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Abstract 

 

Sum Frequency Generation Vibrational Spectroscopy Studies on Model Peptide and 

Amino Acid Adsorption at the Hydrophobic Solid-Water and Hydrophilic Solid-Water 

Interfaces 

 

by 

 

Roger Louis York 

Doctor of Philosophy in Chemistry 

University of California, Berkeley 

Professor Gabor A. Somorjai, Chair 

 

 Sum frequency generation (SFG) vibrational spectroscopy has been used to study 

the interfacial structure of several polypeptides and amino acids adsorbed to hydrophobic 

and hydrophilic surfaces under a variety of experimental conditions. Peptide sequence, 

peptide chain length, peptide hydrophobicity, peptide side-chain type, surface 

hydrophobicity, and solution ionic strength all affect an adsorbed peptide’s interfacial 

structure. Herein, it is demonstrated that with the choice of simple, model peptides and 

amino acids, surface specific SFG vibrational spectroscopy can be a powerful tool to 

elucidate the interfacial structure of these adsorbates. 

 Herein, four experiments are described. In one, a series of isosequential 

amphiphilic peptides are synthesized and studied when adsorbed to both hydrophobic and 



 2 

hydrophilic surfaces. On hydrophobic surfaces of deuterated polystyrene, it was 

determined that the hydrophobic part of the peptide is ordered at the solid-liquid 

interface, while the hydrophilic part of the peptide appears to have a random orientation 

at this interface. On a hydrophilic surface of silica, it was determined that an ordered 

peptide was only observed if a peptide had stable secondary structure in solution. In 

another experiment, the interfacial structure of a model amphiphilic peptide was studied 

as a function of the ionic strength of the solution, a parameter that could change the 

peptide’s secondary structure in solution. It was determined that on a hydrophobic 

surface, the peptide’s interfacial structure was independent of its structure in solution. 

This was in contrast to the adsorbed structure on a hydrophilic surface, where the 

peptide’s interfacial structure showed a strong dependence on its solution secondary 

structure. In a third experiment, the SFG spectra of lysine and proline amino acids on 

both hydrophobic and hydrophilic surfaces were obtained by using a different 

experimental geometry that increases the SFG signal. Upon comparison of these spectra 

to the SFG spectra of interfacial polylysine and polyproline it was determined that the 

interfacial structure of a peptide is strongly dependent on its chain length. Lastly, SFG 

spectroscopy has been extended to the Amide I vibrational mode of a peptide (which is 

sensitive to peptide secondary structure) by building a new optical parametric amplifier 

based on lithium thioindate. Evidence is presented that suggests that the interfacial 

secondary structure of a peptide can be perturbed by a surface. 

 

                                                                         

 Professor Gabor A. Somorjai 

 Dissertation Committee Chair 
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Chapter 1 

Introduction 

 

The molecular understanding of protein adsorption on biopolymer surfaces 

provides the opportunity to develop biocompatible implant systems or prevent 

unfavorable protein adsorption from the blood onto medical devices, which alters their 

biological and immunological responses.1,2 Because of this, both the biomedical and 

surface science communities have taken an interest in understanding protein adsorption.3 

Although protein adsorption has been the focus of many studies, details on the molecular 

structure of adsorbed proteins remains poorly understood. This is primarily due to the 

lack of a surface-specific technique that provides information on molecular structure at 

surfaces. Recently, the surface-specific technique of visible-infrared sum frequency 

generation (SFG) vibrational spectroscopy has been developed.4,5 This vibrational 

spectroscopy provides a molecular level understanding of adsorbate orientation and 

ordering at any interface accessible by light. Unfortunately, adsorbed proteins are 

difficult molecules to study with vibrational spectroscopy on a molecular level due to 

their size and structural complexity. Therefore, we have turned to the study of amino 

acids and small peptides as model systems. In this dissertation, we will discuss their 

adsorption onto hydrophobic and hydrophilic surfaces studied by SFG.  

SFG is a surface-specific vibrational spectroscopy that was first demonstrated in 

1987.6-8 As will be discussed in Chapter 2, SFG allows for the determination of 

orientation and ordering of the vibrational modes of interfacial molecules. In SFG, two 
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pulsed optical beams, one having a frequency in the visible range (ωvis) and the other 

having a frequency in the infrared region (ωIR) are overlapped in space and time at a 

surface. Through a non-linear wave mixing process, a beam at the sum-frequency (ωSFG = 

ωvis + ωIR) is created in both the reflected and transmitted directions. The intensity of 

reflected light at the sum frequency is measured as a function of ωIR. As ωIR is tuned over 

a frequency range, interfacial molecules will come into resonance with ωIR, at which 

point the intensity of the sum-frequency light will become enhanced. This allows for a 

surface-specific vibrational spectroscopy. 

Chapter 3 discusses the application of SFG to study the interfacial structure of a 

series of model peptides at hydrophobic solid/water and hydrophilic solid/water 

interfaces. It was found that hydrophobic parts of peptides are ordered at hydrophobic 

interfaces. Conversely, it was observed that peptides do not order at hydrophilic surfaces, 

with the exception of peptides with well defined secondary structure in solution. In this 

case, it appears that the hydrophilic portion of the peptide is ordered at the interface. 

Additionally, the effect of peptide chain length and sequence was examined. It was found 

that at the hydrophobic solid/water interface, the most hydrophobic side-chains interfacial 

orientation was largely independent of peptide chain length and sequence; side-chains of 

less hydrophobicity (yet still considered hydrophobic) were shown to have an interfacial 

orientation that depended on peptide chain-length and sequence. Hydrophilic side-chains 

were not observed to order at the hydrophobic solid/water interface. 

Chapter 4 discusses the influence of the ionic strength of a solution on the 

adsorbed structure of a model peptide, LK14. This peptide is known to be an α-helix if the 

ionic strength is sufficiently high, otherwise, this peptide is a random coil. On a 
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hydrophobic surface, it is shown that the observed ordering of the hydrophobic leucine 

side-chains is independent of the ionic strength of the solution (and hence the peptides’ 

secondary structure in solution). In the absence of peptide, the interfacial water structure 

at the hydrophobic solid/water interface is independent of the ionic strength of the 

solution. This is in contrast to the situation when LK14 is adsorbed to the hydrophobic 

solid/water interface, when the interfacial water ordering shows a clear dependence on 

the ionic strength of the solution. At the hydrophilic interface, the ordering of the 

hydrophilic part of LK14 is only observed unambiguously when the peptide has well 

defined secondary structure in solution. The interfacial water structure at this surface is 

shown to depend on the ionic strength of the solution, whether or not there is adsorbed 

peptide at this interface. 

Chapter 5 deals with SFG studies of individual amino acids and long polypeptides 

at both hydrophobic and hydrophilic interfaces. The SFG spectra of adsorbed peptides at 

the solid/liquid interface were not observed previously, most likely due to poor SFG 

sensitivity to molecules that show weak interfacial ordering. It was determined that 

amino acids always show less side-chain ordering than long peptides, at both 

hydrophobic and hydrophilic surfaces. Additionally, it is shown that completely 

hydrophilic peptides, such has polylysine, show different interfacial structure than 

ampliphilic peptides at both hydrophobic and hydrophilic surfaces. In order to collect 

these spectra, total internal reflection SFG was employed. This is discussed in detail in 

chapter 5.  

Chapter 6 deals with extending SFG spectroscopy to longer infrared wavelengths, 

allowing for the measurement of the Amide I vibrational mode of the peptide backbone. 
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This was done by building a new Optical Parametric Amplifier, which is discussed in 

detail in chapter 6. The Amide I mode was observed to be at the same frequency for 

LK14 (adsorbed to the hydrophobic solid/water interface) under both high and low 

solution ionic strength conditions. This was interpreted as the peptide having the same 

secondary structure at the interface, independent of the peptides’ solution secondary 

structure. However, this interpretation could be incorrect, and other possible 

interpretations are discussed. At the hydrophilic solid/water interface, this mode was 

blue-shifted, indicating a change in its interfacial secondary structure, relative to the 

hydrophobic solid/water interface. 
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Chapter 2 

Sum Frequency Generation 

 

Sum frequency generation is a powerful surface-specific vibrational spectroscopy 

with sub-monolayer sensitivity.  Isotropic materials, such as the gas phase, do not 

produce sum frequency signal, allowing only adsorbates present on the surface to 

contribute to the spectrum.  This allows SFG to be an extremely useful tool for 

vibrational studies of catalytic reactions performed at high pressures.  

2.1. Sum Frequency Generation Theory 

Sum frequency generation vibrational spectroscopy (SFG) was first observed1 and 

described2,3 in the 1960s.  However, the technique was not developed into a surface-

specific vibrational spectroscopy until the 1980s by the groups of Shen4,5 and Harris.6 

Since then, SFG as a technique for vibrational spectroscopy has been extensively 

described.7-17 An excellent review that gives a simplistic picture has been published 

recently.18  The principle of SFG is regulated by second-order nonlinear optics, and the 

technique itself is permitted by high-energy pulsed lasers.  Under weak electric fields, the 

polarization P


 (or dipole moment per unit volume) expansion has two terms as shown in 

equation 2.1, where )0(P


 is the static polarization, )1(P


 is the first-order linear 

polarization, 0 is the permittivity of free space, )1(
  is the linear susceptibility, t is time, 

and )cos()( trE 


 describes the electric field. 

 )cos()()1(
0

)0()1()0( trEPPPP 


  (2.1) 
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For linear optics, this equation shows that the frequency of the light is invariant as it 

passes through a medium.   

Under strong electric fields, the polarization can be further expanded to include 

higher-order terms. 

 ...)3()2()1()0(  PPPPP


 (2.2) 

The second-order polarization, )2(
iP , where )2(

ijk  is the second-order nonlinear 

susceptibility and )cos()( 1trE j 


 and )cos()( 2trEk 


 are the two input fields at different 

frequencies, is given by equation 2.3 

 )cos()()cos()( 21
,

)2(
0

)2( trEtrEP kj
kj

ijki 


  (2.3) 

Which can be rearranged to form 

  ttrErEP kj
kj

ijki )cos()cos()()( 2121
,

)2(
02

1)2(   


. (2.4) 

Equation 2.4 illustrates how the frequency of light can change after passing through a 

medium, resulting in a SFG and difference frequency generation (DFG).  A more general 

form of eq. 2.4 is given in Chapter 1 of Boyd.19 In SFG vibrational spectroscopy, 1  is 

typically chosen to be in the visible region of the spectrum while 2  is in the infrared. 

The sum frequency radiation is strongly peaked in one direction determined by 

phase matching conditions.  Efficient energy transfer from the vis  and IR  to the sum 

frequency SF  occurs when both energy and momentum are conserved.  Energy 

conservation requires that IRvisSF   , while momentum conservation requires 

 IRvisSF kkk


 . (2.5) 
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Equation 2.5 can be rewritten for the angles of incidence for the visible and infrared 

beams. 

 IRIRvisvisSFSF kkk  sinsinsin   (2.6) 

where SFk , visk , and IRk  are the three wavenumbers (2π/λ), vis  and IR  are the angles of 

incidence compared to the surface normal of the visible and IR laser beams, and SF  is 

the angle of the sum frequency radiation.  From this equation, it can be noted that the 

angle of emission changes as IR is scanned over the spectrum. 

The magnitude of the SFG signal is proportional to the absolute square of )2(
eff  

shown in equation 2.7. 

    
2

2 2 2(2)
,( )SF eff R q NR

q
I        (2.7) 

)2(
eff  is comprised of both a non-resonant susceptibility term, )2(

NR , and a resonant 

susceptibility term, (2)
,R q  of the qth vibrational mode. A more explicit relationship between 

SFGI  and  2  depends on the experimental geometry and is discussed in chapter 5. The 

non-resonant susceptibility term arises from non vibrational resonant excitations (e.g. 

electronic excitations) and is typically invariant as the IR beam is scanned over the 

spectrum. 

The surface specificity in SFG arises from the fact that )2(  is a third rank tensor 

whose element values depend on the properties of the medium under investigation.  For 

centrosymmetric media, )2(  should be invariant under inversion symmetry, however, 

the electric field and the polarization must change signs as vectors.  From equation 2.3, 
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one can see that the inversion operator will result in )2()2(    or 0)2(  , thus 

yielding no SFG signal from media with inversion symmetry.  At interfaces, inversion 

symmetry is necessarily broken, allowing light at the sum-frequency to be created. 

The resonant susceptibility, which originates from vibrational modes on the 

surface, can be described by equation 2.8. 

 (2) (2)

, ,

ˆ ˆˆ ˆ ˆ ˆ( )( )( ) q
R ijk gq

q i j k IR q q

A
N i l j m k n

i
  

 
      

    (2.8) 

where qA  is the strength of the qth vibrational mode, N is the number density of 

molecules on the surface, IR  is the frequency of the infrared laser beam, q  is the 

frequency of the qth vibrational mode, q  is the damping constant of the qth vibrational 

mode, and gq  is the population difference between the ground and first excited states.  

The subscripts l, m, and n refer to the axes for the molecular coordinate system (whereas 

the subscripts i, j, and k refer to the laboratory coordinate systems) and so the expression, 

 )ˆˆ)(ˆˆ)(ˆˆ( nkmjli , is the coordinate transformation from molecular fixed coordinates to 

laboratory fixed coordinates averaged over molecular orientations.  Since this average is 

over all of the molecular orientations, the adsorbates must have some ordering to produce 

a sum frequency signal. This is an important selection rule that is used throughout this 

thesis to understand the measured SFG spectra. To understand this result, the 

orientational average can be rewritten in a more intuitive form: 

        2 2
,R q qN a f d      (2.9)  

 where  2
qa  is the second-order susceptibility for the qth vibrational mode of an individual 

molecule,   represents three Euler angles that describe a transformation between the 
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laboratory and molecular coordinate frames, and  f   represents an orientational 

distribution function of the qth vibrational mode. As can be seen from equation 2.9, this 

integral will vanish if  f   is a uniform function.  From equation 2.8, one can see that 

)2(
R  reaches a maximum when qIR   , and hence a vibrational spectrum is acquired 

by scanning the IR frequency.   

Selection rules for the SFG process can be inferred from equation 2.10.19,20 

  
(1)

2 1
2

n lm
q

q

a
q q
 


 


 

 (2.10) 

where n  is the dipole moment and )1(
lm  is the Raman polarizability.  Hence, in order for 

(2)
,R q  to be non-zero, the vibrational mode of interest must be both IR and Raman active. 

 

2.2. Sum Frequency Generation from a Surface 

In general, the surface susceptibility  2
ijk  is a 27-element tensor, however, it can 

often be reduced to several non-vanishing elements by symmetry constraints.  Interfaces 

are isotropic in the plane of the surface.  The symmetry constraints for an in-plane 

isotropic surface reduces  2
ijk  to the following four independent non-zero elements:18 

 )2()2()2()2()2()2()2( ;;; zyyzxxyzyxzxyyzxxzzzz   . (2.11) 

Here z is defined to be the direction normal to the surface, x is perpendicular to z and in 

the plane of incidence of the light, and y is perpendicular to both z and x.  These four 

independent elements contribute to the SFG signal under four different polarization 

conditions: ppp, ssp, sps, and pss, where the polarizations are listed in order of decreasing 

frequency (SF, vis, IR).  P polarization occurs when the electrical field vector is parallel 
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to the plane of incidence, which contains the surface normal and the incident beam (and 

hence contains both x and z polarized light).  The vector is perpendicular to the plane of 

incidence in s polarization (and hence contains y polarized light). 

Information about molecular orientation of the adsorbate on the surface may be 

determined using different polarization combinations of IR, vis, and SF radiation.21,22  

Different susceptibility components are measured for each polarization combination used 

during an SFG experiment.  These polarization combinations determine the ratios of the 

different tensor elements, which provide molecular orientation information.  The 

orientation of adsorbates can be extracted through modeling of the susceptibility 

components.  However, this approach is limited when studying the interfacial orientation 

of a molecule as complex as a peptide containing one or two types of amino acids. This is 

because each side chain could have its own orientation distribution, making quantitative 

analysis difficult. Other problems with this approach have been discussed.17,23 Therefore, 

all spectra presented here are in the ssp polarization combination. Finally, water is always 

present when peptides are adsorbed to surfaces. SFG studies on the interfacial properties 

of water have been performed and recently extensively reviewed.16 

2.3. Sum Frequency Generation Setup 

All SFG spectra were obtained using a mode-locked Nd:YAG laser (Leopard 

D20, Continuum). This laser produces a 1064 nm fundamental having a 20 ps long pulse 

with a 20 Hz repetition rate. The 1064 nm beam is split, with some light being frequency 

doubled to 532 nm in a KTP crystal. This 532 beam is also split, with some of the light 

becoming the visible (vis) beam for the experiment, and the rest going to an optical 

parametric generator (OPG) that produces light at a wavelength of ~0.8 and ~1.2 
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microns. This ~1.2 micron light is sent to a second stage (the optical parametric amplifier 

or OPA stage). The tunable IR beam for the SFG experiment was generated in a pair of 

KTA crystals (the OPA stage) by difference frequency mixing of the 1064 nm beam with 

the output of a KTP OPG (~1.2 microns). A schematic of the OPA/OPG is illustrated in 

figure 2.1.  The VIS beam (200 J) and the IR (200 J) beams were spatially and 

temporally overlapped on the sample surface. The generated SFG beam was sent through 

a monochromator and the signal intensity was detected with a photomultiplier tube 

(Hamamatsu) and a gated integrator (Stanford Research) as the IR beam was scanned 

over the range of interest.   

Figure 2.1.  Schematic of OPG/OPA system to generate laser beams used for SFG 

experiments.  Tuning range is between 2000 and 4000 cm-1. 
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Chapter 3 

Side Chain, Chain Length, and Sequence Effects on 

Amphiphilic Peptide Adsorption at Hydrophobic and 

Hydrophilic Surfaces Studied by Sum-Frequency Generation 

Vibrational Spectroscopy and Quartz Crystal Microbalance 

 

The surface molecular structure and adsorbed mass of a series of model 

amphiphilic peptides have been studied in situ with surface-specific sum frequency 

generation (SFG) vibrational spectroscopy and quartz crystal microbalance (QCM) at the 

hydrophobic polystyrene and hydrophilic silica solid-water interface. The peptides are 

designed to form α-helical (XY14) or β-strand (XY7) secondary structures at an apolar 

interface and contain hydrophobic (X) and charged (Y) amino acids with sequence Ac-

XYYXXYXXYYXXYX-NH2 or Ac-XYXYXYX-NH2, respectively. The X and Y 

combinations are leucine (L) and lysine (K), alanine (A) and lysine (K), alanine (A) and 

arginine (R), and phenylalanine (F) and arginine (R). One additional peptide with 

sequence Ac-LKKLLKL-NH2 (LK7 α) was synthesized. These peptides allow for the 

study of how chain length (LK14 vs LK7 α and LK7 β), amino acid side chain character 

(LK vs AK vs AR vs FR), and sequence (LK7 α-helix vs LK7 β-strand sequences) affect 

adsorption. The SFG spectra of adsorbed peptides on polystyrene typically show CH 

resonances characteristic of the hydrophobic side chains oriented at the interface. On 

polystyrene, the molecular orientation of the side chain of alanine is more sensitive to 
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changes in peptide chain length and sequence than that of leucine or phenylalanine. The 

SFG spectra of adsorbed peptides on silica show no distinct peptide modes, with the 

exception of the LK14 peptide, where an amide A NH mode is observed. The results 

demonstrate that SFG vibrational spectra can fingerprint specific amino acid ordering 

occurring at the polystyrene interface and secondary structure ordering at the silica 

interface. QCM data indicates that all peptides except LK7 β adsorb onto both 

hydrophobic polystyrene and hydrophilic silica surfaces, even when SFG active modes 

are not observed. 
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3.1. Introduction 

Protein adsorption at the solid-liquid interface is involved in a wide range of 

phenomena in nature and in many industrial applications. It is of great interest to the 

scientific and medical communities due to its application in implant biocompatibility, 

drug delivery, and biosensors.1-4 An example of unfavorable protein adsorption is the 

adsorption of blood proteins onto medical devices, which subsequently alter their 

biological and immunological responses.5,6 Understanding protein adsorption may 

provide the means to exert molecular control of surface properties of biomaterials. 

Proteins are composed of chains of amino acids, which form secondary structural motifs 

including α-helices and β-sheets. The secondary structures associate to form tertiary 

domains, which assemble to form the unique three-dimensional structure of proteins. 

Proteins are such large and complex molecules that it is difficult to identify the features 

in their structure that lead to adsorption and interaction with solid surfaces. Designed 

peptides provide simple model systems for understanding protein adsorption.7 Depending 

on the amino acid sequence of a peptide, different secondary structures (α-helix and β-

sheet) can be induced at apolar interfaces.8 Having a well-defined model system allows 

experiments to be carried out under controlled conditions, where it is possible to 

investigate the affects of peptide amino acid sequence and chain length, concentration, 

buffering effects, etc. on adsorbed peptide structure.9,10 The present work examines the 

molecular-level behavior of designed polypeptides adsorbed onto hydrophobic 

polystyrene and hydrophilic silica using sum frequency generation (SFG) vibrational 

spectroscopy and quartz crystal microbalance (QCM) to study the molecular surface 
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structure and adsorbed amount of biological molecules at the solid-liquid interface. SFG 

vibrational spectroscopy has been used to study protein adsorption at the buried interface 

with molecular-level surface specificity.11,12 SFG spectroscopy is a nonlinear optical 

process where two input beams (typically a fixed frequency visible and tunable infrared) 

overlap at a surface and generate light at the sum frequency. The selection rules for SFG 

require molecules to be in a noncentrosymmetric environment, such as an interface, to 

produce a SFG signal. Additionally, only molecules that have a net ordering at an 

interface (i.e., only molecules that do not have a random geometric distribution) produce 

a SFG signal.13 SFG spectroscopy is used here to carry out a systematic adsorption study 

of synthetic amphiphilic peptides (composed of one hydrophobic amino acid and one 

charged amino acid) on polystyrene and silica. QCM is used to quantify the adsorption on 

each surface. The model peptides are designed with a specific sequence and length to 

induce formation of an α-helix or β-strand structure at an apolar interface.8,14 Unlike 

proteins, which contain numerous types of amino acids that make identification of SFG 

active vibrational modes difficult,15,16 these peptides contain only two amino acids, which 

leads to more easily interpretable SFG spectra. By systematically varying such 

parameters as the amino acid side chain type, chain length, and sequence in a set of 

peptides, it is possible to examine how each parameter influences interfacial molecular 

structure and amount adsorbed. On polystyrene, we measure a local hydrophobic 

interaction (alignment of the hydrophobic residues) that is unique to the amino acid and 

provides a spectroscopic signature attributed to individual amino acid side chains. 

Unambiguous assignment of SFG vibrational modes for leucine, alanine, and 

phenylalanine in a peptide is possible. On silica, we measure a molecular scale surface 
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interaction, where only peptides that possess a stable secondary structure in solution yield 

SFG active modes attributed to the peptide.  

3.2. Experimental 

3.2.1. Peptide Synthesis. Peptides were synthesized using an Applied Biosystems ABI 

431A synthesizer using rink amide 4-methylbenzhydrylamine (MBHA) resin (Nova 

Biochem) and standard 9-fluorenylmethyloxycarbonyl (FMOC) chemistry.17 

Approximately 200 mg of rink amide resin was used in the synthesis, with a 9 equiv 

excess of reagents. The N-terminus of the peptide was acetylated by adding acetic 

anhydride to the resin-bound peptide prior to cleaving in a solution of 95% trifluoroacetic 

acid in water. The crude peptides were purified by reversed-phase high-pressure liquid 

chromatography (rp-HPLC) with a C-18 column (Vydac) where possible. Hydrophobic 

peptides were not HPLC purified due to low solubility and retention on the HPLC 

column. The purity and composition of the peptides were characterized using LC-ESI-

MS (electrospray ionization) mass spectrometry. Peptides were precipitated in cold 

methyl-tert-butyl ether and lyophilized to dryness.  

The peptides contain hydrophobic (X) and charged (Y) amino acids with sequence Ac-

XYYXXYXXYYXXYX-NH2 or Ac-XYXYXYX-NH2, where the X and Y combinations 

are leucine (L) and lysine (K), alanine (A) and lysine (K), alanine (A) and arginine (R), 

and phenylalanine (F) and arginine (R) (Figure 3.1). The 14-amino acid peptides were 

sequenced to induce -helical formation at an apolar interface, while the 7-amino acid 

peptides were sequenced to induce β-strand formation.8,14 One additional 7-amino acid 

peptide was synthesized, with sequence Ac-LKKLLKL-NH2, referred to as LK7 α. This 
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peptide was designed to form a helix; however, it may contain fewer than the nominal 

number of residues required to stabilize helix formation.8 

 

Figure 3.1. Amino acids used in model synthetic peptides. Lysine (pKa = 10.8) and 

arginine (pKa = 12.5) have positively charged side chains containing ionizable NH2 

moieties, while the nonpolar side chains of alanine, leucine, and phenylalanine are 

composed of methyl, isopropyl, and phenyl side chains, respectively. 

Peptide solutions were prepared using phosphate-buffered saline (PBS, 0.01 M phosphate 

buffered saline, 0.14 M NaCl, 0.0027 M KCl, Aldrich) solution. The LK, AK, AR, and 

FR peptides used in this study all had drastically different solution solubilities, so we 

were unable to perform all of the experiments at the same peptide concentration. We 

observed that the peptide solubility decreased in the order AR ~ AK > LK > FR.  
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3.2.2. Circular Dichroism (CD) Measurements. CD spectra were collected between 

190 and 240 nm with 1 s averaging and 1 nm increments using an Aviv 62DS circular 

dichroism instrument. Lyophilized peptides samples were dissolved in PBS solution in a 

1 mm strain-free (Aviv) cuvette.  

3.2.3. QCM Measurements. QCM is a highly sensitive mass sensor capable of 

measuring nanogram quantities of adsorbed material on surfaces.18 The wet mass 

adsorbed (Δm) induces a linear resonant frequency shift (Δf) according to eq. 3.1, 

provided that the adsorbed mass in a liquid environment is evenly distributed and 

produces a sufficiently rigid and thin film (i.e., elastic masses are adsorbed).19 In eq. 3.1, 

n denotes the overtone number and C is the mass sensitivity constant for Δf = 1 Hz (17.7 

ng·cm-2 using a 5 MHz crystal). 

C fm
n

 
       (3.1) 

We used a Q-Sense D300 model QCM for all measurements. SiO2-coated sensor crystals 

(Q-Sense QSX 303, AT-cut, 5 MHz, active surface area = 0.2 cm2) were used following 

oxygen plasma treatment or coated with polystyrene films for use as a hydrophobic 

substrate. The polystyrene surface was prepared by spin-casting (Specialty Coating 

Systems, P-6000 spin-coater) a 2 wt % solution of polystyrene (MW ~ 280 000, 

polydispersity = 1.05, Aldrich) in toluene onto the fused silica substrate and annealing at 

110 °C (12 h). The silica or polystyrene coated sensor crystal was initially stabilized in 

pH 7.4 PBS solution. After a stable resonant crystal frequency was observed, a volume of 

~2 mL of temperature-stabilized peptide sample liquid was delivered to the chamber 
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containing the sensor crystal (internal volume 80 μL) to ensure a complete exchange of 

the liquid. Signal distortion (peaks of Δf < 5 Hz) was observed briefly upon sample 

injection due to temperature and pressure fluctuations in the cell. Measurements of f were 

acquired at several harmonics (15, 25, and 35 MHz) simultaneously, beginning when the 

crystal was stabilized in buffer solution until a steady-state frequency was reached 

following peptide adsorption (typically ~60 min). All measurements were performed at a 

temperature of 24-25 °C to within 0.5 °C. The QCM liquid cell was thoroughly cleaned 

with Hellmanex between measurements. 

 

Figure 3.2. CD spectra of model amphiphilic peptides: 7-amino acid peptides (left) and 

14-amino acid peptides (right). Only LK14 has a predominantly α-helical structure in 

solution. 

3.2.4. SFG Spectroscopy. Our laser experimental setup, substrate preparation, and 

experimental geometry have been described in detail elsewhere.20,21 Briefly, fused silica 
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windows (Esco Products) were used as the hydrophilic substrate following cleaning in 

NOCHROMIX (Godax Laboratories) oxidizing solution. Polystyrene thin films (200 nm) 

were prepared similarly to the QCM crystal substrates by spin-casting a 3 wt % solution 

of deuterated polystyrene (PS-d8, MW ~ 300 000, polydispersity = 1.17, Polymer Source, 

Inc.) onto the fused silica windows. Deuterated polystyrene was used for SFG 

measurements to eliminate vibrational modes of the substrate from the spectral region 

under study (2800-3600 cm-1). Background PBS spectra were obtained on the cleaned 

silica or PS-d8 surface and were the average of at least 50 shots per data point. The 

peptide solution was injected directly to the buffer-solid interface, and SFG spectra were 

acquired immediately. Sample scans shown here are the average of at least 100 shots per 

data point (requiring ~60 min) collected using ssfgsvispir polarization combination (ssp), 

which probes the yyz component of χ(2). 

The effective surface nonlinear susceptibility was related to χ(2), the surface nonlinear 

susceptibility, through the tensorial Fresnel coefficients:22 

         2 2ˆ ˆ ˆ:eff SFG SFG VIS VIS IR IRL e L e L e                     (3.2) 

where êi is a unit polarization vector of the optical field at ωi, and L(ωi) is the tensorial 

Fresnel factor. The measured SFG spectra were fit to the equation (  2
NR , q , q  and qA  

are the fit parameters): 
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 

 
      (3.3) 
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where  2
NR  is the nonresonant part of the surface nonlinear susceptibility,  2 , IR  is the 

frequency of the infrared beam, and q  and q  are the frequency and damping constant 

of the qth vibrational mode, respectively. The strength of a vibrational mode, Aq, is given 

by: 

          2
q s qA N a f d       (3.4) 

where Ns is the surface density of molecules, aq is the oscillator strength of a single mode, 

and f(Ω) is an orientation distribution function over a set of orientational angles that 

describes a transformation between the laboratory and molecular coordinate system.22 

The amplitude aq can be understood as: 

 1

q
q q

a
Q Q
  

 
 


    (3.5) 

where qQ 
  and  1

qQ   are the infrared dipole and Raman polarizability 

derivatives with respect to Qq, the classical normal coordinate of the qth vibrational 

mode.22,23 These equations demonstrate that a vibrational resonance is SFG active when it 

is both IR and Raman active, and it must be ordered (i.e., a mode that has a random 

geometrical distribution does not produce a resonant response according to the integral in 

eq 3).24,25 The physical interpretation of the SFG spectra presented here is: due to specific 

interactions between the peptide and the surface (i.e., hydrophobic or electrostatic), 

certain vibrational modes become ordered at an interface, and those modes are seen in the 

SFG spectra. 
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3.3. Results and Discussion 

3.3.1. CD Measurements. CD spectra for the LK, AK, AR, and FR peptides are 

presented in Figure 3.2. The CD spectrum of LK14 shows that it has a predominantly α-

helical structure in solution (strong residual ellipticity at 208 and 222 nm). The LK7 α 

peptide shows partial helical content. All of the other peptides examined in this study had 

a random coil structure under the solution concentrations used here. The nominal chain 

length necessary for secondary structure formation is 4 residues for β-strand formation 

and 14 residues for α-helix formation.8 Short peptides have many more degrees of 

conformational freedom than proteins, and it is unusual for a peptide to adopt a single 

predominant solution structure.26 Degrado and Lear have shown that the LK14 peptide 

aggregates to form tetramers in solution, which stabilizes the helical structure. Their LK7 

β peptide showed secondary structure in Tris·HCl buffer, whereas we found random coil 

structure in PBS.8 It has been shown that, for LK14 concentrations below 0.01 mM, the 

peptide is primarily a random coil.8,27,28 It is possible that the critical concentration for 

secondary structure formation for the AK, AR, and FR peptides is higher than the 

concentrations used in this study. 

3.3.2. QCM Measurements. QCM adsorption data were collected for the 14- and 7-

amino acid peptides adsorbed onto PS and SiO2 surfaces. The results summarized in 

Table 1 show the absolute magnitude of the change in frequency upon adsorption, f , 

normalized to the third overtone, the corresponding Sauerbrey mass, and the solution 

concentration used in the experiment. The tabulated f  data was measured from a 

single QCM experiment (instrument sensitivity = ± 0.3 Hz). QCM measurements were 
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obtained at least two times for each the peptides. The peptides all showed monotonic 

adsorption behavior on polystyrene. The LK14 peptide showed multistep adsorption on 

SiO2, while the other peptides adsorbed monotonically.20 It was observed that the least 

soluble peptides adsorbed the greatest peptide mass on polystyrene and likely have a 

stronger driving force for interaction with the hydrophobic surface. For example, FR14 of 

solubility ~100 μg/mL produced the largest change in frequency ( f = 12 Hz), while 

highly soluble AR14 (1.5 mg/mL) showed less adsorption ( f = 5 Hz). A direct 

comparison of the adsorbate concentration as a function of amino acid chain length is 

difficult due to the reduced solubility of the shorter-chain peptides. Where QCM 

experiments could be performed at identical concentration (i.e., AK14 and AK7), it was 

observed that the longer 14-amino acid peptide adsorbed twice the mass of the 7-amino 

acid peptide ( f = 6 and f = 3 Hz, respectively). All of the 14-amino acid peptides  
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Table 3.1: QCM Results: Frequency Change and Mass Adsorbed 

on Polystyrene and Silica 

  PS SiO2 

peptide f  (Hz) mass (ng/cm-2) f  (Hz) mass (ng/cm-2) 
solution concentration 

(mg/mL)  

LK14  8  140  16  280a  1.0  

AK14  5  90  9  160  1.0  

AR14  8  140  13  230  1.5  

FR14  15  270  12  210  0.1  

LK7  1  20  0.5  10  0.1  

AK7  3  50  2  40  1.0  

AR7  6  100  12  200  1.0  

FR7  5  90  2  90  0.05 

a Sauerbrey mass underestimates actual adsorbed mass here.19,20 

adsorbed on SiO2, but of the 7-amino acid peptides, only AR7 showed significant 

adsorption. 
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Figure 3.3 SFG spectra of LK14, AK14, AR14, and FR14 (clockwise from top left) on PS-d8. 

The LK14 peptide shows three distinct modes associated with the leucine side chain: 2870 

cm-1, assigned to CH3 υs, 2895 cm-1, assigned to a CH stretch or CH2 F.R., and 2935 

cm-1, assigned to CH3 F.R. The AR14 and AK14 peptides show two distinct modes 

associated with the alanine side chain: 2870 cm-1, assigned to CH3 υs, and a mode 

around 2930 cm-1, assigned to CH3 F.R. The FR14 peptide shows a mode at 3050 cm-1, 

assigned to the υ2 phenyl ring stretch of the phenylalanine side chain. 

3.3.3. SFG Adsorption Studies.  

3.3.3.1. Adsorption Studies on Polystyrene. To investigate the effects of side chain 

character on adsorption, we have studied amphiphilic peptides with a range of nonpolar 

side chain hydrophobicities: alanine, phenylalanine, and leucine. The SFG spectra of the 

14-amino acid peptides adsorbed on deuterated polystyrene are shown in Figure 3.3. The 

solid lines in each figure are the results of fitting the spectra to eq. 3.3, where the 

intensity units are arbitrary and different for each peptide. Peptide modes are visible for 
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all of the peptides adsorbed on hydrophobic polystyrene surfaces. As we have previously 

demonstrated, LK14 shows three distinct modes on PS-d8: 2870 cm-1, assigned to a methyl 

symmetric stretch, 2895 cm-1, assigned to a CH stretch or CH2 Fermi resonance, and 

2935 cm-1, assigned to a Fermi resonance of a methyl mode.20 The AK14 shows similar 

results: 2870 cm-1, assigned to symmetric stretch of the methyl side chain of alanine, and 

the 2925 cm-1 mode, assigned to a Fermi resonance of the methyl side chain of alanine. 

The SFG spectrum of the AR14 peptide is similar to AK14, with the two modes observed 

at 2870 and 2930 cm-1. The FR14 peptide shows a strong resonance at 3050 cm-1, assigned 

to the symmetric phenyl stretch, υ2, of the phenylalanine side chains. This is in contrast to 

Kim et al., who observed two CH2 modes at 2855 and 2935 cm-1 for phenylalanine amino 

acid adsorbed on a glassy carbon electrode.29 This is likely due to the fact that the electric 

field present at an electrode induces a different molecular orientation of the adsorbate 

than an uncharged hydrophobic surface does. 

The spectral results observed here are very similar to the previous results of SFG 

investigations of several amino acids at the oil-water30 and air-water31 interface. This 

demonstrates that these 14-amino acid peptides show SFG spectra characteristic of their 

hydrophobic amino acid side chains. The amphiphilic nature of these peptides may allow 

for the hydrophobic side chains to interact with hydrophobic polystyrene surface, while 

the charged hydrophilic chains face the bulk water interface. The adsorption of the 14-

amino acid peptides on polystyrene seems to be controlled by the hydrophobic character 

of the side chains and shows a spectroscopic signature for the alanine, leucine, and 

phenyalanine side chains. The 7-amino acid peptides show the same trend for LK and FR 

peptides. The SFG spectra of the 7-amino acid (β-strand sequences) peptides adsorbed on 
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polystyrene are shown in Figure 3.4. The SFG spectrum of LK7 shows three resonances: 

2870 cm-1, again a symmetric stretch of a methyl group, 2910 cm-1, CH stretch or CH2 

Fermi resonance, and 2935 cm-1, a methyl Fermi resonance. A peak at 3050 cm-1 in the 

SFG spectrum in FR7 is attributed to the symmetric ring stretch, υ2, of phenylalanine. In 

contrast, there are no peptide and little hydrogen-bonded water modes visible in the SFG 

spectrum of AK7. The SFG spectrum of AR7 does not show modes associated with  

 

Figure 3.4 SFG spectra of LK7, AK7, AR7, and FR7 (clockwise from top left) on PS-d8. 

The LK7 spectra was fit with three resonances: 2870 cm-1, assigned to CH3 υs, 2910 cm-1, 

assigned to a CH stretch or CH2 F.R., and 2935 cm-1, assigned to CH3 F.R. The AK7 

peptide shows no modes associated with the peptide. The AR7 peptide shows a mode at 

3030 cm-1, assigned to a CH mode of the arginine side chain. The FR7 peptide shows a 

mode at 3050 cm-1, assigned to the υ2 phenyl ring stretch of the phenylalanine side 

chains. Comparison of Figures 3.3 and 3.4 shows that the molecular orientation of 

alanine is more sensitive to sequence and chain length than leucine or phenylalanine. 
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alanine, but a strong CH stretching mode at 3030 cm-1. Previous work of Larsson has 

assigned a CH mode at 3030 cm-1 to the arginine side chain.32,33 

To directly compare the effects of peptide sequence, a 7-amino acid peptide with 

identical amino acid composition to LK7 was synthesized. The peptide had a sequence 

Ac-LKKLLKL-NH2 (LK7 α) and was designed to form a helical structure at an apolar 

interface (compared to the LK7 β with sequence LKLKLKL). The LK7 α and LK7 β 

peptides produce slightly different SFG spectra on PS-d8. Figure 3.5 shows the SFG 

spectra of the two 7-amino acid LK peptides with α and β sequences. The LK7 α and LK7 

β spectra have three similar modes: 2870 cm-1, assigned to the symmetric stretch of the 

methyl groups in the leucine side-chains, 2898 cm-1, CH resonance or CH2 Fermi 

resonance, and 2935 cm-1, a Fermi resonance of a methyl group. The subtle differences in 

the relative intensity of the three CH modes observed in the SFG spectra indicate a 

slightly different average orientation of the methyl groups at the PS-d8 surface. Another 

slight difference in the spectra is in the water arrangement at the interface: there is almost 

no structured water in the spectrum of LK7 β, whereas the water peak centered at 3150 

cm-1 for LK7 α is similar to the peak in the spectrum of LK14 on PS-d8. A comparison 

between the LK14, LK7 β, and LK7 α peptides on PS-d8 demonstrates the importance of 

peptide length and sequence in its adsorption properties. The LK14 is twice the length of 

the LK7 α. This difference in length causes different ordering of leucine moieties at the 

hydrophobic PS-d8 interface. Conversely, LK7 α and LK7 β have different sequences but 

similar length and molecular weight. The similarities in the SFG signal between the LK7 

α and LK7 β suggest that the influence of sequence on adsorption is smaller than that of 

chain length. 
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Figure 3.5 Comparison of the effect of sequence on the SFG spectra observed for the β-

strand sequence, LK7 β (LKLKLKL) (left) vs the α-helical sequence peptide, LK7 α 

(LKKLLKL) (right). Qualitatively similar spectra are observed, with modes in both 

peptides are assigned to: 2870 cm-1, CH3 υs, 2900 cm-1, CH stretch or CH2 F.R., and 

2930 cm-1, CH3 F.R. 

The effect of chain length is also observed in the case of the AR and AK peptides. 

In the case of AR14 and AR7 peptides, drastically different SFG spectra are observed at 

the polystyrene interface. AK14 shows a very similar spectrum to AR14, whereas the AK7 

shows no SFG signal on PS-d8. The similarities in the CH modes observed for both AK14 

and AR14 imply that the SFG spectra observed are characteristic of the hydrophobic 

alanine side chain and not governed by the hydrophilic residues (R or K). The 

frequencies of the resonances (2870 and 2930 cm-1 of AK14 and AR14) are similar to that 

observed by Kim et al., who studied polyalanine at the air-water interface and observed 

two modes of similar relative intensity at 2878 and 2942 cm-1, respectively.34 
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In addition to CH resonances from the peptides, we observed a large peak 

centered at 3200 cm-1 and a weaker peak at 3400 cm-1 from hydrogen-bonded water 

molecules at the liquid-polystyrene interface. These water OH modes have been assigned 

to tetrahedrally coordinated ("icelike") and hydrogen-bonded ("liquidlike"), 

respectively.13,35,36 The polystyrene surface is sensitive to contamination, so differences 

in the OH region of the peptide SFG spectra may be due to differences in sample 

impurities as well as adsorbed peptide structure.37 However, the arginine-containing 

peptides always show more intensity than the lysine-containing peptides in the 3200 cm-1 

mode, which may be attributed to differences in the side chain acidities of lysine (pKa = 

10.8) and arginine (pKa = 12.5). 

Some interesting trends become apparent when considering all of the data. The 

FR peptides (FR14 and FR7), which are the least soluble, show no difference in interfacial 

SFG signal upon adsorption. The LK peptides, the next least soluble, show very little 

differences between the 14- and 7-amino acid peptides and even less between the LK7 β 

and LK7 α peptides. The alanine peptides, AK and AR, are readily soluble and show large 

differences in spectra of the 14- and 7-amino acid peptides. In summary, the less-soluble 

LK and FR peptides show alignment of the nonpolar side chains of the peptide on 

hydrophobic surfaces that are largely independent of chain length and sequence, while 

the adsorbed orientation of the relatively soluble AK and AR peptides is affected more by 

variables such as the amino acid sequence and chain length. This trend correlates with the 

nonpolar nature of the amino acids alanine, leucine, and phenylalanine. 
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Figure 3.6 SFG spectra of LK14, AK14, AR14, and FR14 (clockwise from top left) on SiO2. 

The peak centered at 3300 cm-1 in the LK14 spectrum is assigned to an amide A N-H 

stretching mode. 

3.3.3.2. Adsorption Studies on Silica. 

 The SFG spectra for the LK, AK, AR, and FR peptides adsorbed on SiO2 are plotted in 

Figure 3.6. The SFG spectrum of LK14 on SiO2 is the only spectrum that yields an NH 

mode (at 3300 cm-1). The spectra of AK14, AR14, and FR14 only result in OH modes 

present upon adsorption, similar to the studies of BSA on silica.38 QCM data confirms 

that the 14-amino acid peptides all adsorb onto SiO2 (Table 1). These peptides are 

random coil in solution and do not produce a net orientation upon adsorption required to 

produce SFG active peptide modes. The results presented in this work (alignment of the 

hydrophobic residues at a hydrophobic surface and lack of alignment of any peptide 

modes at a hydrophilic interface) are in agreement with previous SFG studies of 

proteins.25,39  
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The 7-amino acid peptides do not generate a SFG signal due to the peptide (data 

not shown). The QCM data shows weak but measurable adsorption for LK7, AK7, and 

FR7 peptides on SiO2. LK7 and FR7 have very low solubility, which may contribute to 

weak adsorption. AK7 is highly soluble, but shows a low affinity for the SiO2 surface. 

QCM data for AR7 shows a large adsorbed mass, but no SFG signal is detected on SiO2, 

indicating a lack of a specific orientation of SFG active vibrational modes at the surface.  

The NH stretch on SiO2 observed following LK14 adsorption is assigned to the 

amide A mode of the peptide backbone. This mode has been previously been observed in 

SFG studies of helical peptides and proteins.15,16,40,41 CD data for LK14 peptide indicate 

that this peptide is α-helical in solution. The presence of this backbone mode suggests 

that LK14 maintains its solution-phase helical structure to some degree upon adsorption 

and demonstrates that the SFG spectra of peptides on silica are sensitive to molecular-

scale peptide secondary structure adsorption. 

3.4. Conclusions 

We have observed similar spectroscopic results for adsorption of model 

amphiphilic peptides on PS that are independent of the secondary structure of the 

polypeptide backbone. The amino acids of these peptides were found to act as individual 

chromophores and produce unique SFG signatures when adsorbed on hydrophobic 

polystyrene surfaces. For example, LK14, LK7 β, and LK7 α show similar SFG spectra 

due to ordering of leucine side chains at the polystyrene surface. The SFG spectra of 

peptides containing alanine amino acid are more sensitive to changes in chain length and 

sequence. The forces driving surface orientation at the hydrophobic polystyrene surface 



 35 

appear to be local hydrophobic interactions and are determined primarily by the 

properties of the peptide amino acid side chains.  

SFG spectra of LK, AK, AR, and FR peptides adsorbed on SiO2 do not show 

vibrational modes associated with the peptides, except for an amide A (NH mode at 3300 

cm-1) observed following LK14 adsorption. CD studies show that only LK14 peptide has 

predominantly α-helical conformation in solution. The amide A band observed in the 

SFG spectrum indicates that we measure a molecular scale secondary structure 

interaction with the silica surface in contrast to the local interaction measured for 

adsorbed peptides on polystyrene.  
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Chapter 4 

The Influence of Ionic Strength on the Adsorption of a Model 

Peptide on Hydrophilic Silica and Hydrophobic Polystyrene 

Surfaces: Insights from SFG Vibrational Spectroscopy 

 

Sum frequency generation (SFG) vibrational spectroscopy has been used to study 

the influence of ionic strength of a solution on the interfacial structure of a model 

amphiphilic peptide. The ionic strength of the solution is controlled by changing the salt 

concentration of the solution. This peptide (called LK14) contains fourteen amino acids 

and is composed of hydrophobic leucine (L) and hydrophilic lysine (K) residues. LK14 is 

shown to be an alpha helix in solution at high ionic strength and a random coil at low 

ionic strength. On a hydrophilic silica surface, an N-H mode from LK14 is observed at 

high ionic strength that is no longer observed when the peptide is adsorbed at low ionic 

strengths. Instead, strong interfacial water signal is measured at low ionic strength 

conditions. The N-H mode that appears at high salt concentrations is only seen when the 

peptide has a stable secondary structure. On a hydrophobic polystyrene surface, C-H 

modes are observed that are independent of the ionic strength of the solution. However, 

the intensity of the water modes observed upon peptide adsorption increases with 

decreasing ionic strength. In contrast, in the absence of peptide (i.e. the 

polystyrene/buffer interface), there is no change in the intensity of the water modes with 

changing ionic strength. This implies that C-H modes observed on hydrophobic surfaces 

in peptide SFG studies are independent of the secondary structure of the biomolecule in 
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solution, and that the adsorption of a peptide can induce ordering of interfacial water 

molecules. 
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4.1 Introduction 

Through his understanding of non-linear optical processes, Professor Eisenthal 

has inspired a generation of surface scientists. Among his many accomplishments, the 

1992 study1 with Ong and Zhao that related the interfacial potential of the silica-water 

interface to the second harmonic signal holds special significance. In this study, we 

examine how changing the ionic strength (and hence interfacial potential) of a solution 

influences the interfacial structure of an adsorbed peptide at both hydrophobic and 

hydrophilic surfaces. 

The study of how biological molecules adsorb onto surfaces is an active area of 

research.2 Understanding how proteins adsorb onto surfaces hold particular interest for 

the rational design of biomedical implants.3 Our experimental4 and philosophical5 

approach to understanding this problem has recently been published and involves the 

adsorption of model peptides of varying chain length on hydrophobic and hydrophilic 

surfaces. In this chapter, we extend our earlier study of a model amphiphilic LK14 peptide 

(where L = leucine and K = lysine) to understand how the ionic strength of the solution 

influences the solution and interfacial structure. The solution and interfacial structure 

were monitored by Circular Dichroism (CD) and Sum Frequency Generation (SFG) 

Vibrational Spectroscopy, respectively. The LK14 peptide was first synthesized by 

Degrado and Lear, who showed that the LK14 was an alpha helix under certain solvent 

conditions.6 Degrado and Lear also characterized the structure of this peptide at the 

apolar/water interface.6 Since then, there have been several studies of the interfacial 

structure of this peptide.7 Recently, we have characterized the interfacial structure of 

LK14 peptide at hydrophobic polystyrene/water and hydrophilic silica/water interfaces 
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using SFG, Atomic Force Microscopy (AFM) and Quartz Crystal Microbalance (QCM).4 

In this work, we will demonstrate how changing the ionic strength of the solution can 

influence both the solution structure (monitored by CD) and the interfacial structure of a 

peptide at surface (monitored by SFG). 

4.2 Experimental 

Details about peptide synthesis, and other experimental details, can be found 

elsewhere.4 The sequence of the peptide studied here is Ac-LKKLLKLLKKLLKL-NH2. 

4.2.1 Substrate Preparation 

Fused quartz windows (Esco Products) were cleaned by soaking in 

NOCHROMIX (Godax Laboratories) solution and rinsing with deionized water. 

Polystyrene thin films (200 nm) were prepared by spin-casting (Specialty Coating 

Systems, P-6000) a 3 wt% solution of deuterated polystyrene (PS-d8, 255K MW, 

Polymer Source, Inc., Montreal, Canada) in toluene onto the fused silica windows and 

annealing at 110 C for 12 hours. Deuterated polystyrene was used in this study to avoid 

spectral confusion between the polymer surface and the adsorbed peptide. 

Phosphate Buffered Saline (PBS) was obtained from Sigma-Aldrich (Cat. No. P-

5368). A solution was prepared by dissolving 1 packet of PBS salt into 1 liter of ultrapure 

water (Millipore, Milli-Q water with at least 18 Mcm resistivity). This made a solution 

of 0.01 M phosphate buffered saline, 0.138 M NaCl, and 0.0027 M KCl. This solution 

had a pH of 7.4. We refer to this solution as 1X PBS buffer. The 10X PBS buffer was 

prepared by dissolving a packet of PBS salt into 100 mL. Serial dilution of the 1X PBS 

buffer was used to create solutions of lower ionic strengths (0.1X PBS buffer, 0.05X PBS 
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buffer, 0.01X PBS buffer, 0.001X PBS buffer, and 0.0001X PBS buffer). Table 4.1 

summarizes the ionic strength of the solutions used in this study. 

Name

Concentration of 
phosphate buffered 
saline (M)

Concentration 
of Sodium 
Chloride (M)

Concentration 
of Potassium 
Chloride (M)

10X 0.1 1.38 0.027
1X 0.01 0.138 0.0027
0.1X 0.001 0.0138 0.00027
0.05X 0.0005 0.0069 0.000135
0.01X 0.0001 0.00138 0.000027  

Table 4.1. The names and ionic strengths of solutions used in these experiments. 

4.2.2 Circular Dichroism 

CD measurements were carried out on an Aviv 62DS spectrometer. The CD was 

monitored in 1 nm steps from 190 nm to 240 nm, averaging each point for at least one 

second. CD studies were performed using 0.1 mg/mL solution of peptide in a 1-mm 

strain-free (Aviv) cuvette. The high ionic strength solutions, 1X PBS buffer and 10X PBS 

buffer, showed strong adsorption below 200 nm. Therefore, the 1X PBS buffer and 10X 

PBS buffer are only shown above 195 nm and 200 nm, respectively.  

4.2.3 SFG Vibrational Spectroscopy 

SFG spectra were obtained using a mode-locked Nd:YAG laser (Leopard D-20, 

Continuum, Santa Clara, CA). The 1064 nm light (20 ps pulse width, 20 Hz repetition 

rate) was sent to an optical parametric generator/amplifier (OPG/OPA) stage 

(LaserVision, Bellevue, WA) described previously.8 The tunable infrared beam and the 

532 nm visible beam were combined at the sample interface at incident angles of ca. 64 

and 57 degrees, respectively, with respect to the surface normal. The SFG signal 

generated from the sample was collected by a photomultiplier tube, sent to a gated 
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integrator, and stored digitally. For each scan, data was collected with 200 shots/data 

point in 5 cm−1 increments in the 2800 -3600 cm−1 range. SFG measurements were 

typically repeated at least two times for each presented spectra. All spectra presented here 

are in the ssp polarization combination. 

Figure 4.1. CD Spectra of 0.1 mg/mL LK14 peptide. The 1X and 10X PBS Buffer show 

characteristic -helical absorption at 208 nm and 222 nm. The LK14 peptide is a random 

coil when dissolved in solutions of lower ionic strength, as demonstrated by the CD 

spectra. 

 The theory of sum frequency generation has been presented elsewhere4,9-11. Our 

spectra are fit to the equation: 
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where  2
NR is the non-resonant part of the surface nonlinear susceptibility,  2 ; IRω  is 

the frequency of the infrared beam; and qω and q are the frequency and damping 

constant of the thq vibrational mode, respectively. The strength of a vibrational mode, Aq, 

is given by: 

     2
q sA N a f d    ,     (2) 

where sN is the surface density of molecules, qa is the amplitude of a molecular 

vibration,  f  is an orientation distribution function over  ,  a set of orientational 

angles that describes a transformation between the laboratory and molecular coordinate 

system. qa  can be understood has: 

 

qq
q QQ 








1



a ,      (3) 

where qQ
 and  

qQ 1 are the infrared dipole derivative and Raman polarizability 

derivative with respect to qQ , the classical normal coordinate of the thq vibrational mode, 

respectively. The previous equations show what modes are measured in a sum frequency 

experiment: a mode must be IR and Raman active, and it must be ordered (i.e. a mode 

which has a random geometrical distribution does not produce a resonant response, as 

seen by the integral in eq. 2). Thus the physical interpretation of the SFG spectra 

presented here becomes clear: due to specific interactions between the peptide and 

surface (i.e. hydrophobic or electrostatic) certain vibrational modes will become ordered 

at an interface, and those modes are seen in the SFG spectra. 
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4.3 Results 

4.3.1 Circular Dichroism of LK14 in solution as a function of ionic strength 

The CD spectrum of 0.1 mg/mL LK14 is presented as a function of ionic strength 

in Figure 4.1. When dissolved in the 1X PBS buffer and 10X PBS buffer LK14 shows that 

it has a predominantly -helical structure in solution, with the characteristic features for 

-helicility at 208 and 222 nm.  The same peptide dissolved in the the 0.1X PBS buffer, 

0.05X PBS buffer, and 0.01X PBS buffer show a CD spectra typical of a random coil 

This is in qualitative agreement with Degrado and Lear, who showed that the -helical  

Figure 4.2. SFG spectra of the silica/buffer interface. The modes observed are 3200 cm-1 

and 3400 cm-1, both attributed to interfacial hydrogen bonded water. 
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Figure 4.3. a) SFG spectra of the 0.1 mg/mL LK14 at the silica/buffer interface as a 

function of ionic strength. These spectra show a NH mode at high ionic strengths. This 

mode is not observed in the low ionic strength solutions. b) The 1X PBS buffer spectrum 

from part a plotted by itself. 

 
propensity of this peptide is dependent on the peptide and chloride concentration in 

solution.6  

4.3.2 Sum Frequency Generation Vibrational Spectroscopy of LK14 adsorption on 

silica and PS-d8 surfaces at different ionic strengths 

The SFG spectra from the hydrophilic silica/buffer interface as a function of the 

ionic strength is presented in Figure 4.2. The spectra show interfacial water modes at 

~3200 cm-1 and ~3400 cm-1 at low ionic strengths. These modes are attributed to 

tetrahedredrally coordinated hydrogen bonded water (ice-like) and less than tetrahedrally 

coordinated hydrogen bonded water (liquid-like), respectively.12 At higher ionic strengths 

the intensity of both modes decreases. This behavior is similar to what has been observed 

previously by Ong et. al., who looked at the second harmonic signal of the silica/water 

interface as a function of electrolyte concentration.1 The 10X PBS buffer/silica interface 

shows relatively little SFG signal; however, some intensity from both O-H modes in the 

region between ~3200 cm-1 and 3400 cm-1 is observed. The SFG spectra of 0.1 mg/mL 

LK14 peptide adsorbed on SiO2 from different concentrations of PBS solution are shown 

in Figure 4.3. We have previously reported that an N-H mode attributed to the adsorbed 

peptide is present at ~3300 cm−1 in the 1X PBS Solution.4 Using a 10 fold higher 

concentration of PBS gives a similar SFG spectrum, with the N-H intensity of the ~3300 
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cm−1 mode of the peptide decreasing only slightly relative to the 1X PBS spectrum. At 

the 0.01X PBS  

Figure 4.4. SFG spectra of the 1 mg/mL LK14 at the silica/buffer interface as a function 

of ionic strength. 

buffer/silica interface and in the presence of peptide, the peptide N-H mode is no longer 

observed, and an O-H (structured water) mode grows in at 3200 cm−1 (with a slight 

growth of the 3400 cm−1 O-H mode). This experiment was repeated at a higher peptide 

concentration, namely 1 mg/mL, to illustrate the evolution of the interfacial vibrational 

spectra as a function of ionic strength (Figure 4.4). The trend is identical to the 0.1 

mg/mL case: little water signal and a N-H mode at ~3300 cm-1 at high ionic strengths to 

strong water signal and no clear N-H mode at low ionic strengths. 
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Figure 5.5. SFG spectra of the d8-PS/buffer interface. Little SFG signal is seen at any 

ionic strength. 

 The background spectrum of the hydrophobic PS-d8/buffer interface (in the 

absence of adsorbed peptide) is shown in Figure 5.5. Unlike the silica/buffer interface,  

there is little dependence of the interfacial vibrational spectra on the ionic strength of 

solution for the hydrophobic PS-d8/buffer interface. After injection of 0.1 mg/mL LK14 

peptide, however, the strength of the vibrational modes of interfacial water molecules 

shows a strong dependence on ionic strength as seen in Figure 5.6. At low ionic strengths, 

water modes at 3200 cm-1 and 3400 cm-1 are observed (again assigned to ice-like and 

water-like hydrogen bonded water, respectively). At higher ionic strengths, these modes 

decrease in intensity. The 1X PBS buffer/d8-PS spectrum, which has a higher ionic 
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strength, indicates similar water structure to our previously reported results. The C-H 

modes (attributed to the peptide side chains4) present in the SFG spectra are not perturbed 

by changing of the ionic strength of the solution. 
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Figure 5.6. SFG spectra of the 0.1 mg/mL LK14 at the d8-PS/buffer interface as a function 

of ionic strength. These spectra show three C-H modes from the hydrophobic leucine side 

chains which we have assigned previously. Additionally, water structure at 

approximately 3200 cm-1 and 3400 cm-1 are observed at low ionic strengths. At higher 

ionic strengths, the 3400 cm-1 peak disappears and the 3200 cm-1 decreases in intensity 

and is red-shifted. 

4.4. Discussion 

When LK14 peptide is adsorbed from 1X and 10X PBS buffer solution, an N-H 

mode is present. Below these buffer concentrations, the N-H mode disappears. CD 

studies of the solution structure at these same concentrations reveal the loss of secondary 

structure of LK14 in PBS buffer solutions of below 0.1X PBS buffer. Salt is known to 
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stabilize secondary structure in peptides and proteins, but is likely too dilute in PBS 

solutions below 0.01 M to induce secondary structure in the LK14 peptide.6 The N-H 

stretch of the peptide on SiO2 observed following LK14 adsorption has previously been 

reported. First observed for human plasma fibrinogen on silica, this mode was assigned to 

the hydrophilic side chains of lysine and arginine amino acids.13 More recently, this mode 

has been observed for fibrinogen at the hydrophobic polystyrene interface.14 In this work, 

the authors note the same time dependence of Amide I and N-H stretch (at ~3300 cm-1), 

and suggest that this implies the N-H is not from side chains of the amino acids of the 

protein, but instead is from the amide groups of the peptide backbone. In our previous 

work, we assigned the N-H mode to either the hydrophilic amine side chains of the lysine 

residues or the backbone Amide A mode.4 Here, the fact that this N-H mode is only 

observed for the LK14 peptide when this peptide has a alpha helical structure suggests that 

this mode is likely from the backbone Amide A. If this mode is from the positively 

charged side chains, the secondary structure of the peptide should be relatively 

unimportant, and alignment of the positively charged side chains would be driven by an 

electrostatic interaction of the positively charged lysine amino acid with the negatively 

charged silica. Further studies of isosequential peptides show no N-H mode (and 

recognizing these peptides are random coils in solution) further leads to the conclusion 

that the secondary structure of the LK14 peptide at high ionic strength is correlated to the 

appearance of this N-H mode.9 However,  the positively charged lysine side-chains of the 

LK14 peptide can not be ruled out as the source of this N-H mode, since there is a 

possibility that the loss of α-helicity leads to a different (i.e. random) orientation of the 

lysine side-chains. Nonetheless, the presence of this N-H mode suggests that the LK14 
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peptide maintains its solution phase helical structure upon adsorption on silica. Others 

have reported that this helical structure is stable on polystyrene.7 

The results of these experiments on polystyrene demonstrate two important 

points. One, the intensity and orientation of C-H modes of the peptide side chains on 

hydrophobic surfaces are independent of ionic strength and secondary structure of a 

peptide in solution. This likely arises from the fact that the driving force for adsorption of 

an amphiphilic peptide onto a hydrophobic surface is related to the rearrangement of 

water molecules around both the peptide and the surface (i.e. commonly referred to as 

hydrophobic effect). It has been suggested that the rearrangement of solvating water 

molecules around a solute upon adsorption should be largely independent of the 

secondary structure of the peptide, and primarily dependent on the size of the solute 

(peptide).15 Two, these results demonstrate that the adsorption of a peptide on a surface 

can induce ordering in interfacial water molecules. That is, although there is no 

dependence of the water structure on ionic strength in the absence of peptide, adsorption 

of the peptide can cause alignment of interfacial water molecules (at low ionic strengths). 

The observation that there is a strong dependence of the intensity of the water vibrational 

modes on the ionic strength of the solution in the presence of peptide, but no such 

dependence in the absence of peptide, suggests that the polystyrene/peptide/buffer 

interface is quite similar to the silica/buffer and silica/peptide/buffer interface. This is 

because the static electric field that aligns water molecules at the silica interface is also 

present at the polystyrene/peptide/buffer interface. It is likely that the charged lysine 

residues, or perhaps ionic impurities left over from the peptide synthesis, create a charged 

surface upon peptide adsorption. This charged surface, much like the silica/buffer 
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surface, creates an interfacial potential which aligns water molecules at low ionic 

strengths. However, the polystyrene-buffer interface seems quite different and does not 

appear to be influenced by electrostatics. 

4.5. Conclusion 

The adsorption of the LK14 peptide has been studied as a function of the ionic 

strength of the solution on a hydrophilic silica and hydrophobic PS-d8. CD shows that 

this peptide is a random coil in solution in low ionic strengths, and the peptide is a -

helix in solution at high ionic strengths. Our SFG results show that the N-H mode from 

the adsorbed peptide onto silica at high ionic strengths is no longer observed at low ionic 

strengths. This, in conjunction with our concurrent studies of isosequential peptides on 

silica,9 demonstrates that the NH mode is only observed when this peptide has stable 

secondary structure. On hydrophobic polystyrene, we observe that the C-H modes of the 

leucine side chains are independent of the ionic strength. This is in contrast to the water 

modes, which show a strong dependence on both the ionic strength and the presence of 

the peptide. 

Appendix 4.A: A More Detailed Sum Frequency Picture 

 In this section, we outline a more detailed interpretation, the so-called  3  

model,1,16-19 of the sum frequency spectra presented at charged interfaces. In this model, 

the intensity of light at the sum frequency is not just proportional to the square of the 

second-order hyperpolarizability,  2 , but also the square of the third-order 

hyperpolarizability,  3 : 

    2

0
322 EEEEEEI IRvisIRvisSFGSFG      (4.A.1) 
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where visE the electric field due to the visible beam, IRE  is the electric field due to the 

infrared beam, and 0E is a static electric field due to a charged interface. Since all of the 

water molecules subject to the static field 0E , which extends into the bulk solution, will 

contribute to the sum frequency response, we include their contribution by integrating 

from the interface at 0z  to z 1. Thus we obtain the following: 

        00
0

00  


dzzEE    (4.A.2) 

where  z  is the electric potential at position z  and  0  is the electric potential at the 

surface (the potential very far from the interface is hence zero). Eq. 4.A.2 assumes that 

the density of water molecules does not change significantly from the vicinity of the 

silica/aqueous solution interface to the solution far from the interface. The electric 

potential at the surface is related to the total bulk electrolyte concentration, C , through 

the Gouy-Chapman model: 

  







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kTCe
kT





2

sinh20 0
1          (4.A.3) 

where k  is Boltzmann’s constant, T  is the temperature, e is the electric charge, 0  is the 

surface charge density, and   is the bulk dielectric constant. Insertion of eq. 4.A.3 into 

eq. 4.A.1 and 4.A.2 yields an equation that relates the total bulk electrolyte concentration 

to the sum frequency signal with three adjustable parameters,  2 ,  3 , and 0 . We have 

attempted to fit the data from the silica/buffer interface (Figure 4.2) to this model, but 

were unable to find a set of parameters that were both physically reasonable and allowed 

for a good fit. We believe that the primary reason that this model fails is due to the fact 

that this model treats  2  (and also  3 ) as adjustable parameters. When the strength of 
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an electric field at an interface changes the alignment of water molecules at that interface 

will also change, as seen in eq. 4.2. This is not accounted for in this model. 

References 

 (1) Ong, S.; Zhao, X.; Eisenthal, K. B. Chemical Physics Letters 1992, 191, 

327-335. 

 (2) Castner, D. G.; Ratner, B. D. Surface Science 2002, 500, 28-60. 

 (3) Ratner, B. D.; Bryant, S. J. Annual Review of Biomedical Engineering 

2004, 6, 41-75. 

 (4) Mermut, O.; Phillips, D. C.; York, R. L.; McCrea, K. R.; Ward, R. S.; 

Somorjai, G. A. Journal of the American Chemical Society 2006, 128, 3598-3607. 

 (5) Mermut, O.; York, R. L.; Phillips, D. C.; McCrea, K. R.; Ward, R. S.; 

Somorjai, G. A. Biointerphases 2006, 1, P5-P11. 

 (6) Degrado, W. F.; Lear, J. D. Journal of the American Chemical Society 

1985, 107, 7684-7689. 

 (7) Long, J. R.; Oyler, N.; Drobny, G. P.; Stayton, P. S. Journal of the 

American Chemical Society 2002, 124, 6297-6303. 

 (8) Westerberg, S.; Wang, C.; Chou, K.; Somorjai, G. A. Journal of Physical 

Chemistry B 2004, 108, 6374-6380. 

 (9) Phillips, D. C.; York, R. L.; Mermut, O.; McCrea, K. R.; Ward, R. S.; 

Somorjai, G. A. Journal of Physical Chemistry B in press. 

 (10) Wei, X.; Hong, S. C.; Zhuang, X. W.; Goto, T.; Shen, Y. R. Physical 

Review E 2000, 62, 5160-5172. 



 59 

 (11) Shen, Y. R. In Frontiers in Laser Spectroscopy; Hansch, T. W., Inguscio, 

M., Eds. North Holland, Amsterdam, 1994, p 139-165. 

 (12) Shen, Y. R.; Ostroverkhov, V. Chemical Reviews 2006, 106, 1140-1154. 

 (13) Jung, S. Y.; Lim, S. M.; Albertorio, F.; Kim, G.; Gurau, M. C.; Yang, R. 

D.; Holden, M. A.; Cremer, P. S. Journal of the American Chemical Society 2003, 125, 

12782-12786. 

 (14) Wang, J.; Chen, X. Y.; Clarke, M. L.; Chen, Z. Journal of Physical 

Chemistry B 2006, 110, 5017-5024. 

 (15) Chandler, D. Nature 2005, 437, 640-647. 

 (16) Xiao, X. D.; Vogel, V.; Shen, Y. R. Chemical Physics Letters 1989, 163, 

555-559. 

 (17) Xiao, X. D.; Vogel, V.; Shen, Y. R.; Marowsky, G. Journal of Chemical 

Physics 1991, 94, 2315-2323. 

 (18) Zhao, X.; Ong, S.; Eisenthal, K. B. Chemical Physics Letters 1993, 202, 

513-520. 

 (19) Gragson, D. E.; Richmond, G. L. Journal of Physical Chemistry B 1998, 

102, 3847-3861. 

 



 60 

Chapter 5 

How Does the Chain Length of a Peptide Influence its 

Interfacial Ordering? Amino Acids and Homopeptides at 

Hydrophobic and Hydrophilic Interfaces Studied by Sum 

Frequency Generation  

 

We have studied the interfacial structure of lysine amino acid, poly-L-lysine, 

poly-L-proline, and proline amino acid at both the hydrophobic deuterated 

polystyrene/phosphate buffered saline (PBS buffer) and fused silica/PBS buffer interfaces 

using sum frequency generation vibrational spectroscopy (SFG). Both biomolecules at 

the silica/liquid interface and amino acids at the solid/liquid interface have proven 

difficult to study with SFG due to the poor signal-to-noise ratio of these systems. We 

have measured the abovementioned SFG spectra using near total internal reflection 

geometry (nTIR-SFG). We present a new thin film model to describe the optical effects 

of changing geometry on the SFG spectrum. We have found that peptide side chain 

ordering is stronger for longer peptides on hydrophobic surfaces. Additionally, the 

behavior of the hydrophilic lysine homopeptide is found to differ from earlier studied 

amphiphilic peptides for both the hydrophobic solid/PBS buffer and the hydrophilic/PBS 

buffer interface.   
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5.1. Introduction 

 The study of biomolecules, especially proteins and peptides, at interfaces remains 

an active area of study for both the surface science and biomedical communities.1-3 In 

recent years, the surface-specific technique of Sum Frequency Generation (SFG) 

Vibrational Spectroscopy has been applied to the study of adsorbed proteins and peptides 

at the solid-liquid interface.4,5 Of the several interfaces studied in the literature, two stand 

out has being quite difficult to study: biomolecules at the silica (SiO2)/liquid interface 

and amino acids (at physiological pH) at any solid/liquid interface.6 These two systems 

have proven challenging due to the fact that C-H modes are not observed in the SFG 

spectrum. The cause of these phenomena is not known a priori, but postulated to be 

because of the absence of amino acid side chain ordering. In the case of biomolecules at 

the silica/buffer interface, both the solvent and the surface are hydrophilic; a peptide or 

protein contains side chains that are more hydrophobic. Apparently, these hydrophobic 

side chains have no driving force to order at the hydrophilic silica/buffer interface. This 

has been demonstrated for various chain-lengths of biomolecules: amino acids, small and 

longer peptides, and large proteins.6-8 Amino acids, the individual building blocks of 

proteins, have been studied with SFG before by Watry and Richmond,9 who have 

examined several amino acids at the oil/water interface; Ji and Shen,10 who quantitatively 

studied leucine at the air/water interface; and Kim et al.,11 who studied phenylalanine at 

the glassy carbon electrode. In the case of amino-acids at the hydrophobic solid/liquid 

interface, no C-H mode ordering has been observed in the literature (with the exception 

of electrochemical interfaces). The reason for this is unclear; ordered C-H modes of 
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proteins and peptides have been observed at the hydrophobic solid/buffer interface 

previously. 

 In this report, we show that the previously unseen C-H modes discussed above 

can be observed using near Total Internal Reflection SFG (nTIR-SFG). Total Internal 

Reflection SFG (TIR-SFG) has been shown to be a promising technique for obtaining 

SFG spectra when the SFG signal is weak. First demonstrated by Hatch et al. in 1992,12 

this technique is now used by several groups.13-32 Although the benefits of using TIR-

SFG are clear, the interpretation of TIR-SFG spectra can be complicated, especially at the 

water/solid interface.33,34 This is due to the fact that the index of refraction of water 

undergoes a signifigant change (~25%) as the infrared is tuned over the spectral region of 

interest.35 Additionally, the imaginary component of the index of refraction of water 

should not be ignored in the analysis of TIR-SFG spectra. 

Herein, we provide a detailed spectral analysis of the nTIR geometry employed in 

this experiment and demonstrate that it does not significantly alter the spectral features 

observed in the SFG spectrum. Our analysis shows that SFG signal can be greatly 

increased with the choice of nTIR geometry (surprisingly, our analysis shows that an 

nTIR geometry can even enhance SFG signal more than a TIR geometry). We show the 

SFG spectrum of lysine amino acid and proline amino acid at the deuterated polystyrene 

(d8-PS)/buffer interface; additionally, we present the SFG spectrum of polylysine at the 

silica/buffer interface. We also compare how length influences the interfacial structure of 

lysine and proline peptides at both hydrophobic and hydrophilic surfaces. Finally, we 

compare the interfacial structure of homopeptides to amphiliphilic peptides at both 

hydrophobic and hydrophilic surfaces. 
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5.2. Experimental 

 Details about substrate preparation and the type of PBS buffer employed in this 

experiment can be found elsewhere.36 

5.2.1. Chemicals. Lysine amino acid (K1) was obtained from Sigma-Aldrich (cat. no. 

L5501) and poly-L-lysine (PLL) was also obtained from Sigma-Aldrich (cat. no. P2658). 

The concentration of K1 used in these experiments was 16.5 mg/mL and the 

concentration of 12.5 mg/mL. Proline amino acid (P1) was obtained from Sigma-Aldrich 

(cat. no. P5607) and poly-L-proline (PLP) was also obtained from Sigma-Aldrich (cat. 

no. P2254). The concentration of P1 used was 500 mg/mL and the concentration of PLP 

was 0.5 mg/mL. All concentrations were chosen to maximize SFG signal while still 

maintaining solubility. In all cases the monomeric concentration of side chains was 

higher for the amino acid than the polypeptide. 

5.2.2. SFG Theory. In vibrational SFG, a visible beam at 532 nm ( VIS ) is mixed with a 

tunable (2800 cm-1-3600 cm-1) IR beam ( IR ) to produce a coherent beam at the sum 

frequency of the two incoming beams ( SFG ). The intensity of this the light at the sum 

frequency ( SFGI ) is measured as a function of IR .  SFGI  is proportional to the 

macroscopic second order hyperpolarizability,  2 , which contains the relevant chemical 

information about the interfacial adsorbates. We present a model here that allows the 

extraction of  2  from the measured SFGI , which is based on the pioneering work of 

Bloembergen.37 

 Our model is based on a thin film of sum frequency active molecules 

(representing an interfacial layer) sandwiched between a solid surface (called surface 1) 

and an isotropic solution of these molecules (called surface 2). It is well known that the 
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sum-frequency response from an achiral isotropic solution is zero under the dipole 

approximation. Although most biomolecules are chiral, it has been established that the 

chiral sum-frequency response is orders of magnitude smaller than the interfacial achiral 

response, and we assume that the chiral sum-frequency signal from isotropic solutions is 

zero. Our model is for the ssp polarization combination. 

   

 

Figure 5.1. A schematic diagram of the thin film model. Here, a non-linear thin-film is 

sandwiched between two linear materials. Material 1 in our experiments is the solid 

substrate, and material 2 is water. The s-polarized visible light is shown on the left (a) 

and the p-polarized infrared light is shown on the right (b). Incoming light comes into the 

film at angle   with respect to the surface normal. It is refracted into the film at angle   

with respect to the surface normal. At the interface between the film and material 2 

(water), the light is both reflected at angle   and refracted into material 2 (water) at 

angle  . 
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Figure 5.2. A schematic diagram showing how the transmitted and reflected fundamental 

light shown in Figure 1 can mix in the non-linear thin film. The four diagrams 

correspond to the four source terms in equation 1. 

Two incident lights exp ( )Vis Vis
Visi t E k r  and exp ( )IR IR

IRi t E k r  meet at a 

interfacial layer. In the interfacial layer, the refracted lights are ' 'exp[ ( )]Vis Vis
T T Visi t E k r  

and ' 'exp ( )IR IR
T T IRi t E k r , respectively, and the reflected waves are 

' 'exp[ ( )]Vis Vis
R R Visi t E k r  and ' 'exp ( )IR IR

R R IRi t E k r , respectively (see Figure 5.1). Four 

second-order nonlinear polarizations can be induced in the interfacial layer with a 

nonlinear medium (Figure 5.2),  
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 (1) 

In the above equation, s Vis IR     is the sum-frequency. In the case where the 

incident lights are s-polarized visible and p-polarized infrared, 

 ,  and (cos sin )Vis Vis IR IR
y IR x IR zE E    E e E e e , (2) 

then, in the interfacial layer, the refracted lights are: 

 ' ' ' ',  and (cos sin )Vis Vis IR IR
T T y T T IR x IR zE E    E e E e e , (3) 

and the reflected lights are (Figure 1): 

 ' ' ' ',  and ( cos sin )Vis Vis IR IR
R R y R R IR x IR zE E     E e E e e . (4) 

Remembering that only for an azimuthally isotropic surface s-polarized visible light and 

p-polarized infrared light can only access the yyz element of  2 ,38 equation 1.1 can be 

rewritten as: 
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Figure 3. A Schematic diagram of the sum-frequency beams in the non-linear thin film. 

There are four source beams created from the transmitted and reflected fundamental 

beams (see figure 2) and the sum-frequency light that is created by the source SF beams 

that leaves the medium in the transmitted and reflected directions. 

The induced source nonlinear polarizations can further induce SFG waves in the system 

(Figure 3).37 As shown in Figure 3, all SFG-related quantities are indicated by a 

superscript “S”. The IR and visible electric fields in the interfacial layer can be 

determined by the boundary conditions for the thin film model (see Appendix A for 

details). 

After solving the non-linear wave equation39 for the sum frequency wave in the 

interfacial layer, 
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with ( , )S
S tE r  is the particular solution due to the nonlinear polarization (the subscript “S” 

refers to the source terms),  
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where 
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For the sum frequency waves in the medium 1 and 2, there is no nonlinear polarization so 

the waves are  



 69 

 1 exp ( )S S S
R R s yE i t  E k r e  (12) 

and  

 2 exp ( )S S S
T T s yE i t  E k r e  (13) 

where  
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The magnetic fields in the three regions can be obtained by using the Maxwell 

equation 1
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Now imposing the boundary conditions: 
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 at 0z   and  
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y x    e E E e H H  (20) 

 at z d , we can have: 
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Here we have taken ', ', 0Vis IR Vis IR
T y T y y yk k k k     as shown in Figure 2. All angles in 
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(14); and 1 1( ) ( ) sin sin sin sinVis IR Vis Vis IR IR
Vis IR Vis IRk k

c c
     

      . Here, 

 and Vis IR   are the incident angles of the two incident lights, respectively. As shown in 

Appendix B, we can obtain the electric field of SFG from the boundary conditions 

Eq.(19) and Eq.(20). Using Eq.(A.30), the electric field is given as: 
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The intensity of the reflected wave is given by  
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here  
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is the SFG intensity from the model without taking account the effect of the nonlinear 

polarizations induced by the reflected waves in the interfacial layer. Eq.(27) is more 

complex and general than the formula found in literatures. It can be applied to the cases 

involving complex refractive indices. In the example that we will discuss later, the 

medium 2 is water which has a frequency-dependent complex refractive index.  

The macroscopic quantity  2
yyz  is comprised of two components: resonant terms 

(  2
,Ryyz ) and a non-resonant term (  2

,NRyyz ). As the IR is scanned over the spectral range of 

interest, the IR can have the same frequency as a molecular vibrational excitation and an 

SFG spectrum is obtained. This is expressed as: 
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where qA , q , and q  are the strength, frequency, and phenomenological damping factor 

of the thq  vibrational mode. The assumption here is that the peaks arise in a Lorenztian 

line shape, from perturbation theory. A better approximation is that the peak shapes are a 
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convolution of a Lorenztian line shape and a Gaussian line shape, due to inhomogeneous 

line broadening in condensed phases: 
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where 
0q  is the central frequency and q  is the width of the Gaussian profile of the thq  

vibrational mode. The spectra presented are fit to this equation. 

 The macroscopic quantity  2
, ,yyz R q  is related to the microscopic second order non-

linear susceptibility,  2
, .yyz R q , through the equation 

     2 2
, , , ,yyz R q yyz R qN f d         (30) 

Where N  is the number density of a vibrational mode on the surface and  f   

represents an orientation distribution function over  , which denotes a set of orientation 

angles that describe a transformation between the laboratory and molecular coordinate 

system.40 The integral above demonstrates how molecular ordering and orientation 

influences SFG signal.36  

 The non-linear response of interfacial molecules can be related to their linear 

optical properties through the relation: 

 

qq
q QQ

a








1      (31) 

Where qQ and  
qQ 1 are the infrared dipole derivative and the first-order 

Raman polaizability derivative with respect to qQ , the classical normal coordinate of the 

thq  vibrational mode, respectively. 
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 SFG Experiment. Due to the small SFG signal from amino acids at the 

solid/liquid interface, and biomolecules at the SiO2/liquid interface, we have chosen a 

different experimental geometry than our previous experiments.36 A schematic of our 

“slab” geometry and “prism” geometry is shown in Figure 4. The prism geometry we 

have chosen allows for the infrared to be below critical angle. We chose this geometry for 

two reasons: (i) by increasing the angle of incidence, we could increase the SFG signal, 

and (ii) by staying slightly below TIR, we could avoid the complications associated with 

this geometry.33,34 Since our studies are qualitative in nature, our goal was not just to 

maximize SFG signal, but rather to allow relative comparisons between K1 and PLL, and 

qualitatively compare that to the previous results reported for other peptides.8,36,41  
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a) 

 

 

b) 

 

 

 

Figure 4. a) a scheme of the “slab” geometry we have previously used in our 

experiments. b) a scheme of the “prism” geometry we employ in this work. 
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The thin film model for the SSP SFG intensity. To understand the origin of the 

SFG intensity changes due to the different geometries and the complications associated 

with this n-TIR geometry, we have performed simulations of the SSP SFG intensity on a 

silica/thin film/water interface using our thin film model (see Figures 5 and 6). In the 

simulations, the refractive index of silica, 1/ 2
1 , is equal to 1.46 for the visible light and 

the SFG light, and 1.41 for the IR light. For the visible light and the SFG light, the 

refractive index of water, 1/ 2
2 , is equal to 1.34; while, for the IR light in region of 2800 

cm-1 to 3600 cm-1, the refractive index of water is a function of the IR frequency obtained 

from a fitting of experimental data.35 Since we do not know the refractive index of the 

thin film, we have tentatively set 1/ 2
M  to be 1.40 for the visible light and 1.38 for the IR 

light. The three geometries, slab, prism 1, and prism 2, used for comparison are shown in 

Table 5.1. 

Table 5.1: Incident angles for different geometries. 

Geometry Slab Prism 1 Prism 2 

βVis 35.5o 57.1o 56.6o 

βIR 38.8o 63.6o 70.6o 

 

To investigate the SFG intensity enhancement by the n-TIR or TIR geometry, we 

first look at the geometric factor ( , )Vis IRG    defined as  

   2
, sec sin S Vis IR

Vis IR IR T TG L L L    . (32) 

This factor includes all terms in the SFG intensity expression that depend on incident 

angles, Vis  and IR , thus the ratio between this factors for two geometries is equal to the 
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SFG intensity ratio between the two geometries.  Fig. 5(a) shows the factors at three IR 

frequencies as a function of the average of two incident angles, ( ) / 2IR Vis   with the 

difference, IR Vis  , fixed to 6o. In Fig. 5(a), the trends of the SFG intensity 

enhancement (or the increase of G  ) is clear when the incident angles become close to 

the TIR limits, and the extent of enhancement at different IR frequencies  can be quite 

different. 

The geometric factor depends on the IR frequency because IR
TL  in Eq. (32) is a function 

of the IR-frequency-dependent refractive index of water.Fig. 5(b) shows the IR-frequency 

dependence of the SFG intensities for two prism geometries normalized by the SFG 

intensity of the slab geometries. As the geometry becomes more close to the TIR region, 

the IR-frequency dependence is more prominent. Thus, caution must be taken when we 

make quantitative analysis of the SFG signal from the TIR experiment, since the 

frequency dependence of the SFG signal is not only coming from the second order 

susceptibility but also from the geometric factor when some mediums involved are IR 

active in the frequency range of concern. 
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 Figure 5. The optical effect of changing geometry on the SFG intensity: (a) the 

geometric factor ( , )Vis IRG    as a function of the average of two incident angles 

( ) / 2Vis IR   with the difference IR Vis   fixed at 6 .The enhancement of the SFG 

intensities by the TIR geometries is shown for three IR frequencies.  (b) The IR frequency 

dependence of the geometric factors for two prism geometries (see Table 1). The 

geometric factors have been normalized by the geometric factor for the slab geometry. 

To further investigate the origin of the enhancement by the TIR geometry, we 

decomposes the geometric factor into three factors, 

 ( , )Vis IR SFG Vis IRG F F F    (33) 

here  

 2 2 2| | ,  | sin | ,  and | sec |Vis IR S
Vis T IR IR T SFG SFGF L F L F L     (34) 

From the derivations from Eq.(B.56) to Eq.(B.66), we can see that VisF  is proportional to 

the electric field of the visible light in the interfacial layer, and that IRF  is proportional to 

the z component of the IR electric field in the interfacial layer. SFGF  takes care of the 

(a) (b) 
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optical effect purely due to the reflection of the SFG light. Fig.6 shows the incident-angle 

dependence of these three factors at the IR wave number of 3200 cm-1. The maximal 

increase of 2
IRF  is about a factor of 2 when the average of two incident angles is about 

60o. The maximal increases of 2 2 and Vis SFGF F  are about 4 and 18 times at the average 

angle around 70o. For the Prism 1 geometry, the average of two incident angles is about 

60o and Fig.6 shows that the main contribution to the enhancement of the SFG intensity 

comes from the increase of SFGF . 

 

 

Figure 6. The optical effect of changing geometry on the SFG intensity: the factors 

defined in Eq.(34)  as  functions of the average of two incident angles ( ) / 2Vis IR   with 
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the difference IR Vis   fixed at 6 . The normalization quantities ,0 ,0 ,0,  ,  and Vis IR SFGF F F  

are the values of these factors at ( ) / 2 30Vis IR    . 

Experimental Comparisons of Different Geometries 

 In order to confirm the theoretical derivation provided above, we have performed 

a number of experiments in two of the geometries described above (Slab and Prism1, 

referred to as “Prism” in this section). Figure 7 compares the SFG spectra of the h8-PS/air 

interface in the two geometries. As can be seen, the overall signal is much greater in the 

prism geometry. Indeed, modes not seen above the noise level in the slab are clearly 

apparent in the prism geometry. This would suggest that a nTIR (or TIR) geometry would 

be beneficial even when SFG signal can be seen far from TIR. 
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Figure 7. The SFG spectra of h8-PS in the slab (red circle) and prism (black squares) 

geometries. Note the increase in the SFG signal in the prism geometry. Additionally, 

vibrational modes not seen in the slab geometry (due to the low signal-to-noise ratio) are 

clearly present in the prism geometry (e.g. the mode around 2915 cm-1). 

 In order to quantitatively compare experiment with theory, we have measured the 

SFG spectra of the fused silica/pure water (no buffer) interface in two geometries as seen 

in Figure 8. For a quantitative comparison, we have subtracted all residual visible 

intensity from the spectra. The error bars shown are from the average of 5 scans of 200 

shots per data point (for the prism) and 8 scans of 200 shots per data point (for the slab). 
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Figure 9 shows a ratio of the intensities of the two geometries (prism/slab) as a function 

of infrared energy. This quantity should be independent of 2  and only contain 

geometric variables. This is compared to the ratio of G s from Figure 5(b) (Prism1/Slab). 

The theory agrees reasonably well with the experiment (within the experimental error), 

showing approximately an order of magnitude increase in signal from slab to prism. 

Below 2900 cm-1, the theory overestimates the ratio, and above 2900 cm-1, the theory 

underestimates the ratio. Interestingly, most of the SFG signal below 2900 cm-1 is from 

non-resonant signal, and most of the signal above 2900 cm-1 is from resonant 

enhancement from interfacial water molecules. This may imply that an improved model 

would need to incorporate local field effects such as dipolar coupling. 
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Figure 8. SFG spectra of the pure water/silica interface for both the prism (red circles) 

and slab (black squares). Error bars come from the average of 5 scans of 200 shots per 

data point (for the prism) and 8 scans of 200 shots per data point (for the slab). 
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Figure 9. The ratio of the prism geometry to the slab geometry (from Figure 8) is plotted 

in black squares with associated error bars. The red circles are the ratio of the square of 

F(prism) to F(slab) (see figure 6 (d)). The theory shows weak infrared wavelength 

dependence and approximately an order of magnitude increase in signal from slab to 

prism. Note that the theory slightly underestimates the magnitude of the increase, but is 

within the experimental error of our measurement. 
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Results and Discussion 

 The SFG spectrum of K1 on d8-PS is shown in Figure 7. There are two peaks 
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Figure 7. The SFG spectra of the PBS buffer/d8-PS interface (black squares) and the 

K1/d8-PS interface (open red circles). The concentration of K1 was 16.5 mg/mL. The 

broad peak centered on ~3100 cm-1 is attributed to interfacial water. Upon adsorption of 

K1, the water structure is not perturbed but two modes of smaller intensity are observed 

at 2870 cm-1 and 2935 cm-1. These modes can be assigned to CH3 (s) and CH3 (as), 

respectively. 
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Figure 8. The SFG spectra of the PBS buffer/d8-PS interface (black squares) and the 

PLL/d8-PS interface (open red circles). The concentration of PLL was 12.5 mg/mL. The 

broad peak centered on ~3100 cm-1 is attributed to interfacial water. Upon adsorption, 

two intense peaks are seen at 2870 cm-1 and 2935 cm-1. These two modes are assigned to 

CH2 (s) and CH2 (as) respectively. The SFG intensity in the water region is slightly 

increased in the presence of adsorbed PLL. 

apparent in the SFG spectra: 2870 cm-1, assigned to CH2 (s); and 2935 cm-1, assigned to 

CH2 (as).9 These peaks are also apparent in the SFG spectrum of PLL on d8-PS with 

much greater intensity (Figure 8). The SFG spectrum (Figure 9) of PLP on d8-PS shows 

three intense modes at 2875 cm-1, 2935 cm-1, and 2980 cm-1. The mode at 2875 cm-1 is 



 86 

 

Figure 9. The SFG spectra of the PBS buffer/d8-PS interface (black squares) and the 

PLP/d8-PS interface (open red circles). The concentration of  PLP was 0.5 mg/mL. The 

broad peak centered on ~3100 cm-1 is attributed to interfacial water, and increases upon 

peptide adsorption. Three intense peaks are seen at 2875 cm-1, 2935 cm-1, and 2980 cm-1. 

These three modes are assigned to a combination of CδH2 (s), CβH2 (s), and CγH2 (s); a 

combination of CγH2 (s) and CβH2 (s); and a combination of CγH2 (as) and CβH2 (as), 

respectively. The inset shows proline amino acid with labeled carbons. 

assigned to a combination of CδH2 (s), CβH2 (s), and CγH2 (s) (see Figure 9 for details on 

the nomenclature).42 The mode at 2935 cm-1 is assigned to a combination of CγH2 (s) and 
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Figure 10. The SFG spectra of the PBS buffer/d8-PS interface (black squares) and the 

P1/d8-PS interface (open red circles). The concentration of  P1 was 500 mg/mL. The 

broad peak centered on ~3100 cm-1 is attributed to interfacial water, and is constant with 

amino acid adsorption. Three peaks are seen at 2875 cm-1, 2935 cm-1, and 2980 cm-1. 

These three modes are assigned to a combination of CδH2 (s), CβH2 (s), and CγH2 (s); a 

combination of CγH2 (s) and CβH2 (s); and a combination of CγH2 (as) and CβH2 (as), 

respectively.  

CβH2 (s).42 Finally the vibration at 2980 cm-1 is assigned to a combination of CγH2 (as) 

and CβH2 (as).42 These modes are also clearly observed in the SFG spectra of P1 on d8-PS 

(Figure 10), albeit with much less intensity. The results presented here demonstrate the 
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Figure 11. The SFG spectra of the PBS buffer/silica interface (black squares) and the 

PLL/silica interface (open red squares). The concentration of PLL was 12.5 mg/mL. The 

buffer/silica interface water structure shows two very large peaks around ~3200 cm-1 and 

~3400 cm-1, attributed to tetrahedrally and less than tetrahedrally coordinated hydrogen 

bonded water, respectively. Upon adsorption of PLL, the overall SFG intensity in the 

water region is reduced, especially around 3400 cm-1. The C-H mode seen around ~2960 

cm-1 is attributed the methylene groups of the adsorbed PLL. 

effect of molecular weight (peptide chain length) on the interfacial SF signal. Even 

though the bulk concentration of the amino acid (both K1 and P1) is much higher than the 

concentration of polypeptide (three orders of magnitude in the case of proline!), the 
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Figure 12. The SFG of the PBS Buffer/Silica interface (black squares) and the K1/silica 

interface (open red circles). The solution concentration of K1 is 16.5 mg/mL. The water 

structure shows two very large peaks around ~3200 cm-1 and ~3400 cm-1, attributed to 

tetrahedrally and less than tetrahedrally coordinated hydrogen bonded water, 

respectively. Note the increase in water signal upon K1 adsorption.  

longer peptide shows more SFG signal attributable to the peptide. This is interpreted in 

terms of increased ordering of longer peptides (relative to shorter peptides) adsorbed on 

hydrophobic surfaces. 

 The SFG spectrum of PLL on SiO2 is presented in Figure 11 and the SFG 

spectrum of K1 on SiO2 is presented in Figure 12. One small mode is observed at 2960 
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cm-1. The assignment of this peak is non-trivial: there is no evidence for a vibrational 
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Figure 13. The SFG of the PBS Buffer/Silica interface (black squares) and the PP/silica 

interface (open red circles). The solution concentration of PP is 0.5 mg/mL. The water 

structure shows two very broad peaks around ~3200 cm-1 and ~3400 cm-1, attributed to 

tetrahedrally and less than tetrahedrally coordinated hydrogen bonded water, 

respectively. There is little change in the water signal upon PP adsorption. 

mode of lysine at this energy. This mode is tentatively assigned to CH2 (as) that is 

strongly perturbed due to a strong electrostatic interaction between the positively charged 

amine groups on the lysine side-chains and the negatively charged surface of the silica. 

The interfacial SFG spectra of PLP and P1 at the SiO2/buffer interface are shown in 
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Figure 14. The SFG of the PBS Buffer/Silica interface (black squares) and the P1/silica 

interface (open red circles). The solution concentration of P1 is 0.5 mg/mL. The water 

structure shows two very broad peaks around ~3200 cm-1 and ~3400 cm-1, attributed to 

tetrahedrally and less than tetrahedrally coordinated hydrogen bonded water, 

respectively. There is a decrease in the water signal upon P1 adsorption. 

figures 13 and 14, respectively. The high concentration P1 may show a small mode 

around 3000 cm-1, attributed to CγH2 (as) and CβH2 (as), possibly shifted due to 

interactions with the highly charged surface. 

 The structure of water at interfaces remains an active area of research.34 The 

interfacial water structure at the d8-PS/buffer interface (in the absence of adsorbed 
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biomolecules) shows one large continuum of weak intensity centered around 3100 cm-1. 

The largely featureless spectrum (no free O-H mode, little intensity around ~3400 cm-1) 

and sensitivity to contamination43 make understanding water structure at this interface 

difficult. Certainly, water structure present at the d8-PS/buffer interface is quite different 

than “model” hydrophobic surfaces, such as the air/water44 and OTS/water interfaces.45 

The SFG spectrum of the d8-PS/buffer interface is quite similar to the dichloromethane-

water interface that has been studied by Richmond and co-workers.46,47 They determined 

that the water structure is a consequence of increased water penetration in the organic 

phase (something that is not likely here)47 and general disorder at the interface.46 

Interestingly, the water structure is not perturbed by the presence of adsorbed K1, despite 

the high solution concentration of amino acid. This is in contrast to PLL which slightly 

increased the water signal. In the case of PLP, however, the interfacial water signal is 

greatly enhanced; this is in opposition to the adsorbed P1, which showed nearly no 

change in interfacial water signal upon amino acid adsorption. 

 On SiO2, the water signal is much more intense, showing two modes centered 

around ~3200 cm-1 and ~3400 cm-1. These can be attributed to ice-like tetrahedrally 

coordinated and water-like less than tetrahedrally coordinated hydrogen bonded water 

molecules, respectively.33,34 Interestingly, the water signal is greatly enhanced when K1 is 

adsorbed to the silica surface; this is in contrast to PLL, which shows a decrease in the 

water signal upon adsorption. The origin of this behavior is not clear: electrostatic effects 

should be minimized by the high ionic strength of the solution. Both PLP and P1 show a 

decrease in overall water signal intensity upon biomolecule adsorption.  
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 The PLL and K1 results presented here are in stark contrast to our previous studies 

on amphiphilic peptides adsorbed on hydrophobic and hydrophilic surfaces.5,6,8,36,41 

There, on hydrophobic d8-PS, the hydrophobic portion of the peptide was ordered and 

observed in the SFG spectra.8 Here, we see the opposite: hydrophilic K1 and PLL having 

ordered hydrocarbon chains on d8-PS. 

 We have previously shown that an N-H mode is observed in SFG spectrum of the 

α-helical amphiphilic LK14 peptide on a hydrophilic surface.36 This mode was attributed 

to either the backbone Amide A of a α-helix or the terminal amine on the hydrophilic, 

positively charged lysine side chains. This mode is not obviously apparent in the SFG 

spectra of K1, PLL, PLP, or P1 on SiO2. In fact, a C-H mode is observed in the SFG 

spectrum of PLL and P1 on SiO2. These results demonstrate that the ordered parts of 

adsorbed peptides are strongly dependent on the amphiphilicity, or more generally, the 

chemical nature of the peptide. 

Conclusions 

 We have demonstrated the feasibility of using a new experimental geometry to 

study amino acids at the solid/liquid interface and biomolecules at the silica/water 

interface. We have developed a new thin film model to understand the effect of geometry 

on our experimental sum frequency results. Our results demonstrate that ordering of 

lysine amino acid side chains occur at the d8-PS/buffer interface. Additionally, we have 

observed ordering of polylysine side chains at the silica/buffer interface. On both 

hydrophobic and hydrophilic surfaces, longer peptides showed more SFG attributed to 

the adsorbed peptide. We interpret this as increased ordering among longer peptides. 
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These results at both hydrophobic and hydrophilic surfaces are significantly different 

than our previous studies of amphiphilic peptides. 
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Appendix A: The refractive and reflective light in the interfacial layer 

In this appendix, we derive the Fresnel’s coefficients for the refractive and 

reflective light induced by incident light in the interfacial layer. Derivations are provided 

in two cases for the s-polarized and p-polarized incident light. 

For the s-polarized incident light (see Figure 1(b)): 

In medium 1, the light wave is described by 

 1 [ exp ( ) exp ( )]R R yE i t E i t      E k r k r e  (A.1) 

1 ( )exp ( ) ( )exp ( )
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y R R y R
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 (A.2) 

with  

 
1/ 2
1 ( ) and ;R x x y y z z Rk k k k k

c
  

    k e e e  (A.3) 

In the interfacial layer, the wave is described by  

 ' ' ' '[ exp ( ) exp ( )]M T T R R yE i t E i t      E k r k r e  (A.4) 
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In medium 2, the light wave is described by 

 2 exp ( )T T yE i t  E k r e  (A.7) 
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After imposing the boundary conditions at 0z  , we have  

 ' sin sinTk k   (A.10) 

 ' 'R T RE E E E    (A.11) 

 ' ' ' 'cos cos cos cosR R T T R RkE k E k E k E        . (A.12) 

The boundary conditions at z d give  

 ' sin sinT Tk k   (A.13) 

 ' ' ' 'exp ( cos ) exp ( cos ) exp ( cos )T T R R T TE i k d E i k d E i k d      (A.14) 
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From Eq.(A.11), (A.12), (A.14) and (A.15), we have   
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From Eq.(A.16) and (A.17), we can obtain the Fresnel’s coefficients for the refractive 

and reflective light in the interfacial layer as 
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and 
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respectively. 

For the p-polarized incident light (see Figure 1(b)): 

In medium 1, the light wave is described by 
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In the interfacial layer, the wave is described by  

 ' '

' '

(cos sin )exp ( )
( cos sin )exp ( )

M T x z T

R x z R

E i t
E i t

  

  

   

    

E e e k r
e e k r

 (A.24) 

 
' ' '

' ' '

' ' ' ' ' '

(cos sin )exp ( )
( cos sin )exp ( )

[ exp ( ) exp ( )]

M T T x z T

R R x z R

T T T R R R y

E i t
E i t

k E i t k E i t

  

  

 

    

     

     

H k e e k r
k e e k r

k r k r e
 (A.25) 

with 
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In medium 2, the light wave is described by 

 2 (cos sin )exp ( )T x z TE i t     E e e k r  (A.27) 

 2 (cos sin )exp ( )
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 (A.28) 

with  

 
1/ 2
2 ( ) .Tk

c
  

  (A.29) 

After imposing the boundary conditions at 0z  , we have  

  ' sin sinT Tk k   (A.30) 

 ' 'cos cos cos cosR T RE E E E       (A.31) 
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 ' ' ' 'R R T T R RkE k E k E k E   . (A.32) 

The boundary conditions at z d  give  

 ' sin sinT Tk k   (A.33) 
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 (A.34) 
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 (A.35) 

From Eq.(A.31), (A.32), (A.34) and (A.35), we have   
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Here 
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From Eq.(A.36) and (A.37), we can obtain the Fresnel’s coefficients for the refractive 

and reflective light in the interfacial layer as  
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 (A.39) 

and  
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Appendix B: SFG intensity of a nonlinear thin film 

Define ( ) ( (0,0, ), 0)S
x SS z z t   e E r  and '( ) ( (0,0, ), 0)S

x SS z z t   e H r , the 

boundary conditions Eq.(19) and Eq.(20) can be rewritten as 
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here  

 cosS
M Mk d   (B.42) 

 and the nonlinear source terms are given as   
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with  
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From Eq.(B.41), we can obtain the SFG electric fields in the interfacial layer and the 

reflection SFG field as  
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here  
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Now take the limit 0'k dT  , we have  
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Insert Eq.(B.53), (B.54) and (B.55) into Eq.(B.51), we have   
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Note that, in our SFG setting, the visible light is s-polarized. Using Eq.(A.19)  and  

(A.20), we have  

  ' ' ' ',Vis Vis Vis Vis Vis Vis
T T R RE L E E L E  ,      (B.57) 

with the Fresnel’s coefficients given as 
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and  
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For the p-polarized IR light, using Eq. and , we have  

 ' ' ' ',IR IR IR IR IR IR
T T R RE L E E L E  , (B.60)  

with the Fresnel’s coefficients given as  
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and  
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Using Eq.(B.57) and (B.60), we can further rewrite Eq.(B.56) as 
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here   
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Note that  
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Eq.(B.63) can be rewritten as  
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here 
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    (B.68) 

are the Fresnel’s coefficients for the transmitted visible and IR lights in the medium 2 

(water in our case), respectively. 
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Chapter 6 

Sum Frequency Generation Vibrational Spectroscopy of the 

Amide I Mode of Interfacial Peptides Using a New Optical 

Parametric Amplifier based on Lithium Thioindate 

 

 The interfacial secondary structure of a model polypeptide has been studied at the 

hydrophobic deuterated polystyrene (d8-PS)/buffer interface and the hydrophilic calcium 

fluoride (CaF2)/buffer interface. The model polypeptide (which is known to be alpha-

helical in the bulk solution under high ionic strength conditions and random coil in the 

bulk solution under low ionic strength conditions) contains hydrophobic leucyl (L) 

residues and hydrophilic lysyl (K) residues, with sequence Ac-LKKLLKLLKKLKL-

NH2. For this investigation, we have used surface-specific sum frequency generation 

(SFG) vibrational spectroscopy of the Amide I vibrational mode. In order to create 

tunable infrared light at these frequencies, we have built a new optical parametric 

amplifier that employs lithium thioindate. The Amide I mode at the d8-PS/buffer interface 

was found to be centered around 1650 cm-1, independent of the ionic strength of the 

solution (and hence the peptide’s bulk solution secondary structure). This is interpreted 

has the peptide having similar secondary structure when adsorbed on the hydrophobic 

surface, independent of the bulk solution secondary structure, although other 

interpretations are discussed. At the hydrophilic CaF2/buffer interface, the Amide I mode 

was found to be centered around 1670 cm-1 (when adsorbed from a solution in which the 
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peptide had alpha helical structure), suggesting a different interfacial secondary structure 

than the peptide adsorbed to a hydrophobic surface. 
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6.1. Introduction 

The interaction of biological molecules and solid surfaces has important 

consequences for the biomaterial community, in addition to being an open fundamental 

problem.1-3 It is well understood that a protein or peptide can denature as it adsorbs onto a 

solid surface (i.e. secondary structure is changed or often completely lost).4 However, 

measuring the change in secondary structure (at the molecular level) when a protein or 

polypeptide adsorbs onto a solid surface has proven difficult to do with true surface 

specificity. 

In recent years, several groups have turned to surface-specific sum frequency 

generation (SFG) vibrational spectroscopy to probe the interfacial structure of proteins 

and peptides with solid surfaces.5-7 Here, we present a new type of optical parametric 

amplifier (OPA) based on lithium thioindate, LiInS2 (LIS),8,9 which more easily allows 

for the SFG measurement of the backbone Amide I mode (usually somewhere between 

1600 cm-1 and 1700 cm-1). The frequency of this mode is sensitive to the secondary 

structure of interfacial peptides.10 For example, it is generally accepted in infrared and 

Raman spectroscopy that an Amide I mode observed around 1650 cm-1 is characteristic 

of an α-helix; whereas, a β-sheet has a characteristic Amide I mode observed at 1630 cm-1 

and 1690 cm-1.10  

Although many SFG studies of biomolecules at surfaces have focused on the 

spectral window 2800-3100 cm-1, Chen and coworkers have been studying the Amide I 

vibrational mode since 2003.11-14 In one of their studies13 they show that, much like in 

infrared and Raman spectroscopy, the frequency of the Amide I mode is sensitive to 

peptide secondary structure. In this study, they show that the Amide I mode of an α-



 110 

helical peptide at a hydrophobic surface (measured by SFG) is observed as a single peak 

centered around 1650 cm-1.  

In this report, we present the study of the interfacial Amide I mode of a model 

peptide, the LK14 peptide, which is composed of hydrophobic leucine (L) and lysine (K) 

residues.15-17 This peptide is known to fold into an α-helix in solution if the ionic strength 

of the solution is sufficiently high; if the ionic strength is below a certain concentration, 

this peptide is known to be a random coil in solution.15,18 We have found that the 

frequency of the interfacial Amide I mode (measured by SFG) at the hydrophobic 

deuterated polystyrene (d8-PS)/buffer interface is independent of its solution secondary 

structure. Furthermore, the frequency of this interfacial Amide I mode at this interface is 

characteristic of an α-helix. In the case of the peptide adsorbing from a high ionic 

strength solution, this is not very shocking: the results imply that the interfacial structure 

of this peptide is maintained upon adsorption. In the case of this peptide adsorbing from a 

low ionic strength solution, this is quite interesting behavior. The implication is that 

although the peptide has a random coil configuration in solution, the act of adsorption 

induces secondary structure (specifically α-helicity) in the peptide. The implication of 

this interpretation is that a solid surface can induce ordering and structure into a solution 

phase random coil peptide. Finally, we have observed the Amide I mode to be at 1670 

cm-1 when this peptide is adsorbed from a high ionic strength solution to the hydrophilic 

calcium fluoride (CaF2)/buffer interface. This implies a different interfacial secondary 

structure than the adsorbed peptide at the hydrophobic surface, and possibly partial 

denaturation of the peptide at the hydrophilic surface. 
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6.2. Experimental 

6.2.1. Sum Frequency Generation 

SFG is based on a second-order non-linear process whereby two beams are 

overlapped in space and time on a surface and the resultant light at the sum-frequency is 

measured. In picosecond infrared-visible SFG, the two beams can be created by pumping 

a series of non-linear crystals by the fundamental of a Nd:YAG laser (1064 nm). In our 

set-up, the visible (532 nm) is the second harmonic of this fundamental. The tunable 

infrared is created by sending a portion of the 532 nm light into a tunable optical 

parametric generator (OPG) consisting of two KTP crystals. The OPG creates two 

tunable beams (~900 and ~1300 nm) of which one (~1300 nm) is sent to the OPA stage, 

where it is mixed with the remaining 1064 nm light. This OPA stage often is composed 

of KTA or LiNbO3 crystals, which provide strong conversion efficiencies out to ~5000 

nm, where the efficiency becomes quite small. To go to longer wavelengths, one has 

several options, each having their own advantages and disadvantages. One possibility is 

to take the signal and idler from the KTA (the OPA stage) and mix them in a AgGaSe2 

crystal (a second OPA stage). This method can produce light to long wavelengths. 

Unfortunately, the disadvantages are two-fold. One, due to the fact that there are two 

OPAs, the beam quality is poor. Two, the energy output is low (~100 J @ 2000 cm-1). 

Alternatively, one could replace the KTA crystals in the second stage with AgGaS2, 

which allows for the conversion of infrared light to wavelengths longer than 5 m (about 

the limit for KTA). Since there is only one OPA stage, the beam quality is greatly 

improved relatively to the AgGaSe2 approach. The primary disadvantage of AgGaS2 is its 

low damage threshold. This limits the power output from this approach. Additionally, 



 112 

even if the average power per pulse is held below the damage threshold, damage occurs 

to the surface of this crystal, which with time lowers the power output. As a third 

alternative, we have chosen LIS, a new type of non-linear crystal, to be used as a 

replacement for AgGaS2. The advantages of LIS are: more infrared intensity between 

5000 and 7000 nm, a high damage threshold, lower price, and better beam quality than a 

two OPA set-up. Figure 6.1 shows a scheme of the new OPG/OPA. 

Clearly, the power output of a crystal depends on the intensity of the incoming 

light. In order to decide how intense the incoming light should be, we first had to measure  

 

Figure 6.1. Scheme of the OPG/OPA. Briefly, a pump laser sends light at 1064 nm into 

the OPG/OPA. This light is split into two beams (Beam I and Beam II). Beam I is sent 

into a KTP crystal, where it is frequency double to 532 nm. This beam is split into two 

(Beam Ia and Ib). Beam Ia is sent out of the OPG/OPA and becomes the visible (VIS) 

beam for our SFG experiment. Beam Ib is sent into a set of two angle tunable KTP 
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crystals, whereby two more beams are created (beams 2a and 2b). This process is called 

optical parametric generation, and the sum of the frequency of beams 2a and 2b is equal 

to the frequency of beam 1b. Beam 2a (the “signal”) is light at ca. 900 nm, and beam 2b 

(the “idler”) is light at ca. 1300 nm, whereby the exact frequency of beams 2a and 2b is 

determined by the angles of the KTPs relative to the incoming beam 1b. Beam 2a is 

dumped, and beam 2b is sent to a second set of non-linear crystals (LIS). Here, beam II 

and beam 2b (the idler from stage 1 becomes the signal in stage 2) are mixed in the LIS 

crystals, and light at the difference frequency (between the two incoming beams) is 

created (this is called difference frequency generation or optical parametric 

amplification). This light (the idler from LIS) has a tunable wavelength between 5000 nm 

and 7000 nm. This light is sent out of the OPG/OPA and becomes the infrared (IR) for 

our SFG experiments. 
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Figure 6.2. Intensity output of LIS OPA. The intensity of the 1064 nm pump was 12 

mJ/pulse. 

the damage threshold of LIS. For a 20 ps pulse, we found the damage threshold to be ~15 

mJ/pulse.  When pumping the LIS OPA with 12 mJ/pulse, the power output was 

measured and is shown in figue 6.2. The power output with this pump energy was not 

signifigantly increased by the addition of a second phase matched crystal. 

6.2.2 Peptide Synthesis and Experimental Details 
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Peptide synthesis and experimental details, such as PBS buffer concentrations and SFG 

sample geometry are identical to our previous publications.17,18 The sequence of the 

peptide studied here (named LK14) is Ac-LKKLLKLLKKLLKL-NH2. 

Figure 6.3. The Amide I SFG spectrum of the LK14 under high ionic strength (1X) 

conditions (red squares) at the deuterated polystyrene/solution interface. The black 

circles are the SFG spectrum of the deuterated polystyrene/solution interface. The 

location of the Amide I mode centered at 1655 cm-1 is characteristic of an α-helical 

peptide. 
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6.3 Results and Discussion 

Figure 6.4. The Amide I SFG spectrum of the LK14 under low ionic strength (0.01X) 

conditions (red circles) at the deuterated polystyrene/solution interface. The black 

squares are the SFG spectrum of the deuterated polystyrene/solution interface. The 

location of the Amide I mode centered at 1655 cm-1 is characteristic of an α-helical 

peptide. Note the similarity of the Amide I mode with Figure 6.3. 

The SFG spectrum of LK14 adsorbed from 1X PBS buffer at the d8-PS/buffer 

interface is shown in Figure 6.3. The vibrational mode observed around 1655 cm-1 is 

assigned to the Amide I mode of the peptide backbone. It is well accepted in infrared, 

Raman, and more recently SFG studies that an Amide I mode at 1650 cm-1 can be 
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assigned to an α-helix.10 Additionally, it has been established that the LK14 is an α-helix 

in solution under these  experimental conditions.15,18 

Figure 6.5. The Amide I SFG spectrum of the LK14 under high ionic strength (1X) 

conditions (red circles) at the calcium fluoride/solution interface. The black squares are 

the SFG spectrum of the calcium fluoride/solution interface. The location of the Amide I 

mode centered at 1670 cm-1 is assigned to the Amide I mode of the peptide backbone. 

Note the difference between Figure 5 and the Amide I mode on the hydrophobic surface. 

Therefore, this spectrum is interpreted as showing that the LK14 has maintained its α-

helical structure upon adsorption. 
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 The SFG spectrum of LK14 adsorbed from 0.01X PBS buffer at the d8-PS/buffer 

interface is shown in Figure 6.4. Again, a vibrational mode is observed at 1655 cm-1. The 

similarities of Figure 6.3 and Figure 6.4 suggest that the peptide interfacial secondary 

structure is identical on the surface. This would imply that the random coil peptide in 

solution has assumed an α-helical structure upon adsorption. Surface induced ordering of 

polypeptides has been observed previously, especially in lipid bilayers and at the 

air/water interface.19,20 However, this result is somewhat surprising, since at first glance 

this process would be entropically unfavorable. Additionally, the Amide I mode of a 

random coil peptide can also be observed around 1650 cm-1. Therefore, we can not 

exclude the possibility that Figure 6.4 is showing the Amide I mode of a interfacial 

random coil. 

The SFG spectrum of LK14 adsorbed from 1X PBS buffer at the CaF2/buffer 

interface is shown in Figure 6.5. A vibrational mode is observed centered around 1670 

cm-1. This vibrational mode is assigned to the Amide I mode of the adsorbed peptide. The 

difference in frequency of the Amide I mode between the hydrophilic and hydrophobic 

surfaces suggests that the peptide has different secondary structures at the two surfaces. 

However, a precise picture of the secondary structure of LK14 on hydrophilic CaF2 is not 

readily available from the data. 

6.4. Conclusions 

 We have developed a new OPA based on LIS. This allows for the production of 

infrared light with wavelength between 1500 cm-1 and 2000 cm-1. This new OPA has 

been used to measure the Amide I vibrational mode of a model peptide, LK14. We have 

found that the frequency of the Amide I mode of this peptide at the hydrophobic d8-



 119 

PS/buffer interface is independent of the secondary structure of the peptide in solution. 

This is interpreted has meaning the peptide has identical secondary structure at the d8-

PS/buffer interface, implying that a random coil in solution can become an ordered α-

helix at the d8-PS/buffer interface. It was found that the Amide I mode at the hydrophilic 

CaF2/buffer interface was blue shifted from the hydrophobic d8-PS/buffer interface, 

meaning the peptide had different secondary structure at those two interfaces. 
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