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1 Achievements

Rice University’s achievements as part o the Center for Programming Models for Scalable
Parallel Computing include

• design and implemention of cafc, the first multi-platform CAF compiler for distributed
and shared-memory machines,

• performance studies of the efficiency of programs written using the CAF and UPC
programming models,

• a novel technique to analyze explicitly-parallel SPMD programs that facilitates opti-
mization,

• design, implementation, and evaluation of new language features for CAF, including
communication topologies, multi-version variables, and distributed multithreading to
simplify development of high-performance codes in CAF, and

• a synchronization strength reduction transformation for automatically replacing barrier-
based synchronization with more efficient point-to-point synchronization.

The prototype Co-array Fortran compiler cafc developed in this project is available as
open source software from http://www.hipersoft.rice.edu/caf.

1.1 Design, implementation, and performance evaluation of cafc

We designed and implemented cafc, the first multi-platform CAF compiler for distributed
and shared-memory architectures. cafc is a widely portable source-to-source translator.
By performing source-to-source translation, cafc can leverage the best Fortran 95 compiler
available on the target architecture to compile translated programs, and the ARMCI and
GASNet communication libraries to support systems with a range of interconnect fabrics,
including Myrinet, Quadrics, and shared memory.

We ported many parallel benchmarks into CAF and performed extensive evaluation stud-
ies [1, 5, 6, 2, 3, 4] to investigate the evaluate the CAF programming model and its ability to
deliver high performance. As a result of our studies and the concomitant refinements of the
cafc code generator, carefully-written CAF codes compiled with cafc can now match the
performance and scalability of their MPI counterparts. As part of our studies, we identified
three classes of performance impediments that initially precluded CAF codes from achiev-
ing the same level of performance and scalability as that of their MPI counterparts: scalar
performance of a translated program, communication efficiency, and synchronization.

Scalar performance. Natural source-to-source translation of co-arrays in CAF into For-
tran 90/95 introduces apparent aliasing in the translated program due to cafc’s representa-
tion of co-arrays using Fortran 90 pointers. This hinders the platform’s Fortran 95 compiler
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to efficiently optimize code accessing local co-array data. We developed a procedure splitting

transformation that converts each procedure s referencing COMMON and SAVE co-array local
data into two subroutines s1 and s2. s1 resembles s, but instead of performing computation,
it calls s2 and passes the co-arrays as arguments. s2 performs the original computation in
which each COMMON and SAVE co-array reference is converted into a reference to the cor-
responding co-array parameter. In cafc, co-array arguments are represented via explicit
shape subroutine dummy arguments, which do not alias in Fortran 95. As a result, the lack
of aliasing among COMMON and SAVE co-arrays, their bounds and contiguity are conveyed to
the Fortran 95 compiler. The procedure splitting transformation implemented in cafc en-
ables a translated program to achieve the same level of scalar performance as an equivalent
Fortran 95 program that uses COMMON and SAVE variables.

Communication efficiency. Our experiments showed that it is imperative to vectorize
and/or aggregate communication on distributed memory machines to deliver performance
and scalability. Without coarse-grain communication, CAF programs perform abysmally on
cluster architectures. An advantage of CAF over UPC is that it can express vectorization
and aggregation at source level without calls to bulk library primitives. Communication
vectorization yielded benefits as high as 30% on Myrinet cluster architectures. When writing
CAF communication, the Fortran 95 array sections enable a programmer to conveniently
express communication of strided data.

Our experiments also showed that even when using communication libraries that support
efficient non-contiguous strided communication, it is beneficial to perform communication

packing of strided data at source level, sending it as contiguous message, and unpacking it at
its destination. We found that one-sided communication aggregation using active messages is
less efficient than library-optimized strided communication transfers because libraries such
as ARMCI can overlap packing of communication chunks at the source, communication
of strided chunks and unpacking of chunks on the destination. Communication packing at
source level boosted performance about 30% for both CAF and UPC on clusters, but yielded
minuscule benefits on shared memory platforms. Our findings apply also to other partitioned
global address space languages such as UPC: we showed that communication packing for a
UPC version of BT yielded improvements as high as 30% on an Itanium2+Myrinet cluster.

To give a CAF programmer the ability to overlap computation and communication, we
extended CAF with non-blocking communication regions. Skilled CAF programmers can
use pragmas to specify the beginning and the end of regions in which all communication
events are issued by using non-blocking communication primitives, assuming the underly-
ing communication library provides them. Using these regions enabled us to improve the
performance of NAS BT by up to 7% on an Itanium+Myrinet2000 cluster.

Synchronization. The burden that PGAS languages impose on programmers is the need
to synchronize shared one-sided data access. We observed that using barriers for synchro-
nization was much simpler than using point-to-point synchronization, which is painstaking
and error-prone. However, point-to-point synchronization may provide much better scalabil-
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ity; we observed up to a 51% performance improvement for the NAS CG benchmark (14000
size) for a 64-processor execution.

We observed that using extra communication buffers can shorten the critical path by
removing anti-dependence synchronization needed to coordinate communication buffer reuse.
This yielded up to a 12% performance improvement for the ASCI Sweep3D benchmark
(150x150x150 size) as compared to the standard MPI version. However, coding such multi-
buffer solutions is difficult due to the need for explicit buffer management and complex
point-to-point synchronization.

CAF and UPC. We also compared CAF with UPC for regular scientific codes (principally
the NAS benchmarks) and found that it is easier to match MPI’s performance with CAF.
We attribute this to the more explicit nature of communication in CAF and language-level
support for multi-dimensional arrays.

1.2 Scalability analysis

To improve parallel performance of CAF programs or programs written using other SPMD
programming models, one needs to determine the impediments to scalability. To understand
how scalability bottlenecks arise, one needs to analyze them within the calling context in
which they occur. This enables program analysis at multiple levels of abstraction: we could
choose to analyze the cost of user-level routines, user-level communication abstractions,
compiler runtime primitives, or the implementation of the underlying communication library
(e.g., ARMCI, GASNet, or MPI).

Users have certain performance expectations of their codes. For strong scaling parallel
applications users expect that their execution time decreases linearly with the number of
processors. For weak scaling applications, they expect that the execution time stays constant
while the number of processors increases and the problem size per processor remains constant.
Our goal was to develop an efficient technology that quantifies how much a certain code
deviates from the performance expectations of the users, and then quickly guides them to
the scaling bottlenecks.

Our approach has several steps. First, users are required to formally define their expec-
tations, such as linear scaling for strong scaling programs or constant execution time for
weak scaling applications. Second, we measure the program during executions on different
number of processors. Third, we compute how much each node in the call tree deviates
from the performance expectation; we proposed an intuitive metric, called relative excess

work. Finally, we use an interactive viewer that assists a user in identifying and navigating
to the scaling hot spots. We developed an intuitive metric for analyzing the scalability of
application performance based on excess work.

We used this scaling analysis methodology to analyze the parallel performance of MPI,
CAF, and UPC codes. A major advantage of our scalability analysis method is that it is
effective regardless of the SPMD programming model, underlying communication library,
processor type, application characteristics, or partitioning model. We plan to incorporate
our scaling analysis into HPCToolkit, so it would be available on a wide range of platforms.
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Our scaling study pointed to several types of problems. One performance issue we identi-
fied using our scalability analysis was the inefficiency of user-level implementation of reduc-
tions in both CAF and UPC codes. A drawback of source-level user-implemented reductions
is that they introduce performance portability problems. The appropriate solution is to use
language-level or library implementations of reductions, that can be tuned offline to use the
most efficient algorithms for a particular platform. An obstacle to scalability for CAF codes
was a blocking implementation of the notify synchronization primitive using the ARMCI
and GASNet communication libraries. Finally, for both CAF and MPI applications we found
that some codes performed successive reductions on scalars; the natural remedy for that is to
perform aggregation of reductions by using the appropriate vector operations. An important
result was that the relative excess work metric readily identified these scalability bottlenecks.

The scaling analysis of CAF codes indicated the urgency of language-level support for col-
lective operations. Consequently, we explored and evaluated collective operations extensions
to the CAF model and presented an implementation strategy based on the MPI collectives.
For the NAS MG benchmark, using the language-level collectives led to a reduction of the
initialization time by 60% on 64 processors, and led to a reduction of the measured running
time for LBMHD of 25% on 64 processors.

1.3 Enhanced language, compiler, and runtime technology for CAF

Co-spaces: communication topologies for CAF. CAF’s multi-dimensional co-shape
is not convenient and expressive enough to be useful for organizing parallel computation. It
does not provide support for process groups, group communication topologies, nor expression
of communication partners relative to the process image. Instead, programmers often use
Fortran 95 arrays and integer arithmetic to represent communication partners. Such ad hoc
methods of structuring parallel computation render CAF impenetrable to compiler analysis.

We explored replacing CAF’s multi-dimensional co-shapes with more expressive commu-
nication topologies, called co-spaces, such as group, Cartesian, and graph. They simplify
programming by providing convenient abstractions for organizing parallel computations.
Group co-spaces enable support for process groups as well as remapping process image in-
dices. Cartesian or graph co-spaces are used to impose a Cartesian or graph communication
topology on a group; they provide functionality to systematically specify the targets of
communication and point-to-point synchronization. These abstractions, in turn, expose the
structure of communication to the compiler, facilitating compiler analysis and optimization.

Communication analysis. We devised a novel technology for analyzing explicitly-parallel

CAF programs suitable for a large class of scientific applications with structured commu-
nication. When parallel computation is expressed via a combination of a co-space, textual
co-space barriers, and co-space single-valued expressions, the CAF compiler can infer com-
munication patterns from explicitly-parallel code. At present, communication analysis is
limited to a procedure scope with structured control flow. Our work focuses on two patterns
that are common for nearest-neighbor scientific codes. The first pattern is a group-executable
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PUT/GET in which the target image is expressed via a co-space interface neighbor function
with co-space single-valued arguments. The second is a non-group-executable PUT/GET
with the target image expressed via a co-space interface neighbor function with co-space
single-valued arguments. Knowing the communication pattern for each process image of the
co-space enables determination of the origin image(s) of communication locally. This is a fun-
damental enabling analysis for powerful communication and synchronization optimizations
such as synchronization strength reduction.

Synchronization strength reduction (SSR). We developed a procedure-scope syn-
chronization strength reduction optimization that replaces textual co-space barriers with
asymptotically more efficient point-to-point synchronization where legal and profitable. This
transformation is both difficult and error-prone for application developers to exploit man-
ually at the source code level. SSR optimizes the communication patterns inferred by our
analysis of communication partners. As of now, it operates on a procedure scope with a sin-
gle co-space and textual co-space barriers for synchronization. To extend SSR’s applicability
to real codes, we use compiler hints to compensate for the lack of interprocedural analysis.
Understanding communication structure enables the CAF compiler to convert barrier-based
synchronization into more efficient form. We investigated the conversion of textual co-space
barriers into point-to-point synchronization. SSR-optimized programs are more asynchrony
tolerant and show better scalability and higher performance than their barrier-based coun-
terparts.

We implemented prototype support for SSR in a version of cafc. SSR-optimized Jacobi
iteration, NAS MG, and NAS CG benchmarks show performance comparable to that of
our fastest hand-optimized versions that use point-to-point synchronization. Compared to
their barrier-based counterparts, they demonstrate noticeable performance improvements.
For 64-processor executions on an Itanium2 cluster with a Myrinet 2000 interconnect, we
observed run-time improvements of 16% for a 2D Jacobi iteration of 10242 size, 18% for
NAS MG classes A and B, and 51% for NAS CG class A. In our prior studies, we observed
similar benefits from using point-to-point synchronization instead of barriers on other parallel
platforms and for other benchmarks as well.

Multi-version variables. Many scientific codes such as wavefront, line-sweep, and
loosely-coupled parallel applications exhibit the producer-consumer communication pattern,
in which the producer(s) sends a stream of values to the consumer(s). Expressing high perfor-
mance producer-consumer communication in PGAS languages is difficult. The programmer
has to explicitly manage several communication buffers, orchestrate complex point-to-point
synchronization (to hide the latency of anti-dependence synchronization due to buffer reuse),
and use non-blocking communication.

We explored extending CAF with multi-version variables (MVVs), a language-level ab-
straction we devised to simplify the development of high performance codes with producer-
consumer communication. An MVV can store more than one value. Only one value can be
accessed at a time; others are queued by the runtime. A producer commits new values into
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an MVV and a consumer retrieves them. MVVs offer limited support for two-sided com-
munication in CAF, which is a natural choice when developing producer-consumer codes.
MVVs simplify program development by insulating the programmer from the details of buffer
management, complex point-to-point synchronization, and non-blocking communication.

MVVs are the right abstraction for codes in which each process communicates streams
of values to a small subset of processors. MVVs might not be the best abstraction for
codes in which each process communicates data to a lot of processes, which might cause
excessive MVV buffering. While MVVs insulate the programmer from managing the anti-
dependence synchronization, sometimes no such synchronization is necessary because it is
enforced elsewhere in the application. However, we believe that programmability benefits of
the MVV abstraction outweigh slight performance losses due to unnecessary anti-dependence
synchronization in this case.

We extended CAF with prototype support for MVVs. MVVs significantly simplify de-
velopment of wavefront applications such as Sweep3D, and MVV-based codes deliver perfor-
mance comparable to that of the fastest CAF multi-buffer hand-optimized versions, up to
39% better than that of CAF one-buffer versions, and comparable to or better (up to 12%)
than that of their MPI counterparts on a range of parallel architectures. MVVs greatly
simplify coding of line-sweep applications, such as the NAS BT and SP benchmarks, and
deliver performance comparable to that of the best hand-optimized MPI and CAF versions.

Distributed multithreading. Distributed memory is necessary for the scalability of mas-
sively parallel systems. Systems in which memory is co-located with processors continue
to dominate the architecture landscape. The nodes of these distributed memory architec-
tures are also becoming parallel, e.g., multi-core multiprocessors. Distributed multithreading
(DMT) is based on the concepts of function shipping and multithreading, which provide two
benefits. First, DMT enables co-locating computation with data. Second, it enables exploit-
ing hardware threads available within a node. DMT uses co-subroutines and co-functions

to co-locate computation with data and to enable local and remote asynchronous activi-
ties. Using DMT to co-locate computation with data is an effective way of avoiding exposed
latency, especially when performing complex operations on remote data structures. In addi-
tion, concurrent activities running within a node would enable utilizing available hardware
parallelism.

We presented design principles behind multithreading in an SPMD language and pro-
vided the DMT specification for CAF, featuring blocking and non-blocking activities that
can be spawned remotely or locally. We extended cafc with prototype support for DMT.
We developed a micro-benchmark to compute the maximum value of a co-array section to
quantify the performance gain due to co-locating computation with data. In our experi-
ments on an Itanium2 cluster with a Myrinet 2000 interconnect, we observed that, for large
sections, it is up to 40 times faster to ship computation and get the result back than fetch
data and obtain the result locally; for accesses to more complex remote data structures, this
benefit is likely to be much higher. We developed several fine-grain and bucketed versions
of the RandomAccess benchmark to gain a better understanding for DMT design. Our ex-
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perimentation revealed that it is necessary to use a pool of OS threads to execute activities,
rather than to spawn each activity in a separate OS thread, to deliver best performance; it
is also necessary to allow programmers to control the thread pool to tune the runtime for
the application’s concurrency needs. Better asynchrony tolerance allowed the performance
of a DMT-based implementation of bucketed RandomAccess to exceed that of the standard
MPI version, which uses MPI AlltoAll to exchange remote updates.

We found that DMT improves programmability of applications that benefit from asyn-
chronous activities. We experimented with a branch-and-bound traveling salesman problem
(TSP), which we selected as representative of parallel search applications. We found that
the DMT-based CAF version is simpler than a master-slave message-passing implementa-
tion in MPI. The simplicity comes from not having to implement a two-sided protocol when
using DMT; instead, the programmer can use co-functions to execute asynchronous remote
activities. DMT-based TSP demonstrates better performance, because, in our experiments,
the MPI implementation dedicates a processor to be the master, and this mater processor
does not perform useful computation.

2 Future Directions

While the research and development of both the CAF language and compiler technology
for PGAS languages has demonstrated that CAF can be used to achieve high performance
on clusters, significant additional work is needed before CAF an attractive technology for
computational scientists. Several issues need significant attention.

Implementation issues. The ideas explored in the development of the cafc compiler
need have proven sound, but the implementation needs several enhancements to improve
programmer productivity. First, cafc needs support for co-array variables as part of Fortran
90/95 modules. Second, cafc needs enhanced support for inheriting implicit procedure
interfaces for procedures that manipulate co-arrays.

Enhanced support for manipulating remote data. Currently, CAF supports an MPI-
like model for SPMD programming. For CAF to support a broader range of application
styles, it needs better support for manipulation of remote data and more flexible data-
oriented synchronization. This is a focus of work in the PModels2 project.

Improving thread support in PGAS languages. Co-locating computation with data
and utilizing intra-node parallelism is essential to fully utilize hardware capabilities of mod-
ern parallel architectures. While experimenting with distributed multithreading, we dis-
covered that operating systems do not provide adequate support for precisely controlling
multithreading for high performance codes. A promising research direction is to work with
OS developers to develop an efficient, flexible, and portable threading system that enables
applications, rather than the OS, to schedule threads. This would enable us to extend a mul-
tithreaded programming model with user-defined scheduling policies that best accommodate
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the concurrency needs of the application, as well as compiler analysis and optimization to
appropriately mix & schedule concurrent computations. Better run-time support would also
be necessary to enable massive (millions of threads) multithreading within a node.

It is worth investigating whether a programming model can provide convenient abstrac-
tions for efficient work-sharing that can be optimized for automatic load-balancing in the
presence of distributed memory.

Enhancing scalability analysis. For our scalability analysis technique to be broadly
useful, we need more widely available support for measurement of the call path profiles it
requires. Developing support for collecting such profiles on the leadership-class platforms is
a focus of Rice University’s work as part of the Performance Engineering Research Institute.
Developing more usable support for scalability analysis of parallel profiles is a focus of re-
search and development of performance tool interfaces in the Center for Scalable Application
Development Software.

Extending CAF analysis and communication/synchronization optimization. To
develop scalable, high performance explicitly-parallel programs, programmers must use effi-
cient communication and orchestrate complex point-to-point synchronization, which is diffi-
cult. Barriers are the simplest synchronization mechanism to use in PGAS languages. Thus,
the role of the compiler is to enable application developers to use barriers for synchronization,
while optimizing communication and synchronization into a more efficient form delivering
performance and scalability. SSR is an example of such an optimization.

Today, our novel CAF analysis and SSR are limited to a procedure scope with single co-
space and structured control flow. It is possible to extend the analysis to handle arbitrary
control flow. There is also a good indication that interprocedural analysis can be developed to
eliminate the necessity of hints for SSR. Such analysis would include: (1) detecting whether a
procedure may access local or remote co-arrays or perform synchronization in any invocation;
(2) propagation of single values across procedure calls; (3) propagation of unsynchronized
PUT/GET across procedure boundaries. It is still an open question whether an analysis can
be developed to analyze scopes where communication/synchronization is done for multiple
co-spaces.

In addition to SSR, our CAF analysis technology enables a set of promising communica-
tion and synchronization optimizations. SSR does not change the communication primitive.
Doing so will enable conversion of one-sided PUT/GET communication into two-sided send
and receive. Such two-sided communication can be buffered, and would enable us to auto-
matically generate more asynchrony tolerant code, since buffering can move anti-dependence
synchronization off the critical path, and packing/unpacking of strided communication. Con-
version of GET into PUT will enable us to utilize interconnect RDMA capabilities, when
accessing remote data via PUTs, for architectures with RDMA support for PUTs, but not
for GETs. The push (PUTs) strategy would also enable us to hide exposed latency inherent
to the pull (GETs) strategy as well as to tile producer-consumer loop nests to entirely hide
communication latency.
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Finally, our SSR algorithm is not based on array section dependence analysis. Develop-
ing such an analysis, which must also include remote co-array sections, might improve the
precision of our CAF analysis and SSR; however, we have not yet seen opportunities that
would benefit from such analysis in the limited set of codes we have studied.

Enhancing multi-version variables and beyond. Producer-consumer communication
is typical in many scientific codes; however, it is difficult to develop scalable, high perfor-
mance producer-consumer applications in PGAS languages. We offer MVVs as a pragmatic
and convenient way to simplify development of high-performance producer-consumer codes
in CAF.

It would be interesting to consider whether multi-version variables can benefit from ex-
tensions such as GET-style remote retrieve, the commit and retrieve primitives of partial
MVV versions, and an adaptive buffer management strategy.

It is worth investigating the stream abstraction as an alternative to MVVs, especially for
codes that stream values of unequal size. While streams are a more general abstraction than
MVVs, they would require the programmer to establish explicit connections. For streams,
it would also be harder to optimize unnecessary memory copies, which MVVs achieve via
adjusting an F90 pointer.

The clocked final model (CF) of X10 is another more general alternative to MVVs that
does not require the programmer to specify the number of buffers and explicitly manage
commits and retrieves. It would be interesting to investigate whether it is possible to
develop sophisticated compiler and runtime technology to optimize CF-based scientific codes
to deliver as high performance as that of using MVVs on a range of parallel architectures.
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