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ABSTRACT 

Advanced electric power generation systems use a coal gasifier to convert coal to a gas 

rich in fuels such as H2 and CO.  The gas stream contains impurities such as H2S and HCl, which 

attack metal components of the coal gas train, causing plant downtime and increasing the cost of 

power generation.  Corrosion-resistant coatings would improve plant availability and decrease 

maintenance costs, thus allowing the environmentally superior integrated-gasification-combined- 

cycle (IGCC) plants to be more competitive with standard power-generation technologies.   

Heat-exchangers, particle filters, turbines, and other components in the IGCC system 

must withstand the highly sulfiding conditions of the high-temperature coal gas over an extended 

period of time.  The performance of components degrades significantly with time unless 

expensive high alloy materials are used.  Deposition of a suitable coating on a low cost alloy will 

improve is resistance to such sulfidation attack and decrease capital and operating costs.  The 

alloys used in the gasifier service include austenitic and ferritic stainless steels, nickel-

chromium-iron alloys, and expensive nickel-cobalt alloys. The Fe- and Ni-based high-

temperature alloys are susceptible to sulfidation attack unless they are fortified with high levels 

of Cr, Al, and Si.  To impart corrosion resistance, these elements need not be in the bulk of the 

alloy and need only be present at the surface layers. 

In this study, the use of corrosion-resistant coatings on low alloy steels was investigated 

for use as high-temperature components in IGCC systems.  The coatings were deposited using 

SRI’s fluidized-bed reactor chemical vapor deposition technique.  Diffusion coatings of Cr and 

Al were deposited by this method on to dense and porous, low alloy stainless steel substrates.  

Bench-scale exposure tests at 900°C with a simulated coal gas stream containing 1.7% H2S 

showed that the low alloy steels such SS405 and SS409 coated with ~20%Cr and Al each can be 

resistant to sulfidation attack for 500 h.  However, exposure to an actual coal gasifier gas stream 

at the Wabash River gasifier facility for 1000 h in the temperature range 900° to 950°C indicated 

that Cr and Al present in the coating diffused further into the substrate decreasing the protective 

ability of these elements against attack by H2S. 

Similarly, adherent multilayer coatings containing Si, Ti, Al, and Nb were also deposited 

with subsequent nitridation of these elements to increase the corrosion resistance.  Both dense 

and porous SS409 or SS 410 alloy substrates were coated by using this method.  Multilayer 

coatings containing Ti-Al-Si nitrides along with a diffusion barrier of Nb were deposited on 

SS410 and they were found also to be resistant to sulfidation attack in the bench scale tests at 
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900°C.  However, they were corroded during exposure to the actual coal gasifier stream at the 

Wabash River gasifier facility for 1000 h. 

The Cr/Al coatings deposited inside a porous substrate was found to be resistant to 

sulfidation attack in the bench-scale simulated tests at 370°C.  The long-term exposure test at the 

Wabash River gasifier facility at 370°C for 2100 h showed that only a minor sulfidation attack 

occurred inside the porous SS 409 alloy coupons that contained Cr and Al diffusion coatings.  

This attack can be prevented by improving the coating process to deposit uniform coatings at the 

interior of the porous structure. 

It is recommended that additional studies be initiated to optimize the FBR-CVD process 

to deposit diffusion coatings of the corrosion resistant elements such as Cr, Al, and Ti inside 

porous metal filters to increase their corrosion resistance.  Long-term exposure tests using an 

actual gas stream from an operating gasifier need to be conducted to determine the suitability of 

the coatings for use in the gasifier environment. 
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EXECUTIVE SUMMARY  

Advanced coal gasification systems such as integrated coal gasification combined cycle 

(IGCC) processes offer many advantages over conventional pulverized coal combustors.  Heat-

exchangers, particulate ash filters, turbines, and other components in coal-fired power plants are 

often must withstand demanding conditions of high temperatures and pressure differentials.  

These components are exposed to corrosive gases and particulates that can erode the material and 

degrade their performance.  In this study, the use of corrosion-resistant coatings was investigated 

for high-temperature components in IGCC systems.  The coatings were deposited using SRI’s 

fluidized-bed reactor chemical vapor deposition technique.  The coated samples were exposed to 

a simulated coal gas stream containing 1.7% H2S for periods up to 500 h at SRI.  Coatings that 

survived these exposure tests were exposed to an operating gasifier gas stream at the 

Conoco/Phillips SG Solution’s Wabash River Gasifier in Terra Haute, IN for ~2500 h.  

Successful coatings were developed that survived the gasifier exposure at 370°C and these 

coatings are useful for particulate filter material applications. 

To help select the appropriate substrate and coating materials appropriate for a coal 

gasifier, a brief review was conducted of the different environments that the components may be 

exposed to, the alloy materials that are commonly used, and the coating technologies.  Coal is a 

complex and heterogeneous substance that contains several impurities including sulfur, chlorine, 

nitrogen, and metal compounds.  During gasification many of these impurities are converted to 

gaseous species such as H2S, HCl, and NH3.  If coatings are to be used to provide corrosion 

resistance, their chemical composition must be chosen appropriately to protect the components 

under gasifier conditions.  Although the actual gas composition depends on the gasifier design 

and the type of coal that is being used, it generally has a low p(O2) and a high p(S2), that is 

highly sulfiding in nature.  Such a corrosive atmosphere at elevated pressures and temperatures 

require development of novel coating techniques to impart adequate corrosion resistance. 

The selection of the substrate material is generally governed by the service temperature, 

stresses that the structures are likely to experience, erosion and corrosion resistance, and cost.  

For high-temperature applications, the components tend to be made of high-alloy steels that 

contain Fe, Cr, Ni, Co, and other elements that provide sufficient mechanical strength at the 

temperature of operation.  The results described in the published literature indicate that many 

ferrous alloys suffered breakaway corrosion in coal gasification atmospheres.  High nickel alloys 

are more susceptible to sulfidation attack due to formation of Ni-Ni3S2 eutectic that melts at 

635°C.  Increasing Cr content to levels greater than 25 wt% in Fe-Cr-Ni alloys is generally 

effective against sulfidation corrosion.  Addition of Al and Co appears to improve the sulfidation 
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resistance.  Other beneficial elements include Ti and Si.  The formation of a stable barrier 

containing Al2O3, Cr2O3, SiO2, or TiO2 is partly responsible for increased corrosion resistance.  

However, such high alloy steels are hard to fabricate and expensive.  To impart sulfidation 

corrosion resistance, these elements need not be in the bulk of the alloy and need only be present 

at the surface layers. 

The need for corrosion resistant coatings exists in many areas of the gasifier train.  

Examples of the components where the coatings are useful are:  (1) the tube sheet of a heat 

exchanger at ~900°C that is immediately downstream of the gasifier and (2) porous metal 

particulate filters at 370°C, which is downstream of the heat exchanger.  These components 

operate at gas streams containing about 2% H2S.  Although the specifications of the material 

components used in the gasifier system are proprietary, alloys used in the gasifier service include 

nickel-based alloys such as Incoloy 800, and nickel-cobalt alloys such as HR160.  A protective 

metal or ceramic coating on a low alloy steel that can resist sulfidation corrosion will reduce the 

capital cost of the components, extend the lifetime and reduce maintenance costs. 

A fluidized-bed chemical vapor deposition (FBR-CVD) technique was developed at SRI 

to coat several metal and ceramic compositions on powders, tubes, and sheets.  This technique is 

more rapid than pack cementation used for chromizing and aluminizing metal parts.  It is 

relatively low in cost in comparison with conventional chemical vapor deposition technique as 

the precursors are generated in the fluidized bed reactor.  Because of excellent mass and heat 

transfer characteristics of the fluidized bed, the rate of coating is rapid.  The technique can be 

used to coat complex shapes because the chemical vapor deposition technique is not limited to 

line-of-sight.  

A test reactor was designed and installed to expose about 20 different coupons to 

simulated gasifier environment at high temperatures.  In this reactor about 20 coated and 

uncoated coupons can be exposed at 900°C to a simulated coal gas mixture containing 26% H2, 

39% CO, 17% CO2, 17% H2O, and 1.7% H2S at 900°C for extended periods of time, as long as a 

month.  After the exposure period, the external and fractured internal surfaces of the samples 

were examined by scanning electron microscopy.  Electron-induced X-ray analysis was used to 

determine the elemental composition of these surfaces. 

Initially, several pure metals and some common alloys were exposed to the simulated 

coal gas stream at 900°C for about 112 h.  The results of this test indicated that noble metals 

such as Au and Pt did not suffer any observable degradation.  Highly reactive metals such as Ti, 

Zr, Cr, and V were converted mainly to their oxides.  Similarly, Ta and Nb are mainly converted 

to their oxides, although a small amount of oxysulfides may have formed.  The surface of the 
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base metals such as Co, Fe, Ni, and Mo were converted mainly to their sulfides.  Under the test 

conditions, uncoated austenitic (SS304, SS316 and IN800 alloys), and ferritic stainless steel 

alloy (SS405, SS409, and SS410) coupons were badly corroded.  The alloy Kanthal containing 

Cr and Al had negligibly small weight change and very low sulfur levels, indicating that Cr2O3 

and Al2O3 form protective layers.  At high levels of H2S (8% v/v) in the simulated coal gas, even 

high alloys steels such as HR 160 were attacked.  These results are in general agreement with the 

thermodynamic equilibrium analysis. 

Several ferritic and austenitic stainless steel coupons were coated with Cr and Al by the 

FBR-CVD technique.  Surface Cr levels as high as 60 wt% were achieved in these coatings on 

ferritic alloy substrates such as 405 steel. Similarly, Al levels as high as of 22 wt% were 

deposited.  Although these high levels of both Cr and Al were not present simultaneously, a 

limited number of SS409 alloy coupons were coated with 20 wt% Cr and Al each.  Many 

coupons coated with different compositions of Cr and Al were exposed to the simulated coal gas 

stream at 900°C for periods up to 500 h.  Some of the coupons that had diffusion coatings of 

~22% Cr and Al each showed less than 0.05 wt% mass change during the exposure tests 

indicating very little sulfidation. 

In addition to the Cr and Al diffusion coatings, coatings containing Ti, Ta, Si Nb, or W 

were deposited on the SS405 and SS409 alloy coupons by the FBR-CVD technique.  After 

deposition of some of these metals, the surface of the coatings was converted to their 

corresponding nitrides.  The presence of nitrides was expected to increase the sulfidation 

resistance and it was confirmed by the simulated coal exposure test at 900°C for 300 h. 

To simulate the particulate filters used in a gasifier, porous stainless steel coupons made 

from SS409 alloy powder were fabricated and coated with Cr/Al or Ti-Ta-Si nitride coatings.  

These porous coupons were exposed to the simulated coal gas composition at 370°C.  The 

coupons coated with Cr/Al were attacked by the H2S present in the gas due to non-uniform 

coating of these protective metals at the interior of the porous coupons.  However, porous 

coupons coated with nitrides of Ti and Al showed very little degradation after 300 h at 370°C 

indicating that protective coatings can be applied to the interior of the porous metal samples by 

the FBR-CVD technique. 

Long-term exposure tests were conducted at the Wabash River Gasifier facility.  

Although coatings containing Cr/Al survived the simulated gasifier stream test at the laboratory 

for more than 300 h, the coupons exposed to the actual gasifier stream at 900° to 950°C for more 

than 1000 h suffered extensive degradation.  The difference between tests with simulated and 

actual gasifier conditions may be due to (1) increased length of duration and (2) higher 



4 

temperature at the actual gasifier, and presence of other contaminants.  Under these conditions, 

the Cr and Al surface coatings may have diffused into the bulk of the coupons thereby decreasing 

their enhancement at the surface.  Such depletion would have reduced the resistance to attack by 

H2S and allowed iron sulfide formation.   

Exposure test at the Wabash River gasifier facility at 370°C for 2100 h showed that only 

a minor sulfidation attack occurred inside the porous SS 409 alloy coupons that contained Cr and 

Al diffusion coatings.  This attack can be prevented by improving the coating process to deposit 

uniform coatings at the interior of the porous structure.  The coupons coated with the multilayer 

nitride coatings were attacked by H2S in this long-term test. These results indicate that the 

diffusion coatings of Cr/Al onto low cost substrates such as SS409 stainless steel can provide 

adequate sulfidation resistance at 370°C. 

It is recommended that additional studies be initiated to optimize the FBR-CVD process 

to deposit diffusion coatings of the corrosion resistant elements such as Cr, Al, and Ti inside 

porous metal filters to increase their corrosion resistance.  Long-term exposure tests using an 

actual gas stream from an operating gasifier need to be conducted to determine the suitability of 

the coatings for use in the gasifier environment. 
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INTRODUCTION 

The objective of this program was to develop corrosion-resistant coatings for components 

that are exposed to gas streams at high temperatures and pressures typical of advanced coal 

gasifiers. Development of low-cost corrosion-resistant components will minimize maintenance 

and replacement costs and increase plant availability, which will in turn result in an overall 

decrease in the cost of power generation from coal in the environmentally superior gasification 

process, and in less reliance on foreign oil.  

Advanced coal gasification systems such as integrated coal gasification combined cycle 

(IGCC) processes offer many advantages over conventional pulverized coal combustors. IGCC 

systems have high energy-conversion efficiencies, reduced pollutant emissions, modular 

construction, and potentially low capital and operating costs. The gasification process allows the 

contaminants to be removed in their reactive state. The volume of a coal gas stream is 

significantly less than that of a combustor flue gas stream in a plant of comparable size; hence, 

capital and operating costs for contaminant removal are low. Fixed-, fluidized-, and entrained-

bed reactors have been developed and tested for coal gasification. 

The current program is a collaborative effort between SRI International and SG 

Solutions, a subsidiary of ConocoPhillips. A significant aspect of the proposed program is to test 

the coatings, both at SRI in Menlo Park, CA, using simulated coal gas for determining the 

performance at various temperatures, and in an actual coal gas stream at SG Solutions’ facility, 

the Wabash River Energy Laboratory (WREL), in Terre Haute, IN.   

Heat-exchangers, filters, turbines, and other components in coal-fired power plants must 

withstand demanding conditions of high temperatures and pressure differentials. Furthermore, 

the components are exposed to corrosive gases and particulates that can erode the material and 

degrade their performance. As an example, corrosion occurs in the tube-sheet of the high-

temperature heat recovery unit of a coal gasification power plant. This corrosion is the leading 

cause of unscheduled downtime in some plants, and development of corrosion-resistant coatings 

will directly impact the plant availability and its operating costs. Coatings that are successfully 

developed for this application may find use in similar situations in other areas of coal-fired 

power plants.  

The Fe- and Ni-based high-temperature alloys that are used in gasifier trains are 

susceptible to sulfidation attack unless they are fortified with high levels of Cr, Al, and Si. To 

impart corrosion resistance, these elements need not be in the bulk of the alloy and need only be 

present at the surface layers. This study addressed development of coatings for two areas in the 



6 

gasifier train: (1) heat exchanger, which is a separate chamber immediately downstream of the 

gasifier, and (2) porous metal filter, which is downstream of the heat exchanger. The specific 

conditions of these areas are discussed below:  

1. The heat recovery unit consists of single-pass tubes in shell design (Figure 1). 
The hot gases pass through the tubes, and the steam is in the shell. Hot gases 
enter the exchanger from top at 1800-1900°F (982° to 1038°C) and 400 psig 
and contain between 1.0 and 1.5% H2S. Most of the gas is steam, CO, H2, and 
CO2. Ash and other particulate matter are also present. They exit from the 
bottom at 700°F (370°C), with no significant drop in pressure or change in 
composition. Condensate water is injected near the bottom, and steam at 1500 
psig (saturated at about 600°F or 315°C) exits near the top. The tube sheets 
have to withstand about 1100 psi of pressure differential at about 1900°F 
(1000°C). The upper tube sheet is where most of the material problems occur.  

 

 

 

 

Figure 1. Schematic of high-temperature heat-recovery unit (HTHRU) at WREL. 

2. A porous metal filter is used to trap the char and fly ash particulates in the coal 
gas stream. The metal is exposed to the gas stream exiting from the heat 
exchanger at 700°F (370°C). No significant pressure differential exists between 
the inlet and the outlet of the filter, but the material must stand up to the 
corrosion caused by H2S. A protective metal or ceramic coating on the porous 
metal surfaces that can resist sulfidation corrosion without blocking the pores 
will extend the lifetime of the metal filters. 

Steam 
Condensate 

High temperature steam 
1500 psi/600°F 

Input Gas 
400 psig/1900°F 

Output Gas (700°F) 



7 

Although the specifications of the material components used in the gasifier system are 

proprietary, alloys used in the gasifier service include austenitic stainless steels such as 304 

alloy, ferritic stainless steels such as 405 and 410 alloys, nickel-based alloys such as Incoloy 800, 

and nickel-cobalt alloys such as HR160. 

In this study, we performed several tasks. First, we reviewed available information and 

selected several coating compositions that are suitable for service in the coal gasifier 

environment. Selected formulations were coated on steel coupons using a fluidized-bed reactor 

chemical vapor deposition (FBR-CVD) approach. Coated and uncoated specimens were exposed 

to a simulated coal gas stream containing about 1.7% H2S at 370° and 900°C for several hundred 

hours. Samples coated with several suitable compositions were also exposed for several thousand 

hours to a gas stream in an operating coal gasifier. Upon completion of the test period, the 

specimens were examined using a variety of techniques including optical and scanning electron 

microscopy, X-ray fluorescence, and X-ray diffraction to identify composition, phase, and 

morphological changes.  

The FBR-CVD approach developed at SRI is a technique to coat several metal and 

ceramic compositions on powders, tubes, and sheets. This technique is more rapid than pack 

cementation used for chromizing and aluminizing metal parts. It is relatively low in cost 

compared with the conventional CVD technique because the precursors are generated in the 

fluidized bed reactor. Because of excellent mass and heat transfer characteristics of the fluidized 

bed, the rate of coating can be rapid. The technique is not limited to line-of-sight. The technique 

allows (1) both internal and external surfaces to be coated, (2) diffusion bonding to the substrate, 

(3) formation of a dense layer on the surface and increased corrosion protection of the substrate, 

and (4) requires a relatively low temperature (500° to 800°C) during the coating process and a 

short period of time (< 2 h), resulting in minimal changes in mechanical and physical properties. 

A significant advantage of the FBR-CVD technology is the ability to deposit more than one 

element or their compounds simultaneously or sequentially on metal surfaces. This feature 

allows the composition to vary across the coating thickness, if necessary, to maximize the 

desired functional characteristics.  
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LITERATURE REVIEW 

DEGRADATION OF MATERIALS IN COAL GASIFICATION SYSTEMS  

Coal is a complex and heterogeneous substance that contains several impurities including 

sulfur, chlorine, nitrogen, and metal compounds. During gasification many of these impurities 

are converted to gaseous species such as H2S, HCl, and NH3. The gas streams from fixed-, 

fluidized-, and entrained-bed coal gasifiers have different compositions and temperatures 

(Table 1).  

Table 1. Characteristics of gas streams from various coal gasifiers 

System Characteristics 
 

Fixed-Bed 
Gasification 

Fluidized-Bed 
Gasification 

  
Entrained-Bed 

Gasification 

Typical Process  Lurgi KRW  Texaco 
      
Exit Temperature (°C)  450-600 700-1000  1300 
Pressure (psig)  300 300  450 
      
Gas Composition(%)      

CH4  4.28 4.5  0.3 
C2H4  0.13 <0.01  <0.01 
C2H6  0.20 <0.01  <0.01 
H2  20.92 30.0  29.8 
CO  7.49 45.0  41.0 
CO2  15.28 9.0  10.2 
H2S  0.6-1.1 1.1  1.0 
COS  0.03-0.06 0.1  0.1 
N2/Ar  0.18 0.8  0.8 
NH3  0.4 0.2  0.2 
H2O  50.5 9.5  17.1 

Particulate Loading (ppm)  1000-2000 1000-10,000  4000 
      

The extent to which the materials undergo corrosion is influenced by the prevailing 

chemistry, temperature, and other parameters. In coal gasification systems, the coal is gasified at 

high temperatures by reaction of controlled levels of oxygen and steam with coal, and the 

resulting gaseous environment is reducing in nature. In contrast, the gaseous environment in coal 

combustors is oxidizing in nature. For example, the sulfur in coal is converted to SO2 in a coal 

combustor and to H2S in a coal gasifier. In general, H2S is more reactive than SO2. When H2S is 

present at high levels under reducing conditions, the exposed metal surfaces can be converted 

into corresponding sulfides. The sulfides do not form protective coatings and the metal 

underneath the sulfide layer continues to be attacked. 
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Coating compositions must therefore be chosen appropriately to provide proper 

protection. Although the actual gas composition depends on the gasifier design and the type of 

coal that is being used, it generally has a low partial pressure of oxygen, p(O2), and a high partial 

pressure of sulfur, p(S2). The gas, using a typical coal from an O2-blown gasifier such as the one 

operating at WREL, may contain 28% H2, 36% CO, 13% CO2, 15% H2O, 1% CH4, 2% Ar and 

N2 and up to about 2% H2S. The p(O2) and p(S2) in this gas are about 10-15 atm and up to 10-4 

atm, respectively at 870°C. These conditions are highly sulfiding in nature and require 

development of novel coating techniques to impart adequate corrosion resistance. 

Other components of the gas stream from the coal gasifier may contribute to corrosion. 

The gas stream from an entrained-bed, slagging gasifier contains relatively few hydrocarbons 

and has a high level of CO. Such a gas composition may promote carburization. The gas stream 

from a fixed-bed gasifier is at a relatively low temperature of about 550°C and contains a 

significant fraction of hydrocarbons (including tars) and a low level of CO. The partial pressure 

of NH3 is higher in the gas stream from a fixed-bed gasifier than that from fluidized- and 

entrained-bed gasifiers. The particulate matter is low in the fixed-bed design compared to that in 

the other two types of gasifiers. 

The hot reducing gas leaving a slagging gasifier is typically at temperatures exceeding 

900°C, and heat exchangers or syngas coolers are used to recover most of the sensible heat in the 

coal gas. The reducing environment also leads to the presence of alkali vapors in the gas stream, 

which are also very corrosive due to interaction with the protective oxide layers present in a heat 

exchanger surface. 

In addition to the direct chemical attack by the gaseous components, the particulate 

matter present in the gas stream of a coal gasifier can also attack ceramic components or 

protective oxide surfaces of alloy steels. A fraction of the mineral matter in coal escapes the 

gasifier or combustor in the form of fly ash. The composition of fly ash depends on the type of 

coal, the combustion or gasification conditions, and the particle size of the ash. A sub-pilot scale 

test conducted by Westinghouse Science and Technology Center with cross-flow filters at the 

Texaco pilot-scale gasifier facility at Montebello, CA, showed a particulate loading to the filter 

varied from 250 to 2000 ppm [Lippert et al., 1991]. A similar test at the PFBC facility of New 

York University indicated that the cross-flow filter was able to reduce to ash dust loading from 

an inlet level of 250 to 1050 ppm to about 3 to 30 ppm [Lippert et al., 1989]. Thus, although the 

high-temperature barrier filters are able to remove nearly 99% of the fly ash, a small amount of 

these particles (likely to be submicron fume) escape the filters and could be reactive because of 

their relatively high surface area and intimate contact with the alloy steel components. The 

constituents of these particles are silica, silicates, alumino-silicates, ferrous oxides, and alkali and 



10 

alkaline earth compounds. The alkali compounds especially are likely to react with system 

components, forming chemical phases that are weaker or otherwise corroded. Table 2 lists the 

predicted phases to be formed by the interaction of fly ash components with the surfaces of alloy 

steels. 

Table 2: Thermodynamically projected solid phases formed  
between ash and alloy steel surfaces  

 

 Oxide Layer on the Alloy Steel Surface 

Ash 
Component 

Fe2O3 NiO Cr2O3 Al2O3 

SiO2 Iron silicates Nickel silicate Mixed oxides Aluminosilicates 
Al2O3 Iron aluminate Nickel aluminate No interaction - 
CaO No interaction No interaction Calcium chromate Calcium aluminate
MgO No interaction No interaction Magnesium 

chromate 
Magnesium 
aluminate 

Na2O Sodium ferrite No interaction Sodium chromate Sodium aluminate 
K2O Potassium ferrite No interaction Potassium 

chromate 
Potassium 
aluminate 

Fe2O3 - No interaction Iron chromate Iron aluminate 

 

The composition of the submicron fume that is most likely to escape the barrier filters 

differs significantly from that of the coarser particles retained by cyclones and barrier filters 

[Quann et al., 1990]. Oxides of Si, Al, Mg, Fe, and Ca are generally the major constituents of the 

fume. Several other compounds of Na, P, Mn, V, Cr, As, Sb, Zn, Co, and Ba can also be present. 

The compounds of Na, P, As, and Co are significantly enriched in the fume fraction in 

comparison to the coarser particles. The major oxides and alkali compounds pose a significant 

threat to the stability of protective oxides present in alloy steels used in a gasifier system. 

By depositing on the heat exchanger tubes, particulate matter in the gas stream degrades 

tube performance. However, at high flow velocities they can also have a detrimental effect by 

eroding the protective coating. Natesan (1993) has reviewed the temperature and chemical 

environments experienced by heat exchangers and turbines under various coal-utilizing 

technologies. He has also reported on the mechanisms and failure modes experienced in these 

components (Tables 3 and 4). 

Liquid water also causes corrosion. Although under most operating conditions, water will 

be in the vapor phase, during shutdown and startup periods the steam can condense and form 

pools in contact with the component materials. Liquid water can dissolve certain salts, and 

contact of metal surfaces with this salt solution can lead to pitting corrosion. 
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Table 3. Service conditions and modes of degradation for component materials in coal-fired systems 

Component 
System 

Gas 
Environment 

Gas Temp.  

Range (°C) 

Metal Temp 

Range (°C) 

Deposit Type Particulate and/or 
Particle Velocity 

Mode of Degradation 

Heat Exchangers       

PC boilers Oxidizing 1300-
1600  

 

400-700 Alkali Sulfates  
Ash 

Fly ash, < 20 m/s Alkali corrosion 
Fouling 

FBC Oxidizing, 
locally 
reducing 

850 400-850 CaSO4, CaO  
Carbon, Fly ash 
Fly ash 

Sorbent bed, fly 
ash 3-? m/s 

Oxidation/sulfidation 
Erosion 

IGCC Reducing, 
moderate to 
high H2S 

900-1100 400-650 Fly ash 
Alkalis 
Chlorides 

Fly ash, < 20 m/s Sulfidation/erosion 

Fouling 

HIPPS Oxidizing 1300-
1600 

400-
1300 

Fly ash, Slag  
Alkali sulfates 

Fly ash Ceramic fracture 
Alkali corrosion 
Fouling 

LEBS Reducing, 
Sulfidizing 

1300-
1600 

400-600 Sulfides 
Slag 

Fly ash Sulfidation 
Deposit corrosion 
Fouling 

Turbines       

IGCC Oxidizing 850-900 850-950 Fly ash/slag 
Alkali 

Slag, 200-500 m/s Hot corrosion/erosion 

FBC Effluent Oxidizing 850-900 600-900 Alkali sulfates 
Silicates 
Sorbent 

Fly ash, sorbent, 
200-500 m/s 

Hot corrosion/erosion 

HIPPS  Oxidizing 1300 1000 Alkalis 200-500 m/s Oxidation/erosion 

Source: Natesan, 2001 



12 

 

Table 4.  Materials degradation in coal-fired systems 

Phenomenon Key Variables Possible Rate-Limiting Step 

Boiler tube corrosion Alkali and chlorine contents 
Fly ash, temperature 

Alkali condensation 
Oxide-sulfate reaction 

Substoichiometric combustion  
(also gasification) 

O and S partial pressures, temperature 
Downtime condensate 
Alkali/slag deposit 

Fracture of oxide scale 
Oxidation/sulfidation 
Pitting and crevice corrosion 

FBC in-bed corrosion Bed chemistry 
Local particle velocity 
Particle size and loading 

Oxidation/sulfidation 
Arrival rate of particles 
Fracture of surface scales 

Low-temperature hot corrosion Temperature, temperature gradient 
salt-film thickness, S and alkali level 

Sulfidation of transient oxides 
Transport of base metal (e.g., Ni and Co) 

Hot corrosion/erosion Alkali level 
Temperature 
Particle size, loading, and velocity 

Fracture of scale 
Sulfidation of transient oxides 
Transport of base metals 

Source: Natesan, 2001 
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COMPONENT MATERIALS 

The selection of the substrate material is generally governed by several factors including 

(1) the service temperature, (2) stresses (pressure differentials) that the structures are likely to 

experience, (3) erosion and corrosion resistance, and (4) cost. For high-temperature applications, 

the substrates tend to be high-alloy steels that contain Fe, Cr, Ni, Co, and other elements to 

provide mechanical strength at the temperature of operation. Even the ability of alloy steels to 

withstand high stresses decreases sharply at elevated temperatures. Figures 2 and 3 present the 

data on the ranges of conditions under which different alloys are useful as substrate materials 

[Viswanathan, et al., 2003]. It shows that the strength of the ferritic materials declines rapidly 

above 600°C. 

 

 
Figure 2. Allowable stress of various alloys as a function of temperature. 
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Figure 3. Maximum allowable stress of alloys as a function of temperature. 

 

A second selection criterion of a component material is its ability to resist corrosion or 

oxidation during service. In general, alloy steels depend on the formation of a protective oxide 

layer such as Cr2O3 for protection against sulfidation or further oxidation. Although Cr2O3 scale 

is generally protective against sulfidation, high levels of H2S may cause sulfidation of Cr2O3 in 

gasifiers operating in O2-blown mode with moderate to high sulfur coals. 

Many studies have been conducted on the degradation of metal alloys in coal gasification 

atmospheres [Humphreys and Schafer, 1983]. Several alloys suffered breakaway corrosion under 

such conditions. High-nickel alloys are more susceptible to sulfidation attack due to formation of 

Ni-Ni3S2 eutectic that melts at 635°C. Increasing Cr content to levels greater than 25 wt% in Fe-

Cr-Ni alloys is generally effective against sulfidation corrosion. Co-containing alloys are also 

more resistant to sulfidation than Ni-based alloys. Verma suggested that Cr2O3 scale doped with 

Co improves sulfidation resistance.[Verma, 1982] Addition of Al also improves the sulfidation 

resistance [Bradshaw, 1977]. Recently, iron aluminides have been tested in coal gas 

environments and are found to be superior to high-Cr alloys [Natesan, 2001]. Other beneficial 

elements include Ti and Si. A Ni-Co-based alloy (HR-160) developed by Haynes International 

containing high Cr and Si is claimed to have exceptional sulfidation resistance [Lai, 1990]. We 
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postulate that in the above cases, the formation of a stable barrier containing Al2O3, SiO2, or 

TiO2 are partly responsible for increased corrosion resistance. 

Even under conditions where the Cr2O3 is stable, sulfidation attack is feasible. The 

alloying element that forms a stable sulfide can diffuse through the oxide scale and eventually 

form sulfide on the surface of the oxide scale, leading to breakaway corrosion. Alloying elements 

such as Mn, Fe, Co, and Ni may diffuse through the Cr2O3 scale and react with H2S on top of the 

oxide scale to form an external sulfide scale [Perkins et al., 1982]. Mn is the fastest diffusing 

element, followed by Fe, Co, Ni, and Cr. Alternatively, the corrosion mechanism may involve 

penetration of S atoms through the oxide layer to form discrete particles of sulfides in the base 

alloy matrix. A diffusion barrier layer may be needed to prevent this type of corrosion. 

Both iron-based and nickel-based alloys are used in the heat exchanger and metal filter 

applications. Because of the proprietary nature, the exact composition of the alloys cannot be 

disclosed publicly. However, Table 5 describes the composition of typical alloys used in these 

high-temperature applications. 

 

Table 5. Composition of alloy steels used in coal gasifier systems 

Alloy1/Element HR160, 
N12160 

Incoloy800, 
N0880 

SS304, 
S30400 

SS405, 
S40500 

SS410, 
S41000, 

Tempered 

SS410, 
S41000, 
Annealed 

Aluminum   0.15-0.6   0.2   0.2 
Carbon 0.05 <0.1 0.015 <0.08 <0.15 <0.08 
Chromium 28 19-23 19 13   13 
Cobalt 30           
Copper   <0.75         
Iron <3.5 >39.5 69 85   85 
Manganese 0.5 <1.5 1 <1 <1 <1 
Molybdenum <1           
Nickel 37 30-35 10       
Niobium <1           
Phosphorus     0.23   <0.04 <0.04 
Silicon 2.75 <1 0.5 <1   <1 
Sulfur   <0.015 0.015   <0.03 <0.03 
Titanium 0.5 0.15-0.6         
Tungsten <1           

1 The composition of the elements is in weight percent. Alloys are designated both in common nomenclature and unified 

numbering system 
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As seen from Table 5, significant composition differences exist between the alloys. The 

HR160 nickel-based super alloy contains significant fractions of Cr, Co, and Si. The cost of HR-

160 is significantly more than that of the 304 stainless steel. The Incoloy 800 is also a nickel-

based alloy used as a heat exchanger material in nuclear reactors. It contains about equal 

fractions of Fe and Ni and about 20% Cr. Its mechanical properties at high temperatures are not 

as good as HR-160. SS 304 is the well-known austenitic stainless steel containing 18% Cr and 

10% Ni. Its corrosion resistance at moderate temperature is good, but at high temperatures it is 

prone to both oxidation and sulfidation. The SS 400 series is less expensive than other alloys 

listed, and they benefit more from corrosion-resistant coatings. The fraction of carbon in these 

alloys is very low. High levels of carbon lead to the formation of chromium carbides. 

COATINGS 

Natesan (1993) reviewed the suitability of Al, Cr, and Si coatings made by pack 

cementation, electrospark deposition, plasma spray, and CVD for coal gasification and 

combustion applications. A minimum Cr concentration of 25 wt% or an Al concentration of 

15 wt% is required to achieve adequate sulfidation resistance at about 650°C. Addition of V to 

the Cr layer minimized the formation of chromium carbides at the grain boundaries. These 

studies indicated that increasing Cr and/or Al levels in the alloy is beneficial in resisting 

sulfidation attack, but the integrity of the coating is strongly dictated by the adhesion of the 

coating to the substrate. Thin layers of Si or SiO2 deposited on an Fe-Cr alloy improved 

corrosion resistance against sulfidation at about 700°C, due to the presence of a SiO2 layer at the 

alloy surface that acts a barrier to the migration of sulfur inward and cation transport outward.  

In summary, the environment present in the coal gas stream at high temperatures is very 

aggressive to the metal components of coal gasifiers. Alloys containing high levels of Cr, Al, and 

other elements are being used to minimize sulfidation attack. Coatings with similar compositions 

have been attempted to impart sulfidation resistance. Development of coatings with improved 

resistance will provide options to the selection of suitable components for the gasifier service. 
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EXPERIMENTAL METHODS 

COATING COMPOSITION 

Based on the literature review, a minimum Cr concentration of 25 wt% or an Al 

concentration of 15 wt% may be required to achieve adequate sulfidation resistance at about 

650°C. Addition of V to the Cr layer minimized the formation of chromium carbides at the grain 

boundaries. Increasing both Cr and Al levels in the alloy is beneficial in resisting sulfidation 

attack, but the benefit of the coating strongly depends on the adhesion of the coating to the 

substrate. Thin layers of Si or SiO2 deposited on an Fe-Cr alloy improved corrosion resistance 

against sulfidation at about 700°C, due to the presence of a SiO2 layer at the alloy surface that 

acts a barrier to the migration of sulfur inward and cation transport outward.  

We selected the following coating compositions: 

• Chromium – diffusion coating with surface concentration of about 50 wt% 

• Aluminum – diffusion coating with surface concentration of about 15 wt% 

• Silicon – diffusion coating with surface concentration of about 10 wt% 

• Titanium – coating 

In addition to the above components, we also deposited coating of other elements such as 

tantalum, vanadium, and tungsten, which has been shown to be beneficial in some cases. 

Furthermore, the metal coatings may be nitrided to prevent inter-diffusion between different 

coating layers. Titanium nitride is used as a diffusion barrier in the manufacture of integrated 

circuits. 

COATING TECHNIQUE 

SRI International's FBR-CVD technique has been used to coat fibers, particles, powders, 

and fabricated parts. Briefly, in this technique, a source metal powder bed is fluidized with a 

carrier gas (e.g., Ar) and reacted with HCl and H2. When the reactor is operated at an appropriate 

temperature and conditions for the coating metal, volatile metal halides are formed in situ that 

decompose on the substrate (e.g., steel) to form a metallic coating. The substrates act as a sink 

because the activity of coating metal in them is typically very low (<1%) while the gas is 

saturated. In many cases, such coatings are deposited on substrate materials at much lower 

temperatures than are possible with other coating techniques. In the initial stages, deposition and 

diffusion are very fast for steel substrates above 550°C. Because the CVD process is not a line-

of-sight coating technique, it can be applied uniformly on complex geometric shapes. The 

technique may also be used to coat porous materials such as metal particulate filters. 
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Fluidized-Bed Reactor Chemical Vapor Deposition System 

Figure 4 is a schematic diagram of the FBR-CVD system. The system consists of a 

cylindrical quartz reactor (4.7 cm ID and 50 cm long) with a porous fused quartz plate to support 

the powder bed and serve as a gas distributor, and a gas-metering and gas-mixing unit. Fused 

Al2O3 powder with particle size in the range 150-175 μm was loaded in the reactor to form a bed 

of 4 to 6 cm high. The powder bed was fluidized by an upward flow of Ar + H2 mixture and they 

were metered independently at atmospheric pressure. A combined flow rate between 6-8 l/min 

(about 6-8 cm/s linear flow velocity) was required to maintain fluidization of the bed. The metal 

coupons immersed in the powder bath were loosely hung from the top and were about 1.5 cm 

above the porous fused quartz plate. For Cr-Al coating experiment, as shown in Figure 4, the 

reactor was heated using either an electric resistance furnace or a RF induction coil. The system 

was heated rapidly to coating temperature, and the volatile and reactive precursors were then 

added from the top and through the bottom of the reactor at the coating temperature.  

 
Figure 4. Schematic diagram of the fluidized bed reactor for Cr-Al and Al coatings of metal coupons. 
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Procedure 

For depositing Cr-Al coating, the specimens were immersed in a fluidized bed containing 

a mixture of alumina powder, chromium powder, and Cr-Al alloy powder. During heating, the 

bed was fluidized with a stream of Ar(g) and H2(g). When the bed reached a temperature in the 

range 960° to 1000°C, HCl(g) (1 to 2% v/v) was also admitted to generate volatile chromium 

(CrCl2) and aluminum chloride (AlCl) species, which then decomposed or reduced on the 

specimen. The reactive precursors are reduced by the presence of H2 forming Cr-Al on the metal 

coupon. After the Cr-Al at high temperature, the reactor temperature was lowered to 600°C, and 

then a small amount of Al powder was added to the reactor for additional Al coating on the metal 

substrates. Some of the Cr-Al and Al-coated coupons were heat-treated in Ar + H2O mixture at 

900-950°C, forming a thin Al2O3 layer on the coupons. Deposition durations were typically 

about 3 h each.   

For TiN or (TiTa)N coating, a small amount of TiH2 powder was added to the powder 

bed to promote the formation of TiCl3 and TiCl2 reactive gaseous precursors. A gaseous mixture 

of Ar + TiCl4 was supplied from a TiCl4 (l) bubbler heated between 26-40°C using pure Ar at 

atmospheric pressure as carrier gas. The Ar + TiCl4 mixture was added together with the Ar + H2 

fluidizing gas mixture through the bottom of the reactor. At coating temperature between 900° 
and 1100°C, TiCl4 gas will react rapidly with Ti powders, forming reactive TiCl3 and TiCl2 

gaseous precursors, and Ti metal will be deposited on the coupon surface by H2 reduction. Ta 

deposition was done by reduction of TaCl5 powders by H2 when the powders were slowly added 

to the powder bed. After the metal coating experiment, the reactor temperature was lowered and 

the coating was nitrided by admitting NH3 gas from the top of the reactor. 

For (TiAl)N coating experiments, AlCl3 gas was supplied to the bottom of the reactor by 

vaporization of AlCl3 powders from a heated reactor using Ar as carrier gas. For Ti-Al coating, 

1-2 g of Al powders were added to the fused alumina powder bed to promote the formation of 

reactive TiCl3 and AlCl gaseous precursors at the desired temperature. The nitridation was 

performed at lower temperature after the Ti-Al coating experiment. 

For (TiSi)N coating, SiHCl3 from the bubbler using Ar as carrier gas was admitted 

together with TiCl4 gas through the bottom of the reactor. The SiHCl3 bubbler was kept at ice 

temperature during the coating experiments. As in other cases, nitridation was conducted at 

lower temperature. 
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FABRICATION OF POROUS COUPONS WITH SS 409 ALLOY 

In view of the fact that no porous metal filters were commercially available, we procured 

a batch of SS409 powder (300 mesh, 0.04 mm) and fabricated our own coupons. The alloy steel 

powder was sintered under hydrogen at 1300°C for 12 h. Flat and mechanically strong samples 

were obtained by this procedure. The porosity of the coupons was determined to be about 55%. 

SIMULATED COAL GAS STREAM TEST EQUIPMENT 

We assembled a test facility to expose coupons to simulated gasifier environments for 

300 h or longer. The test facility consists of a 9.0-cm OD by 90-cm long quartz tube heated by a 

3-zone electrical resistance furnace. The furnace is long enough to easily accommodate over 20 

coupons. The ends of the quartz tube are capped with steel flanges with ports to admit and/or 

vent gases.  

The gas stream at the WREL plant consists mostly of H2, CO, and CO2 in roughly 

30:36:15%. The balance is steam and about 2% H2S. To achieve some degree of flexibility in 

metering in different amounts of H2, CO and CO2, and H2S, we opted in favor of using two 

mixed-gas cylinders. One cylinder contained H2, CO, and CO2 in a 19:57:24 ratio. The other 

cylinder contained 10% H2S in H2. Mass flow controllers metered these mixtures to blend a 

simulated coal gas stream of desired composition. A heated evaporator was used to produce 

steam with a controlled rate of injection of liquid water by a syringe pump. The tube carrying 

steam and other gases was heated to prevent further condensation. H2S/H2 was added near the 

inlet of the reactor to prevent corrosion of the metal tubing. The final gas composition was 

25.7% H2, 38.9% CO, 17.3% CO2, 1.7% H2S, and the remainder steam. The total flow rate of the 

gas stream was about 120 standard cubic centimeters per minute (SCCM). A schematic diagram 

of the test system is shown in Figure 5. 

The furnace has three heating zones, each of which can be independently controlled. 

After a few adjustments to the power supply, we were able to achieve a uniform temperature 

profile across most of the central portion of the furnace. For example, the temperature inside the 

furnace was 900°± 5°C through the central 50 cm length (Figure 6). About 20 sample coupons 

can be placed inside the furnace using a notched sample holder made of quartz. This arrangement 

allowed all samples to be exposed to the coal gas uniformly. Both coated and uncoated specimen 

coupons were tested for their resistance to sulfidation. 
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Figure 5. Schematic diagram of the bench-scale exposure test system. 
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RESULTS AND DISCUSSION 

DEPOSITION OF COATINGS ON ALLOY SUBSTRATES  

The composition of the uncoated alloy coupons, as determined by the X-ray fluorescence 

(XRF) elemental analyses is summarized in Table 6.  

Table 6. XRF analysis of various metal alloy coupons used as substrates 

Element SS405 SS409 SS410 SS316 HR160 

Fe 86.7 87.1 87.4 66.8  
Cr 12.4 11.1 11.7 18.0 28.2 
Al  0.3 0.22 0.4  
Mo    2.3  
Ni 0.18  0.18 11.0 38.2 
Si 0.53 0.5 0.41 1.5 2.6 
Co     30.5 
Ti     0.5 

Coatings on Dense Substrates 

Chromium diffusion coatings were deposited on various substrates using the fluidized 

bed reactor. Table 7 lists the coating depth and the surface chromium levels of the coatings.  

Generally, the chromium levels in the ferritic SS alloys 405 and 410 were higher than in the 

austenitic SS alloys such as 304 and 316. Note that the surface concentration in the nickel-based 

alloys IN 800 is also low. We believe that nickel present in the austenitic alloy hinders the 

deposition of Cr on the surface. 
 

Table 7. Summary of initial coating runs 

Run. No Substrate 
No. of 

Coupons Coating Coating depth 
Surface Cr 

Concentration 
39 SS 410 1 Cr 10 76.8 
40 SS 410 1 Cr 5 60 
41 SS 316L 3 Cr   32.31 

42 SS 304 1 Cr 5 62 
42 SS 410 1 Cr 10 62 
43 SS 304 1 Cr 5 33.5 
43 SS 405 1 Cr 20 16 
43 SS 410 1 Cr 3 to 5 28 
43 IN-800 1 Cr 4 to 5 18 
46 SS 405 3 Cr   20 
48 SS 410 1 Cr 20 (plateau) 70 

1 Porous substrate. 
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The coated samples were examined by various techniques such as scanning electron 

microscope (SEM), energy-dispersive X-ray analysis (EDX), and X-ray fluorescence (XRF). The 

surface composition of Cr-Al-coated coupons is shown in Table 8. The data show that the 

surface is enriched in Cr-Al, except in the case of IN 800 alloy, which is a nickel-rich alloy. 

 

Table 8. Surface composition of Cr-Al coated specimens 

  Surface Composition (Wt%) 
Alloy Run No. Al Cr Fe Ni 

SS304 42 5.2 61.6 24.2 8.9 
SS316 41 5.4 32.3 52.1 8.1 
SS405 44 2.9 68.4 28.7 0 
SS410 42 2.8 61.8 35.4 0 
IN 800 44 12.0 18.0 42.4 17.5 

We also measured the distribution of Cr and Al diffused into the samples. The depth 

profiles of SS 316 and SS 410 after coating with Cr-Al coated are shown in Figure 7. The data 

indicate that the surface concentration of Cr was high, but the diffusion depth was limited. 
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Figure 7. The depth profiles of SS304 and SS310 after Cr-Al coating. 

Experimental conditions used in the coating runs and the XRF analyses of metal or alloy 

coatings on various stainless steel coupons are summarized in Table 9. Many of the metal or 

alloy coatings showed very good adherence on the metal substrate surface, as checked by 
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rubbing, high-pressure air blowing and scotch tape testing. The results show that the 

compositions and thickness of Cr-Al, Ti-Al, Ti-Ta, and TiSi coatings can be controlled by the 

coating temperature and time, and relative amount of precursors admitted to the reactor. From 

Runs #77-90, each coating experiment was performed over two days. The first was for the Ti-Al 

coating and followed by (TiAl)N or (TiSi)N nitride coating on the second day. A typical 

elemental line scan of the cross section from Run # 77, (TiAl)N/SS409 and from Run #86, 

(TiSi)N/SS410, is shown in Figures 8 and 9. The line scan clearly shows two distinct coating 

regions: the Ti and Al diffusion coating for both runs and (TiAl)N or (TiSi)N coating on the top 

surfaces. It is clear that Al enhances the Ti inward diffusion and the coating temperature 

controlled the depth of Ti layer. 

 

Table 9. Summary of various metal alloy coatings on stainless steel coupons 

Run No SS Coupon Coated Materials Coating Conditions 
Temperature; Time 

XRF Analysis of the 
Surface 

56 
56A 

(3/7/05) 

304 
409  

TiN coating 
(TiTa)N coating 
TiN coating 
(TiTa)N coating 

1045°C: 3.5 hrs 
1045°C: 1.5 hrs 
1045°C; 2.5 hrs 
1045°C; 3.0 hrs 

304 alloy:  Ti: 23.9; 
Ta: 9.4; Fe: 38.1; Cr: 
20.5; Ni: 7.7 
409 alloy:  Ti: 24.5; 
Ta: 3.8; Fe: 60.1; Cr: 
11.3 

57 409-07 
409-08 
409-09 
409-10 

Cr, Al coating  1000°C; 3 hrs 
750-800°C; 5 hrs 

409-07:  Al: 17.6; Cr: 
13.1; Fe: 68.3 
409-09:  Al: 17.2; Cr: 
14.3; Fe: 67.9 

57A 
(from 57) 

409-07 
409-09 

Al coating 600°C: 2 hrs 409-07:  Al: 21.3; Cr: 
13.6; Fe: 64.1 
409-09:  Al: 17.2; Cr: 
13.8; Fe: 67.9 

58 409-11 
409-12 

Cr, Al Coating 1000°C: 3 hrs 409-11:  Al: 22.2; Cr: 
21.3; Fe: 55.7 

59 
 

From #57 
409-08 
409-10 
From #58 
409-11 
409-12 

Forming thin Al2O3 coating 
by controlled oxidation in 
Ar + H2O mixture 

950°C; 1 hr  

60 
(3/21/05) 

HR160-09 
HR160-10 

TiN coating 
(TiTa)N coating 

1100°C; 3.2 hrs 
1100°C; 2.5 hrs 

HR160-09:  Ti: 38.7; 
Ta: 0.7; Cr: 18.7; Co: 
17.6 
Ni: 23.9 

61 Two 316 
porous 
coupons 

Cr, Al coating 1000°C; 2.5 hrs Al: 21.5; Cr: 24.6 
Fe: 44.2; Ni: 6.5 

62 
(4/7/05) 

Three 316 
porous coupon 

TiN coating 
(TiTa)N coating 
TiN coating 

950-1120°C; 3 hrs 
950-1000°C; 2 hrs 
950-1080°C; 3 hrs 

Ti: 40.5; Ta: 1.6 
Fe: 38.6; Cr: 10.7 
Ni: 6.8 
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Run No SS Coupon Coated Materials Coating Conditions 
Temperature; Time 

XRF Analysis of the 
Surface 

63 
(4/14/05) 

409-13 
409-14 
409-15 

TiN coating 1080-1140°C; 5.5 hrs 409-13 
Ti: 13.7; Al: 0.3 
Fe: 70.4; Cr: 14 
409-14 
Ti: 13.6; Al: 0.3 
Fe: 69.7; Cr: 14.1 

64 HR160-06 
HR160-07 
HR160-08 

Ti coating 
TiN coating 

1180°C; 3 hrs 
1120°C; 3 hrs 

Ti: 22.9; Al: 0.5 
Cr: 22.4; Co: 22.5 
 Ni 28.8 

65 
(4/21/05) 

410-05 
410-06 
410-07 

Ti coating 
TiN coating 

1160°C; 3.3 hrs 
1120°C; 2.1 hrs 

Ti: 11.9; Al: 0.6 
Fe: 75.0; Cr: 11.1 

66 405-15 
405-16 
405-17 

Ti coating 
TiN coating 

1180°C; 4.0 hrs 
1120°C; 2.0 hrs 

Ti: 14.4: Al: 0.4 
Fe: 71.6; Cr: 12.0 

67 409-16 
409-17 

Cr, Al coating 
Al coating 

955-981°C; 1.5 hrs 
600°C; 1.5 hrs 

Al: 35.2; Cr: 9.4 
Fe: 54.5 

68 
(4/27/05) 

409-18 
409-19 
409-20 

Ti coating 
TiN coating 

1180°C; 5.5 hrs 
950-1020°C; 2.5 hrs 

Ti: 26.4; Ai: 0.9 
Fe: 63.9; Cr: 8.0 

69 Three 405 Ti coating 
TiN coating 

1180°C; 6.5 hrs 
920°C; 2.8 hrs 

Not analyzed 

70 
(4/27/05) 

409-16 
409-17 
(from 67) 

Forming thin Al2O3 coating 
by controlled oxidation in 
Ar + H2O mixture 

950°C; 1 hrs  
(Ar + H2O) 

Not analyzed 

71 
(6/8/05) 

409-01 (sand 
blasted) 
409-02 (as 
received) 

Cr, Al coating 
Al coating 

975-996°C; 3 hr 
600°C; 1 hr 
 

409-01 
Al: 12.0; Cr: 22.5 
Fe: 63.7 
409-02 
Al: 18.9; Cr: 19.5 
Fe: 60.6 

72 
(6/10/05) 

405-01 (sand 
blasted) 
405-02 (as 
received) 

Cr, Al coating 
Al coating 

890-933°C; 2 hrs 
600°C; 1 hr 
 

405-1 
Al: 3.3; Cr: 24.7 
Fe: 69.7 
405-02 
Al: 2.3; Cr: 21.1 
Fe: 75.4 

73 410-01 (sand 
blasted) 
410-02 (as 
received) 

Cr, Al coating 
Al coating 

928-1000°C; 2.5 hrs 
600°C; 1 hr 
 

410-1 
Al: 4.8; Cr: 25.4 
Fe: 67.5 
410-02 
Al: 5.6; Cr: 23.1 
Fe: 70.6 

74 409-01 
409-02  

Cr, Al coating 
Al coating 

1000°C; 1 hr 
600°C; 1 hr 
 

409-1:  Al: 31.8; Cr: 
20.7; Fe: 46.7 
409-02:  Al: 30.1; Cr: 
20.2; Fe: 49.0 

75 All coated 
coupon from 
72, 73, 74 

Forming thin Al2O3 coating 
by controlled oxidation in 
Ar + H2O mixture 

909-920°C; 1 hr  
(Ar + H2O) 

 

76 
(6/27/05) 

409-14 (sand 
Blasted) 
409-15 (as 
received)  

Cr, Al coating 
Al coating 

839-872°C; 2 hrs 
600°C; 1 hr 
 

409-14:  Al: 18.4; Cr: 
11.0; Fe: 70.0 
409-15 
Al: 16.9; Cr: 12.4 
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Run No SS Coupon Coated Materials Coating Conditions 
Temperature; Time 

XRF Analysis of the 
Surface 

Fe: 70.1 

77 
(7/14/05) 

409-06 
409-07 
409-10 

Ti, Al coating 
(TiAl)N nitridation 

920°C; 3 hrs 
750-800°C; 5 hrs 

Ti: 55.5; Al: 4.8 
Fe: 21.7; Cr: 2.7 

78 Three 316 
 porous  

Ti, Al coating 
(TiAl)N nitridation 

1000-1100°C; 5 hrs 
750-800°C; 5 hrs 

Ti: 27.1; Al: 2.2 
Fe: 37.3; Cr; 19.15 
Ni: 26.3; Si: 0.8 

79 410-03 
410-04 
410-05 

Ti, Al coating 
(TiAl)N nitridation 

920-1000°C: 5.5 hrs 
750-800°C; 5 hrs 

Ti: 5.9; Al: 47.7 
Fe: 38.1; Cr; 7.0 

80 
(8/105) 

405-03 
405-04 
405-05 

Ti, Al coating 
(TiAl)N nitridation 

920°C: 8 hrs 
750-800°C: 5 hrs 

Ti:4.2 ; Al: 54.4 
Fe: 32.9.1; Cr; 6.35 

81 409-05 
409-11 
409-13 

Ti, Al coating 
Ti, Ta Coating 
NH3 nitridation 

850-920°C: 4 hrs 
850-920°C: 4 hrs 
920°C: 0.5 hr 

Ti: 7.5; Al: 3.0; 
Ta: 0.13 
Fe: 75.8; Cr: 10.9 

82 
(9/13/05) 

409-08 
409-09 
409-18 

Ti, Al coating 
Ti, Ta Coating 
(TiAlTa)N nitridation 

850-920°C: 4.2 hrs 
920-1000°C: 2.5 hrs 
750-800°C: 5 hrs 

Ti: 5.8; Al: 49.6; 
Ta: 0.1 
Fe: 35.9; Cr: 6.9 

84 410-07 
410-08 
410-10 

Ti,Al coating 
(TiSi)N nitridation 

800-850°C: 5.5 hrs 
750-850°C: 4 hrs 

Ti: 3.1; Al: 0.9; 
Si: 3.9 
Fe: 78.6; Cr: 13.5 

85 409-17 
409-19 
409-20 

Ti,Al coating 
(TiAl)N nitridation 

800-850°C: 6 hrs 
750-800°C: 1 hr 

Ti: 4.0; Al: 48.4 
Fe: 38.9; Cr: 6.7 

86 410-15 
410-16 
410-17 

Ti,Al coating 
(TiAl)N nitridation 

850-900°C: 6 hrs 
750-800°C: 2 hrs 

Ti: 13.5; Al: 0.95; 
Si: 13.1 
Fe: 61.7; Cr: 10.1 

87 405-10 
409-16 
410-12 

Ti,Al coating 
(TiSi)N nitridation 

850-980°C: 7.5 hrs 
750-800°C: 5.1 hrs 

405-10:  Ti: 82.3; Al: 
0.15;Si: 3.1 
410-12:  Ti: 86.5; Al: 
0.1;Si: 3.1 
Fe: 8.75; Cr: 0.8 

89 
(10/18/05) 

405-13 
410-18 
410-19 

Ti,Al coating 
(TiSi)N nitridation 

870-1010°C: 8.0 hrs 
750-800°C: 6.0 hrs 

405-13: Ti: 31.45; Al: 
0.3;Si: 5.3 
Fe: 53.8; Cr: 8.9 
410-19: Ti: 80.5; Al: 
0.15;Si: 2.0 
Fe: 15.6; Cr: 1.9 

90 
(10/25/05) 

Three 410 Ti,Al coating 
(TiAl)N nitridation 

870-1010°C: 8.2 hrs 
750-800°C: 5 hrs 

Ti: 88.4; Al: 0.1; 
Fe: 10.3; Cr: 1.2 
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Figure 8. Line profile of the cross section TiAl and (TiAl)N-coated SS409 coupon from Run #77. 
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Figure 9. Line profile of the cross section TiAl and (TiSi)N-coated SS409 coupon from Run #86. 

Coatings on Porous Substrates 

The porous SS 409 alloy samples were coated with silicon and titanium and were 

nitrided. The Ti-Al-Si-coated sample was also examined by SEM. The distributions of Si and Ti 

inside the specimen were determined by the energy-dispersive X-ray analysis. Figure 10 

illustrates the SEM image along with Fe, Si, and Ti maps in these samples. 
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Figure 10. SEM image of Ti-Al-Si-coated along with the distribution of Fe, Si, and Ti inside the sample. 

 

In this map, the brightness of the image is proportional to the concentration of the 

element at that point. As expected, the elemental maps show that the surface was enriched in Ti, 

which is consistent with the fact that Ti or TiN cannot diffuse into the stainless steel. The TiN 

coating appears to be dense and has a thickness of about 2 μm. 

Figure 11 and Table 10 show the SEM image of the porous SS316 frit and the elemental 

composition inside the frit. They indicate that Si- and Ti-based coatings are present even in the 

interior of the porous frit, confirming that the fluidized bed chemical vapor deposition is capable 

of coating inside a porous material. 



29 

 
Figure 11. SEM image of the porous SS 316 frit. 

 

Table 10. Elemental composition inside the porous SS316 frit 

 Location 

Element A B C D E F G H 

Ti 3.99 3.14 1.07 1.97 0.74 0.05* 0.02* -- 

Si 2.89 2.73 1.72 2.18 2.06 2.17 1.95 2.12 

Fe 61.50 61.19 66.49 63.29 64.79 68.09 67.89 67.37 

Cr 18.57 20.12 18.69 20.57 20.42 17.95 17.32 17.99 

Ni 10.58 11.02 10.37 10.91 10.78 10.56 12.05 10.93 

Mo 1.21 1.19 1.21 1.08 1.21 1.18 0.77 1.58 

Cl 1.25 0.62 0.45 -- -- -- -- -- 

 

Figure 12a illustrates a magnified image of one of the particles at location B shown in 

Figure 11 inside the porous frit. As shown in Figure 12c, titanium is present mainly on the outer 

edge of each of the metal particles. The level of Si is too low to show its distribution precisely in 

this map. We believe that Si is also coated only at the outer edges of the particles. 

 



30 

(a) SEM Image (b) Fe Mapping 

(c) Ti Mapping (d) Si Mapping 
 

Figure 12. A magnified image of porous SS frit and the distribution of Ti inside the frit. 
(Note: The data is taken at location B shown in Figure 11). 

EXPOSURE TO A SIMULATED COAL GAS ENVIRONMENT AT HIGH 
TEMPERATURES 

Exposure of Uncoated Metals and Alloys 

We exposed a range of pure metals and some common alloys to the reactive gases of a 

coal gasifier (Exposure Test #5). These alloys included Kanthal (a Fe, Cr, Al alloy steel), 

Ti6Al4V, and commercial steel drill bits coated with TiN and ZrN. The purpose of this test was 

to identify those metals that were particularly resistant and hence would make good ingredients 

for the coatings. The samples were exposed to a simulated gasifier environment for 112 h, after 

which they were retrieved for examination and analysis using XRF. Table 11 lists the samples 

used in this test, as well as the levels of sulfur detected by XRF following exposure and the 

phases predicted by thermodynamics. Figures 13 and 14 are photographs showing the state of the 

samples before and after the exposure. Two observations that are immediately apparent are: 

(1) the Ta sample had completely disintegrated into flakes, and (2) the Co sample had apparently 

melted and flowed out through the pores of the alumina support. 

These results are in general agreement with the thermodynamic equilibrium analysis. The 

noble metals such as Au and Pt did not have a significant weight change as they remain in their 

metallic state. The highly reactive metals such as Ti, Zr, Cr, and V were converted mainly to 
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their oxides. The small level of sulfur measured with Cr may indicate the formation of a 

chromium oxysulfide. Thermodynamic data for chromium oxysulfide are not readily available. 

Similarly, Ta and Nb are mainly converted to their oxides, although a small amount of 

oxysulfides may have formed.  
 

Table 11. Substrates and coatings used in Test #5 and the results of exposure 

Sample 
No. Material %Wt. Change 

Weight Gain/SA 
(g/cm^2)1 Wt% S2 

 
Predicted 

Phase3 
1 Au -7.06E-04 -3.08E-05 0 Au 
2 Ti 6.64E-01 2.01E-02 0 TiO2 
3 Zr 3.51E-01    0 ZrO2 
4 Pt -1.81E-03 -3.85E-02 0 Pt 

5 Ta   
Disintegrated into a 

powder N.M. 
Ta2O5 

6 Nb 3.13E-01 7.29E-02 0.67 Nb2O5 
7 Mo 2.37E-02 1.33E-03 12.6 MoS2 
8 W -1.03E-04 -5.48E-06 0.66 WS2 
9 Cr 2.40E-03 2.99E-03 0.52 Cr2O3 

10 V 2.75E-02 1.58E-02 0.04 V2O3 
11 Ti6Al4V -6.36E-01   N.M. TiO2, Al2O3 
12 Co 1.27E-01 Melted 21.1 CoS 
13 Fe 5.83E-01 2.09E-01 13.9 FeS 
14 Ni 3.37E-01 1.08E-02 18.6 Ni3S2 
15 Cu 2.52E-01 3.18E-02  CuS 
16 Kanthal -2.15E-03 -1.70E-02 0.27 Cr2O3, Al2O3 
17 Ti /Steel 2.35E-01 7.04E-03 7.4 FeS 
18 Zr /Steel 2.37E-01 -3.08E-05 13.5 FeS 

Notes: 
1. Based on measured surface area. 
2. Measured by XRF analysis of the surface of the sample. 
3. Predicted by thermodynamic equilibrium analysis at 900°C for the gas composition used. The 

equivalent partial pressures of O2 and S2 are 3.6 x 10-4 and 1.8 x 10-15 atm, respectively. 

The surface of the base metals such as Co, Fe, Ni, and Mo have been converted mainly to 

their sulfides as indicated by a significant amount of sulfur measured on the surface. The 0.3 

atomic fraction of S found on Co, Ni, and Mo surfaces indicates that the compounds are likely to 

be of Co2S, Ni2S, and Mo2S, respectively. Again, thermodynamic data for these compounds are 

not available, so the calculations predicted higher sulfides than found experimentally. The phase 

diagrams of Co-S and Ni-S predict that a sulfur level of 25 wt% will melt at about 900°C. 

Although the weight gain observed with Fe sample is higher than those observed with Ni and Co, 

the measured S level on the surface was relatively low. This anomaly may be due to the 

formation of an iron oxide layer. 
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The alloy Kanthal containing Cr and Al had negligibly small weight change and very low 

sulfur levels, indicating that Cr2O3 and Al2O3 form a protective layer. Similarly, the alloy 

Ti5Al4V also showed only a small weight change. Hence, our approach to apply coatings 

containing Cr, Al, and/or Ti is in agreement with the above results.  
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Ni Kanthal
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Figure 13. Samples before exposure to a simulated coal gas at 900°C in Test #5. 
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Figure 14. Samples after exposure to simulated coal gas at 900°C in Test #5. 

 



34 

EXPOSURE OF COATED ALLOYS TO A SIMULATED COAL GAS AT 900°C 

Chromium-Aluminum Coatings 

Exposure Test #1: We exposed 11 coated and uncoated samples as listed in Table 12 to 

a simulated coal gas stream at 900°C (Test #1). After loading the samples, the air inside the 

quartz tube was removed by purging with nitrogen. The furnace was heated in N2 for about 2 h, 

and after the temperature reached 700°C, the reactive gases were turned on and the temperature 

was increased to 900°C. The gas composition was set at 30.8% H2, 46.7% CO, 20.8% CO2, 1.7% 

H2S and the balance (20%) steam. The total gas flow was set at 120 standard cm3 per min 

(SCCM). The run proceeded smoothly for 117 h, at which point it was terminated. After cooling 

the samples were retrieved and examined.  

Table 12 also includes the weight changes in the samples before and after exposure as 

well as comments on the appearance of the samples at the end of the test. Figure 15 is a picture 

of the samples after the 117-h exposure.  

 

Table 12. Substrates and coatings used in Test #1 and the results of exposure 

Slot 
No. Material 

Coating 
Run 

Coating 
Comp. 

%Wt. 
Change(g)  

1 IN800 Uncoated - 0.28 Adherent deposit on the surface 

2 SS410 Uncoated - 1.95 Adherent deposit on the surface 

3 SS409 Uncoated - 0.72 Adherent deposit on the surface 

4 SS304L Uncoated - 24.56 
Extensive attack. Sample 
crumpled 

5 SS405 R46 Cr 0.16 
Minimal adherent deposit on the 
surface 

6 SS405 R47 Ti/Ta 0.58 
Minimal adherent deposit on the 
surface 

7 SS410 R39 Cr 0.10 
Minimal adherent deposit on the 
surface 

8 SS410 R40 Cr 0.04 
Minimal adherent deposit on the 
surface 

9 SS316 R41 Cr1 35.93 Extensive attack 

10 SS405 R46 Cr 0.06 
Minimal adherent deposit on the 
surface 

11 SS316 uncoated Note 1 28.61 
Extensive attack. Sample 
crumpled 

1 Porous sample. 
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The weight gain data shown in Table 13 should be viewed with caution. At 900°C, in the 

presence of H2S and steam, sulfides of Fe and Ni are formed along the oxides of Cr, resulting in 

a weight gain. However, if the reaction products do not adhere well to the substrate, they can fall 

out, resulting in a weight loss. In some cases, the attack by H2S was so severe (for example: 

sample #4, Figure 15), liquid metal sulfide dripped out the surface of the coupon. We attempted 

to determine the weight change as precisely as possible. The uncoated SS316 porous metal filter 

coupon (sample #11, Figure 15) crumpled when a slight pressure was applied.   

As expected, after the exposure to a simulated coal gas containing 1.7% H2S at 900°C, 

many of the uncoated samples (Samples #1 through #4, and #11) were corroded extensively. 

Only the IN800 alloy showed minor signs of corrosion, resulting in an adherent deposit. 

However, the deposit was not uniform, but had relative large sulfide particles embedded in the 

deposit. 

The coated coupons (Samples #5 through #10) showed various levels of attack by H2S. 

A minimum level of attack was observed on Sample #6, which is a SS405 alloy coated with 

Ti/Ta. Other coupons that were coated with chromium also had minimum weight gain, but there 

were visible signs of varying degrees of corrosion. Cr-coating did not prevent corrosion of the 

porous SS316 alloy sample, although Cr was found to have penetrated the porous interior of the 

sample. 
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Figure 15. Samples after exposure to a simulated gasifier environment at 900°C for 117 h in Test #1.
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Exposure Test #2: We conducted a second test with additional coated coupons. The 

samples used and the results of the exposure are listed in Table 13. This test was aborted after 

20 h because of a leak in the pressure regulator of a CO/CO2/H2 mixture gas cylinder. Overnight, 

this cylinder emptied and the samples were exposed to a much higher concentration of H2S 

(8.6%) because only steam and the gas mixture from the H2S /H2 gas cylinder were flowing. 

Some of the uncoated samples were badly corroded, and the sulfide layer buildup was severe 

enough to cause the quartz sample holder to break. Figure 16 is a photograph of the samples as 

retrieved from the aborted run. It is noteworthy that during the brief exposure to an H2S 

concentration of 8.6%, even specialty alloys such as HR160 and I800 were badly corroded, yet 

the sample of SS 405 steel coated with Ti/Ta nitrides showed no signs of corrosion. Incidentally, 

this was the same sample that was previously exposed for 100 hours in the simulated gasifier 

stream.  

 

Table 13. Substrates and coatings used in Test #2 and the results of exposure 

Sample 
No. Material Coating Run 

Coating 
(Surface Conc.)  

1 I800; tie rod Uncoated - 

2 HR160, tie rod Uncoated - 

3 HR160 Uncoated - 

4 SS405 Uncoated - 

5 I800 Uncoated - 

6 SS410 R40 Cr (60%) 

7 SS405 R46 Cr (20%) 

8 SS410 R39 Cr (77%) 

9 I800 R44 Cr-Al 

10 SS405 R47 Ti-Ta 
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Figure 16. Samples after brief exposure to gasifier environment with 8.6%H2S at 900°C in Test #2. 

 

Exposure Test #3: The SS 405 and 410 alloy coupons were coated with Cr at various 

surface concentrations and exposed to the simulated coal gas at 900°C for 100 h. Table 14 lists 

the samples and the results of the test, and Figures 17 and 18 are photographs of the samples 

after exposure. The Ti-Ta-coated sample of SS 405 steel from the previous run (Test #2) was 

also included in this test. The exposure temperature and gas composition were the same as for 

Test #1. Sample #4, the uncoated SS405 coupon, developed a thick sulfide layer and broke the 

quartz sample holder from the resulting expansion. This sample, along with the other steel 

samples used in this run, is shown in Figure 17. Samples #6 and #8 are both SS410 coupons 

coated with Cr. They developed a black coating and show a small weight gain (~ 1%). 

Sample #7, SS405, had a lower surface concentration of Cr. It developed some scales and had a 

slightly larger weight gain of 1.6%. The Ti-Ta coated SS405 sample was unaffected. 

1 2 3 4 

5  7 8 

9 10 
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Table 14. Substrates and coatings used in Test #3 and the results of exposure 

Slot No. Material Coating Run 
Coating 

(Surface Conc.) 
 

Appearance 
Weight Change

(%) 

1 
I800 
tie rod Uncoated - Corroded N.D.1 

2 
HR160 
tie rod Uncoated - Corroded N.D. 

3 HR160 Uncoated - Some beads N.D. 

4 SS405 Uncoated - Thick scale N.D. 

5 I800 Uncoated - Badly corroded N.D. 

6 SS410 R40 Cr (60%) Black coating 0.91 

7 SS405 R46 Cr (20%) Minor scaling 1.63 

8 SS410 R39 Cr (77%) Black coating 1.20 

9 I800 R44 Cr-Al Pyrite beads -4.78 

10 SS405 R47 Ti-Ta Unaffected 0.03 

N.D.: Not determined due to severe corrosion of the samples and loss of corroded layers. 
 

 
Figure 17. Steel samples after exposure to a simulated coal gas at 900°C in Test #3. 

(Note: Sample 4 fell off the quartz holder) 
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Figure 18. The face view of steel samples after exposure to simulated coal gas at 900°C in Test #3. 

 

Titanium-Tantalum Nitride Coated Specimens 

A review of the literature showed that addition of Ti and Si to the alloy steels can be 

beneficial in improving their sulfidation resistance. Formation of a compact, protective oxide 

layer that resists the ingress of S into the alloy is likely to be the cause of the improved 

sulfidation resistance. The Ni-Co-based alloy HR-160 contains Si as an additive and it has high 

sulfidation resistance. TiN coatings are used in the semiconductor resistance as diffusion barrier 

coatings. Based on these factors, we decided to investigate the use of TiN coatings. 

Exposure Test #4: The samples used in Test #4 and the results of exposure are listed in 

Table 15. Several samples were coated with Ti/Ta nitride coatings in deposition Runs 51 and 52. 

We also included samples of conical ferrules (316 steel) used during the coating procedure as 

they too got coated. In both runs, several coupons were suspended in the fluidized bed 

simultaneously. Figure 19 shows a picture of the coated samples before they were exposed to 

simulated gasifier conditions at 900°C. The test was conducted for 316 h, after which the 

reactive gases were turned off and the furnace cooled to retrieve the samples for examination. 

Figure 20 is a photograph of the samples after exposure. 

In each of the two coating runs used to prepare the samples, between four and six 

coupons were simultaneously suspended into the fluidized bed. We suspect that this procedure 

led to inhomogeneous coatings. The non-uniformity was visible even before exposure to reactive 

gases. It is instructive to note that the areas that show a high degree of nitride coating (gold 

color) are also the areas most resistant to corrosion.  

 

7
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Table 15. Substrates and coatings used in Test #4 and the results of exposure 

Sample 
No. Material Coating Run Appearance 

1 HR160 51 No visible degradation 

2 I 800 51 Pools of molten product 

3 SS410 51 
Part of the surface is corroded; rest of the 
surface is normal 

4 I 625 51 No apparent degradation 

5 I 82 51 Badly corroded; beads of molten product 

6 SS405 52 
Part of the surface is corroded; rest of the 
surface is normal 

7 SS316 (porous) 52 Thick film of corroded product 

8 HR160 52 No apparent degradation 

9 Ferrules (SS316) 51 Corroded 

10 Ferrules (SS316) 52 No visible degradation 

These results indicate that the Ti/Ta nitride coatings are generally satisfactory on alloys 

such as HR160 and I625 (samples #1, #4, and #8). The results with steels containing Cr (samples 

#3 and #6) indicate that the coatings are not uniform. As indicated earlier, some of the areas in 

these samples may not have had uniform coatings and may have been degraded, while the coated 

areas were protected. The Ni-containing steel samples (#2, #5, and #7) were badly corroded, 

indicating that the presence of Ni in the alloy may hinder the diffusion of Ti into the sample. 

However, the results with sample #10 that appeared to have no visible degradation indicate that, 

under some conditions, the Ni-containing steels may be coated with a protective coating.  

 

 
Figure 19. Samples used in Test #4 prior to exposure. 
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Figure 20. Samples after exposure to a simulated coal gas stream for 316 h at 900°C in Test #4. 

Exposure Test #5:  The results from this series are described in a section titled 

“Exposure of Uncoated Metals and Alloys to a Simulated Coal Gas Environment.” 

Exposure Test #6: The objective of this test was to determine the effect of long time 

(500 h) exposure to steel samples coated with either Ti/Ta nitride or Cr/Al coatings. The test was 

designed to examine coupons after exposure for about 100 h, and to then continue exposing those 

that showed good performance for an additional 400 h.  

The samples used are listed in Table 16. In an earlier run (Test #5), we had observed that 

a Co metal sample had melted and flowed down. We wanted to make sure that the sample had 

not simply fallen off the alumina support during the loading, and so we included it again in this 

run. This time we ensured that after the samples were loaded in the oven, the Co slug was still on 

its alumina perch. 

Figure 21 shows photographs of these samples before exposure. The inhomogeneity of 

the coating on samples #5 (SS304, TiTa-N), #7 (SS409/CrAl-Al), #8 (SS409/CrAl-oxAl), and 

#10 (HR160/TiTa-N) can be seen in the photograph. Figure 22 shows the results after exposure 

for 122 h. As is evident, the Co sample (Sample #1) was again found to have melted and flowed 

through the support. The TiN-coated SS409 steel tube (Sample #2) showed evidence of corrosion 

at the cut ends, but not on the tube sides. The 409 steel coated with Cr-Al (Sample #3) showed 

no signs of corrosion, but the similarly coated samples of SS 410 alloy and porous SS 316 alloy, 

which were also coated with Cr-Al, were badly corroded. These samples were removed, and the 

remaining samples were reloaded into the oven and exposed for an additional 360 h, bringing the 

total exposure to 482 h. Figure 23 is a photograph of the samples after exposure to 482 h. 

The difference between samples #3 and #4 (SS409 and SS410), both of which were 

coated in the same run, is remarkable. Sample #3 showed only a few beads that may have 

resulted from pinhole imperfections in the coating, whereas sample #4 is completely corroded. 



43 

This difference can be ascribed to the presence of carbon in SS410. Evidently, carbon binds to 

the Cr and interferes with the formation of a diffusion coating. Similarly, Ni (which is present in 

300-series steels) also interferes with our coating procedures.  

The HR160 and SS409 alloys coated with either a Cr/Al composition or Ti/Ta nitride 

suffered minimal degradation. However, only sample #8, which was coated with Cr/Al-oxAl 

composition, showed no degradation after 482 h exposure.  

 

Table 16. Substrates and coatings used in Test #6 and the results of exposure 

Sample 
No. Material ID 1 Coating (Run) Salient Observation 

1 Cobalt lump none 
Melted and flowed 

2 SS409 tube TiN (53) 
Corrosion at tube edge 

3 SS409 03 Cr-Al (54) 
Some beads 

4 SS410 03 Cr-Al (54) 
Corroded 

5 SS304 01 Ti/TaN (56) 
In homogeneous coating; 
corrosion where coating was poor 

6 SS409 04 Ti/TaN (56) 
Same as #5 

7 SS409 07 Cr-Al-Al (57) 
Badly corroded 

8 SS409 12 Ox. CrAl-Al (59) 
No corrosion 

9 SS316 Porous Cr-Al-Al (61) 
Badly corroded in 122 h 

10 HR160 09 (Ti/Ta)N (60) 
Some flakes, otherwise good 
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Figure 21. Samples used in Test #6 prior to exposure. 
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Figure 22. Samples after 122 h exposure to a simulated coal gas at 900°C in Test #6. (Note specs around 

the HR160 sample). 

 

Co 
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Figure 23. Samples after exposure to a simulated coal gas at 900°C for 482 h in Test #6. 

(Note beads on SS409/CrAl; CrAl coating on SS410 did not survive.) 

Exposure Test #7: Although earlier tests showed that nitrided coatings offer significant 

protection against corrosion, they also revealed a lack of uniformity in the coatings. We improved 

the coatings procedure, as well as the fluidized bed reactor and its heater.  

The samples used in Test #7 and the results of exposure are listed in Table 18. We focused 

on samples coated with Ti nitride from several deposition runs with an attempt to get uniform 

coatings. To see the effect of surface morphology, we sand-blasted a sample of SS409 coupon 

(#14) and coated it alongside another coupon that was not sand-blasted (#14). We also included a 

porous SS316 sample coated with (Ti/Ta) nitride to see if this coating would fare better than the 

previous attempts with Ti/T nitride (Exposure Test #4) or the oxidized Cr/Al-Al coating (Exposure 

Test #6). Figure 24 shows the picture of the coated samples before and after they were exposed to 

409/CrAl 410/CrAl 304/(Ti/Ta)N 409/(Ti/Ta)N 

409/CrAl-Al Ox. 409/CrAl-Al 160/(Ti/Ta)N
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simulated gasifier conditions at 900°C. The test was conducted for 96 h, after which the reactive 

gases were turned off and the furnace cooled to retrieve the samples for examination.  

Table 17. Substrates and coatings used in Test #7a and the results of exposure 
Sample 

No. Material Coating/ Run Appearance 

1 HR160 – 08 TiN/64 Some discoloration 

2 Porous SS 360 (Ti/Ta)N/62 Badly corroded 

3 SS410 – 06 TiN/65 Pinhole corrosion or bubbles from adjacent sample 

4 SS409 – 12 Ox-Cr/Al-Al/ 59 No apparent degradation 

5 SS409 – 13 TiN/63 Some corrosion, reverse side looks good 

6 SS409 – 14 TiN/63 Some corrosion, reverse side looks good 
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Figure 24. Samples from Test #7a before and after exposure to simulated gasifier environment for 96 h. 

We noticed that some of the samples in the run had different degrees of corrosion on the 

top and bottom surfaces, although most of them seemed to have survived well. We decided to 

continue exposing them to the gasification environment after flipping them over. Also, we 

removed the SS409-12 sample (coated with Cr/Al-Al, oxidized) that had survived over 500 h 

under the gasifier conditions with no signs of corrosion. We added a sample of TiN-coated SS405 

that was recently prepared (run 66). Table 19 lists the samples that were exposed in the 

continuation of this run (Test #7b).  
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Table 18. Substrates and coatings used in Test #7b and the results of exposure 

Sample 
No. Material Coating/ Run Appearance 

1 HR160 – 08 TiN/64 Survived. Minimal corrosion at edges. 

2 SS409 – 13 TiN/63 Lots of signs of corrosion. 

3 SS409 – 14 TiN/63 Only edges corroded. 

4 SS410 – 06 TiN/65 Only edges show corrosion. 

5 SS405 – 17 TiN/66 Badly corroded. 
 

By and large, these samples seemed to have fared well (Figure 25). The HR160 sample had 

minimal corrosion. The pair of SS409 samples showed the effect of sand-blasting. There was less 

corrosion on the sand-blasted sample. This fact, together with the observation that corrosion is 

often limited to the edges, suggests that morphological stresses may be a contributing factor in 

corrosion. The SS405 alloy sample showed extensive signs of corrosion. We have previously noted 

that the presence of Ni in the alloys such as the 300 series stainless steels interferes with the 

formation of the diffusion barrier coating. The result with SS405 suggests that the presence of 

carbon in the alloy also interferes with the coating process. Only SS 409 alloy, which has 

extremely low carbon, appears to be amenable to protection by our coating process. 
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Figure 25. Samples from Test #7b before and after exposure to a simulated coal gas for 240 h. 
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Exposure Test #8:  The results from this series are described in a section titled 

“Exposure to a Simulated Coal Gas at 370°C.” 

Exposure Test #9: We performed additional coating runs with Ti, Ta, Al, Si with 

subsequent nitridation. The top panel of Figure 26 shows the picture of the samples before they 

were exposed to simulated gasifier conditions at 900°C. The bottom panel is a photograph of the 

samples after exposure after 306 h. Table 20 lists the samples, the specific coatings, and some 

general observations. 

 

 

 
Figure 26. Samples before and after exposure for 306 h at 900°C to a simulated coal gas in Test #9a. 

 

 

Table 19. Substrates and coatings used in Test #9 and the results of exposure 

Sample 
No. Material Coating Run Appearance % Wt. Gain 

1 HR160 (Ti/Ta)N,  64 No significant attack -1.12% 

2 HR160 TiN,  64 No significant attack -0.31% 

3 SS410 (Ti,Al)N,  79 Severe attack, sulfide deposit 34.05% 

4 SS405 (Ti,Al)N, 80 Severe attack, sulfide deposit 30.12% 

5 SS409 (Ti/Ta)N,  81 Severe attack, sulfide deposit 34.20% 

6 SS409 (Ti,Al,Ta)N,  82 Severe attack, sulfide deposit 8.39% 

7 SS410 (Ti,Si)N,  84 Severe attack, sulfide deposit 44.72% 

8 SS410 (Ti,Si)N,  89 No significant attack 0.73% 

9 SS410 TiN,  90 Severe attack at the edges 13.33% 
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As is evident from Figure 26, most of the samples gained in weight substantially and 

showed signs of significant sulfidation attack; only the two HR-160 coated samples, and a 410 

steel that was coated with (TiSi)N appeared to survive well. These three samples were put back 

into the furnace and exposed to a simulated gasifier environment for an additional 100 h. 

Figure 27 shows their appearance before and after this second round of exposure. A significant 

amount of corrosion was evident on both HR160 alloy and the coated 410 alloy.  
 

 

 
Figure 27. Samples before and after exposure for 100 h at 900°C to a simulated coal gas in Test #9b. 

 

Exposure Test #10: In this test, we continued to test the effectiveness of nitrided 

coatings. The top panel of Figure 28 shows a picture of the samples before they were exposed to 

simulated gasifier conditions at 900°C. The bottom panel is a photograph of the samples after 

exposure after 308 h. Table 21 lists the samples, the specific coatings, and some general 

observations. 
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Figure 28. Samples before and after exposure for 308 h at 900°C to a simulated coal gas in Test #10. 
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Table 20. Substrates and coatings used in Test #10 and the results of exposure 

Sample 
No. Material Coating Run Appearance % Wt. 

Gain 

1 
Si3N4 
(sintered) None - No attack 0.00 

2 
Si3N4 (hot 
pressed) None - No attack -0.03 

3 I 800 None - 
Severe attack, friable sulfide 
deposits; could not weigh  

4 HR-160 W None - 
Some flakes, and corrosion at 
the drill hole -1.20 

5 SS405 (Ti/Si)N  89 A few localized spots of sulfide 3.22 
6 SS410 TiN 90 Localized sulfide growth 3.16 
7 HR-160 none - Looks fine -0.35 

8 SS410 (Ti/Si)N  91 
Sulfide deposits along certain 
lines 10.58 

9 SS409 (Ti/Si)N  92 
Significant sulfide growth in one 
region 12.92 

10 SS316 (p) (TiAl)N 78 Badly corroded 19.07 

This batch included two samples of silicon nitride. One of them was reaction-sintered 

material, and the other was hot pressed and highly dense. Neither sample showed any sign of 

sulfidation attack or mass loss, indicating that the formation of SiO or SiO(OH)2 was negligibly 

small under the tested conditions.  

The third sample was a coupon of an Inconel alloy. This sample was severely corroded. 

There was a friable deposit (mostly FeS, as determined by XRD deposit all over the sample, and 

it adhered to the disc of porous alumina on which it was resting. The test also included two 

samples (#4 and #7) of another specialty alloy, HR-160. One of these (#4) was of the welding 

grade, and it developed some flakes. Both these samples lost a mall amount of their weight, 

possibly from the loss of CoS, but they otherwise maintained their integrity. This result is in 

contrast to the fate of the HR-160 coupon in the actual gasifier stream, discussed below, which 

underwent extensive corrosion/erosion. 

The remaining four samples were various 400 grade steel coupons coated with TiN or 

(Ti/Si)N. The amount of corrosion varied in these samples and was mostly evidenced as deposits 

of FeS. The corrosion was not uniform on the sample, but seemed to be localized in certain 

regions. In Samples #8 and #9 the corrosion occurred where the coatings were visibly defective. 
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EXPOSURE TO A SIMULATED COAL GAS AT 370°C  

Exposure Test #8: We tested coated alloy coupons under conditions designed to mimic 

the conditions in the filter unit after the high-temperature heat recovery unit (HTHRU). The filter 

unit is another important area where corrosion has caused unscheduled downtime, and the 

remedy has been the use of sintered porous metal tubes made of expensive alloys such as 

Inconel. The objective of our test was to determine if those coatings on 400-series steel that were 

not able to withstand the harsher conditions of the HTHRU, may be sufficiently resistant for use 

in the filter unit, at the reduced temperatures. Indeed, many of our coatings survived well; the 

exceptions were the coated porous samples of SS316. 

We used pairs of SS405, 409, and 410 samples that had diffusion coatings of Cr and Al. 

Some of the coupons were sand blasted prior to coating to remove any remaining oxide layer on 

the surface of the coupon. A few coupons, after coating, were oxidized slowly to form a 

protective layer of Al2O3 on the surface of the coating. Also included were SS409 samples 

coated with TiN and TiAl)N, as well as some porous SS316 samples coated with (Ti/Ta)N and 

(Ti/Al)N. The samples used in Test #8 and the salient observations following the exposure test 

are listed in Table 21. 

The top panel of Figure 28 shows the picture of the coated samples before they were 

exposed to simulated gasifier conditions at 370°C. The bottom panel is a photograph of the 

samples after exposure for a period of 300 h. 

 

Table 21. Substrates and coatings used in Test #8 and the results of exposure 

Sample 
No. Material Coating Run Appearance % Wt. Gain 

1 SS405 (Cr-Al)Al 72 Good, some discoloration 0.25 

2 SS405 (Cr-Al)Al 72 Good, some discoloration 0.10 

3 SS409 (Cr-Al)Al 76 Good, like new 0.00 

4 SS409 (Cr-Al)Al 76 Good, like new 0.00 

5 SS410 (Cr-Al)Al 73 Good, some discoloration 0.17 

6 SS410 (Cr-Al)Al 73 Good, some discoloration 0.04 

7 SS409 TiN 68 Good 0.07 

8 SS316 (porous) (TiTa)N 62 Corroded, darkened 11.86 

9 SS409 (TiAl)N 77 Smooth, like new 0.03 

10 SS316 (p) (TiAl)N 78 Badly corroded 19.07 
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As is evident from Figure 29, all the coatings except those on the porous SS316 sample 

performed well. The two SS316 samples gained significant weight indicating extensive 

sulfidation of the coupon. All other samples also gained only minimal weight (<0.3 wt%). 

Examination of the weight gained (Table 1) shows some differences between these samples and 

points to SS409 alloy as the best substrate for these diffusion barrier coatings.  

 

 

 

Figure 29. Samples before and after exposure to a simulated coal gas for 300 h at 370°C in Test #8. 

 

Exposure Test #11: The purpose of this test was to see if the porous SS409 coupons that 

we had previously fabricated could be coated in their interior so that they would survive the 

conditions under the filter unit conditions. Along with the Cr/Al oxide and TiN coated porous 

samples, we also put in a batch of SS409 and SS410 coupons coated with various nitride 

coatings. Table 22 lists the samples, the specific coatings, and some general observations. The 

top panel of Figure 29 shows the samples before they were exposed to simulated gasifier 

conditions at 370°C. The bottom panel is a photograph of the samples after exposure after 300 h.  
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Table 22. Substrates and coatings used in Test #11 and the results of exposure  

Sample 
No. Material Coating Run Appearance % Wt. 

Gain 
1 SS410 (TiSi)N 84 Virtually unchanged 1.43 

2 SS409 (CrAl)Ox, porous 88 Virtually unchanged 0.23 

3 SS409 TiSiN/TiAlN 92 Some bands accentuated 0.29 

4 SS409 TiSiN/TiAlN, porous 93 Slightly lighter color 10.25 

5 SS409 TiSiN/TiAlN 93 Virtually unchanged 0.02 

6 SS410 TiSiN/TiAlN/TiAl 94 Virtually unchanged 0.20 

7 SS409 TiSiN/TiAlN/TiAl 94 Virtually unchanged 0.03 

8 SS409 TiSiN/W/TiAlN 95 Virtually unchanged 0.10 

9 SS409 TiAlN/WTiAlN/W/TiAlN 96 Virtually unchanged 0.39 

10 SS409 TiSiN/W/TiAlN 98 Virtually unchanged -3.54 

11 SS409 TiSiN/W/TiAlN 99 Virtually unchanged 0.23 

All the samples looked almost exactly as before the exposure. At this relatively lower 

temperature, we did not expect any of the nitride coatings to show any corrosion. The only 

sample to gain significant weight was the TiN coated porous SS409 coupon (Sample #4). This 

weight gain is surprising because there was hardly any visible change. Following the exposure, 

cross sections of both of the porous samples were prepared and analyzed by SEM-EDX and 

XRF. Preliminary examination showed the presence of Ti on the interior surfaces in the depths of 

the porous sample, a clear indication of the ability of our fluidized bed process to deposit metals 

in the pores.  

. 
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Figure 30. Samples before and after exposure to a simulated coal gas stream for 300 h at 937°C in Test #11. 
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DETAILED EXAMINATION OF COATED COUPONS BEFORE AND AFTER 
EXPOSURE TESTS 

The exposure tests showed that the coatings of nitrides of Ti, Al, and Si may provide 

alloy steels significant resistance to sulfidation attack in simulated coal gas streams. In the bench 

scale tests, the coated coupons showed significant resistance in a gas stream containing H2S 

(2%v/v) at 370°C while sulfidation attack occurred at 900°C. To understand the cause of 

sulfidation attack, we analyzed the coated coupons using SEM and EDX.  

Composition Profile of a Nitrided Sample before Exposure Test 

Figure 31 is a SEM picture of the cross-section of a SS 409 steel coated with titanium, 

silicon, and aluminum nitrides. As can be seen from the figure, the coating was uniform, 

adherent, and had a thickness around 7-8 μm. Figure 32 shows an EDX analysis of a line scan, 

and Figure 33 shows an elemental depth profile for Al, Si, Ti, Cr, Fe (values are normalized to 

100% considering only these elements). Different zones are clearly distinguished: an external 

TiSiN layer followed by a TiAlN layer and a TiAl diffusion zone. The Si peak at the interface 

between the coating and the substrate is related to an intentionally added Si layer for a short time 

at the end of the TiAl diffusion step. The purpose of this addition is to provide inter-diffusion to 

increase adhesion and provide a thermodynamic sink to slow down the diffusion of Fe to the 

surface that is known to cause sulfidation under the operating conditions.  
 

 
Figure 31. Cross section of a (Ti, Al, Si) nitride coating on SS 409 alloy steel. 
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Figure 32. Elemental profile of the coating shown in Figure 31. 

 
Figure 33. Depth profile of the elements in the coated specimen shown in Figure 31. 
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Composition Profile of a Nitrided Sample after Exposure Test 

A sample of the coated alloy was exposed to a simulated coal gas stream containing H2S 

at 900°C for 300 h. At the end of the exposure period, the coated sample showed significant 

sulfidation attack as evidenced by the formation of a scale and a weight gain of ~12%. The cross 

section of the coupon is shown in Figure 34. In the SEM photograph, the top section is the 

substrate, the middle section is the coated layer, and the bottom of the photograph shows the 

polymeric mounting. Figure 34 shows that, after exposure to the sulfiding gas stream, the coating 

layer has cracked, allowing H2S to penetrate the coating and react with the substrate.  The EDX 

analysis showed that the coating still contained Ti, as expected (Figure 35). However, it also 

shows the presence of Cr, which was not in the original coating. We believe that the Cr may have 

diffused along the pore surfaces to the outer boundary. The presence of Cr near the surface also 

indicates that the coating was adherent for some period of time, allowing the Cr to migrate 

through the coating layer. Alternatively, Cr may have diffused as an oxyhydroxide vapor species 

under the high-temperature, high-steam concentration environment. Additional studies are 

needed to clarify these issues. 
 
 

 
Figure 34. The cross section of a (Ti,Al,Si) nitride coated sample after exposure to a 

simulated coal gas at 900°C for 300 h. 
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Figure 35. EDX analysis of the cross section of the sample area shown in Figure 34. 

Composition Profile of a Nitrided Sample with Tungsten Barrier Layer 

To eliminate the cracking of the coating and to prevent migration of the substrate 

elements to the outer surface of the coating, we deposited a layer of tungsten (W) on the 

substrate before the deposition of the (Ti,Al) nitride layer. Such layers are often used in the 

semiconductor fabrication as diffusion barriers. Note that we did not include silicon in this 

coating because Si can react with W to form tungsten silicide, which may not adhere to the 

substrate. 

Figure 36 is a SEM photograph of the nitride coating with W diffusion barrier. In this 

picture, the top is the substrate, the middle is the coating, and the bottom is the specimen mount. 

The light, thin layer between the substrate and the coating is the W diffusion barrier. The (Ti,Al) 

nitride coating is homogeneous and free of cracks. The layered structure is clearly seen in the 

EDX analysis and the EDX elemental depth profile: the steel substrate, a diffusion layer (Ti,Al), 

a W layer and a TiAlN film on top. Figure 37 is the elemental profile of various elements in the 

vicinity of the coating. Figure 38 is the elemental profile of the coating. These profiles show that 

the coating layer consists of mainly Ti and Al species. Note that although the coating layer is 

nitrided, the N species are not shown in Figures 37 and 38 because the EDX is not sensitive to N 

atoms. 
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Figure 36. SEM photograph of a nitride coating on SS409 alloy with W diffusion barrier. 

 
 
 

 
Figure 37. Elemental profile of the coating shown in Figure 36. 
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Figure 38. Profile of the elements in the coated specimen shown in Figure 36. 

Characterization of Coated Porous Coupons: The uniformity of the coating inside a 

porous sample, similar to that of a stainless steel barrier filter, was also examined. A photograph 

of the cross section image, as observed by SEM, is shown in Figure 39. The photograph shows 

that the external part of the sample is more porous than the interior, an artifact from the sintering 

procedure. Figure 40 shows the SEM image of an enlarged area of the specimen (mounting 

polymer is the dark zone in the right). As can be seen from Figure 40, a homogeneous coating 

with a thickness around 2 to 3 μm was deposited. Figure 40 also depicts the result of an EDX 

analysis of a line-scan in that zone (analysis performed across the marked yellow line). As 

observed, Ti was deposited both in the external part of the sample (directly exposed to the 

fluidized bed) and in the internal part (exposed to one of the internal voids of the porous 

material). This is a good indication that infiltration of reactants to coat the internal surfaces of a 

filter is possible. The Al signal is remarkably higher in the external zone. This could be 

explained either by a lower AlCl3 partial pressure in the gas phase or by a faster depletion of this 

reactant. As can be seen, Ti is again detected in all internal surfaces, but Al only found in the 

most external surface. 
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Figure 39. SEM photograph of a nitride coating on a porous SS409 alloy. 

 

 
Figure 40. Magnified image of the exterior of the porous specimen and corresponding element profile. 

Analysis of the Fractured Interior of a Nitrided Porous Sample  

In Runs 93, 102 and 104, we coated porous SS409 samples with several combinations of 

Ti-based nitrides and diffusion barrier layers. Figure 41 shows a typical cross-section of the 

coated samples after intentionally fracturing them. This process results in less damage of the 

coating morphology than the traditional method of cutting, mounting and polishing. The porous 

structure is clearly observed. An enlarged view of an area corresponding to the bulk of the 

sample is presented in Figure 42. As observed, the coating is conformal and is typical in a CVD 

deposition process. A continuous and conformal coating is needed to provide good protection 

against corrosion to a sample with an irregular shape such as a filter. 

Mounting Exterior 
Surface 

Interior 
Surface 
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Figure 41. SEM cross-section view of a fractured sample (Run 102). 

 

Figure 42 depicts a comparison of Ti depth profile in coupons from Runs 93, 102 and 

104. In all cases, Ti concentration decreases progressively with depth, which means that the 

ceramic coating gets thinner as it gets inside the coupon. This was an expected feature, because 

TiCl4 used for the deposition is consumed as the gas flows into the sample. The decrease in 

coating thickness with depth indicates that the bulk of the sample is prone to a corrosive attack. 

As can be seen in the plot of Figure 43, coating in the bulk of the sample is thicker in Runs 102 

and 104 than in Run 93. As a consequence, it is expected that they suffer a lower corrosion rate 

in the test. 
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Figure 42. Enlarged view of a zone in Figure 5 (500 microns inside the bulk of the sample). 
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Figure 43. Evolution of Ti concentration with depth in the sample. EDX measurements were performed 
at different locations of the cross-section exposed after fracturing the sample. 
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Figure 44 shows two zones where, after fracturing the sample, a cross-section of the 

coating in Run 104 was exposed. In this area, a clean fracture took place and thus the thin Nb 

interlayer is clearly observed between the substrate and the TiAlN coating. 
 

 

Figure 44.  SEM view of a fractured zone (rUn 104, depth in the sample: 500 μm. The Nb layer (1) and 
the ceramic coating (2) are clearly observed. 

Analysis of a Porous Nitrided Coupon after Exposure to a Simulated Coal Gas at 370°C 

We examined a coated porous coupon after exposure to simulated coal gas at 370°C for 

300 h. This sample from Run 93 was attacked in the corrosion test. We observed that iron 

sulfide scales that plugged the pores were formed in its bulk, but in the most external part of 

the coupon (close to the surface) the coating was protective and the porous structure was intact. 

As mentioned above, Runs 102 and 104 aimed for better corrosion resistance through 

improvement of the coatings at the bulk of the coupons. Figure 45 shows a picture of samples 

from Runs 102 and 104 before (left) and after (right) the corrosion test. The appearance of the 

samples suffered only minor changes during the test, but both suffered a weight gain: 5.1 % 

(Run 102) and 7.9 % (Run 104), slightly lower than what we found in Run 93 (10.3 %). 

However, a better estimation of the corrosion resistance requires observation of the bulk of the 

coupons, as discussed below. 

 

1 
2 
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Figure 45. Samples before and after exposure for 300 h at 937°C in simulated gasifier test. 

Figures 46, 47, and 48 show the cross-section views of fractured coupons from Runs 93, 

102, and 104, respectively, after exposure for 300 h at 370°C. As can be seen in Run 102, we 

extended the zone where the coatings provided enough protection against sulfidation. It seems 

therefore that the protection of the full sample bulk could be achieved with longer deposition 

times. We observed that the sample containing a Nb-based interlayer has even higher corrosion 

resistance in the tested atmosphere. As shown in Figure 48, most of the sample survived the test 

and sulfide scales were only found in the most internal part of the coupon, as evidenced by the 

porosity in the interior of the specimen. Note the contrast in the morphology in the interior of the 

specimen in Run 93 (Figure 46) and the specimen in Run 104 (Figure 48). 

102, before 104, before 102, after 104, after 
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Figure 46. Cross-section of a fractured coupon from Run 93 after exposure for 300 h to the 
low-temperature corrosion test. 

 

 
Figure 47. Cross-section of a fractured coupon from Run 102 after exposure for 300 h to the 

low-temperature corrosion test. 
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Figure 48. Cross-section of a fractured coupon from Run 104 after exposure for 300 h to the 

low-temperature corrosion test. 

Analysis of a Porous Nitrided Coupon with a Diffusion Barrier after Exposure to a 
Simulated Coal Gas at 370°C 

We analyzed solid coupons after a high-temperature corrosion test and found that inter-

layers of metals such as Nb or W increase resistance to sulfidation attack in simulated coal 

stream gas. Several coated specimens containing a Nb barrier layer were prepared and the 

coating conditions are summarized in Table 23. As seen in Table 23, we found the highest 
weight gain during deposition in Run 109, indicating an overall thicker coating was deposited. 
This observation correlates with the lower weight gain measured during the simulated coal gas 
exposure, which indicates the lowest sulfidation degree of all exposed porous coupons. 

 

Table 23.  Deposition conditions (coating composition and deposition time), weight gain during 
both the coating process and the corrosion test. 

Run 
Diffusion 

Layer 
Barrier 
Layer 

Ceramic 
Film 

Weight Gain %
(coating) 

Weight Gain % 
(Sulfidation test) 

93 TiAl (6h) - TiAlSiN (7h) 2.4 10.3 

102 TiAlSi (6h) - TiAlSiN (2.5h) 3.1 5.1 

104 TiAl (8h) Nb TiAlN (4h) 3.5 7.9 

109  TiSi (10h) Nb TiSiN (6h) 6.7 3.1 
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However, the weight gain of 3% during the sulfidation test of Run 109 coupons indicates 

that some sulfidation has taken place. To investigate this, we fractured the exposed sample and 

observed it under a scanning electron microscope. As shown in Figure 49, the sample suffered 

sulfidation only on one side, close to the surface. Since the gas feeding systems in our lab reactor 

are not optimized, it happens occasionally that one side of a coupon is less exposed to the 

reactants than the other. However, the most important observation in Figure 49 is that the bulk of 

the sample was not attacked during the corrosion test. The porous structure of the filter remained 

unplugged and, most important, we did not find any sulfur by EDX measurements. These results 

show that with optimization of the deposition conditions protective coatings can be deposited 

even in the bulk of the samples.  
 

 

Figure 49. SEM cross-section of a fractured sample from Run 109 after exposure to simulated coal gas 
at 370ºC for 300 h. 

Analysis of Nitrided Dense Samples with a Diffusion Barrier to a Simulated Coal Gas at 
900°C 

Table 24 lists the samples and the specific coatings that were deposited with nitrides of 

Ti, Si, and Al. The top panel of Figure 50 shows the picture of the samples before they were 

exposed to simulated gasifier conditions at 900°C. The bottom panel is a photograph of the 

samples after exposure after 300 h.  
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Table 24. Samples exposed in corrosion test 14. 

Run Material Coating 

94 SS409 (Ti,Si)N / (Ti,Al)N / TiAl 

95 SS409 (Ti,Si)N / W / (Ti,Si)N / W / TiAl 

98 SS409 (Ti,Al)N / Nb / TiAl 

112 SS409 (Ti,Al)N / Nb / (TiAl)N / Nb / TiAl

 

 

9594 98 112

 

Figure 50. Samples before and after exposure for 300 h at 900°C in simulated gasifier Test 14. 

 
As seen from the photographs, samples from Runs 94 and 98 showed general corrosion. 

Sample 95 was heavily attacked at the area close to the orifice (top zone during the deposition), 

which accidentally was at the top of the fluidized bed during that run and therefore was not coated, 

as seen in the top panel in Figure 50. However, the rest of the sample was mostly free of the iron 

sulfide blisters typical of sulfide attack. The sample from Run 112 showed only localized 

sulfidation attack in two areas, but the rest of the sample resisted the sulfidation. A common 

feature of the coatings in Runs 95 and 112 is that they have different diffusion barrier inter-layers: 

tungsten interlayer in Run 95 and niobium interlayer in Run 112. The main conclusion from these 

observations is that these inter-layers enhance the sulfidation resistance of the coupons, probably 

because they act as a diffusion barrier for H2S to diffuse to the steel and for Fe to diffuse to the 
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surface. Some characterization of samples after exposure to the corrosion test will be presented 

below. Special attention was paid to sample 112, which showed the highest corrosion resistance at 

900°C for several hundred hours. 

We performed EDX measurements on the areas where the sulfide deposits grew during the 

exposure test (see Figure 50). Results presented in Table 25 show that these deposits are composed 

mainly of iron sulfides with several compositions. Figure 51 shows the X-ray diffraction pattern of 

crystals grown around the orifice of the sample from Run 95 during the corrosion test. The main 

peaks match the diffraction pattern of hexagonal pyrrhotite, an iron sulfide with variable 

stoichiometry. From all these results, it is clear that the corrosion mechanism involves the 

formation of iron sulfide crystals with several stoichiometries that depend on the availability of 

iron atoms at each area. 

Table 25. EDX results of iron sulfide deposits on several samples 

Run Coupon area at% Fe at% S at% Cr 

94 All areas 83 17 - 

Deposits around the orifice 58 42 - 
95 

Deposits in other zones 70 30 - 

98 Deposits, right zone in the photo 39 53 8 

112 Deposits, top right in the photo 75 25 - 
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Figure 51. X-ray diffraction pattern of the crystals that grew around the orifice of the sample from Run 95 

during exposure to simulated coal gas at 900ºC for 300 h. 
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To gain a better understanding of the protection mechanism provided by the coatings in 

Runs 95 and 112, we examined the areas that exhibited resistance. Figure 52 shows micrographs 

at two different magnifications of the zone in coupon from Run 112 that survived the corrosion 

test. Both the reddish areas and the gray areas observed in Figure 50 show the same morphology: 

dense crystals are observed covering the surface. The surface composition on that areas found by 

means of EDX analyses was 77-87 at% Ti, 6-14 at% Cr, 4-8 at% Fe and 0-3 at% Al (note that O 

was not considered for quantification). The reddish area had 3 at% Al, whereas we did not find 

Al in the gray area. As observed in the EDX spectrum presented in Figure 53, sulfur was not 

detected in any of these two zones, thus showing that the coatings provided good protection 

against sulfidation. 

 

 

Figure 52.  SEM top views at different magnifications of the zone that survived the corrosion test 
(scale bars are 200 μm in the top micrograph and 3 μm in the bottom micrograph). 
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Figure 53. EDX spectrum acquired in the zone showed in Figure 52 (bottom micrograph). 

 

We performed some XRD measurements to determine the phases present in the coating 

after exposure to the coal gas. Figure 54 shows the diffraction pattern of the part of the coupon 

from Run 112 that was not attacked after exposure to the simulated coal gas at 900°C. The main 

peaks in the spectrum correspond to rutile, a phase of titanium dioxide (TiO2). This result shows 

that the oxygen activity as a result of the water vapor in the system is high enough to fully 

oxidize TiN. The resulting oxide coating must be dense, free of cracks, and therefore protective 

against sulfidation. Two chromium oxide phases are observed in the XRD spectrum: CrO and 

Cr2O3. It is well known that chromium oxide scales provide corrosion protection in many 

environments, so the formation of these phases provides an added protection to the steel 

substrate. Note that the only observed peak corresponding to substrate steel has a very low 

intensity, indicating that the overlaying coating is relatively thick. 
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Figure 54. X-ray diffraction pattern of the zone from coupon 112 that survived sulfidation during 
exposure to simulated coal gas at 900ºC for 300 h. 

 

In order to study the coating morphology after exposure to coal simulated gas at high 

temperature, the coupon was intentionally fractured. A cross-sectional SEM view is presented in 

Figure 55. EDX measurements showed that the zone labeled as 1 in the micrograph corresponds 

to the titanium dioxide scale observed also in top SEM views (Figure 52) and detected by means 

of XRD measurements (Figure 54). Interestingly, the zone labeled as 2 had a high Cr content 

(77.8 at%), some Ti (13.0 at%) and Fe (9.2 at%). It is probably in this area that the mixture of 

chromium oxides, as detected by XRD, was formed. The zone labeled as 3 is the base 409 

stainless steel. We conclude from these characterizations that a protective titanium and 

chromium oxide scales were formed in the areas that survived the sulfidation during exposure to 

simulated coal gas at 900ºC. 
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Figure 55. Cross-section micrograph of the exposed coupon from Run 112 after fracturing. 

Analysis of Coupons with Multilayer Coatings before Exposure to a Simulated Coal Gas at 
900°C 

The results discussed in the previous section show that coatings containing a combination 
of several ceramic/metal layers are effective in protecting SS 409 alloy coupons during exposure 

to simulated coal gas at 900ºC. We carried out several experiments to deposit four ceramic layers 

and four metal inter-layers, as shown in Table 26. 

Characterization of similar coatings with a few nitrided layers has been discussed earlier. 

Coatings deposited in Runs 119 and 120 (with Nb and Ta inter-layers) showed good adhesion. 

Cross-sectional views of a coupon from Run 120 after mounting and polishing (Figure 56) and 

after fracturing (Figure 57) revealed that the desired layered structure was achieved. As observed 

in Figure 56, the coating was conformal and showed good adhesion to the substrate (note that the 

sample was mounted under pressure). Figure 57 shows that the individual layers are dense and 

have a fine-grained structure. 
 

Table 26. Coupons with multilayer coatings  

 

 

 

 

Run Material Coating 
119 SS409 4 x [(Ti,Al)N / Nb ] / TiAl 
120 SS409 4 x [(Ti,Al)N / Ta ] / TiAl 
121 SS409 4 x [(Ti,Al)N / Zr ] / TiAl 
122 SS409 4 x [(Ti,Al)N / W ] / TiAl 
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Figure 56. SEM cross-section of a sample from Run 120 showing the substrate (bottom), the multilayer 
coating and the mounting polymer (top). 

 

 
Figure 57. SEM cross-section of the fractured sample showing a closer view of the coating. 
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Analysis of Coupons with Multilayer Coatings after Exposure to a Simulated Coal Gas at 
900°C 

Coupons coated with the multilayers described in the previous section were exposed to 

simulated coal gas at 900ºC. Figure 58 shows a picture of the samples before and after the 

corrosion test. As can be seen, the coupon from Run 119 (Nb interlayers) showed good 

sulfidation resistance under the tested conditions. The weight change that we measured was only 

of 1.2% (typical weight gains in similar coupons were in the range 5-10% if they showed partial 

corrosion resistance, and above 10% if they were severely attacked). As observed in the picture, 

minor corrosion was observed only in two zones at the edge of the coupon, due to normal 

vertical inhomogeneities in the laboratory reactor. Examination of the corroded areas in other 

samples revealed that the sulfide scales formed had the same composition and morphology found 

in previous corrosion tests.  
 

 

119 120 121 122 

 

Figure 58. Samples before and after exposure for 300 h at 900°C in simulated gasifier Test 15. 
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A top SEM observation of the coupon from Run 119 after exposure to simulated coal gas 

(Figure 59) showed that it has the same surface morphology as found in coupon areas that 

survived during exposure in the previous corrosion test, namely, a homogeneous microcrystalline 

coating. EDX analyses in several areas revealed the following surface composition: 1-2 at% Al, 

92-95 at% Ti, 2-4 at% Cr, 0-2 at% Fe and 1 at% Nb. We did not detect any S by means of EDX 

measurements, indicating that no sulfidation has occurred. The XRD analysis of the surface 

showed only the presence of oxides of titanium and chromium with extremely low levels of iron 

(Figure 60). 

 
 

 
Figure 59. SEM top view of the coupon from Run 119 after exposure to simulated coal gas at 900ºC for 

300 h (scale is 10 μm). 
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Figure 60.  X-ray diffraction pattern, coupon from Run 119 after exposure to simulated coal gas at 

900ºC for 300 h. 

 

Figure 61 is the SEM cross-sectional views at two magnifications of the exposed coupon 

from Run 119 after intentionally fracturing it. The titanium dioxide (TiO2) crystals that form the 

external coating layer are clearly seen. Although there is some porosity as a result of elemental 

diffusion and oxide formation, after exposure to the corrosion test the coating is still relatively 

dense. The results of a line EDX analysis carried out across the coating are presented in 

Figure 62.  
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Figure 61. Cross-section micrographs at two different magnifications of the exposed 

coupon from Run 119 after fracturing (scale bars are 30 μm in top micrograph 
and 3 μm in bottom micrograph). 
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Figure 62. Elemental EDX line analysis across the coating shown in the bottom micrograph in Figure 61 

(Origin in x-axis corresponds to coating surface). 

 

From left to right in each plot, the Ti-based coating and some Nb- and Cr-rich layers are 

clearly seen. In the Fe plot it is clearly seen that outward diffusion of this element was blocked 

by the coating. Since Fe diffusion is known to be the key process leading to corrosion of steels 

by sulfidation in the tested environment, this result shows that a multilayer coating formed by 

combination of Ti-based nitride films with Nb interlayers is a good candidate for protecting 

components of coal gasification plants. 

EXPOSURE TO AN OPERATING GASIFIER ENVIRONMENT 

We conducted several long-term exposure tests at the WREL facility in Terre Haute, IN. 

The samples were inserted and withdrawn and the gasifier shut down for scheduled maintenance. 

Table 27 lists the first batch that was sent for the gasifier test in June 2004. However, because of 

certain difficulties with the gasifier operation, the samples were never exposed to coal gas. Those 

samples were exposed to about 100 h of start-up attempts with natural gas. 
 

Table 27. Samples sent for gasifier exposure tests (June 2004) 

Coupon # Size (mm) Marking Alloy Coating Run No. 
1 31 x 27 x 3.5 None Porous 316 TiN, TaN 47 

2 50 x 25 x 3.5 None Porous 316 Cr 41 

3 55 x 25 x 3.5 None Porous 316 Si/TiN 50 

4 14 x 52 x 9.7 None 409 Cr 49 

5 51 x 19 x 3.5 405-11 405 Cr 49 

6 51 x 19 x 3.5 304, A4074 
A0765 304 Cr 42 

7 51 x 19 x 3.5 410, HTT 478
B0154 410 Cr 48 

8 51 x 19 x 3.5 410-09 410 Si/TiN 50 
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Subsequent plant shutdown and labor disputes delayed the start of the next run. In July 

2005, the plant was to be restarted, and that presented another opportunity to test samples in a 

real gasifier. During that period, we had improved our coating procedures and also observed that 

oxidized Cr/Al-Al and TiN coatings seemed to be quite effective. We chose samples of coated 

and uncoated alloys (listed in Table 28) for the test, and sent them to Conoco/Phillips. These 

samples will likely be retrieved when the plant is next shut down for scheduled maintenance.  
 

Table 28. Samples for gasifier exposure tests (April 29, 2005) 

Coupon  Alloy Marking Coating Run No. Size (mm) 
1 HR160 05 None - 41.7x19.6x3.2 

2 I 800 08 None - 51.2x19.4x3.7 

3 SS 410 05 None - 51.2x19.6x3.0 

4 SS 304 L 02 None - 51.2x19.5x3.0 

5 SS 409 12 Cr-Al/Al/Ox 59 51.5x19.5x3.9 
6 SS 409 16 Cr-Al/Al/Ox 70 51.3x19.5x3.8 
7 SS 409 17 Cr-Al/Al/Ox 70 51.4x19.5x3.8 
8 SS 405 15 TiN 66 51.2x19.6x3.6 
9 SS 405 16 TiN 66 51.2x19.5x3.4 

10 SS 409 18 TiN 68 51.5x19.5x3.8 
11 SS 409 20 TiN 68 51.4x19.5x3.9 
12 SS 316 

porous 
- TiN 62 52.8x24.8x3.3 

1. Sample 5 has already survived 500+ hours in simulated gasifier environment in the lab. 
2. Sample 12 will not survive the high-temperature conditions. It is to be exposed to only colder 

gases after the HTRU, perhaps in a slip stream.  

Figure 63 shows a picture of the samples before and after exposure. The unlabeled 

samples were those that Conoco/Phillips had put in for their own work. The samples were 

subjected to 1,100 h of the high-temperature synthesis gas environment. All the samples were 

severely damaged, with many of them even falling off the coupon tree and getting lost in the 

gasifier. One of the samples (#5) SS409 coated with Cr/Al oxide had already survived over 500 

hours in simulated coal gas stream with no apparent degradation. Only the Haynes alloy (#1) 

remained on the sample holder, but even this sample showed extensive sulfidation attack. Other 

samples that seemed to have survived to some extent were Inconel 800 (#2), austenitic stainless 

steel SS304 (#4), and two SS409 samples coated with TiN (#10 and #11). Note that the Inconel 

800 coupon was severely sulfided even in the laboratory test. The severity of damage in all these 

samples suggests that the environment in the gasifier is much harsher than that provided in the 

laboratory test. To a large extent this may be due to the erosion by particles that is not provided 
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in the lab setup. However, the specific problem of tube sheet corrosion is not exacerbated by 

erosion due to ash particles, and so the coupon tree setup may represent a vastly more severe test. 
 

 

 
Figure 63. Samples before and after exposure to the hot gas stream in the Wabash River Plant during 

May-Sep, 2005 (1,100 hours, petcoke syngas) 

 

A second batch of samples (Table 29) was submitted to Conoco/Phillips for testing in 

their gasifier in October 2005. Figure 64 shows photographs of the tree with the samples before 

and after exposure in the high-temperature, abrasive synthetic gas stream for 3,814 h. During 

removal of the coupon tree, the coupon designated as 410-01 was inadvertently broken off. This 

was the only coupon to have remained intact. A second detached coupon that can be seen in the 

photo was recovered during an earlier vessel inspection, as it had already broken off. 
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Table 29. Samples for gasifier exposure tests (October 17, 2005) 

Coupon  Alloy Coating Run No. Weight (g) Size (mm) 

1 SS 409 Cr/Al/Al-Ox 76 11.4886 51.1X19.3X1.74 

2 SS 410 Cr/Al/Al-Ox 73 9.9638 51.2X19.4X1.5 

3 SS 409 Ti/Al Nitride 77 11.3632 51.1X19.5X1.7 

4 SS 409 Ti/Al Nitride 77 11.1244 51.2X19.4X1.7 

5 SS 410 Ti/Al Nitride 79 9.9997 51.2X19.4X1.5 

6 SS 405 Ti/Al Nitride 80 7.8017 51.0X19.4X1.3 

7 SS 409 Ti/Ta Nitride 81 11.3005 51.0X19.3X1.7 

8 SS 409 Ti/Ta/Al Nitride 82 11.3563 51.1X19.4X1.7 

9 SS 409 Ti/Al Nitride 85 11.5160 51.1X19.4X1.7 

10 SS 410 Ti/Si Nitride 86 9.9388 51.1X19.4X1.5 

11 SS 405 Ti/Si Nitride 87 7.7653 51.0X19.4X1.3 

12 SS 409 Ti/Si Nitride 87 11.4653 51.1X19.3X1.7 

13 SS 410 Ti/Si Nitride 87 9.8130 51.1X19.5X1.5 

 

 

 
Figure 64.  Samples before and after exposure to the hot gas stream in the Wabash River Plant during 

May-Sep, 2005 (3,814 h) 
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Characterization of Porous Coupons after the Long-Term Exposure 

Porous coupons from Runs 62 and 88 were exposed at 370ºC for 2,140 h at the Wabash 

River Gasifier plant. These coupons contained coatings of Cr/Al (Run 88) or nitrided Ti/Ta 

(Run 62).  After exposure, the samples retained their structural integrity allowing detailed 

examination.  In the exposed sample from Run 62, we could not observe internal porous 

structure, due to the growth of sulfide scales in the interior of the sample (Figure 65). Table 30 

shows results of EDX measurements carried out at the marked points in the micrograph, which 

show high S contents in many areas, and we observed the presence of sulfide islands. We did 

not detect the presence of Ti or Ta. 

 
 

 

Figure 65. SEM of the top of sample from Run 62. 

 

Table 30. EDX analyses at points marked in Figure 65 

Point Atom% Si Atom% S Atom% 
Fe 

Atom% Ni 

1 - 45.5 14.6 39.5 
2 - 45.8 23.2 30.7 
3 - 31.3 37.1 30.8 
4 - 22.9 38.7 37.3 
5 6.47 33.2 34.0 26.4 
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A cross-section of the sample, after cutting, mounting and polishing, is shown in 

Figure 66. The insets in the micrograph are EDX mapping for S, Cr, Fe, Ni. As can be seen, Cr 

and S maps are complementary, Fe is detected in all zones, and Ni is especially concentrated at 

the surface. This elemental distribution confirms that the scales formed after exposure are mainly 

Ni and Fe sulfides. This observation indicates that TiTaN-coated 316 alloy steel did not survive 

the corrosion test.  
 

 

Figure 66. SEM cross-section view and map of EDX analyses for S, Cr, Fe and Ni. 

 

Figure 67 shows the SEM photograph of the surface of a coupon from Run 88 after 

exposure to the gasifier plant environment. The morphology of the sample did not change after 

exposure; the porous structure generated by sintering alloy steel powder remains unchanged. 

Results regarding EDX surface analyses done in three different zones of the coupon are 

presented in Table 31. They show a high surface concentration of Al and a low concentration of 

S. According to these results, an alumina layer was formed that covered the steel and prevented 

the formation of iron sulfide.  
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Figure 67. SEM of the surface of the porous coupon from Run 88 after exposure in the gasifier. 

 

Table 31. EDX results of the coupon from Run 88 after exposure in the Gasifier 

 Atom% Al Atom % Si Atom % S Atom % Cr Atom % Fe 
zone 1 55.5 3.7 4.3 12.4 24.2 
zone 2 58.7 3.5 2.6 4.7 30.7 
zone 3 53.9 1.7 0.6 14.4 29.1 

 

Figure 68 shows a cross-section view of the porous sample as observed in the SEM. We 

observed clearly that the external part of the coupon (approximately the first 100 μm) is different 

than in the bulk. To investigate the differences, insets in the same figure show EDX maps for Fe, 

Cr, Al, S and Ti, in this order. As observed, the external part is rich in Al. But beneath the 

external area, a solid was found inside the voids of the filter, composed of S and Fe. This 

observation suggests that an alumina layer was formed in the external portion that was protective 

against sulfidation, but such protection did not occur in the bulk of the sample. We believe that 

Al was not deposited in the interior portion of the sample. During coating deposition, AlCl3(g) 

reacts in contact with the coupon and it is depleted as the gas infiltrates into the bulk of the 

sample. As a consequence, Al deposition is more efficient in the external parts of the coupon. In 

the outer zone, a protective alumina layer can be formed. 
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Figure 68. SEM cross section, porous coupon from run 88, and EDX map for Fe, Cr, Al and S. 

 

In summary, the results from the gasifier exposure tests show that the conditions inside 

the gasifier are aggressive.  At 900°C, the coated coupons did not survive the test conditions, 

although they no significant sulfidation was observed in the simulated, bench-scale exposure 

tests.  The difference between tests with simulated and actual gasifier conditions may be due to 

(1) increased length of duration and (2) higher temperature at the actual gasifier.  Under these 

conditions, the Cr and Al surface coatings may have diffused into the bulk of the coupons 

thereby decreasing their enhancement at the surface.  Such depletion would have reduced the 

resistance to attack by H2S and allowed iron sulfide formation. 

The gasifier exposure tests at 370°C showed Cr/Al coatings provided sufficient corrosion 

resistance to low alloy steel substrates such as SS409 alloy.  Most of the exterior of the tested 

coupons showed little sulfide attack.  Although a certain level of sulfidation occurred at the 

interior of the coupon due to non-uniformity of the coating, improving the coating process can 

produce acceptable filters made of low alloy steel.  
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CONCLUSIONS AND RECOMMENDATIONS 

Based on this study, the following conclusions are derived: 

1. The fluidized-bed chemical vapor deposition technique is ideally suited to 
deposit diffusion coatings of Cr and Al for protection against sulfidation 
corrosion in coal gasification gas streams.  The technique can be used also to 
deposit adherent multilayer coatings containing Si, Ti, Al, and Nb with 
subsequent nitridation of these elements to increase the corrosion resistance. 

2. Bench-scale exposure tests at 900°C with a simulated coal gas stream 
containing 1.7% H2S showed that the low alloy steels such SS405 and SS409 
coated with ~20%Cr and Al each can be resistant to sulfidation attack for 
500 h. 

3. Multilayer coatings containing Ti and Si nitrides along with a diffusion barrier 
containing Nb were deposited on SS410 and they were found also to be 
resistant to sulfidation attack in the bench scale tests at 900°C. 

4. Exposure to an actual coal gasifier gas stream at the Wabash River gasifier 
facility for 1000 h in the temperature range 900° to 950°C indicated that the 
diffusion coatings containing Cr and Al diffused further into the substrate 
decreasing the protective ability of these elements against attack by H2S.   

5. The FBR-CVD technique was also capable of depositing diffusion coatings 
containing Cr and Al onto porous steel substrates such as those used as an ash 
particulate filter.  As with the dense substrates, the technique can be used also 
to deposit multilayer coatings containing nitrides of Ti, Al, and Si with 
diffusion barrier elements such as W and Nb in porous substrates. 

6. Bench-scale exposure tests with a simulated coal gas containing 1.7% H2S at 
370°C showed that porous SS 409 alloy coupons can be resistant to 
sulfidation attack when coated with Cr/Al or nitrides containing Ti, Si, and Al. 

7. Exposure test at the Wabash River gasifier facility at 370°C for 2100 h 
showed that only a minor sulfidation attack occurred inside the porous SS409 
alloy coupons that contained Cr and Al diffusion coatings.  This attack can be 
prevented by improving the coating process to deposit uniform coatings at the 
interior of the porous structure.  The coupons coated with the multilayer 
nitride coatings were attacked by H2S in this long-term test. 
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Based on the results of this study, the following recommendations are made: 

1. Additional studies need to be initiated to optimize the FBR-CVD process 
to deposit diffusion coatings of the corrosion resistant elements such as Cr, 
Al, and Ti inside porous metal filters to increase their corrosion resistance. 

2. Long-term exposure tests using an actual gas stream from an operating 
gasifier need to be conducted to determine the suitability of the coatings 
for use in the gasifier environment. 
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