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Abstract 

We present the first comprehensive investigation on water-soluble nanoparticles 

embedded into a paramagnetic shell and their properties as an MRI contrast agent.  The 

nanoprobes are constructed with an inorganic core embedded into an ultra-thin silica shell 

covalently linked to chelated Gd3+ paramagnetic ions that act as an MRI contrast agent. 

The chelator contains the molecule DOTA and the inorganic core contains a fluorescent 

CdSe/ZnS qdots in Au nanoparticles. Optical properties of the cores (fluorescence 

emission or plasmon position) are not affected by the neither the silica shell nor the 

presence of the chelated paramagnetic ions. The resulting complex is a  MRI/ florescence 

probe with a diameter of 8 to 15 nm.  This probe is  highly soluble in high ionic strength 

buffers at pH ranging from ~4 to 11. In MRI experiments at clinical field strengths of  60 

MHz, the QDs probes posses spin-lattice (T1) and a spin-spin (T2) relaxivities of  1018.6 

+/- 19.4 mM-1 s-1 and 2438.1 +/- 46.3 mM-1 s-1  respectively for probes having ~ 8 nm. This 

increase in relaxivity has been correlated to the number of paramagnetic ions covalently 

linked to the silica shell, ranging from approximately 45 to over 320. We found that each 

bound chelated paramagnetic species contributes by over 23 mM-1 s-1 to the total T1 and by 

over 54 mM-1 s-1 to the total T2 relaxivity respectively. The contrast power is modulated by 

the number of paramagnetic moieties linked to the silica shell and is only limited by the 

number of chelated paramagnetic species that can be packed on the surface. So far, the 



sensitivity of our probes is in the 100 nM range for 8-10 nm particles and reaches 10 nM 

for particles with approximately 15-18 nm in diameter. The sensitivities values in 

solutions are equivalent of those obtained with small superparamagnetic iron oxide 

nanoparticles of 7 nm diameter clustered into a 100 nm polymeric shell. A thin 

paramagnetic silica shell as interface with the bioworld presents several advantages over 

polymeric coating or dendrimers in terms of in vivo biocompatibility and ease of 

functionalization with targeting biomolecules. Theoretically, these relaxivity values are 

high enough to be detected by MRI of a single cell labeled with 105 probes. We briefly 

discuss the importance of probes coated with a paramagnetic silica shell for the detection 

and treatment of diseases in vivo. 
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Recent years have witnessed a new age in fluorescence imaging driven by 

remarkable advances in detection technologies. The ability to discern fluorescent markers 

at the single molecule level is important for molecular imaging, in particular for 

monitoring signaling pathways in live cells or for the study of cellular metabolism.1 

Qdots represent a new form of fluorescent agents that possess many of the properties 

added to perform these studies.2 They have the size of a protein and can be programmed 

to acquire biological functions, they are well tolerated by live cells, they afford 

multiplexed detection due to their tunable emission, they are resistant to photobleaching, 

and they can be tracked at the single molecule level over extended periods of time. 3, 4 

Thus, by using biologically engineered QDs, there is great potential for learning  more 

about the molecular basis of certain diseases, such as cancer, and finding a therapeutic 

treatment. 5, 6 

 For this noble cause, a big leap forward has to be taken to correlate the deficiency 

of a cell in vitro to a disease in vivo. Cells reside in highly structured 3D environments. 

They are sensitive to the extracellular matrix and to the presence of neighboring cells 

with which they make mechanical or biochemical contact. Although most diseases 

originate from the malfunction of a single cell, whether the disease spreads ultimately 

depends on whether the cell and its daughters can survive and proliferate by beating the 

feedback control mechanisms in a complex 3D multicellular organism. It is therefore 

important to know not only what happens within a single cell but also how cells 

communicate and socialize and how they respond to stimuli in vivo. 

 



In this regard, the use of bioengineered QDs is problematic because fluorescence has one 

notorious shortcoming: light has a penetration depth of less than a few millimeters in the 

best case. As a result, fluorescence is a powerful tool mainly limited to in vitro imaging. 

In vivo medical applications, such as detection of tumors or metastatses, or the tracking of 

stem cells after cell therapy treatment require a different set of non-invasive imaging 

probes and techniques.7-9 

 Magnetic resonance imaging is a method of choice for in vivo visualization 

because of its infinite penetration depth and its anatomic resolution. MRI has the ability 

to map the relaxation processes of water protons in the sample, referred as T1 and T2 

relaxation times. One of the powers of MRI is its ability to extract image contrast, or a 

difference in image intensity between tissues, on the basis of variations in the local 

proton environment. Unfortunately, intrinsic differences between tissues are often too 

small to provide distinguishable relaxation times for protons. This is why exogenous 

contrast agents are often used, most notably in the form of small amounts of 

paramagnetic impurities, such as chelated Gd3+.10 They accelerate the T1 and T2 

relaxation processes of water protons in their surrounding. However, contrast between 

tissues is often too weak for a firm diagnosis.  One way to increase contract is to use an 

agent that is specifically targets one type of tissue11  Another option is the development 

of a contrast agent with enhanced sensitivity12 

 The performance of a contrast agent in solution is measured by its relaxivity, 

defined as 1/Ti ~ ri *[C], i=1,2, where ri is the relaxivity and [C] the concentration of the 

contrast agent. The higher its relaxivity, the more sensitive the contrast agent. T1-contrast 

agents are agents that affect mostly the longitudinal relaxation time. They are usually 



made of chelated lanthanide ions and reach relaxivities of 5-50 mM-1 s-1. 13 Higher 

relaxivities are obtained with T2-contrast agents, i.e. agents that affect mainly the 

transversal relaxation time, which is the most prominent of which are iron oxide 

nanoparticles. These particles, used in clinical trials, have sizes around 50-200 nm in 

diameter. At this size range, they often exhibit a hysteresis curve upon application of a 

reversal magnetic field, a sign that the magnetic moment is tightly bound to the crystal 

structure. Superparamagnetic behavior (i.e. no hysteresis upon a switching field) is 

preferred for MRI applications. The SP regime is the realm of smaller magnetic 

nanoparticles with core sizes below 20 nm, often labeled SPIO (Small Superparamagnetic 

Iron Oxide). 14 Decreasing the size of the SPIO nanoparticles also leads to a decrease in 

their total magnetic moment and reduces their contrast power in MRI. In this work, we 

present and characterize a probe construct that reaches T1 and T2 relaxivities of up to 

approximately 13’000 and ~15’000 mM-1 s-1 at clinical fields while its size is only 15-20 

nm. Smaller constructs of size in the range of 8-10 nm exhibit relaxivities of 

approximately 1000 and 2000 mM-1 s-1.  

The construct consists in an inorganic nanoparticle core (fluorescent CdSe/ZnS or 

Au) embedded into a thin paramagnetic silica shell. These silica-coated scaffolds are 

about 10 nm in size and are used to covalently anchor multiple GdDOTA molecules. We 

present evidence that a multi-component mechanism contributes to these exceedingly 

high relaxivity values. The mechanism involves a large number of GdDOTA moieties, 

the slowing of tumbling rate of GdDOTA and the hydrophilicity of the silica surface. In 

fact, the number of GdDOTA moieties linked to the silica shell can be tuned from 20 up 

to 320, and each unit contributes additively to the total relaxivity. Moreover, we observe 



that the T1 and T2 relaxivities per GdDOTA unit (or ion relaxivity) is increased by a 

factor of 5 and 10 respectively when GdDOTA is bound to the silica shell compared to its 

mobile form in solution, and by a factor of 2 and 3 respectively compared to the case 

when GdDOTA is linked to nanoparticles through a flexible, weakly hydrophilic 

phospholipids layer.  

The design of our probe can be easily extended to cover PET imaging, and we do 

not foresee any difficulty to enhance the capability of the silica-coated probes by adding a 

targeting mechanism. We will discuss a set of advantages provided by silica over 

polymeric coatings that have surfaced recently in in vitro studies that may pave the way 

to in vivo imaging. 

 

 

2 Experimental Details 

2.1 Synthesis and characterization of silanized CdSe/ZnS QDs and Au 

nanocrystals coated with Gd-DOTA 

 

In both cases, we use a three-steps process: first we grow a PEG-ylated silica shell 

containing thiol groups around the inorganic cores (semiconductor or metalic); second we 

synthesize paramagnetic agents made of an amine-terminated DOTA molecules that 

chelates Gd3+ ions; third we covalently crosslink the chelated paramagnetic compound to 

silanized particles using a bifunctional cross-linker. 

Silanization of QDs: The synthesis and silanization of CdSe/ZnS QDs, or simply 

SiO2@QD, follow published procedures. 15, 16 Briefly, after a priming step replacing 



TOPO surfactants on the QD surface with MercaptoPropyltrimethoxySilane (MPS), 

polymerization of siloxane is performed in methanol under slightly basic conditions. In a 

second step, addition of fresh MPS and PEG-propyltrimethoxysilane permits the 

introduction of functional (SH) and stabilizing (PEG) groups respectively into the 

forming SiO2 shell. Silane polymerization is quenched with trimethylchlorosilane that 

converts reactive silanol groups into methyl groups. This allows controlling and limiting 

the size of the silica shell to a thickness of a few nanometers. After extensive dialysis 

against fresh methanol and subsequently against 10 mM phosphate buffer, pH os 

approximately 7-7.5, silanized QD solutions are concentrated using centricon 100 down 

to optical densities greater than 30-70 and purified further by low pressure 

chromatography using a 20 cm long, 1cm ID column filled with sephadex G200 or 

sephadex G100. Silanized qdots elute in a rather large band. Typically, we load ~ 500-

700 µl of solution and collect approximately 5 µl of solution. Solutions of silanized 

Qdots are stored at room temperature at optical densities in the range of 3-6. 

Silanization of Au nanoparticles: A similar approach is used to silanize citrate- 

stabilized Au nanoparticles of 5 nm and 10 nm purchased at BBI International. However, 

in the case of colloidal Au, silanization is performed in an aqueous environment because 

the particles would not disperse in methanol. Since citrate-coated Au nanoparticles 

aggregate easily even in low ionic strength buffers, the Au colloids are first stabilized 

with a phosphine surfactant, as we have reported previously 17, 18. Phosphine-stabilized 

Au colloids are precipitated with ethanol and resuspended into a solution of 1:1000 v:v 

MPS in water to exchange the capping ligands to a thiolated siloxane. After this priming 

step, an approach similar to the QDs case is taken, with the growth of a shell using MPS 



and PEG-silane, quenching of the shell growth using trimethylchlorosilane. All these 

steps are however performed in water. After the procedure is completed, silanized Au 

colloids are purified using centrifugation. Silica-coated Au nanocrystals can be 

concentrated with a centricon 100 device to dryness. Upon addition of buffer, the 

particles resuspend spontaneously by a gentle shake. Such purification is performed 

several times. Despite these multiple washing steps and large concentrations (optical 

densities in the range >100), the plasmon peak of silanized Au colloids measured by UV-

Vis does not shift compared to the original diluted samples for both 5 and 10 nm colloids. 

We take it as a sign that silanization did not induce aggregation of the particles. 

The size estimates of the silanized particles are based on previous AFM investigations 

because the thin silica shell is hardly visible under a TEM. Based on those studies, our 

estimate is that the silica shell is about 2-3 nm thick and adds 4-6 nm to the particle 

diameter. In this study, we focus on ~5 nm naked CdSe/ZnS, and 5 nm and 10 nm citrate-

stabilized Au colloids. After silanization, the respective sizes are ~10 nm for silanized 

QDs, ~10 nm for 5-nm Au, and ~16-18 nm for 10 nm Au. 

Gd3+ chelation with a DOTA moiety: The synthesis of GdDOTA, i.e. one Gd3+ ion 

chelated by DOTA, is performed according to the procedure, adapted from previous 

reports. 19, 20 We dissolve p-NH2-Bn-DOTA, i.e. 2-(4-Aminobenzyl)-1,4,7,10-

tetraazacyclododecane-1,4,7,10-tetraacetic acid, (Macrocyclics Inc., hereafter called 

simply DOTA) in water and add an aqueous solution of GdCl3 (Sigma-Alrich), so as to 

have a 1: .98 molar mixture of DOTA:Gd3+ and ~0.2 M concentration in DOTA. The 

solution is heated a few seconds to 80oC to favor complexion of Gd3+ with the 

tetraazacyclododecane ring. The pH of the solution drops below 1. We bring the pH to 



3.5-4 by adding aliquots of 7M NaOH and heat the solution back to 80oC for a few 

minutes. At this early stage, heating produces acidification of the solution. Therefore, we 

repeated heating-adjusting the pH to 3.5-4 with sodium hydroxide several times (up to 7 

times) until the heating step does not produce a drop in pH below 3.5 is performed. At 

that stage, the solution is kept at 80oC for 3 hrs. Completion of the Gd3+ chelation is 

confirmed by a colorimetric assay using Arsenazo dye (Sigma-Alrich). This colorimetric 

dye reacts to the presence of unbound Gd3+. The dye natural color is purple, but upon 

complexion with Gd3+, its color turns to blue. After 3 hrs, the GdDOTA solution is 

slightly yellowish and has a concentration of approximately 150 mM in GdDOTA, 

deduced from the initial amount of DOTA, GdCl3 and NaOH used. The stability of the 

GdDOTA has been studied only summarily using the colorimetric Arsenazo test. No 

Gd3+ release from the DOTA ring was observed over a period of several weeks.  

Linking GdDOTA to silanized nanoparticles: Freshly prepared paramagnetic GdDOTA 

is covalently linked to silanized nanoparticles to form GdDOTA-SiO2@Particle. First the 

amino group on the GdDOTA unit is converted into a maleimide group using sulfo-

SMCC and classic bioconjugation conditions (pH ~ 6-6.5, SMCC:DOTA ~ 3:1). 21 After 

one hour reaction, the maleimide-activated GdDOTA is directly reacted to silanized 

particles. The reaction is kept running for ~24 hrs at room temperature. Removal of 

unbound GdDOTA is performed by a 48 hrs dialysis in a 50K MWCO membrane 

(SpectraPor 6) against a bath consisting in 10 mM phosphate buffer, pH ~ 7. We 

exchange the buffer bath at least 4 times during the dialysis period. After dialysis, the 

sample is further purified by 4 to 5 runs of centricon 100. For each run, 2 ml of silanized 

particles are condensed down to <100 µl and ~ 1.9 ml of fresh buffer is added. After 



these extensive purification steps, we estimate that the concentration of unbound 

GdDOTA is in the fM-pM range, far too small to provide any signal in MRI and far 

smaller than a few µMs, the typical concentration of silanized nanoparticles. 

 Determination of the concentration of the samples: The concentrations of our 

solutions are given in terms of silanized nanoparticle concentration and not in terms of 

Gd3+ present in solution. This seems to be a wise choice, if one considers that all Gd3+ are 

concentrated onto the nanoparticle surface and the solution is not homogenous in Gd3+. 

[at 1 mM concentration, the average distance between 2 nanoparticles is ~ 100 nm, so 

Gd3+ is highly localized]. 

 We measure the UV-Vis spectrum and deduce the concentration of the solution from 

the optical density at the exiton (for semiconductors – QDs) or plasmon (for Au colloids) 

peak using known extinction coefficients and the following equation: C = OD / (ε . δ), 

where OD is the optical density or amplitude of absorption at the exiton/plasmon peak, δ 

is the cuvette length (usually 1 cm or 2 mm) and ε is the extinction coefficient. The 

extinction coefficients are deduced from the literature (QDs) or given from the 

manufacturer (Au). We use the following numbers: QD exiton peak at ~ 610 nm, 

fluorescence emission at ~ 630 nm, fwhm ~38 nm, extinction coefficient used 620’000 

M-1cm-1 following published reports. 22 For 5 nm an 10 nM Au colloid, both plasmon 

peaks are at 524 nm and we use ε= 1,2 x 107 M-1cm-1 for 5 nm Au and ε= 1.06 x 108 M-

1cm-1 for 10 nm Au respectively. These later numbers are computed from the 

concentrations given by the manufacturer and the OD of citrate-stabilized Au colloids 

measured directly of the bottle. 



 Determination of the number of Gd per silanized nanoparticle: After extensive 

purification from unbound GdDOTA, these samples are chemically analyzed by ICP-MS 

by measuring the total amount of Gd and Cd or Au ions.  By assuming bulk parameters of 

the CdSe or Au lattice and the size of the nanoparticles (using tabulated values linking 

the size of the QDs to its optical properties, or the claimed size for Au nanocrystals), we 

deduce the number of Gd per silanized nanoparticle. The same samples were previously 

analyzed by MRI. The number of GdDOTA per GdDOTA-SiO2@Particle varies from ~3 

to >250 and depends on the size of the initial nanoparticles and the conditions used 

during bioconjugation. 

 

2.2 20 MHz and 60 MHz NMR Minispec Parameters 

 

 T1 and T2 relaxation time measurements were performed on a Bruker Minispecs 

operating at 20MHz and 60MHz.  An inversion recovery pulse sequence was employed 

for T1 relaxation time measurements using a mono exponential fit to the recovery curve.  

For each experiment 4 scans were collected with a recycle delay of 15 seconds.  To 

obtain the recovery curve, 50 evenly spaced points were collected with the first point 

acquired at 5 ms.  The last time point was collected at 4000 ms for short T1 samples and 

10,000 ms for samples with long T1 so that each sample was allowed to fully recover. 

The receiver gain for each sample was set so that the signal amplitude was approximately 

60%. 

 T2 times were calculated from a mono exponential fit to a spin echo decay curve 

using a CPMG pulse sequence.  Eight scans were acquired for each experiment with an 



echo time of 1ms, pulse attenuation of 6dB, and recycle delay of 3 seconds.  The number 

of echo times was varied between 100 points, for short T2s, and 3500 points, for long T2s, 

in order to 1acquire the full decay curve for each sample.  The receiver gain for each 

sample was set to the same value that was used in the T1 experiment.  

 

2.3 Bruker 2.5mm MicroImaging MRI system parameters  

  

All MRI experiments were performed on a Bruker Avance 400 MHz spectrometer 

equipped with a high-resolution Micro5 microimaging system with a 25 mm rf coil. To 

obtain spin-lattice relaxation (T1) values, a Fast Imaging with Steady State Precession 

(FISP) with Inversion Recovery (IR) Sequence was used. The MRI parameters for FISP 

include echo time of 1.5 ms, repetition rate of 3.0ms, 8 averages, number of segments of 

32, field-of-view of 3x3 cm, resolution of 234x234, microns/pixel, flip angle (alpha) of 

60°, and inversion delay (T1) of 235.5 µsec.  To obtain spin-spin relaxation (T2) times a 

Multi Slice Multi Echo (MSME) Sequence was employed. The MRI parameter for 

MSME including number of echoes of 32, time of echo is 13.8 ms, repetition rate of 

10,000 ms, field-of-view of 3x3 cm, resolution of 117x117 microns/pixel, number of 

averages = 1, and slice thickness = 1 mm.  

 

3. Results  

 To determine if nanoparticles embedded into a silica shell and linked to chelated 

paramagnetic ions are sensitive contrast agents for MRI, we first present the case of 

paramagnetic silanized semiconductor QDs samples, with QD core size of ~ 5nm. 



Subsequently, we will show that paramagnetic silanized metallic Au nanoparticles exhibit 

similar results. Comparison of MRI data obtained for GdDOTA-SiO2@P, where P 

represents nanoparticles of different nature and sizes will shed light on the nature of the 

mechanism of contrast enhancement. 

First images were collected of 4 µM GdDOTA-SiO2@QD and compared to 

control solutions. Control samples include: a) 4 µM SiO2@QD; b) 4 µM DOTA-

SiO2@QD lacking the activation with Gd3+; c) 10 mM phosphate buffer, pH ~ 7, the 

common buffer for these solutions. In the same set of experiments, unbound GdDOTA at 

concentrations ranging from 390 µM to 7350 µM is also profiled.  This latter is a 

clinically approved contrast agent, better known under the trademark DOTAREM® and 

T1 and T2 measurements produced similar results to previously reported data23. 

Simultaneous data acquisition permits a direct comparison of the performance of current 

contrast agents with our paramagnetic silica-coated nanoprobes. 

Figure 1a shows the spin-lattice relaxation MRI images (T1 weighted images).  

Although qualitative differences in the MRI images clearly establish that only 

paramagnetic GdDOTA-SiO2@QD provide a marked contrast, a clearer picture emerges 

from quantitative evaluation of the longitudinal relaxation times T1, by plotting M/Mo 

verses log(τ(ms)), i.e. the residual magnetization as a function of the recovery time.  T1 

are measured by fitting M(τ)/Mo to an single exponential growth curve: (M(τ)/Mo)= (1-

exp(τ/T1)).  T1 recovery curves are not shown; however the values are summarized in 

Table 1.  The GdDOTA-SiO2@QD sample with a QD concentration of 4µM has a T1 of 

186ms, significantly lower than the longitudinal relaxation times of control QD solutions 



where T1 was about 600 ms, or from buffer solutions with T1 ~ 420 ms. The presence of 

chelated Gd3+ linked to the silica shell produces a 3-fold decrease in T1.  

 A similar approach is used to measure the transversal relaxation time T2 of the 

same samples. Spin-spin relaxation MRI images (T2 weighted images) were taken using a 

Multi Slice Multi Echo (MSME) sequence and are shown in Fig.2. Transversal relaxation 

times were determined by a plot of log (M/Mo) verses τ(ms).  The T2 times were 

computing by fitting log(M/Mo) to a linear decay curve of log (M/Mo) = τ/T2. The T2 

recovery curves are not shown; however the values are summarized in Table 1.  The 

transversal relaxation time of 4 µM GdDOTA-SiO2@QD is ~77 ms, much shorter than 

the T2 of all other control samples where T2 is in the 345 ms  to 425 ms range. In this case, 

the presence of chelated Gd3+ linked to the silica surface produces a 4-fold decrease in T2 

compared to control solutions. As it is clear from Fig. 1, GdDOTA-SiO2@QD solutions 

have a stronger influence on the transversal relaxation time than on the longitudinal one.  

It is worth noticing that only paramagnetic GdDOTA-SiO2@QD provide a 

contrast in MR Images. All solutions lacking the paramagnetic load exhibit MRI images 

and relaxation times that barely depart from the buffer environment. Moreover, T1 and T2 

values of 4 µM GdDOTA-SiO2@QD solutions are similar to relaxation values measured 

for unbound GdDOTA with a Gd3+ concentration of approximately 800-2500 µM.23 It 

may be tempting to conclude that there are about 200-600 GdDOTA per SiO2@QD, 

however such extrapolation will prove to be incorrect as we will discuss later. Similar 

qualitative results were observed for GdDOTA-SiO2@Au, with nanocrystal cores of 5 

and 10 nm diameter. MRI measurements presented so far indicate that GdDOTA-



SiO2@QD with a nanoparticle concentration in the µM range has the same contrast 

power than GdDOTA with Gd3+ concentration in mM range. 

To quantify this increase in sensitivity, MRI measurements were taken at various 

concentrations of contrast agent, and relaxivities were computed. GdDOTA-SiO2@QD 

with nanoparticle concentration ranging from 0.125µM to 4µM and unbound GdDOTA 

with Gd3+ concentration of 390 µM to 7150 µM were investigated simultaneously. The T1 

and T2 maps are shown in Figure 3a.  In the lower panels, we show the linear behaviors 

of the inverse relaxation times versus the contrast agent concentrations, 1/Ti ~ ri* C, i=1,2. 

The slopes ri represent the relaxivity of GdDOTA-SiO2@QD (GdDOTA, values in 

brackets) and correspond to r1=807.9 ± 15.4 (3.66 ± 0.04) mM-1s-1 and r2=3003.5 ± 57.1 

(3.8 ± 0.2) mM-1s-1 at 400 Mhz. 

So far, we have focused on the capability of GdDOTA-SiO2@QD to deliver a 

contrast signal using a 400 MHz imaging system. However, most clinical scanners 

operate at 60 MHz. To investigate the behavior of our probes at 20 MHz and 60 MHz, we 

used a Bruker NMR Minispec.  The instrument does not afford imaging but allows the 

measurement of T1 and T2 from which relaxivities are deduced as described above. The 

longitudinal relaxivity r1 at 20 MHz and 60 MHz was determined to be r1=1932.0 ± 36.7 

mM-1s-1 and r1=1018.6 ± 19.4mM-1s-1 respectively. The transversal relaxivity r2 for 20 

MHz and 60 MHz was r2=2483.6 ± 47.2 mM-1s-1 and r2=2438.1 ± 46.3 mM-1s-1.  

Relaxivities are summarized in Table 2 and in Fig. 3c. Although we only have three data 

points, they seem to qualitatively follow the Nuclear Magnetic Relaxation Dispersion 

(NMRD) profile observed for unbound GdDOTA. 24, 25 In particular, r1 is strongly field-

dependent. It decreases from ~2000 mM-1s-1 at 20 MHz to ~ 800 mM-1s-1 at 400 MHz.  r2, 



as expected, exhibits a very slight increase with increasing fields. Notice how, at all 

frequencies, the transversal relaxivity of GdDOTA-SiO2@QD is larger than the 

longitudinal one. Therefore, GdDOTA-SiO2@QD appears to be a T2 contrast agent, even 

tough unbound GdDOTA affects mainly the longitudinal relaxation time. 

At the three field strengths investigated here, the relaxivities of GdDOTA-

SiO2@QD reach values over 800-3000 mM-1s-1, while the relaxivities of unbound 

GdDOTA ceils 3-12 mM-1s-1. We determined by ICP-MS that there are about  

approximately 45 chelated Gd ions per SiO2@QD in the samples presented above. 

Consequently, at 60 MHz for instance, every GdDOTA of the GdDOTA-SiO2@QD 

probe contributes for about 22.6 ± 0.4 mM-1s-1 to r1 and 54.2 ± 0.3mM-1s-1 to r2. This 

represents a six-fold increase for r1 and twelve-fold increase for r2 compared to the value 

found for unbound GdDOTA at the same field strength.  

To explore the cause of the increase in ion relaxivity, we initially speculated that 

the permanent electric dipole of QDs 26 may affect the local environment that chelated Gd 

experience through a dipole coupling. This ultimately perturbs the dynamics of water 

molecules in their neighborhoods. To test our assumption, QD nanoparticles were 

replaced with dipole-free cores such as gold. Thus, we developed the silanization of 

colloidal gold nanoparticles with 5 nm and 10 nm diameter. The smaller Au nanoparticles 

have the same size than CdSe/ZnS QD cores. For these samples at 20 MHz, we measured 

r1 = 2165.8 ± 41.2 mM-1 s-1 and r2= 2709.9 ± 51.5 mM-1 s-1 for silanized 5 nm Au colloids, 

and r1= 13510 ± 250 mM-1s-1 and r2= 15815 ± 300 mM-1 s-1 for silanized 10-nm Au. The 

relaxivity values for GdDOTA-SiO2@Au with Au cores of 5 nm are close to those 

obtained for GdDOTA-SiO2@QD solution. In addition, a dramatic increase in relaxivity 



occurs if 10 nm Au nanoparticles are used instead of 5 nm Au cores. Together, this 

suggests that the surface area of the nanoparticle rather than the physical nature of the 

underlying core is the key factor for increased relaxivities.   

 

 

4. Discussion 

We have presented a paramagnetic nanoprobe of about 10-15 nm in diameter that 

consists in an inner inorganic particle protected with an ultra-thin silica shell to which 

several chelated paramagnetic ions are covalently linked. Before discussing the properties 

of such probes as MRI contrast agents and the advantages of using a silica shell in 

biomedical applications, we first comment on the synthetic route to grow an ultathin 

paramagnetic silica shell around nanocrystals of different nature. 

 

Growing a nm-thin silica shell around Au colloids and other cores: The 

synthesis and use of semiconductor QDs coated with an ultra thin silica shell has been 

thoroughly described. 15, 16 In this paper we have extended the procedure to embed Au 

colloids of 5 nm and 10 nm diameter into a thin silica shell. The synthesis of silica shells 

around Au cores has been detailed in Liz-Marzan et al. pioneering work.27 The authors 

used a 15 nm Au seed and showed how to grow thick shells (up to > 80 nm) over a period 

of several days.  

Two main issues in growing a silica shell around Au seeds are the avoidance of 

cross-linking between nanoparticles and the control of the polymerization rate. The latter 

calls for the use of an anhydrous solvent, while the former calls for diluted solutions of 



nanparticles. This is because polycondensation of methoxysilane into siloxane bonds is 

driven by hydrolysis and heat/basicity. We want neither of these conditions. First, citrate-

stabilized Au colloids are poorly soluble in solvents other than water (including aqueous 

buffers). Second we should dilute 20 ml of as-purchased 5 nm Au colloids (83 nM) in 

more than 500 mL of water to start with published protocols. The approach we develop 

here permits to silanize Au colloids in small volumes (<1-3 ml) at high nanoparticle 

concentration (> 1 µM for 5 nm Au). It is amenable to an easy scale-up and is applicable 

as to the silanization other inorganic cores such as iron oxide 28by imparting them high 

stability and solubility. 

Our silanization protocol for Au colloids calls for an exchange of the citrate 

capping ligands with a phosphine stabilizer (Bis(p-sulfonatophenyl)phenylphosphine), as 

described thoroughly in the literature. 17, 18 Phosphine-stabilized Au colloids are soluble 

in buffers and water at concentrations ~50-100–fold higher than the original ones; we 

silanize the nanoparticles at these high concentrations. The phosphine capping is just an 

intermediate step to allow manipulation of Au colloids in water and preventing their 

aggregation. To grow the silica shell, phosphine groups are replaced with thiolate primers, 

specifically mercaptopropyltrimethoxysilane or MPS. Because of the strong affinity 

between thiols and gold surfaces, the capping exchange is fast (<20 min) and efficient. 

The methoxysilane or silanol groups of MPS act as an anchor molecule upon which the 

silica shell forms. The consolidation and polymerization of MPS into a siloxane or silica 

shell can be controlled by choosing weakly alkaline aqueous solutions (pH~7.5-8) instead 

of heat. While the shell is slowly forming, fresh MPS and PEG-siloxane are incorporated 

into the shell. The shell growth is finally quenched by converting the remaining silanol 



groups into unreactive methyl groups. At this point silanized Au colloids can be purified 

from excess silane by dialysis, repeated runs in centricon 100 devices, and size-exclusion 

column.  

The whole procedure for silanizing Au colloids takes about 3 hrs and is performed 

at particle concentration above ~ 1 µM for 5nm Au cores and above 0.1 µM for 10nm 

cores. We found that the same protocol works for both sizes of Au colloids. There is no 

evidence of aggregation of particles during the silanization process. The plasmon peaks 

of citrate-Au solutions and silanized-Au solutions are at the same wavelength (~524 nm 

vs ~526 nm respectively). The UV-Vis spectrum of silanized Au solutions is stable for 

weeks, even though silanized Au solutions are stored at high concentrations in a 10 mM 

phosphate buffer. Gel electrophoresis mobility of silanized Au is qualitatively similar to 

that of silanized QD nanoparticles.  

The ability to grow silica shells around inorganic cores has several advantages: 

first the nanoparticles are extremely soluble in a wide variety of conditions (4<pH<11, 

and ionic strengths above 1M of phosphate buffer and 50 mM for buffers with divalent 

ions). Second, the overall size of the nanoparticles remains small since the silica shell 

only adds a few nm to the particle diameter. We estimate that the silica shell around the 5 

nm Au cores is only 2 nm thick. This results in particle size of about 9 nm. Similarly, we 

estimate that the silica shell adds about 2-4 nm to Au colloids of 10 nm in diameters, with 

a resulting total size of 15-18 nm. Finally, bioconjugation strategies to attach 

biomolecules to silica are well-developed. This is illustrated by the covalent linking of 

GdDOTA to the SiO2@P particles. We link together the thiols of the silica shells with 

amines groups on the paramagnetic chelated species using the ubiquitous sulfo-SMCC. 



The linking protocol follows closely the one we develop to covalently bind DNA to 

silanized QD. 29, 30 
Paramagnetic silica shell as a generic scaffold for multivalent contrast 

agents: Nanoparticles embedded into paramagnetic GdDOTA-SiO2 shells reach 

relaxivities that have been matched or surpassed only by highly complex and branched 

organic dendrimers of generations N≥7 31 and iron oxide nanoparticles with core size 

above 20-40 nm.6 Our MRI probes represent a compromise between exceedingly high 

relaxivity values obtained with large iron oxide particles and small “protein-like” sizes of 

branched dendrimers. In addition, our MRI probes can be made in a few hours, in an 

Eppendorf tube using water as main solvent and a benchtop centrifuge for purification. 

The design has considerable potential for scale-up and plenty of room for tailoring the 

surface to specific biological applications (linking of targeting agent for instance). 

This design for this MRI contrast agent combines an outer paramagnetic shell 

with an inorganic core. It can generally be described as GdDOTA-SiO2@Particle. The 

great interest in such design is the possibility to select a material as the core particle that 

provides a signature orthogonal to the one provided by the paramagnetic GdDOTA-SiO2 

shell. For example, the core provides an optical component (fluorescence), while the 

chelated paramagnetic ions linked to the outer shell contribute to MRI relaxivity. The 

strength of the design consists in the fact that the paramagnetic silica shell does not 

interfere with optical properties of the inorganic cores. For instance, the position of the 

plasmon peak of GdDOTA-SiO2@Au shifts by less than 2 nm compared to citrate-

stabilized Au. Similarly, the UV-Vis absorption and fluorescence emission of GdDOTA-

SiO2@QD are virtually similar to those of TOPO-capped QD. Although detailed 



investigations of fluorescence properties have not been performed in detail, side-to-side 

comparison of QD and GdDOTA-SiO2@QD excited with a hand-held UV lamp shows 

that both solutions have fluorescence properties (color and intensity) undistinguishable to 

the naked eye. 

This approach, where optical and MRI properties arise from physically separated 

and weakly interacting entities, present several advantages over other approaches devised 

to make multivalent probes. For instance, attempts to dope fluorescent core/shell 

ZnS/CdSe nanoparticles with Mn impurities inside the ZnS shell produce multimodal 

nanoparticles with quenched fluorescence and a relatively weak magnetic contribution. 

Achieving high relaxivities does not require the use of an inorganic core of a 

specific nature, because the MRI contrast power is carried only by the paramagnetic silica 

shell. In fact, any inorganic core that can be embedded into silica can be used as seed for 

high relaxivity contrast agents.  This includes CdSe/ZnS, CdTe, Au, Ag, and any oxide 

nanocrystals, including very small superparamagnetic iron oxide nanoparticles 28. In fact, 

it may be even possible to optimize the design and reach an even higher relaxivity values 

by other combinations of lanthanide ions, chelators and inorganic nanoparticles.  Of great 

interest is the use of a superparamagnetic core in conjunction with the paramagnetic shell 

to enhance the sensitivity even further. 

Mechamisms responsible for relaxivity enhancement: In this study, we found 

that GdDOTA-SiO2@QD and GdDOTA-SiO2@Au with a diameter of about 8-10 nm (5 

nm cores + 2 nm silica shell) exhibit relaxivities in excess of r1 ~1000-2000 mM-1s-1 and 

r2 ~ 3000 mM-1s-1 and are detectable at ~100 nM concentrations. One obvious reason for 

this enhanced relaxivity is the number of GdDOTA molecules that decorate the silica 



surface. Chemical analysis indicates that about 45-50 GdDOTA are covering the silica 

surface of SiO2@Au with 5 nm cores. More than 250-300 GdDOTA were measured 

around SiO2@Au with 10 nm cores. As a result, relaxivities skyrocketed to ~16’000 mM-

1s-1 and the detection limit plunged in the 10 nM range.  

While the number of paramagnetic chelated ions is certainly the major factor in 

enhancing the total relaxivity, more subtle effects may also contribute to it. They 

manifest themselves by increasing the contribution of every individual GdDOTA to the 

total relaxivity. To see this, the total relaxivities of the samples is divided by the number 

of GdDOTA and converted into an ion relaxivity. This translates into T1 and T2 ion 

relaxivities at 60 MHz of ~ 23 mM-1s-1 and 54 mM-1s-1 for GdDOTA-SiO2@P and only 3-

5 mM-1 s-1 for unbound GdDOTA.  

Increased ion relaxivities are expected when GdDOTA is constrained in its 

rotational motion. This is observed for macromolecular conjugates 10. It has also been 

observed in a recent study where paramagnetic lipids were desorbed around a QD 

nanoparticle and relaxivities in the range of 2000 mM-1s-1 at 60 MHz were measured. 32 It 

was determined that about ~150 GdDOTA-lipids were surrounding the nanoparticle 

scaffold. Consequently, at 60 MHz, every Gd ion in the lipid payload was contributing by 

about 12 mM-1s-1 to the spin-lattice relaxivity r1 and by about 18 mM-1s-1 to the spin-spin 

relaxivity r2. It was mainly assumed that the increase in ion relaxivity came from the 

reduced tumbling rate of GdDOTA due to its covalent linking to a higher molecular 

weight macromolecule and the consequent increase in its rotational correlation time. 

Our probes are quite similar to these, except that the paramagnetic lipid coat is 

replaced with a thinner paramagnetic silica shell. Yet, this change alone seems to affect 



the ion relaxivities. The values for the paramagnetic silica shell are 2 to 3 times higher 

than the values obtained with the paramagnetic lipid. As a result, our probes reach the 

same sensitivity with twice to three times less Gd3+ load. Although the rotational 

correlation time may be slightly different for these two systems, it is unlikely that it alone 

accounts for this large difference in relaxivity. We believe that a second reason for the 

increase in ion relaxivity comes from the very hydrophilic environment around GdDOTA 

provided by the silica shell. Silica is much more hydrophilic than lipids. It is likely that it 

generates a denser water solvation shell around the nanoparticle which forces more 

protons to interact with GdDOTA. We rule out that the high permanent electric dipole of 

the SiO2@QD can affect the dynamic of water proton markedly, because the replacement 

of a QD core with a dipole-free Au particle of similar size produces a similar increase in 

ion relaxivity.  

It is instructive to observe that ion relaxivities for GdDOTA-SiO2@P are very 

close to those obtained for high generation organic dendrimer-GdDOTA (N>7) where ion 

relaxivities reach a plateau at 35 mM-1s-1 and 43 mM-1s-1 respectively. 31. Like our 

paramagnetic probes, these dendrimers are efficient T2 contrast agent while the GdDOTA 

moieties by themselves are only T1 contrast agents. Data for GdDOTA-SiO2@P suggest 

that their MRI properties can be satisfactorily described within the framework of the 

classical relaxation theory.10 

 

Relaxivity of GdDOTA-SiO2@nanoparticles vs other contrast agents:  The probes 

embedded into the paramagnetic GdDOTA-SiO2 shell reach relaxivities of a few 

thousands mM-1s-1 well in excess of the few, to a few tens mM-1s-1 observed for 



individual GdDOTA. 10 They compared favorably even with the most promising new 

types of MRI contrast agent technology based on ultrasmall iron oxide nanoparticles. 33-35 

Recent reports indicated that Au-coated iron oxide nanoparticles with a size of 19 nm 

have ion relaxivities of only 3 mM-1s-1 in the 30-50 MHz range. 35 Considering that there 

are a few thousand Fe ions per nanoparticle, this translates into total relaxivities estimated 

in the ~10000-20000 mM-1s-1 range. At this size range however, the surface chemistry of 

iron oxide is not yet well developed. Nanoparticles are often solubilized by ligand 

exchange, 33, 34 although such approach is unlikely to have widespread use in vivo 

because of the non-covalent nature of the passivating bonds. Cross-linked, stable and 

robust shells are necessary. This is why intense efforts are underway to embed iron oxide 

particles into biocompatible and robust coatings. Silica shells28, Au shells 35and clustering 

into polymeric micelles 14 have been investigated. However, extensive aggregation is 

often observed for several of these formulations. Poor solubility does not influence too 

much the MRI properties of the solutions, but hinders the use of such formulations for in 

vivo applications. Surface chemistry is better controlled in commercial contrast agents 

made of larger iron oxide nanoparticle cores (>50 nm) embedded in a protective polymer 

shell (usually dextran). The polymer shell, that protects the inorganic core from aqueous 

environment, adds several tens of nanometers to the size of the particles. As a result, 

water protons are always kept at a distance exceeding a few tens of nanometers from the 

iron oxide core. Since the interaction of the (superpara)-magnetic core with water protons 

operates through a magnetic dipole coupling, its scales as 1/d3 (where d is the distance 

between the magnetic center and the water protons) and vanishes quickly as the 

protective coating gets large. Key to a strong interaction consists in bringing protons 



closer to the contrast agent by reducing the distance between the proton and the magnetic 

contrast agent. This is what our approach achieves. The paramagnetic molecules 

providing contrast power for MRI are decorating the outside surface of the silica shell 

and therefore are in direct contact with water protons.  

 Advantages of a paramagnetic silica shell coating in biology: Bare 

nanocrystals tend to aggregate in aqueous solutions and adsorb plasma or other proteins 

through non-specific interactions. To prevent their aggregation and tailor their surface 

properties, nanocrystals must be stabilized and embedded into a biocompatible and robust 

shell. Silica presents several advantages over polymer-based shells. Unlike polymers, 

silica is not subjected to microbial or macrophage attack and it neither swells nor changes 

shape and porosity with changing pHs. Silica is chemically inert and therefore does not 

influence the redox reaction of the core surface. Furthermore, the chemistry to 

functionalize silica is well-developed. It is almost straightforward to introduce thiols, 

amine or carboxylic groups onto a silica surface. The groups can be further derivatized 

with targeting biomolecules using established bioconjugation techniques. 21 Finally, it is 

much easier to control the polymerization of siloxane into silica (and hence the size of the 

silica shell) than it is to control the thickness of a polymer-based coating. For example, 

FCS and dynamic light scattering measurements indicated that while silica coated Qdot 

have a hydrodynamic radius of 9-11 nm, polymer-embedded Qdots have a radius close to 

30 nm 36 and Au-coated iron oxide close to ~250 nm. 35 

Silica has other advantages over polymeric nanoparticles that have emerged in 

recent studies. First, the silica-coated nanoparticles exhibit much smaller cytotoxicity 

than polymer-coated nanoparticles. 37 Even more remarkable, silica-coated nanoparticles 



were shown to have negligible perturbation on the gene expression patterns of lung and 

skin epithelials cells. 38 This suggests that silica-coated nanoparticles have a minimal 

interference with the normal physiology of these cells lines. In other words, the presence 

of these local probes inside the cell does not affect the expression pattern of critical genes 

and therefore does not influence significantly most cell functions. Toxicity studies at the 

gene expression level of silica-coated nanoparticles on other cells lines, tissues or animal 

models has not been investigated so far and is undoubtably an emerging research area. In 

addition, silica-coated nanoparticles can be functionalized with a wide array of targeting 

biomolecules. 16, 29, 30 They can be biologically programmed to recognized critical 

phosphorylation sites, nucleases, motor proteins, or surface receptors on organelles such 

as the cell nucleus. 39 Silica-coated nanoparticles may play a key role for cell biology for 

deciphering molecular pathways.  

 For in vivo molecular imaging and drug delivery, the size of the probes is 

a key parameter. It is likely that if the probes are too big, they have a reduced ability to 

diffuse in tumoral microvasculature and transverse the extracellular matrix, as they have 

a limited ability to cross cellular membranes. Although the ideal size of a probe is not 

known, we hypothesize that probes with sizes in the 10-20 nm range, as the ones we 

developed, represent the best candidates since they mimic the size of therapeutic 

antibodies.   

Biological applications resulting from high relaxivities: With this remarkable 

relaxivity enhancement and sensitivity, silica-coated nanoparticles have a large number 

of potential applications in MRI. These include cells therapies, include stem cell tracking, 

where a small number of parent cells can be labeled, implanted and their progeny 



followed in vivo. 33 Another application is guided surgery where biologically 

programmed particles can target infected organs and reveal their precise location. 

Common to all these biomedical applications is the ability to use nanoprobes in vivo. To 

date, most inorganic nanoparticles perform poorly in in vitro assays. Nanoparticles often 

aggregate under changing pH conditions and ionic buffer strengths. Although specific 

labeling of membrane proteins has been widely reported, intracellular targeting remains a 

challenging task. There are no established protocols to transfect live cells without 

external intervention like microinjection. Finally, toxicology effects have been barely 

investigated in cell cultures, let alone in in vivo studies. 

Yet, the use of silica-coated nanoparticles in biomedicine has shown some 

promising results. Silica coated QD have extended solubility to the point where 

aggregation is no longer an issue, they can be conjugated to targeting biomolecules and in 

some specific – yet still not fully understood – cases, the particles are able to 

spontaneously transfect live cells. Finally, toxicology studies, done at the gene expression 

level, reveal the lack of adverse effect of silica-coated QD on a few cell lines. We feel 

that silica-coated nanoparticles present a starting point where to investigate the possibility 

to apply nanotechnology to medicine. 

 

 

 

4. Conclusions  

We have described a strategy to embed inorganic nanoprobes into a paramagnetic 

silica shell. The shell is rendered paramagnetic by covalently linking GdDOTA to its 



surface. Once attached to the surface, each of these contrast agent units exhibit T1 and T2 

ion relaxivities at clinical fields that are respectively 9 and 18 times larger than the ion 

relaxivities of unbound GdDOTA.  We provide evidence that the increase is not related to 

the nature of the inorganic core but most likely to the fact that GdDOTA are bound to a 

hydrophilic silica surface which reduces their rotational motion. 

What matters for imaging purposes is not primarily the ion relaxivity of a contrast 

agent, but its total relaxivity. Similar to the case of dendrimeric polymers, multiple 

GdDOTA can be anchored onto the surface of a single silica nanoparticle. Since the ion 

relaxivity is additive, we have measured T1 and T2 relaxivitites at room temperatures and 

at clinical fileds in the order of  1000-3000 mM-1 s-1 for GdDOTA-SiO2@Particle with 

particle cores of 5 nm, resulting from the contribution of ~ 50 GdDOTA.  If the particle 

cores are 10 nm, the surface area of silica shells permits the linking of ~250-300 

GdDOTA. Remarkably, these latter probes exhibit relaxivities in excess of 15000 mM-1s-

1 at room temperature and clinical fields. 

The paramagnetic silica shell has been grown around semiconductor and metallic 

nanoparticles. There are however no restriction in the use of the core material. It may be 

envisioned to grow a GdDOTA-SiO2 around a (superpara)magnetic core such as small 

SPIO Fe3O4 or Fe2O3. In that configuration, perturbation in the dynamic response of 

water protons will come from the presence of the paramagnetic GdDOTA-SiO2 shell and 

from the inner SPIO cores. We expect such systems to present even higher relaxivities 

values that the ones obtained here.  

In addition, it is straightforward to modify the design of the construct into a PET 

probe. For that, only a handful of DOTA have to be loaded with a radioisotope (i.e. 64Cu) 



instead of Gd3+. The overall probe will maintain a unique surface chemistry. However 

since PET sensitivity far exceeds MRI sensitivity, it is possible to test basic properties of 

the probes, such as their potential leakage from the vascular system, their non-specific 

uptake by different organs, or their ability to recognize tumors. These studies, currently 

underway, will provide powerful information on the compatibility and utility of inorganic 

nanoprobes for in vivo imaging. 
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Figure Captions 

Scheme 1:  Scheme for the preparation of the paramagnetic probes. Gadolinium chloride 

is reacted with a DOTA complex under controlled acidic conditions at 80oC. 

Subsequently, the amine group is converted into a maleimide group which will react with 

thiols on the silica-coated nanoparticles. The payload of GdDOTA per nanoparticles 

depends on the surface area, varying around 50 up to several hundreds. 

 

Figure 1 The spin-lattice relaxation MRI images (T1 weighted images) taken using a Fast 

Imaging with Steady State Procession (FISP) with inversion recovery (IR) sequence of 

PBS buffer, SiO2@QD, DOTA-SiO2@QD lacking the paramagnetic load and GdDOTA-

SiO2@QD, at 400MHz and room temperature. Only the paramagnetic silica-coated 

nanoparticles exhibit a contrast.   

 

Figure 2: A spin-spin relaxation MRI images (T2 weighted images) were taken using a 

Multi Slice Multi Echo (MSME) sequence of PBS buffer, SiO2@QD, DOTA-SiO2@QD 

lacking the paramagnetic load and GdDOTA-SiO2@QD, at 400MHz and room 

temperature.  

 

Figure 3: a) T1 and T2 MRI maps taken at various concentrations of GdDOTA-

SiO2@QD ranging from 0.125 µM to 4 µM at 400 MHz and at room temperature.  

During the same experiment, Gd-DOTA at a Gd3+ concentration of 390 µM and a 

phosphate buffer have also been imaged as a reference controls. b) Plots of 1/T1 and 1/T2 

verses nanoparticle concentration are shown for the same samples. The slopes represent 



the relaxivity and correspond to r1=807.9 ± 15.4 mM-1s-1 and r2=3003.5 ± 57.1 mM-1s-1. 

Ion relaxivities, i.e. relaxivity per Gd ion, are r1=17.9 ± 0.34mM-1s-1 and r2=67 ± 1 mM-

1s-1. 

 

Figure 4. Relaxivities of GdDOTA-SiO2@QD as a function of the proton Larmor 

frequency. The lines are guides for the eyes. The trend is similar to that of unbound 

GdDOTA. Notice however how the T2 relaxivity is always larger than the longitudinal 

one. 

  

 

Table of Tables 

Table 1: T1 and T2 values of PBS buffer, SiO2@QD, DOTA-SiO2@QD lacking the 

paramagnetic load and GdDOTA-SiO2@QD, and various concentrations of GdDOTA 

from 0.39mM to 7.35mM at 400MHz and at room temperature.   

 

Table 2: Relaxivity values at different fields measured at room temperature. In 

parenthesis is the value of the Gd3+ ion relaxivity. This is deduced from the measurement 

of Gd concentration per nanoparticles with ICP-MS. The bottom line serves as 

comparison with the Gd3+ ion relaxivity of unbound GdDOTA. 
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Figure 4 



Sample name T1 [ms] T2 [ms] 

PBS buffer 414 425 

SiO2@QD 600 345 

DOTA-SiO2@QD 577 347 

GdDOTA-
SiO2@QD

186 77 

GdDOTA, 390 
mM 

237 201 

GdDOTA, 1530 
mM 

147 123 

GdDOTA, 7350 
mM 

59 37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 



Frequency 
[MHz]

R1 relaxivity 
[mM-1 

s-1 ] 

R2 relaxivity 
[mM-1 

s-1 ] 

20 1932.0 ±  36.7

(42.9 ± 0.8)  

2483.6 ±  47.2

(55.2 ± 1.1) 

60 1018.6 ±  19.4 

(22.6 ± 0.4)  

2438.1 ±  46.3 

(54.2 ± 1.0)  

400 807.9 ±  15.4 

(17.9 ± 0.3) 

3003.5 ±  51.7

(66.7 ± 1.3) 

GdDOTA 

20-100 

 

3-5 

 

3-5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 




