

A Virtual Reality Framework to Optimize Design, Operation and Refueling of GEN‐IV Reactors

(DE‐FG07‐03ID14501)
Final Report, Year 1‐3 (and no‐cost‐extension, year 4) (2003‐2007)

Rizwan‐uddin

Department of Nuclear, Plasma and Radiological Engineering
University of Illinois at Urbana‐Champaign

Executive Summary

The project titled above has been completed according to the goals set out in the original
proposal. Several papers have been presented at national and international meetings and have
appeared in respective proceedings of these meetings. An international workshop co‐sponsored
by UIUC and EPRI and a follow‐on meeting were also held on the campus of University of Illinois
at Urbana‐Champaign—attended by academia, research organizations, utility personnel—to
discuss the potential of VR and best approaches to accomplish these goals. When the proposal
was written in 2003, virtual reality was a relatively unknown term in the field of nuclear
engineering. Since then, thanks to the work carried out under this grant—and a few other groups
around the world—several papers are presented at the ANS annual meetings each year as well as
at ANS topical meeting on Human Machine Interface and Instrumentation and Control
conferences. Joint efforts with contributions from academia, industry, regulators and research
laboratories have led to the identification of specific areas in which this technology can
contribute toward improving nuclear energy production systems. Specifically, the work carried
out under this grant has led to the development of an infrastructure that allows exploration of
different potentials. Hardware have been identified and used. In addition, software tools have
been identified and used to facilitate the development of appropriate models. Several
modifications have been introduced in the software packages to tailor them for nuclear specific
applications. For example, capability to display and visualize radiation in virtual environment has
been added for ALARA related training purposes. The health monitor feature in a computer game
development platform is successfully adapted to be used as a dosimeter. Tools identified and
developed in this project have been used to develop and test nuclear specific virtual models for
design optimization and training purposes. These were for example used to optimize the control
room layout of a nuclear power plant which is studying the issues related to the transition from
the analog to a digital control room. The follow‐on meeting mentioned above was scheduled to
test the capability of such VR models as well as to test the half‐analog‐half‐digital control room in
the virtual environment. Personnel from a utility participated in the exercise.

At the time the proposal was written (2002) it was hoped that within the time frame of this
project a GEN‐IV reactor would be selected, and hence some scenarios specific to that chosen
design would also be simulated. However, due to the fact that a GEN‐IV design has not yet been
selected, specific exercises conducted were more generic than initially anticipated. These
exercises can however be relatively easily tailored to suit the design ultimately selected, or for
modification/optimization studies even in GEN‐II, GEN‐III and GEN‐III+ reactors.

I. INTRODUCTION AND BACKGROUND

Many GEN‐IV candidate designs are currently under investigation. Technical issues related to
material, safety and economics are being addressed at research laboratories, industry and in
academia. After safety, economic feasibility is likely to be the most important criterion in the
success of GEN‐IV design(s). Lessons learned from the designers and operators of GEN‐II (and
GEN‐III) reactors must play a vital role in achieving both safety and economic feasibility goals.
Though there are numerous lessons, this project focused on two of them.

It is well known that despite the fact that no new reactors have come online, the total electrical
power generated by nuclear power plants (NPPs) in the US over the last 20 years has continued
to increase. Longer core life has been the primary reason. Two other important factors that have
contributed to an increase in total electricity generated by nuclear are: 1) significant reduction in
refueling time over the last twenty years; and 2) better operator training that has led to
reduction in planned and un‐intended downtime of GEN‐II reactors. Economic feasibility of GEN‐
II reactors would be much worse today if it was not for the improvements in the overall
availability of NPPs due to these two factors. Without any doubt, reducing the number of
refueling as well as reducing the downtime during refueling have played an extremely important
role in making GEN‐II reactors economically competitive in today’s de‐regulated environment.
This is reflected in several proposed designs with a much longer core life (as much as 30‐40
years) and in continued efforts to reduce refueling time.

In addition, reduction in safety and maintenance related shutdowns from the early days of PWR
and BWR operations has also contributed to increased availability of NPPs. Realizing that the
total cost associated with the downtime, in many cases in NPPs, can be much more than the cost
of the repaired part, there is ample reason to believe that significant gains can be achieved by
minimizing the downtime due to repair and replace operations. In addition to repair and
maintenance, downtime also results due to accidents. Minimizing number of accidents that lead
to operations at lower power or to complete shutdown, is obviously a desirable goal. [The
“political” cost of accidents to nuclear power is probably much higher than the economic cost.]
Most nuclear accidents have been attributed to human factors (errors). Hence, in addition to an
optimized design for refueling, better personnel training for online and offline operation and
maintenance, and better training to minimize both dose (ALARA) and accidents can also play an
important role in the optimization of GEN‐IV reactors. Other industries have also faced similar
challenges. Corresponding issues in other industries have been addressed by taking better
advantage of the latest technological developments.

Many technologies that have helped the automobile, aeronautics, civil and, to certain extent,
chemical industries in becoming more efficient revolve around better use of computing power
that has become available over the last 2‐3 decades. Computing power is already playing a
significant role in better simulation of the physical processes leading to lower conservatism, and
hence improving the efficiency of NPPs. This is evident from the large body of work on coupled
neutronics‐thermalhydraulics simulations, much more detailed simulation of the core physics,
shift toward transport and Monte Carlo methods instead of diffusion theory, etc.

However, other technologies that are now available due to increased computing power, such as
computer aided design and manufacturing, 3D modeling, etc., have also allowed significant
improvements in the design departments of the automobile, aeronautics, civil and chemical
industries. Specifically, these technologies have played a significant role in planning layout and
operator training. A case can be made of the compact automobile designs of the early days that
led to cramped conditions under the hood, which in turn made repairs much more time‐
consuming and expensive. Extreme examples include necessity to remove several components
before a $5 belt could be replaced. In comparison, newer designs, carried out with the help of
CAD software, lead to much cleaner layout of the parts, and a “mechanic‐friendly” environment
under the hood.

In the case of nuclear power, in addition to layout planning, these technologies may also
significantly help in operator training, and training of personnel in maintenance, dose reduction
and repair departments. They may also offer better design optimization to more efficiently
address regulatory issues such as plant safety and fire control.

While the field of 3D modeling has significantly matured, the next frontier is the full exploitation
of virtual reality environments [1]. Efforts are already underway in conventional fields of
engineering in this direction. For example, a project is sponsored by the Deere Co at Iowa State
University to develop and evaluate a virtual environment for use in training, assembly, and
maintenance methods development [2]. Such design‐time optimization can also significantly
benefit GEN‐IV reactors.

At the start of this project there were only few research and development efforts in the nuclear
arena in these areas. Virtual Reality (VR) systems were developed and applied at Argonne
National Laboratory (ANL) to address issues from several different branches of science and
engineering, including nuclear [3]. A detailed 3D model of an AP‐600 reactor was developed.
[Other applications of this technology at ANL include visualization of CAD data, crashworthiness
experiments and computational combustion.] Work was carried out in France on developing
computer‐aided motion planning for nuclear maintenance. Researchers modified off‐the‐shelf 3D
CAD modeling tools to suit the needs of nuclear industry. Specifically, fully functional CAD and
computer aided motion (CAM) capabilities are now considered essential over the life of the NPP
to “evaluate the feasibility of new maintenance tasks.” It also is considered a useful tool for
“communication and negotiation between all parties involved in a maintenance operation” [4].
Japanese and S. Korean researchers also worked along similar lines. Korea Electric Power
Research Institute devoted significant resources to develop a virtual control room [5]. The fact
remains that only relatively few groups in the nuclear field were taking advantage of these
developments. In the US, beside the work at UIUC, Penn State University also has a program on
virtual reality.

This project started with exploring different technologies suitable for nuclear applications. These
are discussed below. Development work carried out under this project with selected
technologies is discussed in the subsequent sections.

II. TECHNOLOGIES AVAILABLE

Several technologies can be utilized in the development of an effective virtual environment
framework to optimize GEN‐IV reactor designs. Some of these are discussed below.

II.A. GRAPHICAL USER INTERFACE

GUIs or Graphical user interfaces (at the 2D level) are now commonplace in nuclear software.
However, there are still many applications that rely on old‐style input/output interfaces. 2D GUIs
were selectively used to simulate the perception of (2D) monitors and other 2D displays
commonly used in the control rooms.

II.B. CAVE (CAVE AUTOMATIC VIRTUAL ENVIRONMENT)

The CAVE (so named after the “Allegory of the CAVE” in Plato’s Republic) was first developed at
the Electronic Visualization Laboratory (EVL) at the University of Illinois in Chicago. A CAVE is
operational at the National Center for Supercomputing Applications at the University of Illinois at
Urbana‐Champaign for many years. The CAVE (CAVE Automatic Virtual Environment) is a
projection‐based VR system that surrounds the viewer with 4 screens. The screens are arranged
in a cube made up of three rear‐projection screens for walls and a down‐projection screen for
the floor; that is, a projector overhead points to a mirror, which reflects the images onto the
floor. Four basic components that comprise the CAVE are: the computers; the graphics systems;
the tracking system; and the sound system [6].

The CAVE (see Fig. 1) works by reproducing many of the visual cues that brain uses to decipher
the world around. Information such as the differing perspectives presented by the eyes, depth
occlusion, and parallax (to name a few) are all combined into the single composite image that
one is conscious of, while the rest is decoded by the brain to provide the depth cues. The CAVE
must reproduce all of this information in real‐time, as one moves about in the CAVE. The
projected images are controlled by an SGI Onyx with two Infinite Reality graphics pipelines, each
split into two channels. Sixty different images are displayed every second on each of the CAVE's
four walls at very high resolution.

The CAVE's graphics system is broken into two parts: the images projected onto the CAVE's walls,
and the shutter glasses that make the images appear three‐dimensional (Fig. 2). The images
projected onto the walls of the CAVE are provided by four Electrohome CRT projectors that
surround the CAVE [6].

Fig. 2. The CAVE’s visual and audio output hardware.

Two perspective‐corrected images
are drawn for each frame: one for
the right eye and one for the left.
Special Stereographics' CrystalEyes
liquid crystal shutter glasses are
worn that ensure that each eye sees
only the image drawn for it. This
creates a stereoscopic effect where
the depth information encoded in
the virtual scene is restored and
conveyed to the eyes of those using
it. The CAVE has an extremely
advanced tracking system that
enables it to constantly track the
position and orientation of the
special tracked glasses (Fig. 3). The

six‐degrees‐of‐freedom head‐tracking device is mounted on the special glasses. The user stands
inside the CAVE wearing these special (tracked) glasses. The person wearing the tracked glasses
controls the viewpoint of the CAVE. They can look around the corner of an object, step behind it,
look underneath it, or anything else that they could do in real life. A wand (a 3D mouse; also
called a CAVE‐wand) with buttons is the interactive input device (Fig. 4). The CAVE Wand is also
attached to the Tracker Control Unit via a wire and allows the user to walk around (with the
joystick in the middle) or interact with the virtual world through the push buttons. Currently,
there are two types of wands. Both use the Ascension Flock of Birds tracking system [1], but have
different control devices. The primary (new) wand has three buttons and a pressure‐sensitive
joystick. It is connected to the CAVE through a PC that is attached to one of the Onyx's serial
ports. A server program on the PC reads data from the buttons and joystick and passes them to
the Onyx. The older wand just has three buttons, and is attached to the mouse port of the Onyx.
There are also "simulated" tracking options available, using either the keyboard and mouse or a
spaceball. The use of one or another is transparent to the CAVE programmer, since it is defined

Fig. 1. A 3D virtual environment.

in the CAVE configuration file. Systems typically have two sensors, one for tracking the user's
head, and another for the wand [6].

In addition to its extraordinary graphics capabilities, the CAVE also provides superb audio
facilities. It has an eight channel audio system with state‐of‐the‐art digital audio support that is
controlled by an advanced sound mixing board [6].

For testing, one can run the CAVE using any number of walls simultaneously. The number of
CAVE walls used does not affect the program. The CAVE library determines which walls are to be
used and does the necessary setup when the program starts.

Fig. 4: The CAVE’s input device, CAVE Wand, is an advanced 3D mouse/joystick with more
degrees of freedom than a conventional device for a similar purpose.

Fig. 3. These glasses enhance the user’s
perception of a 3D environment

II.C. IMMERSADESK

The ImmersaDesk is a drafting‐table format virtual prototyping device. The original ImmersaDesk
had a 4 x 5‐foot rear‐projected screen tilted at an angle of 45 degrees. The size and position of
the screen gives a wide‐angle view and the ability to look down as well as forward. Except for the
display device the same hardware is used as in the CAVE. User wears CrystalEyes stereo glasses.
Stereo emitters are placed behind the screen. ImmersaDesk can use the same tracking systems
that the CAVE uses. New models of ImmersaDesk are increasingly using flat screen monitors
instead of projector‐based screens [7].

II.D. VISBOX

Developed by some members of the CAVE user group at the NCSA, VISBOX (Fig. 5) is a poor‐
man’s CAVE. It is a single wall system at a fraction of the cost of a CAVE. However, some of the
features, such as the head tracking system, are superior to those available in the more expensive
CAVE. User in the VISBOX cannot turn her face by 90 degree and still find immersed in the same
environment, as is the case in the CAVE. However, applications are fully compatible with CAVE.
Hence, development can be carried out on VISBOX, and then fine‐tuned in the fully immersive
environment of the CAVE. VISBOX runs on a single LINUX machine. However, Visbox is superior
to CAVE in two ways. First, it uses a modified game controller commonly used for kids computer
games. Operating using this game controller is significantly easier than the CAVE’s wand. (Note
that the game controller is modified with a tracker and hence it can be used to “point”.) Second
advantage of Visbox over CAVE is that the tracked glasses are wireless. The direction and
orientation of the user is tracked by infra‐red signals and two receptors mounted on the glasses.
The glasses are also shown in Fig. 5. A VISBOX was acquired by the Department of Nuclear,
Plasma and Radiological Engineering at UIUC with funds provided under the INIE grant (from
DOE). This VISBOX is currently operational.

Fig. 5: The VISBOX is very similar to CAVE, but only has one display surface. Tracked glasses are
wireless and standard game controller can be used instead of specialized wand.

II.E. STREAMLINING THE DEVELOP‐INTEGRATE‐TEST EFFORTS

Even though several different choices for a graphics library are available, OpenGL [8], seems to
be the most widely supported one across different computer platforms and graphics cards, in
addition to being one of the most advanced sets of routines for rendering graphics. OpenGL
provides ample control of detail, and the ability to re‐use code. In terms of the language for the
actual computer code, or the source code, the most widely used languages for OpenGL are C and
C++, both of which have been standardized and remain very popular. Since C++ is a superset of
C, and its object‐oriented structure can be very useful in implementing the hierarchical nature of
the program, this is an ideal choice for the language.

However, it is realized that not all development will start from scratch. Hence, from the
development of 3D CAD models to displaying them in the virtual environment, we also took
advantage of other languages that are supported by CAD packages. Virtual Reality Modeling
Language (VRML) [9] provided a common ground. CAD packages (at least some of them) do
allow the users to save their models in vrml format, and given the toolbox mentioned above,
these models can then be easily ported to the CAVE.

Fortunately, different visualization tools discussed above are somewhat “compatible.”
Development carried out on one can be ported to others as necessary. However, there was a
need to streamline the transfer of 3D CAD models that can be developed in software packages
like AutoCad, Pro‐Engineer etc., into the 3D virtual environment.

III. TASKS ACCOMPLISHED

This being a very broad project involving a field that is still evolving and this being one of the first
such applications in the field of nuclear engineering, with goals that ranged from exploration, to
tool development, to model development, to testing for appropriateness; work carried out in this
project presented below is grouped in the following categories.

• Model Development
From Scratch (OpenGL library)

 Using packages such as AutoCAD, ProE, CREATE, etc
 Using game engines

• Interactivity
• Data display in virtual environment
• Visualizing radiation and ALARA training
• Design optimization
• Education and Training

III.A. MODEL DEVELOPMENT

There are several options available for model development for the purpose of rendition in a
virtual environment. For example, a model of a nuclear reactor can be created by a proprietary
drafting program X which runs on Windows machines. Here, the drafting program X might not

have an option to display models in a way compatible with 3D display technology. Moreover,
being a product of a Windows‐based application, the model could not run in the CAVE
environment without first being converted to an appropriate file format. As another example,
gaming engine Y might have superior capabilities permitting drafting, as well as the ability to add
interactivity to the models created. Content developed using Y might even be compatible with
3D displays. However, the gaming engine Y might be platform dependent and only work on, say,
Linux. These and several options have been explored. These are discussed below. Details are
provided in appendices.

In addition, a conversion routine was written that allows vrml files to be displayed in the CAVE.
Models created in CAD software can be saved in the vrml format, and then easily displayed in a
virtual environment after passing through the above described code.

From Scratch (OpenGL based approach)

The approach chosen for this part of the work has been to develop virtual interactive models
from scratch. The first decision to be made in this “from scratch” approach is the choice of
programming language. C++ was selected, for being broadly supported and preferred among
graphics programmers, in addition to being supported across many different platforms. The
second decision was the selection of the graphics library – specifically, the set of APIs
(Application Programming Interface) responsible for drawing objects on a computer screen.
Here, the ideal candidate had to support 3D object rendering, and to be cross‐platform
compatible. This narrowed down the choice to OpenGL. OpenGL is a set of special purpose
functions (and instructions) to draw objects (lines, polygons, etc) common to graphics display
applications.

To develop an application executable on various platforms, the code developed was split into
two parts. One part is strictly computer graphics, independent of computer platform. The other
part contains all of the platform‐dependent components of the code. For example, the platform‐
dependent portion of the code, when executed on a Windows machine, interacts with the
Windows operating system and with DirectX (a set of programming instructions developed for
the Windows platform), to obtain keyboard, mouse, and joystick data, and then passes this
information along to the graphics portion of the code. In the CAVE, the platform‐dependent
portion of the code interacts with the CAVE library to obtain wand and keyboard data. It then
passes this information along to the graphics portion of the code. The data obtained from
platform‐dependent components of the code are used to calculate user position, orientation,
movement, object selection, etc. Calls to Windows API routines generate the window. They
generate the frame, the minimize/maximize/close buttons, the title bar, the menu, and all the
captions. Calls to Windows API routines also define and modify behaviors of the aforementioned
items. They collect mouse/keyboard data as well as joystick data (specifically by using the Win32
API and DirectX API, respectively). Lastly, they define the large black area pictured. This area is
set up to display objects drawn by OpenGL functions. This area is hence controlled exclusively by
the OpenGL functions.

In the CAVE environment it is still necessary to communicate with the operating system that an
area (full‐screen sized in this case) needs to be created and controlled by OpenGL functions. This

communication with the operating system is done using the CAVE library. It is interesting to note
that if desired, the same full‐screen display could also be generated on a Windows machine, by
using the appropriate Windows API functions.

Once various user‐input data are gathered, such as which key has been pressed, or which way a
user wants to move, it is then passed from platform‐dependent routines to the OpenGL portion
of the code. As can be seen, it is advantageous to have as much of the code as possible to be
OpenGL based, and to minimize the platform‐dependent portions, because these portions will
need to be re‐written for the various platforms available. Fortunately, generating an OpenGL
display area and collecting user input is such a universal task that porting the platform‐
dependent portion of the code is almost trivial. The largest challenge of platform‐dependent
programming is to define the various menus and dialog boxes, which are discussed in Appendix
A.

Using Packages such as AutoCAD, ProE and CREATE

While OpenGL based approach gives the greatest flexibility, it has the disadvantage of being
labor intensive. Therefore, commercial modeling packages such as AutoCAD, ProEngineer and
CREATE were also explored for virtual model development. Some basic models were developed
using ProE but that effort was soon abandoned in favor of CREATE; a special purpose package
developed at Halden Reactor Project. The model of the control room originally developed using
CREATE (at Halden) and modified at UIUC is described in Appendix B and Appendix C.

Using Game Engine Technology

The most efficient approach to develop 3D models was found to be using the game engines.
There are several available with their own pros and cons. Two were tried and finally the Unreal
Tournament was selected due to its superior features. The details are given in Appendix D.

III.B. INTERACTIVITY

Interactivity and dynamic interactions with or within the virtual models is an important part of
this project. The interactivity level and mode changes depending upon the platform and model
development paradigm. For example, for models developed from scratch (OpenGL paradigm), all
interactive features were developed in‐house. Whereas for other modes of model development,
numerous interactive features are built‐in and have been fruitfully exploited.

Interactivity in OpenGL models

Interactivity is tied in to the operating system of a host computer. For example, on a Windows
machine, the motion of a mouse device is interpreted by using Win32 API. Here, Windows
provides the 2D location of the mouse device on a screen, and then OpenGL can be used to
translate this to 3D coordinates in application space. In a CAVE, the CAVE library is used to read
the 3D position of the wand device, which is translated to application‐coordinates by using the
CAVE library again. This data can be used for collision detection, navigation, or determination of
the user’s view.

Collision detection is based on defining an arbitrary, small volume around the user‐selected
coordinate. This volume is usually a cube, for simplicity. It is tested with every object in the
scene for overlapping volume in space by calling the appropriate OpenGL functions. If there is an
intersection between the arbitrary volume, and some enumerated object, this is defined as a
collision event. If no objects intersect this arbitrary volume, then there are no collision events.
A collision between a user and an object such as a wall can be programmed to prevent any
movement in the forward direction; this prevents a user from “walking through walls and other
objects.” A collision between a user’s hand and another object is defined as object selection.
Based on the selected object’s properties, the programmer defines whether the object is to be
pushed, picked up, carried, moved, dropped, pressed, and so on.

The process of navigation is described below in detail.

Four variables – position, speed, direction, and stepsize – are used to navigate a scene, as follows.
 Navigation is accomplished either by pressing the g, h, n, b, f, and j keys to move respectively in
the forward, backward, right, left, up and down directions, or by using a joystick or a wand in the
CAVE.

In Windows, a user presses the ‘g’ key to move forward. MainWndProc function determines that
a key has been pressed, and passes this information on to the myApp::keyboard function. Here,
this keystroke is interpreted to have no meaning, and it is passed on to the
K_Render_Main::keyboard function. At this point, the keystroke is interpreted, and the
K_glPerspective::MoveForward function is called to adjust position by stepsize in the direction
the user is facing, direction.

Instead of movement using the ‘g’ key, suppose that the joystick is used to navigate and it is
moved forward. After a call to UpdateInputState, the program learns that the y position of the
joystick is not zero. Immediately, the new position of the joystick is dispatched to
myApp::joystick, which sends this information to K_Render_Main::joystick. After recognizing that
y is significantly different from zero, this function calculates the time elapsed since it was last
executed. This time step is multiplied by speed, direction, and by the value of y as well. Lastly,
the function calls K_glPerspective::MoveForward to update the user’s position. A few details on
this algorithm follow. First, the value of y ranges from ‐1 to 1, with 0 meaning that the joystick is
in its center position and not being moved. Since the values of y are real numbers, there is an
infinite number of them (actually, in this implementation there are only 2001 discrete values, but
for all practical purposes they are treated as being continuous in the real domain from ‐1 to 1).
This means that the probability of the variable y being identically zero is, zero. Therefore, a
range of real numbers around zero is defined to signify that the joystick is effectively not being
moved. It is also important to note that the variable speed in the case of joystick actually defines
the maximum speed of travel, i.e. when y = 1. Therefore, to obtain the user‐selected speed,
speed and y must be multiplied together.
As a final example, suppose a CAVE user points the wand in a certain direction, and pushes the
joystick forward. Now, the variable CAVE_JOYSTICK_Y is evaluated to be non‐zero indicating a
desire to move forward. This leads to the evaluation of the time interval since the last function
execution, and this time step is multiplied by speed and the value of CAVE_JOYSTICK_Y. A

function call, CAVEGetVector (CAVE_WAND_FRONT, wandDir) obtains the direction in which the
wand was pointed. Multiplying this with the previously calculated scalar, and passing the result
to CAVENavTranslate, automatically updates the position of the user in the virtual environment.
Uses of these features to display radiation or dose etc and for other practical uses are discussed
in the paper at the end of Appendix A.

Interactivity: Modeling Packages

Because of the nature of these packages, primarily developed for static display of models and
features, it is relatively inefficient to introduce significant levels of dynamic interactive features
in these models. Features that are built‐in in the CAVE library are of course available for these
models as well. The CREATE software, specifically built for interactive applications is however
one exception, and does allow relatively easy manipulation of scenes and rendering in the virtual
environment. For example, as discussed in the section on use of VR for ALARA, it was relatively
easy to display visual radiation levels at various cut‐planes in a model created in CREATE.

Interactivity: Game Engines

Model developed in game engines have several interactive features that have also been fruitfully
exploited. These include automobiles, visual radiation levels, health meter adapted as a Geiger
counter or a dose display meter, etc. Details are described in Appendix D.

III.C. DATA DISPLAY IN VIRTUAL ENVIRONMENT

Display of neutron flux, temperature, pressure etc in virtual environment required the
development and exploitation of standards developed at NCSA. Among other options, we have
relied on Hierarchical Data Format (HDF) project of NCSA [10]. It involves the development and
support of software and file formats for scientific data management. Codes have been written
that allow a user to display numerical data from 3D simulations in the CAVE. A generic capability
has been developed that allows data written in a class of HDF‐4 standard files to be easily
displayed in the CAVE. It is possible to rotate or translate, and show data on cutting planes.

III.D. VISUALIZING RADIATION AND ALARA TRAINING

Display of radiation levels in a 3D virtual model was accomplished though different techniques
depending upon the model being used. For example, in the case of the model developed in
CREATE or one of the 3D modeling packages, a script was written to display radiation levels in the
coordinate system of the model. A text file with radiation levels and corresponding coordinates is
read and the data is displayed in either color contours or other formats. For the applications
developed from scratch for the CAVE, the script also “integrated” the local radiation level and the
amount of time spent at that site to calculate a running dose, which was displayed on a meter.
Similar approach can also be easily developed for the models developed using the game engine.

Pictures of “visualization” of radiation field data are shown below. Different ways of displaying
radiation level has been tested. In one approach, color and size coded glyphs can be displayed

indicating radiation levels in the
3D virtual environment. In
another approach, the user can
see color‐coded planes at
different elevations in the virtual
environment. These planes can
be selected by simply pressing a
button on the controller. Models
shown here are those of the
virtual reality laboratory in NPRE
at UIUC. Red indicates high
radiation levels. It should be, at
the risk of repetition, pointed out
that these are not just 3D models
with radiation field displayed.
The real strength of VR is that the

user can immerse herself and “walk” around in these simulated radiation fields—an experience
that cannot be conveyed on paper.

(radiation plane at z = 3 ft) (radiation plane at z = 4 inches)

III.E. DESIGN OPTIMIZATION

Numerous tools developed under this project are designed with the goal to be used for design
optimization from operational point of view. Due to limited progress at the national level on
specific details of a next generation nuclear power plant, only generic studies were carried out to
test these tools for design optimization. These included the use of the virtual control room
model for analog to digital conversion studies. As a result of the workshop conducted at UIUC on
the use of VR in nuclear engineering applications, a specific case study was conducted with a
utility. This utility is studying the conversion of its control room from analog to digital. A virtual

model of the existing (analog) control room was developed. Next, part of the room was replaced
by a digital set up. Personnel from the utility visited UIUC to explore the utility and functionality
of the “mixed” control room. [Note that it is expected that the transition from analog to digital
control room will go through a similar step‐by‐step conversion in which for some time both
systems will have to work simultaneously.] Exercise was very fruitful and established the utility of
virtual models for such studies. The model was studied for such features as line‐of‐sight
clearance, reach, visibility and readability, mobility, etc.

III.F. EDUCATION, TRAINING AND OUTREACH

Though not proposed in the original proposal, one of the beneficial by‐product of this project
was the demonstration that these tools are extremely useful for education, training and
outreach. Virtual models were a huge draw for high school students and their parents. In
addition, we participated in an outreach exercise at a major museum in Chicago, which drew
several thousand visitors.

IV. INTERNATIONAL AND INDUSTRY COLLABORATION

We collaborated with Halden Reactor Project (Norway) on development, display and evaluation
of nuclear specific VR applications. Specifically, UIUC acquired Halden’s CREATE software. This
was used to quickly and easily develop some of the applications.

KAERI has also been active in this area. UIUC hosted Dr. Kyung‐Doo Kim of KAERI who worked on
integrating virtual reality with some of the integral system codes like RELAP. This was a very
complex problem and required a good understanding of both nuclear system codes as well as
virtual reality.

UIUC also forged close relationship with EPRI and utilities. A UIUC‐EPRI sponsored international
workshop on VR in nuclear engineering was held on the Urbana campus in April of 2005. Several
participants from nuclear utilities also attended the workshop and evaluated the use of VR for
nuclear specific applications.

REFERENCES

1. W. Sherman and A. Craig, Understanding Virtual Reality, Morgan and Kaufmann, 2002.

2. Argonne National Laboratory web site: http://www.re.anl.gov:80/vr/virtualreality.html

3. T.S. Shaw, “Generation IV Nuclear Energy System Construction Cost Reductions Through the Use

of Virtual Environments,” NERI Project, 2001.

4. E. Schmitzberger and J.L. Bouchet, A Test Case of Computer Aided Motion Planning for Nuclear

Maintenance Operation,” ICONE, 2001.

5. The Avant-Garde Simulation Technologies in Korea Electric Power Research Institute, Simulator

Team, http://www.kepri.re.kr.

6. NCSA web site: www.archive.ncsa.uiuc.edu/VR/VR and http://cave.ncsa.uiuc.edu/

7. Electronic Visualization Laboratory, UIC, website: http://www.evl.uic.edu/home.html

8. Iowa State University’s Virtual Reality Application Center’s website http://www.vrac.iastate.edu/

9. NCSA’s HDF group: http://hdf.ncsa.uiuc.edu/

10. J. Winters, “Standards and Guidelines for Cost Effective Layout and Modularization of Nuclear

Reactor Plants,” NERI Project, 1999.

Fig. A‐1: A virtual cylindrical gauge

APPENDIX A

Details of OpenGL‐Based Approach for 3D, VR Models

A program was developed to develop 3D models from scratch which will allow interactivity in the
context of nuclear specific applications. The program provides a natural or instinctive way of
changing various parameters; for example, moving the control rods by moving a lever. The basic
method to achieve this goal includes creating a simulated control room, with customizable
panels to hold all the instrumentation, and panel holders to hold the panels.

The program is divided into three major sections: the dynamically linked library (dll), the main
program (exe), and the configuration data (txt). The purpose of the dll is to enumerate and
evaluate a given function. Individual functions can be added to it for the purpose of reading a
file, getting a value from a different program, or calculating a value from any given mathematical
function. The exe draws what is actually displayed on the screen. It contains the functions to
draw such items as a gauge, a panel with gauges, a structure containing panels, or an entire
control room containing customizable components. Each of the components being drawn is
defined in the txt by such parameters as dimensions, and the index of the function in the dll that
should be used to evaluate, for example, the position of the meter needle. Also, each
component that can be drawn by the exe includes one or more default pre‐defined values for
testing purposes.

The following is a more detailed description of the
program. Design of a basic component to interact with
the dll—in this case, a cylindrical gauge—is described first
(Fig. A‐1). The gauge includes pre‐defined values for such
customizable items as the radius to the glass, or the
needle, or the face. However, as of now the particular
values of those parameters being used have been hard‐
coded, and for convenience defined as set A. The user
would specify in the txt file that a cylindrical gauge A is
needed at a certain position, with a given length, width,
face, and index of the function to be used for evaluating

the needle’s position.

The gauge is a sample component; others such as a knob, lever, CRT, etc. are being developed.

Next, a panel is created that holds different components. To test the link between the panel and
individual components, several default sets of parameters were defined to respectively display 1,
2, 4, or 8 of the aforementioned gauges. A picture of the panel is shown in Fig. A‐2.

Naturally, the next component to be built is a place to install the panel. This could be a table
(control panel) or a wall. These are created using the general category of “cylinder” (two parallel
plane surfaces and walls connecting them). Pictures of a 3D control panel and a segment of a wall

Fig. A‐2: The panel used to hold various
instrumentation components being tested
with 8 gauges.

holding various instrumentations are shown in Figs. A‐3 and A‐4, respectively. An actual control
room with instrumentation panels that can be arranged by the user, is shown in Fig. A‐5.

The universal potential of the simple design of
a cylinder with any user‐defined polygon as the
base is exploited. For example, it is used to
create a more universal code, and to draw a
room—the ceiling and the floor are the base of
the cylinder, and the sides of the cylinder are
the walls of a room. The code, previously used
to draw a single panel, is extended to draw any
given side of a cylinder, and the routine to
draw the control panel, as seen in Figs. A‐3 and
A‐4, is extended to a more general code to
draw any given cylinder.

The complexity of the program necessitates
that the parameters used to draw the graphics
(number of gauges, dimensions, etc.) be
separated from the actual rendering code. The
next major step was to create a platform‐
independent implementation of a user‐friendly
interface to change those parameters. This
step helps the development and
implementation of the txt. The ability to use
pre‐selected images to emulate material
textures, and to provide more control over
what is displayed on gauges, has been
incorporated.

Fig. A‐3: A sample control panel with instrumentation.

Fig. A‐4: Another sample control panel with instrumentation.

Fig. A‐5: A sample control room in early stages of development.

Additional details are given in the following paper presented at the 2004 ANS International
Topical Meeting on Nuclear Power Plant Instrumentation, Controls and Human‐Machine
Interface Technologies.

Fourth American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Controls
and Human-Machine Interface Technologies (NPIC&HMIT 2004), Columbus, Ohio, September, 2004

THE VIRTUAL NUCLEAR LABORATORY

Nick Karancevic and Rizwan-uddin
Department of Nuclear, Plasma and Radiological Engineering

University of Illinois, Urbana, IL 61801, USA
nick@karancevic.com rizwan@uiuc.edu

Keywords: virtual reality, simulations, visualization

ABSTRACT

In a world where people are overwhelmed by visual information, from television
and billboard ads to computer video games, it should come as no surprise that industries
are increasingly relying on advanced visualization technology to better handle the
increased flow of information. Advanced visualization tools are also being used to
improve human-machine interface by providing much more realistic simulated
environments for design, training, planning and “practice” purposes. For nuclear
engineers, technology to simulate everything from simple half- life measurement
experiments to complete control rooms, is readily available and can be used on platforms
as accessible as personal computers – or as sophisticated as three-dimensional virtual
reality systems. Presented herein is what to an outside observer might look like a typical
computer video game, yet to a nuclear engineer it would more closely resemble a
simulated nuclear environment, such as a radiation lab, or a control room of a research
reactor. It is hoped that modeling tools developed in this project will help large-scale
exploitation of virtual reality technology by nuclear engineers.

1. INTRODUCTION

Virtual reality (VR) is an excellent tool for education, outreach, training, planning
and research (Sherman 2003). Its use by nuclear scientists and engineers is also on the
rise. Reviews of visualization technology and applications in the field of nuclear
engineering have recently appeared (Rizwan-uddin, 2003; Karancevic 2003; Whisker
2003a and 2003b). Research groups in France, Korea, Japan and Scandinavian countries
are actively pursuing the use of VR in the field of nuclear engineering. In these
proceedings, Hanes and Naser (2004) review various visualization tools, including VR,
and their use in medicine and different branches of engineering, including nuclear. For a
more detailed review of visualization tools available as well as for recent applications in
nuclear engineering, reader should refer to these references.

We are developing basic tools to facilitate the use of virtual reality in the field of

nuclear engineering. Intended applications range from simple virtual tour of nuclear
facilities for outreach purposes, conducting virtual radiation related experiments, virtual
facilities for improved human-machine interfacing, virtual facilities for optimum design
to minimize maintenance and replacement time for parts, virtual dose calculations, etc.
We are also working on a virtual model of a next generation research reactor that will

Fourth American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Controls
and Human-Machine Interface Technologies (NPIC&HMIT 2004), Columbus, Ohio, September, 2004

become a test case for the tools being developed by our group. We here report recent
progress made towards creation of virtual nuclear facilities including simple radiation
experiments and a reactor control room. We have added enhanced capabilities to the
basic computer code. These include standard graphics routines, hierarchical and
organizational data structures, as well as an increased level of realism and more
sophisticated models than reported earlier.

2. HARDWARE AND SOFTWARE

As with most other applications, it is quite likely that PCs will eventually be the
computing platform of choice for this application as well. Display technology is likely to
grow independently, most likely influenced by the flat panel technology, and eventually
moving toward wider use of large size curved displays. Consumer- level graphics cards
are capable of supporting dual monitor displays, which can be creatively exploited to
display stereoscopic images on one monitor instead. 3D display monitors have already
been developed, and are likely to become economically feasible over the next several
years. Software to display 3D virtual systems will most likely be influenced by the video
game industry. Hardware and software currently being used in this project are briefly
discussed below.

2.1 Hardware

The CAVE (so named after the “Allegory of the CAVE” in Plato’s Republic) was

first developed at the Electronic Visualization Laboratory (EVL) at the University of
Illinois in Chicago. A CAVE has now been operational at the National Center for
Supercomputing Applications at the University of Illinois at Urbana-Champaign for
many years. The CAVE (CAVE Automatic Virtual Environment) is a projection-based
VR system that surrounds the viewer with 4 (or more) screens. The screens in NCSA
CAVE are arranged in a cube made up of three rear-projection screens for walls, and a
down-projection screen for the floor (a projector points to a mirror overhead, which
reflects the images onto the floor). Four basic components that comprise the CAVE are:

the computers; the graphics systems;
the tracking system; and the sound
system (NCSA CAVE website).

In addition to its extraordinary

graphics capabilities, the CAVE also
provides superb audio facilities. It
has an eight channel audio system
with state-of-the-art digital audio
support that is controlled by an
advanced sound mixing board.
Details can be found at the CAVE
website.

Fig. 1. A Picture of the UIUC CAVE.

Fourth American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Controls
and Human-Machine Interface Technologies (NPIC&HMIT 2004), Columbus, Ohio, September, 2004

Developed by some members of the CAVE user group at the NCSA, VISBOX
(Fig. 2) is a poor-man’s CAVE. It is a single wall system at a fraction of the cost of a
CAVE. However, some of the features, such as the head tracking system, are superior to
those available in the more expensive CAVE. VISBOX user cannot turn her face by 90

degrees and still find immersed in
the same environment, as is the
case in the CAVE. However,
applications are fully compatible
with CAVE. Hence, development
can be carried out on VISBOX,
and then fine-tuned in the fully
immersive environment of the
CAVE. VISBOX runs on a single
LINUX machine. A VISBOX will
soon be operational in the
Department of Nuclear, Plasma
and Radiological Engineering at
the University of Illinois at
Urbana-Champaign.

Fig. 2. A picture of a VISBOX and a user.

2.2 Software

Even though several different choices for a graphics library are available,

OpenGL (OpenGL website), seems to be the most widely supported one across different
computer platforms and graphics cards, in addition to being one of the most advanced
sets of routines for rendering graphics. OpenGL provides ample control of detail, and the
ability to re-use code. In terms of the language for the actual computer code, or the source
code, the most widely used languages for OpenGL are C and C++, both of which have
been standardized and very popular. Since C++ is a superset of C, and its object-oriented
structure can be very useful in implementing the hierarchical nature of the program, this
is an ideal choice. The simplicity and versatility of OpenGL with C and C++ allow for
complete flexibility, great power, and the ability to easily incorporate any needs specific
to nuclear simulations.

However, it is realized that not all developments will start from scratch. Hence,

from the development of 3D CAD models to displaying them in the virtual environment,
we are also taking advantage of other languages that are supported by CAD packages.
Currently there are relatively few standards. Virtual Reality Modeling Language (VRML)
seems to provide a good starting point (VRML website at web3d.org). Some CAD
packages do allow the users to save their models in vrml format, which can then be easily
ported to the CAVE (Rizwan-uddin 2003).

Fourth American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Controls
and Human-Machine Interface Technologies (NPIC&HMIT 2004), Columbus, Ohio, September, 2004

In addition to modeling and representation of the physical systems, standards

must also be developed to display the results of numerical simulations (like system
variables such as temperature, neutron flux, heat generation rate, etc.) as part of the 3D
CAD model. In this regard, past work carried out at NCSA toward the development of
standards for file formats will be very useful. Specifically, we plan to rely on Hierarchical
Data Format (HDF) project of NCSA (HDF website at NCSA). HDF project provides a
standard for the development and support of software and file formats for scientific data
management.

3. THE CODE AND GUIs

A general-purpose program is being developed in C++/OpenGL to create virtual
models of interest. The program is modular and allows development of components and
their assembly. For example, models of meters, gauges, levers, etc., can be assembled on

a control panel; several control panels and furniture
can be assembled into a control room; and several
rooms can be assembled to form a building. Models
can be divided into four categories: static; dynamic;
interactive; and interactive/simulators. Static models
are the simplest with no moving parts. One can walk
or fly through these static virtual models. Dynamic
models have moving parts, with predetermined
motion that cannot be altered by the viewer.
Interactive models allow the viewer to move (some or
all) components, such as a chair, by “grabbing” them.
Interactive/simulator models are the most detailed,
and allow the user to interact with the environment
and then observe the result or consequence of her
action. A simple example would be a worker in a
radiation field with a Geiger counter. As the worker
walks around the radiation field, the counter displays
the exposure/dose, based on a pre-calculated radiation
field or as determined in real time. A more
complicated example is tha t of a control room in
which the operator can press buttons and turn knobs,
and the meters and dials then, based on pre-calculated
responses or real time simulations, display the reactor
response.

Fig. 3 Startup dialog box

The importance of hiding intricate details of programming is as crucial in the
development of these virtual models as with any engineering process. An interactive
capability, utilizing standard Windows dialog boxes, has thus been developed to shield

Fourth American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Controls
and Human-Machine Interface Technologies (NPIC&HMIT 2004), Columbus, Ohio, September, 2004

the last layer of model developers from the “messy” details. Three dialog boxes of this
“developer’s tool” are shown in Figs. 3-5. Figure 3 shows various models developed thus
far, and allows the user to select one by entering the corresponding code. The dialog box
shown in Fig. 4 allows for on-the-fly changes to any component of the simulation, as well
as for saving and loading any particular model. The dialog box shown in Fig. 5 contains
various options and debugging parameters, including the use of a 3D anaglyphic display.

Fig. 4 VR model editor

Fig. 5
Various options for
model editing

Fourth American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Controls
and Human-Machine Interface Technologies (NPIC&HMIT 2004), Columbus, Ohio, September, 2004

Briefly, the data structure revolves around a tree structure. Each “tree node”

contains a “root component” and an arbitrary number of branches. Each branch is no
more than another tree node. The data structure allows great flexibility in modeling. Any
item to be modeled can be the aforementioned “component.” One particular component is
named a “cylinder” because it is composed of a floor, a ceiling, and an arbitrary number
of walls, each of which is represented by a tree node. As an example, the entire scene of
Fig. 6 starts with a “cylinder.” This “cylinder” contains four tree nodes with
quadrilaterals and their properties (walls), a tree node containing a polygon for the
ceiling, and a tree node for the floor. The tree node for the floor contains a polygon
describing the floor surface, and several branches, each of which represents a component,
or group of components placed on the floor. For example, one of the branches contains a
“cylinder” representing the brick wall. The end user will however be able to click through
the GUI, and see descriptive labels and options. Hence, these “messy” details will not be
very important.

4. VIRTUAL MODELS DEVELOPED

Several components, such as gauges, meters, levers, and more detailed models

have been developed. Four of these models are described here.

The first, and simplest, of these is a virtual experiment to measure the half- life of

a radioactive substance. As the shield between the radioactive substance and counter is
removed, the virtual detector displays the number of counts over short time intervals.
These counts are automatically updated. The data displayed by the detector can be either
pre-computed and stored in a database, or calculated in real-time (Fig. 7).

The second of these models is a virtual laboratory for radiation related

experiments. It consists of a room, a shielding wall, and a workbench. It also includes
some virtual instruments like a Geiger counter. The radiation field is due to a point source
placed behind the wall shown in Fig. 6. The user, holding the virtual Geiger counter in
her hand, can move around the room, either by using the joystick or a keyboard on a PC,
or by physically walking around in the CAVE. The Geiger counter displays the radiation
level (from a pre-calculated database) at the current location of the user. Model is
currently being extended to calculate the total dose received by the worker from the time
she enters the room till her exit (Whisker 2003b).

The third interactive simulation is a model of the GUS (graphite uranium sub-

critical [assembly]) facility at the University of Illinois. Driven by a source, this sub-
critical assembly is used for undergraduate laboratories involving measurements of flux
distribution, buckling, neutron leakage, and so on. A virtual model of this facility
provides a tour of the laboratory, and will have the capability to conduct simple virtual
experiments in the future (Fig. 8). The GUS assembly is modeled by “pasting” digital
pictures of GUS on a cube. Figure 9 shows a picture of the virtua l radiation lab with some
control panels, multi-channel analyzers, and the GUS assembly in the back. Certain
components, like chairs, in this model can be “grabbed” and moved by the user.

Fourth American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Controls
and Human-Machine Interface Technologies (NPIC&HMIT 2004), Columbus, Ohio, September, 2004

 Figure 6 Shielding experiment Figure 7 Decay experiment

 Figure 8 GUS Facility Figure 9 A laboratory, with control
panels, a desk and some chairs, GUS, and
some multi-channel analyzers

The last, and the most detailed, model is that of a research reactor (Figs. 10 and

11). Components in this model include desks and chairs, generic control panels, and a
workbench, displaying reactor power (%) and bulk temperature (°C). Also modeled is
the emergency “scram” switch. Once again, power and temperature, after an operator’s
virtual intervention, can be displayed on the virtual gauges, either from a pre-calculated
database or from real time simulations.

Fourth American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Controls
and Human-Machine Interface Technologies (NPIC&HMIT 2004), Columbus, Ohio, September, 2004

 Fig. 10 Prototype research reactor Fig. 11 Details of a control panel

Fig. 12 Several models assembled in a building

Finally, to demonstrate the ability to assemble “components” into larger models,
models 2-4 are assembled into a building with three rooms, each housing one model. One
can walk through a door in Fig. 12 and find himself in either Fig. 6, 9 or 10. The
potential of this approach is only limited by a designer’s imagination. Tools developed
here can be easily expanded to develop the model of a complete commercial power
reactor site.

Fourth American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Controls
and Human-Machine Interface Technologies (NPIC&HMIT 2004), Columbus, Ohio, September, 2004

5. CONCLUSIONS

Safety and ability to minimize cost and exposure risk will inevitably remain two

of the goals of any nuclear enterprise. Several recent technological innovations,
including virtual reality, can be helpful in achieving these goals. Virtual reality cannot
only be used to improve human-machine interfacing and operator training; it may also be
very useful in achieving educational and outreach goals of the discipline. Nuclear
engineers have only recently started to exploit the potential of virtual reality. While only
a few simple models have been presented here, several more detailed and complex
models, ranging from more sophisticated experiments, to parts of nuclear power sites, are
currently being developed, and will be presented elsewhere.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the NCSA staff for their extensive support
and opportunity to use the CAVE facility. Work was supported in part by a DOE NEER
grant, number DE-FG07-03ID14501.

REFERENCES

Baratta, A.J., Whisker, V.E., Mouli, S.C., Shaulis, S.A. Shaw, T.S., Warren, M.E.,

Winters, J.W., and Clelland, J.A., 2002. Generation IV Construction cost
Reductions Using Virtual Environments. Trans. ANS, 86, p. 40.

CAVE website at NCSA, 2004. http://cave.ncsa.uiuc.edu/

Hanes, L.F. and Naser J., 2004. Use of Visualization Technology to Improve Human

Decision-Making, in Proc. Fourth American Nuclear Society International Topical
Meeting on Nuclear Plant Instrumentation, Controls and Human-Machine Interface
Technologies (NPIC&HMIT 2004), Columbus, Ohio, September, 2004.

HDF website at NCSA, 2004. http://hdf.ncsa.uiuc.edu/

Karancevic, N., Rizwan-uddin, 2003. Virtual Systems for Understanding and

Advancement of Nuclear Power, Trans. ANS/ENS International Winter Meeting,
New Orleans, LA.

National Center for Supercomputing Applications, 2004. http://www.ncsa.uiuc.edu

OpenGL official website, 2004. http://www.opengl.org

Rizwan-uddin, Karancevic, N., Tikves, S., 2003. Virtual Reality: At the Service of

GEN-IV, and V, and, Proceedings of ICAPP-2003, ANS, Cordoba, Spain.

Fourth American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation, Controls
and Human-Machine Interface Technologies (NPIC&HMIT 2004), Columbus, Ohio, September, 2004

Sherman, W.R., Craig, A.B., 2003. Understanding Virtual Reality, Elsevier Science, San

Francisco, CA.

Visbox, inc., 2004. http://www.visbox.com

VRML website, 2004. http://www.web3d.org/vrml/vrml.htm.

Whisker, V.E., Warren, M.E., Baratta, A.J., Shaw, T.S., 2003a. Using Immersive Virtual

Environments to Develop and Visualize Construction Schedules for Advanced
Nuclear Power Plants, Proceedings of ICAPP-2003, ANS, Cordoba, Spain.

Whisker, V.E., Warren, M.E., Baratta, A.J., Shaw, T.S., 2003b. Development of a

Radiation Dose Model for Immersive Virtual Environments, Trans. ANS/ENS
International Winter Meeting, New Orleans, LA.

APPENDIX B

Visbox and Some Virtual Models

Screen shots of some of the virtual models (displayed on the large VISBOX screen) are shown
here. The control room model was originally developed at Halden. It was modified at UIUC.

Figure B‐1. A picture of the VisBox screen displaying the menu for several applications is shown.
Any application can be selected using the game controller.

Figure B‐2. A modern control room model being displayed—with an operator in the foreground
(barely) shows that one can get a fairly realistic virtual experience in a VisBox.

While standard VR allows navigation in the virtual environment, introducing interactivity with
objects such as control panels and touch screen monitors in such environment has been
implemented. For this purpose, among other products we have used the front end of the BWR
simulator and displayed it in the virtual environment of a reactor control room. Figure B‐3 shows
a virtual control room with the front end of the BWR simulator “pasted” on a control panel of the
virtual model. [The red button near the center of the picture is the “scram” button.]

Figure B‐3. A BWR simulator Figure B‐3. A BWR simulator in a virtual control room.

Figure B‐4. Another view of the virtual control room model

The control room optimization and virtual control room with a simulator have been carried out
for a generic control room design. However, fundamental work is complete and ready to be
implemented for any specific design that is chosen for the next generation reactor.

APPENDIX C

A Virtual Control Room with an Embedded, Interactive Nuclear Reactor Simulator

Stefano Markidis and Rizwan-uddin

Department of Nuclear, Plasma, and Radiological Engineering
 University of Illinois, Urbana, IL 61801, USA

s.markidis@gmail.com, rizwan@uiuc.edu

Abstract – The use of virtual nuclear control room can be an effective and powerful tool for training personnel working
in the nuclear power plants. Operators could experience and simulate the functioning of the plant, even in critical situations,
without being in a real power plant or running any risk. 3D models can be exported to Virtual Reality formats and then
displayed in the Virtual Reality environment providing an immersive 3D experience. However, two major limitations of this
approach are that 3D models exhibit static textures, and they are not fully interactive and therefore cannot be used effectively
in training personnel. In this paper we first describe a possible solution for embedding the output of a computer application
in a 3D virtual scene, coupling real-world applications and VR systems. The VR system reported here grabs the output of an
application running on an X server; creates a texture with the output and then displays it on a screen or a wall in the virtual
reality environment. We then propose a simple model for providing interaction between the user in the VR system and the
running simulator. This approach is based on the use of internet-based application that can be commanded by a laptop or
tablet-pc added to the virtual environment.

I. INTRODUCTION

 Virtual Reality (VR) systems may be used to help
design control rooms and to train personnel in (virtual)
nuclear power plants. Using dedicated software, it is
possible to create realistic virtual control rooms and other
parts of a nuclear power plant. Software packages, like
CREATE developed by Halden Virtual Reality Center
(HVRC), allow rapid prototyping of 3D virtual models
[1]. These models can be visualized and experienced in
immersive environments of virtual reality systems like
CAVE [2], CUBE [3] and VisBOX [4], and used for
evaluation, testing and training purposes. Hence, realistic
interactions with 3D models can be simulated to optimize
design choices, and to make ergonomic estimations [5].

 It is important to make a distinction between the
functionalities of the “developer’s tools” (like CREATE)
that display their results on 2D monitors, and the
functionalities available in the 3D immersive environment
of a virtual reality system like CAVE, CUBE and
VisBOX. It is currently possible to select objects and
move them interactively in the developer’s tools like
CREATE. With some effort this capability can also be
translated to the virtual reality platforms like VisBOX.
This functionality in the VR environment will help speed
up the prototyping and testing procedures. A second
limitation is that equipment indications and controls on
the panels and computer monitors of the virtual control
room in the developer’s tools as well as in virtual reality
immersive environment are static textures, and
interactivity is not often supported. It is this second

limitation that has been addressed in this work. Thus, a
nuclear reactor simulator has been embedded in the
virtual control room. The virtual environment can
therefore now display the (live) results of a nuclear
reactor simulator as well as allow interactivity to operate
that simulator.

 In this paper we describe the preliminary integration
of a generic application, like a nuclear reactor simulator,
in a VR system. Moreover, implementation of interactive
control of the application in the VR environment using a
WEB-based interface is also described. The hardware
equipment and software used in the development of this
project is given. Finally the results of a nuclear reactor
simulator embedded in a virtual nuclear reactor control
room are shown.

II. VIRTUAL NUCLEAR CONTROL ROOM

Given a static virtual control room, goal of an
interactive, virtual simulator in the VR environment can
be broken down into two sub-goals: display of contents of
a live and dynamically evolving computer window on a
flat surface in the virtual model; and allowing equivalent
of mouse-actions in the virtual environment providing
interaction with the virtual environment and triggering
events.

II.A. Embedded Application in Nuclear Control
Room

To display the results of the reactor simulator in the
virtual environment, a generic capability has been
developed to display the content of any window of choice
in a computer monitor on a flat surface of choice in the
virtual environment. Window of choice may be
displaying the content of a WEB browser, graphical
output of a simulator, or a movie. Realizing that results of
almost any application (a simulator output, a movie, etc)
can be displayed in a WEB browser, and to take
advantage of the standardization and portability that
accompanies WEB-based tools, specific application
developed here is focused on displaying the content of a
web browser window in the virtual environment. One can
open any page of choice in the web browser and hence
display it in the virtual environment. Hence, the machine
running the VR application must also be connected to the
web and must have a WEB browser.

Fig. 1. The CNN WEB-page displayed in the
virtual control room, as an example of output of a generic
application running in the virtual reality environment.

The WEB browser runs on an X server, called Xvfb,
that instead of rendering the image to the standard display
renders off screen to a memory area. The VR application
captures the graphical output of the WEB browser
running on the X virtual server as a bitmap and converts it
to an OpenGL texture. The texture is then placed on a
specified polygon and displayed in the virtual control
room. At each graphical callback, the image of the WEB
browser on the X virtual server is captured, converted to
texture and mapped to the selected flat surface in the
virtual control room. This idea of employing an X virtual
server and creating a texture of an application for the
virtual system was originally formulated by Belleman,
who developed the XiVE library [6].

Two different computers—one to run the simulator
and the other for the virtual reality application—are used.
Figure 2 shows a schematic diagram outlining the
interaction between the two computers and the software
applications. The simulator runs on a dedicated machine
and a WEB-server on the same machine broadcasts the
results to the world-wide-web. Two applications run on
the virtual reality (second) computer: a WEB browser,
that receives and displays the results of the simulator via
the internet, and the VR application that renders the
virtual control room and tracks the position of the VR
user.

 Fig. 2. Schematic diagram of a nuclear reactor
simulator embedded in a virtual control room.

II.B. Interactive Nuclear Control Room

 The fact that the output of the simulator is webcasted
facilitates the interaction between the user in the virtual
environment and the window with the dynamic output,
and provides a simple mechanism for interactivity.
Instead of direct interaction between a user device such as
joystick, specialized glove, etc, and the simulator
window, it is possible to introduce in the virtual
environment one or more laptops, or tablet PCs connected
to the WEB server through a wireless Internet connection
[7,8]. The tablet PC can display the same front end of the
simulator in a WEB browser –with interactive control
buttons- as shown in the virtual control room, and hence
can be used to trigger events. In this approach the mouse
action is easily simulated in the VR environment by using
a laptop computer or a tablet-pc connected to the Internet.
This approach is much more natural than alternatives in
which either a joystick is used in conjunction with a ray
piercing the virtual button, or approaches in which a
specialized glove is used by the operator to manipulate
virtual buttons. Besides, it removes the complexity of
programming the direct interaction between the user and
the window.

II.C. Hardware and Software

The Virtual Reality Lab in the Department of
Nuclear, Plasma and Radiological Engineering at the
University of Illinois at Urbana-Champaign has a
VisBOX immersive projection system [4]. The VR
system employs one back projection 12’x 9’ display
screen (single wall), stereoscopic rendering, specialized
audio, a magnetically tracked joystick and a wireless head
tracker. See Figures 3 and 4. The computer running the
VR system has an Intel Xeon 3.06 GHZ processor with 2
GByte of RAM. Large RAM is necessary in this project
because the X virtual server, used in this project for the
output of the application, writes to RAM instead of the
memory of the graphics card.

Figure 3. Virtual Reality Laboratory in the
Department of Nuclear, Plasma, Radiological Engineering
at the University of Illinois in Urbana-Champaign
showing a virtual model of a nuclear reactor control room.

Figure 4. Another view of the virtual control
room.

The operating system running VisBOX is Linux Red
Hat Fedora Core. We modified a 3D, virtual model of a
nuclear control room developed using CREATE, by
HVRC to host the output of our nuclear simulator. The
3D model is saved in the VRML format with CREATE
and then converted to an OpenGL/C file using PolyTrans
[9]. The software for capturing the graphical output of the
application running on the X virtual server is written in C
(gcc compiler) using X11 and OpenGL libraries and is
largely inspired by the XiVE library and xwd application
[6, 10]. The source codes of both applications are
available on the WEB. Moreover the XiVE code also
allows a mechanism to use the tracked joystick to interact
with the dynamic window. However, in our VR system
the interaction with the simulator is via the tablet PC and
an internet connection.

The choice of the language C is primarily dictated by
the fact that all the libraries for virtual reality applications
in our group have been developed in C. Moreover, the
X11 libraries are easily accessible from C/C++..
However, we recognize that Java coupled with Java3D is
likely to be a better programming platform for a project of
this kind. CREATE and other advanced simulation
packages, like CartaBlanca, are increasingly been written
in Java. [1,11] Besides, the development in Java of WEB-
servers and graphical interfaces is faster than in other
programming languages

III. RESULTS

 To demonstrate the capability to embed a nuclear
simulator in a virtual control room, a WEB-based nuclear
simulator was chosen. This would, for example, allow the
display of results of the simulator running anywhere in
the world as long as it is capable of webcasting its results
over the World Wide Web. In a parallel development at
the University of Illinois [12], a simulator-like front end
has been added to the widely used RELAP5 code [13].
Taking advantage of the capabilities of LabVIEW, the
RELAP results are graphically displayed and, more
importantly, can be viewed in a web browser. If
permitted, the remote viewer of RELAP5 output can also
interact by, for example, initiating a scram by clicking on
the scram button in the WEB browser [12]. It is this
recently added capability to RELAP5 that is used to test
the framework to embed a simulator in the virtual control
room.

 In Figures 5 and 6 two views of a virtual control room
with the embedded nuclear reactor simulator are shown.
Color-coded void fraction distributiondisplayed on the
virtual screen can be seen in Fig. 5. The monitor on the
right is showing the pressure level in the steam generators

and the user’s laptop is also showing the same results.
The large screen on the right in Fig.6 is the main control
window in the LabVIEW-based RELAP5 nuclear reactor
simulator. It shows the red scram button, as well as other
features to select different display modes, and interactive
control features. The WEB browser in the PC in the front
of the user in the virtual environment is also showing the
same “page”. Hence the user can mimic, for example, a
scram by simply tapping (on a tablet PC) or clicking on
the scram button on his pc. A click on the scram button
initiates the scram sequence in the simulator, and
consequently all the virtual screens showing the results of
the simulator, which are being continuously updated, also
display the results of the scram.

 Currently, the performance measured by the speed
with which the simulator results are displayed in the
virtual control room, is acceptable. However, large
amount of data that needs to be frequently updated in the
virtual control room will push the limits of the current
procedure. We are currently working on improving the
performance by employing techniques to faster capture
the graphical output of the X virtual server. However, it is
also possible to improve the performance simply by
reducing the size of the window displayed in the virtual
environment and therefore the memory used for
bitmapping the output of the applications.

IV. CONCLUSIONS

We proposed a general methodology to embed an
application output in a 3D immersive environment and a
simple model to provide interactive control of the
application using a WEB-based GUI. An implementation
and the results of these two basic strategies for coupling a
nuclear reactor simulator and a 3D VR model have been
shown. The future improvements for this project could be
a new design for the software package and a better
organization of the code.

We believe that the embedding of a interactive
nuclear reactor simulator in a VR environment is another
step toward the use of virtual experience of a control
room to not only test the control room design features, but
also to train reactor operators on a virtual simulator.

ACKNOWLEDGMENTS

The authors would like to acknowledge Paul Rajlich of
VisBOX for the important and continuous help during the
development of this project. This work was supported in
part by a DOE INIE grant and a DOE NEER grant.

REFERENCES

1. HALDEN VIRTUAL REALITY CENTER Web
page, http://www.ife.no/laboratories/hvrc1/, (2006).

2. C. CRUZ-NEIRA, D. SANDIN, T.DEFANTI,
Virtual Reality: The Design and Implementation of
the CAVE®. Proceedings of SIGGRAPH 93
Computer Graphics Conference, ACM SIGGRAPH,
(1993).

3. “THE CUBE” WEB page,
 http://www.isl.uiuc.edu/Labs/room_b650.htm,

(2006).
4. VISBOX INC. WEB page,
 http://www.visbox.com/, (2006).
5. RIZWAN-UDDIN, N. KARENCEVIC, S. TIKVES,

Virtual Reality at the service of GEN-IV, and V, and
..., Proceedings of ICAPP-2003, (2003).

6. XiVE WEB page,
http://staff.science.uva.nl/~robbel/XiVE/, (2006).

7. V.E. WHISKER, A.J. BARATTA, T.S. SHAW,
J. W. WINTERS, J.A. CLELLAND,
F.T. JOHNSON, Simulating Nuclear Power Plant
Maintenance Activities Using Immersive Virtual
Environments, Proceedings of ICAPP-2004, (2004)

8. IOWA STATE UNIVERSITY VESUITE WEB page,
 http://www.vesuite.org/, 2006.
9. POLYTRANS WEB page,

http://www.okino.com/conv/conv.htm, (2006).
10. xwd.c code WEB page,

http://stuff.mit.edu/afs/sipb/user/qjb/source/hacks/xw
d/xwd.c, (2006).

11. W.B. VANDERHEYDEN, E. D. DENDY, N.T.
PADIAL-COLLINS, CartaBlanca— a pure-Java,
component-based systems simulation tool for coupled
non-linear physics on unstructured grids,
Proceedings of the 2001 joint ACM-ISCOPE
conference on Java Grande, (2001).

12. K.D. KIM, RIZWAN-UDDIN, A web-based nuclear
simulator using RELAP5 and LabVIEW, manuscript
in preparation

13. IDAHO NATIONAL ENGINEERING &
ENVIRONMENTAL LABORATORY (INEEL),
RELAP5 manual revisions 2.2 and 2.3,
http://www.inel.gov/relap5/r5manuals.htm, (2006).

 Figure 6. Another view of the virtual control room. The red button on the virtual monitor if
(virtually) pressed will scram the reactor.

Figure 5. Picture of the virtual control room. One of the screen displays color-coded void
fraction distribution in the reactor

APPENDIX D

Three Dimensional, Virtual, Game-Like Environments for Education and Training

Joel Dixon, Stefano Markidis, Cheng Luo, Jared Reynolds, Rizwan-uddin

University of Illinois at Urbana-Champaign
103 S. Goodwin Ave, Urbana, IL, 61801, and jdixon2@uiuc.edu

INTRODUCTION

Training emergency response personnel to handle a

hazardous radiation spill is a challenging task. Conducting
repeated training sessions in dangerous or restricted areas
in and around research reactors or NPP sites is not a
realistic option. Computer games provide an alternative
training mode [1]. Recent developments in 3D, virtual
environments can be inexpensively and effectively
utilized to train in a virtual environment, to communicate
the dangers, and train on procedures to be used when
dealing with a radiation emergency. While currently
adequate, education and training to enhance safety and
security at NPP sites can also be much more effectively
and efficiently carried out using 3D, virtual animation
technology [1-6]. Such models have also been used to
train the decommissioning personnel. Different options
are available to quickly and efficiently develop the
desired 3D models. One of them is the Unreal Engine—a
platform in which 3D, game-like environments can be
developed quickly and easily with sophisticated details
and interactivity. We here report the development of a
fairly realistic model of the University of Illinois TRIGA
reactor, which is now destined for decommissioning,
using the Unreal Engine. The model can be used to train
first responders, decommissioning personnel, and even to
effectively communicate reactor safety and security issues
to students and nuclear personnel.

MODELING THE ENVIRONMENT IN UNREAL

The editor for the Unreal Engine, UnrealEd (UED),

is designed to be simple and easy to use so that even
beginners with no programming or modeling experience
can use to create their own levels in the game with very
little training. (See glossary at the end of this paper for
definitions of terms like level, etc.)

When developing a level in UED, the computer

screen is divided into four windows as shown in Fig. 1a.
The upper-left, upper-right, and lower-right windows
respectively show the standard top, front and side views
of the model, respectively. These are flat 2-D views of the
model. The lower-left window is the view port, which
shows the view from a camera that can be moved around
the level while editing. There are thousands of pre-built
items that can be selected from a list and simply inserted
in the map. For example, to make a room with a table, one

needs to select a pre-built table and copy-paste it onto the
floor. The object can then be moved, rotated, or scaled.
The editing of the map can be broken down and
distributed among workers to work on different sections
that can be combined later into a single final map.

There is a large community of fans and programmers

that maintain several internet sites dedicated to helping
people with UED problems [7, 8]. Questions posted at
these sites are quickly answered by experts. Codes and
modifications made by experts are also available.

In addition to having a simple interface, UED also

has the programming complexity to support many
advanced features for the simulation. Some of these
which are directly relevant to the nuclear education and
training related applications are described below.

Using Pictures for Realistic Effects

UED allows pasting of pictures captured by ordinary
digital cameras onto surfaces in the model. This feature is
very useful in giving a realistic impression of the models.
Figure 1b shows screen shot of the reactor control room
with pictures of the actual control panels pasted on the
model control panel surfaces. The reactor bay is visible
through the glass window.

Lava Zones

Lava zones are regions set in the map that are
hazardous. If a player (worker) stays in the lava zone, his
health index drops by a set amount each second. This
property, called DamagePerSec, can be used to mimic the
radiation level [1]. An increasing value of DamagePerSec
indicates a higher radiation level in the lava zone.

Health Index

Usually used in computer games to show the number
of punches or bullets a player has received, this feature,
when combined with lava zones, can be used as a
dosimeter showing dose received while working in a
radiation field. The player’s health at the beginning of a
simulation is at “full,” say around 100. As the worker
walks into the calibrated radiation field (lava zones), his
health index will drop in proportion to the level of
radiation in the area. At the end of the simulation the total
loss in health index can be related to a dose received.

Visual Representation of Radiation Effects

To help first responders, maintenance, and
decommissioning personnel visualize radiation in the
facility, the map floor can be color-coded to show the
level of radiation. Several such fields can be turned on or
off during the training exercise to show the radiation
level, temperature, etc.

RESULTS

A rather detailed model of the UIUC TRIGA has

been developed. Additional details are still being added.
Inside the reactor building, different floor levels,
staircases, control room, octagon shaped structure with
the pool and the core, and the bay area have been
modeled. The model is roughly to scale. See Fig. 1c. The
model includes the surrounding buildings, streets and
parking lots. Figure 1d shows the reactor building
environment. Only the reactor building has the inside
details. A player can start from outside and walk into the
reactor building. Digital pictures of the actual facility are
being used to make the facility as realistic as possible.
Lava zones and the health index have been tested.
Different segments of the floor can be colored to “show”
the level of radiation in that area. Horizontal surfaces in
Fig. 1c are color coded showing a fake radiation field
emanating from the reactor core. Radiation decreases as
with increasing distance from the core. Several details
have been added to the model of the water pool including
the realistic looking water surface effects. Currently a
single player (worker, avatar) can walk through the
model.

Training Model

One of the first training modules developed, is to
train a group of firefighters in a simulation of a radiation
spill at their local research reactor. They (or rather, their
avatars) first get the briefing from their leader as they
arrive in their vehicles. As they arrive on the scene, they
pick up a Geiger counter and begin measuring the
radiation level. Upon entering the plant they “see” a spill
and visualize the levels of radiation around it. They reach
the controls needed to secure the area using a safe path
that is free from radiation. After securing the site, they
leave the building and go through decontamination.

FUTURE WORK

Several features of the Unreal engine have not been
tapped yet. For example, it allows multiple players
(workers) to “play” the game simultaneously. It allows
access and simultaneous gaming capability via the net
with voice communication. Work is currently underway
to allow simultaneous and interactive training of multiple

people with access to the internet from anywhere around
the world. In addition, we will also explore the possibility
to integrate this model into a stereographic system to
provide true 3D immersive experience.

GLOSSARY OF TERMS

Level: The model of the reactor building and

surroundings
Map: Used interchangeably with level.
Health Index: A number that represents the health

level of a player. It decreases as health
is damaged. The default (a healthy
person) has a health index of 100 in
Unreal.

Camping: An inactive player

REFERENCES

1. ROBERT L. SANDERS, JOSEPH E. LAKE,
Training First Responders to Nuclear Facilities
Using 3-D Visualization Technology,
Proceedings of the 2005 Winter Simulation
Conference, pp. 914-918 (2005).

2. JOHN GRIFFITH, JIANWEI HU, NICK
KARANCEVIC, FEDERICO E. TERUEL,
YIZHOU YAN, JAMES SUTBBINS and
RIZWAN UDDIN, Research and Virtual
Reactor Design at UIUC, Trans. ANS, 93 pp.
873-874 (2005).

3. STEFANO MARKIDIS, RIZWAN-UDDIN, A
Virtual Control Room with an Embedded,
Interactive Nuclear Reactor Simulator, Proc.
HMIT, ANS (2006).

4. NICK KARANCEVIC, RIZWAN-UDDIN, The
Virtual Nuclear Laboratory, Proc. Fourth
American Nuclear Society International Topical
Meeting on Nuclear Plant Instrumentation,
Controls and Human-Machine Interface
Technologies, Columbus, Ohio, (2004)

5. NICK KARANCEVIC, RIZWAN-UDDIN,
Towards Virtual GEN-IV Reactors, Transactions
of the American Nuclear Society, Washington,
D.C., Vol. 91, pp. 912-914, (2004).

6. NICK KARANCEVIC, RIZWAN-UDDIN,
Virtual System for Understanding and
Advancement of Nuclear Power, Trans. ANS, 88
(2003).

7. Beyond Unreal
(http://forums.beyondunreal.com/)

8. Epic Games Forums
(http://forums.epicgames.com/ index.php)

Fig. 1a. A view of the Unreal editor’s windows

showing the model.

Fig. 1b. A view of the control panel.

Fig. 1c. Model of the reactor bay. Flat surfaces are

color-coded with a fake radiation field with highest levels
at the core.

Fig. 1d. An overview of the entire reactor structure

and surrounding buildings and streets. The reactor facility
is the small building in the center.

List of publications based on work at least partially supported by this DOE NEER grant.

(Additional publications are expected)

Nick Karancevic and Rizwan-uddin, Virtual Systems for Understanding and Development of
Nuclear Power, in Trans. Amer. Nucl. Soc., 88 (2003).

Nick Karancevic, J. Stubbins and Rizwan-uddin, A Virtual Laboratory and Control Room, in
Trans. Amer. Nucl. Soc., 90 (2004).

Nick Karancevic, Rizwan-uddin, Towards Virtual GEN-IV Reactors, in Trans. Amer. Nucl.
Soc., 90 (2004).

Nick Karancevic and Rizwan-uddin, The Virtual Nuclear Laboratory, in Proc. Fourth
American Nuclear Society International Topical Meeting on Nuclear Plant Instrumentation,
Controls and Human-Machine Interface Technologies (NPIC&HMIT 2004), Columbus, Ohio,
September, 2004.

Koji Sugawara, Rizwan-uddin, Automated Conversion of Keno Input Files to MCNP Input
Files and Comparison of Keno and MCNP Results, in Proc. The Monte Carlo Method:
Versatility Unbounded In A Dynamic Computing World, Chattanooga, Tennessee, April 17–21,
2005, American Nuclear Society, LaGrange Park, IL (2005).

John Griffith, Jianwei Hu, Nick Karancevic, Federico E. Teruel, Yizhou Yan, James Sutbbins and
Rizwan Uddin, Research and Virtual Reactor Design at UIUC, in Trans. Amer. Nucl. Soc., 93
(2005).

K.D. Kim, Prashant Jain and Rizwan-uddin, Web- and System-code Based, Interactive, Nuclear
Power Plant Simulators, in Proc. 5th International Topical Meeting on Nuclear Plant
Instrumentation, Control and Human-Machine Interface Technologies, Albuquerque, USA, Nov
12-16 (2006).

Joel Dixon, Stefano Markidis, Cheng Luo, Jared Reynolds, Rizwan-uddin, Three Dimensional,
Virtual, Game-Like Environments for Education and Training, Trans. ANS, 97 (2007).

K.D Kim and Rizwan-uddin, A Web-based Nuclear Simulator Using RELAP5 and LabVIEW,
Nucl. Engg. and Design, 237, 1185-1194 (2007).

