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ABSTRACT

The procaryotic photosynthetic microorganisms Anacystis nidulans,

Nostoc and Rhodospirillum rubrum have cell walls and membranes that are

resistant to the solution of methane in their lipid components and intra­

cellular fluids. But Anacystis nidulans, possesses a limited bioxidant

system, a portion of which may be extracellularly secreted, which rapidly

oxidizes methane to carbon dioxide. Small C14 activities derived from

CH4 in excess of experimental error are detected in all the major bio­

chemical fractions of Anacystis nidulans and Nostoc. This limited

capacity to metabolize methane appears to be a vestigial potentiality

that originated over two billion years ago in the early evolution of

photosynthetic bacteria and blue-green algae.





I. INTRODUCTION

Silverman l reviewed and pointed out that in general very little is

known about the abilities of microorganisms to utilize methane:

"The predominant methane-oxidizing species reported to date are

either pseudomanads or mycobacteria. It is important to discover

whether so widespread a phenomenon as methane oxidation, in contrast

to the oxidation of other hydrocarbons, is restricted to these two

general groups of bacteria. It would be interesting to see if there

are other methane-oxidizing microorganisms. ... 00 other micro­

organisms exist in nature, incapable of growth at the expense of

methane alone, but able to oxidize it when other organic compounds

furni sh the necessary carbon and energy for growth?"

Virtually nothing is known about the ability of the lower photosyn­

thetic organisms, especially the procaryots, which appear to be transitional

between nonphotosynthetic bacteria and the higher photosynthetic eucaryotic

green algae, to utilize methane.

We have carried out preliminary investigations with C14-labelled

methane to investigate the abilities of Rhodospirilum rubrum, Nostoc, and

Anacystis nidulans to incorporate and possibly assimilate methane. The

idea was entertai ned tha( J>b()JobC!<:teri a whi ch do not 1i berate oxygen from

water during photosynthesis might use methane as an alternative electron

source, similar to the way photosynthetic anaerobic Thiorhodaceae bacteria

use hydrogen sulfide.
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The two major ques ti ons asked are, "00 procaryoti c photosyntheti c

organisms have any ability to oxidize methane? If so, by what mechanisms

may this oxidation be effected?"

II. EXPERIMENTAL

A. The Microorganisms

The photosynthetic procaryots investigate9 were the photobacterium

RhQdospiri11um rubrum, and the blue-green algae Anacystis nidulans and

Nostoc. These are illustrated in Figures 1,2, and 32,3. These micro­

organisms were cultured in the microbiology laboratory from type cultures

on standard growth media (Tables l-A, 2-A, and 3-A) and monitored for cul­

ture purity.

1. Semicontinuous culture

The blue-green algae Anacystis nidulans and Nostoc were cultured under

semicontinuous routine microbiological laboratory conditions in blue-green

algae media (Tables l-A and 2-A) and harvested at convenient bi-weekly

intervals for the shake-flask and steady-state experiments.

Rbodospiri11um rubrum was cultured under routine microbiological labor­

atory conditions and a 10.Om1 volume taken for innocu1ation of sterilized

standard medium (Table 3-A) in a 25 ml rubber-septum capped serum bottle.

2. Algae harvesting

The algae were harvested fresh immediately before each experiment by

centrifugation at 20°C in 250 ml centrifuge bottles in an International

Centrifuge operated at 1600 rpm for 10 minutes. The supernatant fluid

was decanted off and the packed cells were redispersed and rinsed into
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calibrated 12.0 ml centrifuge tubes with medium diluted to 20% of the

original concentration and centrifuged at 2800 rpm for 10 minutes. The

wet, packed cell volume was read and a calculated volume of 20% diluted

media used to quantitatively transfer and dilute the resuspended cells

to give a 1.0% suspension of cells in the final 44 ml shake flask or

80 ml steady-state apparatus.

3. Adaption with methane

In subsequent experiments, the semicontinuous culture was modified,

replacing the normal 5% CO2-containing air line with a gas stream of 1%

cold methane, 4% CO2 and 95% air. In a few experiments this line was

changed to introduce 1% cold methane in 99% nitrogen freed of oxygen by

bubbling through chromous chloride reagent4. The copresence of CH4 in

CO2-containing air streams had little affect on the densities of cells

harvested, but prolonged exposure to CH4 in the absence of CO2 eventually

killed the Anacystis nidulans culture.

4. C14H4
14The undiluted C H4 was obtained from the New England Nuclear Corpor-

ation (NEN) in 38 ml (including the external vial stem) breakseal flasks

labelled NEC-060 Methane-C14 0.50 millicurie/l.5 milligrams. The specific

activity was 5.34 mC/m mole.

5. Impurities in C14H4

The New England Nuclear Corporation was unable to detect any signifi­

cant labelled impurities (~ 0.1%) by gas-liquid chromatography. We also

were unable to detect labelled impurities a 0.1% with a gas-liquid
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chromatographic apparatus equipped with a proportional counter. But

extraction of the breakseal contents with 1.00 ml of aq. 2N NaOH indicated

the presence of 0.075 ± 0.002% (0.375 ~C) base-soluble gaseous impurity,

presumably mostly c1402, but perhaps including a little C140 also. Subse­

quent treatment of an aliquot of this base-treated C14 methane with 0.25 ml

of Arapahoe Chemical Company 6M phenyl Grignard reagentS in 2 ml anhydrous

ether under nitrogen, decomposition with dilute aq. HC1, ether extraction,

careful evaporation, and solution in 18.0 ml of scintillation fluid indi­

cated the residual presence of 0.0073% (0.037 ~C) of C140. The presence

of C140 was also confirmed by its removal by treatment with ammoniacal

cuprous chloride. These are reasonable impurity reagent levels to be

anticipated from the incomplete catalytic reduction6 and purification of

C14H4 prepared from c1402:

14 H2 H2
1) C 0 .. C140 • C14H

2 ~ ~ 4
After these discoveries, it is obvious that C14H4 free of C1402

and C140 could be best prepared from C14H31 by the Grignard reaction and.
subsequent decomposition. Unfortunately, the available International

Chemical and Nuclear (Cat. No. 0747) C14H31 specific activity 53 mC/m mole,

was eXhausted in early experiments and more was not immediately available

at the close of the first author1s postdoctoral research stay at Berkeley.

6. Culture apparatus

Small-scale culture studies were made in a flattened 44 ml flask

stoppered with a rubber septum in the illuminated apparatus illustrated

in Figure 4. 7 Samples of the culture and gas were taken with time with

small syringes.
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The steady-state apparatus (Figure 5) which was used in several larger­

scale experiments has been well described in the literature. 8 Convenient

2.0 ml samples were taken with time and quenched with aq. 80% ethanol. In

one experiment the gas phase at the end of the experiment was circulated

for 30 minutes through two traps containing aq. 2N NaOH to absorb CO2 and

one containing dimedone reagent9 to detect formaldehyde.

7. Dilution of C14H4 with cold methane

For the small-scale shake-flask experiments, the c14H4 in the break­

seal was diluted directly with 99% research grade cold methane. The dilu­

tion was effected at laboratory pressure and temperature by inverting the

breaksea1 flask, adding a cylindric magnetic iron bar (1.1 ml volume),

capping the stem with a small rubber septum (secured with copper wire),

evacuating and flushing the volume between the glass breaksea1 tip and the

septum with dry N2 several times with the aid of a syringe needle on the

end of a house vacuum line, after final evacuation inverting the breaksea1

quickly to break the seal, and slowly adding cold methane at low pressure

until the total pressure in the breaksea1 flask slightly exceeded atmos­

pheric pressure as indicated by a small bubbler lead under soap solution

communicating to the breaksea1 by a small syringe needle tip (Figure 6).

This procedure was found to be very simple, practical, and more convenient

than a cumbersome classic gas buret system first tried on the C14H4 pre­

pared from C14H31 by the Grignard reaction. In several steady-state

experiments the C14H4 was transferred directly into the recycle gas line

without dilution with cold methane.
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A 1.00 ml volume of aq. 2N NaOH was added to the breakseal flask
14and carefully shaken to absorb the C O2 impurity. The breakseal flask

was stored upside down to reduce contact and absorption of C14H4 by

the rubber septum. The specific activity after dilution was 0.020 mC/mg

of methane. As each 1.00 m1 volume (activity of 2.97 X 106 dpm) was with­

drawn with a volumetric gas syringe from the breaksea1 for analysis or

shake-flask experiments, an additional 1.00 ml of aq. 2N NaOH was added

to maintain the original atmospheric pressure. In several shake-flask

experiments, the diluted C14H4 was further treated with ammoniacal cuprous

chloride reagentlOto remove the C140 trace impurity.
14 14Grignard-generated C H4 was prepared from lCN C H3I for the first

two steady-state experiments. In the last steady-state experiment the

C1402 impurity was frozen out of the undiluted C14H4 with a liquid nitrogen­

isopentane bath before breaking the breakseal and allowing the c14H4 to

enter the circulating steady-state gas system.

9. Assay of c14H4

Rough assays of the c14H4 activity with poor reproducibilities were

obtained by dissolving 0.10 m1 a1iquots taken with a Hamilton gas syringe

and injected directly below the surface of 18.0 ml of scintillation fluid

(Table 4-A). Accurate and reproducible assays were obtained by combusting

0.10 m1 aliquots in a helium gas train over cupric oxide followed by direct

absorption of the resultant C1402 by slow bubbling into scintillation fluid

containing quarternary ammonium base (NCS).

10. Assay of C1402 and c140

C1402 in the methane or gas phases over cultures was assayed by

taking a 0.10 or 0.25 m1 aliquot with a 1.00 ml gas syringe and injecting
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this into a 10 mi serum vial capped with a rubber septum and containing

1.0 ml of aq. 1 N NaOH. The contents of the vial were thoroughly mixed

with an electrical vibrator, decapped, thoroughly purged of C14H4 with

dry N2 for 20 minutes. quantitively transferred to a 5.00 ml volumetric

flask, diluted to the mark, and a 0.10 or 0.20 ml aliquot dispersed in

18.0 ml of scintillation fluid for counting. An equal volume of Cab-O-Sil

improved the counting results.

C1402 and/or C140 were assayed by taking a 0.25 ml aliquot of gas

with a 1.00 ml gas syringe and injecting this into a 10 ml serum vial

capped with a rubber septum and containing 0.25 ml 6M phenyl Grignard

reagent in 2 ml of diethyl ether. The workup and counting procedure is

described above.

11. Assay of culture suspensions

Culture suspension levels of activity were determined by dispersing

0.10 ml aliquots taken with a Hamilton syringe directly into 18.0 ml of

scintillation fluid in a counting vial. The addition of approximately an

equal volume of Cab-O-Sil followed by 15 minutes pispersion in a Cole­

Pa~ Ultrasonic sonication apparatus improved the counting.

The culture suspension C14-activity levels. largely reflecting the

solution of C14H4 in water. quickly approach equilibrium and on shaking

change very little with larger changes in-c14H4 in the gas phase. The

suspension activity levels agree very well with the levels and constancy

predicted by Dalton's lawll :

2) Solubility of methane in water at 1 atm

= n =. (760)~1000) = 1.34 X 10-3 mole CH /liter
CH4 31.4X10 (18.02) 4
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A 3.0% methane atmosphere existed initially above the 10.0 ml of aq. culture

suspension in the shake-flask experiment, so the predicted activity level

is,

(
-3 )1.34XlO mole CH 6

3) (0.030) lOaD ml 4 (10 ml) (~'~1~C )(1°m~l~le) (2.2X10
6 ~tm)

= 3.1 X 105 dpm in the total 10.0 m1 of culture suspension.

This corresponds to about 2.5 X 105 cpm at a typical counting efficiency

of 80% and agrees very well with experimental ·va1ues.

12. Assay of filtered cells

The activities of cells were determined by taking a convenient

aliquot of 0.25 m1 with a syringe, ejecting this carefully onto a pre­

soaked and partially dried 0.45 ~ Mi11ipore filter membrane mounted in a

vacuum filter, rinsing the syringe twice onto the filter with 0.5 ml

volumes of water, partially drying the filter with several minutes of

suction, removing the filter with tweezers, and directly dissolving it

with sonication for 15 minutes in about 18 m1 of Cab-O-5il and 18.0 m1 of

scintillation fluid in a counting vial.
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horizontal elution with the solvents -- the eluted 40% activity was too

thinly spread and low to indicate any soluble C14-labelled biochemicals.

14. Biochemical fractionation

A standard biochemical procedure developed for Escherichia coli 13

was applicable to the photosynthetic procaryotes which have many cell

wall properties in common with bacteria14 ,15. Only traces of activity

were detected in the slow-growing small shake-flask culture biochemical

fractions over 2-hour periods of exposure to ~14H4' but larger amounts

were detected on allowing a culture to stand 3 days in the laboratory.

Appreciable biochemical incorporation is obtained in rapidly growing blue­

green algae in the steady-state apparatus and is indicated by results

in Tables 5-A and 6-A.

15. Scintillation counting

Gas, suspension, filtered cells, and biochemical fraction aliquots

were counted for time intervals to give less than 1% counting error in

scintillation fluid vials in a Tri-Carb scintillation counter. For some

purposes, counts per minute (cpm) were adequate for experimental compari-

sons, in other cases corrections were made for the counting efficiency

and disintegrations per minute (dpm) calculated.

Aliquot sample volumes and timings were chosen in the shake-flask

experiments to maintain the starti~g ratios of the suspension and the gas

phases. Corrections were made for previous aliquots in calculating the

assays for the total culture system with time.

16. Material balances

The material balance of C14 activity in the small shake-flask system

is about 70% due to appreciable absorption of C14H4 into the rubber
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The inadequacies in material balances in the shake-flask experi-

ments are circumvented by comparing results obtained at comparable

levels of total suspension C14 activity and using counting blanks identi-

cal in all chemical and physical characteristics excepting exposure to

C
14

H4·

The percent c14 activity lost to the numerous Tygon connections

(about 30) and the greased joints and stopcocks (about 20) in the steady-

state system is about 87%. Obviously, to achieve good material balances

in future experiments with cl4H4, special attention must be devoted to

the experimental design of the apparatus to minimize Cl4H4 absorption

losses. A pre-culture was run in the steady-state apparatus to establish

a maximum level of Cl4-contamination in this system.

III. RESULTS AND DISCUSSION

A. General Considerations

Abiotic protobiochemical evolutionl6 and subsequent eobiolog1cal

evolution is generally believed to have started under an initially reduc-

tive terrestrial atmosphere containing hydrogen, methane, carbon monoxide,

carbon dioxide, and ammonia. 17 ,l8,l9 The thermodynamic equilibria of

carbon compounds derived from varying elemental proportions of oxygen,

carbon, and hydrogen are illustrated in Figure 7. 20

The highlights of geologic, atmospheric and biological evolutions are

graphically summarized in Figure 8. 21 Early abiotic protobiochemical

evolution proceded substantially in reductive atmospheric and marine
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environments. Terrestrial uplift and orogenesis accelerated erosion

with mineral eutrophication in rivers, lakes, estuaries, and sedin~ntary

basins. A cogent summary of the more salient Pre-Paleozoic biological

evolutionary events is given in Figure 922

Since both hydrogen and methane are hypothesized to be significant

components of the early reductive terrestrial atmosphere that existed

before and during the emergenic photosynthetic procaryotes, it is reasonable

to look among extant species for evidence of vestigi~ capacity to utilize

methane. This search is encouraged by the fact that the higher green

algae Scenedesmus exhibits hydrogenase activit~3for cleaving the hydrogen­

hydrogen bond (104.2 kcal lmole). The methane carbon-hydrogen bond

(102 kcal/mole) is slightly weaker and lies between the known autotropic­

ally utilized extremes of the low-energy sulfur-hydrogen bond (83 kcal/mo1e),

medium-energy nitrogen-hydrogen bond (93.4 kca1/mo1e), and the high-energy

oxygen-hydrogen bond (110.6 kcal/mole).24,25 Hence, it appears worthwhile

to look for coeval methanase activity among the transitional photosynthetic

procaryotic organisms.

B. Phylogenetic Relationships of
Photosynthetic Organisms

The phylogenetic relationships of extant lower microorganisms are

outlined in Figure 10. 26 Procaryotic microorganisms lack membrane-

bound subcellular organelles such as a nuclei, chloroplasts, and mito­

chondria. 15 ,27 The photosynthetic biochemical systems of the photosyn­

thetic bacteria and cyanophytes (blue-green algae)28 are consequently

deployed throughout the cytoplasms bound on reticulate plasma membranes. 3,14,15
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Another common feature of both of these lower photosynthetic protists is

their comparatively primitive photosynthetic systems. Photosynthetic

bacteria fix carbon dioxide without the concomitant liberation of oxygen

from water. Their alternative hydrogen-donors and hydrogen transport

systems 29 are not explicitly known, but probably involve carbon-hydrogen

bond breaking.

The microorganisms with which we are experimentally concerned are

members of the kingdom Plantae, Division I. Protophyta. Class I. Schizo­

phyceae (the blue-green algae containing the photosynthetic pigment

phycocyanin 30 in addition to chlorophyll), and Class II. Shizomycetes

(all bacteria, including a few species which contain photosynthetic·

pigments and several species that oxidize methane and higher hydrocarbon

homologs).

The distinctions between Schizopyceae and the higher algae of Divi­

sion II. Thallophyta are summarized in Table 1. 2
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TABLE I

Major Groups of A1gae2

Group Size, Structure, Etc. Reproducti on Habitat

Eug1enOPhrta Microscopic, unice1- Longitudinal fis- Fresh water
(Euglena 1ar; store fat and sion; simple sex

para"lY1um cells

Cyanophyta Usually microscopic; Asexual fission Fresh water
(Blue-green multicellular or and soil
algae) uni ce 11 ul ar; store

glycogen

Chlorophyta Microscopic, a few Asexual fission Fresh water,
(Green macroscopic (e.g. and zoospores; soil, tree
algae) a few inches); uni- primit1 ve sex- bark

cellular or mu1t1- ual fusion
cell u1 ar; store
starch

Ch rysophyta Microscopic, mostly Usually asexual Fresh and salt
(Di atoms, unicellular; store water (some in
etc. ) oils arcti c), soi 1,

higher plants

Phaeophyta Multicellular, Sexual; some Salt water (cool)
(Brown algae; 1arge (up to asexual ioo-
seaweeds, several hundred spores
kelp, etc.) feet); store man-

nitol, laminarin
(a polysaccharide)

Rhodophyta Multicellular, Sexual by well Salt water
(Red algae; macroscopic (up di fferenti ated (warm)
seaweeds) to 4 feet); store male and female

fl uro~an starch germ cell s;
asexual by
spores
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The Schizomvcetea contains ten orders with 72 genera of which only

Order I. Pseudomonada1es is of immediate interest to us. This order is

regarded by some investigators as the most primitive bacteria. 31 The

large family Pseudomonadaceae comprises 12 genera, including the genus

Pseudomonas which includes 150 species, several of which are uniquely

interesting for their metabolic abilities. 32 ,33

Pseudomonas aeruginosa is an animal pathogen, often associated with

human infections, which metabolizes hydrocarbons. (The ability to utilize

hydrocarbons is found sporadically throughout the animal and plant king­

doms in bacteria, Fungi imperfecti, and even in higher animal organs, such

as the liver.) Pseudomonas methanica, uniquely obligate for methane

substrate,34 possesses complex membranes and is often closely associated

with parasitic microorganisms from which it is very difficult to iso1ate. 35

Pseudomonas methanitrifacans has been reported to oxidize methane as well

as fix atmospheric nitrogen. 36

c. Experimental Studies

1. Shake-Flask Studies

The results of preliminary shake-flask studies are summarized in

Figures 11 through 2B. In the experiments on Figures 11 through 23, the

system was vigorously shaken for 20 seconds after the methane injection.

Figure 11 shows that a substantial fraction of the c14 activity in

the 1.00 ml of injected C14-label1ed methane is lost over a period of

40 minutes in the shake flask. Most of the loss is due to absorption in

the rubber septum cap. This was demonstrated by soaking the septum in

scintillation fluid and counting. Fortunately, the Dalton's Law-predicted



-15-

level of solution activity is rapidly attained and fairly insensitive to

the C14H4 loss, making shake-flask comparisons valid.

Figure 12 shows that killed cells (autoclaved) in the shake flask

slowly absorb a little C14 activity, but much less (0.2%) than their

proportion (1.0%) of the suspension. Obviously, the cell walls and

membranes actually pose barriers to the permeation of c14H4. This is

a reasonable observation because the cell walls and membranes are faced

by highly polar protein and lipid functional groups.37 Apparently, there

is no active transport of methane; its slight absorption is purely physical.

Figures 13 and 14 indicate that there is little difference in C14

incorporation after a one-day adaption of Anacystis nidu1ans with a gas

stream containing 1% CH4, 4% CO2, and 95% air. A slight relative increase

in incorporation of c14H4 appears to be effective by the presence of 0.5 ml

of 0.24 MNaHC0 3 (120 ~ moles).

But the sodium bicarbonate effect on promoting c14H4 incorporation

is very well manifest after a three-day adaption (Figure 15) and is con­

sistently increased thereafter. The mechanism by which sodium carbonate

effects this increased c14H4 incorporation is unknown. Perhaps it makes

a molecular passage in the cell wall and membrane for the methane to

follow.

Continued mild adaption of the Anacystis nidulans culture with the

1% CH4, 4% CO2, and 95% air for eight days increases C14H4 incorporated

and increased the sodium bicarbonate facilitation of this incorporation

(Fi gure 16).

Eight-day adaption with four hours of rigorous adaption with 1% CH4
and 99% N2 (oxygen free) does not enhance either the C14H4 incorporation
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nor the sodium bicarbonate facilitation of this incorporation (Figure 17).

After a four-day rigorous adaption within a gas stream of 1% CH4 and

99% N2 (oxygen free), the level of C14H4 incorporation increased greatly,

the sodium bicarbonate enhancement persisted, but the cells were found to

be dead (Figure 18).

The pretreatment of the C14-labelled CH4 with 1.00 m1 of ammoniacal

cuprous chloride reagent slightly reduced the level of C14 incorporation

from about 0.11% (Figure 13) of the suspension level to about 0.10%

(Figure 19) indicating that the removal of a ~ossible trace of C140

impurity has little significant affect on the C14 incorporation. Thene­

fore. since the C1402 impurity (and almost all the C140 impurity) has

been previously removed from the C14-labelled methane in all these

experiments. the C14 incorporation observed must be due to C14H4. The

fact that comparable C14 incorporation obtains with autoclaved cells

indicates it is.due to physical solution of C14H4 in the cell membrane

lipids.

Nostoc is found to incorporate C14H4 much mpre slowly than Anacystis

nidulans under comparable conditions (Figure 20). The facilitation of

sodium carbonate was also indicated but diminished with time. This

observation is consistent with the slower rate of C14 incorporation for

Nostoc versus Anacystis nidulans observed in the steady-state experiments

below.

A rubber-capped 25 ml serum vial filled with sterilized medium was

innoculated with 10.0 ml of cultured Rhodospirillum rubrum to give about

a 1% cell suspension as indicated by centrifugation (Figure 21). The

c14H4 loss to the rubber septum is obviously more rapid than in the
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shake-flask system where the ratio of the gas to suspension and the c14H4
dilution are much greater. The C14 activity in the centrifuged and rinsed

cells counted is also more variable but increases even as the solution

activity slowly falls. The early cell C14 activity is 0.08% of the initial

suspension level, again suggesting that the cell walls and membranes are

resistant to permeation by c14H4 from the Solutions. The positive slope of

the cell incorporation curve, despite the falling total suspension level

of C14 activity, indicates some slow incorporation of a small amount of

c14H4 into the membrane lipids and possibly the biochemical pools of the

mi croorgani sms.

The various results above obtained with Anacystis nidu1ans are

summarized in Figure 22, whereon are plotted the levels of suspension

C14 activities against the levels of cell C14 activities at 30 minutes.

In most cases (except with freshly autoc1aved cells and with ammoniacal

cuprous chloride reagent treated methane), sodium bicarbonate facilitates

c14H4 incorporation into Anacystis nidulans. Also in most cases, prolonged

adaptions with methane increases the level of C14H4 incorporation

(Curves A and B). Apparently, some methane adaption is effected. Higher

levels of incorporation obtain with dead cells, either killed by auto­

claving or prolonged anaerobic treatment with 1% CH4 and 99% N2. The

fact that ammoniacal cuprous chloride reagent treatment to remove C140

traces has slight effect on the amount of C14 incorporated indicates the

incorporation is largely due to C14H4. A major part of the absorption in

live and dead cells is physical solution in cell membrane lipids, which

are good aliphatic solvents for hydrocarbons.
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On Figure 23 are plotted the results of sampling the gas phases

above shake-flask cultures and various media (filtered through 0.45 ~

Millipore filters). Ten milliliters of these liquids were placed in the

shake flask with 1.00 ml of diluted, base-treated C14H4 and vigorously

shaken for 20 seconds. Aliquot samples from the equilibrated gas phase

were treated with 0.25 ml of 6 Mphenyl Grignard reagent in 2 ml of dry

ether. The Grignard-fixed C14 activity (presumably C140 and/or C1402)

was subsequently counted and found to be very much above the Grignard

reagent blanks (38.5 ~ 1.5 cpm) for the base-treated C14H4 before contact

with the fluids. The highest gas-phase aliquot C14 activity obtained with

the 1% Anacystis nidulans culture gave a net value of 436.6 cpm at

0.5 minute at a counting efficiency of 0.792. Hence the total activity

in the sha~ flask is:

(34.0 ml)(436.6 ~)
0.25 ml 0.79 =

or

75,000 dpm

75,000 d~m reacted with Grianard rea~ent _
3.0 x 10 dpm total 1njecte C14 actlvity x.100% - 9·~4% of total ..

lnJected C14 actlvlty

This value is well in excess of the original levels of C140
2

and C140

impurities (0.07%) even before the base treatment and definitely indicates

the bioxidation of methane. Furthermore, some of this bioxidation appears

to be effected by extra-cellular bioxidants secreted into the media and

passing through 0.45 ~ Millipore filters.

The shake-flask culture of Anacystis nidulans was also carried out

under a more slowly equilibrating condition--the system was not vigorously

shaken at t = 0 on the addition of the C14 labelled methane but allowed to

mix slowly in the swirling apparatus. The results are presented in
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Figure 24. Total C14 activity in the gas phase, largely c14H4, was

incompletely determined by direct injection of a 0.10 ml aliquot below

the surface of the scintillation fluid. But this inadequate procedure

accounted for less than 30% of the original injected activity:

4) 0.50 me x 1.00 ml in1ected 2.22 x 109
36.9 ml breakseal vo ume - x 1 me
1.0 m1 magnetic bar volume

dpm _ 3.0 x 107 dpm,
- C14 activity of

CH 4 injected into
the shake flask

The results are interpreted as follows: During the first 15 minutes

a significant and increasing portion of the gas-phase aliquot activity

is dissolved in the 4.0 m1 of aq. 2 MNaOH and C1402 is formed from the

biochemical oxidation of C1~4 by Anacystis nidulans since this C14

activity is several orders of magnitude (104_ l05) in excess of the

original C140 impurity (0.007%) remaining in the diluted C14-labelled

methane after aq. 2 MNaOH treatment.. (Carbon monoxide is soluble to

the extent of 0.02404 volumes per volume of water at 25°C38 and reacts

with aq. -NaOH to form fonnate~9) The level of total C14 activity in the

suspension approaches the level predicted by Dalton's Law but falls off

from this value after about 10 minutes as dissol~ed c14H4 is oxidized to

C1402 and exchanged to the gas phase faster than it is equilibrated with

the bicarbonate in the suspension. As the gaseous C1402 is equilibrated

slowly back i~to solution with the bicarbonate, the level of suspension

C14 activity again rises and a little C14H4 and some C1403= is very slowly

incorporated into the cells.

The production of C1402 is further qualitatively confirmed in repeat

Anacystisnidulans experiments in the initial presence and absence of

light (Figure 25). The exact levels of C14 activity are not the same

because during the week that e1apsed the breaksea1 lost some C14 activity.
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But the two points on curve iI~.~._3i1 qualitatively confirm "~.!!..-l"

presented previously (both experiments without initial shaking), and

compare interestingly with run "~.!!..-2," where the C14H4 was added in

the dark at t = -3 minutes with moderate initial shaking. As on

Figure 24, further swirling in the apparatus effects rapid oxidation of

the methane. Shaking in the dark appears to reduce the rate of oxidation

and exchange to the gas phase initially, but this rate increases after

14 minutes. After a period of illumination, the rate of oxidation

exceeds the rate of removal from the gas phase for a short period of

time in all three experiments.

The fact that a significant part of the solution C14 activity is

C1402 from bioxidation of c14H4-directly oxidized by extra- and possibly by intra­

cellular oxidase system(s) or indirectly by biogenerated singlet

oxygen--is indicated in Figure 26. The addition of

the quarternary ammonium hydroxide reagent (NCS) to the scintillation

fluid increases the counting level of the suspension 10 to 20% by

reducing C1402 loss on transfer and standing.•

The level of C14 activity in the shake-flask cellular material was

too low for chromatographic and radioautographic analyses. The biochemical

fractionation procedure developed for Escherichia coli indicated only

traces of C14 activity in the biocehmical fractions after a 1 to 2 hour

exposure to c14H4; a culture allowed to stand on the shelf for several

days indicated some incorporation (Table IT). Higher levels of biochemical

incorporation well in excess of experimental errors are reported for the

more rapidly photosynthesized steady-state cultures.
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TABLE II

Biochemical Incorporation of C14 Activity
by Anacystis nidulans in Shake-Flask

Experiment Increases with Time

Time of Contact with C14H4: 30 minutes1: 3 days2:

Fraction/C14 Activity ~C ~C

Supernatant solution
after centrifugation 0.0034 0.0035

Cold TCA Extract 0.00035 0.0020

Alcohol-Ether Extract 0.00010 0.00012

Hot TCA Extract 0.00004 0.0012

Insoluble in Hot TCA 0.00000 0.00059

1. Swirled in shake-flask apparatus at 25°C

2. Standing at laboratory illumination at about 25°C
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2) Steady-State Experiments

In the steady-state apparatus, the culture of the blue-green algae

Anacystis nidulans and Nostoc, was followed more closely on a larger

scale. The apparatus and general procedures are well described in the

literature. a,12 Efficient illumination and rapid gas-phase recycle through

the aqueous phase promote rapid photosynthesis and growth of the algae

under controlled, reproducible, near-constant conditions of illumination,

suspension density, pH, and temperature. Rapid rate of photosynthesis

is indicated by the disappearance of carbon dioxide with concommitant

oxygen production, both of which are continuously analyzed and recorded

on a strip chart along with pH, temperature, and C14 activity added as

c14H4. The results of the steady-state experiments with the blue-green

algae are summarized in Table III.

Steady-state Experiments 1 and 2 with Nostoc and Anacystis nidu1ans.

respectively, were made with C14H4 generated by the Grignard reaction

from C14 methyl iodide. The concentraton of methane in the recycle gas

phase at the 'start of these experiments was 3.1%. The initial gas-phase.
C14 activities were very low--5.1 and 2.3 microcuries initial (~Co)'

Final C14 activities in the recycle gas phase at the end of the experiments

were 3.0 and 0.21 ~Cf' Hand counting of evaporated a1iquots of the cell

suspensions accounted for 273% and 30% respectively of the C14 activity

loss from the gas phase and indicates serious contamination errors in

these early experiments.

Experiments 3 and 4 were carried out with Anacystis nidu1ans cultures

preconditioned for 7-1/2 to 16 days in the presence of 1% methane, 4%

carbon dioxide, and 95% air. The C14-labe11ed methane was obtained directly

from breaksea1s and had a labelled specific activity of 5.34 ~C/~ mole.
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The concentrations of the methane gas in the recycle gas system were

0.64% and 0.51%, respectively. The initial C14 activities indicated

by the ionization chamber were 644 and 463 ~Co' respectively. At the

end of the experiment, the C14 activity in the recycle gas phases were

0.73 and 0.61 ~Cf. Cell suspensions were counted in the scintillation

counter and accounted for 0.30% and 0.24% of the C14 activity lost from

the gas phase.

Figure 27 presents the results of hand counting paper chromatogram

origins before and after solvent elutions of evaporated cell suspension

aliquots from Experiment 3 at various times.

Th t f · t . f C14 t . . t . t th 11 de ra es 0 lncorpora 10n 0 ac lVl y ln 0 e ce s are compare

for Experiments 4 with Anacystis nidulans and for Experiment 5 with Nostoc

in Figures 28 and 29. In both experiments, comparable levels of cell

saturations are rapidly approached at about 20 minutes with 400-420 cpm of

C14 activity in 100A aliquots of cell suspension. Anacystis nidulans

incorporates 0.25% of the total added C14 activity, whereas Nostoc

incorporates 0.30% of the added C14 activity. The C14 methane used in•

these experiments was not pretreated wi th base to remove the 0.075%

(0.375 ~C) C1402 impurity, so about half of this activity is due to C1402
impurity in the breakseal methane. No correction is made for possible

C1402 contamination in the steady-state apparatus either.

Experiments 5 and 6 were carried out with non-induced Nostoc

cultures and were cultured for 126 minutes in Experiment 5, and a com-

bination of 18 minutes in the dark and 47 minutes in the light in

Experiment 6. Breakseal methane of 5.34 ~C/~ mole specific activity was

used, giving methane concentrations in the recycle gas phases of 0.73%
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and 0.58%. The initial C14 activities indicated by the ionization

chamber were 653 and 527 ~Co. The C14 activity in the recycle gas phase

at the end of the experiments was 0.74 and 3.75 ~Cf. Scintillation

counting of biochemical fractions from the ethanol quenched cell suspensions

from Experiment 6 accounted for 3.7% of the C14 activity lost from the

gas phase.

The blue-green algae from Experiments 6 and 7 were biochemically

fractionated by the procedure developed for Escherichia coli; results are

summarized in Figures 30 and 31. The biochemic~ fractionation procedure

proved to be very adaptable and indicates differences both in the rates

of bioincorporaton and in the profile patterns between these two blue-green

algae.

Experiment 7 with Nostoc cultured for 110 minutes was performed using

breakseal methane which was prechilled with isopentane-dry ice to remove

C1402 impurity before admission into the steady-state apparatus. The

concentration of the methane in the gas phase was 0.58%. During the

culture period, 22 ~C of activity were lost from the gas phase, corresponding.
to 4% of the introduced C14 activity. Twelve percent of this lost activity

was accounted forin the cell suspension after quenching in alcohol and

degassing.

A detailed summary analysis of Experiment 7 is given in Table 4. A

blank culture was run for 15 minutes and indicated the presence of 0.20 ~C

contamination in the apparatus. The actual blank for the experiment

itself probably was less than this value. Twenty-two ~C of C14 activity

were lost from the gas phase. After 30 minutes of culture, the gas phase

was recycled for 15 minutes through a series of two caustic traps containing
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TABLE IV

Incorporation of C14H4
a by Nostoc in the

Steady-State CUltureb Apparatus

Blank Culture (15 min. culture before addition of C14H4)

Radioactivity Introduced (C14Ha disappearance from the
gas phase in 30 min. of culture)

Radioactivity Accounted for after 30 min. of Cultured
A. In gas phase:

HCHO in the gas phase absorbed in dimedone trap nil
C1402 in the gas phase absorbed in caustic trap 0.27

B. In liquid phase (80 ml) syringe sampled and injected
below surface of scintillation fluid 2.64

Dissolved gases lost y~ methanol quenching of
the culture (mostly C H4) 1.82

Nonvolatiles remaining in suspension (80 ml) 0.82

Biochemical fractions

Supernatant soln. after centrifugation
Cold TCA-sol. metabolites •
Alc.-ether-sol. lipids
Hot TCA-sol. nucleic acid hydrolyzate
Insol. proteins and pigments

Total (75% of original nonvolatiles)

0.11
0.10
0.10
0.20
0.07
0.59

a. 544~C C14H4 freed of 0.075% C140? (0.375~C) impurity by fractional
distillation from the breakseal ~ample hol~4r chilled in isopentane­
liquid N2; still contained about 0.0073% C 0 (0.037~C).

b. Eighty ml of 1% wet cell sin normal medi a dil uted to 20% with. a ci rcu­
lating 335 ml gas atmosphere initially containing 2.0% CO2 , 0.58% c14H4,
97.4% air, at 20°C and 1 atm.

c. This value is due fo C140 background from previous experiments in the
apparatus, and probably i~ in excess of the maximum contamination in
the subsequent experiment. The blank culture was removed and the
apparatus again rinsed with water before starting the labelled culture
expe ri ment.

d. Estimated loss in 20 Tygon connections is 2.5 ~C and in 30 greased
joints and stopcocks is 10 ~e.
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10 ml of aq. 2 MNaOH each and one trap containing dimedone reagent to

detect formaldehyde. The formaldehyde test was nil. The C1402 caught

in the caustic traps was 0.27 ~C--more than the 0.20 ~C value obtained

in the culture blank before the experiment, thus indicating some produc­

tion of C1402 from c14H4 by Nostoc during the experiment.

The cell suspension lost 1.82 ~C, 69% of the original value of

2.64 ~C on quenching and degassing in four volumes of methanol. The

nonvolatile components were determined by the biochemical fractionation

procedure and accounted for 72% of the nonvolatile activity. The total

C14 activity (0.82 ~C) incorporated into nonvolatile biochemicals over

the culture period is four times greater than the level of C14 contamina-

tion.

Twelve percent (2.64 ~C) of the C14 activity which disappeared from

the gas phase (22 ~C) was accounted for in the cell suspension. Most of

the c14H4 was lost by adsorption in the Tygon connections and in the

greased joi,nts and stopcocks. Thse losses and thei r magni tude were

confirmed by rinsing a stopcock and soaking a TY90n connection in

scintillation fluid.

The C14 activity in the culture suspension rose steadily over the

30 minutes from 4808 to 5831 cpm for a 100A aliquot as the C14 activity

in the gas phase steadily decreased, indicating incorporation beyond

simple c14H4 solution in the aqueous phase.

I V• CONCLUS IONS

The conclusions from the shake-flask studies are:

1. The solution level of C14H4 agrees well with the calculated

value from Dalton's Law, and equilibrium is approached in
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less than 10 minutes in the shaking apparatus. Nearly

constant levels obtained over the course of the blue-

green algae experiments, and these levels are little

affected by the presence or absence of added sodium

bi carbonate.

2. The relative C14 activity in rinsed cells is much lower

than C14 activity in the suspension, indicating that

the intact cell walls and menbranes pose barriers to

C14 transport and diffusion into the cellular fluid.

3. Killed cells appear to take longer times to approach

saturation but give comparable, and in some cases higher, levels of

cellular c14 activity, suggesting that the disrupted

cellular menbrane facilitates Cl4H4 solution into the

1i pi d fractions.

4. Cells with one-day adaption take a little longer for

solution saturation equilibrium, but the levels of C14

activity saturation are very similar tp the nonadapted

culture.

5. Sodium bicarbonate consistently appears to facilitate

C14 incorporation into the cells.

6. After several days of adaption, the solution equilibrium

is more rapid and sodium bicarbonate facilitation increases.

After eight-day adaption, the sodium bicarbonate facili-

tation is even greater.
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7. Eight-day adaption followed by four hours with 1% methane

and 99% nitrogen (oxygen excluded) gives little difference

fr~" eight-day adaption alone, and the bicarbonate effect

is about the same.

8. Four-day ri gorous treatment with 1% methane and 99% ni trogen

(oxygen excluded) increases the C14 absorption. The cells

died but the sodium bicarbonate facilitation persisted.

9. Since the methane has been treated with concentrated base

to remove carbon dioxide and a major portion of the carbon

monoxide, the C14 incorporation into the live and dead

cells is largely as dissolved c14H4• Furthermore, ammoniacal

cuprous chloride reagent changes slightly the level of C14

incorporation.

10. Some C1402 is produced from cl '1i4 by bioxidation and detected

1n the gas phase'i1 fairamountsi this C1402 is more slowly

eqUilibrated with solution bicarbonate and very slowly

incorporated into the cells.

The follOWing conclusions are drawn from the steady-state experiments:

1. Very small amounts of C14 activity, derived from C14 methane in

excess of the apparatus contamination level or impurities in

the labelled methane, are incorporated into blue-green algae:

Nostoc and Anacystis nidulans.

2. C14 activity is incorporated rapidly into all the biochemicals

within the blue-green algae culture in the steady-state

apparatus.
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The apparatus used for these preliminary shake-flask and steady-state

cultures are inadequate, as indicated by their significant adsorption of

labelled methane in rubber septums, Tygon tubing, and greased connections.

In order to do quantitative experiments, attention needs to be given to

the design of the apparatus.

Although the C1402 and C140 impurities can be removed from methane

received in breakseals, the genesis of labelled methane from C14 methyl

iodide by the Grignard reaction would be more practical. It would also be

more convenient to work with methane having a much higher level of specific

activity. With higher activities, analysis for the biosynthetic pathways

by radioautographic techniques would be feasible, as well as by the biochem­

ical fractionation scheme described above. This would allow one to investi-

gate the biosynthetic mechanisms and pathways of methane bioxidation in

blue-green algae.
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TABLE l-A
Blue-Green Algae Culture Medium for Nostoc (BGM)a

Ingredients for
1 M Mg 504 . 7H20

1 M K
2

HP04
1 M KN0 3
1 M Ca(N03)2 . 4H20
1 MNaN0 3
Fe Versenol b

Trace elements (A_4)c

EDTA soln (50 g/liter)
Add aq. H2S04 to adjust to pH =
distilled water to 1 liter.

1 1ite r sol ut ion
0.9 ml
5.0 ml
5.0 ml
0.09 ml
5.0 ml
1.6 ml
0.9 ml
1.0 m1

7.4 and dilute with

solution

0.222

in stock
0.040
2.86
1.81

CoC1 2·6H20
H3Bo3
MnC1 2' 4H20

ZnS04'7H20

b.

a. Allen, M. B. and Arnon, D. I., Plant Physiol; 30,4, 1955.
Preparation of Fe Versenol 120 solution for media
1. Dissolve 43 m1 Versenol 120 in 500 m1 H20
2. Dissolve 14.3 gms FeS04'7H20 in 500 ml H20. FeS04'7H20 must be

pure. The presence of white crystals indicates Fe(OH)2 is present.
Fe(OH)2 will not be chelated as readily by the Versenol 120.

3. Using separatory funnel, add the dissolved FeS04 drop by drop into
the Verseno1 120 solution with continuous stirring ..

4. Aerate overnight. Protect from light. pH about 9.7 (after aeration).
5. Wrap bottle in aluminum foil as chelate is light sensitive.
6. Store bottle in cool place.
USE: 1.74 ml to 1 liter ofnutrient solution.
NOTE: This recipe can be substituted for the Fe Versenol recipe if

the proportionate increase is .made in the amount used. Developed
at LCB by unknown.

Versenol-120 = Sodium Tri, N-Hydroxyethyl-ethylenediamine Triacetate
Fisher Scientific Co., Fair Lawn, N.J.
Trace elements: Arnon1s A-4 + Cobalt + Molybdate

gm/l iter
c.
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TABLE l-A (continued)

gm/liter in stock solution

CuS04'5H20 0.079
Mo03 {99.5%} 0.015
Co + Me cone. taken from Arnon's B-7

Amon t D. I' t Microelements in Culture Solution Experiments with
Higher Plants; Am. J. Bot. t 25 t p. 325-332 t 1938.
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TABLE 2-A

Blue-Green Algae Culture Medium for

Anacystis Nidulans (MKC)a

Ingredi ent

M MgS04

1 M K2HP04

M Ca(N03)2

M KN0 3

100 gil Na Citrate

50 mg/l00 ml FeS04'7H20

Arnon's A-4 + Mo + Cob

liter solution

1 ml

6 inl (add last)

0.106 ml

9.9 ml

1.65 ml

8.1 ml

1 m1

a. Kratz and MYers, Nutrition and Growth of
Several Blue-Green Algae; Am. J. of Bot, 42,
p. 282-284, 1955. -

b. See Arnon's formula in Table 1-A.
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TABLE 3-A

Moqified Hutner's Medium for

Rhodopseudomonas and Rhodospirilluma

Stock solutions:

1. Potassium phosphate, pH 6.8
2. Ammonium DL-malate, pH 6.8
3. Metals "44" per 100 ml:

Fe Versen-Ol
ZnS04 ·7H20

(MnC1 2 ·4H20)
CuS04 ·5H20

(CoC1 2 ·6H20)
(H 3B03)

1.0 M
loOM

20 ml (100 mg Fe)
1095.0 mg (250 mg Zn)

(150.0 mg)(50 mg Mn)

39.2 mg (10 mg Cu)

(20.0 mg)(5 mg Co)
(11.4 mg)(2 mg B)

Add a few drops of sulfuric acid to retard precipitation.
4. Concentrated Base per 1iter:

Nitrilotriacetic acid 10.0 9
MgSO4 14.45 9
CaC1 2 ·2H20 3.335 9

(NH4)6M07024·4H20 9.25 mg
FeS04 ·7H20 99.0 mg

Nicotinic acid 50.0 mg
Thiamin·HCl 25.0 mg
Biotin 0.5 mg
Me ta 1s "44" 50 .0 m1

Dissolve NTA separately and neutralize with KOH (about 7.3 g);
add the rest of the ingredients and adjust to pH 6.6 to 6.8
before making to volume.

5. For each liter of complete medium: take 20 ml each of solutions 1, 2
and 4, make to one liter with distilled water and add 1.0 g of casein
hydrolysate. The precipitate which forms during autoclaving will
redissolve on cooling. Final pH 6.8 to 7.2.

NOTE: The casein hydrolyate may be replaced by a mixture of 0.1% L-glutamic
acid and 0.1% sodium acetate·3H20.

If the medium becomes alkaline during growth, magnesium ammonium
phosphate is deposited. This may be prevented by aerating with a gas
mixture containing 5% CO2 or by reducing the ammonium concentration from
0.04 Mto around 0.01 M.
Slant Medium: Yeast extract - 0.3 gm, agar - 2 gms,

H20 - 100 ml, casamine acids - 0.2 gm.

a. Cohen-Bazire, Sistrom, and Stanier; Journal of Cellular and Comparative
Physiology, 11, p. 29, 1957.
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TAHLE 4-A

Scintillation Fluid Formula

500 m1 NEC Fluor Concentrate II (RSL)

2500 m1 absolute ethanol

2700 m1 reagent grade toluene

500 g reagent grade naphthalene

Stirred to effect complete solution.

18.0 m1 of this fluid was used routinely in

standard, capped scintillation counting vials, Some

improvement in counting efficiency was achieved by

improved dispersion in the presence of an approximately

equal volume of Cab-0-Si1. The absorption of C1402

in combustion assays was improved by the addition of

excess quarternary ammonium base (NCS).
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TABLE 5-A

Biochemical ~ractions into Which Methane is----

Incorporated by Anacystis Nidulans a

Time of contact with C14H4 30 minutes

Fraction CPM/g cells %------

l. Cold TCA Extract
(sol. metabolites) 102,397.4 24.6

2. Ale. sol. } 58,893.3 }
Lipids 66,640.7 16.0

3. Ether sol. 7,747.4

4. Hot TCA Extract 197,640.0 47.5

5. Acidic ale. rinse 6,480.0 1.6

6. Ether ri nse 106.7 0.0

7. Insol. in Hot TCA
(" nuc l eic acid 43,186.0 10.4
hydrolyzate" )

Total 416,450.8 100.1

a. 1% wet cells from steady-state apparatus at 20°C.
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TABLE 6-A

8iochemical Fractions into Which Methane

is Incorporated by Nostoca

Time of contact with c14H4 68 min. 121 mi n.

a. 1% wet cells from steady-state apparatus at 22°C.
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1

o.~ r-

XBB7012-5384

FIGURE 1. Section of Rhodospirillum rubum grown photosynthetically at moderate light
intensity (1000 ftc).30
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XBB7012-5385

FIGURE 2. Nostoc, a blue-green alga. Low-density nuclear material is abundant in the

~picture,and threadlike structures (T) are clearly shown in the nucleo­

plasm of the cells at the right. Membranous chloroplast equivalents almost

fill the cells in the lower picture. (Electron photomicrographs by G. B.
Chapman.)2
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XBB7012-5383

FIGURE 3. Ultrastructure of Anacystis nidulans showing continuity of lamellae with the

cytoplasmic membrane. Cytoplasmic membrane invaginates to form both

part of the double membrane. KMn04 fixation x 60,000. Marker indicates
30.1 pm.
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RUBBER SEPTUM

IO.Oml. CULTURE
SUSPENSION

SHAKE FLASK

XBB7012-5382

FIGURE 4. Shake-flask vessel and illuminated swirling, thermostated apparatus.
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OXYGEN
ANALYZER

i

CI4

IONIZATION
CHAMBER

NUTRIENT
MEDIUM

CO, ANALYZER

o 0

pH METER

>

1

FIGURE 5. Steady-state apparatus permits experimental control and study of photosynthesis.
The algae are suspended in nutrient in a transparent vessel (lower rightl. A gas
pump circulates a mixture of air and ordinary carbon dioxide to the vessel, where
it bubbles through the suspensions. Labeled carbon is added in the form of
C14H4 • Measurements of the oxygen, carbon dioxide, and labeled carbon levels
in the gas are recorded continuously. The pH is maintained at a constant value
by means of the pH meter. The sampler control allows removal of samples into
the test tube. 12
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RUBBER SEPTUM ___.

MAGNETIC BAR

BREAKSEAL

LINE TO VACUUM,NITROGEN,
OR COLO METHANE

SYRINGE NEEDLES

SOAP SOWTlON BUBBLER

FIGURE 6. Apparatus for dilution of C14 methane with cold methane.
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OL----------------------e.:;,;'·:..-..:~~....:.:.:.::..:..::..:..--~-=--~~H
H20

FIGURE 7. Thermodynamic equilibria in atmospheres of varying elemental proportions. The
ternary diagram provides a display of systems of all possible relative proportions
of C, H, and O. The points corresponding to atmospheres of pure gases of the
major compounds are indicated and regions where different compounds are impor­
tant are shown. The solid curve indicates the phase boundary along which
graphite becomes stable at 1 atm. pressure and 500 oK. The activation energy
for this reaction is so high that under many conditions it does not occur and
gaseous equilibria above this line are observed. Above the line CH

4
-C0

2
,

equilibrium favors the formation of large proportions of polycyclic aromatic com­
pounds or asphalts and a lesser increase in most of the other families of com­
pounds. The graphite and asphalt lines are always present, but their position
varies with temperature and pressure. A represents a system with C:H:O ratio
10:50:40; B, 20:40:40; C, 30:30:40; D, 10:80:10; E, 20:70:10; F, 30:60:10; and
G, 10:20:70. 18
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FIGURE 11. As predicted from Dalton's law, C14 activities in solution are fairly
constant and Independent of changes in methane partial pressures
in the gas phase.
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of killed cells by physical transport.
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FIGURE 13. Unadapted culture differs little from one~ay methane-adapted culture
and shows little sodium bicarbonate effect.



-54-

~
..J
l&J

ZU
_0
el&J
a.Cf)
CJZ
-ii

103 >- 0
"'z><t
... 0
~l&J

~ a:
ul&J
~
LL

WITH 120 fL mole. NoHCO 3

WITHOUT 120 fLmole. NoHC0 3

o
(;]

r----'T'""'---..,...---__----..,.----,.----.,.-----.104

~
Cf)

ZZ
-l&J

-~
(~
CJCf)-

6050

10 -L.- ....... ~ ....I. __'1__ J._ ....... ...I102

10 20 30 40
TIME, MINUTES

FIGURE 14. After one~ay methane adaption, slightly more C14 activity is incorporated
into the cells In the presence of sodium bicarbonate than In the absence of
sodium bicarbonate.



-55-

,.-----r-----,-----,-----,------,.----r-----, ,0"

z 0 WITH 120 JLmol" NoHCO,
0 r::::J WITHOUT 120 JLmote. NoHCO, (I)

...J

Z~ ...J

-1&1 ~ ~
-Q.
Ecn .? -Q

8'~ 0 S 9 E lIJ
0.(1)- u Z

1&1 --
~ ~ loS 10' a:

>-
~!:i ~ 0

> Z... ::;) ct
~u

...
u 0

~u;i
~ w

---0
:! a:

~ ==r- u w
0 0'"""" ~...

LL

104L-..---~---~---~---~::----~::__--~~-----I102

FIGURE 15. After three-<lay methane adaption, the sodium bicarbonate effect
is very pronounced.



-56-

o WITH 120 p.mol•• NaHCO s

t:l WITHOUT 120 jLmol•• NoHCO. ~
...J
W

~u
_0
e w
0.(1)
uZ
-~

10' >- 0t:z
>04
~o

~UJ
~ ffi
u~
~

u.

z
Q

ZCl)

-Z 1_
~ .' G.~==~'G~=========.. . l:J- 15 B

[~
UCI)-

FIGURE lb. After elght-day methane adaption, the sodium bicarbonate effect
continues to Increase.



-57-

1o.r------r----~---~---__r---__,----....._--___.10
4

(I')
-oJ
..J
W

Z U

0 0
--0 E w

0- (I')

0 Z

103
;:-

0::

~ 0
Z> ~

I-
0U

~ LLJ
V 0::
-U LLJ

r- ~
lL.

10 ~ ........ ..L_ _... __.l. ___l"__ "____~102

10 20 30 40 50 60

TIME, MINUTES

o WITH 12O}J- mole. No HCO,
8 WITHOUT 120 fL moln NoHCO,

(:J0~--_<O>---__<0>_-------

~ 0 -0

>- ~ Icr
1-::::>
-I­
~..J
1-::>
~u

'!: ...JU«
I­o
I-

FIGURE 17. Eight~ay adaptlon followed by four hours of 1% CH 4 -99% N2 (without 02)

does not enhance the sodium bicarbonate effect.



-58-

o WITH 120 fL moles NoHC03

EJ WITHOUT 120 fLmoles NoHC03

z
o

z ~ ~===t8j:==8~========~0
-W
-Q.
SCI)
Q.::>
uCl)-
)-ow

t: ~ 105

~~
~::>

~u
~ ..J

Uc:r
~

~

~
..J
W

ZU

FIGURE 18. Four-day rigorous adaption with 1% CH. -99X N2 (without 02) increases
cell c14 activities but is fatal.



-59 -

10· 10·

0 WITH 120 JJ-moles NoHC03

0 WITHOUT 120 JJ- mole. No HC03

~Z
Q ...I

Z(/) W
-z ZU_w

'::0K5i E W
u::::> a.(J)

(J) u~- _0:

~~ IrT 103
>-0_::::> I-Z>1- ><l--J

1-::::> 1-0
~o uw

!: ...I «0::
U« ::!: w

I- u~
0

&~
I-

1-
u.

10 102

10 20 30 40 60

TIME t MINUTES

FIGURE 19. Ammoniacal cuprous chloride reagent treatment to remove Cl40 slightly
reduces the Cl4 activity level of unadapted cells. Sodium bicarbonate
enhancement persists.



-60-

10· 10"

0 WITH 120 J1. moles NoHCOs
0 WITHOUT 120 J1. moles No HCOs

(I)

Z ..J
0 ..J

en I.LI

Z U

I.LI 0
c:L. I.LI
(I) (I)
:::> zen

10~ lOs 0::
I.LI
0:: 0
:::> z
t- ~

..J a:::> wu 0::

..J I.LI
~ !Jt-

f2 l.L.

Z
Z- E
E Q.

~ho 10 2 0

>-
>- t-
t- :>
~ t-
t- U
U ~
~ ~

~ u-u

(J""-----.&.-----'--__--A. .L- -'- .......JL.--__----JIO
10 20 30 40

TIME, MINUTES
50 60

FIGURE 20. Nostoc inc.orporates C14H. more slowly and to a lesser extent than
Anacvstis nidulan~. Sodium bicarbonate facilitates early absorption.



-61-

107

Z
Q
In

~Z

~
..J
L&J

In U
:::> ...J
In <t

~
l-e
l-

e zI-

Z 10 104
-- E

E
Q.
0

Q.
0- >-
>- El

l-

I- r- >
> i=
I-

U

U 0 <t
<t ~u
~

U

Icr 103
0 10 20 30

TIME, HOURS

FIGURE 21. Rhodospirillum rubrum absorbs little C14H4 , grows slowly.



3

10
I 0 )l

( .. ~
2

en Z lA
J

Q
. en ::
:) en ~ - E Q

.
u >­ .-

(
> t= u e

t

t
u

I
7
<
6
'
~

/
'

~
C

U
R

V
E

B
_

_
_

_
_

_
_

_
_

_
./
/
'

4
-D

A
Y

W
IT

H
1

%
C~

.
C

U
R

V
E
A
~

Y
9

9
%

N
2

(
D

E
A

D
)

0
_

/
A

U
T

O
C

LA
V

E
D

/
~

a
-O

A
Y
A
D
A
~

/
a-

D
A

Y
A

D
A

P
T

IO
N

~
/

/
C

O
R

E
M

O
V

E
D

;0
/

/
4H

O
C

1"
R

S
(

/
o

..
..

-e
-O

A
Y

A
O

A
P

T
IO

N
P

LU
S

4
H

O
U

R
S

W
IT

H
O

U
T

.
I

.
W

IT
H

,%
C

H
•
•

9
9

0
/0

N
2

O
2
~
I
-
O
A
Y

A
O

A
P

TI
O

N
:H

lA
Y

8-
O

A
Y

A
O

A
P

TI
O

N
P

W
S

4
H

O
U

R
S

A
O

A
P

T
IO

tt
J
·

~
W

IT
H

I%
C

H
••

99
%

N
2

~
~

/
-~
OA
Y

A
O

A
P

T
IO

N
I

DA
Y

A
D

A
P

T
IO

N

/
~

U
N

A
D

A
P

T
E

D

14
(J

W
IT

H
O

U
T

N
o

H
C

O
,

A
T

3
0

M
IN

U
T

E
S

C
O

N
TA

C
T

W
IT

H
C

H
.

I.
o

W
IT

H
N

aH
C

O
,

A
T

3
0

M
IN

U
T

E
S

C
O

N
TA

C
T

W
IT

H
C

H
.

I 0
'

N I

16
O

L
I

I
I

I
I

I
I

I

2
~

6
a

10
12

14
C

A
C

TI
V

IT
Y

(c
p

m
)

IN
C

E
L

L
S,

x
1

0
-2

F
IG

U
R

E
22

.
M

et
ha

ne
ad

ap
tio

n
is

ef
fe

ct
ed

in
A
n
a
c
y
~
t
i
?

ni
gu

la
n_

s.
S

od
iu

m
bi

ca
rb

on
at

e
fa

ci
lit

a
te

s
in

co
rp

or
at

io
n

of
C

14
H

4
•



-63 -

500r-----r----~---~---...._---..,.....--___.
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FIGURE 23. Anacystis nldulans cells and extracellular secretions rapidly oxidize
C14H

4
to CUQ which is slowly equilibrated with the aqueous NaHC0 3•
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FIGURE 24. C14 incorporation by Anacystis nidulans in the shake flask under
slow initial equilibration (A.N.-1>'
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FIGURE 25. C14-methane oxidation to C140 2 by Anacystis nidulans is confirmed
in the presence and absence of light.
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FIGURE 26. A 10 to 20% increase in C14 activity is obtained with NCS and subsurface
injection of liquid suspension aliquots into the scintillation fluid.
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FIGURE 27. Anacystls nldulans Incorporates C14 into both soluble and insoluble
components In the chromatographic development solvents.
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FIGURE 30. Anacystis nldulans Incorporates C14 more rapidly than Nostoc into a
distinctive biochemical profile.
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FIGURE 31. Nostoc Incorporates C14 more slowly than Anacystls nldulans into
a distinctive biochemical profile.
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