)

The response of the organism to the plume was modeled as consisting of two parts:
(1) a % mortality based on observed relationships between mortality, exposure pH,
and exposure time; and (2) a population recovery based on a growth rate which varies

with exposure pH.

Isomortality calculations

Auerbach [5] developed the isomortality methodology for calculating the cumula-
tive impact to an organism cluster based on its exposure history. He began by devel-
oping isomortality curves, which were equations expressing LCy, LCs, and LCyy as
a function of exposure time, from a compilation of available pH mortality data (see
Chapter 2). The dataset included zooplankton and benthos data, and in all cases the
acidifying agent was not CO,. The derived isomortality curves are shown in Figure

3-2.
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Auerbach [5] gives few details of how the source data were merged and manipu-
lated. However, it is noted that some data have been shifted to account for observed
adverse reproductive effects, and that all datapoints were shifted “downward” by 0.25
pH units to be conservative.

The basic assumption behind this method is that there is an equivalence between
low pH exposure for a short time and higher pH exposure for a longer time. Auerbach
[5] discusses the justification of this approach. Although a number of variations of
the isomortality calculation are described in [5], the basic method employed involves

the following steps:

1. Divide the exposure history into N discrete time intervals (Aty, Aty, ..., Aty),

and define an average exposure for each interval (pHy, pHo, ..., pHy).

2. For interval At;, calculate a fractional mortality (population deficit), Dy, by
interpolating between the isomortality curves at t = At; to pH; (extrapolate if

beyond LCgy).

3. Estimate the equivalent cumulative time, ¢j, that corresponds to D; had the
organism been exposed to pH, instead, i.e., move along the isomortality line

that corresponds to D;. Thus, t* is defined by the equality

which must be solved iteratively since the curves are nonlinear and nonparallel.

4. Calculate the mortality after the second step, Do, by interpolating/extrapolating

between the isomortality lines at exposure time t; + Aty to pH,.
5. Repeat steps (3) - (4) for all remaining time intervals.

Although not explicitly stated in [5] or [19], before reaching non-zero mortality

the equivalent cumulative time is incremented by moving parallel to the LCy curve.
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Population recovery

Caulfield [19] allowed for species recovery in regions of low stress to account for
species reproduction. This was modeled using a logistic equation appropriate for a
single species population:

d% N N

K (122 (3.4)

dt K
where N is the number of organisms, K is the “carrying capacity” (maximum number
of organisms that can exist), and r is the growth rate with unlimited resources. Thus,
% is the fractional population, and (1 — %) is the population deficit. The growth

rate r was based on laboratory observations of surface copepods and specified as:

0 pH < 17.35
ro= ¢ 0.09(LE) day™! 735 <pH <75 (3.5)
0.09 day ! pH >175

It should be noted that because a species recovery was included, a finite impact
zone could be defined for each plume, i.e., at some distance from the source the
plume becomes sufficiently dilute and species populations are allowed to recover to

their original levels.

Acute impact estimates

The combined investigations of Caulfield [19] and Auerbach [5] yielded the acute
impact estimates summarized in Table 3.2. Three measures of impact were used.
First, integrated total mortality is the spatial integration of mortality over the im-
pacted volume, which may be thought of as an equivalent volume of “dead water”.
Similarly, the mortality flux is the flow rate of “dead water” crossing a plane perpen-
dicular to the plume centerline, which is expected to vary along the centerline. Third,
the mazimum spatial defecit is given by the grid cell with highest average deficit.

The results are qualitatively similar to the pH impact volumes in Table 3.1, i.e.,

the dry ice and towed pipe scenarios cause the lowest impact, the dense plume causes
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Integrated Total | Max Mortality | Max Spatial

Mortality (km?®) | Flux (m?®/s) | Deficit (%)
Dry Ice, 1 plant 0 0 0
Dry Ice, 10 plants 0 0 0
Towed pipe, 1 plant 0 0 0
Towed pipe, 10 plants 0 0 0
Droplet plume, 1 plant 0.45 307 11
Droplet plume, 10 plants 162 27500 69
Dense plume, 1 plant 11 1980 50
Dense plume, 10 plants 800 46900 95

Table 3.2: Acute impact estimates from Caulfield [19]

the most impact by far, and the droplet plume is in between.

3.1.2 Sato et al. (2004)

The use of the isomortality method has been extended and somewhat generalized
by Sato et al. [109], based on initial work in Sato and Sato [111]. This eztended probit
model is based on the standard assumption used in the LC5q concept, namely that the
acute mortality of a species follows a sigmoid function of the log of the concentration

of the toxic agent (see Finney [38]). The sigmoid function is made linear by the probit

7 = /Y_5 L exp <—M> dX (3.6)

—eo OV 2T 202

transformation

where X = log(z) which has mean p and standard deviation o, « is the concentration
of the toxic agent, Z is the probability (mortality), and Y is the probit of Z. Applied
to log(x) vs log(t) plots of mortality (e.g., the data in Figure 2-8), (3.6) can yield a

linear relationship between probit transformed mortality Y, log(z), and log(t):

Y = alog(t) + blog(x) + ¢ (3.7)
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where a, b, and c are regression constants. The cumulative mortality can then be

expressed as
t
Y =alog (/ [z]"/° dT) e (3.8)
0

which can be estimated numerically by dividing organism exposure into a series of
discrete steps in a manner similar to Auerbach [5, 6]. Thus, the probit mortality
model is a generalization of Auerbach’s isomortality approach in that the assumption
of a sigmoid function to describe acute toxicity yields a single probit function which
describes all isomortality curves, as Auerbach called them. By contrast, Auerbach
derived isomortality relationships for each of three different impact levels (LCq, LCsy,
and LCqg) by independently fitting curves to the data corresponding to these impact
levels, and then interpolating linearly between them as needed. In the present study,
the term isomortality curve or function is for convenience also used to describe the
probit function (3.7) proposed by Sato et al. [109], since this function defines lines of
equal mortality for any mortality level.

Sato et al. [109] fitted their probit function to copepod mortality data from the
study later reported in Watanabe et al. [139], focusing specifically on Metridia pacifica
(a species which exhibited relatively high CO, sensitivity). Two discharge scenarios
were evaluated: (1) a fixed pipe discharging 1 kg/s COs (spray droplets) from each
of 100 nozzles spaced 10 m apart over 1,000 - 2,000 m depth, and (2) the same pipe
towed by a ship moving at 4 knots (about 2 m/s). The resulting COy plume was
calculated using a CFD simulation forced by low-wavenumber ocean eddy velocity
data (see [109] for details). Simulations predicted “nontrivial” mortality for the fixed
pipe scenario and insignificant mortality for the towed pipe scenario. The latter
finding was based on the fact that the target organism, a single copepod traveling
with the plume, reached a ApCOs within 100 patm of the ambient value before
reaching 0.125% mortality, which was taken as the threshold for adverse effects.

The work in Sato et al. [109] was an improvement upon the earlier work by Sato
and Sato [111] (where the probit approach was first introduced) and Sato [108]. Here

the original isomortality curves by Auerbach were used to derive a probit equation,
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i.e., the impact analysis was based on non-CO, induced mortality. The form of the
resulting equation was quadratic in [111] and linear in [108], and it was applied to
different discharge scenarios. The main scenario considered in each study was a 200
ke /s descending droplet plume released at 2,000 m depth over 10 hours (from a ship
which changed location every 10 hours). Despite reaching pH values as low as 4.2, zero
mortality was predicted in Sato and Sato [111] for three test organisms encountering
the discharge nozzle, i.e., mortality did not surpass 0.125% (which was again taken
as the threshold for impact). Similarly, the plume was predicted to reach pH as
low as 4.7 in Sato [108], but with negligible biological impact. These findings were
consistent with an earlier work, Sato and Hama [110], which considered the same

injection scenario using Auerbach’s method and data directly.

3.1.3 Chen et al. (2004)

Rather than constructing isomortality curves from observed mortality data, Chen
et al. [22] used “biological activity” data to develop a relationship for activity as a

function of pH and time of the form

—¢2

Ay = exp (7> (3.9)
where Ay is an activity index which varies from 1 (normal activity) to 0 (no activ-
ity), ¢ is the exposure time, and o is a fitting parameter which varies with pH and
organism type. Relationships were derived for pelagic zooplankton using the data
from Watanabe [138] described in Section 2.3, and were implemented in an Eulerian-
Eulerian scheme (see [22] for details). It is noted that the activity index method does
not take mortality into account, meaning that organisms reaching A, = 0 are allowed
to recover. As such, the approach is an attempt to model sub-lethal effects due to
pH perturbations, and the authors note that future improvements to the model will

incorporate mortality effects.
A test case was studied in which 1 kg/s of COs (droplets with lognormally dis-

tributed sizes and a mean diameter of 8 mm) was injected about 1,000 m depth into
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a mean current speed of 2.35 cm/s. The resulting pH field for the buoyant plume was
computed with the LES model described in [21], yielding a minimum pH of 5.6 near
the nozzle (ambient pH was 7.57). Zooplankton were predicted to be most injured
(lowest activity) about 20 m downstream from the nozzle and recovered to normal
activity levels about 100 m further downstream (within 2 hours). Thus, the impact

of this small injection on zooplankton was confined to a small region.

3.1.4 Other investigations

The studies in the prior sections were reviewed in detail because they develop
original methods for assessing acute biological impacts. In addition, there are a large
number of studies which provide quantitative estimates of water quality impacts of
various discharge schemes to the open ocean. For example, near-field modeling studies
of stationary sources (bubble, droplet or hydrate plumes) include Liro et al. [83],
Golomb et al. [44], Haugan et al. [50], Thorkildsen and Alendal [129], Sundfjord et
al. [121], Sato and Hama [110], Alendal and Drange [3], Drange et al. [36], Nihous
et al. [92], Chen et al. (2003 [21] and 2005 [24]), Adams and Wannamaker [2], and
Wannamaker and Adams [137]. Modeling studies of near-field COy dilution from a
towed pipe include Ozaki et al. [95], Chen et al. (2002 [23], 2005 [24], and 2006 [25]),
Minamiura et al. [89], Hirai et al. [55], Adams and Wannamaker [2]|, Jeong et al.
[69], and Tsushima et al. ([133], which also applies the Sato et al. [109] framework
and concludes negligible biological impact for a 100 kg/s towed pipe discharge). In
addition, the far-field water quality impacts of injection schemes have been considered
by numerous studies, including Dewey and Stegen [32], Stegen et al. [117], Nakashiki
and Ohsumi [91], Xu et al. [143], Dewey et al. (1997 [34] and 2000 [33]), Wickett et
al. [142], Caldeira and Wickett [16], Masuda et al. [85], and Magi et al. [84].

3.2 CO, discharge scenarios & plume modeling

Three CO, discharge scenarios are considered in the present study: a sinking CO,

hydrate plume released from a fixed platform, CO, hydrate particles released from a
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moving ship, and rising CO5 droplets released from a bottom manifold. The scenarios
are based on those developed in Adams and Wannamaker [2], but have been adapted
to incorporate enhanced understanding of discharge possibilities. For each discharge
scenario, loadings of 10, 100, and 1000 kg/s are evaluated (for reference, a 500-MW
coal-fired power plant generates about 95-126 kg/s CO, [54]).

3.2.1 CO; hydrates

Two of the scenarios discharge CO, as clathrate hydrate particles (COz-5.75H50),
which warrants some discussion. The benefit of hydrate particles is that they are neg-
atively buoyant, meaning that a sinking plume can be generated at shallower depths
than those that would otherwise be required using liquid COy (which becomes nega-
tively buoyant in the 2000 - 3000 m range, depending on ocean conditions). Although
pure hydrate particles have a density of about 1,143 kg/m? (i.e., about 10% more
dense than seawater), such particles have not yet been achieved in laboratory or field
studies [81]. As discussed in West et al. [141], present approaches form hydrates in a
reactor vessel by creating a slurry of the reactants in a coflow injector. Under a steady
flow of CO, this setup yields an extruded cylindrical hydrate particle which breaks
off at the nozzle due to shearing by the ambient current once it reaches some critical
length. To date, particle diameters of up to 0.7 cm have been achieved in a labora-
tory setting. In field studies, COy hydrate particles up to 2.2 cm in diameter with a
typical length of 30 cm have been observed at about 1,500 m depth with conversions
in the range 10-55% [105, 131, 132]. The result of a partial hydrate conversion is a
composite particle that is partially pure hydrate and partially unreacted CO, and
water “stuck” to the hydrates. For the present purpose, composites are referred to
as hydrate particles even if conversion is less than 100%.

Both the size and conversion percentage of a particle are important in dictating
the fate of the CO, that is locked within the particle. Conversion efficiency dictates
the density and thus the settling speed of the discharged particle, while the particle
diameter dictates the time required for it to dissolve. Observations of descending

hydrate particles indicate a particle dissolution rate of about 6 pm/s, and that this
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Figure 3-3: Descent depth as a function of particle diameter and conversion efficiency
for 30 cm long cylindrical COy hydrate particles released at 1,500 m depth into a
typical ocean stratification (Aaron C. Chow, 2007, unpublished work conducted at
MIT).

rate is not strongly dependent on the conversion percentage. Figure 3-3 shows the
dependence of the settling depth on conversion percentage (X) and diameter for
individual 30 cm long cylindrical hydrate particles discharged at 1,500 m depth into
a typical stratified ocean of 4,500 m depth (i.e., a descent depth of 3,000 m indicates
the particle reaches the sea-floor). Figure 3-3 is calculated using the approach of
Riestenberg et al. [105], using a constant particle dissolution rate and a particle
density that assumes that the unreacted CO, and water in the reactor vessel “stick”
to the converted hydrates. If the particle loading is sufficiently large relative to the
ambient crossflow, multiple particles will together form a descending plume which
will sink further then the descent depths in Figure 3-3 due to the combination of a
group effect and a solute density effect.

Before proceeding to the specific discharge configurations considered herein, it
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should be noted that the main challenge ahead for improving hydrate formation tech-
niques is to increase the conversion percentage. Ongoing research suggests that cre-
ating particles of larger diameter with conversion percentages similar to those created
to date should not pose a major problem, although it may require different configu-
rations for introducing the CO, into the reactor vessel (e.g., using multiple injection
nozzles or a radial injection from around the perimeter). It is thus reasonable to
assume that some flexibility will be available in the future to generate larger particles

with higher and more controlled hydrate conversion percentages.

3.2.2 Stationary CO;, hydrate plume

In this scenario an offshore stationary pipe extends from the ocean surface down to
a depth of 1,500 m, discharging hydrate particles which are 30 cm long with a reaction
efficiency of 25% (shown schematically in Figure 3-4, which was modified from [2]).
The combination of the negatively buoyant particles and the increased density of
the seawater surrounding the descending particles causes enhanced sinking. Particle
diameter is calibrated to yield a plume which dissolves entirely over the remaining
depth of the water column (3,000 m in this case) such that the COy plume does not
intercept the ocean floor. The discharge is somewhat idealized since with present
day hydrate discharge technology the conversion efficiency is difficult to control, but
nonetheless it is in theory possible to calibrate particle diameter for a given discharge
configuration to generate a plume with the correct average descent depth even if
a range of conversion efficiencies were created. For the present purpose this was
achieved using a near-field integral plume model, specifically a version of the double
plume model described in Adams and Wannamaker [2], which has been modified
to handle cylindrical hydrate composite particles. The same model was applied in
Riestenberg et al. [105]. Mass loadings of 10, 100, and 1000 kg/s resulted in plume
descent depths near the ocean floor using initial particle diameters of 8.3, 5.8, and 3.1
cm, respectively, for a 25% hydrate conversion. As the plume descends, entrainment
of the surrounding water column leads to reduced density in the outer core of the

plume which causes detrainment of the outer core in a series of discrete peeling events.
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Thus, the plume introduces COs to the surrounding environment through a number of
intrusion layers (one for each peeling event). As in [2], near field plume model results
suggest that such a source can reasonably be approximated as a thin two-dimensional
plane source extending from 1,500 m to the bottom of the ocean (at 4,500 m) with
no particle deposition on the sea-floor. Following [2], the resulting plume is assumed
to have an initial width w given by:

m

~ WDICyu,

w

(3.10)

where 1 is the carbon mass loading rate, h is the plume height (3000 m), u, is
the ambient (mean) current speed, and DIC is the average plume concentration of
excess dissolved inorganic carbon (i.e., above background) within the intrusion layers
as computed by the near-field model. Since the lateral shape of the source is likely
closer to a Gaussian distribution than a rectangular plane source, the downstream

lateral diffusion of this depth-averaged plume is modeled as:

DIC(t,y) = (3.11)

——exp | —= | .
V2mhuao, 207
where o, = 0,(t) is the standard deviation of the Gaussian concentration distribution
and t is the time since discharge, which can be converted to longitudinal distance
x

from the source (z) by substituting ¢ = . The initial concentration distribution is

Uq

parameterized by 0,0 = 0,(t = 0), which is taken as

w

Oy = —F— 3.12
y,0 \/ﬁ ( )

since this is the standard deviation of the “top hat” distribution corresponding to a
uniform rectangular source of width w. In the interest of being conservative, vertical
diffusion is ignored in (3.11). Lateral diffusion, i.e., the growth of o,(¢), is modeled
using data from Okubo [93] on dye patch spreading in the surface layers of coastal
waters:

o,(t) =a(to+1t)" (3.13)

70



Figure 3-4: Schematic illustration of the stationary COs hydrate plume discharge,
adapted from Adams and Wannamaker [2].

where a = 0'?/01%71 for t in s and o,(t) in m; n = 1.15; and ¢, is a fictitious plume initial

time, i.e., the time required for a point source (o, = 0) to reach the actual o, of
the plume being considered if it grows according to (3.13). In the interest of being
conservative, the value of a used in the present study is reduced by a factor of v/10
to reflect the reduced mixing expected for deeper waters (i.e., diffusivity is thereby
reduced by a factor of 10). The nominal value of u, = 0.05 m/s used by Adams and

Wannamaker [2] is also applied here.

3.2.3 Moving CO; hydrate release (“towed pipe”)

A ship traveling at speed u, in a direction perpendicular to the ambient current
u, releases hydrate particles at 1,500 m depth from a towed pipe (Figure 3-5). The
particles are 30 cm long and of a fixed diameter d with hydrate conversion percent-

ages uniformly distributed over the range 10-55% (consistent with the range observed
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Figure 3-5: Schematic illustration of the towed pipe CO5 hydrate plume discharge in
a crossflow.

during a recent field study). The ship is moving sufficiently fast such that the de-
scending particles do not form a negatively buoyant plume but rather settle as a
collection of individual particles (i.e., the particles create a passive plume of COs,
but not a buoyant plume which actively entrains the surrounding seawater). Thus,
the descent depth of each particle depends on its diameter and conversion efficiency
as was discussed previously (see Figure 3-3). Four different discharge configurations
are considered using particle diameters of 2.5, 5, 10, and 15 cm. For each configura-
tion, the discharged particles have the same diameter but varying hydrate fractions.
Because a constant dissolution rate is assumed, all particles drift the same distance
in the direction of the ambient current u, but reach different depths before dissolving
completely (e.g., the 10% hydrate particles are positively buoyant and will rise while
the 55% hydrate particles will sink and reach the greatest depth). As illustrated in

Figure 3-6, the result is a plume with a wedge-shaped cross sectional area.
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Figure 3-6: Schematic illustration of the source due to the towed pipe CO, hydrate
plume discharge into a cross flow.
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Figure 3-7: Illustration of towed pipe moving reference frame. The source travels
(up) with velocity us and there is a prevailing ambient current u, such that in a fixed
reference frame the plume centerline (longitudinal coordinate x) would be at an angle

w = tan™! (%) to the —u, direction.

The plume created by this discharge can be modeled using (3.11) if uy is sub-
stituted for wu,, such that (3.11) describes the concentration distribution trailing the
towed pipe in a moving reference frame, i.e., it is perfectly analogous to the situation
where the source is fixed and the CO5 mass is advected downstream by a current of
speed us. In terms of a fixed reference frame, the longitudinal coordinate x = ut is
the distance along the plume centerline, which is at an angle w = tan™! <Z—‘S‘> to the
negative u, direction (see Figure 3-7), and the lateral coordinate y is perpendicular to
x. For the present purpose, the moving reference frame is more relevant, since both
CO3 mass and organisms within the plume move at ambient current u,, and since the
relative diffusion as parameterized by Okubo’s relation (3.13) is the same in either
reference frame.

As in the fixed hydrate plume release scenario, the initial concentration distribu-
tion is assumed to be Gaussian with an initial width o, . For analytical convenience,
the wedge-shaped source shown in Figure 3-6 has been simplified in the following
manner. First, the distance A (in the direction of the ambient current) over which
half of the CO5 mass dissolves is calculated, which corresponds to about one third
of the total distance traveled by the particle before dissolving. As shown in Figure

3-6, this defines a “half-wedge” with area A, and height hy,, (the vertical separation
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between the lightest and heaviest particles after drifting A\ with the ambient current).
Second, the width of a rectangular source with area and height equal to that of the

half-wedge is calculated:
_ A

B hhw

w

(3.14)

Finally, the o, is calculated by (3.12) in the same manner as for the stationary
hydrate plume release scenario. These simplifications amount to placing all of the
mass loading into the half-wedge area, i.e., the average excess DIC' concentration
through this region would equal ﬁ.

The reasoning behind the simplification of the source shape is not limited to ana-
lytical convenience. The rate of mass loss from the descending particle is proportional
to the surface area, which is proportional to (1 — kt)? (where k is the particle dissolu-
tion rate which is assumed to be constant). Thus, the wedge-shaped source will have
the highest concentrations near the top left corner, with the lowest concentrations at
the leading edge of the wedge. The area of the half-wedge (which in reality contains
half of the mass) is only about 10% of the area of the total wedge. By placing all the
mass in the half-wedge and by computing an equivalent width by (3.14), the source is
made much shorter and thinner than it is in reality. This helps to offset the fact that
we do not resolve the concentration gradients within the wedge, and from a biological
impact perspective is an attempt to be more conservative.

The discharge scenario is implemented using u, = 0.03 m/s and u; = 3 m/s (~
6 knots), which yields the plume characteristics summarized in Table 3.3. For this
combination of u, and u,, the angle between the ship travel direction and the plume
centerline is small (w < 1°). wu, has here been conservatively reduced from the value
of 0.05 m/s used in the two other discharge scenarios because a ship trajectory will
likely at times (1) traverse regions of the ocean with less favorable currents and (2)
not maintain a right angle to the ambient current (if w, is actually 0.05 m/s, an
effective u, of 0.03 m/s corresponds to a 36° angle between the current and ship).

Hydrate diameters of 2.5, 5, 10, and 15 cm are considered, since as noted previously

the formation of large diameter particles is not foreseen to be a major hurdle given

75



d A hhw Ahw w 0y,0
(cm) | (m) | (m) | (w?) | (m) | (m)
2.5 |136.6 | 220 | 4.13x 10% | 18.8 | 5.40
S 73.2 | 588 [2.22x 10* | 37.7 ] 10.9
10*% | 146 | 1550 | 1.18 x 10° | 76.2 | 22.0
15%*F 1 220 | 2690 | 3.11 x 10° | 116 | 33.4

*about 0.4% of mass is predicted to reach the ocean floor
**about 14% of the mass is predicted to reach the ocean floor

Table 3.3: Plume characteristics for each towed pipe discharge scenario.

current technology. For the largest hydrate diameters, a small fraction of the particle
mass is predicted to accumulate on the ocean floor. This effect is ignored in the plume
calculation (where all the mass is placed in the “half-wedge”) since the mass fraction
is small (14% or less) and since the discharge configuration would be refined to avoid
this if implemented. For the range of mass loadings and particle diameters considered,
the ship speed is sufficiently large to prevent the formation of a buoyant plume, i.e.,
treatment of the discharge as a collection of individual particles is appropriate. This
is concluded from the fact that the predicted plume separation depth due to the
“crossflow” (ship motion) is much smaller than the depth at which a plume peeling
event would be predicted to occur, as per the methodology of Socolofsky and Adams
[116].

This version of a “towed pipe” scenario is thought to be more realistic than the
one in Adams and Wannamaker [2], where a single stream of pure hydrate particles
was assumed to create a thin plume with o, = 0.1 m. The scenario described here
is based on field observations where a range of conversion percentages was achieved.
Combined with an ambient crossflow u,, this causes a fractionation of the particle
trajectories, which offers a beneficial increase in the lateral spreading of the dissolved
CO; plume. As hydrate formation technology improves, it is conceivable that it will
eventually be possible to custom design a discharge configuration which maximizes
lateral dilution by optimizing the distribution of discharged particle sizes and/or

conversion percentages.
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Figure 3-8: Schematic illustration of the bottom manifold COy discharge from Adams
and Wannamaker [2].

3.2.4 Rising CO;, droplets from a bottom manifold

A bottom manifold extends along the sea-floor and liquid COy is injected through
equally spaced multiport diffusers starting at 800 m depth to form a series of positively
buoyant (rising) plumes which are oriented perpendicular to the ambient current (u,).
Assuming a slope (6) of 5°, the pipeline would be 13.5 km long in total (Lg), of which
approximately the last 4.5 km (L) would be below 800 m (Figure 3-8). Port nozzles
with an appropriate diameter would be spaced along L such that a plume height A
of 250 m would be achieved (a taller plume would be undesirable for sequestration
purposes since the COy would form gas bubbles in the depth range 400-500 m). For
example, for /i = 100 kg/s, 100 ports of diameter 0.7 cm each discharging 1 kg/s
each would achieve such a plume height, where rising droplets would become covered
with a thin hydrate film at this depth.

As in [2], the discharge is simplified into a rectangular source of width w =
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min (%, L) and height h* = Lsin # (which is used in favor of the plume trap height
h in order to preserve the cross-sectional area of the source). For consistency with the
other two discharge scenarios, downstream diffusion of the source is here computed
using the Gaussian solution (3.11) in favor of the rectangular source equation used by
2]. As in the other scenarios, (3.12) is used to compute 0,9, and the nominal value
of u, = 0.05 m/s is used.

In contrast to the other two scenarios in which the CO, mass is discharged at
1,500 m depth, this scenario discharges over the depth interval 1,200 - 800 m with
a constant plume trap height of 250 m. Thus, from the standpoint of sequestration
efficiency (i.e., the length of time the CO, is sequestered from the atmosphere), the
scenario is less attractive. This can of course be addressed by changing the manifold
configuration to reach deeper depths. Likewise, the manifold configuration can be
changed to achieve higher dilution by “painting” a larger cross-sectional area with
the CO,. Indeed, it should be possible in theory to select a mass loading and a
manifold design that avoids significant acute biological impact altogether (e.g., the
total mass loading can be restricted, the diffuser can be extended to deeper depths and
the diameter of the diffuser nozzles can increase with depth to achieve greater plume
rise). However, cost/benefit considerations will of course dicatate what is feasible
in reality. For the present study we have chosen to simply adopt the configuration
proposed by Wannamaker and Adams [2] as an illustrative example, recognizing that

in the absence of cost constraints the bottom manifold design has a number of degrees

of freedom that could be exploited.

3.2.5 Plume representation in the discharge scenarios

The COg discharges are modeled in a manner similar to Auerbach and Caulfield in
that an analytical solution is used. By contrast, some previous studies [24, 109, 111]
have conducted detailed hydrodynamic modeling near the injection point to resolve
small-scale plume gradients. Simplifying the geometry of the source and using an
analytical solution amounts to simulating an ensemble plume, i.e., the average plume

conditions that might occur over many realizations (see discussion in [65]). This
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naturally ignores the small-scale gradients that would be present within the plume
during any one realization of the discharge, i.e., the CO, concentrations near the
source are “smeared” relative to the concentrations that would be observed in a real
plume. This approach has two counteracting effects from a biological standpoint. On
the one hand, the inherent patchiness and high concentrations that would occur in the
immediate vicinity of the source are not represented, likely underpredicting the peak
concentration that an organism might experience during a realization. On the other
hand, the ensemble plume introduces elevated concentrations to a larger area, which in
turn means that a larger number of organisms are exposed to elevated concentrations.
The shape of each source has been simplified, but in a manner which attempts to err
on the side of keeping concentrations on the high side. For the towed pipe case, all the
mass is placed within the “half-wedge” closest to the source (see preceding discussion).
For the stationary hydrate plume case, the average concentrations within the intrusion
layers is applied over the entire depth of the plume even though the CO5 really only
leaves the plume at these layers, thus yielding a narrower plume (because DICj in
(3.10) is higher). In addition, by representing all sources as being Gaussian in shape,
peak concentrations are specified near the source so as to reduce the “smearing” effect
of the inherent averaging of the plume representation approach.

The approach used here is somewhat analogous to defining a mixing zone as is
usually done when setting water quality compliance guidelines for ocean wastewater
diffusers. In these cases, water quality standards are typically only enforced at the
edge of the mixing zone, i.e., the environmental impact of the discharge is evaluated
in terms of its impact on a larger scale rather than on the details of what occurs
within the small dynamic mixing zone. Likewise the analysis here focuses on larger
scale average impacts as opposed to near-source, small-scale impacts. Although future
work might attempt to resolve these effects in the analysis, the reader should note that
small-scale patchiness and high concentrations could to some extent be minimized by

refining the design of the discharge configurations to homogenize the near-field region.
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3.2.6 Treatment of carbonate system chemistry

When COs is introduced to seawater a series of reactions take place which are

collectively referred to as the carbonate system [35, 90]:

COy(g) = COs(aq) (3.15a)
COs(aq) + H,0(l) = HyCOs(aq) (3.15b)
HyCOs(aq) = H*(aq) + HCO3 (aq) (3.15¢)
HCO; (ag) = H*(aq) + CO* (aq) (3.15d)

which is here shown for a water sample at equilibrium with the gaseous phase (e.g.,
at the air-water interface). However, because HoCO3(aq) and COz(aq) are difficult
to distinguish analytically, it is common to combine these terms and designate their

sum as HoCO%(aq). Thus, the carbonate system may be expressed as

COy(g9) = HyCO;3(aq) (3.16a)
HyCO}(aq) = H™(aq) + HCO; (aq) (3.16Db)
HCOj (aq) = H(aq) +CO; (aq) (3.16¢)

For the present study, the approach summarized by Wannamaker [136] is applied to
solve for the equilibrium concentration of the carbonate system components. This
approach combines the methodology outlined in Morel and Hering [90] with the equi-
librium constants defined by Dickson and Goyet [35]. Briefly, the concentrations
of the individual species in (3.16) are calculated by solving the following nonlinear

equation for the hydrogen ion concentration [HT]:
C — Alk = —[H"] + 107"K*[H*)7! + 0, DIC 4 20, DIC (3.17)
where C' — Alk is the carbonate alkalinity
C — Alk=—[H"|+[OH" |+ [HCO; ] + 2[CO5 ], (3.18)
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DIC is the total dissolved inorganic carbon
DIC = [H,CO3) + [HCO; ]+ [CO57], (3.19)

and oy and «g are ionization fractions for the bicarbonate (HCOj) and carbonate
(CO37) ions
a = (141075 [HY] 4+ 10775 (g~ 7 (3.20a)

s = (14 10P52[HH] + 100K rR) [)2) 7 (3.20b)

Here the notation pK = —log(K) is applied for brevity to K, Ky, and K,,, which

are the dissociation constants of HoCO%, HCOj3 , and water, respectively:

[HT][HCO;]
Ki=— " 3.21
' T H,C0y) (3.21a)
[HH][COT]
Koy=—7F—2- 3.21b
>~ [HCO;] (3:21b)
K, =[HY][OH]. (3.21c)
The equilibrium concentrations of the carbonate system species are given by
[HCO3 | = ay DIC (3.22b)
[CO3™] = auDIC (3.22¢)
where the ionization fraction for HyCOj is given by
ap = (14 107K [H¥]7! 4 10~ KK [[r+]-2) 71 (3.23)

The values for the dissociation constants as a function of temperature and salinity are
taken from Dickson and Goyet [35]. Pressure effects on the constants are not included

as the present study considers a range of depths and the pressure adjustments are
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expected to be minor based on a cursory analysis with the CO2SYS program [82].

Equation (3.17) is solved for [H*] with given values of DIC and C' — Alk, where
DIC' is computed during the plume calculations (see Section 3.2) and C' — Alk is a
constant specific to the seawater being studied. Note that addition of CO5 does not
change the value of C'— Alk. Once [H'] is determined, all species concentrations can
be calculated easily. All pH values are reported on the total hydrogren ion scale (as
opposed to the free hydrogren ion scale, see [35]).

In the present application, the source of DIC is not in equilibrium with a gaseous
phase as indicated by the first equation in (3.15) and (3.16). Instead, COs(aq) is
introduced directly (by dissolving hydrates or droplets). Had the seawater instead
been in equilibrium with a gaseous phase, [HoCOj] would be constrained to be (e.g.,
41))

[Hy,C O3] = pCOy Ko(T, S) (3.24)

where pCOs is the partial pressure of the gaseous COy and Ky(7,.S) is the solubility
of COq, which is an empirical function outlined in Weiss [140] (the difference between
fugacity and partial pressure has here been ignored as it is < 1% for CO, in sea-
water at 1 atm). In the present study, (3.24) is used to convert computed HyCO}
concentrations to an equivalent pCQOq at atmospheric pressure. This is motivated by
the biological mortality data reviewed in Chapter 2, which were for the most part re-
ported in terms of pCOs. pCOs is a convenient measure because it is easily compared
to prevailing atmospheric concentrations. It is usually reported in units of patm or
kPa. In the present study, the latter unit is used, but readers more comfortable with
patm can easily do an approximate conversion by multiplying the pCO, values by
10* (1 kPa ~ 9.87x10%uatm).

In the above calculations, the kinetics of the reactions (3.16) are ignored, i.e.,
equilibrium is assumed to be established instantaneously. Zeebe et al. [147] estimates
the timescale to reach equilibrium in seawater to be on the order of 16 s. While
this timescale is comparable to that of some near-field plume processes, the present

study considers the average conditions caused by simplified representations of the
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COy sources and thus disequilibrium kinetics are appropriately ignored, consistent

with common practice.

3.2.7 Ambient ocean conditions

The plume and hydrate particle descent calculations above use an ambient density
profile taken from a 1999 survey cruise near Keahole Point, Hawaii, as in previous
studies (e.g., see [2, 136]). For ocean chemistry calculations, global average values for
depths > 2000 m were selected from Volk and Hoffert [135]: salinity = 35 ppt, DIC
= 2306 umol/kg, and C-Alk = 2367 pumol/kg'. The temperature used was 3°C for
the stationary and towed hydrate releases and 5°C for the bottom manifold, based
on the observed temperatures at Keahole Point at release depths of 1,500 and 800
m. For comparison, Volk and Hoffert [135] used a temperature range of 1.5 - 3°C as
representative of the deep ocean. The ambient pH computed for these conditions is

about 7.94 and 7.90 for temperatures of 3 and 5°C, respectively.

3.3 Biological impact analysis approach

The following section details the methodologies employed in simulating the bio-
logical impact. Following Auerbach [5] and Caulfield [19], this consists of two parts:
(1) simulating the exposure history of planktonic marine organsism and (2) simu-
lating the biological impact of the exposure. The approach implemented herein is a

combination of the approaches of Auerbach [5], Caulfield [19], and Sato et al. [109].

3.3.1 Organism exposure modeling

The present study simulates organisms in a manner that is highly similar to that of
Caulfield [19], i.e., planktonic organisms are advected with the CO5 plume and sample
different concentrations as they undergo a random walk in the lateral direction using

a diffusivity that increases with distance from the plume centerline. The following

!Computed using CO2SYS [82] from a reported total alkalinity of 2414 mol/kg with a phospate
concentrations of 2.21 pmol/kg.
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random
walkers

Figure 3-9: Schematic diagram of the simulation of drifting organisms through a CO,
plume. Organisms undergo a random walk relative to the plume centerline.

section describes the implementation of this approach, expanding on the work of

Caulfield [19] and modifying the methodology as needed.

Stochastic simulation of organism trajectory

Caulfield [19] discusses various ways in which (3.1) can be employed to estimate
the trajectory of an organism through a plume, including stochastic simulation by a
Monte Carlo approach and a number of other approaches aimed at reducing compu-
tation time. The subsequent paper Caulfield et al. [20], however, only mentions the
stochastic approach, and such an approach is employed here. A schematic diagram
of this approach is shown in Figure 3-9, where the paths of drifting organisms are
tracked through a CO, discharge plume.

Although details are not provided, presumably the stochastic simulation was con-
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ducted by finding the random walk equivalent of (3.1). Rearranging (3.1) yields

dp(y) , 0 IF (y) 0
o oy (p( ) ) =

— | === F(y)). 3.25
V=5, o2 PWIFW)) (3.25)
Equation (3.25) is similar in form to the one-dimensional Fokker-Planck equation

of OAf  * (1 _,

L =7 -~ (ZB 3.26

ot "o ~ o2 \2P (3.26)
where p = p(zx) is the probability density function of the stochastic variable f, and
A and B are coefficients to be determined. Since (3.25) and (3.26) are equivalent if
A= ﬁg_;y) and B = \/2F(y), (3.25) can be simulated by the random walk equation

Ay = 8F67g(/y) + &V 2F (y) At (3.27)

where £ is a random number drawn from a Gaussian distribution with zero mean
and unit standard deviation [43, 128|, At is the timestep, and Ay is the lateral
displacement over At.

Equation (3.27) is used to simulate the lateral position of particles (organism
clusters) relative to the plume, where both the plume and the organisms move longi-
tudinally with the ambient current u,. Although Caulfield [19] adapts the method to
be more computationally efficient by calculating transition probabilities between cells
on a spatial grid rather than for individual organisms, initial simulations with the
“brute force” approach described above show that computation time is not a major
constraint with present computing technology. Thus, the computational domain is
initialized with a sufficiently large number of particles which are all placed at x = 0
(where z is the longitudinal coordinate) but spaced out evenly across the domain in
y. The domain is bounded in the lateral direction by a reflecting wall placed suffi-
ciently far away from the centerline so as to make it highly unlikely that a particle
will reach the plume centerline and the domain boundary multiple times during a
simulation. Because of the symmetry of the plumes being modeled, only half of the

domain needs to be simulated with particles, and thus another reflecting wall is placed
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along the plume centerline. At each timestep, the average pCOs experienced by a
particle is used to update that organism cluster’s % mortality (population deficit) via
the isomortality calculation detailed later in this section. A spatial grid is used to

bin particles and calculate gridded variables as needed.

Scale-dependent diffusivity

The motion of the organisms relative to the plume centerline is inherently scale-
dependent. As organisms move further away from the plume centerline, the scale of
eddies that can differentially advect them increases. Since this unresolved motion is
parameterized as a diffusivity, this diffusivity must be dependent on the separation
distance of the organisms and the plume centerline. This is directly analogous to
using a scale-dependent diffusivity to compute the spreading of the discharged CO,
plume; as the plume becomes larger, it is subject to shearing by eddies of larger scales.

The field data from Okubo [93] on observed diffusion in coastal waters have been
reinterpreted to yield a new scale-dependent diffusivity relationship which is applied
to simulating the lateral diffusion of organisms relative to the plume centerline. The
relationship differs from (3.2), which was used by Caulfield [19]. The derivation of
the new equation is outlined below.

Okubo [93] examined the growth of dye patches in coastal waters in two ways.
First, he defined the apparent diffusivity K, implied by the growth of the length scale
of dye patches:

K, ~ 0.0103% (3.28)

where | = 30, = 3\/§ay is his length scale, o, is the one-dimensional standard
deviation of the concentration distribution, and o, = /20, is the equivalent radial
standard deviation of the distribution. Second, he developed an equation describing

the time rate of growth of the radial variance of the dye patches
o2 ~ 0.0108¢*%* (3.29)

where o, is in cm and ¢ is in s. From (3.29) the effective diffusivity E, and the
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apparent diffusivity K, can be calculated:

<

2
Oy

1

B =" R 0.00631¢3 (3.30)
_ o} 1.34

Ko = 2 ~ 00027t (3.31)

where E, and K, are in cm?/s. Thus, (3.29) implies that the effective diffusivity is
2.34 times larger than the apparent diffusivity. The difference is that K,(t) is the
constant diffusivity that would achieve o, (t) in ¢, whereas E,.(t) is the actual scale-
dependent diffusivity at time ¢. Thus, multiplying (3.28) by a factor of 2.34 yields

the effective diffusivity in terms of the length scale I:
E, ~ 0.0241]"%. (3.32)

Inserting [ = 30, and (3.29) into (3.32) confirms that (3.32) and (3.30) are equivalent.
Because the length scale used by Okubo [93] is arbitrary, for the present purpose E,

is expressed in terms of o, or oy:
E, ~ 0.08530, " = 0.1270,"°. (3.33)

The result in (3.33) is then adapted to the distance-neighbor diffusivity F(y)
needed by (3.1) to simulate organism diffusion relative to the plume centerline. Con-
sider a group of particles spread out according to an arbitrary spatial distribution.
Richardson [104] showed that for any distribution, the variance of the separation dis-
tance between the particles is twice the variance of the distribution. Thus, if the
variance of the particle distribution grows at a certain rate, then the variance of the
separation distances must increase twice as fast, i.e., its diffusivity must be twice
as large. When applying this logic to (3.33) to simulate the separation between a
plume centerline at y = 0 and an organism located at y, it is not obvious which of
o, and o, is most analogous to the separation distance y. To be conservative, o, is

selected because it results in a smaller diffusivity. Multiplying (3.33) by a factor of 2

87



to convert it into a distance-neighbor diffusivity yields
F(y) =~ 0.171y** (3.34)

where y is in cm and F(y) is in cm?/s. Finally, to be consistent with the assumption
of reduced horizontal mixing in the deep ocean used in the COy plume diffusion

calculation, the diffusivity F'(y) is reduced by a factor of 10, yielding
F(y) =~ 0.00034y"® (3.35)

where the units of F(y) and y have been converted to m?/s and m, respectively.
Overall the diffusivities used to separate organisms from the plume centerline in the

present study are about one fifth of the values used by Caulfield [19].

3.3.2 Organism impact modeling

As in Auerbach [5] and Caulfield [19], the general approach of adding exposures
via an isomortality model of biological impact is used in the present study. However,
the specific approach used is adapted from Sato et al. [109]. The following section
outlines the biological impact calculations and also derives the isomortality relation-
ships employed in the present study from a subset of the CO, mortality data reviewed
in Chapter 2.

Implementation of isomortality model

The implementation of the isomortality model in the present study differs in three
main ways from that of the original investigation by Auerbach [5] and Caulfield [19].
First, based on the data reviewed in Chapter 2, pCOs is used as the stressor rather
than pH. Second, the extended probit model developed by Sato and Sato [111] and
Sato et al. [109] is used in favor of the original approach in [5]. Third, the species
recovery included in previous modeling efforts is not included in the present study.

As discussed in Section 3.1.2, the main difference between Auerbach’s isomor-
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tality approach and Sato’s extended probit model approach lies in the form of the
isomortality functions. Both methods add up exposures by translating an organism
cluster’s accumulated percent mortality from one stress level (pH or pCO,) to an-
other by defining an equivalent cumulative exposure time. However, while Auerbach
[5] developed regression curves based on independent fits of the LCy, LCjsg, and LCqy
data, Sato [109] used a single function fitted to all the mortality data to derive re-
gression equations. The mathematical elegance of the latter approach makes it more
convenient in that a single probit equation is used to describe the biological impact,
allowing the process of adding exposures to be done without iteration if the function
is linear. More importantly, the form of the equation is based on the probit method
commonly used to estimate LC values and is therefore more consistent with the un-
derlying toxicity data. Specifically, the inherent assumption in the probit method
for calculating an LCsy (for example) is that the cumulative mortality of organisms
follows a sigmoid function of the log of the stressor, and thus a sigmoid curve is fitted
to the observed toxicity data so that any LC can be calculated directly. This im-
poses a specific form to the LC values (e.g., in log space, LCsq — LCyo = LCgy — LCj;
LC50—LCyg # LCy—LC3). The extended probit method respects these relationships
since it is based on the probit method. In contrast, the Auerbach method does not
in that it independently regresses relationships for each mortality level and linearly
interpolates between them. Furthermore, to avoid having isomortality lines converge,
the form of the curves must be adjusted manually. On the basis of these consider-
ations, the Sato approach to isomortality modeling was selected because it permits
less subjectivity on the part of the modeler. As noted previously, for simplicity the
probit function of Sato et al. is here referred to as an isomortality function since it
accomplishes the same goal as the original curves of Auerbach [5].

Thus, the isomortality function used in the present study is of the form:

Y = alog(t) + blog(ApCOs) + ¢ (3.36)

where Y is the probit of mortality (defined by (3.6)), ¢ is the exposure time, ApCOq
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is the excess pCOs over the ambient pCOs,, and a, b, and c¢ are regression coefficients.
Excess pCO, is used instead of the absolute value so that data with different back-
ground values can be used together. The specific regression coefficients used in the
present study are developed in the next section. It should be noted that the isomor-
tality function does not necessarily have to be linear; the fit could be performed using,
for example, a quadratic, such as Y = a; (log(t))” + as log(t) + blog(ApC'Oy) + ¢ (this
was the form of the function used in Sato and Sato [111]). For the present purpose,
however, a linear function provides a reasonable fit to the data and is convenient for
its simplicity and consistency with Sato et al. [109, 112].

The algorithm to step through time is similar to the approach by Auerbach [5] (see
Section 3.1.1), with a few modifications. First, calculations are performed in terms of
Y instead of D, i.e., using the probit unit instead of fractional mortality. Second, Y
is calculated directly from ¢ and ApCOz using (3.36) without interpolation between
specific LC curves, and no special treatment is required for low mortality since a zero
mortality does not exist in probit space (D — 0 as Y — —o0). Consequently, (3.3)
becomes Y (ApCOs,t*) = Y; from which ¢* can be solved without iteration. Lastly,
the probit value must be converted back into fractional mortality for output (and for

insertion into a species recovery function, if applicable):

D= % {1 +erf (Y—\/_;ﬂ (3.37)

which was derived by integrating the Gaussian distribution in (3.6) with zero mean
and unit standard deviation.

The extended probit method is here modified to include a minimum stress level,
[PCOs]min, below which mortality is not incurred. This is introduced to avoid an
inherent problem, namely that (in the absence of species recovery) an infinitesimal
mass of COy would be predicted to eventually kill all organisms. Sato et al. [109] also
recognized this effect, and as a result they discounted mortality effects when pCO,
dropped to within 100 patm (= 0.01 kPa) of the ambient value.

The fact that the present study does not include a species recovery as in Caulfield
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[19] warrants some discussion. Solving equation (3.4) yields the discrete form of the

species recovery which was likely implemented in [19]:

1 — Din(t + At)
14 Di(t + At) (e7m2 — 1)

D(t+At) =1— (3.38)

where Dj,, is the population deficit (fractional mortality) predicted by the isomortality
method and r is the growth rate. Thus the deficit of each particle decreases for
each timestep that it encounters a low stress environment. In Caulfield’s case, this
corresponded to pH > 7.35. The benefit of including such a recovery formulation is
twofold: (1) it seems realistic to expect a population to recover when stress is reduced,
and (2) it allows the calculation of a finite footprint for each CO5 discharge, i.e., the
entire population will recover to its carrying capacity at some distance from the source.
However, recovery is not included in the present study because the recovery rate is
unknown and poorly constrained. Instead, calculations are made as transparent as

possible and the issue of species recovery is deferred until later in the analysis.

Isomortality functions

Listed below are some conclusions from the literature review in Chapter 2 that are
relevant to the development of isomortality functions. Since they are based on limited
data for a small number of species, they can hardly be taken as generalizations of all
marine organisms; rather, they will be used to select the most appropriate data from

the existing CO5 mortality dataset.

e Marine organisms are much more sensitive to pH depressions caused by CO,

than by other acidifying agents [72, 52, 139].

e Fish are among the more CO, tolerant marine species due to their internal com-
pensation mechanisms [101, 112], and there is considerable variability among
different species [71, 61]. Tolerance varies over the life cycle, with the lowest
tolerance exhibited during the early developmental (egg cleavage) and juve-

nile stages [71]. The tolerance is highly dependent on the nature of the COq
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exposure; a gradual increase in concentration gives a higher tolerance in devel-
opmental and adult fish than a sudden increase, and mortality can be induced
by a sudden return to normocapnic conditions from an elevated but sub-lethal
CO; concentration [73, 70]; this implies that they do not fit into the isomortality
cumulative approach [112]. As for whether juvenile and adult fish will be able
to sense and avoid high CO, plumes, the data are mixed [126, 134].

e Copepods generally exhibit less COy tolerance than fish, apparently lacking
similar compensation mechanisms [101, 112]. There is variability between the
CO; tolerance of different species, and between different geographical regions
[139]. While some data suggest that deep-sea copepods may be more tolerant
of COy than their shallow-water counterparts [139], the generality of this con-
clusion is controversial [56] as it may be limited to the “oxygen minimum zone”
that exists at about 1,000 m depth. As for gradual versus sudden changes in
COy concentration, the response of copepods appears to be more linear, i.e.,

unlike fish [112].

e CO, exposure effects are not limited to acute mortality; a wide range of sub-
lethal effects have been noted. In particular, a significant effect on reproduction

has been noted in copepods and gastropods [76, 78, 77], and in fish [61, 71].

Based on these considerations, the main isomortality function used in the present
study is based on the pelagic copepod dataset of Watanabe et al. [139]. Despite
the comparatively large dataset, the fish data are not incorporated into the main
isomortality function for the reasons noted above, although some of the data are
used in a sensitivity analysis. The dataset compiled by Auerbach et al. [6] and
the pelagic copepod data from Yamada and Tkeda [144] are not used because they
consider mortality due to non-COs acidification. The benthic species datasets are
not used because (a) there is little in the way of controlled dose-response data, (b)
the limited data available suggest higher tolerance than pelagic species at least in the
short term, and (c¢) the discharge scenarios considered herein are dilution strategies

most likely to impact pelagic species (since they seek to distribute COq over large
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volumes rather than concentrate it on or beneath the sea-floor). Thus, the present
study uses copepods as the main target organisms, which are assumed representative
of zooplankton in general. The conservative nature of this choice is supported by the
conclusion of Kita and Watanabe [75], who identified copepods as being among the
more sensitive species to high-COy conditions.

In generating the isomortality functions from the Watanabe et al. [139] copepod
dataset, the most sensitive species are selected. Watanabe et al. [139] identified these
as being the “surface-living groups”, which they further divided into two groups: (1)
subarctic and transitional regions and (2) subtropical region (see Figure 3-10). In each
of these groups, the shallow-living copepods exhibited greater sensitivity than their
deep-living counterparts. The first group consisted of three single-species experiments
(Calanus pacificus, Metridia pacifica, and Euchaeta marina) while the second group
consisted of 4 experiments each comprising a mix of epipelagic species (see [139] for
a taxonomic breakdown). A comparison of the LT5y values in Figure 3-10 suggests
that in general the first group (subarctic and transitional regions) displays greater
sensitivity. Two datapoints are excluded from the figure because the authors could
not calculate an LTy. From the subarctic/transitional group, an LTsq > 140 hours
was observed for a pCOy of about 0.15 kPa (ApCOs &~ 0.04 kPa), and from the
subtropical group, an LT5y < 6 hours was observed for a pCOs of about 9.9 kPa
(ApCO, ~ 9.8 kPa).

From the raw data plots for these stations (provided by the lead author of [139]),
LT, LT5p, and LTy values were estimated using the probit method of sigmoid curve
fitting as in [139] (see Finney [38] for an overview). Good agreement was achieved
between the estimated and reported LT5, values after certain assumptions were made
during the analysis: (1) the first observed instances of 0% and 100% mortality were
assigned values of 1% and 99% during the regressions, and (2) death in the control
samples was ignored?. This latter assumption has little impact on the first (subarctic

and transitional) group as these exhibited little control sample mortality. However,

2These assumptions were needed to achieve good agreement with reported LT, values; we have
been unsuccessful in contacting the lead author of [139] to confirm since receiving the raw data plots.
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Figure 3-10: Reported LT5q values for Western North Pacific copepods from Watan-
abe et al. [139]. Filled squares: shallow-living copepods from the subarctic and transi-
tional regions; hatched squares: shallow-living copepods from the subtropical region;
open squares: deep-living copepods. For comparison, the harpacticoid copepod data
from Sato et al. [112] are shown (plus signs).
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a b c | R?
subarctic/transitional copepods | 2.32 | 1.69 | 1.36 | 0.64
subtropical copepods 1.56 | 0.741 | 2.27 | 0.68
developmental fish 0.357 | 3.64 | 3.40 | 0.49

Table 3.4: Regression coefficients for various isomortality functions of form (3.36) for
time in hours and ApCQO, in kPa.

substantial control mortality was observed in all four experiments in the second group,
and as a result these values must be considered rather conservative.

Multilinear regression was applied to both shallow-living copepod groups to de-
termine the coefficients in a probit-type isomortality function (3.36). The regressions
were performed on the estimated LTy, LT, and LTy, values rather than the raw
data because of the required assumptions mentioned above. Prior to regression, the
pCO, values were converted to ApCQOa, i.e., the control sample pCO, was subtracted
out. The resulting regression lines are plotted together with the underlying datasets
in Figures 3-11 and 3-12, and summarized in Table 3.4. Because the reported LT5q
values are less scattered for the first group (see [139]), and because of the significant
control mortality not accounted for in the second group statistics, the isomortality
function for the subarctic and transitional region (Figure 3-11) is selected as more
realistic. The reader should note that basing the isomortality function on the shallow-
living copepods is conservative, since the discharge scenarios considered herein are at
or below the Watanabe et al. deep-living sample depths.

There are two obvious gaps in the copepod mortality dataset which require some
discussion, and which future investigations may want to address. The first is the
lack of mortality data for low ApCOs exposure levels/long times. This could be due
to experimental design or to the fact that the acute toxicity signal is too subtle to
measure, i.e., if the LT5, approaches the natural lifespan of the organism. The data
suggest that the latter is the case. Watanabe et al. [139] noted significant control
mortality in the 4-7 day range, and for several lower exposure experiments in the
ApCO; range 0.03 - 0.4 kPa there was less then 50% mortality during experiments

of duration 6 - 10 days. Similarly, Kurihara et al. [76] noted control mortality in
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Figure 3-11: Isomortality function derived from shallow copepod samples from the
subarctic and transitional regions of the Western North Pacific of Watanabe et al.
[139]. Open diamonds: LTyg; filled squares: LT5o; open triangles: LTgq. Solid line:
LT5o function; dashed lines: LTy (left) and LTgo (right) functions.
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Figure 3-12: Isomortality function derived from shallow copepod samples from the
subtropical region of the Western North Pacific of Watanabe et al. [139]. Open
diamonds: LT;g; filled squares: LT5q; open triangles: LTgy. Solid line: LT5q function;
dashed lines: LTy, (left) and LTg, (right) functions.
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excess of 40-60% after 8 days for adult females of two surface-dwelling copepods
with no significant added mortality for ApCO, exposures in the range 0.1 - 1 kPa.
In addition, the same study indicated that strong impacts on egg production rate,
hatching rate, and nauplius survival rate were only observed for ApCO, > 0.5 kPa
[76], i.e., sub-lethal effects were not observed for lower pCOx.

In the absence of quantitative mortality data for low exposures, the isomortality
function is extrapolated to a [ApCOs],in of 0.015 kPa, i.e., mortality is accrued
above this level. Such an extreme low value implies extrapolating well beyond the
data range, since the smallest value of ApCO5 used in group 1 regression is 0.26
kPa. Anecdotally it is noted that the reported datapoint of LTsy > 140 hours for a
ApCO; of 0.04 kPa is not inconsistent with the extrapolation of the LT5q line to 0.015
kPa. The 0.015 kPa criteria is similar to the 100 patm (= 0.01 kPa) used by Sato
[109], and has been chosen because, with the selected ocean chemistry parameters at
3°C, ApCO4 = 0.015 kPa corresponds to ApH ~ -0.1. As discussed in Section 4.2,
natural pH variability in the ocean suggests that marine organisms should be capable
of tolerating a pH drop of 0.1 without any sub-lethal impacts [9], which is supported
by the observations of Kurihara et al. [76]. Furthermore, this value is well below
the Predicted No Effect Concentration (PNEC) for COy of 4500 patm estimated
for copepods by Kita and Watanabe [75], based on acute and chronic toxicity data.
Thus, to allow acute impacts (mortality) to accrue until this level is very conservative
within the bounds of the present study.

The other gap in the copepod dataset is the lack of mortality data for short
times/high pCOs. For the data used in the regression, the highest ApCO, is 4.6
kPa. The data provided by Watanabe [138] (see Chapter 2) in which copepods were
exposed to 20 kPa for short durations are not true toxicity data in the sense that
organisms were allowed to recover after appearing dead, and indeed the fact that
most of them survived indicates little mortality for exposures of 20 kPa for 30 minutes
(and are therefore not inconsistent with the extrapolated curves). Conversely, the
datapoint from the subtropical group of LT5q < 6 hours for ApCOs =~ 9.8 kPa suggests
that extrapolating the isomortality function into short times and high ApCOs is not

98



conservative.

The latter gap in the data is addressed by a sensitivity analysis in which a second
isomortality function is developed from a subset of the developmental fish dataset.
The dataset is attractive because mortality was observed for short times (minutes) at
concentrations well below those predicted by extrapolating the copepod isomortality
curve. It could be argued that they are appropriately considered since a CO, discharge
design should seek to avoid harming any species. However, as noted previously,
the response of these organisms is not well-suited to the isomortality approach and
thus they are of questionable applicability. Nonetheless, in the interest of being as
conservative as possible in the absence of a better dataset, a subset of these data is
used. Specifically, the embryo and juvenile Japanese sillago and red sea bream data
from Kikkawa et al. [71] are selected because they exhibited the highest sensitivity
(Figure 3-13). An isomortality function has been developed in the same manner as
for the copepod dataset (Table 3.4), as shown in Figure 3-14 along with the main
(copepod) function.

The sensitivity analysis using the developmental fish dataset is conducted in a
special manner in the interest of being conservative. At each timestep, the organism’s
mortality is evaluated with both the base copepod function and the developmental
fish function, and the larger of the two impacts is selected. At the end of the timestep,
the cumulative equivalent exposure time using each curve is calculated for the final
mortality and exposure pH in preparation for the next step. Thus, the organism’s
actual equivalent time is discontinuous as it may vary from timestep to timestep
depending on which curve is used. Overall, this approach maximizes impact by

allowing a single simulated organism to experience the sensitivity of multiple species?.

3This approach was selected in favor of a single regression line using a combined cope-
pod/developmental fish dataset because a linear fit was too poor to be of value, and experimentation
with nonlinear fits did not yield well-behaved functions.
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Figure 3-13: LCj values for developmental fish from Kikkawa et al. [71]. All reported
data are plotted. The cleavage stage embryos and juvenile japanese sillago and red sea
bream were selected for the sensitivity analysis isomortality function and are shown
as filled symbols.
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Figure 3-14: Isomortality function derived from selected subset of developmental fish
data from [71], plotted together with the main copepod isomortality function and the
selected subset of copepod data. Open diamonds: LT;y; filled squares: LT5q; open
triangles: LTgy. Solid line: LTjq function; dashed lines: LT;y and LTy functions.
Note that LC values were reported by the author, but in the isomortality framework
the LT and LC concepts are interchangeable.
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Chapter 4

Results

Overall, 6 different discharge configurations are studied: a stationary hydrate
plume released at 1,500 m and just reaching the ocean bottom at 4,500 m; a bottom
manifold releasing CO, droplets over a 4.5 km distance from the depth range 800-1200
m with a plume rise of 250 m; and four towed pipe scenarios in which single diameter
hydrate composite particles (2.5, 5, 10, and 15 cm) are released at 1,500 m with a
range of hydrate conversion percentages (0.1 < X, < 0.55) into an ambient current
that is not parallel to the path of the towing ship. For each discharge configuration,
CO, mass loadings of 10, 100, and 1,000 kg/s are evaluated, corresponding roughly
to the output of 0.1, 1, and 10 500-MW coal-fired power plants [54].

Calculation results are presented below in the following order: water quality im-
pacts, biological response, and sensitivity analysis. Result interpretation is deferred

until the final section of this chapter.

4.1 Water quality impacts of discharges

Figure 4-1 shows the pH and pCO, impact volumes (i.e., the volume with pH
below or pCOs above a given level) for COs mass loadings of 100 kg/s and 1,000
kg/s. Only those combinations which cause a ApCOs impact greater than 0.015
kPA (ApH < -0.1) are shown. The 10 kg/s mass loading is not shown as only the

stationary hydrate plume exceeds the ApCO; criterion.
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Figure 4-1: Impact volumes for discharge scenarios in terms of pH (top panels) and
pCO; (bottom panels) for mass loadings of 100 kg/s (left panels) and 1,000 kg/s
(right panels). Only those scenarios which achieve an impact of ApCOy > 0.015 kPa
are shown: sh = stationary hydrate plume; tpX = towed pipe with X cm particle
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For a low impact level of ApH= —0.1 (ApCO; =~ 0.015 kPa), the bottom manifold
has the greatest impact volume, but with maximum impact levels of -0.2 and -1.1 pH
units (about 0.038 and 0.75 kPa) for the 100 and 1,000 kg/s loadings, respectively.
In contrast, the stationary hydrate plume scenario has a lower impact volume than
the bottom manifold for the lowest impact level, but eventually yields the highest
volumes as the impact level increases, with non-zero impact volumes for a ApH of
-1.7 and -2.2 (ApCO; of about 2.9 and 9.2 kPa) for the 100 and 1,000 kg/s loadings,
respectively. The relative performance of the bottom manifold to the stationary pipe
decreases as the loading is increased from 100 to 1,000 kg/s. The towed pipe scenarios
demonstrate lower volumes than the stationary hydrate plume at any impact level for
any combination of loading and particle diameter. The same is true when comparing
to the bottom manifold if the towed pipe particle diameter is 5 cm or more. The
impact of the towed pipe method decreases with increasing particle diameter, with
little impact observed for d = 15 cm, the largest diameter tested, for a 1,000 kg/s
loading.

The same trends are demonstrated in Figure 4-2, which shows the pH and pCO,
variation along the centerline of the plumes for the same mass loadings. Since the
plumes are modeled analytically, the highest concentration is always located at the
centerline. It is, however, worth noting that the spatial extent of the plumes differs
between scenarios. The horizontal axis of Figure 4-2 is time, i.e., for any point on the
centerline the horizontal axis shows the time since that point was colocated with the
injection source. The axis can be converted to a distance from the source, x = ut,
where u is the ship speed for the towed pipe scenarios and the ambient current for the
other scenarios, as shown in Figure 4-3 and Table 4.1. While the towed pipe scenarios
are the shortest in terms of time to reach a ApH of -0.1, they are longer in distance
than the stationary hydrate plume and generally longer than the bottom manifold
because of the high speed of the ship relative to the ambient current. As a result,
the lateral extent of the towed pipe plumes is also much smaller than the other two

discharge methods (see Table 4.1).
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Figure 4-2: Centerline variation in pH (top panels) and pCO, (bottom panels) as a
function of time from the source for discharge scenarios with mass loadings of 100
kg/s (left panels) and 1,000 kg/s (right panels). Only those scenarios which achieve
an impact of ApCOs > 0.015 kPa are shown: sh = stationary hydrate plume (solid
line); tpX = towed pipe with X cm particle diameter (dashdot lines; the larger the
particle diameter, the smaller the impact); and bm = bottom manifold (dashed line).
[PCOs]min is shown as a dotted line (ApH =~ —0.1) to indicate the endpoint of the
biological impact simulations.
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Figure 4-3: Centerline variation in pH (top panels) and pCO, (bottom panels) as a
function of distance from the source for discharge scenarios with mass loadings of 100
kg/s (left panels) and 1,000 kg/s (right panels). Only those scenarios which achieve
an impact of ApCOs > 0.015 kPa are shown: sh = stationary hydrate plume (solid
line); tpX = towed pipe with X cm particle diameter (dashdot lines; the larger the
particle diameter, the smaller the impact); and bm = bottom manifold (dashed line).
[PCOs]min is shown as a dotted line (ApH =~ —0.1) to indicate the endpoint of the
biological impact simulations.
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COy Distance to Final | Plume

Scenario loading | ApCOy = 0.015 kPa | 20, | Height | Area
(kg/s) (km) (k) | (k) | (ke?)

Stationary hydrate 10 1.06 0.0461 3 0.138
Stationary hydrate 100 8.14 0.458 3 1.37
Stationary hydrate | 1,000 61.3 4.57 3 13.7
Towed pipe, 2.5 cm 100 119 0.104 | 0.220 | 0.0228
Towed pipe, 2.5 cm | 1,000 1,006 1.04 0.220 | 0.228
Towed pipe, 5 cm 100 23.2 0.0388 | 0.588 | 0.0228
Towed pipe, 5 cm 1,000 400 0.388 | 0.588 | 0.228
Towed pipe, 10 cm | 1,000 122 0.147 1.55 0.228
Towed pipe, 15 cm | 1,000 22 0.085 2.69 0.228
Bottom manifold 100 26.8 3.76 0.392 1.48
Bottom manifold 1,000 362 37.6 0.392 14.7

Table 4.1: Plume characteristics of the modeled discharge scenarios. Only those
scenarios which achieve a ApCO4, > 0.015 kPa (ApH < -0.1) are shown.

4.2 Biological impacts of discharges

A central result of the biological data and modeling analysis is that a subset of
the discharge configurations proposed herein yield a prediction of no adverse impact
for the region modeled, i.e., outside of the dynamic mixing zone. This conclusion
rests on the fact that sufficient dilution is achieved within the dynamic mixing zone
to prevent concentrations from exceeding [ApCOs],min, Which was set to 0.015 kPa
(corresponding approximately to a 0.1 decrease in pH) in an effort to be highly con-
servative. Since it has been suggested that such a low impact level would likely avoid
acute and chronic (sub-lethal) effects alike, the present analysis must conclude “zero”
impact. Discussion of the validity and implications of this result is deferred to Section
4.4 and Chapter 5; the remainder of this section summarizes the calculated impacts
of each discharge configuration.

Before quantifying the biological impact predicted by the isomortality analysis
described in Chapter 3, the nature of these calculations is first illustrated graphically.
Figure 4-4 shows the trajectory of an organism cluster traveling along the centerline
of the stationary hydrate plume and also the cumulative trajectory which reflects the

cumulative exposure predicted by the isomortality method. In the latter case, the
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horizontal axis is the log of cumulative equivalent exposure time (t* in (3.3)), i.e.,
the exposure time that embodies cumulative lethal effects had the organism been
exposed to a constant pH throughout. As the organism moves along a trajectory that
maintains a ApCOs higher than the [ApCOs],in, it incurs mortality due to the expo-
sure (the probit function extends to —oo meaning that even exposures infinitesimally
larger than [pCOs),n:,m, will cause some added mortality). Since the centerline particle
is always exposed to the highest plume pH throughout its trajectory, it always expe-
riences the highest mortality of any organism in the plume. Its mortality is entirely
due to the predicted plume spreading and the isomortality curve since it experiences
no diffusion relative to the plume. Organisms with initial positions not on the center-
line experience non-zero relative diffusivity and therefore sample concentrations lower
than the centerline as they undergo lateral diffusion.

The predicted mortality of the centerline organism cluster is shown in Figure
4-5 for all discharge configurations and loadings. The reader is reminded that if no
mortality is predicted for the centerline organism, then no other organisms experience
mortality either. For a 10 kg/s COq loading, only the stationary hydrate plume causes
any mortality (< 107%). For 100 kg/s CO,, the bottom manifold and towed pipe with
particle diameter < 5 cm also cause some mortality. For 1000 kg/s, all discharge
configurations yield impact. For loadings of 100 kg/s or higher, the bottom manifold
shows the greatest impact with near complete mortality being achieved for 1,000 kg/s.
In each case, the towed pipe scenarios offer the lowest impact, with decreasing impact
for increasing hydrate particle diameter. If the [ApCOs]np is increased from 0.015
kPa to 0.05 kPa to be consistent with the PNEC estimate of Kita and Watanabe
([75], see Section 3.3.2), then a finding of no impact would also apply to the 100 kg/s
bottom manifold and 5 cm diameter towed pipe scenario, and the 1,000 kg/s 15 cm
towed pipe scenario.

Further insight into the differences in the dilution strategies of the three scenarios
can be gained by considering the trajectory of the centerline organism in each case.
Figures 4-6 and 4-7 show the trajectories for the bottom manifold and towed pipe

(2.5 cm) cases for a 100 kg/s CO, loading, respectively. The bottom manifold has
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Figure 4-4: Simulated trajectory of an organism cluster traveling along the centerline
of the stationary hydrate plume for a 100 kg /s discharge. The centerline trajectory is
a time series of ApCO; values experienced by the particle. The cumulative trajectory
is the centerline trajectory translated to equivalent exposure time via the isomortality
method, and thus reflects cumulative exposure. The mortality trajectory shows the
mortality incurred by the organism. In this case, the organism cluster incurs about
8.4% mortality before reaching the [ApCOsg)],in of 0.015 kPa, after which point no

further mortality is incurred.
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Figure 4-5: Fractional mortality incurred by an organism traveling down the plume
centerline for all scenarios and loadings considered.

the lowest initial pCOsy, but it persists the longest, reaching a mortality of about 9%.
The towed pipe has an order of magnitude higher initial pCO,, but it persists for a
much shorter time, reaching mortality 0.035%. The initial pCOy for the stationary
hydrate plume is yet another order of magnitude higher with a persistence in between
that of the other two scenarios, reaching a mortality of 8.4%.

Centerline mortality is a useful indicator of the highest possible impact of a dis-
charge, but it does not provide a measure of predicted impact for the plume as a
whole. One such measure is the integrated mortality flux (Qy) as a function of

distance downstream (z) from the discharge [5, 19]:

Qula) =uh [~ Da.y)dy (4.1
where D(x,y) is the fractional mortality, and y is the lateral coordinate (the centerline
is at y = 0). Since D(y) is dimensionless, @) has units [%3] and can therefore be

thought of as a flowrate of “dead” water. In the absence of species recovery, this
quantity reaches a steady state value at the point where the centerline concentration

drops below [ApCOs],nin-
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Figure 4-6: Simulated trajectory of an organism cluster traveling along the centerline
of the bottom manifold plume for a 100 kg/s discharge.
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Figure 4-7: Simulated trajectory of an organism cluster traveling along the centerline
of the towed pipe (2.5 cm diameter) plume for a 100 kg/s discharge.
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Figure 4-8: Integrated mortality of organisms encountering each discharge plume.
Only scenarios which cause ApCO5 > 0.015 kPa are shown.

Figure 4-8 shows the integrated mortality flux for each scenario that causes ApCO,
0.015 kPa. The same relative trends are noted here, but the separation between the
scenarios is multiple orders of magnitude. For example, the mortality flux of the bot-
tom manifold is about 1,000 times greater than the least effective towed pipe scenario
(d = 2.5 cm) for a 1,000 kg/s CO, loading.

An average fractional mortality for the plume can be calculated by normalizing
the integrated mortality flux by the product of the cross sectional area of the plume
and the relevant velocity (u, or u,). The resulting average mortalities are shown in
Figure 4-9, where the cross-sectional area is based on a lateral width of 20, of the
COy plume at the downstream location where the mortality flux reaches its steady
state (see Table 4.1). The same relative trends are again noted, with a maximum
average mortality of about 5% being achieved for a 1,000 kg/s loading for the bottom
manifold. For a 100 kg/s loading, the maximum average mortality (again for the
bottom manifold) is about 0.3%. The average mortalities are orders of magnitude

lower for the other scenarios.
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Figure 4-9: Average mortality of organisms encountering each discharge plume. Only
scenarios which cause ApCOy > 0.015 kPa are shown.

4.3 Sensitivity analysis on isomortality function

During the development of the plume calculations detailed in Section 3.2, choices
were consistently made to be conservative. For example, the observed diffusivity re-
lationship of Okubo [93] was reduced by a factor of ten to reflect deep ocean mixing,
vertical diffusion has been ignored, and source representations were crafted to restrict
initial plume width to give narrower plumes with higher initial concentrations at the
edge of the dynamic mixing zone. While we recognize that more sophisticated simu-
lation of the near field plume formation regime would result in small scale patchiness
with higher concentrations near the injection point (e.g., of the type noted by Chen
et al. [24]), such impacts would be limited to a small zone. While future work may
seek to apply isomortality simulation to high-resolution modeling of the mixing zone,
this is beyond the scope of the present study. Rather, the mixing zone analogy is
maintained and attention is focused on impacts outside of this zone. Because the
plume calculations already make a number of conservative assumptions, and because
discharge scenarios such as the towed pipe and bottom manifold can be adjusted to

further reduce the predicted environmental impact, no additional sensitivity analysis
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on the plume calculations is offered at this point. The interested reader may, however,
refer to Adams and Wannamaker [2] for a discussion of plume sensitivity to current
speed, lateral diffusion, and mass loading as their analysis is highly applicable to the
plumes considered in the present study.

The sensitivity analysis is instead focused on the isomortality function. As de-
scribed in Section 3.3.2, an alternative isomortality function has been developed using
the most sensitive subset of the developmental fish dataset (see Figure 3-14) to com-
pensate for a lack of copepod toxicity data for short exposures at high pCO,. The
discharge scenarios were simulated again using this additional function in the manner
described previously, in which the organism chooses the isomortality function which
yields the highest impact at each timestep. To demonstrate the impact of using dual
isomortality functions in this manner, the centerline trajectory of an organism in the
stationary hydrate plume is shown in Figure 4-10, which can be compared to the pre-
vious result in Figure 4-4. In the dual function case, the organism switches from the
first (developmental fish) isomortality function to the second (copepod) function at
about 0.36 hours into the simulation, where the equivalent cumulative time ¢* jumps
from 2.5 hours to 16.7 hours. The second function is then used for the rest of the
simulation. Here the impact of the more severe isomortality function for short times
is substantial; the mortality of the centerline organism goes from 8.4% to 51%.

The centerline mortality and average plume mortality for each discharge scenario
are shown in Figures 4-11 and 4-12, where again only those scenarios with ApCO, >
0.015 kPa are shown in the latter figure (the other scenarios, as modeled here, have
no sensitivity to the isomortality function). The comparison with the base case is
summarized in Table 4.2. The stationary hydrate plume shows the greatest absolute
increase in the impact parameters because, as noted previously, it causes the highest
pCOs values initially. The bottom manifold shows the least sensitivity because of its
low initial pCO,. Most of the stationary hydrate plume and towed pipe discharges
show sensitivity, although the towed pipe impact remains low relative to the stationary
hydrate plume. Overall, the bottom manifold impact remains the largest and the

towed pipe the smallest.
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Figure 4-10: Simulated trajectory of an organism cluster traveling along the centerline
of the stationary hydrate plume for a 100 kg/s discharge, when the dual isomortality
functions in Figure 3-14 are used.
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centerline, when the dual isomortality functions in Figure 3-14 are used.
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ApCO5 > 0.015 kPa are shown.

Change in
centerline
mortality

Change in
average
mortality

1.1x107% — 2.5x1072

3.4x107% — 4.6x107°

8.4x107% — 5.1x107!

3.6x107° — 1.0x10~*

8.0x10~F — 9.7x10~ !

1.0x1073 — 1.0x1073

3.6x107% — 1.8x1073

4.9x107% — 1.7x1077

2.8x1071 — 7.6x10~!

3.5x107° — 5.5x10~°

5.4x107Y — 1.1x107%

5.3x1071% — 9.6x10~13

2.6x107% — 6.6x10~2

1.6x107°% — 2.7x107°

7.7x107° — 1.0x10~*

3.0x107? — 3.9x107?

1.7x107Y — 2.6x1077

1.2x107"° — 3.0x10~ 1

8.9x1072 — 8.9x102

2.0x107% — 2.0x1073

COq

Scenario loading
(kg/s)

Stationary hydrate 10

Stationary hydrate 100
Stationary hydrate | 1,000
Towed pipe, 2.5 cm 100
Towed pipe, 2.5 cm | 1,000
Towed pipe, 5 cm 100
Towed pipe, 5 cm 1,000
Towed pipe, 10 cm | 1,000
Towed pipe, 15 cm | 1,000
Bottom manifold 100
Bottom manifold 1,000

9.8x10~! — 9.8x10~!

4.5x107% — 4.5x1072

Table 4.2: Change in predicted centerline and average mortalities when dual isomor-

tality functions are applied.
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4.4 Discussion of results

The results of the preceding analysis can be interpreted in two main ways. First,
as a means of comparing the various discharge strategies to each other and to those
proposed in other studies. Second, as a means to say something about the expected
absolute impact of these sequestration schemes. The following section considers each

of these, and closes with a brief discussion of the limitations of the present analysis.

4.4.1 Relative performance of discharge scenarios

Relative to each other, the preceding results suggest that the towed pipe scenario
offers the best performance. As the particle diameter is increased, the predicted
impact drops to “zero” for a 100 kg/s loading and approaches “zero” for a 1,000 kg/s
loading. The second best performer is the stationary hydrate plume on the basis of
biological impact, even though it generates volumes with higher levels of pH/pCOq
perturbation than the other two methods. The bottom manifold exhibits the worst
performance as configured here; although it generates lower peak perturbations, it
covers a larger area and therefore causes more overall impact.

Conclusions based on these results alone are, however, incomplete. The bottom
manifold configuration, which was selected from [2], has more degrees of freedom
from a design standpoint than the stationary hydrate plume. The dilution strategy
of the manifold is to “paint” as large a region as possible with low concentrations
by extending far in the lateral direction and creating a buoyant plume which spreads
the CO4 vertically. In contrast, the stationary hydrate plume covers only a small
horizontal length scale but takes advantage of the negative buoyancy of the hydrate
composite particles to spread the CO5 over the full height of the water column and
to dilute it through turbulent entrainment of the surrounding seawater. While the
bottom manifold design could be altered to achieve greater dilution by “painting”
a larger cross-sectional area (e.g., a longer manifold reaching greater depths with
higher plume rise), the stationary hydrate plume does not offer the same flexibility.

Although some additional lateral dispersion could be achieved by having a distributed
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source, (e.g., a platform with many nozzles), it is limited in comparison to the bottom
manifold for practical reasons and also because the flow through each nozzle must
be large enough to achieve the buoyant plume effect. Caulfield [19] also noted this
design flexibility of a bottom manifold approach when considering her droplet plume,
in particular looking at the impact of distributing diffuser nozzles in the horizontal
as well as the vertical. Thus, in the absence of cost constraints, the length, depth,
and spatial loading distribution of the bottom manifold could be configured to reduce
environmental impact much the same way the towed pipe particle diameters, reaction
efficiencies, and ship speed could be adjusted to reduce impact. Therefore, the lack
of design flexibility in the stationary hydrate plume effectively makes it the least

attractive option of the three.

4.4.2 Comparison to past studies

The discharge scenarios proposed herein seem capable of offering equal or better
near-field dilution than comparable strategies in previous studies, some examples of
which are reviewed below (only studies which used roughly similar loadings as the
present study are considered). Chen et al. [24] studied a 10 x 10 m horizontal platform
located 20 m above the seafloor at 878 m with a uniform array of 100 1-kg/s nozzles
injecting liquid CO, droplets with a mean diameter of 0.8 mm. The plume achieved a
maximum rise of 190 m but significant interaction between nozzles apparently caused
a descending plume with significant accumulation of CO, enriched seawater at the
seafloor and pH depressions up to 2.6 units. Chen et al. also simulated a towed pipe
releasing 100 kg/s of liquid CO, droplets from an array of nozzles at 1500 m depth
moving at 3 m/s. The resulting buoyant droplet plume was reported to dissolve
(after 70 minutes) into a passive plume 450 m tall and over 150 m wide, with a
maximum pH decrease of 1.7 units. Impact volumes (given in [56]) for the platform
release were much larger than those considered in the present study for ApH < —1
and slightly higher than the 100 kg/s stationary hydrate plume for —0.3 < ApH <
—1. For the Chen et al. towed pipe scenario, impact volumes are two orders of

magnitude larger than the 2.5 cm hydrate particle towed discharge in the present
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study, which is surprising given the reported extent of the plume. The pH impact
volumes predicted by Adams and Wannamaker [2] for their bottom manifold and
stationary hydrate plumes are generally smaller than those predicted herein, largely
due to the ten-fold decrease in ambient diffusivity employed in the present study
as a conservative measure. Employing the same diffusivities, the bottom manifold
scenarios are the same, the stationary hydrate plumes are similar (2] used a shallower
release depth which yields slightly greater dilution), and the towed pipe scenarios offer
more favorable dilution in the present study due to the increased lateral source width.
The impact volumes reported by Caulfiled [19] (volume with pH < 7 are reported,
see Table 3.1) for the droplet plumes are 0.5-2 orders of magnitude higher than the
stationary hydrate and bottom manifold plumes in the present study (Caulfield’s
droplet plume scenario is most similar to the bottom manifold scenario considered
here). Impact volumes for her towed pipe scenario are comparable to the present 2.5
cm particle towed pipe scenario. This comparison is complicated by the fact that 30%
higher loadings were used in [19] (130 kg/s for one plant, 1,300 kg/s for ten plants)
along with an order of magnitude higher ambient diffusivity; it is however expected
that the present scenarios offer better dilution than the ones considered by Caulfield,
save for her dry ice scenario which was dismissed due to cost concerns. The impact
volumes for the 25 kg/s stationary droplet release modeled by Drange et al. [36] (5
ports discharging 100 m above the sea-floor in a 0.05 m/s current) are smaller than
those of the 100 kg/s stationary hydrate plume considered here. Compared to the
100 kg/s towed pipe 2.5 cm hydrate particle release considered here, the Drange et
al. volumes are similar for ApH > —0.5 and larger for ApH < —0.5. Comparisons to
the plumes simulated by Sato and Hama [110], Sato and Sato [111] and Sato [108] (a
10-hour 200 kg/s liquid COy injection at 2,000 m) and Sato et al. [109] (a 100 kg/s
liquid COy injection over depth interval 1000-2000 m moving at speeds of zero and 4
m/s) are difficult in that no impact volumes are reported. Nonetheless, the organism
ApCO, experience reported by Sato et al. for the stationary release appears to be
greater than the centerline ApCO, for the stationary hydrate plume in the present
study, and the ApCO; of the towed pipe scenario of Sato et al. is comparable to the
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centerline ApCO, of the 2.5 cm diameter towed pipe scenario in the present study
(higher for ¢ < 4 hours, somewhat lower for ¢ > 4 hours). The towed pipe scenario
of Minamiura et al. [89] (100 kg/s liquid CO, discharged through dual horizontal
10-m long diffusers with 50 ports each, towed at 3 m/s) yields a maximum ApCO,
of about 600 patm after 3 hours, which is very close to the towed pipe scenario of
Sato et al. [109] and the centerline ApCO, of the 2.5 cm towed pipe scenario in the
present study. The towed pipe scheme proposed by Hirai et al. [55] and Tsushima
et al. [133] appears to offer the greatest dilution of past studies, with only about
5 x 107% km? exceeding a ApCO; of 0.015 kPa for a 100 kg/s loading [133] after
about 1 hour; this is far less than the centerline dilution of the 100 kg/s 5 cm towed
pipe scenario considered here. Furthermore, the fact that the ApCO, perturbation
predicted by Tsushima et al. [133] becomes negligible after 2 hours suggests that their
scheme yields dilution on par with the present towed pipe scenario with 10 or 15 cm
diameter hydrate particles.

The predicted biological impact for the towed pipe scenarios and the stationary
hydrate plume can be compared to the findings of several of the previous studies listed
in Section 3.1. In Caulfield [19], a finding of zero impact was reported for her towed
pipe scenarios even at loadings of 1,300 kg/s. The present study only predicts zero
impact for loadings of 100 kg/s or less (for diameters above 2.5 ¢cm). This difference
can be attributed to Caulfield’s higher ship speed, more favorable isomortality curve,
a source dispersed vertically over 500 m, and more favorable lateral diffusivities. For
the droplet plume considered by Caulfield, mortalities reached as high as 11 and 69%
for the 130 and 1,300 kg/s cases, respectively, with maximum mortality fluxes of
307 and 27,500 m?®/s. The centerline mortalities in the present case are 8.4% (8.9%)
and 80% (98%), for 100 and 1,000 kg/s, repectively, with mortality fluxes of 2.5 (96)
and 690 (21,000) m3/s for the stationary hydrate plume (bottom manifold). Thus,
the biological impact of the scenarios considered herein is less than or similar to
that computed by Caulfield despite her more favorable diffusivities and isomortality
curve and despite that fact that her diffuser length increases with loading. This

is presumably due to the larger vertical extent of the plumes in the present study.
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Still, the basic conclusion is similar to the one herein, namely that the towed pipe
offers negligible impacts while a fixed plume results in some impact (although some
of the impact could perhaps be reduced by optimizing design variables). This is
essentially the same conclusion as in Sato et al. [109], which found non-zero but
negligible mortality for a ship speed of 2 m/s and a droplet injection distributed
vertically over 1,000 m, but “non-trivial” impact when the ship speed was 0. Although
Sato and Hama [110], Sato and Sato [111] and Sato [108] found negligible impacts
for a 200 kg/s fixed pipe scenario, this conclusion was based on Auerbach’s non-CO,
isomortality function and their mortality simulations appear to have been truncated
before ambient pH was recovered. As discussed in Section 3.1.3, Chen et al. [22]
found minor biological impact for a stationary discharge using a biological activity
approach, but this was for a small loading (1 kg/s). Negligible biological impact was
also found using COs-induced mortality data (with Sato’s approach) for the 100 kg/s
towed pipe scheme of Tsushima et al. [133], which as noted above seems to offer the
best dilution of past studies. Lastly, Masuda et al. [85], using an OGCM to predict
far-field CO, concentrations but ignoring near-field peaks, estimates that a towed
pipe discharge of 420, 500, and 270 kg/s in a region of the North Pacific within the
approximate depth intervals 1,000 - 1,500, 1,500 - 2,000, and 2,000 - 2,500 could avoid
exceeding Kita and Watanabe’s [75] PNEC (Predicted No Effect Concentration) of
ApCO;y of 500 patm.

Thus, overall the present study is consistent with past studies in identifying a
towed pipe of some sort as generally being able to avoid significant biological im-
pacts if configured appropriately, and to a greater degree than a fixed descending or
ascending plume (e.g., Caulfield et al. [20], Sato et al. [109], Jeong et al. [69]). To
the previous assessments we add: (1) the conclusion holds up even considering the
most recent COq-induced mortality data across a range of species; (2) COy hydrates
provide an effective way to achieve greater vertical and lateral dilution with relatively
shallow injection depths, and (3) a bottom manifold can likely also be configured to
largely avoid biological impacts (also suggested by [19]), although the design may be

constrained by cost.
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4.4.3 Consideration of absolute impact

While the present analysis is a useful way to compare the efficacy of various
discharge strategies and to confirm the general findings of previous investigations,
the ultimate goal of the investigation is to say something about the absolute impacts
of ocean sequestration discharges. Water quality impacts are less controversial in
this respect. While the extent of mixing in both the dynamic zone and the passive
zone is open to some debate due to the complex fluid mechanics of multi-phase flows
and inherent turbulence of the ocean, the chemistry of the carbonate system is well
understood and thus bounds can be placed on the expected water quality impacts of
a discharge. The challenge of translating the water quality impact into a biological
impact is, however, much greater even on an individual species basis, let alone for an
entire ocean ecosystem.

The tool employed in the present study is an isomortality-type analysis which is an
attempt to integrate acute toxicity data in a mathematically tenable manner such that
water quality impacts can be “translated” into a biological impact. Recent research
suggests that this may be a reasonably accurate approach for modeling the acute
response of zooplankton but not for fish [112] (see discussion in Chapters 2 and 3).
Thus, two fundamental approaches can be taken in interpreting the results presented
above. First, accepting the isomortality modeling approach as valid and copepods
as a decent surrogate for ocean species in general, and second, by attempting to
interpret the water quality results directly without the aid of the isomortality analysis.
Interpreting the findings of no acute impact for some of the discharge scenarios falls
into the second category since it does not rely on adding exposures to come up with
a cumulative mortality statistic. Rather we first attempt to interpret the non-zero
mortality results in terms of an absolute impact.

The approach of Sato and Sato [111] and Sato et al. [109] is to consider the mor-
tality of a single test organism and call it significant if it exceeds 0.125% (i.e., a
probit value of 2, corresponding to three standard deviations of a tolerance distribu-

tion which is assumed to be Gaussian with the log of the stressor, see Finney [38]).
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Applying this to the centerline results in Section 4.2 implies that there are no impacts
for any 10 kg/s discharge, only for the stationary hydrate plume and bottom manifold
for a 100 kg/s loading, and for all but the towed pipe with diameter of 10 cm or above
for a 1,000 kg/s loading. Using the dual isomortality function sensitivity results, the
stationary hydrate plume also yields impact at 10 kg/s, as does the towed pipe 2.5
cm diameter for 100 kg/s. Although this criterion could in theory be imposed as a
design constraint, its binary nature (impact vs no impact) yields little in the way of
overall impact of a plume.

As one step further, Caulfield [19] and Auerbach [5] estimated mortality fluxes
and mortality volumes, the latter being the spatial integration in the downstream
direction of the mortality flux given by (4.1) to yield a volume of “dead” water. Such
a measure is convenient in that it can be normalized by the volume of the ocean, or of
some ocean subregion of interest. However, it can only be defined if a species recovery
is implemented, e.g., as done by Caulfield and Auerbach via (3.4), because otherwise
the volume increases with time indefinitely. As noted earlier, a recovery process is not
included in the current calculations because it requires specifying a growth rate which
is not well-known and which makes assumptions regarding the response of organisms
beyond the considerable ones already made by the isomortality modeling approach.
Instead, a different interpretation of the predicted mortality fluxes is offered below.

Simplistically, Q5 can be used to characterize the timescale to kill all the organ-
isms in the ocean, by ignoring all ecosystem effects and regenerative ability of the
organisms, i.e., ' = %, where Vp is the volume of the ocean. But such a timescale is

hardly useful. A more informative interpretation of @), can be gained by considering

a simple equation governing the balance of a single species of organisms in the ocean:

dN
E — ng - de — 5002 (42)

where N is the species population, k, is the rate of generation or growth, k; is the
rate of death under natural conditions, and Sce, is the sink of organisms caused by

the COy discharge. Taking the ambient concentration of organisms to be C, then

123



Num organisms

- |. Perhaps more intuitively, (4.2) can

Sco, = QuC, i.e., Sco, has units [

be written in terms of the concentration of organisms:

dC
—= = kyC = kaC = Sco, (4.3)

Num organisms
L3T

}. In this case, Sco, = QuC where V is a

where Scp, now has units [ o

characteristic volume. Assuming that the concentration of organisms is naturally in
a quasi steady state such that % ~ 0 and k; =~ kg, the impact of the CO, discharge
can be characterized by comparing it to the magnitude of kg, i.e., how much extra
mortality can be attributed to the discharge. Thus, the following balance can be

considered:
~ Qu

kq v

(4.4)

Taking kg =~ % (where 7 is the average lifespan of the organism) as a roughly known
constant, the magnitude of V' required for the sink due to the CO, discharge to be
some fraction of natural death can be calculated. For example, for the CO, discharge
to cause a 1% increase in mortality above the natural sink, a critical QQ;; can be
defined:

Qum,erit = 0.01k4Vo (4.5)

where the V' in (4.4) has been taken as Vp. Since each discharge contributes @y,
Qwcrit can be translated into a critical number of discharges, Ng crit = % Based
on this analysis alone, one would conclude that introducing less than Ny of these
discharges into the ocean would increase the natural global sink of organisms by less
than 1%. Alternately, for a given number of discharges, one could determine the
critical volume V,,.;; of ocean required to keep the CO, induced sink less then 1% of
the natural sink. This latter approach has been used to interpret the previous findings,
as shown in Figure 4-13 for the base case isomortality function and in Figure 4-14 for
the dual function sensitivity analysis. For context, it has been assumed that there

would be about 4,000 100-kg/s discharges, which is based on the Pacala and Socolow

[96] estimate of about 175 GtC in avoided emissions over the next 50 years required to
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Figure 4-13: Induced vs natural mortality over various percentages of the ocean
volume using the base case isomortality analysis.

stabilize atmospheric concentrations at 500 ppm. Since the base isomortality function
is derived from copepod data, 7 was conservatively taken as 1 year as an upper bound
estimate on a deep ocean copepod ([4] and references therein). This analysis suggests,
for example, that the towed pipe 2.5 cm scenario would only cause a 0.001% increase
in copepod mortality in about 0.01% of the ocean below 2 km, whereas the bottom
manifold would cause a 1.7% increase in the same volume. Overall, the analysis
suggests that significant disruption of the ocean’s copepod population would occur
only in a small percentage of the ocean. Of course, the impact may have importance
on a regional scale if, for example, a large number of discharges were concentrated
in a smaller volume. Furthermore, it suggests that the impact of the discharge is
linearly dependent on the average lifespan of the target organism, so if for example
the isomortality curves and approach could also be considered realistic for a fish
species with a lifespan of 10 years, then its large scale population would be ten times
more sensitive to the perturbation caused by the discharges.

The estimates provided by the above analysis are admittedly crude and full of

simplifications. For example, they ignore the interaction of multiple sources on each
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Figure 4-14: Induced vs natural mortality over various percentages of the ocean
volume using the dual isomortality function sensitivity analysis.

other and the background CO, concentration, chronic effects to individual organisms,
the relative tolerance of different species, and ecosystem level impacts of the discharge.
Nonetheless, the approach gives a crude measure of impact for a given isomortality
result.

Referring back to the discussion at the beginning of this section, the other way
to interpret the results of the present analysis is to forego the isomortality analysis
and interpret the water quality impacts directly. This is attractive because it does
not rely on the functional form of an isomortality function and does not require
extrapolating toxicity data across species. Such an approach was taken by Barry et al.
[9] to determine, in the absence of species specific data, a possible “safe” threshold for
avoiding chronic (and acute) biological impacts. Specifically, the pH variability across
various zoogeographic regions and bathymetric ranges relevant to ocean sequestration
was analyzed. Average pH variability of 0.05 to 0.24 units was observed, from which
it was concluded that a pH decrease of 0.1 units may be a reasonably conservative
threshold for ecosystem impacts. Unwilling to call any level safe, Portner et al. [101]

concludes that present data indicate that a moderate increase of 200 patm (= 0.02
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kPa) may have significant long term effects, i.e., concerning chronic/ecosystem effects
rather than acute toxicity. Thus, the value of [ApCOs]nin = 0.015 kPa used in the
isomortality analysis seems highly conservative from an acute impact analysis. Since
some of the discharge scenarios can meet this strict threshold, overall the present
study must conclude that, in the absence of complicating factors such as cost, ocean
sequestration schemes can be engineered to largely avoid deleterious environmental
impact.

One major caveat to the present analysis of which the reader is reminded is that
organism exposure within the dynamic mixing zones of the plumes has not been in-
cluded in the analysis. Although they did not model hydrate particle plumes or a pure
rising droplet plume from a bottom manifold, the detailed fluid mechanics investiga-
tions of, for example, Chen et al. [24] and Sato et al. [109] indicate that resolving the
dynamic mixing zone will yield small-scale perturbations well in excess of the above
threshold. Future work should therefore focus on a combined modeling approach in
which near-field active plume mixing and far-field dilution are simulated together by,
for instance, coupling a CFD code with a finely resolved ocean general circulation
model (e.g., as in Drange et al. [36]), together with an isomortality calculation of the
type applied herein. However, it is also noted that because of the design flexibility
in the towed pipe hydrate plumes (and the bottom manifold), it seems likely that
the proposed discharge scenarios could be further refined as needed to reduce peak
concentrations to some extent. For example, hydrate injection nozzles could be dis-
tributed laterally at the end of the towed pipe to further increase the initial width of
the plume and thereby lessen peak concentrations (analogous to the diffuser used in

[133], for example).
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Chapter 5

Summary, Conclusions, and Policy

Implications

The specific objective of the present study is to provide an updated assessment
of the expected acute biological impacts of direct ocean injection. This has been
achieved by adapting the methods developed in previous studies (Auerbach et al. [6]
and Caulfield et al. [20]) and applying them to new biological data and improved dis-
charge scenarios. An extensive literature review of COs-induced mortality data has
been performed, and it clearly demonstrates the need for an update to the initial work
of [6] and [20] because (a) a substantial amount of CO toxicity data has since been
collected and (b) the sensitivity of marine organisms to COs is greater than the sensi-
tivity to equivalent pH depression by other acids (i.e., the type of data upon which [6]
was based). Likewise, advances in, for example, CO, hydrate formation techniques
have led to the development of new discharge approaches which offer enhanced dilu-
tion with less effort. The modeling approaches of the previous studies were updated as
deemed appropriate, e.g., the extended probit model of Sato et al. [109] was adopted
in favor of the original isomortality approach in [6]. A revised isomortality function
has been developed based on pelagic copepod data from the Western North Pacific
[139], thus using a similar target organism for quantifying environmental impact as
previous studies. The functions were applied to discharge scenarios developed from

those proposed in Adams and Wannamaker [2], including a stationary sinking hydrate
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plume, a towed pipe releasing CO4 hydrate composite particles, and a rising droplet
plume from a bottom manifold. These discharge methods are believed to offer greater
or equal dilution than those considered in [19] and subsequent studies. Although the
updates to the previous analyses are considerable, the overall conclusion is the same,
namely, that ocean discharge scenarios can likely be designed to largely avoid acute
impacts. This conclusion is based on two sets of results. First, for some discharge
scenarios the peak impact at the edge of the dynamic mixing zone is predicted to be
less than a 0.1 unit drop in pH (& 0.015 kPa increase in pCO,), which is a highly
conservative criterion for judging acute impacts since this level has been suggested
as a possible “safe” threshold for avoiding chronic/ecosystem effects on the basis of
natural pH variability in the deep ocean [9] (and is less then a third of a recent es-
timate of the Predicted No Effect Level [75]). Second, even when acute impacts are
predicted to occur, discharge scenarios such as the towed pipe result in small impacts
relative to the other scenarios and also in an absolute sense by comparison to the
expected natural sink of copepods in the ocean. This latter conclusion is, however,
crude in the approach used and in the applicability of a copepod as a surrogate for
all deep-sea species.

On a practical note, the considerations above coupled with the analysis in the
preceding sections suggest that a towed pipe hydrate particle discharge scenario holds
the most promise. Although a bottom manifold could in theory be configured to
achieve a similar level of dilution, its major drawback is that it is fixed to one location
with large up-front capital costs. Site selection would be critical and design alterations
are difficult once constructed. In contrast, towed pipe scenarios would likely have
lower up-front costs and are inherently more flexible due to their mobility, allowing
the sequestration region to be shifted as necessary to minimize regional hotspots in
background pCO,. Although operating costs are expected to be higher [56] than a
fixed pipe or platform release, the approach has not been ruled out due to economic
infeasibility by past investigators.

The analysis of acute impacts could be strengthened by additional research from

the biological community. Additional copepod toxicity data on short-term, high-pCO,
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and long-term, low-pCO4y exposure would be helpful to constrain the isomortality
function (although as noted in Section 3.3.2, the latter category may not be accessible
through additional data collection). In addition, data on toxicity due to realistic time
variable exposures would be useful in refining and/or confirming the applicability of
the isomortality approach to simulate copepod mortality. Equally important would be
the collection of toxicity data on a variety of other species in the target depths being
considered. Portner et al. [101] suggests that the lack of accessibility of such organisms
for in vivo laboratory analysis could perhaps be remedied by the use of an appropriate
model organism such as benthic Antarctic eelpout (Pachycara brachycephalum). Such
data would need to be reconciled with the data reviewed herein to delineate the
applicability of an isomortality-type approach (since fish data do not seem to fit
well into this model [112]). New functional models of acute harm could perhaps
be developed, e.g., some combination of the isomortality approach and the activity
model proposed by Chen et al. [22], or perhaps incorporating elements of ongoing
work on modeling stress and recovery of fish in thermal plumes [12]. In addition to
acute impacts, research to better understand chronic and ecosystem impact thresholds
would be highly useful in this assessment, as discussed later in this section.

Beyond the biological data, additional research into the behavior of the proposed
droplet and hydrate particle plumes would be useful to augment the analysis with a
consideration of the dynamic mixing zone, both in terms of the resulting shape of the
plumes as well as the distribution of excess DIC within the zone. This could partially
be addressed by more resolved modeling of the mixing zone but would ultimately
require field verification. Also, a thorough characterization of cost constraints to
the design options would be necessary to arrive at economically viable discharge
configurations.

Although the focus herein is on acute impacts, we recognize that chronic (sub-
lethal) and ecosystem impacts are at least equally important for assessing the viability
of ocean sequestration. Chronic impacts to individual organisms (e.g., reduced lifes-
pan or reproduction rate) are important because they can result in intergenerational

effects, i.e., population decline of a species over longer timescales. Reduced repro-
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duction rate due to COy exposure has been studied for a variety of species, and has
been quantified by metrics such as reduced egg production rates, reduced hatching
rates, and reduced survival of larvae/nauplii (e.g., [76, 77, 78]). Such data have not
been incorporated directly into the analysis because they do not fit well into the iso-
mortality approach used herein. On the one hand, they could be interpreted as acute
mortality data in an effort to make the isomortality analysis reflect some intergener-
ational effects; this approach was taken in the original work by Auerbach [5, 6] where
mortality data for adults was shifted in rough accordance with observed declines in
reproduction. On the other hand, such a treatment is incomplete because it is not
an accurate prediction of the expected population level over many generations, since
the equilibrium population is dictated by the balance of many factors of which repro-
ductive rate is only one. Although developmental fish data were used in a sensitivity
analysis on the isomortality function for short, high-pCO, exposure, this treatment
was motivated by data gaps in the copepod dataset and was not intended as a com-
pensation for chronic or intergenerational effects. Given the complexity of predicting
intergenerational dynamics, the LCy or LC; is sometimes adopted as a conservative
threshold at which chronic impacts can be expected. The approach taken here has
some similarity to this notion in that a [ApCOsg],,, for the isomortality analysis was
set to a very low level (0.015 kPa, based on a ApH = -0.1, or the possibly “safe”
threshold identified by [9] to avoid chronic effects). The fact that acute impacts ac-
crue well below the observed toxicity data and down to a supposed chronic impact
threshold does not make the isomortality approach an adequate treatment of chronic
impact. However, the fact that at least some of the discharge configurations resulted
in impact levels below this threshold suggests that they could be expected to largely
avoid chronic impacts to individual species.

Accurate estimation of ecosystem impacts is an even greater challenge. The acute
and chronic impacts on population levels are species specific [101, 58], meaning that
COs injection could cause a shift in the ecological balance of the ocean. Such effects
could perhaps be measured in mesocosm experiments, but few such investigations

have been done to date and they are complicated by the huge range of species and
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ecosystems that would need be considered for large scale deployment of direct injec-
tion. Long-term observations of population levels due to natural CO, perturbations
could lend some information, but these would not be controlled experiments. Thus,
in the absence of adequate data, the “safe” level of a 0.1 pH decrease previously
discussed provides an attractive surrogate. Again, the fact that at least some of
the discharge scenarios satisfy this constraint at the edge of the dynamic mixing zone
suggests that ecosystem effects could be minimized by optimization of these methods.

Given the present state of knowledge, however, the conclusion that ocean dis-
charges can be configured in a way that largely avoids acute and chronic impacts
is controversial and subject to a number of substantial caveats. First, the present
analysis does not resolve the dynamic mixing zone, where it is very likely that over
small distances the 0.1 pH drop threshold would be violated for any practical dis-
charge scenario. While previous studies (e.g., [24, 109]) have modeled the small-scale
fluid mechanics near the injection point and found impact levels well above this low
threshold, these did not consider the discharge methods proposed herein (descending
hydrate particles or rising, non-interacting droplet plumes from a bottom manifold).
It is therefore difficult to extrapolate their findings to the present case. While vio-
lations within the dynamic mixing zone are likely to occur, we note that the design
flexibility offered by the towed pipe hydrate plume and the bottom manifold in par-
ticular suggest that such violations could be limited to small volumes over short
durations for moderate loadings of 10-100 kg/s. As noted previously, future research
aimed at bridging this gap in the present analysis would be helpful (fluid dynamics
modeling, field verification, and design cost estimates).

Another major caveat is the notion that there exists a “safe” threshold at which no
impact, be it acute, chronic, or ecosystem, could be expected. Portner et al. [101], af-
ter an extensive review and discussion of physiological effects across multiple tolerant
and intolerant species, warns against this model on the basis that the responses vary
dramatically across different types of organisms. While they suggest that the number
of organisms likely to suffer from acute COy toxicity is low, the long-term sub-lethal

effects on deep-sea fauna may have a significant effect on population structure and
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species distribution. In particular, the long-term response of calcifying organisms in
the surface ocean to ApCO; of 200 patm (= 0.02 kPa) is provided as an example.
It is beyond the scope of the present study to weigh these considerations with the
notion that a “safe” threshold can be identified on the basis of natural pH variabil-
ity, although the the latter argument is somewhat persuasive on the basis that the
“business as usual” scenario of atmospheric emissions will cause a change of at least
0.1 pH units in the upper ocean within a century [56].

In light of the above considerations, the overall conclusion is restated in the follow-
ing manner: if a “safe” threshold can be defined reasonably near the one considered
herein, then the present study finds that discharge scenarios could likely be designed
and sited to limit violation of the threshold to a small volume. Unfortunately, this
leaves a large question unresolved.

If it is assumed that the threshold of a 0.1 decrease in pH (or one like it) can
be confirmed, then two important conclusions would logically follow from the present
analysis. First, present or near present (for hydrate formation) technology would allow
ocean sequestration to meet a substantial part of the required emissions reductions in
the short term. The analysis suggests that impacts near the injection points could be
minimized by, for example, use of a towed pipe method with large hydrate diameters.
If CO; can effectively be dispersed over large areas to mostly avoid adverse biological
impacts, then the great capacity of the ocean to act as a sink for CO4 can be exploited.
For example, if the ocean is treated as well-mixed, it can be shown that the 175
GtC of required avoided emissions mentioned in Chapter 1 could in theory be stored
in the ocean volume below 2,000 m without causing an average pH drop greater
than 0.1, which is consistent with other similar calculations [56]. Second, ocean
sequestration can only be regarded as a temporary solution to the carbon problem;
for any reasonable threshold defined, the storage capacity of the ocean becomes finite
if the threshold is to be respected. Ignoring any assimilative capacity on the part
of marine organisms over multiple generations, the amount of dilution required of a
particular discharge configuration to respect an absolute threshold increases as the

background pCO, increases [64].
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As a climate change mitigation strategy, ocean sequestration is not presently in
favor. Experience has shown opposition to the idea both in the U.S. and in Europe,
largely rooted in concern over perceived biological impacts. By contrast, geological
sequestration has been advanced based on its lower potential for ecosystem disruption,
an existing infrastructure with proven economic viability, and potential for disposal
on a regional scale instead of in a global commons. The present analysis, however,
indicates that ocean sequestration should not be dismissed from future consideration
on the basis of environmental impact alone and, in fact, it could be quite benign. No
alternative to “business as usual” is perfect, and pending more definitive evidence
of irreparable impacts, such alternatives should not be abandoned. As a society, we

may need all the options we can muster.
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