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DISCLAIMER 

“This report was prepared as an account of work sponsored by an agency of the United States 
Government.  Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned 
rights.  Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof.  The 
views and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof.” 

ABSTRACT 

This project was awarded under U.S. Department of Energy (DOE) National Energy Technology 
Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses 
Technical Topical Area 2 – Gasification Technologies. The project team includes Enertechnix, 
Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also 
provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy 
Limited), host for the field-testing portion of the research. 

The objective of this project was to adapt acoustic pyrometer technology to make it suitable for 
measuring gas temperature inside a coal gasifier, to develop a prototype sensor based on this 
technology, and to demonstrate its performance through testing on a commercial gasifier. The 
project was organized in three phases, each of approximately one year duration. The first phase 
consisted of researching a variety of sound generation and coupling approaches suitable for use 
with a high pressure process, evaluation of the impact of gas composition variability on the 
acoustic temperature measurement approach, evaluation of the impact of suspended particles and 
gas properties on sound attenuation, evaluation of slagging issues and development of concepts 
to deal with this issue, development and testing of key prototype components to allow selection 
of  the best approaches, and development of a conceptual design for a field prototype sensor that 
could be tested on an operating gasifier. The second phase consisted of designing and fabricating 
a series of prototype sensors, testing them in the laboratory, and developing a conceptual design 
for a field prototype sensor. The third phase consisted of designing and fabricating the field 
prototype, and testing it in the lab and in a commercial gasifier to demonstrate the ability to 
obtain accurate measurements of gas temperature in an operating gasifier. 

This report describes all of the activities conducted during the project and reports the findings of 
each activity in detail. The investigation of potential sound generation and coupling methods led 
to the selection of a reflected shock method which has been developed into a functioning 
prototype device. The principles of operation of this device and its performance characteristics 
are described in the report. Modeling of the attenuation of sound by suspended particles and by 
interaction of the sound pulses with the high temperature syngas inside the gasifier was 
conducted and the predictions of those models were used to determine the required sound pulse 
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intensity to allow the sound pulses to be detected after passage through the gasifier environment. 
These modeling results are presented in this report. A study of the likely spatial and temporal 
variability of gas composition inside the gasifier was performed and the results of that study was 
used to predict the impact of that variability on the accuracy of the acoustic temperature method. 
These results are reported here. A design for a port rodding mechanism was developed to deal 
with potential slagging issues and was incorporated into the prototype sensor. This port rodding 
mechanism operated flawlessly during the field testing, but because these tests were performed 
in a region of the gasifier that experiences little slagging, the effectiveness of the rodding 
mechanism in dealing with highly slagging conditions was not fully demonstrated. This report 
describes the design and operation of the automated Gasifier Acoustic Pyrometer (autoGAP) 
which was tested at the Wabash River facility. The results of the tests are reported and analyzed 
in detail. 

All of the objectives of the project have been achieved. A field prototype acoustic pyrometer 
sensor has been successfully tested at the Wabash River gasifier plant. Acoustic signals were 
propagated through the gases inside the gasifier and were detected by the receiver unit, the times 
of flight of these sound pulses were measured and these propagation times were converted into 
temperatures which agreed very well with thermocouple measurements made in the same 
location as the acoustic measurements. The acoustic pyrometer system was operated under 
computer control and was shown to be capable of making measurements every 10 minutes (or 
more frequently) for an extended period.  

Some minor mechanical issues remain. During testing on the gasifier, one of the pressure seals 
failed after two days of operation, but this can easily be corrected by the use of a different seal 
design. Also, the testing performed so far was conducted in a region of the gasifier where 
conditions are somewhat less harsh than in other parts of the gasifier where thermocouples will 
not survive. Therefore, additional testing should be performed in those harsher locations to 
demonstrate the ability of this new measurement technology to provide temperature 
measurements that cannot be obtained by any other means. 
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EXECUTIVE SUMMARY 

Since 1989 the U.S. Department of Energy has supported development of advanced coal 
gasification technology. The Wabash River and TECO IGCC demonstration projects supported 
by the DOE have demonstrated the ability of these plants to achieve high levels of energy 
efficiency and extremely low emissions of hazardous pollutants. However, a continuing 
challenge for this technology is the tradeoff between high carbon conversion which requires 
operation with high internal gas temperatures, and limited refractory life which is exacerbated by 
those high operating temperatures. Attempts to control internal gas temperature so as to operate 
these gasifiers at the optimum temperature have been hampered by the lack of a reliable 
technology for measuring internal gas temperatures. Thermocouples have serious survival 
problems and provide useful temperature information for only a few days or weeks after startup 
before burning out. For this reason, the Department of Energy has funded several research 
projects to develop more robust and reliable temperature measurement approaches for use in coal 
gasifiers. 

Enertechnix has developed a line of acoustic gas temperature sensors for use in coal-fired 
electric utility boilers, kraft recovery boilers, cement kilns and petrochemical process heaters. 
Acoustic pyrometry provides several significant advantages for gas temperature measurement in 
hostile process environments. First, it is non-intrusive so survival of the measurement 
components is not a serious problem. Second, it provides a line-of-sight average temperature 
rather than a point measurement, so the measured temperature is more representative of the 
process conditions than a thermocouple measurement. Unlike radiation pyrometers, the 
measured temperature is a linear average over the full path rather than a complicated function of 
gas temperature and distance along the line of sight. For this reason, acoustic pyrometry can be 
used to provide detailed two-dimensional temperature maps through the use of multiple path 
measurements in a plane. Therefore, acoustic pyrometry is an attractive choice for measuring gas 
temperature inside a gasifier. 

The objectives of this project were to adapt acoustic pyrometer technology to make it suitable for 
measuring gas temperature inside a coal gasifier, to develop a prototype sensor based on this 
technology, and to demonstrate its performance through testing on a commercial gasifier. The 
project was organized in three phases, each of approximately one year duration. In year 1 
Enertechnix conducted experiments with a variety of sound generation and coupling methods 
and a suitable approach was identified and successfully demonstrated on a gasifier simulator that 
Enertechnix constructed for this project. The selected approach employs a shock tube which is 
driven by the high pressure gases which exist within the gasifier itself, obviating the need for an 
external source of high pressure gas. Experiments with a prototype device demonstrated the 
ability to produce strong sound pulses and the ability to utilize the propagation time of these 
pulses in the gasifier simulator to accurately measure gas temperature. The effect of gas 
composition variation on measurement accuracy was investigated using CFD modeling data 
provided by Reaction Engineering, International, and process information supplied by 
ConocoPhillips Company. The impact of suspended particles in the gasifier environment was 
investigated through computational modeling and found to be tolerable in environments typical 
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of entrained flow gasifiers. A conceptual design for a field prototype sensor was developed that 
incorporates provision for slag rodding to maintain clear acoustic access to the gasifier interior.  

In year 2 Enertechnix developed and successfully tested several laboratory prototypes. At the 
end of year 2 a fully functional field prototype sensor was designed and fabricated.  

In year 3 Enertechnix completed fabrication of the first field prototype sensor (“auto-GAP”) and 
carried out a series of tests at its facilities in Tenino, WA. An extended plant shutdown and the 
need for modifications to the sensor delayed installation and field testing until April, 2006. 
Installation and system checkout was completed the day before the plant’s scheduled spring 
outage, so only a one day test was performed at that time. Several minor problems were 
identified which prevented proper operation of the sensor and no usable data were collected at 
that time. 

In September, 2006, immediately after a shutdown, a second field test was performed during 
which the sensor performed flawlessly; a large number of measurements were obtained over a 
two day period. The acoustic signals were strong enough to be clearly detected above the 
background noise level inside the gasifier and accurate time of flight measurements were made. 
These were converted into gas temperatures using estimates of the syngas composition at the 
measurement location and the resulting temperatures were in very good agreement with 
measurements obtained from thermocouples mounted in the same plane as the acoustic sensor. 
The system operated in automatic mode under computer control and obtained temperature 
readings once every 10 minutes throughout the testing period except for a few occasions when it 
was operated in manual mode to obtain temperature readings as frequently as once every three 
minutes.  

At the end of the second day of testing, a leak developed in the sensor and testing was halted. An 
examination of the sensor revealed that one of the seals had become severely damaged and since 
it was not possible to replace the seal without dismantling the sensor, a decision was made to 
discontinue testing. The plastic seal that failed can readily be replaced with a metal-on-metal seal 
which would not be subject to this mode of failure.  

Enertechnix has demonstrated that an acoustic sensor can provide accurate gas temperature 
measurements inside an operating gasifier and we believe that this technology can provide long-
term, trouble-free operation in this very hostile environment.  

Further demonstration testing should be carried out at other locations in the gasifier where 
conditions are more severe and on other types of gasifier to demonstrate the broad applicability 
of this technology. Enertechnix plans to seek further funding to accomplish this. 
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TOPICAL TECHNICAL REPORT 

1. Principles of acoustic pyrometry and practical considerations 

Acoustic pyrometry offers a fundamentally simple, non-intrusive method for measuring gas 
temperatures inside harsh industrial processes and in recent years, acoustic pyrometry has 
begun to be widely adopted in the power generation industry for measuring gas temperature 
inside coal-fired boilers. The method is based on the relationship between gas temperature 
and sound speed.  From simple thermodynamic arguments it is easy to show that, in an ideal 
gas, sound waves will propagate at a speed given by 

  
M
RTc γ

=   (1) 

where γ is the specific heat ratio, R is the universal gas constant, T is the absolute 
temperature, and M is the mean molecular weight of the gas mixture [1, 2]. Both M and 
γ depend on gas composition, and γ is also a very weak function of temperature. Therefore, if 
the gas composition is known, or can be calculated, the absolute temperature can be inferred 
from a measure of sound speed.  The measurement of sound speed along a path in a non-
uniform temperature environment yields an average of the square root of temperature, which 
in most practical cases is nearly indistinguishable from the square root of the average 
temperature itself.   

Acoustic pyrometry has a number of advantages over optical methods.  First, cleanliness of 
port openings is much less critical than for optical measurements.  Second, once the path 
length is determined, no calibration is required since the measurement of the time of flight is 
not affected by drift or changes in sensitivity of the components.  Third, the measurement 
represents a true spatial average of the temperature along the line of sight connecting the 
sound source and receiver. Because of this averaging, it is straightforward to implement 
tomographic reconstruction techniques to generate two-dimensional temperature maps within 
a plane by utilizing several sound generators and receivers.  The temperature range over 
which the measurement is valid is large, encompassing the full range of gasifier operation. 
Because the wavelengths of the acoustic waves used in this technique are on the order of 
centimeters (many orders of magnitude larger than the dimensions of suspended char or slag 
particles), scattering or attenuation by the suspended particles is much less significant than for 
electromagnetic techniques, even those using millimeter wavelengths.   

Enertechnix, Inc. has developed a line of acoustic pyrometers based on this measurement 
principle, which is gaining widespread acceptance as the preferred method of measuring gas 
temperatures inside large coal-fired utility boilers, kraft recovery boilers, cement kilns and 
petrochemical process heaters. However, all of these processes operate at atmospheric 
pressure and adapting acoustic pyrometry for use in the gasifier environment presents several 
very significant technical challenges.   

 1 
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Enertechnix has adopted an approach to acoustic pyrometry which relies on propagating an 
intense sound pulse through the process atmosphere and measuring both the time at which the 
pulse is initiated and the time of arrival of the pulse at the receiver. For measurements in 
processes that operate at atmospheric pressure, Enertechnix has developed a sound source that 
uses a pressurized reservoir mounted outside the process and connected to the process by 
means of a barrel (a smooth pipe). The pressure vessel is typically pressurized to 25 
atmospheres and the sound pulse is generated by opening a very rapidly operating valve that 
allows the high pressure gas in the reservoir to escape into the process. This produces a shock 
wave that propagates into the process and expands hemispherically as it propagates through 
the process atmosphere. As the wavefront expands, the pressure differential across the wave 
rapidly decreases and the wave quickly becomes a sound wave that propagates at sonic 
velocity. One or more receivers placed at other locations around the perimeter of the process 
will receive the acoustic signal and by measuring the time of arrival at each receiver, the 
average temperature on all the paths connecting the generator to the receivers can be 
determined.  Experience has shown that a strong shock wave is required to produce a sound 
pulse that is loud enough to be detected above the background in a large boiler when the 
measurement path is more than 10 meters long.  

In the gasifier environment, the internal process pressure is in the range of 400 to 1200 psi. In 
this case, the use of an external pressure vessel is impractical since achieving a 25 to 1 
pressure ratio would require pressurizing the pressure vessel to between 10,000 and 30,000 
psi. Therefore, one of the challenges of this project was to develop an alternate method of 
generating a sound pulse that could be injected into the gasifier environment and used to 
make a measurement of sound speed inside the gasifier process. 

Another issue that required attention had to do with the propagation time inside a typical 
gasifier. In order to achieve a given level of accuracy in a temperature measurement based on 
sound speed, the uncertainty in the sound speed measurement must be half the tolerable 
uncertainty in the temperature. This is because of the square root relationship between 
temperature and sound speed. Thus, if it is desired to determine the absolute temperature with 
an accuracy of 1%, it is necessary to measure the sound speed with an accuracy of ½%. In a 
large boiler, typical sound propagation times are on the order of 20 to 50 milliseconds, so 
achieving a measurement accuracy of ½% implies that the time of flight must be measured 
with an accuracy of between 100 and 250 microseconds. This requires the receiver to have a 
frequency response of no more than 10 kHz. In the gasifier environment, the path lengths are 
much shorter and gas temperatures are somewhat higher than in the boiler environment. 
Therefore, the anticipated sound propagation times are on the order of 2 to 4 milliseconds. In 
this case, achieving a ½% timing accuracy requires that the time of flight be resolved to 
within 10 to 20 microseconds. This implies that one must measure frequencies in the range of 
50 to 200 kHz. In addition to requiring higher frequency response components, this also raises 
concerns relating to the attenuation of sound waves by the process environment inside the 
gasifier. These issues were addressed during the course of the project and are discussed in 
detail in subsequent sections of this report. 

Another significant challenge in adapting acoustic pyrometry to the gasifier environment has 
to do with “end corrections”. In making a measurement of the sound propagation time, what 
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is actually measured is the time between the detection of the wave on the generator side as it 
enters the barrel connecting the generator to the process, and on the receiver side, the wave is 
detected after it propagates through the process and through a waveguide that connects the 
receiver to the process (see Figure 1).  

Figure 1. End corrections to measured propagation time 

 

 

 

 

 

 

 

 

 

 

 

 

 

In general it isn’t possible to measure these end corrections directly, and they must be 
estimated from laboratory measurements or models of the sound wave propagation in the 
barrels. In a typical boiler measurement, the end corrections represent a small fraction of the 
total measured time of flight - typically 2 to 10 milliseconds out of a total of 50 milliseconds 
or more. Therefore, small errors in estimating the end corrections do not have a significant 
impact on the overall accuracy of the measurement. In the gasifier environment, the end 
corrections will be comparable to those in the boiler application, but the propagation time 
inside the gasifier will be very much smaller. Therefore, the end corrections can constitute as 
much as 2/3 of the total measured propagation time and errors in estimating the end 
corrections can produce large errors in the temperature measurement. Consequently, in the 
gasifier application, it is critical to have an accurate model of the sound and shock wave 
propagation inside the receiver and generator barrels, respectively.  

Another shock propagation issue relates to shock strength and supersonic propagation. The 
sound pulse that propagates down the generator barrel is a shock that propagates at supersonic 
velocity. As the shock expands inside the gasifier chamber, the driving pressure decreases 
inversely with the square of the distance, so that within a fairly short distance, the shock 
 3 
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strength becomes small and the Mach number of the wave approaches unity (sonic velocity).  
For a large-scale boiler where typical path lengths are on the order of 10 to 30 meters, the 
magnitude of the correction is negligibly small.  In a 2-meter wide gasifier, the correction will 
be more significant and must be accounted for. 

2. EGS1 test facility 

As part of this project, Enertechnix constructed a large pressure vessel - the Enertechnix 
Gasifier Simulator #1 (EGS1) - which was used to test various sound generation and coupling 
methods. The vessel has an inside height of 48 inches and an internal diameter of 22 inches. 
The cylindrical portion has 1 inch thick walls and has an allowable working pressure of 1000 
psi. When the unit is filled with room temperature air, the propagation time of an acoustic 
wave across the diameter of this vessel is approximately 1.6 milliseconds which is very close 
to the propagation time of an acoustic wave in syngas at normal gasifier temperature traveling 
across the width of a full size gasifier. The EGS1 unit is equipped with two diametrically 
opposed ports at the mid-height location which can be used to test a variety of sound 
generators and receivers. The unit, which is shown in Figure 2, is located next to Enertechnix' 
laboratory facility in Tenino, WA.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The Enertechnix Gasifier Simulator (EGS1) 
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Sound attenuation 

3.1. Vibrational relaxation of high temperature gas molecules 

In coal-fired boilers, vibrational relaxation of the gas molecules through which a sound wave 
propagates is not a significant issue primarily because the modest timing accuracy required in 
these environments allows the use of relatively low frequency sound waves to measure 
temperature. However, at the high frequencies required in the gasifier environment, this 
interaction becomes a significant issue. Prof. Hornung at Cal Tech (one of the collaborators 
on this project) has calculated the attenuation of sound propagating through high temperature 
syngas at 400 psi and his calculations show that there is very severe attenuation above about 
100 kHz. Figure 3 shows this behavior for a 2 meter path in syngas at about 3000 deg F. 
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Figure 3. Sound attenuation due to vibrational relaxation of gas molecules. 

From this figure, we can see that on a 2 meter path the attenuation due to interaction of the 
sound wave with the high temperature gases is tolerable up to about 100 kHz (10% 
transmittance), but that at higher frequencies the attenuation becomes extremely large. 
Therefore, it will not be possible to detect frequencies much above 100 kHz in the gasifier 
environment at a temperature as high as that used in this calculation. At lower temperatures, 
the attenuation curve will shift to the right, so it should be possible to use somewhat higher 
frequencies at lower temperatures.  

As discussed earlier, the timing accuracy required in the gasifier environment is on the order 
of ±10 microseconds. This is compatible with detection of frequencies up to 100 to 200 kHz. 
Therefore, the predictions of this model suggest that it should be possible to achieve the 
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desired temperature measurement accuracy with an acoustic time-of-flight measurement in a 
coal gasifier. 

3.2. Effects of suspended particles 

Shaw [3] presents expressions for the impact of suspended particles on sound propagation. 
These include thermal and viscous damping which produce attenuation, as well as excitation 
of particle oscillations which, in turn, produce secondary sound emissions with a phase lag. 
This latter phenomenon results in a shift in sound speed as a function of frequency 
(dispersion). The model upon which these expressions are based shows that a number of 
physical properties of the particles and the gas are important in evaluating these phenomena. 

We have created a spreadsheet model to calculate attenuation and dispersion based on Shaw's 
model and have used it to predict the magnitude of these effects as a function of particle 
loading, particle size, particle and gas densities, gas viscosity and thermal conductivity, 
particle and gas specific heats, and sound frequency. 

Little or no experimental data exists on the size distribution and loading of suspended 
particles in coal gasifiers. To our knowledge, no direct measurements of these properties have 
been made in-situ in an operating gasifier. Furthermore, we are not aware of any mechanistic 
models of particle formation and evolution inside a gasifier. Therefore, we have relied on 
CFD model predictions of particle mass loading and number density provided by REI. An 
estimate of particle mass concentration and average diameter was provided by ConocoPhillips 
but was not used in our calculations except to confirm rough order-of-magnitude agreement 
with the detailed REI model predictions. 

REI has provided local values of particle mass loading and number density at the model node 
locations along lines A and B (see Figure 6) for operation with both coal and petcoke. From 
the mass loading and an assumed value for the ash particle density, we can calculate a volume 
concentration. From the volume concentration and number density we can obtain the mean 
particle volume and from that we can calculate the mean particle diameter at each node 
location. These values allow us to estimate average values for particle loading and particle 
diameter along lines A and B. 

In addition, we have created a spreadsheet model to estimate upper limits on the possible ash 
loading based on global considerations. In this model, we begin with the ultimate analysis of 
the fuel (coal or petcoke), the molecular composition of the syngas, the known slurry 
concentration, and the ratio of oxygen to nitrogen in the oxidizer. By performing a mass 
balance calculation on each of the atomic species in the fuel (carbon, hydrogen, oxygen, 
nitrogen, and sulfur), we can determine the amount of oxidizer required to produce the given 
syngas composition as well as the amount of carbon that winds up as unburned char. Then, 
given the feed rate of the fuel, we can calculate the mass flow of syngas and the mass flow of 
ash, from which we can determine the mass fraction of ash in the syngas. From this value and 
the densities of the syngas and the ash, we can determine the volume concentration of ash in 
the syngas. This is the maximum possible ash concentration assuming all the ash remains in 
suspension.  
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To estimate the ash volume concentration at the inlet to the second stage (corresponding to 
Line B in Figure 6), we can make a somewhat crude approximation in which we assume that 
some fraction of the fuel slurry and all of the oxidizer is introduced into the first stage. If we 
assume that the ratio of the mass of syngas to mass of fuel slurry plus oxidizer is the same in 
the first stage as it is for the overall gasifier, we can estimate the ash mass fraction produced 
in the first stage. This approximation is certainly not correct, but the error in the inferred ash 
loading value is probably not greater than 20%. Again, this estimate assumes all the ash 
remains in suspension. By assuming a certain fraction of the ash deposits on the walls of the 
first stage vessel and is removed through the slag tap in the bottom, we can estimate the ash 
loading entering the second stage. 

Table 1 shows the estimated particle loading for coal and petcoke gasification based on the 
REI CFD model and our mass balance model. 
 

 Coal Petroleum Coke 
 Line A Line B Line A Line B 
REI CFD Model     
 Mass Conc. (kg/m3) 0.1634 0.0582 0.13257 0.00099 
 Number Density (#/m3) 2.80x1011 2.29x1011 1.81x1011 4.98x1010

Values Inferred from REI Model     
 Cv (m3/m3) 6.106x10-5 2.155x10-5 4.91x10-5 3.65x10-7

 Avg. Particle Volume (m3) 2.52x10-16 1.50x10-16 3.53x10-16 1.29x10-17

 Avg. Particle Diameter (microns) 7.5 6.4 8.5 2.5 
ETX Mass Balance Model     

 Cv (no deposition) 8.326x10-5 4.301x10-5 3.294x10-

5
1.157x10-

6

 Cv (50% deposition) 6.175x10-5 2.150x10-5 3.209x10-

5
3.884x10-

7

Table 1. Ash loading and particle size for coal gasification 

In Table 1, Cv stands for volume concentration and is calculated assuming an ash density of 
2700 kg/m3. For the case of coal gasification our mass balance model and REI's detailed CFD 
model yield nearly identical values for the volume concentration of particles assuming 50% 
ash deposition in stage 1. For the case of petcoke gasification our model is in very good 
agreement for conditions at the entrance to the second stage (line B), but are noticeably lower 
than the REI predictions for conditions in the second stage. Nevertheless, it is clear that even 
a very simplistic global model is capable of predicting particle loading in the gasifier to well 
within a factor of two of that predicted by CFD modeling. It should be kept in mind that the 
CFD model is itself an idealization of the actual process. The CFD model does not contain 
any particle generation mechanisms and its predictions are based on assumed ash particle 
sizes.  

Using these estimates of particle size and loading along with estimates of the physical 
properties of the particles and gases, we have studied the probable attenuation of sound waves 
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in the gasifier environment due to the presence of suspended particles. Figure 4 shows the 
predicted attenuation for a 2 meter path length at a number of different particle loading levels. 
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Figure 4. Sound attenuation by suspended particles 

This figure shows that at a frequency of 100 kHz, particle volume fractions up to about 5x10-5 
produce only modest attenuation of the sound wave. This suggests that it should be possible 
to make an effective measurement of gas temperature inside a gasifier operating either on 
petroleum coke or coal. 

3.3. Sound Dispersion 

As mentioned above, suspended particles also produce a shift in sound propagation speed 
which depends on all of the properties that lead to sound attenuation. We have employed 
relationships reported by Temkin [4] to calculate the magnitude of this effect assuming the 
same particle size and loading used in the attenuation calculations above.  

As shown in Figure 5, the sound speed ratio (the ratio of sound speed in the particle-laden gas 
to that in the particle-free gas) deviates significantly from unity only for frequencies below a 
few kilohertz. This is because the particles – with their finite mass and thermal properties – 
are only able to respond to fluctuations in gas pressure and temperature which occur on time 
scales that are short relative to the viscous and thermal relaxation times of the particles. For 
fluctuations that occur more rapidly than that, the particles are unable to respond and remain 
fixed. Therefore, for these higher frequency fluctuations, the observed sound speed is 
unaffected by the presence of particles. In Figure 5 we have assumed a particle loading at the 
upper limit of what is expected in a coal gasifier (see Table 1). 
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Figure 5. Sound dispersion in the gasifier environment 

4. Gas Composition Effects 

4.1. Spatial non-uniformity 

The CFD modeling data obtained from Reaction Engineering, International in December, 
2003 was analyzed in some detail to determine the degree of spatial variability of gas 
composition and temperature along a line of sight through the gasifier and to assess the effect 
of this variability on inferred temperature based on sound speed measurements. 

The gasifier modeled by REI is an idealization of an entrained flow two-stage gasifier. Unlike 
the Wabash gasifier that has a T-shaped vessel with a horizontal cylinder for the first stage 
and a vertical cylinder for the second stage, the REI model consists of a single vertical 
cylinder of varying diameter. The geometry of the REI model gasifier is shown in Figure 6.  
In this model, line A represents a line of sight along a diameter of the gasifier in the second 
stage; line B represents a line of sight along a diameter at the transition between the first and 
second stages.  



Topical Report 6/11/03 – 12/31/06 Enertechnix, Inc 
 
 

 

 10 

 

 

 

 

 

 

 

 

 

 

 

Line A

Line B

Total gasifier height: 10 m
Diameter: 1.65 m

5.57 m from the bottom of the gasifier

3.56 m from the bottom of the gasifier

2.63 m from the bottom of the gasifier

Top injectors

Injectors

Figure 6. Geometry of the REI 2-stage, entrained flow model gasifier 

REI provided data for gas temperature and composition at each node location along lines A 
and B. From these data, we calculated the thermodynamic and transport properties of the gas 
at each location. These calculated values were used to compute the time of flight of a sound 
pulse along these lines from one side of the gasifier to the other; from these times of flight, an 
inferred average gas temperature was calculated using a variety of assumptions about average 
gas molecular weight and specific heat ratio. 

Figure 7 and Figure 8 show the temperature profiles on lines A and B, respectively, from the 
REI simulation. Interestingly, unlike boilers with tube walls where the gas temperature is 
lowest near the walls and highest in the center, the gas temperature profiles in this refractory-
lined gasifier show the highest temperatures occurring near the walls and much cooler 
temperatures in the center. In this situation, acoustic temperature measurement is much 
preferred over optical line of sight methods since the acoustic method provides a true average 
in which all locations along the line of sight are weighted equally, whereas optical (infrared) 
pyrometry is inherently more sensitive to regions close to the measurement device; and also, 
regions where the gases are hottest will emit far more radiation than the cooler regions. 
Therefore, when the hottest gases are found near the wall, the optical method will produce 
readings that are far above the true average temperature along the line of sight. The 
magnitude of this error will be sensitive to the shape of the temperature profile along that line. 
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Figure 7. Temperature along line A from REI CFD simulation 
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Figure 8. Temperature along line B from REI CFD simulation 

Figure 9 and Figure 10 show the gas composition variation along lines A and B, respectively. 
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Figure 9. Composition along line A from REI CFD simulation 
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Figure 10. Composition along line B from REI CFD simulation 
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Figure 9 and Figure 10 show that there is a significant variation in gas composition along 
these two paths. This will result in variation in sound speed along these paths which is shown 
in Figure 11 and Figure 12. 
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Figure 11. Variation of sound speed and specific heat ratio along line A 
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Figure 12. Variation of sound speed and specific heat ratio along line B 
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Table 2 below, shows the range of values along line A for the CFD model predictions of gas 
temperature and molecular weight as well as values for specific heat ratio (γ), and sound 
speed that we have calculated based on the CFD model values of local gas composition and 
temperature at each point along this line. Two sets of values are presented – the first based on 
the complete gas composition provided by REI which includes mole fractions of the 
following species: CO, CO2, H2, H2O, N2, CH4, COS, H2S, HCN, NH3, H, OH, and SO2, and 
the second based on just the first six species which constitute roughly 99.3% of the total 
moles of syngas. 
 

Line A CFD Model Results (all species) CFD Model Results (major species) 
 Temp. Mol. Wt. γ Sound spd. Temp. Mol. Wt. γ Sound spd.
 (K) (kg/mole)  (m/sec) (K) (kg/mole)  (m/sec) 
Minimum = 1296.5 20.38 1.240 816.7 1296.5 20.29 1.241 818.7 
Average = 1415.0 20.75 1.254 841.9 1415.0 20.66 1.255 843.9 

Maximum = 1702.6 21.60 1.261 901.4 1702.6 21.51 1.262 903.5 
Standard Deviation = 92.2 0.28 0.005 19.8 92.2 0.28 0.005 19.8 

Table 2. Range of variation of gas properties along line A 

Table 2 shows that estimates of sound speed made by considering only the 6 most prevalent 
species differ from those made by considering all 13 species by only about 0.24%. Therefore, 
we conclude that estimates based on the reduced set of species will introduce an error in the 
temperature inferred from a sound speed measurement of less than 0.5%.  

From the local values of sound speed calculated at each location along line A and the physical 
length of the cell at each location, a local time of flight of a sound pulse can be calculated. By 
adding up these local times of flight and dividing the sum into the total path length, we obtain 
the true average sound speed. This is the average sound speed shown in Table 2, above.  

Table 3 shows similar results for line B. 
 

Line B CFD Model Results (all species) CFD Model Results (major species) 
 Temp. Mol. Wt. γ Sound spd. Temp. Mol. Wt. γ Sound spd.
 (K) (kg/mole)  (m/sec) (K) (kg/mole)  (m/sec) 
Minimum = 1682.2 21.15 1.219 907.5 1682.2 21.06 1.219 909.8 
Average = 1883.7 22.02 1.232 935.5 1883.7 21.91 1.233 937.9 

Maximum = 2218.6 23.02 1.246 988.7 2218.6 22.87 1.246 992.1 
Standard Deviation = 83.5 0.31 0.004 12.7 83.5 0.31 0.004 12.9 

Table 3. Range of variation of gas properties along line B 

In this case, the sound speed based on only 6 species differs from that based on all 13 species 
by just over 0.25%. Thus, the conclusion that a reduced model based on six species is 
adequate holds in this location as well as along line A. 

Our inference of gas temperature from a measurement of sound speed requires us to apply the 
following formula: 
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 R/McT γ= 2  (2)  

where T is the gas temperature in Kelvins, c is the sound speed, M is the average molecular 
weight of the gas mixture, γ is the specific heat ratio, and R is the universal gas constant. To 
determine the potential effect of variations in gas composition on the inferred temperature, we 
have applied this formula using a variety of assumed values for M and γ. In these calculations 
we have assumed that the measured path-average sound speed on line A is that shown in 
Table 2 and for line B it is the value shown in Table 3. In this analysis we assume that we 
have measured a sound speed experimentally, but do not know the actual gas composition or 
its variation along the line of sight. Therefore, we apply equation 1 above using the path 
average sound speed in combination with the minimum and maximum values of the averages 
of M and γ along the path and assume that these values represent the maximum range of 
variation in the path averages that would be encountered during normal operation of the 
gasifier. These estimates assume that the spatial average values of M and γ along each line 
can vary within a range bounded by the extremes of the local values of these properties along 
each line. This probably represents an upper bound on the likely variation that would be 
encountered during normal operation of the gasifier.  

There are four cases we may consider: the combination of the local minimum M and local 
minimum γ, the local maximum M and local maximum γ, the local minimum M and local 
maximum γ, and the local maximum M and local minimum γ. Interestingly, we can eliminate 
the first two cases on the basis of the observation that M and γ are very strongly inversely 
correlated. This is shown in Figure 13 which presents all the local values of M plotted against 
the corresponding local values of γ on both lines A and B. As can be seen, when M is at its 
maximum value, γ will be at its minimum and vice versa.  
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Table 4 shows a comparison of the actual average gas temperature with the inferred 
temperature based on average sound speed and a number of combinations of assumed 
molecular weight and specific heat ratio. 
 

 Line A Line B 
Actual average temperature (K) = 1415.0 1883.7 

Inferred Temperature (K) all species major species all species major species 
Based on average M and γ 1410.0 1410.1 1880.5 1880.5 

Based on min. M and max. γ 1377.6 1377.4 1787.6 1787.8 
Based on max. M and min. γ 1485.0 1485.5 1988.5 1985.2 
Average temperature error (K) = -4.99 -4.98 -3.12 -3.15 

Minimum temperature error (K) = -37.48 -37.68 -96.07 -95.90 
Maximum temperature error (K) = 69.93 70.47 104.88 101.55 

Table 4. Potential range of errors in inferred temperatures 

The first thing to notice from this analysis is that there is virtually no difference in the 
inferred temperatures whether we include all 13 species or consider only the 6 major species. 
The second thing to note is that the inferred temperature based on the true average M and γ is 
very close to the actual path weighted average temperature. The differences between the 
inferred values and the true path average temperatures are shown in the line denoted as 
"Average temperature error". These are the errors due purely to the non-uniformity of 
properties along the line of sight assuming we have perfect knowledge of the true average 
values of molecular weight and specific heat ratio. In this case, the use of spatially averaged 
values rather than the complete profile along the line of sight leads to errors of  between 3 and 
5 K (5.4 to 9 deg F) or 0.16% to 0.35% of the actual temperature. This is a very small error 
and is well within the target accuracy of the proposed measurement (±1%). This suggests that 
if we know the actual average gas composition at the measurement location and are able to 
make a very accurate measurement of sound speed, we can infer the average temperature to 
well within the desired accuracy. 

4.2. Temporal Variability 

In reality, however, the gas composition within the gasifier will not be constant over time. As 
shown in Table 4, the errors in the inferred temperature that would result from assuming a 
fixed gas composition (the average values predicted by the CFD model) when, in fact, the 
composition varies by the amounts shown in Table 2 and Table 3, would be on the order of 
±5%. This estimate is based on a rather ad-hoc assumption about the probable degree of 
variation in the average composition during normal gasifier operation.  

ConocoPhillips has also provided some estimates of the likely range of gas properties 
(molecular weight and specific heat ratio) in the second stage of the Wabash River gasifier 
resulting from changes in operating conditions but has not provided any information on the 
degree of temporal variability of gas composition at a fixed operating condition. The values 
provided by ConocoPhillips have been used to calculate the maximum range of temperature 
errors that would result from an assumption that these gas properties remain constant at the 
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average value, while the actual properties vary over the maximum range estimated by 
ConocoPhillips. 

From a measurement of the speed of sound in the gasifier, the gas temperature may be 
calculated using equation (1), above. If, as before, we assume that the molecular weight and 
specific heat ratio are inversely correlated as shown in Figure 13, then one extreme is given 
by using the maximum γ and minimum MW to calculate temperature and the other extreme is 
given by using the minimum γ and maximum MW. If we assume that the actual gas properties 
are represented by the average molecular weight and average specific heat ratio and use these 
average properties to calculate a “true” temperature, then the differences between this “true” 
temperature and the temperatures calculated using the extreme values of the gas properties 
will be the maximum errors in the estimates of gas temperature due to deviation of gas 
properties from the actual values. Figure 14 shows the results of this calculation. This plot 
shows that the difference between the inferred gas temperature and the “true” temperature 
varies from roughly - 45K to + 100K as the actual conditions vary within the expected range. 
This corresponds to percentage errors in the range of –2.25% to +5%. These values compare 
very closely to the estimates obtained from the detailed REI model.  
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Clearly, these errors are unacceptably large, so it will not be adequate to assume that the gas 
composition remains fixed over the entire range of operating conditions. However, 
ConocoPhillips personnel have assured us that they can provide periodic updates to the 
assumed gas properties that will allow us to refine our temperature measurement based on 
known changes in operating conditions. Although they have not provided detailed 
information that would allow us to estimate the improvement in our temperature estimate, 
they have indicated that they believe they can estimate gas composition to within a small 
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Figure 14. Potential range of temperature errors assuming fixed gas composition 



Topical Report 6/11/03 – 12/31/06 Enertechnix, Inc 
 
 

fraction of the total range of variation. If this is the case, then we should be able to reduce the 
potential range of temperature measurement errors due to variations in gas composition to 
better than ±0.5%. 

5. Sound generation and coupling methods 

Several sound generation and coupling methods were investigated to identify a suitable 
approach for use in a high pressure process such as a coal gasifier.  

5.1. Acoustic Window 

Experiments were conducted to evaluate the use of an "acoustic window" as a method for 
coupling sound waves into and out of the gasifier. This concept is an extension of an approach 
commonly employed in optics to produce anti-reflection coatings and narrow-band 
interference filters in which partial reflections from interfaces between parallel layers of 
materials interfere destructively so as to cancel the reflected wave and result in nearly 
complete transmission. A simple model was developed to study multiple interference of 
acoustic waves propagating through multi-layer structures. The idea was to see if it would be 
possible to use this approach to propagate acoustic waves through the wall of the gasifier 
without the need to make physical penetrations through the wall. An attempt was made to 
confirm the predictions of this model with a simple experiment in our laboratory. Two three-
foot long sections of 3 inch diameter PVC pipe were mounted on a bench with a loudspeaker 
placed at one end and a microphone at the other (see Figure 15).  

 

 

 

 

 

 

 

Figure 15. Acoustic Window Experiment 

Two sections of PVC pipe were used in order to prevent direct transmission of acoustic 
energy along the wall of the pipe. A plug in the shape of a solid cylinder whose diameter was 
slightly smaller than the inner diameter of the PVC pipe was placed at the center of this 
arrangement as shown in figure 1. 

The model predicts that when the plug is one half wavelength long, there should be 100% 
transmission of the acoustic energy through the plug. Experiments performed with an 
aluminum plug and a Plexiglas plug at about 6 kHz using a tone generator and audio amplifier 
to drive the loudspeaker showed that only about 12% to 15% of the energy was transmitted.  

 18 
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There are a number of possible explanations for this result. First, we have confirmed that in 
this setup, the closed ends of the pipe produce reflections which give rise to standing waves. 
Our model does not include this phenomenon which is an artifact of this particular 
experimental arrangement. Second, our model includes only longitudinal waves propagating 
along the axis of the apparatus. In any real material, the Poisson effect will cause the material 
to expand in the radial direction as it is compressed in the longitudinal direction and vice 
versa. This will give rise to radially propagating waves which have not been included in our 
model. Third, we have not accounted for acoustic losses in the solid material, although this is 
not likely to be a large factor with the materials we have been using in these tests. 

Professor Joseph Rose at the Pennsylvania State University, an expert on guided acoustic 
waves in solids, reviewed our model and concluded that it was fundamentally correct. He was 
unable to determine the source of the relatively low transmission values observed in our 
experiments, and suggested we perform additional experiments with other materials. 

However, after visiting the Wabash River facility and seeing the construction of the gasifier, 
we concluded that this approach was very unlikely to succeed due to the presence of multiple 
layers of ceramic bricks and mortar of highly variable thickness which will produce 
substantial attenuation and unwanted reflections of acoustic waves propagating through the 
wall of the gasifier vessel. Therefore, this approach was abandoned. 

5.2. Pneumatic "Hammer" and "Clapper" Experiments 

As promised in our initial proposal, an investigation was performed to look at two mechanical 
shock generation approaches. Both of these approaches were inspired by the observation that 
one can produce a relatively loud sound pulse merely by clapping one's hands. 

The first mechanical device we examined was a pneumatically driven "hammer" in which a 
solid steel rod was mounted on the side of our EGS1 pressure vessel. A hammer was used to 
strike the end of the rod outside the vessel and the sound produced was monitored with a 
receiver on the opposite side of the EGS1 vessel. The setup is shown in Figure 16. 

In these experiments, the only signal detected by the receiver transducer mounted on the 
opposite side of the EGS1 vessel was due to sound which propagated through the steel shell 
of the vessel. A careful analysis of this sound coupling method revealed that striking the end 
of the steel bar compresses the steel in the vicinity of the struck end. This compression 
propagates along the length of the bar as a compression wave to the other end where there is a 
similar displacement of the free end of the bar. This displacement produces a sound wave by 
compressing the gas in the vicinity of the free end of the bar. In order for the displacement of 
the free end of the bar to produce a shock wave, it would have to move at supersonic velocity 
and its displacement would have to be sufficiently large to compress a significant volume of 
gas. The first condition can easily be met since the speed at which compression waves 
propagate (the sound speed) in steel is roughly 14 times the sound speed in air and about 7 
times that in the syngas inside a coal gasifier. However, because of the very large elastic 
modulus of steel, the displacement of the end of the bar will be very small. 
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Figure 16. Hammer experiment on EGS1 vessel 

 

 

 

 

 

 

 

 

 

 

To study this quantitatively, the same model used to study transmission of sound through 
layered media was employed. A two layer structure was modeled in which the first layer was 
an infinite thickness of steel and the second, an infinitely thick layer of air. The model 
predicts that the fraction of the energy contained in the pressure wave propagating in the steel 
that is transmitted into the air is only about 4 x 10-5.  Because of the very large acoustic 
impedance mismatch between the two materials, almost all of the energy is reflected back into 
the steel at the steel/air interface. This observation confirms the negative result obtained 
experimentally. Therefore, this approach was abandoned. 

The second mechanical approach that was explored was a "clapper" consisting of two flat 
pieces of metal connected by a hinge at one end. Figure 17 shows a sketch of the experimental 
apparatus used to investigate this approach. 

 

 

 

 

 

Several experiments were conducted with the receiver transducer placed about 24 inches from 
the clapper apparatus. Various methods were used to force the clapper strips together as 
rapidly and with as much force as possible. Although the sound produced was relatively loud, 

Roller 

Plunger 

Figure 17. Experimental "clapper" apparatus 
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it was very much weaker than the sound pulses produced with our shock tube approach 
(described below) even when the shock tube was operated at relatively low pressure. 
Therefore, we concluded that this approach was not promising enough to warrant any further 
investigation. 

5.3. Shock Tube 

As discussed in section 1, the pressure inside the gasifier presents a significant challenge 
when it comes to generating a sound pulse that can be injected into the gasifier from the 
outside environment. However, we have observed that the ratio of the gasifier pressure to 
atmospheric pressure is between 25:1 and 65:1, more than sufficient to generate a strong 
shock wave. Unfortunately, the pressure acts in the wrong direction. On the other hand, we 
have also observed that shock waves can be reflected from a solid surface, so a major part of 
our effort has been the development and testing of a reflected shock sound generator. To 
understand how this device works, it is instructive to look at the behavior of a shock tube - a 
device commonly used to generate shock waves for experimental investigations. A shock tube 
normally consists of a pipe closed at both ends and divided into two sections by a diaphragm. 
Initially the two halves are filled with gases having either the same or different compositions. 
The driver gas on one side of the diaphragm is pressurized until the diaphragm bursts and a 
shock propagates into the test gas on the other side of the diaphragm. In addition to the shock 
wave, an expansion wave propagates in the opposite direction into the driver gas and a 
“contact surface” separating the driver and test gases propagates in the same direction as the 
shock but at much slower speed. The behavior of these waves and the response of the gases in 
the shock tube have been extensively studied and there are many references that describe the 
relationships that pertain in the various regions [see, e.g, 5, 6].  

Figure 18 shows a schematic of the various waves that propagate in the shock tube. In this 
case, the region to the left of the diaphragm is initially at high pressure and when the 
diaphragm bursts, the shock propagates to the right. In this case, the left end of the shock tube 
is open to a reservoir (the gasifier) which contains syngas, and the right end of the shock tube 
is closed. In the diagram, time increases along the vertical axis. Region 1 contains the gas that 
initially fills the region to the right of the diaphragm. Region 4 contains gas that initially fills 
the region to the left of the diaphragm. As the shock propagates to the right, it passes through 
the gas in region 1, heating it above its initial temperature and producing higher temperature 
conditions in region 2. Trailing behind is the contact surface that propagates at a much slower 
speed and separates regions 2 and 3. The expansion fan that separates regions 3 and 4 
propagates to the left with the leading characteristic traveling at sonic velocity into the gas in 
region 4 and the trailing characteristic traveling at a slower velocity. 
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Figure 18. Wave propagation in a shock tube  

When the shock encounters the right end of the shock tube, it reflects and travels into the gas 
in region 2. When the reflected shock encounters the advancing contact surface, it passes into 
a region with different pressure, temperature, and possibly different composition. This 
produces a refraction of the shock wave which causes it to change its propagation speed. To 
the left of the diaphragm, the expansion wave propagates towards the open end of the shock 
tube and when it encounters the boundary between the gas initially in the shock tube and that 
outside the shock tube, it is partially reflected and partially transmitted. Again there is a 
contact surface that propagates to the right drawing gas into the shock tube from the region to 
the left. Eventually, the shock encounters the reflected expansion wave and is refracted again. 
Then it encounters the contact surface and undergoes yet another refraction changing speed in 
the process. Once the shock enters the gas in region 10, it propagates at constant speed 
through the gas initially to the left of the shock tube (assuming the gas in region 10 has 
uniform composition and temperature).  

Enertechnix has constructed a detailed model of all of these processes to allow us to 
accurately predict the strength and Mach number of the shock that is projected into the region 
to the left of the shock tube (the gasifier) and to accurately predict the time that the shock 
takes to propagate in each region of the shock tube. 

5.4. Initial Concept 

Our observation that a reflected shock wave is produced and will propagate towards the open 
end of the shock tube, led us to consider this approach for generating sound pulses that could 
be injected into the gasifier and used to measure syngas temperature. Our initial concept 
consisted of a shock tube in which the diaphragm is replaced with a very fast-acting valve as 
shown in Figure 19. In this case, the region to the right of the valve is initially brought to 
atmospheric pressure. When the valve opens, the shock propagates to the right, reflects from 
the closed end and then propagates back to the left and into the gasifier. 
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Figure 19. Initial concept for a reflected shock sound source 

 

 

 

 

 

 

 

 

 

 

 
 

Considerable effort was expended in an attempt to identify a valve with the necessary speed 
and sealing characteristics and one that would be able to stand up to exposure to hot syngas, 
ash, and molten slag. No such valve was found. In order to make this process work, the valve 
needs to be able to go from fully closed to fully open in about 1 or 2 milliseconds, and, when 
open, it must offer no obstruction in the path of the shock wave. The only two possibilities are 
gate valves and ball valves. Unfortunately, those types of valves are not nearly fast enough 
and they are not well suited to use in a very dirty, high temperature environment.  

Therefore, the bursting diaphragm approach was selected for investigation. This method is 
certainly capable of producing strong shock waves and, by using a roll of diaphragm material 
and a clamping mechanism that opens to allow a new piece of material to be used on each 
shot, the presence of high temperature, particle-laden gases is of little concern so long as the 
clamping mechanism can be kept clean.  

5.5. Lab Shock Tube Testing 

Our investigation began with a manual apparatus that was constructed to allow us to test a 
number of diaphragm materials and to test the sound generation capabilities of this approach.  

This apparatus is shown schematically in Figure 20. In this apparatus, the diaphragm may be 
burst either by pressurizing the shock tube (the region to the right of the diaphragm) until the 
diaphragm bursts and produces a shock propagating to the left, or it may be operated in 
reflected shock mode by first pressurizing both sides of the diaphragm and then bleeding off 
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pressure inside the sock tube until the diaphragm bursts - creating a shock that propagates to 
the right, reflects from the right end of the shock tube, and then propagates to the left and into 
the test vessel. 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Shock tube apparatus for diaphragm testing 

A piezoelectric transducer was mounted in the clamping mechanism, just to the right of the 
diaphragm as shown. This served as the trigger transducer in our time-of-flight experiments. 

Initial experiments were performed by pressurizing the shock tube itself to determine the 
bursting pressure of several materials and determine a suitable diaphragm material to use for 
initial testing using shop air at up to 100 psi.  We determined that one layer of 1 mil 
aluminum foil had a bursting pressure of 52 psi and 2 layers of aluminum foil had a bursting 
pressure of 91 psi. The bursting pressure was found to be extremely repeatable and for initial 
testing of the transducers and data acquisition system, most tests were performed with two 
layers of aluminum foil. 

Subsequently, a model of the bursting pressure as a function of diaphragm thickness and 
diameter and the elastic properties of the material was developed. By including tensile 
strength, elastic modulus, percent elongation at failure and Poisson’s ratio in the model, we 
were able to predict the bursting pressure for a variety of materials and diaphragm dimensions 
with very good accuracy. As mentioned above, we found that aluminum has the most 
repeatable performance of all the materials studied. In addition, it is readily available in 
spools which can be obtained in any desired width and material thickness and it is relatively 
inexpensive.   

Tests were performed in the laboratory to establish our ability to properly trigger our data 
acquisition system using the signal from the transducer mounted on the side of the diaphragm 
clamp and to detect acoustic waves received by a second piezoelectric transducer placed at 
 24 
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distances from two to five feet away from the open end of the shock tube. In these 
experiments the shock tube was operated in the "direct shock" mode in which the shock tube 
was pressurized until the diaphragm burst and the shock produced propagated directly 
outward (to the left in Figure 20). The piezoelectric transducers selected for these experiments 
were chosen for their high frequency response (up to 2 MHz) which allows us to determine 
the arrival of the acoustic wave with the very high timing accuracy required for short 
propagation times. The data acquisition board was also selected to allow us to digitize the 
signal at very high sampling rates for the same reason. Figure 21 shows a typical trace 
obtained from these initial laboratory experiments. 

 Test 05 - 3/19/04 - In Lab
1/2" Dia. shock tube, 2 layers of aluminum foil
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Figure 21. Typical signals from shock tube obtained in the laboratory 

In this test, the receiver was placed approximately 23 inches from the shock tube. Applying 
the appropriate end corrections, this time of flight translates into an air temperature of about 
68.3 degrees Fahrenheit. However, the actual laboratory temperature at the time of the test 
was about 55 degrees F.  The supersonic velocity of the shock when it first leaves the shock 
tube is insignificant in large boilers where the path lengths are tens of meters long. However, 
for very short paths and strong shocks, this effect will be significant, although it will be less 
so in the real gasifier where the path length will be greater. If we take this effect into account, 
we find that the corrected time of flight corresponds to a measured temperature of about 55.5 
degrees F which is almost exactly the correct value.  

It should be noted that the rise time of the receiver signal is about 2 microseconds. This 
timing resolution corresponds to about a 0.25% resolution in temperature measurement in the 
gasifier environment which should be quite adequate to allow for the desired temperature 
measurement accuracy.  
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5.6. EGS1 Direct Shock Experiments 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. EGS1 test rig with shock tube and receiver 

The same shock tube used in the laboratory for the tests described above was used to conduct 
tests in the EGS1 pressure vessel shown above. For these preliminary tests, the EGS1 vessel 
was at atmospheric pressure and the shock tube was pressurized to about 100 psi producing a 
direct shock when the aluminum foil diaphragm burst. Figure 22 shows the shock tube and 
receiver mounted on the EGS1 test rig. The shock tube is the blue tube on the right of the 
yellow EGS1 pressure vessel. Air is supplied to the apparatus through the regulator and filter 
set at the right end of the shock tube. In this arrangement, the diaphragm is mounted in the 
clamping device between the shock tube and the pressure vessel. The receiver can be seen 
opposite the shock tube on the left side of the pressure vessel. 

As in the laboratory experiments, the pressure in the shock tube was increased until the 
diaphragm burst and a shock was produced. The shock traveled across the pressure vessel to 
the receiver where it was detected. For these initial tests on the EGS1 unit, the pressure vessel 
was at atmospheric pressure. 
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Figure 23 shows a typical signal obtained inside the EGS1 unit. 

 

 

 

 

 

 

 

 

 

 

 

Test 11 - 3/19/04 - In EGS1
1/2" Dia. shock tube, 2 layers of aluminum foil
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Figure 23. Signal obtained in EGS1 vessel using direct shock setup 

In this test, the receiver signal (red trace) has an initial spike when the shock wave arrives 
1.815 milliseconds after the trigger. After applying the appropriate end corrections to account 
for supersonic shock propagation in the plumbing between the trigger transducer and the 
pressure vessel, the propagation time in the trigger tube itself, the supersonic propagation of 
the shock in the first few inches of its expansion inside the pressure vessel, and taking account 
of the exact positions of all the components, we find that the average sound speed inside the 
EGS1 unit is 337.7 meters/second which corresponds to 49 deg. F. The ambient temperature 
on the date of this test was about 50 deg F.  

5.7. EGS1 Reflected Shock Experiments 

In order to operate the shock tube in the manner proposed for the actual gasifier application, it 
is necessary to pressurize the EGS1 test vessel and use that pressure to create the shock. This 
is accomplished by the following set of steps.  

1. A ball valve between the shock tube and the EGS1 pressure vessel is closed 

2. The EGS1 unit is pressurized 

3. A piece of diaphragm material is inserted into the diaphragm clamp and the clamp is 
closed. 

4. Both sides of the diaphragm are brought up to pressure simultaneously. 

5. The ball valve is opened exposing one side of the diaphragm to the EGS1 atmosphere. 
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6. The pressure in the shock tube on the other side of the diaphragm is reduced to 
atmospheric pressure. 

7. The diaphragm bursts producing a shock that propagates down the shock tube away from 
the EGS1 unit. 

8. The shock reflects off the back wall of the shock tube and propagates back into the EGS1 
unit. 

9. The shock is detected at the receiver. 

To implement these steps, the shock tube was modified slightly and the necessary valves and 
plumbing were added to the apparatus.  

Figure 24 shows the modified shock tube with the associated valves and plumbing needed to 
carry out the first reflected shock experiments. The blue tube in the lower left is the shock 
tube. The hexagonal block with rounded corners immediately ahead of the shock tube is the 
diaphragm clamp. Next is the manual ball valve which has a brass body. This whole apparatus 
is clamped to the EGS1 pressure vessel using appropriate high pressure seals. The electrical 
box on the left houses the switches which operate the solenoid valves, one of which is visible 
attached to the left side of the switch box. The white box to the right of the EGS1 vessel is the 
signal conditioning unit for the piezoelectric transducers. 
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Figure 24. Reflected shock apparatus mounted on EGS1 pressure vessel. 

The first tests with this arrangement verified that the concept of using the pressure inside the 
gasifier to create a shock wave which can be detected on the opposite side of the vessel after 
being reflected in a shock tube attached to the side of the gasifier is valid. 
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Figure 25 shows a typical signal obtained in this manner which clearly shows the arrival of a 
distinct shock wave at the receiver location (red trace) at roughly 6.35 milliseconds and a 
trigger signal at about 2.45 milliseconds.  

 

 

 

 

 

 

 

 

 

 

 

 

Reflected Shock - 4/13/04  Test 7 - In EGS1  
1/2" Dia. shock tube, 2 layers of aluminum foil    
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Figure 25. Reflected shock results 

These experiments demonstrate the feasibility of the reflected shock method of generating 
acoustic signals in a simulated gasifier environment. The pressure inside the gasifier vessel 
can be used to produce the shock wave which, after reflection from the end of a simple shock 
tube, will propagate across the interior of the gasifier vessel and provide sound speed 
information that can be used to infer gas temperature inside the vessel. 

6. Prototype sensor development 

6.1. Field prototype sensor conceptual design 

At the end of phase I, a conceptual design a field prototype sensor was developed. This design 
is very similar to the design of the reflected shock proof of concept prototype except that it 
incorporates a number of additional features and refinements. Figure 26 shows the layout of 
the sound source portion of the proposed prototype.  
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Figure 26. Conceptual design of experimental prototype acoustic gas temperature sensor 
sound source. 

In this figure, the gasifier is located at the left and it is assumed that an open nozzle provides 
access through the steel wall and through the refractory to the interior of the gasifier. During 
normal operation, the service valve will be kept open, but it can be closed to allow the 
acoustic pyrometer sound source to be installed or removed while the gasifier is operating. 
Initially, the pneumatically actuated isolation valve is closed and the pressure throughout the 
device to the right of the isolation valve is reduced to atmospheric pressure. This allows the 
diaphragm clamp to be opened to move a new portion of the strip of diaphragm material into 
position. Once the new piece of diaphragm material is in place, the clamp is closed and plant 
nitrogen is introduced on both sides of the diaphragm until the pressure equals that inside the 
gasifier. To fire the device, the isolation valve is opened creating a clear path from the front of 
the diaphragm to the inside of the gasifier through the isolation and service valves and the 
nozzle. At this point, the pressure to the right of the diaphragm is reduced by venting the 
nitrogen in the shock tube to atmosphere. When the pressure to the right of the diaphragm 
falls to a sufficiently low value, the diaphragm bursts and a shock propagates first to the right 
down the length of the shock tube, and then – after reflecting from the tip of the slag rodder -  
to the left and into the gasifier. Once the measurement is completed, the apparatus is purged 
by blowing high pressure plant nitrogen through the device to clear out any slag and remnants 
of diaphragm material that may have gotten into the device. The pneumatically actuated 
rodding mechanism is then forced down the bore of the sound source, through the service and 
isolation valves, and through the nozzle to the edge of the refractory where it will remove any 
slag that may have built up. Once the rodder is retracted, the isolation valve is closed and the 
process is repeated. It may be preferable to leave the ruptured diaphragm material in place 
until it is desired to make a measurement, at which time the isolation valve can be opened just 
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long enough to purge the system with nitrogen and rod out the slag before closing the 
isolation valve and moving a new piece of diaphragm material into place. 

Although this device exhibits a certain degree of mechanical complexity, all of the technology 
required to implement the various functions is available in the form of standard commercial 
components that are routinely used in harsh industrial environments. Therefore, this design is 
quite robust and can be made to operate reliably in the gasifier environment. The use of a 
bursting diaphragm avoids the need for a sophisticated rapidly-acting valve and should be 
quite tolerant to particles of slag being ingested into the device when the diaphragm bursts 
and gas is drawn into the device from the gasifier.  

6.2. Field prototype mockup 

Prior to building a complete prototype sensor for field testing, a full-scale mockup was 
constructed to test the various components and to provide a test bed for developing and 
testing the control software. This mockup was mounted on the EGS1 unit and tested 
thoroughly to determine the operating characteristics of the system. Based on this testing, 
several modifications were implemented and tested and the control software was refined to 
ensure reliable operation. Figure 27 shows the mock-up of the field prototype mounted on the 
EGS1 unit.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. Mock-up of field prototype mounted on EGS1 

 31 



Topical Report 6/11/03 – 12/31/06 Enertechnix, Inc 
 
 

6.3. Field prototype #1 

Once the mock-up of the prototype had been thoroughly tested and necessary modifications 
had been identified, implemented and tested, and the control software had been developed and 
tested, a first field prototype sensor was designed and fabricated. Figure 28 shows a 
photograph of the sound generator portion of the first field prototype sensor (auto-GAP 1) 
without its protective covers. The black pipe connecting the device to the yellow EGS1 
pressure vessel simulates the length of plumbing that would connect the device to the gasifier 
(including the nozzle that protrudes through the steel shell and the refractory lining inside the 
gasifier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. Field prototype “auto-GAP 1” sensor mounted on the EGS1 pressure vessel 

To the right of the black pipe is the isolation valve (white) and its actuator (orange). The 
clamping mechanism is to the right of the isolation valve and the black spool above carries 
the roll of aluminum diaphragm material. The black compressed gas cylinder in front of the 
clamping mechanism is an accumulation tank that receives any syngas aspirated into the 
system when the diaphragm bursts. This accumulation tank is then backflushed with nitrogen 
to force any syngas back into the gasifier. Once the accumulation tank is full of clean nitrogen 
and isolated from the rest of the system it can be vented to bring it to atmospheric pressure. 
Once at atmospheric pressure, it is then isolated from the atmosphere and when the time 
comes to burst the diaphragm, it serves as a low pressure reservoir into which the shock tube 
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is evacuated to reduce the pressure behind the diaphragm and allow it to burst. In this way, 
there is no possibility of syngas escaping when the diaphragm bursts since it is dumping into 
a sealed vessel. The long silver cylinder at the right hand side of the generator is the actuator 
for the port rodder.  

All of the functions of this prototype were automated and controlled by a Galil motion control 
computer. A supervisory computer was used to handle the data acquisition and storage 
functions and to send commands to the Galil controller. The data acquisition functions were 
handled using LabView™. Figure 29 shows a block diagram of the control architecture of the 
prototype.  

 

 

 

 

 

 

 

 

 

 

 

Figure 29. Schematic of Sensor Control System 

This schematic is only intended to show the hierarchy of the control system components and 
does not show all of the control elements. For instance, none of the flow control valves or the 
pneumatic controls for those valves are shown. Also not shown are the pressure and 
temperature transducers that are incorporated into the sensor to ensure safe operations. 

Figure 30 shows a typical set of signals obtained with this prototype sensor.  
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Figure 30. Typical signals from tests of the first field prototype sensor on the EGS1 unit 

In this case, there are two trigger transducers mounted a short distance apart along the shock 
tube which provides redundancy and also a direct measure of the shock propagation speed 
from which the shock Mach number may be inferred. The signals from these transducers are 
shown as the blue and green traces. The red trace is from the receiver transducer. In this 
experiment the EGS1 unit was filled with air at 400 psi and a temperature of about 57 deg F. 
The temperature inferred from the acoustic measurement is 58 deg F.  

In this prototype, the determination of wave arrival times and conversion of propagation times 
into temperatures was handled manually. Enertechnix has developed a software program that 
automates the determination of wave arrival times and the conversion of propagation times 
into temperature. This program, which currently operates in a DOS environment, is being 
ported to a MS Windows™ platform and will ultimately be used to automate these procedures 
in the gasifier acoustic pyrometer. 

This prototype was tested extensively using the EGS1 test facility. The control software was 
automated to allow the system to operate and generate acoustic signals completely under 
computer control. This capability was demonstrated through extended testing at the 
Enertechnix facilities.  

6.4. Field prototype #2  

Prior to installing the field prototype on the gasifier, several additional modifications were 
implemented. In order to avoid interference with structural steel members at the plant site, it 
was necessary to substantially rearrange the components of the generator. Several valves were 
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replaced with fire rated versions, seals were replaced with plant-approved materials, flexible 
tubing was replaced with stainless steel tubing for almost all of the gas plumbing, and 
changes were made to the purging sequence to ensure safe operation of the sensor. One 
additional valve was incorporated into the piping system to allow the sensor to be purged 
continuously during normal operation rather than closing the isolation valve except when 
firing.  

Figure 31shows a side view of the reconfigured sound generator unit and Figure 32 shows an 
end view of the receiver unit.  
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Figure 31. Sound generator unit of the auto-GAP 2 prototype 
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Figure 32. End view of receiver unit of auto-GAP 2 prototype 

Tests of the modified prototype (auto-GAP 2) on the EGS1 unit showed that its performance 
was essentially identical to the performance measured before the modifications.  

Figure 33 shows a schematic of the plumbing which handles the major flows of nitrogen and 
syngas through the generator unit. This figure shows the system in its initial state at 
installation. Figure 34 shows the system during a port rodding operation.  

Figure 35 shows a schematic of all the control components and Figure 36 shows the control 
actions associated with each step in the measurement sequence.  
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Figure 33. Schematic of major plumbing components 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34. Major plumbing circuit during port rodding 
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Figure 35. Schematic of all plumbing components and pneumatic actuators 

The following is a list of the steps performed to make a measurement: 

 

 

 

 

 38 

 

 

 

 

 

 

 

Step Action

Se
rv

ic
e 

Va
lv

es

Is
ol

at
io

n 
Va

lv
es

Pr
es

su
riz

at
io

n 
Va

lv
e

Eq
ua

liz
at

io
n 

Va
lv

e

B
ac

kf
lu

sh
 V

al
ve

B
ur

st
 V

al
ve

D
um

p 
Va

lv
e

D
ia

ph
ra

gm
 C

la
m

p

D
ia

ph
ra

gm
 g

rip
pe

r

D
ia

ph
ra

gm
 F

ee
de

r

R
ec

ei
ve

r P
ur

ge
 V

al
ve

Po
rt

 R
od

de
rs

0 Initial State Closed Closed Closed Closed Closed Closed Closed Closed Closed Idle Closed Out
1
2

Enable Pressure Equalization Open Closed Closed Open Closed Closed Closed Closed Closed Idle Closed Out
Pressurize with Nitrogen Open Closed Open Open Closed Closed Closed Closed Closed Idle Open Out

3 Begin Purging with Nitrogen Open Open Open Open Closed Closed Closed Closed Closed Idle Open Out
Rod Ports Open Open Open Open Closed Closed Closed Closed Closed Idle Open In

5 Isolate System from Gasifier Open Closed Open Open Closed Closed Closed Closed Closed Idle Open Out
Turn off Nitrogen Supply Open Closed Closed Open Closed Closed Closed Closed Closed Idle Closed Out
Bring System to Atmospheric Pressure Open Closed Closed Open Closed Open Open Closed Closed Idle Closed Out

8 Open Diaphragm Clamp Open Closed Closed Open Closed Open Open Open Closed Idle Closed Out
Advance Diaphragm Strip Open Closed Closed Open Closed Open Open Open Closed

4

6
7

9

Figure 36. Control Actions 

Forward Closed Out
10 Close Diaphragm Clamp Open Closed Closed Open Closed Open Open Closed Open Reverse Closed Out
11 Isolate System from Atmosphere Open Closed Closed Open Closed Closed Closed Closed Closed Idle Closed Out
12 Pressurize with Nitrogen Open Closed Open Open Closed Closed Closed Closed Closed Idle Open Out
13 Turn off Nitrogen to Receiver Open Closed Open Open Closed Closed Closed Closed Closed Idle Closed Out
14 Open System to Gasifier Open Open Open Open Closed Closed Closed Closed Closed Idle Closed Out
15 Isolate Back Side of Diaphragm Open Open Open Closed Closed Closed Closed Closed Closed Idle Closed Out
16 Fire! Open Open Open Closed Closed Open Closed Closed Closed Idle Closed Out
17 Halt Syngas Flow & Purge Receiver Open Open Closed Closed Closed Closed Closed Closed Closed Idle Open Out
18 Pressurize Accumulation Tank with N2 Open Open Closed Closed Open Closed Closed Closed Closed Idle Open Out
19 Backflush Accumulation Tank Open Open Closed Open Open Open Closed Closed Closed Idle Open Out
20 Prepare for Next Cycle Open Open Open Open Closed Closed Closed Closed Closed Idle Open Out
21 Evacuate Accumulation Tank Open Open Open Open Closed Closed Open Closed Closed Idle Open Out
22 Go to Step 4 ( Rod Ports ) Open Open Open Open Closed Closed Closed Closed Closed Idle Open In
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7. Field Trials 

Following completion of the testing of the reconfigured “auto-GAP 2” (automated Gasifier 
Acoustic Pyrometer) sensor on the EGS1 unit at Enertechnix facilities in Tenino, WA in 
January, 2006, the unit was removed from the EGS1 unit, crated, and shipped to the Wabash 
River plant in Terre Haute, Indiana. The unit was delivered on January 16th and preparations 
were made for initial checkout and installation of the sensor on the gasifier.  

7.1. Safety Review and Modifications 

Prior to installing the sensor, a safety review meeting was held to examine all potential issues 
that might impact plant operations and personnel safety. During that meeting the mechanical 
design of the sensor, the materials of construction, the safety precautions that had been 
designed into the sensor and its software, and the operation of the sensor were all discussed in 
detail to surface any potentially hazardous conditions that might be encountered during the 
installation and operation of the sensor. The plant identified the need for a number of warning 
labels to alert plant personnel about potential hazards and also to warn plant personnel against 
actions that could create hazardous conditions. Also, a number of hardware modifications 
were identified to provide redundant safety precautions and to ensure against the creation of 
hazardous conditions in the event of equipment malfunction. The plant requested that we 
install pressure relief valves to protect against over-pressuring the accumulation tank and the 
port rodding cylinders. Also, the plant insisted that we perform a complete functional 
demonstration test of the generator and receiver in their shop before mounting the units on the 
gasifier.  

An initial checkout of the units revealed that one of the isolation valves had been damaged 
and it was necessary to order a replacement which was delivered to the plant in February.  

During the January visit we made final arrangements for installation of the necessary supports 
for the sensor components at the gasifier. This entailed ordering several spring cans to support 
the weight of the generator and receiver units.  

During February and March, we made a number of minor changes to the software requested 
by the plant which involved incorporating additional safety checks to ensure that the sensor 
cannot be left in an unsafe state in the event of a power failure or loss of plant nitrogen 
pressure. The modified software was installed during our next visit to the plant in April.  

7.2. Installation 

A second visit was made to the Wabash River plant in April, 2006 during which the damaged 
valve was replaced, all other modifications to the sensor units requested by the plant were 
completed, and a complete functional demonstration test was performed. Following this, the 
generator and receiver units were installed on the gasifier, electrical conduit was installed and 
the electrical wiring was installed and connected, necessary plumbing connections were made 
and tested for leaks and a complete checkout of the system was performed. In order to allow 
us to operate the sensor, collect data and perform system diagnostics from the control room, a 
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fiber-optic link was employed between the supervisory computer (located next to the gasifier) 
and a remote computer located in the control room. 

Figure 37 and Figure 38 show the generator and receiver units mounted on the gasifier.  

 

 

 

 

 

 

 

 

 

 
 

Figure 37. Generator unit mounted on the Wabash River gasifier 

 

 

 

 

 

 

 

 

 

 

Figure 38. Receiver unit mounted on the Wabash River gasifier 
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The system checkout performed during the last week of April, revealed the need to make a 
number of minor plumbing changes related to purging the enclosures which house the 
electronics associated with the generator and receiver units and the enclosure for the 
supervisory computer. Also, during a safety inspection of the installed sensor components, the 
plant identified the need to replace some of the scaffolding to provide better escape routes in 
case of emergency. These changes were completed the day before the plant’s scheduled 
Spring outage. 

7.3. First Field Test 

On April 28th (the last day before the Spring outage) the autoGAP system was operated on the 
gasifier for the first time.  After an initial checkout, two measurements were made and signals 
recorded. Figure 39 shows the signals from the first measurement.  
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Figure 39. Signals from first measurement in the Wabash River gasifier 

As before, the blue and green traces are the trigger transducer signals and the red trace is the 
receiver signal. In this measurement, the trigger 1 transducer becomes saturated when the 
diaphragm bursts and the arrival time of the shock wave (at about 5 milliseconds) could not 
be determined. Also, the arrival of the acoustic pulse at the receiver (at about 10.5 
milliseconds) produced a relatively weak signal and the arrival time is not as clear as one 
would like. Nevertheless, the measured temperature is in a reasonable range - within 200 deg 
F of the temperature expected at this location by the plant personnel. As part of our 
collaboration agreement with ConocoPhillips, we have agreed to refrain from reporting the 
actual measured temperature. The second measurement was almost identical to the first. 
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The fact that one of the trigger transducers was saturated and the receiver signal was very 
weak led us to conclude that it would be very desirable to be able to adjust the gain on the 
transducers independently. The analog to digital converter card we were using had this 
capability, but we had been unsuccessful in our attempts to program the card to do so at that 
time.  

Following these two measurements, the port rodders were operated and functioned as 
expected - inserting and retracting without difficulty. The plant had been quite apprehensive 
about this operation, fearing that if the port rodder were to become stuck, there would be no 
way to shut the service or isolation valves and the only option would be to leave the rods in 
place and continue to purge the ports until the next outage. This turned out to be an 
unwarranted concern.  

However, following the port rodding operation, subsequent attempts to operate the sensor 
were unsuccessful, primarily because the diaphragm failed to burst on most of the subsequent 
firings and no acoustic signal was produced. One possible explanation for this is that the flow 
passage between the shock tube and the accumulation tank became clogged with ash. This 
would have prevented the pressure behind the diaphragm from bleeding off rapidly enough 
and would have caused the diaphragm to deform slowly and ultimately tear without producing 
the sudden rupture required to generate a shock wave. We had installed a flow restrictor in 
this passage in order to limit the flow of syngas into the accumulation tank and this small 
orifice may have become clogged with ash. Since the plant’s scheduled Spring outage was 
going to require them to shut down the gasifier within an hour or so, we chose to terminate 
the test and shut down our equipment. 

7.4. Second Field Test 

After examining the results of the first field trial and reviewing the design of the hardware 
and software, we concluded that a number of minor changes could be made that would 
significantly improve the chances of conducting a successful test. These included the 
following: 

• Moving the purge inlet on the receiver unit to ensure adequate purging of the 
receiver transducer and prevent accumulation of ash on the front of the receiver 
transducer, 

• Removing the flow restrictor in the line connecting the shock tube to the 
accumulation tank and also removing the strainer that had been installed to trap 
any ash that might flow through this line, 

• Replacing one of the trigger transducers that had failed during the first field trial, 

• Modifying the control software to minimize the amount of time between the 
bursting of the diaphragm and the beginning of the backflushing process so as to 
minimize the time that hot syngas would be present inside the generator unit,  
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• Refining the model of shock propagation and gas flows inside the sound generator 
to provide more accurate estimates of sound propagation time inside the generator 
(end correction).  

• Modifying the data acquisition software to allow us to independently set the gains 
on the individual transducers to avoid saturating the trigger transducer channels. 

In August we requested an 8 week extension to the project to implement these modifications 
and to conduct another field trial of the sensor. This request was granted and Mr. Fitzgerald 
returned to the Wabash River plant on September 5th to begin making the needed 
modifications. 

The modifications were completed on September 15th and testing began on September 18th. 
The modifications appear to have been very successful and the testing went very smoothly. 
The system was operated in automatic mode firing approximately once every 10 minutes 
under computer control for a period of almost 4 hours on the 18th and again for several hours 
on the 19th. During this time, the sensor functioned smoothly, firing properly on each attempt; 
the acoustic signals were very strong and highly repeatable; and the inferred temperatures 
were in good agreement with the temperature readings from the two thermocouples mounted 
in the same plane as the acoustic sensor. Figure 40 shows the acoustic signals from a typical 
measurement during testing on the 18th.  
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Figure 40. Acoustic signals from a measurement in the Wabash River gasifier. 

As before, the red and green traces are the signals from the two trigger transducers and the 
blue trace is the receiver signal. The arrival of the acoustic wave at the receiver is quite 
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distinct and is many times stronger than the background noise; the time of flight is easily 
determined from these traces without any ambiguity. All of the measurements made during 
the tests conducted on September 18th and 19th produced signals that were extremely strong 
and nearly identical in appearance. Figure 41 shows the temperatures measured with the 
autoGAP sensor relative to the temperature readings of the plant thermocouples.  
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 Figure 41. Temperature readings measured with the autoGAP sensor relative to t
plant thermocouple readings during testing on September 18

he 
th  

This figure shows that initially, the acoustic sensor measured temperatures that were 
significantly higher than those measured with the plant’s thermocouples and later in the 
afternoon there was closer agreement. The fact that the acoustic sensor measures temperatures 
that differ from the thermocouples is understandable for two reasons. First, the thermocouples 
are located approximately 1 foot from the inner surface of the refractory and measure 
temperatures only at those points, whereas the acoustic measurement is an average over the 
full width of the gasifier. If there is significant non-uniformity in temperature in the radial 
direction within the gasifier, the thermocouple readings may not accurately reflect the average 
temperature; the acoustic measurements would be more representative. Second, the 
thermocouples are enclosed in protective housings (thermo-wells) that have significant 
“thermal mass”; therefore, the thermocouples are unable to respond to rapid changes in 
temperature. It is likely that the thermocouple response time is on the order of several tens of 
seconds or even minutes. The acoustic measurement, by contrast, is almost instantaneous 
since the propagation time of the sound pulse across the gasifier is on the order of a few 
milliseconds. Therefore, short duration temperature excursions would be completely invisible 
to the thermocouples, but would be detected by the acoustic measurement. The actual degree 
of temporal variation in gas temperature within the gasifier is presently unknown but the 
acoustic pyrometer measurement offers a means of determining its magnitude. 
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One should also notice in figure 41 is that there were two occasions (at 13:23 and at 16:17) 
when measurements were taken much closer together in time than during the rest of the 
testing period. At those two times, we intentionally acquired successive temperature readings 
at an interval of about 3 to 4 minutes to test the maximum repetition rate of the system. This is 
probably the minimum time interval that can be achieved with this sensor given the large 
number of steps that have to be carried out during the firing sequence. Usually, however, 
process operators are only interested in seeing measurements every 15 to 30 minutes, so this 
should not be seen as a deficiency.   

Also, there are some relatively long gaps in the data during the test period. In the current 
prototype data acquisition must be triggered manually just before the sensor fires and data 
saving requires that files be manually copied from the supervisory computer to the remote 
computer  in the control room. Therefore, during periods when files are being copied, it is 
easy to miss triggering the data acquisition process at the proper time. This happened on a 
number of occasions even though the sensor was firing at regular intervals all during the test 
periods. We plan to fully automate the system in the near future so that sensor operation, 
signal collection, signal analysis, temperature determination and data recording will all be 
carried out automatically.  

On September 19th testing was resumed and the sensor again functioned properly for several 
hours under computer control. Figure 42 shows a typical set of acoustic signals acquired at  
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Figure 42. Acoustic signals acquired on September 19th in the Wabash River gasifier.
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As on the previous day, the sensor produced clear, unambiguous signals and the signal to 
noise ratio was almost 10:1 on every shot. Data was collected throughout the day and 
temperatures were calculated manually from the timing of the acoustic signals. Figure 43 
shows the temperature readings obtained during the testing on September 19th. As before, 
these temperatures are reported relative to the approximate range of thermocouple readings 
obtained during the testing which were observed to remain nearly constant throughout the 
test. 
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 Figure 43. Temperature readings measured with autoGAP relative to the plant 
thermocouple readings during testing on September 19th

  

At the start of testing there were a three occasions when the acoustic measurements yielded 
temperatures much higher than those measured with the thermocouples, but all through the 
latter part of the test, there was very good agreement between the thermocouples and the 
acoustic sensor. During the period from about 13:30 to about 15:00 we were downloading 
files from the supervisory computer to the remote computer and we failed to trigger the data 
acquisition process. Nevertheless, the sensor continued to operate normally during this period.  

Following the last measurement shown above, the sensor failed to pass the pressure test that is 
performed each time a new piece of diaphragm material is loaded into the diaphragm clamp. 
Repeated attempts to feed new sections of the aluminum ribbon into the clamp failed to 
correct this problem. Upon inspection, it was discovered that one of the teflon seals had 
become severely deformed (probably due to exposure to hot syngas) and was incapable of 
making a tight seal. Due to the very cramped quarters in the vicinity of the acoustic generator 
unit and the very small gap between the two halves of the clamping mechanism even when it 
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is fully open, it was not possible to replace the seal without partially dismantling the generator 
unit. Therefore, we decided to terminate the test at that time.  

When the prototype was designed, we believed that the use of a flow restrictor in the passage 
connecting the shock tube to the accumulation tank would prevent syngas from flowing into 
the sensor and that teflon seals would be adequate. However, the removal of the flow 
restrictor resulted in syngas being aspirated into the generator on each firing, and this 
probably overheated the teflon seal. Having encountered this deficiency, it should be 
relatively easy to correct. A simple metal-on-metal seal as shown in Figure 44 should be quite 
effective and easy to install in place of the teflon seal currently employed. 

 

 

 

 

 

 

 

 

 

 

 

Figure 44. Possible modification to overcome seal failure on diaphragm clamp 

This arrangement would take advantage of the ductility of the aluminum sheet material and 
use the aluminum itself to form a seal rather than relying on the deformation of the teflon. The 
metal seal pieces can be made to be a press fit into the existing grooves used to hold the teflon 
seals and the diaphragm clamp itself can be used to press the metal seal pieces into place.  

8. Commercial Sensor Conceptual Design  

The current prototype has already undergone a great deal of engineering development and 
refinement in order to meet the safety requirements imposed by the Wabash River plant 
personnel. Therefore, this design has evolved to a point that constitutes what would normally 
be considered a commercial prototype. In developing the final commercial design we will 
seek to reduce cost, weight and size of the units and to employ components that are more 
robust and easier to install. We will need to integrate automated signal processing software 
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that has already been developed for another project but has not yet been incorporated into the 
auto-GAP sensor. Therefore, we feel that the current sensor design constitutes a first 
commercial product design that will require only minor modifications. 

9. Topical Briefing 

A topical briefing on this project was presented to NETL staff on November 6, 2006.  
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