

1
2
3
4 **The effects of changing exercise levels on weight and**
5 **age-related weight gain**

6
7
8 Paul T. Williams

9
10 Peter D Wood

11
12
13 Supported in part by grant HL-45652 and DK066738 from the
14 National Heart Lung and Blood Institute, and was conducted at the
15 Lawrence Berkeley Laboratory (Department of Energy DE-AC03-
16 76SF00098 to the University of California).

17
18 Abbreviations: BMI: body mass index

19
20 Keywords: Exercise, running, aging, body mass index, regional
21 adiposity

22
23 The text is 4,160 words exclusive of the abstract, references and
24 tables.

25
26 Short title: Changing exercise levels and weight change

27

1 Paul T. Williams, Ph.D., Life Sciences Division, Lawrence
2 Berkeley Laboratory, Donner Laboratory, Berkeley, CA. 94720
3 ptwilliams@lbl.gov
4
5 Telephone 510 486-5633
6 Fax 510 486-5990
7
8 Peter D. Wood. Stanford Center for Research in Disease
9 Prevention, Stanford University School of Medicine, Stanford CA

1
2
3
4 Objective: To determine prospectively, whether physical activity
5 can prevent age-related weight gain and whether changing levels
6 of activity affect body weight.
7 Design/Subjects: The study consisted of 8,080 male and 4,871
8 female runners who completed two questionnaires an average (\pm SD)
9 of 3.20 ± 2.30 and 2.59 ± 2.17 years apart, respectively, as part of
10 the National Runners Health Study.
11 Results: Changes in running distance were inversely related to
12 changes in men's and women's BMIs (slope \pm SE: -0.015 ± 0.001 and $-$
13 0.009 ± 0.001 kg/m^2 per $\bullet\text{km/wk}$, respectively), waist circumferences
14 (-0.030 ± 0.002 and -0.022 ± 0.005 cm per $\bullet\text{km/wk}$, respectively) and
15 percent changes in body weight (-0.062 ± 0.003 and $-0.041 \pm 0.003\%$
16 per $\bullet\text{km/wk}$, respectively, all $P < 0.0001$). The regression slopes
17 were significantly steeper (more negative) in men than women for
18 $\bullet\text{BMI}$ and $\bullet\%\text{body weight}$ ($P < 0.0001$). A longer history of running
19 diminished the impact of changing running distance on men's
20 weights. When adjusted for $\bullet\text{km/wk}$, years of aging in men and
21 years of aging in women were associated with increases of
22 0.066 ± 0.005 and 0.056 ± 0.005 kg/m^2 in BMI, respectively, increases
23 of 0.294 ± 0.019 and $0.279 \pm 0.028\%$ in $\bullet\%\text{body weight}$, respectively,
24 and increases of 0.203 ± 0.016 and 0.271 ± 0.032 cm in waist
25 circumference, respectively (all $P < 0.0001$).
26 Conclusions: Age-related weight gain occurs even among the most
27 active individuals when exercise is constant. Theoretically,

1 vigorous exercise would need to increase annually to compensate
2 for the expected gain in weight due to aging.

1 Over half of all adults in the United States are classified as
2 obese. {1} Westernized societies demand relatively little
3 physical activity at work or home while providing ready access to
4 energy dense foods. Most physical activity of moderate or
5 vigorous intensity is voluntary and recreational. About 60% of
6 adults choose to be sedentary and engage in little recreational
7 activity {2}. Thus there is ample opportunity for weight gain to
8 occur as energy intake exceeds expenditure {3}.

9

10 Cross-sectional and prospective cohort studies of predominantly
11 sedentary populations show that men and women gain weight as they
12 age. There are concomitant declines in energy expenditure and
13 increases in adiposity with age {4}, however it is not known
14 whether age-related increases in adiposity are the cause or the
15 consequence of declining energy expenditure with age {5}. The
16 Institute of Medicine (IOM) recommends adding exercise to usual
17 daily activity sufficient to raise total energy expenditure to
18 170% of basal energy expenditure, which in most adults could be
19 achieved through 60 minutes per day of brisk walking {6,7}.

20

21 We have proposed that weight maintenance may require progressive
22 increases in exercise with age, rather than the maintenance of a
23 static threshold {8}. Cross-sectional analyses originally
24 presented by us suggest that middle-age weight gain is expected
25 if physical activity remains constant, even if the activity is
26 substantial {8}.

27

1 The IOM energy requirements to maintain healthy weight, and our
2 own previously-published estimates of the exercise required to
3 prevent age-related weight gain were speculative, however, since
4 cross-sectional data by themselves do not distinguish age-related
5 weight gain from cohort effects, and exercise-induced weight loss
6 from self-selection. In addition, our estimates of the exercise
7 required to prevent age-related weight gain may not apply to
8 women, who are reported to lose less weight than men with
9 exercise {9-11}. This report uses longitudinal data to
10 strengthen the evidence for a causal relationship between
11 exercise and weight maintenance. The demonstration prospectively
12 of weight gain at any sustained activity level may provide
13 insights into the physiological process of aging and shift public
14 health recommendations from static goals to dynamic
15 recommendations for greater investment in physical activity with
16 age.

Methods

20 A two-page questionnaire, distributed nationally at races and to
21 subscribers of the nation's largest running magazine (Runners'
22 World, Emmaus PA) between 1991 and 2000, solicited information on
23 demographics (age, race, education), running, weight, waist
24 circumference{12}. All participants signed a written consent form
25 that had been approved by the Committee for the Protection of
26 Human Subjects.

27

1 From the tables by Ainsworth et al. we calculated the caloric
2 cost of running exclusive of the resting metabolic rate as 1.51
3 kcal/kg/mi {13}. The Institute of Medicine report recommends
4 calculating total exercise energy expenditure by increasing the
5 direct energy expenditure during exercise by 15% for excess post
6 exercise oxygen consumption, and by 10% for the thermic effects
7 of the additional food energy required to supply the energy
8 required {6}. These two factors increase the energy cost of
9 running by 28% to 1.93 kcal/mi. Physical activity levels (PAL)
10 were estimated using the equations from the IOM report for basal
11 energy expenditure (kcal/day) in normal weight men and women
12 (Chapter 5) and the impact of physical activity on PAL (Chapter
13 13) assuming a PAL of 1.39 for sedentary lifestyle {6}.

14

15 Change in body mass index BMI was calculated as the change in
16 weight in kilograms between the first and second questionnaire
17 divided by the square of the average height from the two
18 questionnaires in meters. Self-reported waist circumference was
19 in response to the question "Please provide, to the best of your
20 ability, your body circumference in inches" without further
21 instruction. Self-reported height and weight from the
22 questionnaire have been found previously to correlate strongly
23 with their clinic measurements (unpublished correlation in 110
24 men were $r=0.96$ for both). Self-reported waist circumferences
25 are somewhat less precise as indicate their correlations with
26 self-reported circumferences on a second questionnaire ($r=0.84$)
27 and with their clinic measurements ($r=0.68$).

1
2 *Statistical analyses* The significance of the relationships of
3 •running distance and •age to •weight were assessed by multiple
4 linear regression using both variables and average age
5 ((questionnaire 2 age + questionnaire 1 age)/2) as independent
6 variables. Annual weight change was estimated by dividing the
7 mean, standard deviation and standard error for weight change by
8 the mean duration between surveys. The annual mean changes in BMI
9 by age groups after adjustment for changes in running distances
10 were calculated using multiple linear regression using the nine
11 age groups (18-25 years old, 25-29, 30-34,...55-59, 60-75 years
12 old) and •km per week as independent variables and •weight as the
13 dependent variable. In these analyses, the contribution of an
14 individual i , $i=1..N$ to the age class j , $j=1..9$, was zero if the
15 individual was never in the age group j between surveys, and was
16 calculated as the minimum $(b_j - c_i, d_i - c_i)$ -maximum $(a_j - c_i, 0)) / (b_j - a_j)$
17 if they were, where a_j and b_j are the lower and upper limits of
18 age class j and c_i and d_i are participant's i ages on their first
19 and second survey. Simply stated, the contribution of age
20 interval j to the average weight gain of individuals between
21 surveys is proportional to the amount of time spent within the
22 age interval

23 **Results**
24

25 Multiple baseline questionnaires were submitted by 12.8% of men
26 and 11.4% of women who joined National Runners' Health Study
27 between 1991 and 2000. We excluded runners who reported taking

1 thyroid (N=539) or diabetic medications (N=71), smoked (N=274),
2 or consumed strict vegetarian diets (N=288) on their first or
3 second questionnaire. Of the remaining 8,080 male and 4,871
4 female runners, 7,771 males (96.2%) and 4,797 females (98.5%)
5 reported weights and heights to allow the calculation of change
6 in BMI and body weight, and 7,060 males (90.9%) and 4,071 (83.6%)
7 females reported their waist circumferences at both visits. The
8 male (female) runners who submitted multiple questionnaires had a
9 mean \pm SD age of 44.3 ± 11.1 years (38.0 ± 10.1 years), average of
10 16.6 ± 2.5 (16.2 ± 2.4) years of education, a BMI of 23.5 ± 2.5 kg/m^2
11 (21.2 ± 2.3 kg/m^2) and had run twelve or more miles per week for
12 average of 13.0 ± 8.2 years (9.6 ± 6.6 years)

13

14 Weekly running distance declined an average (\pm SD) of 2.87 ± 16.37
15 km during the 3.20 ± 2.30 years between surveys in men, and
16 declined 1.65 ± 15.99 km during the 2.59 ± 2.17 years between surveys
17 in women. Although the average changes in weekly running distance
18 between visits were small, individual changes were often
19 substantial. One percent of men (1.4% of women) increased their
20 running distance run over 40 km/wk between surveys, 3.9% of men
21 (4.1% of women) increased their distance between 24 and 40 km/wk,
22 18.2% of men (20.7% of women) increased their distance between 8
23 and 24 km/wk, 39.9% of men (40.2% of women) remained within 8
24 km/wk of their baseline distance, 27.5% of men (25.3% of women)
25 reduced their distance between 8 and 24 km/wk, 6.6% of men (6.1%
26 of women) reduced distance between 24 and 40 km/wk, and 2.8% of

1 men (2.2% of women) reduced their weekly running distance by over
2 40 km/wk.

3
4 Tables 1 and 3 present the annual mean changes in BMI, •%body
5 weight, and waist circumference by weekly running distance on the
6 first (rows) and second surveys (columns). The cells that lie on
7 the diagonal from the lower left corner to the upper right corner
8 represent individuals who remained within the same running
9 distance category, cells above the diagonal represent decreases
10 in weekly running distance, and those below the diagonal
11 represent increases in distance. Table 2 shows that all of the
12 mean changes in men's BMI, waist circumferences, and percent
13 changes in weight on or above the diagonal are significantly
14 positive, representing significant weight gain in men who
15 maintained or reduced their running distance between surveys.

16 There were only isolated cases of significant weight loss below
17 the diagonal, and the mean changes suggest that weight loss in
18 men was only achieved when the increase in exercise was
19 substantial. The significance levels at the end of the rows and
20 bottom of the columns test for significant trends within the row
21 or column. Thus, the significance level for the first column
22 ($P<0.0001$) shows that in men who were running under 16 km/wk on
23 the second questionnaire, the annual average weight gain was
24 associated with the amount of decrease in running distance. The
25 significance level for the first row shows that among runners who
26 initially ran over 64 km/wk, the annual weight gain was related
27 to their decrease in running distance. Thus regardless of the

1 starting or ending distances, the mean changes in BMI, •%body
2 weight, and waist circumference were related to the changes in
3 running distance.

4

5 Table 2 presents the corresponding results for women. The
6 significant mean increases in all cells lying on or above the
7 diagonal show that as in men, there were significant annual
8 increases in body weight and waist circumferences in women who
9 maintained or reduced their weekly running distance. The
10 significant trend for all rows suggests that the change in
11 women's weights were related to changes in running distances
12 regardless of their initial running level. The test for trends
13 at the bottom of the columns suggest that the change in weight
14 was also related to the change in weekly running distance
15 regardless of their ending level (except •waist circumference in
16 women running over 48 km/wk at the end of the survey).

17

18 The analyses to follow assess the separate contributions of aging
19 (time) and change in running distance to changes in weight
20 (presumably adiposity). Specifically, we examine the effects of
21 changes in reported weekly running distance to changes in
22 adiposity when adjusted for the time interval between surveys
23 (•age) and age at the midpoint of the two surveys. To assess the
24 independent effect of aging in these vigorously active men and
25 women, we adjusted for mean age and the change in weekly running
26 distance between surveys.

27

1 **Changes in adiposity and running distance adjusted for age and**
2 **aging** Figure 1 displays the adjusted mean changes in BMI, •%body
3 weight and waist circumference when grouped by change in weekly
4 running distance. The bars show that adjusted declines in weekly
5 running distances were associated with significant increases in
6 mean body weight and waist circumference in a dose-dependent
7 manner. This observation is confirmed by the adjusted regression
8 slopes that uses changing distances across the continuum of
9 values rather than their categorical division, i.e., changes in
10 weekly running distances were inversely related to changes in
11 men's and women's BMIs (slope=SE: -0.015 ± 0.001 and $-0.009 \pm$
12 0.001 kg/m^2 per km/wk, respectively), •%body weights (-
13 $0.062 \pm 0.003\%$ and $-0.041 \pm 0.003\%$ per km/wk, respectively), and
14 waist circumferences (-0.030 ± 0.002 and $-0.022 \pm 0.005 \text{ cm}$ per
15 km/wk, all $P<0.0001$).

16
17 The adjusted regression slopes per •km/wk were significantly
18 steeper (more negative) in men than women for •BMI (male minus
19 female difference in slope \pm SE: $-0.006 \pm 0.001 \text{ kg/m}^2$, $P<0.0001$) and
20 •%body weight ($-0.021 \pm 0.005\%$, $P<0.0001$), but not waist
21 circumference (0.007 ± 0.005 , $P=0.13$). The differences in slopes
22 persist for •BMI versus •kcal from running ($P=0.0003$, analyses
23 not displayed).

24
25 Figure 2 suggests in men, a longer history of running 19 or more
26 km per week appeared to diminish the impact of changing running
27 distance on •BMI, •%body weight and •waist circumferences

1 (P<0.0001 for all). For example, in men who ran under 4 years,
2 each 1 km increase (decrease) in weekly running distance was
3 associated with a $-0.018 \pm 0.002 \text{ kg/m}^2$ decrease (increase) in their
4 BMI. This change in BMI was 73% larger than the change in men who
5 had run 16 or more years ($-0.012 \pm 0.001 \text{ kg/m}^2$ per $\bullet\text{km/wk}$). There
6 was a 62% difference in the percent change in men's body weight
7 and a two-fold difference in the change in men's waist
8 circumference per $\bullet\text{km/wk}$ for men who ran 4 years or less compared
9 to those who ran at least 16 years.

10

11 Figure 3 suggests that weight change during exercise reduction
12 also appears to be affected by whether the men are proximal or
13 far away from their greatest lifetime weight. Men who were more
14 than 10% below their greatest lifetime weight on their first
15 survey experienced changes in BMI per $\bullet\text{km/wk}$ ($-0.017 \pm 0.001 \text{ kg/m}^2$)
16 that were significantly greater than experienced by men five to
17 ten percent below their maximum weight ($-0.012 \pm 0.002 \text{ kg/m}^2$,
18 P=0.0003 for difference) or within five percent of their maximum
19 weight (-0.007 ± 0.001 , P<0.0001 for difference). The men who were
20 at least ten percent below their greatest lifetime weight also
21 experienced a greater percent reduction in body weight (-
22 $0.069 \pm 0.004\%$ per $\bullet\text{km/wk}$) than men who were five to ten percent
23 below ($-0.049 \pm 0.004\%$ per $\bullet\text{km/wk}$, P=0.0003) or within five percent
24 of their maximum weight ($-0.031 \pm 0.005\%$ per $\bullet\text{km/wk}$, P<0.0001 for
25 difference). Change in waist circumference did not achieve
26 significance in these comparisons.

27

1 **Changes in adiposity with aging.** When adjusted for changes in
2 weekly running distances and age, each year of follow-up was
3 associated with increases of 0.066 ± 0.005 and 0.056 ± 0.005 kg/m^2 in
4 men's and women's BMI, respectively, ($P < 0.0001$), increases of
5 0.294 ± 0.019 and $0.279 \pm 0.028\%$ in men's and women's •%body weight,
6 respectively, ($P < 0.0001$), and increases of 0.203 ± 0.016 and
7 0.271 ± 0.032 cm in waist circumference ($P < 0.0001$). The effects of
8 aging were not significantly different between men and women for
9 •BMI ($P = 0.18$) or •%body weight ($P = 0.65$), but were slightly
10 greater for women than men for •waist circumference (difference
11 in slope \pm SE: 0.068 ± 0.033 cm/y, $P = 0.04$).

12
13 Table 3 displays the annual increases in BMI, body weight, and
14 waist circumference by age. The increases in weight and waist
15 circumference with age were generally significant between 18 and
16 59 years old. Increasing age was significantly related to
17 increases in waist circumference but not increases in BMI or body
18 weight in men and women between 60 and 75 years old, suggesting
19 age-related increases in visceral fat that may not be reflected
20 in body mass due to a loss of lean body mass in older
21 individuals.

22
23 Figure 4 shows that among men and women whose running distance
24 remained relatively constant between surveys (a difference no
25 greater than 5 mi or 8 km/wk between surveys), weight and waist
26 circumference increased annually regardless of running distance,

1 although the annual increase was smaller among longer distance
2 runners.

3
4 It has been suggested that maintenance of healthy weight (BMI• 25
5 kg/m^2) can be achieved by maintaining total energy expenditure
6 that is at least 70% higher than basal energy expenditure {6}.
7 Among runners who we estimated maintained this minimum physical
8 activity level at both surveys, the men increased their body
9 weight by $0.185 \pm 0.021 \text{ kg}$ per year and decreased their body weight
10 by $-0.0415 \pm 0.0033 \text{ per } \bullet\text{km/wk}$, and women increased their body
11 weight by $0.069 \pm 0.025 \text{ kg}$ per year and decreased their body weight
12 by $-0.0228 \pm 0.0039 \text{ kg}$ per $\bullet\text{km/wk}$.

13
14 **Discussion**
15
16 Our three primary findings are; 1) even among the most vigorously
17 active populations, age-related weight gain occurs through
18 middle-age; 2) changes in vigorous activity are associated with
19 changes in weight in a dose-dependent manner; 3) changes in
20 vigorous activity are associated with significantly greater
21 changes in weight in men than in women. Prior observational
22 studies of physical activity and adiposity have been criticized
23 for the low prevalence of higher intensity physical activity, the
24 measurement error associated with low-intensity activity, and the
25 inappropriate time frame of the assessment {14,15}. The men and
26 women studied here nearly all engaged in running, which is a

1 well-quantified activity that had been sustained over many
2 years (Table 1).

3

4 Our data lend essential support for the hypothesis that vigorous
5 exercise promotes leanness. Because our analyses are based on
6 changing levels of exercise, the associations are unlikely to
7 arise from lean men and women choosing to run (albeit changes in
8 weight could affect exercise participation). Intervention
9 studies would provide stronger evidence for causal relationship
10 between change in weight and change in adiposity than the
11 prospective observations we report. However, it is unlikely that
12 any intervention studies will include the sample size (nearly
13 13,000 vigorously active men and women), duration (3.2 and 2.6
14 years of follow-up in men and women, respectively), or amount of
15 activity (running approximately 40 km/wk.) reported here.

16

17 In formulating public health recommendations, there has been
18 little discussion of the inevitability of age-related weight
19 gain, or acknowledgement that gaining weight may be a natural
20 consequence of the aging process. Weight gain has been primarily
21 treated as a behavioral inadequacy requiring behavioral
22 interventions. Yet even among runners who run sixty-four or more
23 km/wk there is statistically significant weight gain over time.
24 The caloric expenditures of these runners greatly exceed the 3.5
25 to 5 hours per week of moderate intensity exercise (e.g. brisk
26 walking) recommended by the American College of Sports Medicine
27 to facilitate the maintenance of long-term weight loss {16}.

1 They also exceed other recommendations for achieving weight
2 maintenance (e.g., 35 min of vigorous activity per day {17}, 45
3 to 60 minutes {18} or sixty {6} or eighty minutes of moderate
4 intensity activity, or 1500-2000 kcal/week {19}), an unexpected
5 result given that the amount of activity required to maintain
6 large weight losses is purported to be greater than the activity
7 required to prevent incipient weight gain{18}.

8

9 Our prospective data suggest that an annual change in physical
10 activity equivalent to one km/wk of running is associated with
11 changes in BMI of -0.015 ± 0.001 and -0.009 ± 0.001 kg/m^2 in men and
12 women, respectively. These estimates are somewhat smaller than
13 the cross-sectional relationships between BMI and km/wk of
14 running we have previously reported for men (-0.033 ± 0.001 kg/m^2
15 per km/wk) and women (-0.014 ± 0.003 kg/m^2 per km/wk) {8}. Others
16 also report that physical activity has a stronger relationship to
17 weight cross-sectionally than to change in weight measured
18 prospectively {20}. In part, the larger cross-sectional slope may
19 reflect the contributions of self-selection to the cross-
20 sectional relationship. For example, leanness of physically
21 active older women is reported to reflect their leanness during
22 early adulthood (suggesting a component of self-selection) {21}.
23 In addition, the smaller regression slope of the change data
24 could theoretically be due to greater attenuation of the
25 regression slope by measurement error for change data than cross-
26 sectional data. Specifically, errors in measuring the
27 independent variables are known to bias estimates of the

1 regression slope towards zero. This bias is likely to be greater
2 for change data than cross-sectional data because measurement
3 error is accumulated twice in the calculation of a difference but
4 only once for cross-sectional data. Correcting the regression
5 slope for the apparent measurement error for self-reported
6 running distance would increase the regression slope to -0.024
7 and -0.015 kg/m² per •km in men and women, respectively assuming
8 a correlation of 0.89 between repeated measurements {12}.

9

10 In an earlier paper of men studied cross-sectionally suggested
11 that middle-age weight gain is expected if physical activity
12 remains constant, even if the activity is substantial {8}. We
13 originally estimated that the men would need to increase their
14 distance run by 2.24 km (1.39 mi) per week annually to compensate
15 for the anticipated weight gain during middle age {8}. DiPietro
16 et al have also reported that men and women gained weight during
17 7.5 years of follow-up unless treadmill test duration improved
18 {22}. The prospective data presented here suggest that vigorous
19 exercise may need to increase 4.4 km/wk annually in men and 6.2
20 km/wk annually in women to compensate for the expected gain in
21 weight due to aging (2.7 and 3.9 km/wk annually in men and women
22 respectively if we correct for the attenuation due to measurement
23 error associated with self-reported running distance as described
24 above).

25

26 The IMO report {6} concluded that the maintenance of healthy
27 weight (i.e., 18.5 kg/m²•BMI<25 kg/m² {23}) requires a level of

1 total energy expenditure that is 170% of basal daily energy
2 expenditure (i.e., a Physical Activity Level [PAL] or Physical
3 activity Index [PAI] of 1.7) Among runners who we estimated to
4 maintain a PAI of 1.7 at both visits, we calculated that the men
5 and women would need to increase their annual weekly running
6 distance by 4.5 and 3.0 km to maintain a constant body weight
7 (analyses not displayed). These estimates are greater than the
8 annual increases of 10 kcal/day in men's and 7 kcal/day in
9 women's total energy expenditure that the IOM estimate are
10 required to maintain adult BMIs within the desirable range based
11 on changes in total energy expenditure alone.

12

13 We found that changes in weekly running distances had less of an
14 effect on body weight in women than men. Others report that
15 physical activity as measured by doubly-labeled water was related
16 to body fat in males but not females {24,9}. This finding is
17 unexpected given that the net energy cost of running at self-
18 selected running speeds is reported to be 11% higher in women
19 than men {10,25}. Some training studies speculate that the same
20 exercise challenge is less likely to cause weight loss in women
21 than men because women have a greater tendency to compensate for
22 energy expenditure through increased energy intake {26,11}. It
23 also has been suggested that training may produce less weight
24 loss in women than men because abdominal fat (generally higher in
25 males) is more responsive to exercise than gluteofemoral fat
26 (generally higher in females) {27}. BMI is a better predictor
27 of differences in body fat in women than men so it is unlikely

1 that the difference is due to the inadequacy of BMI to reflect
2 body fat changes in women {6}). The sex difference may be less
3 apparent for waist circumference than BMI or •%body weight
4 because waist circumference is more weakly related to %body fat
5 in women than men {6}.

6

7 The majority of the men and women in our study had BMIs that
8 were below the 25 kg/m² threshold that the National Institutes of
9 Health and other government and nongovernmental organizations
10 have identified as desirable. However, this does not necessarily
11 mean that increases in BMI below this threshold are benign.
12 Willett et al reported that relative to a BMI of 21 kg/m², the
13 risk for coronary heart disease was 19% higher for women with a
14 BMI of 21 to 22.9 kg/m², and 46% higher for a BMI of 23 to 24.9
15 kg/m² {28}. They also reported that weight gain after 18 years
16 of age was a strong predictor of CHD risk even among women whose
17 BMI remained below 25 kg/m² {28}. However, others suggest that
18 weight gain does not increase mortality in middle-aged {29,30}
19 or older men {31}, or lean postmenopausal women {32} or that the
20 increased risk primarily restricted to those experiencing the
21 greatest weight gain {33}. Although the health risks associated
22 with weight gain in the vigorously active men and women remains
23 controversial, their mortality risk is known to be less than
24 sedentary physically-unfit individuals matched for weight {34}.

25

26

1 Our surveys lacked reliable data on changes in energy intake and
2 other sources of energy expenditure that could theoretically
3 account for some of the results reported here. Some of the
4 change in body weight could reflect changes in caloric intake or
5 other activities. Technical limitations of food records and
6 comprehensive activity diaries limit their use in accounting
7 variations in weight over time. Intra-individual variability in
8 daily energy intake is estimated to be $\pm 23\%$ {35} whereas the
9 long-term error in adjusting cumulative energy intake to
10 expenditure is estimated to be less than 2% of energy expenditure
11 {36}. Underestimation of food intake by food records is reported
12 to range from ten to forty-five percent{6}. Between 140 and 700
13 kcal/day has been attributed to spontaneous physical activities,
14 including fidgeting, which is missed by comprehensive physical
15 activity diaries {37}.

16

17 In our opinion the more demanding physical activity
18 recommendations by the IOM report represent an important
19 improvement over earlier guidelines {2}. Our analyses suggest
20 these guidelines may be further improved by: 1) promoting
21 investments in physical activity that increase with age; 2)
22 acknowledging differences in the expected weight loss for men and
23 women who exercise vigorously.

1 Acknowledgements: Dr. Williams was responsible for obtaining
2 funding, overseeing the study implementation, statistical
3 analyses, manuscript preparation. Dr. Wood contributed to the
4 design and in manuscript preparation.

5

6

7

8

9 [1] Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz
10 WH. The disease burden associated with overweight and obesity.
11 JAMA 1999; 282: 1523 - 1529.

12

13 [2] U.S. Department of Health and Human Services. Physical
14 Activity and Health: A report of the Surgeon General. Atlanta,
15 Ga: U.S. Department of Health and Human Services, Centers for
16 Disease Control and Prevention, National Center for Chronic
17 Disease Prevention and Health Promotion, 1996

18

19 [3] Miller WC. Introduction: obesity: diet composition, energy
20 expenditure, and the treatment of the obese patient. Med Sci
21 Sports Exerc 1991; 23: 273-274.

22

23 [4] Roberts SB. Energy requirements of older individuals. Eur J
24 Clin Nutr. 1996;50 Suppl 1:S112-7.

25

1 [5] Roberts SB, Leibel RL. Excess energy intake and low energy
2 expenditure as predictors of obesity. Int J Obes Relat Metab
3 Disord. 1998;22:385-6.

4

5 [6] Institute of Medicine. Dietary Reference Intakes for Energy,
6 Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and
7 Amino Acids (Macronutrients). The National Academies Press.
8 Washington DC. 2002 936 pages

9

10 [7] Erlichman J, Kerbey AL, James WP. Physical activity and its
11 impact on health outcomes. Paper 2: Prevention of unhealthy
12 weight gain and obesity by physical activity: an analysis of the
13 evidence. Obes Rev. 2002;3:273-87.

14

15 [8] Williams PT. Evidence for the incompatibility of age-
16 neutral overweight and age-neutral physical activity standards
17 from runners. American Journal of Clinical Nutrition 1997;
18 65:1391-6

19

20 [9] Westerterp KR, Goran MI. Relationship between physical
21 activity related energy expenditure and body composition: a
22 gender difference. International Journal of Obesity.1997;21: 184-
23 188

24

25 [10] Bhambhani Y, Singh M Metabolic and cinematographic analysis
26 of walking and running in men and women. Med Sci Sports Exerc
27 1985;17:131-7

1

2 [11] Tremblay A, Despres JP, Leblanc C, Bouchard C. Sex

3 dimorphism in fat loss in response to exercise-training. *J Obes*

4 *Weight Regul* 1984; 3: 193-203.

5

6 [12] Williams PT. Relationship of distance run per week to

7 coronary heart disease risk factors in 8,283 male runners. *The*

8 *National Runners' Health Study*. *Arch Intern Med* 1997;157:191-

9 198.

10

11 [13] ACSM's guidelines for exercise testing and prescription.

12 5th edition Williams and Wilkins 1995, p278

13

14 [14] Stefanick ML. Exercise and weight control. *Exerc Sport Sci*

15 *Rev* 1993; 21: 363-396.

16

17 [15] DiPietro L. Physical activity, body weight, and adiposity:

18 an epidemiologic perspective. *Exerc Sport Sci Rev* 1995; 23: 275-

19 303.

20

21 [16] American College of Sports Medicine. Appropriate

22 Intervention Strategies for Weight Loss and Prevention of Weight

23 Regain for Adults. *Med Sci Sports Exercise*. 2001 :2145-2156.

24

25 [17] Schoeller DA, Shay K, Kushner RF. How much physical activity

26 is needed to minimize weight gain in previously obese women? *Am J*

27 *Clin Nutr* 1997; 66: 551-556.

1

2 [18] Saris WH, Blair SN, van Baak MA, Eaton SB, Davies PS, Di

3 Pietro L, Fogelholm M, Rissanen A, Schoeller D, Swinburn B,

4 Tremblay A, Westerterp KR, Wyatt How much physical activity is

5 enough to prevent unhealthy weight gain? Outcome of the IASO 1st

6 Stock Conference and consensus statement. *Obes Rev.* 2003;4:101-

7 14.

8

9 [19] Fogelholm M, Kukkonen-Harjula K. Does physical activity

10 prevent weight gain--a systematic review. *Obes Rev.* 2000;1:95-

11 111.

12

13 [20] Ching PLYH, Willett WC, Rimm EB, Colditz GA, Gortmaker SL,

14 Stampfer MJ. Activity level and risk of overweight in male health

15 professionals. *Am J Public Health* 1996; 86: 25-30.

16

17 [21] Voorrips LE, Meijers JHH, Sol P, Seidell JC, van Staveren

18 WA. History of body weight and physical activity of elderly women

19 differing in current physical activity. *Int J Obes* 1992; 16: 199-

20 205.

21

22 [22] DiPietro L, Kohl HW 3rd, Barlow CE, Blair SN. Improvements

23 in cardiorespiratory fitness attenuate age-related weight gain in

24 healthy men and women: the Aerobics Center Longitudinal Study.

25 *Int J Obes Relat Metab Disord.* 1998;22:55-62.

26

1 [23] NHLBI/NIDDK (National Heart, Lung, and Blood Institute/
2 National Institute of Diabetes and Digestive and Kidney
3 Diseases). 1998. Clinical Guidelines on the Identification,
4 Evaluation and Treatment of Overweight and Obesity in Adults.
5 The Evidence Report. NIH Publication No. 98-4083. Bethesda, MD:
6 National Institutes of Health.

7

8 [24] Black AE, Coward WA, Cole TJ, Prentice AM. Human energy
9 expenditure in affluent societies: an analysis of 574 doubly
10 labelled water measurements. Eur J Clin Nutr 1996; 50: 72-92.

11

12 [25] Howley ET, Glover ME The caloric costs of running and
13 walking one mile for men and women. Med Sci Sports 1974;6:235-7

14

15 [26] Westerterp KR, Meijer GAL, Janssen EME, Saris WHN, ten Hoor
16 F. Long term effect of physical activity on energy balance and
17 body composition. Br J Nutr 1992; 68: 21-30.

18

19 [27] Egger G, Bolton A, O'Neill M, Freeman D. Effectiveness of
20 an abdominal obesity reduction programme in men: the GutBuster
21 "waist loss" programme. Int J Obes Relat Metab Disord.
22 1996;20:227-31.

23

24 [28] Willett WC, Manson JE, Stampfer MJ, Colditz GA, Rosner B,
25 Speizer FE, Hennekens CH. Weight, weight change, and coronary
26 heart disease in women. Risk with the 'normal' weight range JAMA
27 1995; 273: 461-465.

1

2 [29] Wannamethee SG, Shaper AG, Walker M. Weight change, weight

3 fluctuation, and mortality. *Arch Intern Med.* 2002;162:2575-80.

4

5 [30] Jeffreys M, McCarron P, Gunnell D, McEwen J, Smith GD. Body

6 mass index in early and mid-adulthood, and subsequent mortality:

7 a historical cohort study. *Int J Obes Relat Metab Disord.*

8 2003;27:1391-7.

9

10 [31] Yarnell JW, Patterson CC, Thomas HF, Sweetnam PM.

11 Comparison of weight in middle age, weight at 18 years, and

12 weight change between, in predicting subsequent 14 year mortality

13 and coronary events: Caerphilly Prospective Study. *J Epidemiol*

14 *Community Health.* 2000;54:344-8.

15

16 [32] Singh PN, Haddad E, Knutsen SF, Fraser GE. The effect of

17 menopause on the relation between weight gain and mortality among

18 women. *Menopause.* 2001;8:314-20.

19

20 [33] Strandberg TE, Strandberg A, Salomaa VV, Pitkala K,

21 Miettinen TA. Impact of midlife weight change on mortality and

22 quality of life in old age. Prospective cohort study. *Int J Obes*

23 *Relat Metab Disord.* 2003;27:950-4.

24

25 [34] Lee CD, Blair SN, Jackson AS. Cardiorespiratory fitness,

26 body composition, and all-cause and cardiovascular disease

27 mortality in men. *Am J Clin Nutr.* 1999;69:373-80

1

2 [35] Bingham SA, Gill C, Welch A, Day K, Cassidy A, Khaw KT,
3 Sneyd MJ, Key TJ, Roe L, Day NE. Comparison of dietary assessment
4 methods in nutritional epidemiology: weighed records v. 24 h
5 recalls, food-frequency questionnaires and estimated-diet
6 records. *Br J Nutr.* 1994;72:619-43.

7

8 [36] Blundell JE, King NA. Effects of exercise on appetite
9 control: loose coupling between energy expenditure and energy
10 intake. *Int J Obes Relat Metab Disord.* 1998;22 Suppl 2:S22-9.

11

12 [37] Ravussin E, Lillioja S, Anderson TE, Christin L, Bogardus C.
13 Determinants of 24-hour energy expenditure in man. Methods and
14 results using a respiratory chamber. *J Clin Invest.* 1986
15 Dec;78:1568-78.

16

Table 1. Annual change in men's adiposity [mean (SE)] by reported running distance

Weekly km run, 1 st visit	Weekly km run on 2nd visit					<i>Trend across columns within row, P</i>
	0-16	16-32	32-48	48-64	≥64	
BMI						
>64	0.23 (0.06)§	0.26 (0.04)§	0.19 (0.02)§	0.13 (0.02)§	0.06 (0.01)§	<i>P</i> <0.0001
48-64	0.33 (0.07)§	0.23 (0.03)§	0.14 (0.01)§	0.06 (0.01)§	0.02 (0.02)	<i>P</i> <0.0001
32-48	0.29 (0.03)§	0.15 (0.01)§	0.07 (0.01)§	0.01 (0.02)	-0.06 (0.04)	<i>P</i> <0.0001
16-32	0.19 (0.02)§	0.09 (0.01)§	0.05 (0.01)§	-0.06 (0.03)*	-0.02 (0.06)	<i>P</i> <0.0001
0-16	0.09 (0.02)§	0.03 (0.02)	-0.01 (0.04)	-0.15 (0.08)	-0.44 (0.47)	<i>P</i> <0.0001
<i>Trend across rows within column, P</i>	<i>P</i> <0.0001	<i>P</i> <0.0001	<i>P</i> <0.0001	<i>P</i> <0.0001	<i>P</i> <0.0001	
Δ%weight						
>64	1.03 (0.25)§	1.15 (0.19)§	0.84 (0.10)§	0.58 (0.07)§	0.28 (0.05)§	<i>P</i> <0.0001
48-64	1.36 (0.30)§	1.02 (0.11)§	0.63 (0.05)§	0.29 (0.05)§	0.11 (0.09)	<i>P</i> <0.0001
32-48	1.23 (0.12)§	0.66 (0.05)§	0.32 (0.03)§	0.05 (0.07)	-0.24 (0.18)	<i>P</i> <0.0001
16-32	0.79 (0.06)§	0.39 (0.03)§	0.21 (0.05)§	-0.23 (0.10)*	-0.09 (0.25)	<i>P</i> <0.0001
0-16	0.38 (0.07)§	0.14 (0.09)	-0.05 (0.15)	-0.51 (0.28)	-1.22 (1.46)	<i>P</i> <0.0001
<i>Trend across rows within column,</i>	<i>P</i> <0.0001	<i>P</i> <0.0001	<i>P</i> <0.0001	<i>P</i> <0.0001	<i>P</i> <0.0001	
Waist circumference						
>64	0.66 (0.22)†	0.63 (0.12)§	0.35 (0.08)§	0.27 (0.05)§	0.09 (0.04)*	<i>P</i> <0.0001
48-64	0.67 (0.21)‡	0.42 (0.09)§	0.34 (0.04)§	0.21 (0.04)§	0.17 (0.07)†	<i>P</i> <0.0001
32-48	0.57 (0.12)§	0.34 (0.04)§	0.18 (0.03)§	0.13 (0.06)*	0.00 (0.11)	<i>P</i> <0.0001
16-32	0.48 (0.05)§	0.24 (0.03)§	0.11 (0.05)*	0.12 (0.08)	-0.39 (0.32)	<i>P</i> <0.0001
0-16	0.17 (0.07)*	0.06 (0.08)	0.10 (0.10)	-0.08 (0.33)	-1.29 (0.96)	<i>P</i> =0.007

<i>Trend across rows within column,</i>	<i>P<0.0001</i>	<i>P<0.0001</i>	<i>P<0.0001</i>	<i>P=0.001</i>	<i>P<0.0001</i>	
---	--------------------	--------------------	--------------------	----------------	--------------------	--

Significantly different from zero for cells are coded * $P<0.05$; † $P<0.01$; ‡ $P<0.001$; § $P<0.0001$.

Significance levels presented on the bottom of each column and ends of each row test whether changes in adiposity were significantly related to changes in running distance (as continuous variables) when stratified by starting (rows) and ending (columns) running distances.”

1
2

Table 2. Annual change in women's adiposity [mean (SE)] by reported running distance

Weekly km run, 1 st visit	Weekly km run on 2nd visit				<i>Trend across columns within row, P</i>
	0-16	16-32	32-48	≥48	
BMI					
≥48	0.18 (0.05)§	0.15 (0.03)§	0.12 (0.02)§	0.04 (0.01)§	<i>P</i> <0.0001
32-48	0.30 (0.07)§	0.12 (0.02)§	0.09 (0.01)§	0.03 (0.02)	<i>P</i> <0.0001
16-32	0.23 (0.03)§	0.11 (0.01)§	0.05 (0.02)†	-0.01 (0.04)	<i>P</i> <0.0001
0-16	0.16 (0.03)§	0.06 (0.04)	-0.01 (0.06)	0.01 (0.04)	<i>P</i> =0.003
<i>Trend across rows within column, P</i>	<i>P</i> <0.0001	<i>P</i> <0.0001	<i>P</i> <0.0001	<i>P</i> =0.02	
Δ%weight					
≥48	0.84 (0.22)§	0.75 (0.15)§	0.61 (0.08)§	0.21 (0.05)§	<i>P</i> <0.0001
32-48	1.48 (0.33)§	0.58 (0.08)§	0.43 (0.06)§	0.19 (0.10)*	<i>P</i> <0.0001
16-32	1.04 (0.12)§	0.51 (0.05)§	0.23 (0.08)†	0.00 (0.17)	<i>P</i> <0.0001
0-16	0.74 (0.11)§	0.32 (0.15)*	-0.01 (0.26)	0.10 (0.20)	<i>P</i> <0.003
<i>Trend across rows within column, P</i>	<i>P</i> <0.0001	<i>P</i> <0.0001	<i>P</i> <0.0001	<i>P</i> =0.03	
Waist circumference					
≥48	0.33 (0.19)	0.43 (0.12)‡	0.41 (0.09)§	0.21 (0.06)‡	<i>P</i> =0.01
32-48	0.93 (0.24)§	0.41 (0.10)§	0.26 (0.07)§	0.08 (0.11)	<i>P</i> <0.0001
16-32	0.50 (0.13)§	0.41 (0.06)§	0.33 (0.10)‡	0.08 (0.18)	<i>P</i> =0.02
0-16	0.44 (0.15)†	0.43 (0.19)*	-0.38 (0.28)	-0.16 (0.55)	<i>P</i> =0.006
<i>Trend across rows within column, P</i>	<i>P</i> =0.005	<i>P</i> =0.08	<i>P</i> =0.003	<i>P</i> =0.21	
Significantly different from zero for cells are coded * <i>P</i> <0.05; † <i>P</i> <0.01; ‡ <i>P</i> <0.001; § <i>P</i> <0.0001. Significance levels presented on the bottom of each column and ends of each row test whether changes in adiposity were significantly related to changes in running distance (as continuous variables) when stratified by starting (rows) and ending (columns) running distances."					

Table 3. Annual increases [mean (SE)] in adiposity in vigorously active men and women

	Male runners			Female runners		
	Δ BMI [kg/m ²]	Body weight [% Δ kg]	Waist cir- cumference [cm]	Δ BMI [kg/m ²]	Body weight [% Δ kg]	Waist cir- cumference [cm]
18-24	0.17 (0.03)§	0.83 (0.14)§	0.26 (0.13)§	0.06 (0.03)*	0.39 (0.13)†	0.07 (0.16)
25-29	0.02 (0.03)	0.10 (0.12)	0.24 (0.10)§	0.06 (0.02)†	0.28 (0.10)†	0.01 (0.11)
30-34	0.11 (0.02)§	0.48 (0.07)§	0.29 (0.06)§	0.03 (0.02)	0.14 (0.07)*	0.47 (0.08)§
35-39	0.09 (0.01)§	0.38 (0.05)§	0.20 (0.04)§	0.07 (0.01)§	0.33 (0.06)§	0.23 (0.07)‡
40-44	0.09 (0.01)§	0.41 (0.04)§	0.23 (0.03)§	0.09 (0.01)§	0.41 (0.06)§	0.24 (0.07)‡
45-49	0.08 (0.01)§	0.36 (0.04)§	0.20 (0.03)§	0.05 (0.01)‡	0.24 (0.07)‡	0.30 (0.08)§
50-54	0.04 (0.01)§	0.19 (0.04)§	0.17 (0.03)§	0.04 (0.02)*	0.19 (0.08)*	0.13 (0.09)
55-59	0.05 (0.01)§	0.21 (0.05)§	0.17 (0.04)§	0.08 (0.02)‡	0.37 (0.11)‡	0.49 (0.13)§
60-75	0.00 (0.01)	0.01 (0.04)	0.15 (0.03)§	0.01 (0.02)	0.03 (0.10)	0.34 (0.12)†

Significance levels coded: * P<0.05; † P<0.01; ‡ P<0.001; § P<0.0001

1
2 Figure 1. Mean changes (\pm SE represented by bars) in BMI, %body
3 weight, and waist circumference by change in weekly running
4 distance in male and female runners after adjustment for •age and
5 mean age. Significance levels are coded * $P<0.05$; † $P<0.01$; ‡
6 $P<0.001$; § $P<0.0001$. The trend for an inverse relationship
7 between •km/wk and changes in BMI, •%body weight, and waist
8 circumference were all significant at $P<0.0001$.

9 Figure 2. Change in BMI, %body weight, and waist circumference
10 per •km/wk in male runners by the number of years run at 12 or
11 more miles per week. Significance levels are coded * $P<0.05$; †
12 $P<0.01$; ‡ $P<0.001$; § $P<0.0001$. The trend for an inverse
13 relationship between the slopes and the number of years run were
14 all significant at $P<0.0001$.

15 Figure 3. Change in BMI, and waist circumference per •km/wk in
16 male runners by the their percentage below greatest lifetime
17 weight on the first survey. Slopes all significantly different
18 from zero at $P<0.0001$.

19 Figure 4. Annual increase in BMI, •%body weight, and waist
20 circumference. in men and women who remained within ± 8 km/km of
21 their baseline running distance by average running distance.
22 Bars represent \pm one SE. Significance levels are coded * $P<0.05$;
23 † $P<0.01$; ‡ $P<0.001$; § $P<0.0001$.

24

1

2

3