
Performance of Ultra-Scale Applications on
Leading Vector and Scalar HPC Platforms

Leonid Oliker, Andrew Canning, Jonathan Carter, John Shalf, Horst Simon
CRD/NERSC

Lawrence Berkeley National Laboratory
Berkeley, CA 94720

Stephane Ethier
Princeton Plasma Physics Laboratory

Princeton University
Princeton, NJ 08453

David Parks
NEC Solutions America

Advanced Technical Computing Center
The Woodlands, TX, 77381

Shigemune Kitawaki, Yoshinori Tsuda, Tetsuya Sato
Earth Simulator Center

Japan Agency for Marine-Earth Science and Technology
3173-25, Showa-machi, Kanazawa-ku, Yokohama 236-0001, Japan

ABSTRACT
The last decade has witnessed a rapid proliferation of superscalar
cache-based microprocessors to build high-end capability and ca-
pacity computers primarily because of their generality, scalability,
and cost effectiveness. However, the constant degradation of super-
scalar sustained performance, has become a well-known problem
in the scientific computing community. This trend has been widely
attributed to the use of superscalar-based commodity components
who’s architectural designs offer a balance between memory per-
formance, network capability, and execution rate that is poorly match-
ed to the requirements of large-scale numerical computations. The
recent development of massively parallel vector systems offers the
potential to increase the performance gap for many important classes
of algorithms. In this study we examine four diverse scientific ap-
plications with the potential to run at ultrascale, from the areas of
plasma physics, material science, astrophysics, and magnetic fu-
sion. We compare performance between the vector-based Earth
Simulator (ES) and Cray X1, with leading superscalar-based plat-
forms: the IBM Power3/4 and the SGI Altix. Results demonstrate
that the ES vector systems achieve excellent performance on our
application suite – the highest of any architecture tested to date.

1. INTRODUCTION
The last decade has witnessed a rapid proliferation of superscalar
cache-based microprocessors to build high-end capability and ca-
pacity computers primarily because of their generality, scalability,
and cost effectiveness. This is primarily because their general-
ity, scalability, and cost effectiveness convinced computer vendors,

buyers, and users that vector architectures hold little promise for
future large-scale supercomputing systems. However, the constant
degradation of superscalar sustained performance, has become a
well-known problem in the scientific computing community. This
trend has been widely attributed to the use of superscalar-based
commodity components who’s architectural designs offer a balance
between memory performance, network capability, and execution
rate that is poorly matched to the requirements of large-scale nu-
merical computations.

The increasing gap between processor and memory speeds is a
well-known problem in computer architecture, with peak processor
performance improving at a rate of 60% per year, while DRAM la-
tencies and bandwidths improve at only 7% and 20% respectively.
To mask memory latencies, current high-end computers now de-
mand up to 25 times the number of overlapped operations required
of supercomputers 30 years ago. Furthermore, techniques designed
to hide memory latencies, such as out-of-order superscalar instruc-
tion processing, speculative execution, multithreading, and stream
prefetching engines, may actually increase the memory bandwidth
requirements. This so-called ’memory wall’ is one of the reasons
many high performance applications run well below the peak arith-
metic performance of the underlying machine. In particular, ir-
regularly structured and data-intensive codes exhibit poor temporal
locality and receive little benefit from the automatically managed
caches of conventional microarchitectures. In addition, a signif-
icant fraction of scientific codes are characterized by predictable
data-parallelism that could be exploited at compile time with prop-
erly structured program semantics; superscalar processors can of-
ten exploit this parallelism, but their generality leads to high costs
in chip area and power, which in turn limit the degree of paral-
lelism.

Superscalar architectures are unable to efficiently exploit the large
number of floating-point units that be can fabricated on a chip, due
to the small granularity of their instructions and the correspond-
ingly complex control structure necessary to support it. Vector
technology, on the other hand, provides an efficient approach for



controlling a large amount of computational resources provided
sufficient regularity in the computational structure can be discov-
ered. Vectors exploit these regularities in the computational struc-
ture to expedite uniform operations on independent data elements.
Vector instructions specify a large number of identical operations
that may execute in parallel, thus reducing control complexity and
efficiently controlling a large amount of computational resources.
However, when such operational parallelism cannot be found, the
efficiency of the vector architecture can suffer from the properties
of Amdahl’s Law where the time taken by the portions of the code
that are non-vectorizable easily dominate the execution time.

Recently, two innovative parallel-vector architectures have become
available to the supercomputing community: the Japanese Earth
Simulator (ES) and the Cray X1. In order to quantify what these
modern vector capabilities entail for the scientists that rely on mod-
eling and simulation, it is critical to evaluate this architectural ap-
proach in the context of demanding computational algorithms. A
number of previous studies [6, 9, 16, 20, 19] have examined par-
allel vector performance for scientific codes; however, few direct
comparisons of large-scale applications are currently available. In
this work, we compare the vector-based ES and X1 architectures
with three state-of-the-art superscalar systems: the IBM Power3,
Power4, and the SGI Altix. Our research team was the first in-
ternational group to conduct a performance evaluation study at the
Earth Simulator Center [18]; remote ES access in not available. We
examine four diverse scientific applications with potential to oper-
ate at ultrascale, from plasma physics (LBMHD), material science
(PARATEC), astrophysics (Cactus), and magnetic fusion (GTC).
Results demonstrate that the vector systems achieve excellent per-
formance on our application suite – the highest of any platform
tested to date. However, the low ratio between scalar and vector
performance make the evaluated vector systems particularly sensi-
tive to unvectorized code segments – pointing out an additional di-
mension for ’architectural balance’ where vector systems are con-
cerned. Additionally, vectorization of a particle-in-cell code high-
lights the potential difficulty of expressing irregularly structured
algorithms as data-parallel programs. Overall, the ES sustains a
significantly higher fraction of peak than the X1, and often out-
performs it in absolute terms. Results also indicate that the Altix
system is a promising computational platform.

2. TARGET HPC PLATFORMS
AND APPLICATIONS

Table 1 presents a summary of the architectural characteristics of
the five supercomputers examined in our study. Observe that the
vector systems are designed with higher absolute performance and
better architectural balance than the superscalar platforms. The
ES and X1 have high memory bandwidth relative to peak CPU
(bytes/flop), allowing them to continuously feed the arithmetic units
with operands more effectively than the superscalar architectures
examined in our study. Additionally, the custom vector intercon-
nects show superior characteristics in terms of measured latency [3,
22], point-to-point messaging (bandwidth per CPU), and all-to-all
communication (bisection bandwidth) – in both raw performance
(GB/s) and as a ratio of peak processing speed (bytes/flop). Over-
all the ES appears the most balanced system in our study, while the
Altix shows the best architectural characteristics among the super-
scalar platforms.

2.1 Power3

The Power3 experiments reported here were conducted on the 380-
node IBM pSeries system running AIX 5.1 and located at Lawrence
Berkeley National Laboratory. Each 375 MHz processor contains
two floating-point units (FPUs) that can issue a fused multiply-add
(MADD) per cycle for a peak performance of 1.5 Gflop/s. The
Power3 has a pipeline of only three cycles, thus using the regis-
ters more efficiently and diminishing the penalty for mispredicted
branches. The out-of-order architecture uses prefetching to reduce
pipeline stalls due to cache misses. The CPU has a 32KB instruc-
tion cache, a 128KB 128-way set associative L1 data cache, and an
8MB four-way set associative L2 cache with its own private bus.
Each SMP node consists of 16 processors connected to main mem-
ory via a crossbar. Multi-node configurations are networked via the
Colony switch using an omega-type topology.

2.2 Power4
The Power4 experiments in this paper were performed on the 27-
node IBM pSeries 690 system running AIX 5.2 and operated by
Oak Ridge National Laboratory (ORNL). Each 32-way SMP con-
sists of 16 Power4 chips (organized as 4 MCMs), where a chip
contains two 1.3 GHz processor cores. Each core has two FPUs
capable of a fused MADD per cycle, for a peak performance of
5.2 Gflop/s. The superscalar out-of-order architecture can exploit
instruction level parallelism through its eight execution units; how-
ever a relatively long pipeline (six cycles) if necessitated by the
high frequency design. Each processor contains its own private L1
cache (64KB instruction and 32KB data) with prefetch hardware;
however, both cores share a 1.5MB unified L2 cache. The L3 is de-
signed as a stand-alone 32MB cache, or to be combined with other
L3s on the same MCM to create a larger 128MB interleaved cache.
The benchmarks presented in this paper were run on a system em-
ploying the recently-released Federation (HPS) interconnect, with
two switch adaptors per node. None of the benchmarks used large
(16MB) pages, as the ORNL system was not configured for such
jobs.

2.3 Altix 3000
The SGI Altix is a unique architecture, designed as a cache-coherent,
shared-memory multiprocessor system. The computational build-
ing blocks of the Altix consists of four Intel Itanium2 processors,
local memory, and a two controller ASICs called the SHUB. The
64-bit Itanium2 architecture operates at 1.5 GHz and is capable of
issuing two MADDs per cycle for a peak performance of 6 Gflop/s.
The memory hierarchy consists of 128 floating-point (FP) regis-
ters and three on-chip data caches with 32K of L1, 256K of L2,
and 6MB of L3. Note that the Itanium2 cannot store FP data in
L1 cache (only in L2), making register loads and spills a poten-
tial source of bottlenecks; however, the relatively large FP regis-
ter set helps mitigate this issue. The superscalar Itanium2 proces-
sor performs a combination of in-order and out-of-order instruction
execution referred to as Explicitly Parallel Instruction Computing
(EPIC). Instructions are organized into VLIW bundles, where all
instructions within a bundle can be executed in parallel. However,
the bundles themselves must be processed in order

The Altix interconnect uses the NUMAlink3,a high-performance
custom network in a fat-tree topology. This configuration enables
the bisection bandwidth to scale linearly with the number of proces-
sors. In additional to the traditional distributed-memory program-
ming paradigm, the Altix systems implements a cache-coherent,
nonuniform memory access (NUMA) protocol directly in hard-
ware. This allows a programming model where remote data are
accessed just like locally allocated data, using loads and stores. A



Platform CPU/ Clock Peak Memory BW Peak MPI Latency Network BW Bisection BW Network
Node (MHz) (GF/s) (GB/s) (Bytes/flop) (µsec) (GB/s/CPU) (Bytes/s/flop) Topology

Power3 16 375 1.5 0.7 0.47 16.3 0.13 0.087 Fat-tree
Power4 32 1300 5.2 2.3 0.44 7.0 0.25 0.025 Fat-tree
Altix 2 1500 6.0 6.4 1.1 2.8 0.40 0.067 Fat-tree
ES 8 500 8.0 32.0 4.0 5.6 1.5 0.19 Crossbar
X1 4 800 12.8 34.1 2.7 7.3 6.3 0.088∗ 2D-torus

Table 1: Architectural highlights of the Power3, Power4, Altix, ES, and X1 platforms.

load/store cache miss causes the data to be communicated in hard-
ware (via the SHUB) at a cache-line granularity and automatically
replicated in the local cache, however locality of data in main mem-
ory is determined at page granularity. Additionally, one-sided pro-
gramming languages can be efficiently implemented by leveraging
the NUMA layer. The Altix experiments reported in this paper
were performed on the 256-processor system (several reserved for
system services) at ORNL, running 64-bit Linux version 2.4.21 and
operating as a single system image.

2.4 Earth Simulator
The vector processor of the ES uses a dramatically different archi-
tectural approach than conventional cache-based systems. Vector-
ization exploits regularities in the computational structure of sci-
entific applications to expedite uniform operations on independent
data sets. The 500 MHz ES processor contains an 8-way replicated
vector pipe capable of issuing a MADD each cycle, for a peak per-
formance of 8.0 Gflop/s per CPU. The processors contain 72 vector
registers, each holding 256 64-bit words (vector length = 256). For
non-vectorizable instructions, the ES contains a 500 MHz scalar
processor with a 64KB instruction cache, a 64KB data cache, and
128 general-purpose registers. The 4-way superscalar unit has a
peak of 1.0 Gflop/s (1/8 of the vector performance) and supports
branch prediction, data prefetching, and out-of-order execution.

Like traditional vector architectures, the ES vector unit is cache-
less; memory latencies are masked by overlapping pipelined vector
operations with memory fetches. The main memory chip for the
ES uses a specially developed high speed DRAM called FPLRAM
(Full Pipelined RAM) operating at 24ns bank cycle time. Each
SMP contains eight processors that share the node’s memory. The
Earth Simulator is the world’s most powerful supercomputer [5],
containing 640 ES nodes connected through a custom single-stage
crossbar. This high-bandwidth interconnect topology provides im-
pressive communication characteristics, as all nodes are a single
hop from one another. However, building such a network incurs a
high cost since the number of cables grows as a square of the node
count – in fact, the ES system utilizes approximately 1500 miles of
cable. The 5120-processor ES runs Super-UX, a 64-bit Unix oper-
ating system based on System V-R3 with BSD4.2 communication
features. As remote ES access is not available, the reported experi-
ments were performed during the authors’ visit to the Earth Simula-
tor Center located in Kanazawa-ku, Yokohama, Japan in December
2003.

2.5 X1
The recently-released X1 is designed to combine traditional vec-
tor strengths with the generality and scalability features of modern
superscalar cache-based parallel systems. The computational core,
called the single-streaming processor (SSP), contains two 32-stage
∗X1 bisection bandwidth is based on a 2048 MSP configuration

vector pipes running at 800 MHz. Each SSP contains 32 vector reg-
isters holding 64 double-precision words (vector length = 64), and
operates at 3.2 Gflop/s peak for 64-bit data. The SSP also contains
a two-way out-of-order superscalar processor running at 400 MHz
with two 16KB caches (instruction and data). The multi-streaming
processor (MSP) combines four SSPs into one logical computa-
tional unit. The four SSPs share a 2-way set associative 2MB data
Ecache, a unique feature for vector architectures that allows ex-
tremely high bandwidth (25–51 GB/s) for computations with tem-
poral data locality. MSP parallelism is achieved by distributing
loop iterations across each of the four SSPs. The compiler must
therefore generate both vectorizing and multistreaming instructions
to effectively utilize the X1. The scalar unit operates at 1/8th the
peak of SSP vector performance, but offers effectively 1/32 MSP
performance if a loop can neither be multistreamed nor vectorized.
Consequently, a high vector operation ratio is especially critical for
effectively utilizing the underlying hardware.

The X1 node consists of four MSPs sharing a flat memory, and
large system configuration are networked through a modified 2D
torus interconnect. The torus topology allows scalability to large
processor counts with relatively few links compared with fat-tree
or crossbar interconnects; however, this topological configuration
suffers from limited bisection bandwidth. Finally, the X1 has hard-
ware supported globally addressable memory which allows for effi-
cient implementations of one-sided communication libraries (MPI-
2, SHMEM) and implicit parallel programming languages (UPC,
CAF). All reported X1 experiments reported were performed on
the 512-MSP system (several reserved for system services) running
UNICOS/mp 2.4 and operated by ORNL.

2.6 Scientific Applications
Four scientific applications were chosen to measure and compare
the performance of the vector-based ES and X1 with the superscalar-
based Power3, Power4, and Altix systems. The application are:
LBMHD, a plasma physics application that uses the Lattice-Boltzmann
method to study magneto-hydrodynamics; PARATEC, a first prin-
ciples materials science code that solves the Kohn-Sham equations
of density functional theory to obtain electronic wavefunctions;
Cactus, an astrophysics code that evolves Einstein’s equations from
the Theory of General Relativity using the Arnowitt-Deser-Misner
method; and GTC, a magnetic fusion application that uses the particle-
in-cell approach to solve non-linear gyrophase-averaged Vlasov-
Poisson equations.

These codes represent candidate ultrascale applications that have
the potential to fully utilize a leadership-class system of Earth Sim-
ulator scale and beyond. Performance results, presented in Gflop/s
per processor (denoted as Gflops/P) and percentage of peak, are
used to compare the relative time to solution of the computing plat-
forms in our study. When different algorithmic approaches are used



for the vector and scalar implementations, this value is computed
by dividing a valid baseline flop-count by the measured wall-clock
time of each architecture. To characterize the level of vectoriza-
tion, we also examine vector operation ratio (VOR) and average
vector length (AVL) for the ES and X1 where possible. The VOR
measures the ratio between the number of vector operations and the
total overall operations (vector plus scalar); while the AVL repre-
sents the average number of operations performed per issued vector
instruction. An effectively vectorized code will achieve both high
VOR (optimal is 100%) and AVL (256 and 64 is optimal for ES
and X1 respectively). Hardware counter data were obtained with
hpmcount on the Power systems,pfmon on the Altix, ftrace
on the ES, andpat on the X1.

3. PLASMA PHYSICS
Lattice Boltzmann methods (LBM) have proved a good alternative
to conventional numerical approaches for simulating fluid flows
and modeling physics in fluids [21]. The basic idea of the LBM
is to develop a simplified kinetic model that incorporates the essen-
tial physics, and reproduces correct macroscopic averaged proper-
ties. Recently, several groups have applied the LBM to the problem
of magneto-hydrodynamics (MHD) [8, 14] with promising results.
LBMHD [15] simulates the behavior of a two-dimensional con-
ducting fluid evolving from simple initial conditions and decaying
to form current sheets.

The 2D spatial grid is coupled to an octagonal streaming lattice
and block distributed over a 2D processor grid. Each grid point
is associated with a set of mesoscopic variables, whose values are
stored in vectors proportional to the number of streaming direc-
tions – in this case nine (eight plus the null vector). The simulation
proceeds by a sequence of collision and stream steps. A collision
step involves data local only to that spatial point, allowing con-
current, dependence-free point updates; the mesoscopic variables
at each point are updated through a complex algebraic expression
originally derived from appropriate conservation laws. A stream
step evolves the mesoscopic variables along the streaming lattice,
necessitating communication between processors for grid points at
the boundaries of the blocks. Additionally, an interpolation step is
required between the spatial and stream lattices since they do not
match.

Varying schemes were used in order to optimize the collision rou-
tine on each of the architectures. The basic computational structure
consists of two nested loops over spatial grid points (typically 100-
1000 iterations) with inner loops over velocity streaming vectors
and magnetic field streaming vectors (typically 10-30 iterations),
performing various algebraic expressions. For the Power3/4 and
Altix systems, the inner grid point loop was blocked to increase
cache reuse – leading to a modest improvement in performance
for the largest grids and smallest concurrencies. For the ES, the
inner grid point loop was taken inside the streaming loops and vec-
torized. The temporary arrays introduced were padded to reduce
memory bank conflicts. We note that the ES compiler was unable
to perform this transformation based on the original code. In the
case of the X1, the compiler did an excellent job, multi-streaming
the outer grid point loop and vectorizing (via strip mining) the inner
grid point loop without any user code restructuring. No additional
vectorization effort was required due to the data-parallel nature of
LBMHD.

Interprocessor communication was implemented using the MPI li-
brary, by copying the non-contiguous mesoscopic variables data

into temporary buffers, thereby reducing the required number of
send/receive messages. Additionally, a Co-array Fortran (CAF) [2]
version was implemented for the X1 architecture. CAF is a one-
sided parallel programming language implemented via an extended
Fortran 90 syntax. Unlike explicit message passing in MPI, CAF
programs can directly access non-local data through co-array refer-
ences. This allows a potential reduction in interprocessor overhead
for architectures supporting one-sided communication, as well as
opportunities for compiler-based optimizing transformations. For
example, the X1’s measured latency decreased from 7.3µsec using
MPI to 3.9µsec using CAF semantics [3]. In the CAF implemen-
tation of LBMHD, the spatial grid is declared as a co-array and
boundary exchanges are performed using co-array subscript nota-
tion.

3.1 LBMHD Results
Table 2 presents LBMHD performance on the five studied architec-
ture for grid sizes of40962 and81922. Note that to maximize per-
formance the processor count is restricted to squared integers. The
vector architectures show impressive results, achieving a speedup
of approximately 44x, 16x, and 7x compared with the Power3,
Power4, and Altix respectively (for 64 processors). The AVL and
VOR are near maximum for both vector systems, indicating that
this application is extremely well-suited for vector platforms. In
fact the 3.3 Tflop/s attained on 1024 processor of the ES represents
the highest performance of LBMHD on any measured architecture
to date. The X1 gives comparable raw performance to the ES for
most of our experiments; however for 256 processors on the large
(81922) grid configuration, the ES ran about 1.5X faster due to
the decreased scalability of the X1. Additionally, the ES consis-
tently sustains a significantly higher fraction of peak, due in part to
its superior CPU-memory balance. The X1 CAF implementation
shows about a 10% overall improvement over the MPI version for
the large test case, however MPI slightly outperformed CAF for the
smaller grid size (P=64). For LBMHD, CAF reduced the memory
traffic by a factor of 3X by eliminating user- and system-level mes-
sage copies (latter used by MPI); these gains were somewhat offset
by CAF’s use of more numerous and smaller sized messages. This
issue will be the focus of future investigation.

The low performance of the superscalar systems is mostly due to
limited memory bandwidth. LBMHD has a low computational in-
tensity – about 1.5 FP operations per data word of access – mak-
ing it extremely difficult for the memory subsystem to keep up
with the arithmetic units. Vector systems are able to address this
discrepancy through a superior memory system and support for
deeply pipelined memory fetches. Additionally, the40962 and
81922 grids require 7.5 GB and 30 GB of memory respectively,
causing the subdomain’s memory footprint to exceed the cache size
even at high concurrencies. Nonetheless, the Altix outperforms the
Power3 and Power4 in terms of Gflop/s and fraction of peak due
to its higher memory bandwidth and superior network characteris-
tics. Observe that superscalar performance relative to concurrency
shows more complex behavior than on the vector systems. Since
the cache-blocking algorithm for the collision step is not perfect,
certain data distributions are superior to others – accounting for in-
creased performance at intermediate concurrencies. At larger con-
currencies, the cost of communication begins to dominate, thus re-
ducing performance as in the case of the vector systems.

3.2 3D LBMHD Experiments
On our second visit to the ES Center in October 2004, a 3D ver-
sion of LBMHD was ported and run at large scale. This appli-



Grid Power3 Power4 Altix ES X1 (MPI) X1 (CAF)
Size

P
Gflops/P %Pk Gflops/P %Pk Gflops/P %Pk Gflops/P %Pk Gflops/P %Pk Gflops/P %Pk

4096 16 0.107 7% 0.279 5% 0.598 10% 4.62 58% 4.32 34% 4.55 36%
x 64 0.142 9% 0.296 6% 0.615 10% 4.29 54% 4.35 34% 4.26 33%

4096 256 0.136 9% 0.281 5% — — 3.21 40% — — — —

8192 64 0.105 7% 0.270 5% 0.645 11% 4.64 58% 4.48 35% 4.70 37%
x 256 0.115 8% 0.278 5% — — 4.26 53% 2.70 21% 2.91 23%

8192 1024 0.108 7% — — — — 3.30 41% — — — —

Table 2: LBMHD per processor performance on 4096x4096 and 8192x8192 grids.

cation uses a more conventional 3D cubic lattice for spatial and
velocity resolution with 27 streaming vectors. Performance of the
3D code on the ES was predicted to be better than the 2D model
for two reasons: improvement in the surface to volume ratio, re-
sulting in a lower overall fraction of communication overhead; in-
crease in the vectorizable work due to more computationally in-
tensive collision operator. Starting from a basic superscalar ver-
sion of the code, we made several significant efficiency improve-
ments. Initially performance was low on the ES, achieving only
300 Mflops/P. As with the 2D version the innermost loops were
short, iterating over streaming vectors. These loops were com-
pletely unrolled using compiler directives. After this optimization,
the performance improved to around 4 Gflops/P. Moving to a larger
grid, the MPI performance was improved by aggregating messages
leading to about 4.8 Gflops/P per processor. Finally, the algorithm
was reworked slightly to combine of the collision and streaming
steps. This brought performance up to around 5.2 Gflops/P. Us-
ing a 10243 grid, we achieved an impressive 5.6, 11.1, and 22.2
Tflops/P on 1024, 2048, and 4096 processors of the ES. Even on
the largest runs, communication time was less than 10% of the total
overhead. For these experiments, the AVL and VOR were almost
ideal, achieving over 254 and 99.5% respectively. Future work will
focus on a comprehensive evaluation of the 3D LBMHD.

4. MATERIAL SCIENCE
PARATEC (PARAllel Total Energy Code [4]) performs ab-initio
quantum-mechanical total energy calculations using pseudopoten-
tials and a plane wave basis set. The pseudopotentials are of the
standard norm-conserving variety. Forces can be easily calculated
and used to relax the atoms into their equilibrium positions. PARA-
TEC uses an all-band conjugate gradient (CG) approach to solve
the Kohn-Sham equations of Density Functional Theory (DFT) and
obtain the ground-state electron wavefunctions. DFT is the most
commonly used technique in materials science, having a quantum
mechanical treatment of the electrons, to calculate the structural
and electronic properties of materials. Codes based on DFT are
widely used to study properties such as strength, cohesion, growth,
magnetic, optical, and transport for materials like nanostructures,
complex surfaces, and doped semiconductors. Due to its accurate
predictive power and computational efficiency, DFT based codes
have been one of the largest consumer of supercomputing cycles in
computer centers around the world.

In solving the Kohn-Sham equations using a plane wave basis, part
of the calculation is carried out in real space and the remainder
in Fourier space using specialized parallel 3D FFTs to transform
the wavefunctions. The code spends most of its time in vendor-
supplied BLAS3 (∼30%) and 1D FFTs (∼30%) on which the 3D
FFTs libraries are built. Because these routines allow high cache
reuse and efficient vector utilization, PARATEC generally obtains a
high percentage of peak performance across a spectrum of comput-

ing platforms. The code exploits fine-grained parallelism by divid-
ing the plane wave (Fourier) components for each electron among
the different processors [4]. PARATEC is written in F90 and MPI,
and is designed primarily for massively parallel computing plat-
forms, but can also run on serial machines. The main limitation to
scaling PARATEC to large processor counts is the distributed grid
transformation during the parallel 3D FFTs that requires global in-
terprocessor communication when mapping the electron wavefunc-
tions from Fourier space (where it is represented by a sphere) to
a 3D grid in real space. Thus, architectures with a poor balance
between their bisection bandwidth and computational rate (see Ta-
ble 1) will suffer performance degradation at higher concurrencies
due to global communication requirements.

4.1 PARATEC Results
Table 3 presents performance data for 3 CG steps of a 432 and 686
Silicon atom bulk systems and a standard LDA run of PARATEC
with a 25 Ry cut-off using norm-conserving pseudopotentials. A
typical calculation would require between 20 and 60 CG iterations
to converge the charge density. PARATEC runs at a high percent-
age of peak on both superscalar and vector-based architectures due
to the heavy use of the computationally intensive FFTs and BLAS3
routines, which allow high cache reuse and efficient vector utiliza-
tion. The main limitation to scaling PARATEC to large numbers of
processors is the distributed grid transformation during the parallel
3D FFTs which requires global interprocessor communications. It
was therefore necessary to write specialized 3D FFT to reduce these
communication requirements. Since our 3D FFT routine maps the
wavefunction of the electron from Fourier space, where it is repre-
sented by a sphere, to a 3D grid in real space – a significant reduc-
tion in global communication can be achieved by only transposing
the non-zero grid elements. Nonetheless, architectures with a poor
balance between their bisection bandwidth and computational rate
(see Table 1) will suffer performance degradation at higher concur-
rencies due to global communication requirements.

Results in Table 3 show that PARATEC achieves impressive per-
formance on the ES, sustaining 2.6 Tflop/s for 1024 processors for
the larger system – the first time that any architecture has attained
over a Teraflop for this code. The declining performance at higher
processor counts is caused by the increased communication over-
head of the 3D FFTs, as well as reduced vector efficiency due to
the decreasing vector length of this fixed-size problem. Since only
3 CG steps were performed in our benchmarking measurements,
the set-up phase accounted for a growing fraction of the overall
time – preventing us from accurately gathering the AVL and VOR
values. The set-up time was therefore subtracted out for the re-
ported Gflop/s measurements. This overhead becomes negligible
for actual physical simulations, which require as many as 60 CG
steps. For example on the smaller 432 atom system on 32 proces-
sors, the measured AVL for the total run was 145 and 46 for the



432 Atom 686 Atom
Power3 Power4 Altix ES X1 ES X1P

Gflops/P %Pk Gflops/P %Pk Gflops/P %Pk Gflops/P %Pk Gflops/P %Pk Gflops/P %Pk Gflops/P %Pk

32 0.950 63% 2.02 39% 3.71 62% 4.76 60% 3.04 24% — — — —
64 0.848 57% 1.73 33% 3.24 54% 4.67 58% 2.59 20% 5.25 66% 3.73 29%

128 0.739 49% 1.50 29% — — 4.74 59% 1.91 15% 4.95 62% 3.01 24%
256 0.572 38% 1.08 21% — — 4.17 52% — — 4.59 57% 1.27 10%
512 0.413 28% — — — — 3.39 42% — — 3.76 47% — —

1024 — — — — — — 2.08 26% — — 2.53 32% — —

Table 3: PARATEC per processor performance on a 432 and 686 atom Silicon Bulk system.

ES and X1 (respectively); the AVL for only the CG steps (without
set-up) would certainly be higher.

Observe that X1 performance is lower than the ES, even though it
has a higher peak speed. The code sections of handwritten F90,
which typically consume about 30% of the run time, have a lower
vector operation ratio than the BLAS3 and FFT routines. These
handwritten segments also run slower on the X1 than the ES, since
unvectorized code segments tend not to multistream across the X1’s
SSPs. In addition, the X1 interconnect has a lower bisection band-
width network than the ES (see Table 1), increasing the overhead
for the FFT’s global transpositions at higher processor counts. Thus,
even though the code portions utilizing BLAS3 libraries run faster
on the X1, the ES achieves higher overall performance. In fact, due
to the X1’s poor scalability above 128 processors, the ES shows
more than a 3.5X runtime advantage when using 256 processors
on the larger 686 atom simulation. PARATEC runs efficiently on
the Power3, but sustained performance (percent of peak) on the
Power4 is lower due, in part, to network contention for memory
bandwidth [20]. The loss in scaling on the Power3 is primarily
caused by the increased communication cost as concurrency grows
to 512 processors. The Power4 system has a much lower bisection-
bandwidth to processor speed ratio than the Power3 resulting in
poorer scaling to large numbers of processors. The Altix performs
well on this code (second only to the ES). This is due to the Ita-
nium2’s high memory bandwidth, combined with interconnect net-
work with reasonably-high bandwidth, and extremely low latency
(see Table 1). However, higher scalability Altix measurements are
not available.

4.2 Quantum Dot Experiments
In October 2004, the authors returned to the Earth Simulator Cen-
ter, and had the opportunity to run PARATEC experiments on a 488
atom CdSe Cadmium Selenide Quantum Dot — using the largest
number of grid points simulated to date via this code. The range
of 100s–1000s atoms is typical of the size of dot produced by ex-
periment so it is important to understand the electronic properties
of dots of this size by simulation in order to improve their design
and fabrication for applications such as electronic dye tags. Re-
sults show an impressive performance of 3.64 Gflops/P (45% of
peak) using 1024 processors, and 2.67 Gflop/P (33% of peak) at
2048 processors — thus sustaining an aggregate of 5.5 Tflop/s, the
highest performance ever achieved for this application. This level
of performance opens the possibility to perform scientific Quantum
Dot calculations at an unprecedented scale.

5. ASTROPHYSICS
One of the most challenging problems in astrophysics is the nu-
merical solution of Einstein’s equations following from the Theory

of General Relativity (GR): a set of coupled nonlinear hyperbolic
and elliptic equations containing thousands of terms when fully ex-
panded. The Cactus Computational ToolKit [7, 1] is designed to
evolve these equations stably in 3D on supercomputers to simulate
astrophysical phenomena with high gravitational fluxes, such as the
collision of two black holes and the gravitational waves radiating
from that event. While Cactus is a modular framework supporting
a wide variety of multi-physics applications [10], our study focused
exclusively on the GR solver, which implements the ADM-BSSN
method [7] for stable evolutions of black holes.

The Cactus GR components solve Einstein’s equations as an initial
value problem that evolves partial differential equations (PDEs) on
a regular grid using finite differences. The core of the GR solver
uses the ADM formalism, which decomposes the solution into 3D
spatial hypersurfaces that represent different slices of space along
the time dimension. In this representation, the equations are writ-
ten as four constraint equations and 12 evolution equations. Addi-
tional stability is provided by the BSSN modifications to the stan-
dard ADM method [7]. The evolution equations can be solved us-
ing a number of different numerical approaches, including stag-
gered leapfrog, McCormack, Lax-Wendroff, and iterative Crank-
Nicholson schemes. Alapse function describes the time slicing
between hypersurfaces for each step in the evolution while ashift
vector is used to move the coordinate system at each step to avoid
being drawn into a singularity. The four constraint equations are
used to select different lapse functions and the related shift vectors.

For parallel computation, the global 3D grid is block domain de-
composed so that each processor has its own section. The stan-
dard MPI driver for Cactus solves the PDEs on a local region and
then updates the values at the ghost zones by exchanging data on
the faces of its topological neighbors. On superscalar systems,
the computations are blocked in order to improve cache locality.
Blocking is accomplished through the use of temporaryslice buffers,
which improve cache reuse while modestly increasing the compu-
tational overhead. These blocking optimizations were disabled on
vector architectures since they reduced the vector length and inhib-
ited performance.

5.1 CACTUS Results
The full-fledged production version of the Cactus ADM-BSSN ap-
plication was run on the ES system with results for two grid sizes
shown in Table 4. The problem size was scaled with the number of
processors to keep the computational load the same (weak scaling).
Cactus problems are typically scaled in this manner because their
science requires the highest-possible resolutions.

For the vector systems, Cactus achieves almost perfect VOR (over
99%) while the AVL is dependent on the x-dimension size of the



Grid Power3 Power4 Altix ES X1
Size

P
Gflops/P %Pk Gflops/P %Pk Gflops/P %Pk Gflops/P %Pk Gflops/P %Pk

16 0.314 21% 0.577 11% 0.892 15% 1.47 18% 0.540 4%80x80x80
64 0.217 14% 0.496 10% 0.699 12% 1.36 17% 0.427 3%per

256 0.216 14% 0.475 9% — — 1.35 17% 0.409 3%processor
1024 0.215 14% — — — — 1.34 17% — —

16 0.097 6% 0.556 11% 0.514 9% 2.83 35% 0.813 6%250x64x64
64 0.082 6% — — 0.422 7% 2.70 34% 0.717 6%per

256 0.071 5% — — — — 2.70 34% 0.677 5%processor
1024 0.060 4% — — — — 2.70 34% — —

Table 4: Cactus per processor performance on 80x80x80 and 250x64x64 grids

local computational domain. Consequently, the larger problem size
(250x64x64) executed with far higher efficiency on both vector ma-
chines than the smaller test case (AVL = 248 vs. 92), achieving
34% of peak on the ES. The oddly shaped domains for the larger
test case were required because the ES does not have enough mem-
ory per node to support a2503 domain. This rectangular grid con-
figuration had no adverse effect on scaling efficiency despite the
worse surface-to-volume ratio. Additional performance gains could
be realized if the compiler was able to fuse the X and Y loop nests
to form larger effective vector lengths.

Note that that the boundary condition enforcement was not vec-
torized on the ES and accounts for up to 20% of the execution
time, compared with less than 5% on the superscalar systems. This
demonstrates a potential limitation of vector architectures: seem-
ingly minor code portions that fail to vectorize can quickly dom-
inate the overall execution time. The architectural imbalance be-
tween vector and scalar performance was particularly acute of the
X1, which suffered a much greater impact from unvectorized code
than the ES. As a result, significantly more effort went into code
vectorization of the X1 port – without this optimization, the non-
vectorized code portions would dominate the performance profile.
Even with this additional vectorization effort, the X1 reached only
6% of peak.

Table 4 shows that the ES reached an impressive 2.7 Tflop/s for
the largest problem size using 1024 processors. This represents
the highest per processor performance (by far) achieved by the
full-production version of the Cactus ADM-BSSN on any evalu-
ated system to date. The Power3, on the other hand, is 45 times
slower than the ES, achieving only 60 Mflop/s per processor (6%
of peak) at this scale for the larger problem size. The Power4 sys-
tem offers even lower efficiency than the Power3 for the smaller
(80x80x80) problem size, but still ranks high in terms of peak de-
livered performance in comparison to the X1 and Altix. We were
unable to run the larger (250x64x64) problem sizes on the Power4
system, because there were insufficient high-memory nodes avail-
able to run these experiments. The Itanium2 processor on the Altix
achieves good performance as a fraction of peak for smaller prob-
lem sizes (using the latest Intel 8.0 compilers). Observe that unlike
vector architectures, microprocessor-based systems generally per-
form better on the smaller per-processor problem size because of
better cache reuse. In terms of communication overhead, the ES
spends 13% of the overall Cactus time in MPI compared with 23%
on the Power3; highlighting the superior architectural balance of
the network design for the ES. The Altix offered very low commu-
nication overhead, but its limited size prevented us from evaluating
high-concurrency performance.

6. MAGNETIC FUSION
The Gyrokinetic Toroidal Code (GTC) is a 3D particle-in-cell (PIC)
application developed at the Princeton Plasma Physics Laboratory
to study turbulent transport in magnetic confinement fusion [12,
13]. Turbulence is believed to be the main mechanism by which
energy and particles are transported away from the hot plasma core
in fusion experiments with magnetic toroidal devices. GTC solves
the non-linear gyrophase-averaged Vlasov-Poisson equations [11]
for a system of charged particles in a self-consistent, self-generated
electrostatic field. The geometry is that of a torus with an exter-
nally imposed equilibrium magnetic field, characteristic of toroidal
fusion devices. By using the PIC method, the non-linear PDE de-
scribing the motion of the particles in the system becomes a sim-
ple set of ordinary differential equations (ODEs) that can be eas-
ily solved in the Lagrangian coordinates. The self-consistent elec-
trostatic field driving this motion could conceptually be calculated
directly from the distance between each pair of particles using an
O(N2) calculation, but the PIC approach reduces it toO(N) by us-
ing a grid where each particle deposits its charge to a limited num-
ber of neighboring points according to its range of influence. The
electrostatic potential is then solved everywhere on the grid using
the Poisson equation, and forces are gathered back to each particle.
The most computationally intensive parts of GTC are the charge
deposition and gather-push steps that involve large loops over the
particles, which can reach several million per domain partition.

Although the PIC approach drastically reduces the computational
requirements, the grid-based charge deposition phase is a source
of performance degradation for both superscalar and vector archi-
tectures. Randomly localized particles deposit their charge on the
grid, thereby causing poor cache reuse on superscalar machines.
The effect of this deposition step is more pronounced on vector
systems since two or more particle may contribute to the charge at
the same grid point, creating a potential memory-dependency con-
flict. Several methods have been developed to address this issue;
GTC uses the work-vector algorithm [17], where a temporary copy
of the grid array is given an extra dimension corresponding to the
vector length. Each vector operation acts on a given data set in the
register, then writes to a different memory address, avoiding mem-
ory dependencies entirely. After the main loop, the results accumu-
lated in the work-vector array are gathered to the final grid array.
The only drawback is the increased memory footprint, which can
be 2 to 8 times higher than the nonvectorized code version.

Since GTC has previously been vectorized on a single-node SX-
6 [20], porting to the ES was relatively straightforward. However,
performance was initially limited due to memory bank conflicts,
caused by an access concentration to a few small 1D arrays. Using
theduplicatepragma directive alleviated this problem by allowing



Part/ Power3 Power4 Altix ES X1
Cell

Code P
Gflops/P %Pk Gflops/P %Pk Gflops/P %Pk Gflops/P %Pk Gflops/P %Pk

32 0.135 9% 0.299 6% 0.290 5% 0.961 12% 1.00 8%
10 MPI 64 0.132 9% 0.324 6% 0.257 4% 0.835 10% 0.803 6%

32 0.135 9% 0.293 6% 0.333 6% 1.62 20% 1.50 12%
100 MPI 64 0.133 9% 0.294 6% 0.308 5% 1.56 20% 1.36 11%

Hybrid 1024 0.063 4%

Table 5: GTC per processor performance using 10 and 100 particles per cell.

the compiler to create multiple copies of the data structures across
numerous memory banks. This method significantly reduced the
bank conflicts in the charge deposition routine and increased its
performance by 37%. Additional optimizations were performed to
other code segments with various performance improvements.

GTC is parallelized at a coarse-grain level using message-passing
constructs. Although the MPI implementation achieves almost lin-
ear scaling on most architectures, the grid decomposition is limited
to approximately 64 subdomains. To run at higher concurrency, a
second level of fine-grain loop-level parallelization is implemented
using OpenMP directives. However, the increased memory foot-
print created by the work-vector method inhibited the use of loop-
level parallelism on the ES. A possible solution could be to add an-
other dimension of domain or particle decomposition to the code,
this strategy is explored in Section 6.2

Porting to the X1 was straightforward from the vectorized ES ver-
sion but initial performance was limited. Note that the X1 suffers
from the same memory increase as the ES due to the work-vector
approach, potentially inhibiting OpenMP parallelism. Several ad-
ditional directives were necessary to allow effective multistream-
ing within each MSP. After discovering that the FORTRAN in-
trinsic functionmodulowas preventing the vectorization of a key
loop in the gather-push routine, it was replaced by an equivalent
but vectorizable statementmod. The most time consuming rou-
tine on the X1 became the ’shift’ subroutine. This step verifies the
coordinates of newly moved particles to determine whether they
have crossed a subdomain boundary and therefore require proces-
sor migration. The shift routine contains nestedif statements that
prevent the compiler from successfully vectorizing that code re-
gion. However, the non-vectorized shift routine accounted for sig-
nificantly more overhead on the X1 than the ES (54% vs. 11%
of overall time). Although both architectures have the same rela-
tive vector to scalar peak performance (8/1), serialized loops incur
an even larger penalty on the X1. This is because in a serialized
segment of a multistreamed code, only one of the four SSP scalar
processors within an MSP can do useful work, thus degrading the
relative performance ratio to 32/1. Performance on the X1 was
improved by converting the nestedif statements in the shift rou-
tine into two successive condition blocks, allowing the compiler to
stream and vectorize the code properly. The overhead therefore de-
creased from 54% to only 4% of the total time. This optimization
was implemented on the ES during our subsequent visit to the Earth
Simulator (see Section 6.2).

6.1 GTC Results
Table 5 presents GTC performance results on the five architectures
examined in our study. The first test case is configured for stan-
dard production runs using 10 particles per grid cell (2 million grid
point, 20 million particles). The second experiment examines 100
particles per cell (200 million particles), a significantly higher res-

olution that improves the overall statistics of the simulation while
significantly (8 fold) increasing the time-to-solution – making it
prohibitively expensive on most superscalar platforms. For the
large test case, both the ES and X1 attain high AVL (228 and 62
respectively) and VOR (99% and 97%), indicating that the applica-
tion has been suitably vectorized; in fact, the vector results repre-
sent the highest GTC performance on any tested platform to date.
In absolute terms the ES shows the highest performance, achieving
1.56 Gflop/s on the largest problem size for P=64 — the highest
performance on any evaluated architecture to date. Additionally,
the ES sustains 20% of peak compared with only 12% on the X1. It
should also be noted that because GTC uses single precision arith-
metic, the X1 theoretical peak performance is actually 25.6 Gflop/s;
however limited memory bandwidth and code complexity that in-
hibits compiler optimizations obviate this extra capability.

Comparing performance with the superscalar architectures, the ES
vector processors are about 12X faster than the Power3 and 5X
faster than the Power4 and Alitx systems. Observe that using 1024
processors of the Power3 (in hybrid MPI/OpenMP mode) is still
about 35% slower than 64-way vector runs; GTC’s OpenMP paral-
lelism is currently unavailable on the vector systems, limiting con-
currency to 64 processors (see Section 6 for the higher concurrency
implementation). Within the superscalar platforms, the Altix shows
the highest raw performance at over 300 Mflop/s, while the Power3
sustains the highest fraction of peak (9% compared with approxi-
mately 6% on the Power4 and Altix).

6.2 Particle Decomposition Optimization
At the time of our second visit to the Earth Simulator Center in
October 2004, several new improvements had been added to GTC.
The most important of them was the implementation of an MPI-
based particle decomposition, which added another level of paral-
lelism and gave the code access to higher concurrency execution.
The particles inside each spatial domain are now split between a
chosen number of processors. Another improvement was the in-
clusion of a fully vectorized version of the shift subroutine, as it
had been implemented on the X1. However, the ES version of that
subroutine is quite different from the X1 version since there is no
multi-streaming on the ES. Also, the compiler on the ES requires a
very strict structure in order to vectorize a loop containing an ’if’
statement. Therefore, the main loop in the shift subroutine had to
be split in two in order to conform to that restriction.

On a 32-processor test, the performance of the new vectorized shift
subroutine increased from 51 Mflop/s to 1351 Mflop/s, thus causing
its percentage of wallclock time to decrease from 16% to less than
7%. This improvement (along with other smaller changes) pushed
the efficiency of the code up to 25% of peak for the larger problem
sizes. The higher concurrency enabled by the new particle decom-
position allowed GTC to access a much larger number of proces-
sors. The efficiency of the parallel algorithm met the very stringent



Power3 Power4 Altix X1 ES
Code Sustained Total Sustained Total Sustained Total Sustained Total Sustained Total

Gflop/P %Pk CPU Gflop Gflop/P %Pk CPU Gflop Gflop/P %Pk CPU Gflop Gflop/P %Pk CPU Gflop Gflop/P %Pk CPU Gflop
LBMHD 0.11 7% 1024 111 0.28 5% 256 71 0.65 11% 64 41 2.70 21% 256 691 3.30 41%1024 3379

PARATEC 0.41 28% 512 211 1.08 21% 256 276 3.24 54% 64 207 1.27 10% 256 325 2.53 32%1024 2591
CACTUS 0.60 4% 1024 61 0.48 9% 256 122 0.42 7% 64 27 0.68 5% 256 173 2.70 34%1024 2765

GTC 0.13 9% 64 9 0.29 6% 64 19 0.31 5% 64 20 1.36 11% 64 87 1.56 20% 64 100
Average 0.18 12% 656 98 0.53 10% 208 122 1.15 19% 64 74 1.50 12% 208 319 2.52 32% 784 2209

Table 6: Summary of overall performance based on largest available concurrency and problem size

ES scaling requirements and ran on 2,048 processors, reaching an
unprecedented 3.7 Tflop/s using 5 billion particles. This outstand-
ing GTC performance opens the door to a whole new set of very
high phase space resolution simulations that have never been ex-
plored before, and will be the focus of future scientific experiments.

7. CONCLUSIONS
This work examined four diverse scientific applications on the par-
allel vector architectures of the ES and X1, and three leading super-
scalar platforms, the Power3, Power4, and Altix. Since most mod-
ern scientific codes are designed for (super)scalar microprocessors,
it was necessary to port these applications onto the vector plat-
forms; however only minor code transformations were applied in
an attempt to maximize the vector operation ratio and average vec-
tor length. Extensive code reengineering has not been performed.

Table 6 summarize performance across all five studied architec-
tures, while Figures 1 and 2 show absolute and sustained perfor-
mance relative to the ES (using the largest comparable concur-
rency for each architecture). Overall results show that the ES vector
system achieved excellent performance on our application suite –
the highest of any architecture tested to date – demonstrating the
tremendous potential of modern parallel vector systems. The ES
consistently sustained a significantly higher fraction of peak than
the X1, due in part to superior scalar processor performance, mem-
ory bandwidth, and network bisection bandwidth relative to the
peak vector flop rate. A number of performance bottlenecks ex-

Figure 1: Absolute performance as a ratio of the ES, based on
largest comparable concurrency and problem size

.

posed on the vector machines relate to the extreme sensitivity of
these systems to small amounts of unvectorized code. This sheds
light on a different dimension of architectural balance than sim-
ple bandwidth and latency comparisons. It is important to note
that X1-specific code optimizations have not been performed at this
time. This complex vector architecture contains both data caches
and multi-streaming processing units, and the optimal program-
ming methodology is yet to be established. Finally, preliminary
Altix results show promising performance characteristics; however,
we tested a relatively small Altix platform and it is unclear if its
network performance advantages would remain for large system
configurations.

Finally, Table 7 presents updated ES results from the authors sec-
ond visit to the Earth Simulator Center in October 2004, where
significant improvements were achieved for three of the evaluated
codes. First, we examined a 3D-lattice version of LBMHD, which
sustained a remarkable 68% of peak on 4096 processors for an ag-
gregate performance of 22.2 Tflop/s. Next, we examined a larger
atom simulation for PARATEC, using a CdSe Cadmium Selenide
Quantum Dot. The larger grid size of this system allowed scalabil-
ity to reach 2048 processors while sustaining 33% of peak, for an
aggregate performance of 5.5 Tflop/s. Finally, a new implementa-
tion of GTC was evaluated that utilizes a second level of parallelism
via particle-based decomposition. Results show that—unlike the
previous version where concurrency was limited to 64—the up-
dated GTC code successfully scaled to 2048 processors, attaining

Figure 2: Sustained percentage of peak as a ratio of the ES,
based on largest comparable concurrency and problem size

.



Sustained TotalCode Problem
Gflops/P %Pk CPU Tflop/s

2D LBMHD 81922 3.30 41% 1024 3.4
3D LBMHD 10243 5.50 68% 4096 22.2
PARATEC 686 Si Atom 2.53 32% 1024 2.6
PARATEC Quantum Dot 2.67 33% 2048 5.5

GTC 0.2B Particles 1.56 20% 64 0.1
GTC-PD 5B Particles 1.80 23% 2048 3.7

Table 7: Comparison between original ES results (top) and up-
dated ES performance gathered from second visit to Earth Sim-
ulator Center, October 2004 (bottom). (GTC-PD refers to the
updated version of GTC that utilizes particle decomposition.)

an impressive 23% of peak for an aggregate total of 3.7Tflop/s.
These results underscore the potential of the ES system to perform
scientific caculations at unprecenteded scale and resolution.

Future work will extend our study to include performance compar-
isons with the latest generation of high-end computing platforms.
We also plan to investigate new application domains, in the areas of
climate, molecular dynamics, cosmology, and combustion. We are
particularly interested in investigating the vector performance of
adaptive mesh refinement (AMR) methods, as we believe they will
become a key component of future high-fidelity multi-scale physics
simulations, across a broad spectrum of application domains.

Acknowledgments
The authors would like to gratefully thank: J. Snyder of NEC for
their help in porting applications to the ES. Special thanks to Thomas
Radke, Tom Goodale, and Holger Berger for assistance with the
vector Cactus ports. This research used resources of the National
Energy Research Scientific Computing Center, which is supported
by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC03-76SF00098. This research used resources
of the Center for Computational Sciences at Oak Ridge National
Laboratory, which is supported by the Office of Science of the De-
partment of Energy under Contract DE-AC05-00OR22725. All au-
thors from LBNL were supported by the Office of Advanced Sci-
entific Computing Research in the Department of Energy Office of
Science under contract number DE-AC03-76SF00098. Dr. Ethier
was supported by the Department of Energy under contract number
DE-AC020-76-CH03073.

8. REFERENCES
[1] Cactus Code Server.http://www.cactuscode.org .

[2] Co-Array Fortran.http://www.co-array.org .

[3] ORNL Cray X1 Evaluation.
http://www.csm.ornl.gov/˜dunigan/cray .

[4] PARAllel Total Energy Code.
http://www.nersc.gov/projects/paratec .

[5] Top500 Supercomputer Sites.
http://www.top500.org .

[6] P. A. Agarwal et al. Cray X1 evaluation status report. InProc.
of the 46th Cray Users Group Conference, May 17-21, 2004.

[7] M. Alcubierre, G. Allen, B. Brgmann, E. Seidel, and W.-M.
Suen. Towards an understanding of the stability properties of
the 3+1 evolution equations in general relativity.Phys. Rev.
D, (gr-qc/9908079), 2000.

[8] P.J. Dellar. Lattice kinetic schemes for
magnetohydrodynamics.J. Comput. Phys., 79, 2002.

[9] T. H. Dunigan Jr., M. R. Fahey, J. B. White III, and P. H.
Worley. Early evaluation of the Cray X1. InProc. SC2003:
High performance computing, networking, and storage
conference, Phoenix, AZ, Nov 15-21, 2003.

[10] J. A. Font, M. Miller, W. M. Suen, and M. Tobias. Three
dimensional numerical general relativistic hydrodynamics:
Formulations, methods, and code tests.Phys. Rev. D,
Phys.Rev. D61, 2000.

[11] W. W. Lee. Gyrokinetic particle simulation model.J. Comp.
Phys., 72, 1987.

[12] Z. Lin, S. Ethier, T.S. Hahm, and W.M. Tang. Size scaling of
turbulent transport in magnetically confined plasmas.Phys.
Rev. Lett., 88, 2002.

[13] Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. B.
White. Turbulent transport reduction by zonal flows:
Massively parallel simulations.Science, Sep 1998.

[14] A. Macnab, G. Vahala, P. Pavlo, , L. Vahala, and M. Soe.
Lattice boltzmann model for dissipative incompressible
MHD. In Proc. 28th EPS Conference on Controlled Fusion
and Plasma Physics, volume 25A, Funchal, Portugal, June
18-22, 2001.

[15] A. Macnab, G. Vahala, L. Vahala, and P. Pavlo. Lattice
boltzmann model for dissipative MHD. InProc. 29th EPS
Conference on Controlled Fusion and Plasma Physics,
volume 26B, Montreux, Switzerland, June 17-21, 2002.

[16] K. Nakajima. Three-level hybrid vs. flat mpi on the earth
simulator: Parallel iterative solvers for finite-element
method. InProc. 6th IMACS Symposium Iterative Methods in
Scientific Computing, volume 6, Denver, Colorado, March
27-30, 2003.

[17] A. Nishiguchi, S. Orii, and T. Yabe. Vector calculation of
particle code.J. Comput. Phys., 61, 1985.

[18] L. Oliker and J. Shalf A. Canning, J. Carter. Scientific
computations on modern parallel vector systems. InProc.
SC2004: High performance computing, networking, and
storage conference, Pittsburgh, PA, Nov6-12, 2004.

[19] L. Oliker, R. Biswas, J. Borrill, A. Canning, J. Carter,
J. Djomehri, H. Shan, and D. Skinner. A performance
evaluation of the Cray X1 for scientific applications. In
VECPAR: 6th International Meeting on High Performance
Computing for Computational Science, Valencia, Spain, June
28-30, 2004.

[20] L. Oliker, A. Canning, J. Carter, J. Shalf, D. Skinner,
S. Ethier, R. Biswas, J. Djomehri, and R. Van der Wijngaart.
Evaluation of cache-based superscalar and cacheless vector
architectures for scientific computations. InProc. SC2003:
High performance computing, networking, and storage
conference, Phoenix, AZ, Nov 15-21, 2003.

[21] S. Succi. The lattice boltzmann equation for fluids and
beyond.Oxford Science Publ., 2001.

[22] H. Uehara, M. Tamura, and M. Yokokawa. MPI performance
measurement on the Earth Simulator. Technical Report # 15,
NEC Research and Development, 2003/1.


