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ABSTRACT 

Dissolution and precipitation rates of low defect Georgia kaolinite (KGa-1b) as a function of 

Gibbs free energy of reaction (or reaction affinity) were measured at 22°C and pH 4 in 

continuously stirred flow through reactors.  Steady state dissolution experiments showed slightly 

incongruent dissolution, with a Si/Al ratio of about 1.12 that is attributed to the re-adsorption of 

Al on to the kaolinite surface. No inhibition of the kaolinite dissolution rate was apparent when 

dissolved aluminum was varied from 0 and 60 µM.  The relationship between dissolution rates 

and the reaction affinity can be described well by a Transition State Theory (TST) rate 

formulation with a Temkin coefficient of 2 

( )2

13mol
m s

1.15 10 1 exp
2diss

GR
RT

− −∆⎡ ⎤⎛ ⎞= × − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
. 

Stopping of flow in a close to equilibrium dissolution experiment yielded at solubility constant 

for kaolinite at 22°C of 107.57. 

Experiments on the precipitation kinetics of kaolinite showed a more complex behavior. One 

conducted using kaolinite seed that had previously undergone extensive dissolution under far 

from equilibrium conditions for 5 months showed a quasi-steady state precipitation rate for 105 

hours that was compatible with the TST expression above.   After this initial period, however, 

precipitation rates decreased by an order of magnitude, and like other precipitation experiments 

conducted at higher supersaturation and without kaolinite seed subjected to extensive prior 

dissolution, could not be described with the TST law. The initial quasi-steady state rate is 

interpreted as growth on activated sites created by the dissolution process, but this reversible 

growth mechanism could not be maintained once these sites were filled.   Long-term 

precipitation rates showed a linear dependence on solution saturation state that is generally 

consistent with a two dimensional nucleation growth mechanism following the equation 
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Further analysis using Synchrotron Scanning Transmission X-ray Microscopy (STXM) in Total 

Electron Yield (TEY) mode of the material from the precipitation experiments showed spectra 

for newly precipitated material compatible with kaolinite.   

INTRODUCTION 

The kinetics of mineral dissolution and precipitation are critical to the interpretation and 

modeling of geochemical processes at the Earth’s surface.  Some of the most important phases in 

this regard are the clay minerals, of which kaolinite is perhaps the most important.  Kaolinite 

plays an important role in regulating soil and subsurface aquifer solution chemistry and its 

precipitation may even control the extent of undersaturation with respect to primary dissolving 

phases like feldspar (ALEKSEYEV et al., 1997; MAHER et al., 2006; STEEFEL and VAN 

CAPPELLEN, 1990; ZHU et al., 2004).  A number of studies of kaolinite dissolution have been 

carried out previously (CARROLL-WEBB and WALTHER, 1988; CARROLL and WALTHER, 

1990; WIELAND and STUMM, 1992; GANOR et al,. 1995; HUERTAS et al., 1999). However, 

most of those studies focused on the determination of the pH and temperature dependence of the 

dissolution rates in far from equilibrium, highly undersaturated dilute solutions. The variation of 

dissolution rates with pH was considered to be related to the adsorption of protons or hydroxyls 

to the specific sites on mineral surfaces, with the suggestion that edge sites on the kaolinite 

dominated the rate (CARROLL-WEBB and WALTHER, 1988; WIELAND and STUMM, 1992). 

Although those studies provided general information on the mechanisms of kaolinite dissolution, 

the data are of limited use for predicting the kinetic reactions in natural systems since pore fluids 

in soils or aquifers do not remain indefinitely far from equilibrium.   

Compared to dissolution studies, there are relatively few studies on the kinetics of kaolinite 

precipitation processes and most of the precipitation studies were performed at higher than 

ambient temperatures. Nagy et al (1991) (NAGY et al., 1991; NAGY and LASAGA, 1993) 

studied the kinetics of kaolinite dissolution and precipitation at pH 3 and 80 °C. Her study 

showed a linear dependence of dissolution/precipitation rates on reaction affinity (or Gibbs free 

energy) at near equilibrium conditions and obtained a Temkin coefficient of 1 for the dissolution 

reactions with Transition State Theory. Huang (HUANG, 1993) and Snoog (SNOOG, 1992) 

studied the kinetics of kaolinite precipitation/dissolution at hydrothermal conditions and also 
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indicated that principle of detailed balancing was applicable at near equilibrium reactions 

conditions. Devidal et al (DEVIDAL et al., 1997) studied the dissolution and precipitation 

kinetics of kaolinite as a function of chemical affinity at hydrothermal conditions (150 °C, 40 

bars) and concluded that the variation of kaolinite dissolution/ precipitation rates with reaction 

chemical affinity can be described by a coupled Transition State Theory and Langmuir 

adsorption model, with the rate controlled by the decomposition of a silica rich/aluminum 

deficient precursor. However, it remains unclear whether these experiments carried out under 

hydrothermal conditions are directly applicable to the lower temperatures and pressures of near-

surface geologic environments. Therefore, it is important to directly measure the kaolinite 

dissolution/precipitation rates at ambient temperature and pressure conditions. As is the case 

with dissolution, it is also essential to determine the dependence of the rate on reaction affinity.   

To describe the rates of dissolution and precipitation as a function of reaction affinity, Transition 

State Theory (TST) has been widely used as a theoretical framework. Recently, Lasaga and 

Luttge (LASAGA and LUTTGE, 2001; LASAGA and LUTTGE, 2003) proposed an alternative 

model for mineral dissolution under close to equilibrium conditions involving a step wave 

dissolution. Dove et al (DOVE et al., 2005) also recently applied the mechanisms of classical 

crystal growth theory to explain quartz and silicates dissolution behavior with a model that did 

not follow the classical TST relationship.  

This paper reports the first attempt to measure the kinetics of kaolinite dissolution and 

precipitation at ambient temperature and pressure (22°C and 1 bar) and at a pH of 4.   Well 

crystallized low defect Georgia Kaolinite (KGa-1b from the Clay Mineral Society) was used as 

seed material to determine dissolution/precipitation rates as a function of reaction affinity and 

variable Al and dissolved silica concentration.  Dissolution and precipitation rates were 

evaluated as to their reversibility and congruency, and the applicability of various rate laws were 

investigated. 

THERMODYNAMIC AND KINETIC BACKGROUND 

The overall kaolinite dissolution and precipitation kinetics under acidic conditions can be 

expressed as 
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where ai represents the thermodynamic activity of the dissolved species and the activities of 

water and kaolinite are assumed to be 1. 

The dissolution and precipitation rates, Rdiss/ppt (mol. m-2 s-1), in a well-mixed flowthrough 

reactor are determined at steady state based on the change in Al and Si according to the 

following expression 
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where Q is the volume flow rate of the input fluid (L/s), Ci, out and Ci, inp are the concentrations of 

component i (Al or Si in the case of kaolinite) in the output and input solutions, respectively 

(mol/L), iη is the stoichiometric coefficient of component i in the reaction (2 in the case of both 

Al and Si), and A is the surface area (m2).  Steady state has been defined as where the output Al 

or Si concentration was stable with less than 10% variation for at least one pore volume in the 

effluent, with this interval typically characterized by multiple data points. The dissolution (or 

precipitation) rates were calculated based on the average results from the data in the steady state 

interval. 

The degree of solution saturation state with respect to the kaolinite dissolution/ precipitation 

reaction is expressed in terms of the Gibbs free energy of reaction, rG∆  
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where R is the gas constant, T is the absolute temperature (K), IAP and Keq are the ion activity 

product and the equilibrium constant respectively, and eqIAP KΩ = .  To describe the activities 

of the solutes involved in the reaction accurately, it was necessary to carry out a calculation of 
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the distribution of aqueous species.  For this purpose, the geochemical computer code 

PHREEQC was used (PARKHURST and APPELO, 1999).  Al and Si species and their 

hydrolysis constants used in the calculation are listed in Table 1.   

MATERIALS AND METHODS 

Source clay and pre-treatment 

Kaolinite used in this study is a low defect Georgia kaolinite, KGa-1b, purchased from the Clay 

Mineral Society, USA.  Samples were cleaned prior to dissolution and precipitation experiments 

to remove amorphous oxy-hydroxide material by washing with 1M NaCl/HCl at pH 3 until the 

supernatant pH reached 3, followed by repeatedly rinsing with ultra-pure H2O (18.3 MΩ.cm) and 

vacuum filtration through 0.1 µm polycarbonate membrane filter until pH > 5. The cleaned and 

rinsed samples were then dried at 50°C in the oven, gently crushed and stored in a HDPE bottle. 

The BET surface area determined for the pre-treated kaolinite samples was 11.83± 0.02 m2 /g 

(Micrometrics TriStar 3000 measured with N2), which is compatible with the value of 10.05± 

0.02 m2 /g reported by the Clay Mineral Society.  

Experimental approach 

Experiments were carried out using a well-stirred flowthrough reactor (70 mL in volume) 

manufactured by Advantec/MFS, Inc. held at room temperature (22±2°C) and pressure.  

Between 1 and 2 g of kaolinite was allowed to react with a continuously injected fluid of fixed 

input composition. The flow rates were controlled by a HPLC or syringe pump and ranged from 

0.05ml/min to 0.001 mL/min, yielding a residence time within the stirred cell ranging from a 

minimum of 24 hours to a maximum of 48 days. Stirring of kaolinite and the fluid was controlled 

by a magnetic stir plate placed directly beneath the reactor using a Teflon-coated stir bar that was 

mounted on a hanging rod from the top of stirred cell to avoid grinding of the kaolinite within the 

reactor. Solutions were filtered through the base of the stirred cell reactor with a 0.45 µm nylon 

and 0.1 µm polycarbonate membrane filter in sequence. Filtered effluents were collected in clean 

low density polyethylene bottles and polypropylene vials.  The solutions collected were analyzed 

for total Al and Si by inductively coupled plasma optical emission spectroscopy (ICP-OES, 
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Perkin Elmer DV5300). Each sample was analyzed with 5 replicates.  The 95% confident level 

was reported according to student t test value for standard deviations based on the 5 replicates.  

Flow rates as low as 1 µL/minute were used to produce a measurable change in concentration in 

the reactor effluent. A micro-PFA self-aspirating nebulizer with 50 µL/minute sample injection 

tubing was used with the ICP-OES to analyze the small sample volumes that resulted from the 

low flow rates (typically about 200 µL for the 5 replicates) so as to provide accurate analytical 

results.  The solution pH was measured with an Acute® pH electrode with a reported accuracy of 

0.02 pH unit for samples in experiments with high fluid flow rates.  For a small number of 

samples collected at very slow flow rates in precipitation experiments where the effluent volume 

was less, the pH was measured with an Orion® Micro-pH electrode. After pH measurement, all 

samples were acidified with 2% ultra-pure HNO3 (J. T. Baker®) before ICP-OES analysis.  

Before beginning a new experiment with the same kaolinite, the stirred cell was flushed with 

new input stock solution for about 2-3 pore volumes at a high flow rate (~0.5 ml/min) to 

eliminate residues of the previous stock solution.    

Input stock solutions for aluminum were made by diluting aluminum ICP standard solution 

(from CPI®, source material AlCl3 dissolved in ultrapure HNO3) with 18.3 MΩ.cm deionized 

water.  Silica stock solution was made of reagent grade Na2SiO3.9H2O (from J.T. Baker®) 

dissolved in deionized water.  The input stock solution was adjusted to the specified pH with 

diluted ultrapure HNO3 or reagent grade NaOH solution. The ionic strength of the input solution 

was adjusted to 0.01M using reagent grade NaNO3 (Alfa Aesar®).  Stock solutions were 

checked periodically for their purity and fresh stock solutions were made every month.   

A total of six different target stock solution compositions were used as input to the flowthrough 

reactors in this study, three for dissolution and three for precipitation (Table 1).  The target 

compositions of input solutions, coupled with varying fluid flow speeds, were designed to cover 

a wide range of reaction affinity with respect to kaolinite. To represent the variations in effluent 

solution chemistry, the experimental duration time of each individual experiment was converted 

to pore volumes according to the volume of the stir cell reactor used in this study (70 ml) and 

corresponding fluid flow rates. The effluent solution chemistry was plotted as ∆CAl and ∆CSi 

(∆CAl and ∆CSi are defined as Cout-Cin for samples in dissolution experiments and as Cin-Cout for 



samples in precipitation experiments), against pore volumes for all experimental results to 

facilitate comparisons of experimental results using different input stock solutions.  

To determine the kaolinite solubility constant at 22°C, flow was stopped in a dissolution 

experiment run close to equilibrium and the solution was allowed to equilibrate for an additional 

period of one week.  The solubility constant is also bracketed more broadly by the results of the 

dissolution and precipitation experiments. 

The error propagation in the calculated ∆CAl and ∆CSi in the effluent as well as the error in the 

rates were estimated using the following equations (MILLER and MILLER, 1993)  
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where σr, is the uncertainty in the calculated rate, σ∆c  represents the uncertainties of the 

calculated Al or Si concentration difference (∆C) between input and output solution, σCi, out and 

σCi, inp are the Al or Si concentration uncertainties (reported at 95% confidence level) in the 

output and input solutions, respectively, and σA  and σQ are the uncertainties in the surface area 

and pumping speed, respectively.   

Since the differences between the input and output solution concentrations of Al and Si were 

used for kinetic rate calculations, it was essential to analyze solute concentrations with a high 

degree of accuracy. Therefore, great efforts were made to obtain high accuracy sample analysis. 

Even so, it is still difficult to achieve less than 1% relative standard deviation (RSD) during 

sample analysis, especially for samples with high Si and Al concentrations. Since all data are 

reported at the 95% confident level, this corresponds to about 1.24 RSD as uncertainties (based 

on a student t test value for 5 replicate samples). For samples with high Si or Al in the input 

stock solution, the error propagation will further amplify the uncertainties in the calculated ∆CAl 

and ∆CSi values. Therefore, experimental results having the smallest uncertainties in the 

calculated ∆CAl and ∆CSi were those with zero Al and Si in the input stock solution.  In order to 

bring the saturation states of the input solutions close to equilibrium with respect to kaolinite 
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while keeping them undersaturated with respect to gibbsite, however, the composition of input 

stock solutions needed to have a high Si/Al ratio in most experiments. This resulted in large 

uncertainties in the ∆CSi values compared to the corresponding ∆CAl in the precipitation and 

close to equilibrium dissolution experiments. Therefore, effluent Al concentrations coupled with 

solution pH was used as main criteria to determine if the steady state had been reached.  For the 

same reason, the steady state change in Al concentration between the input and output solution 

was used for determination of reaction rates in all experiments to minimize the uncertainties in 

the rates that are calculated. Although the net change in Al concentration showed a larger 

uncertainty than did the Si data in the KGa-D3 dissolution experiment because of high Al in the 

input stock solution, the dissolution rate was still calculated based on Al data to keep this 

experiment comparable to the other experiments.  

Characterization of precipitation samples 

A small amount of solid material (original kaolinite plus new precipitate) from the precipitation 

experiments was mounted on silicon nitride windows manufactured by Silson, Ltd and examined 

by synchrotron Scanning X-ray Transmission Microscopy (STXM) on Beamline 11.0.2 at the 

Advanced Light Source of Lawrence Berkeley National Laboratory. The Al spectrum of standard 

Georgia kaolinite (from the Clay Mineral Society) and gibbsite (from Ward Scientific) were also 

collected for comparison with those from the precipitation experiments. In order to examine only 

the surface layer of the reacted samples, the spectrum was collected in Total Electron Yield 

(TEY) mode.  In TEY mode, instead of recording the transmitted or fluorescence X-rays, the 

elastic electrons generated by incident X-ray are recorded as a function of the energy of incident 

X-ray. This technique is surface sensitive and has a probing depth of only about 3 nm at the Al K 

edge (ABBATE et al., 1992; EBEL et al., 1994).  

RESULTS 

Equilibrium solubility 

In order to calculate accurately the Gibbs free energy for kaolinite, we found it necessary to 

measure the actual equilibrium solubility of the kaolinite used in this study at 22°C. For this 

purpose, the inlet line of a sample from a close to equilibrium dissolution experiment was 
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disconnected at the end of the experiment and allowed to further equilibrate with the kaolinite 

sample for about 1 week as stirring continued.  The two sampling points that were measured in 

this way had very similar aqueous Al and Si compositions and showed only slight differences in 

the solution pH within the uncertainties of the pH measurement. Accordingly, the averaged 

results were used to calculate the kaolinite solubility constant. The equilibrium solubility 

determined in this way was 107.57 at the experimental temperature of 22 °C (Table 3).  May and 

co-workers studied the solubility of Dry beach Georgia kaolinite and determined its solubility to 

be 107.45 at 25°C (MAY et al., 1986). Nagy and co-workers derived the equilibrium solubility of 

Twiggs County Georgia Kaolinite as 103.75 at 80 °C (NAGY et al., 1991).   From Table 3, it is 

apparent that the equilibrium solubility value determined in this study is in close agreement with 

the results of MAY et al (1986) and the extrapolated data from NAGY et al (1991) using the 

Van’t Hoff equation with the enthalpy change of -35.3 kcal/mol (taken from PHREEQC database, 

PARKHURST and APPELO, 1999) for the kaolinite dissolution reaction. The Gibbs free 

energies for all of the kinetic experiments reported here were calculated based on the equilibrium 

solubility derived in this study.  

Dissolution experiments 

Dissolution experiments were conducted with three separate kaolinite samples (referred to as 

KGa-D1, KGa-D2, KGa-D3 in Table 4) under five different conditions.  Figures 1 through 3 

show the variations in ∆CAl and ∆CSi in the effluent of all dissolution experiments over time. 

Typically, steady state was reached within 10 pore volumes (about 200 hours) in newly started 

dissolution experiments. In contrast, it required much less time (about 5 pore volumes) to reach a 

second steady state when only flow rates were adjusted in experiments started from a previously 

established steady state.   

It should be noted that during initial experimental setup, the KGa-D1 sample was used to test the 

flow through reactor configurations and to verify sample analysis protocols.  Thus, it had been 

pre-reacted in the flowthrough reactor with stock solution 1 and 2 for about 5 months before the 

start of experiments documented here. This extended dissolution may have affected the character 

of the kaolinite surface relative to other experiments that had no such extended dissolution period 

far from equilibrium.  The KGa-D1 dissolution experiments were conducted with 2g of kaolinite, 
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which was first dissolved at far from equilibrium condition with stock solution 1 (no Si, no Al) 

for about 20 pore volumes until steady state had been established (referred to as dissolution 

experiment KGa-D1a). Then the input solution was switched to stock solution 2 (0.5mM Si, no 

Al), which was designed to measure kaolinite dissolution rates closer to equilibrium (KGa-D1b). 

One gram of kaolinite was used at the start of all other dissolution experiments. In experiment 

KGa-D2, the kaolinite sample was first dissolved with stock solution 2 at close to equilibrium 

condition for about 12 pore volumes until a steady state had been reached (KGa-D2a). Then, the 

fluid flow rate was decreased by a factor of 5 to bring the system closer to equilibrium (KGa-

D2b). The KGa-D3 dissolution experiment was conducted with input stock solution 3 (60µM Al, 

no Si) to measure the dissolution rates at conditions moderately far from equilibrium (∆G = -16.4 

kJ/mol). The effluent solution in this experiment reached steady state after approximately 8 pore 

volumes.  

As shown in Figures 1-3 and Figure 4, all dissolution experiments showed slightly incongruent 

Si/Al release at steady state, with a preferential release of Si.  Although the dissolution 

experiments with high Si in the input solutions had larger uncertainties in the calculated effluent 

∆Si concentration, it can be seen that generally effluent ∆Si was larger than the corresponding 

∆Al within the experimental uncertainty.   Dissolution experiment KGa-D1a was conducted with 

an input solution having no Al and Si, and thus should have had a minimum uncertainty in the 

∆Si and ∆Al measured. It still showed slightly incongruent dissolution with a Si/Al ratio of about 

1.12 in the steady state effluent (Figure 4). However, the increase of pH in the effluent of all 

dissolution experiments was generally congruent with the corresponding Al release at steady 

states within experimental uncertainties (Figure 5).  

Precipitation experiments 

Precipitation experiments were conducted with kaolinite that had previously been used in 

dissolution experiments. Since the precipitation of kaolinite is very slow at 25°C, a syringe pump 

was used to generate a very low flow rate in the precipitation experiments so as to produce 

measurable differences between the input and output solutions.  As a result it generally took 

more than one month for the precipitation experiments to reach steady state, with the exception 

of experiment KGa-P1a.  Figure 6-8 show the variation of effluent ∆CAl and ∆CSi for all 
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precipitation experiments as a function of time.  Experiments KGa-P2 and KGa-P3 show a 

deficiency of about 0.03 pH units (Figure 5) relative to stoichiometric precipitation that is likely 

the result of the use of a micro-pH electrode in these experiments.  Otherwise, the precipitation 

experiments show stoichiometric decrease of Si, Al, and pH. 

KGa-1P precipitation experiment, which was begun with kaolinite used in a dissolution 

experiment that lasted over 5 months, was noteworthy in showing two quasi-steady states during 

the course of experiment (Figure 6). The first quasi-steady state was reached after 4 pore 

volumes (about 95 hours) and lasted an additional 4.5 pore volumes (or about 105 hours).  

During this period, the effluent solution Si and Al showed continuous stoichiometric 

precipitation accompanied by a congruent pH drop (Figure 6A). However, after a total of 8.5 

pore volumes (or 200 hours), these relatively rapid precipitation rates disappeared and the 

difference between input and output solution Si and Al concentrations was not measurable. At 

this point, the fluid flow speed was decreased by a factor of 10 (to 5 µl/min), and after about 

another 2 pore volumes (about 400 hours at this slower flow rate), the experiment reached a 

second quasi-steady state which then persisted for the remainder of the experiment.  However, 

the precipitation rate of Si and Al at this second steady state was much slower than that measured 

in the first quasi-steady state (Figure 6B).  

This apparent two stage steady state feature was not observed in the KGa-P2 and KGa-P3 

experiments. The pump speed was decreased further to 1 µl/min in these two experiments.  After 

being reacted in the flow through reactor for about one and half month (approximately one pore 

volume), the kaolinite samples in those precipitation experiments eventually showed stable 

congruent precipitation of Si and Al in the effluent solution, indicating that a steady state had 

been reached (Figure 7 and 8).   

Changes in surface area 

The kaolinite sample subjected to the longest combined dissolution and precipitation reaction 

time was used for BET surface area measurement at the end of the precipitation phase. The 

measured value was 14.27 m2/g, which indicated an approximately 20% increase compared to its 

initial value of 11.8 m2/g.  Grinding effects on the kaolinite surface area are indicated in some 

flowthrough reactor experiments (METZ and GANOR, 2001), although this effect was 
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minimized in our experiments because of the use of a suspended stir bar. Collision between 

kaolinite grains and either the stir bar itself or the sides of the reactor still occurred, however, and 

this is a likely explanation for the increase, since the mass of newly precipitated material is not 

enough to account for this increase.  Considering the long reaction time of over 7 months  this 

sample had been subjected to and the error in BET measurement (typically about 10%), it was 

assumed that there was no significant change in sample surface area as a result of reaction.  The 

kinetic data of the sample (KGa-D1) subjected to the longest reaction time was normalized 

according to its final surface area value.  The kinetic rate data of all other samples were all 

normalized to their initial surface area value before any reaction occurred.  

Dissolution and precipitation rates  

The dissolution and precipitation rates calculated at steady-state with Equation (3) and the 

corresponding Gibbs free energy of reaction are shown in Table 4 and in Figure 9.  As expected, 

the dissolution rates measured far from equilibrium were faster than those measured close to 

equilibrium. With the exception of the KGa-P1a precipitation experiment, however, the 

precipitation rates were much slower than the dissolution rates. An early study of Georgia Dry 

Branch kaolinite at various temperature and pH conditions in which the reactor volume was 

stirred (GANOR et al., 1995) gave far from equilibrium dissolution rates that agree very well 

with the values reported in this study.  For example, they measured an Al steady state release rate 

of 1.46 x 10-13 compared to the rate of 1.15 x 10-13 mol/m2/sec measured in this study at an input 

pH of 4. The obtained dissolution rate is also broadly consistent with the study of Wieland and 

Stumm (WEILAND and STUMM, 1992) (2.4 x 10-13 mol/m2/sec) using cornish china clay in a 

batch reactor in similar conditions. Using the activation energy of 7.0 kcal/mol and a pH 

dependence of 0.40 for the kaolinite dissolution reaction (GANOR et al., 1995), the dissolution 

rates determined in this study were also broadly consistent with those reported in Nagy’s study  

at 80°C and pH 3 using Twiggs country Georgia kaolinite (NAGY et al., 1991). However, for 

precipitation experiments, except for KGa-P1a experiment, most of the obtained precipitation 

rates are comparatively slower than extrapolated results from Nagy’s study (Nagy et al., 1991, 

1993) at 80 °C assuming the similar activation energy for the precipitation reaction.  The 

relationship between the rates and reaction free energy are addressed further below.   
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Characterization of surface precipitates 

In the kaolinite precipitation experiments, the goal was to keep the input stock solution 

supersaturated with respect to kaolinite, but undersaturated with respect to gibbsite and all other 

potential secondary phases. In order to achieve this, it was necessary to use a high Si/Al ratio in 

the input stock solutions, which resulted in Si concentrations that were in some cases 

supersaturated with respect to quartz. Since quartz is known to be very difficult to form at room 

temperature and pressure, precipitation of quartz is considered very unlikely. The input stock 

solution for KGa-P3 was slightly supersaturated with respect to gibbsite, but much more 

supersaturated with respect to kaolinite. Nagy’s dual phase precipitation experiments indicated 

that precipitation of gibbsite on kaolinite seeds was very unlikely even at these higher 

temperatures and where the solution was not supersaturated with respect to kaolinite (NAGY and 

LASAGA, 1993). It appears reasonable to assume that because of the relatively low 

supersaturation with respect to gibbsite in this single experiment, and because there were no 

gibbsite seed minerals, gibbsite precipitation was very unlikely.  All other experiments were 

undersaturated with respect to gibbsite.  To verify that gibbsite did not precipitate, the 

precipitation samples were further examined by synchrotron Scanning Transmission X-ray 

Microscopy (STXM) on Beamline 11.0.2 at the Advanced Light Source at Lawrence Berkeley 

National Laboratory.  The STXM beamline has a spatial resolution of 40 nm for sample imaging, 

but can also perform X-ray absorption spectroscopic analysis of samples. A STXM image of the 

kaolinite sample from precipitation experiment KGa-P3 is shown in Figure 10A. Although 

precipitation had occurred for over two months, only a few layer of unit cell kaolinite precipitate 

was estimated to be formed during the course of the experiments because of the very slow rates 

of reaction.  Under STXM analysis, the kaolinite sample taken from precipitation experiments 

was not distinguishable morphologically from unreacted kaolinite. In order to verify the phase of 

the precipitated material formed at the surfaces of seed kaolinite, X-ray absorption spectroscopy 

was used to compare the Al spectrum of the surface precipitated materials with that of standard 

kaolinite and gibbsite.  X-ray absorption near edge spectra (XANES) is very sensitive to the 

chemical valence state of an element and its coordination environment within the mineral 

structure (KONINGSBERGER and PRINS, 1988).  It is used as a ‘fingerprint’ to detect the 

presence of a particular element and determine its valence, speciation and coordination 
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environment by comparison with the spectra of its standard compounds (HUGGINS et al., 2000; 

FENTER et al., 2002).  In order to examine only the surface layer of the kaolinite sample, 

spectra were collected under Total Electron Yield (TEY) mode. The Al spectrum measured in 

this way on the surface layer of kaolinite from a precipitation experiment (KGa-P3), as well as 

kaolinite and gibbsite standards, are shown in Figure 10B. These spectra demonstrate that the Al 

spectrum of surface precipitates on seed kaolinite have very similar features to the standard 

unreacted Georgia kaolinite, while they are significantly different from the gibbsite spectra. 

While kaolinite has “gibbsite layer” in its basic structure, thus making the overall structure of Al 

X-ray absorption near edge spectra appear similar for kaolinite and gibbsite, there are still 

distinguishable difference between those two minerals due to the presence of silica tetrahedral 

layers in the kaolinite (as shown in the circled area on Figure 10B). The similarity between the 

spectra for standard kaolinite and the surface precipitates indicates the actual formation of 

kaolinite on the seed materials in the precipitation experiments, in agreement with the prediction 

based on the thermodynamics of the effluent solution chemistry.  

DISCUSSION 

Incongruent dissolution 

It was shown in Figures 1-3 that all dissolution experiments showed a slight preferential release 

of Si compared to Al.  The possible reasons for this incongruent dissolution include back 

precipitation of an aluminous phase, re-adsorption of released Al, or dissolution of a silica phase 

present in the kaolinite samples. Arguing against the role of a silica impurity is the fact that the 

source clays used in this study were well crystallized pure kaolinite standards from the Clay 

Mineral Society.  In addition, samples used in this study had been washed thoroughly in the pre-

treatment procedure. The possibility of silica impurities seems even more unlikely in the case of 

the KGa-D1 sample, which showed a Si/Al ratio slightly higher than stoichiometric despite 

extensive dissolution for over 5 months.   

The effluent in all of the dissolution experiments remained below saturation with respect to all 

aluminous phases (gibbsite, boehmite, diaspore) because of the low pH (less than 4.15) and the 
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relatively low Al concentrations.  Thus, back precipitation of an aluminous phase appears very 

unlikely as well. 

Carroll et al. (1988) also reported slightly incongruent dissolution of kaolinite at 25°C between 

pH 2 and 9 in their long term dissolution experiment. This phenomenon was also observed in the 

studies of Wieland and Stumm (1992) at room temperature in far from equilibrium dissolution 

experiments and was attributed to the adsorption of Al on to the reactive kaolinite surfaces.  

Schroth et al. (SCHROTH and SPOSITO, 1997) measured the point of zero net charge to be 

approximately 3.6 and a permanent structural charge density of -6.3 mmol/kg for of KGa-1 

kaolinite, so it appears likely that a small amount of the dissolved Al was re-adsorbed to the 

kaolinite surface, thus causing the slightly deficiency of Al in the effluent from the reactor.  

Evaluation of the effect of dissolved Al on kaolinite dissolution 

Oelkers and co-workers reported an Al inhibition effect on silicate mineral dissolution 

(DEVIDAL et al., 1997; OELKERS et al., 1994) . In their studies of kaolinite and albite 

dissolution at 150°C and 40 bars, the logarithms of the rates at a constant pH showed a linear 

dependence on aqueous Al concentrations even under far from equilibrium conditions.  In this 

study at 22°C and atmosphere pressure, however, no evidence for Al inhibition was observed.  

For example, a comparison of dissolution experiments KGa-D3 and KGa-D1b, where the 

effluent contained 65 and 6.4 µM Al respectively, indicates rates that are the same within 

experimental uncertainty, or even slightly higher for the higher Al experiment (Table 4).  A 

comparison with all of the other dissolution experiments confirms the lack of an Al effect.  The 

difference in temperature and pressure between the experiments reported here (22°C and 1 bar) 

and those conducted by Oelkers and co-workers (OELKERS et al., 1994) may explain the 

difference in the results, although additional systematic experiments over a broader range of pH 

and Al concentration are needed to further verify this observation at room temperature. 

Dependence on Gibbs free energy 

Transition State Theory (TST) is the most widely used formulation for kinetic rate laws that 

provides an integral link between the thermodynamic driving force and the rates of kinetic 

geochemical processes. It has been applied widely in geochemistry to describe the dissolution 



and crystallization rates of silicates minerals (AAGAARD and HELGESON, 1982; LASAGA, 

1981; LASAGA, 1995), with a general form given by (AAGAARD and HELGESON, 1982)  

 1 expnet
GR R

RTσ+
−∆⎡ ⎤⎛= − ⎜⎢ ⎥⎝ ⎠⎣ ⎦

⎞
⎟  (7) 

where Rnet (mol/m2/sec) is the net overall rate of the reaction (forward rate minus reverse rate), 

R+ is the forward (dissolution) reaction rate far from equilibrium per unit surface area mineral, R 

is the gas constant, T is temperature in degrees Kelvin,  σ is Temkin’s average stoichiometric 

number, which is the ratio of the rate of destruction of the activated complex involved in the rate-

limiting reaction step with the rate of the overall dissolution rate, and ∆G is the Gibbs free 

energy (= -A, the chemical affinity) of the overall reaction (KJ/mol or kcal/mol) and is defined in 

equation (4). The application of Equation (7) assumes that a single rate limiting step controls the 

overall rate of reaction and that steady-state conditions are met and that the magnitude of ∆G for 

each elementary reaction is not much greater than RT.  

Using the Gibbs free energy of reaction derived using Equation (4) from the equilibrium constant 

for kaolinite measured in this study, the kaolinite dissolution and precipitation rates were fitted 

with the Equation (7).  The dissolution rate data and the precipitation rate derived from 

experiment KGa-P1a can be fit very well with Equation (7) using a Temkin coefficient of 2 

(Figure 9) 

 131.15 10 1 exp
2diss

GR
RT

− ∆⎡ ⎤⎛= × − ⎜
⎞
⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (8) 

Two distinct regions are apparent in the fit of the dissolutions rates: 1) a far from equilibrium (<-

11 KJ/mol or -2 Kcal/mol) region where rates are independent of the chemical affinity, and 2) a 

close to equilibrium (>-11 KJ/mol, -2 Kcal/mol) region where the rates depend on the chemical 

affinity, with the width of this zone determined by the Temkin coefficient.  This result is in 

general agreement with the studies of Huang (HUANG, 1993) and Soong (SOONG and 

BARNES, 1992), who suggested that kaolinite dissolution rates are independent of the saturation 

index for chemical affinity < about -2 kcal/mol.   
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Lasaga and Luttge  recently proposed a new step wave dissolution model in which dissolution 

rates decrease sharply when a critical free energy state corresponding to the opening of etch pits 

in mineral surface is reached (LASAGA and LUTTGE, 2001; LASAGA and LUTTGA, 2003). 

However, extending this theory from minerals having relative well developed framework crystal 

structures (e.g., calcite, feldspar or quartz) to layered silicates is problematic, since dissolution 

may occur primarily along the edges of the layers (WIELAND and STUMM, 1992; BOSBACH 

et al., 2000). Given the slow rate of kaolinite dissolution at 25°C, it is a real challenge to measure 

rates very close to equilibrium under these conditions, so evaluation of this dissolution 

mechanism for kaolinite may need to be carried out at higher temperature where the rates are 

more rapid and in situ techniques involving direct microscopic observation can be used.  

However, we note that Nagy’s data at 80°C, which covered a much narrower range of departure 

from equilibrium (from 0.12 to 0.5 kcal/mol), showed only a simple linear dependence on the 

saturation state (NAGY et al., 1991).  Evidence collected in this study suggests that the sharp 

change in dissolution rates predicted by the step wave dissolution model does not occur in the 

case of kaolinite at room temperature and pressure conditions.  

Applying classical crystal growth theory, Dove et al. (DOVE et al., 2005) successfully explained 

the above room temperature dissolution behavior of quartz, K-feldspar and kaolinite with two 

proposed dissolution mechanisms: 1) dissolution at dislocation sites, and 2) dissolution by 

nucleation of vacancy islands. An attempt was made to interpret the data collected in this study 

with their proposed models, but neither produced a satisfactory fit. Considering the proposed 

models were based on quartz dissolution data collected at much higher experiment temperature 

(200°C), it is suggested that direct extrapolating these rate models to lower temperature may not 

be applicable.  

Precipitation experiment KGa-P1, which had been subjected to over 5 months of dissolution 

prior to the switch to supersaturated conditions, showed quasi-stable reversible precipitation rates 

for a period of 4.5 days and is well described by the TST rate law given in Equation (8).  This 

strongly suggests that for short times, precipitation may be fully reversible with respect to 

dissolution, although this result may depend on the development of specific reactive sites via 

extended dissolution.  The rapid precipitation rate observed in early quasi-steady state of KGa-

P1a sample are most likely related to re-attachment of Si and Al at high energy sites actually 



created as a result of long-term dissolution far from equilibrium, since similar behavior is not 

observed for kaolinite seed that were subjected to shorter dissolution times. However, after those 

active sites originating from the dissolution process were filled, precipitation proceeded by a 

different, slower growth mechanism.  

After the drop in precipitation rate in experiment KGa-P1, and in the case of the other two 

precipitation experiments KGa-P2 and KGa-P3 that were not subjected to long-term dissolution 

in advance, the precipitation rates could not be described adequately with Equation (8).  Longer 

term kaolinite precipitation rates, therefore, are not reversible with dissolution, implying a 

change in reaction mechanism between dissolution and long-term, truly steady state precipitation.  

The precipitation rates data are better described with a linear dependence on the free energy of 

reaction, ∆G 

 158.0 10ppt
GR

RT
− ∆⎡ ⎤= × ⎢ ⎥⎣ ⎦

 (9) 

Nagy also obtained a linear relationship between kaolinite precipitation rates and reaction free 

energy ∆G close to equilibrium at 80 °C and pH 3 (NAGY et al., 1991). The precipitation rates 

determined by Nagy can be fitted with TST type of rate law, however, with the slopes of the 

precipitation rates data apparently following the trend of corresponding dissolution rates data 

within experimental uncertainties. Huang (1993) and Devidal et al. (1997) determined kaolinite 

precipitation rates at hydrothermal conditions (between 150 ~ 275 °C, at pH 2, 4.2 and 7.8) and 

their results also indicate reversible dissolution and precipitation close to equilibrium.  The fact 

that microscopic reversibility is not observed in this study (except over relatively short times, as 

in experiment KGa-P1a), while it was observed in experiments by Nagy and Huang, and Devidal,  

may be the result of the significantly higher temperatures and perhaps the length of the 

experiment.  This highlights one of the difficulties with investigating reaction mechanisms at 

higher temperature and then extending these via activation energies to lower temperature.  There 

is no guarantee that the same reaction mechanisms will actually apply. 

Although Nagy’s experiments (1991, 1993) were performed at less than hydrothermal 

temperatures, the reacting kaolinite had also been pre-equilibrated at 80°C and pH 3 for over 3 

months.  At hydrothermal conditions or after extensive pretreatment, the surface of kaolinite may 
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be activated, thus resulting in the opening of abundant screw locations and kink sites that could 

serve as templates for the reversible growth of kaolinite. The applicability of the TST rate law 

given in Equation (8) during the early quasi-steady state period of experiment KGa-P1, which 

followed extensive dissolution leaching, is consistent with this interpretation.  

The kaolinite precipitation experiments in this study covered a range of supersaturation from 4.5 

kJ/mol (1.0 kcal/mol) to 14.8 kJ/mol (3.6 kcal/mol). Despite this relatively large range of 

supersaturation, the precipitation experiments showed a linear dependence on free energy. 

Although a detailed precipitation rate mechanism is not possible without further microscopic 

and/or spectroscopic characterization of the newly precipitated kaolinite, it is worth discussing 

some of the possible growth mechanisms that might apply under these experimental conditions. 

Crystal growth models have been reviewed extensively in the literature (BENNEMA, 1973; 

OHARA and REID, 1973; NIELSEN, 1984) and are generally classified as diffusion controlled, 

or surface integration controlled, or both.  Only surface integration growth models will be 

considered for the precipitation experiments conducted in this study, since kaolinite growth at 

room temperature is very slow and unlikely to be diffusion controlled. The surface-controlled 

mechanisms consist of adsorption of lattice ions, spiral growth at screw dislocations, or two-

dimensional nucleation on the mineral surface.  In the case of two-dimensional nucleation, 

growth proceeds by the addition of nuclei similar to the template on which they form or through 

the attachment of growth units to the edge of the nuclei via surface diffusion. A number of two-

dimensional nucleation growth models have been proposed in the literature and can be classified 

into mononuclear or polynuclear mechanisms (OHARA and REID, 1973; NIELSEN, 1984). The 

main differences between these models are in their assumptions about the rate of surface 

nucleation and the rate of lateral spreading of the nuclei across the crystal surface. The two-

dimensional nucleation growth models can be expressed as (LI et al., 2003)  

 
2

2
1( 1)exp

( ) ln( )snR k F
kT
φ⎛ ⎞

= Ω − −⎜ ⎟Ω⎝ ⎠
, (10) 

where ksn is the rate constant for mononuclear or polynuclear growth, Ω is the relative 

supersaturation ratio (Equation 4),  F(Ω) is a function of supersaturation, φ  is defined as the 

edge free energy (in KJ mol-1) and k is the Boltzmann constant. 
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Such two dimensional nucleation growth has been discussed extensively in the case of gibbsite 

crystal growth that occurs in the industrial Bayer process (FARHADI and BABAHEIDARY, 

2002; LI et al., 2003; VEESLER and BOISTELLE, 1994). Gibbsite has an analogous structure to 

that of the micas and the neutral aluminum hydroxide sheets are typically found to be 

sandwiched between silicate sheets in important clay groups, such as the kaolinite, illite, and 

montmorillonite/smectite. In kaolinite, the individual aluminum hydroxide layers are identical to 

the individual layers of gibbsite (referred to as the "gibbsite layers") and therefore may provide 

some guidance for possible interpretations of kaolinite precipitation kinetics. Following the 

simplified mononuclear equation proposed by Botsairs and Denk (BOTSARIS and DENK, 1970) 

to describe the formation and spreading of two-dimensional nuclei during gibbsite growth, 

Equation (10) can be simplified as 

 
2

2
1exp

( ) ln( )snR k
kT
φ⎛

= −⎜
⎞
⎟Ω⎝ ⎠

. (11) 

According to the this simplified equation (which assumes the pre-exponential term depending on 

the Gibbs free energy is equal to 1), the logarithm of the kaolinite precipitation rates will show a 

linear trend against the term ( )2
1

T lnΩ
if the two dimensional nucleation growth model applies 

(Figure 11).  When plotted in this way, the data show a high degree of linearity between those 

two parameters (with a R2 of 0.986), indicating the two-dimensional nucleation model is at least 

compatible with the precipitation rates determined in this study.  The free edge energy 

determined using the slope of linear regression fitting line from Figure 11 is 3.54 kJ/mol, which 

is comparable to the value obtained for gibbsite at 55 °C (from 2.6 to 6.0 kJ/mol as reported in 

the study of Farhadi and Babaheidary (2002)), further supporting the applicability of the above 

model for kaolinite crystal growth.  

SUMMARY AND CONCLUSIONS 
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Kinetic rates of kaolinite dissolution and precipitation at ambient room temperature and pressure 

were measured at pH values close to 4 as a function of Gibbs free energy using well crystallized 

low defect Georgia Kaolinite. Dissolution rates measured close to equilibrium (generally within 

about 2 kcal/mol) showed an exponential decrease compared to far from equilibrium rates. This 

http://www.galleries.com/minerals/silicate/micas.htm
http://www.galleries.com/minerals/silicate/clays.htm
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observed trend can be described well within the framework of Transition State Theory with a 

Temkin coefficient of 2, implying that the activated complexes involved in the rate-limiting step 

for kaolinite dissolution involved either a single Al or Si atom.  Dissolution with input solutions 

having high Al concentration showed no evidence for significant Al inhibition at the 

experimental conditions considered in this study. 

Long-term precipitation rates at 22°C and close to pH 4 are much slower than the dissolution 

rates and generally fall off the trend predicted by Transition State Theory. Only a kaolinite 

sample that was subjected to extensive dissolution for over 5 months under far from equilibrium 

conditions showed a faster precipitation rate for an initial quasi-steady state that is compatible 

with the TST model.  The fact that this reversible precipitation stage lasted only about 110 hours, 

at which point precipitation rates decreased by an order of magnitude, suggests that activated 

sites created during the long-term, far from equilibrium dissolution process became filled and a 

different growth mechanism ensued.  The other two precipitation experiments performed under 

more supersaturated conditions and with kaolinite seed that had not undergone extensive 

dissolution far from equilibrium, also showed very slow precipitation rates that are not 

compatible with a reversible TST rate law based on dissolution rates.  The long-term 

precipitation rates show instead a linear dependence on the Gibbs free energy, with the 

relationship between the rates and corresponding reaction free energies described satisfactorily 

with a simplified two dimensional nucleation growth model.  
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TABLES 

Table 1: Al and Si species and their hydrolysis constant used in the calculation*. 

 

Reaction logKeq

Al+3 + H2O = AlOH+2 + H+ -5.00 

Al+3 + 2H2O = Al(OH)2+ + 2H+ -10.1 

Al+3 + 3H2O = Al(OH)0
3 + 3H+ -16.9 

Al+3 + 4H2O = Al(OH)4- + 4H+ -22.7 

H4SiO4 = H3SiO4
- + H+ -9.83 

 

*from PHREEQC (PARKHURST and APPLEO, 1999) database.
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Table 2:  Target input Si and Al concentrations 

 

Experiment Si (µM) Al (µM) 

Dissolution 

1 0 0 

2 500 0 

3 0 60 

Precipitation 

4 500 100 

5 1000 100 

6 1500 200 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 

 

 

Table 3: Al and Si concentration in solutions equilibrated with kaolinite for determination of its 

solubility constant* 

Label pH Si (µM) Al (µM) log(aH4SiO4) log(aAl3+) log(IAP) 

Sample 

1 4.22 311.98±3.06 11.42±0.44 -3.505 -5.336 7.638 

Sample 

2 4.20 312.94±2.47 11.27±0.37 -3.504 -5.340 7.512 

*Average result from this two sampling points were used to calculate the equilibrium solubility 

of kaolinite sample used in this study 
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Table 4: Summary of experimental conditions and results  

Sample 

label 

Starting 

material 

(g) 

Pump 

speed 

(ml/min) 

Input pH 
Input Si 

(µM ) 

Input Al 

(µM) 

Output 

Si (µM) 

Output 

Al (µM) 

Output 

pH 

Rate from Al 

(mol/m2/sec) 

Saturation 

index 

∆G 

(kJ/mol) 

KGa-D2a         1.000 0.041 4.004
277.63 
(±3.33) 

0.21 
(±0.04) 

288.83 
(±3.50) 

3.76 
(±0.09) 4.049 -1.04(±0.06) E-13 -2.03 -11.47(±0.73)

KGa-D2b         

           

           

         

         

         

         

         

1.000 0.012 4.004
277.63 
(±3.33) 

0.21 
(±0.04) 

295.95 
(±4.58) 

8.45 
(±0.14) 4.102 -6.77(±0.36) E-14 -1.00 -5.65(±0.85)

KGa-D1a 2.000 0.050 4.001 0.00 0.00
9.84 
(±0.14) 

7.88 
(±0.10) 4.076 -1.15 (±0.06) E-13 -4.17 -23.56(±0.80)

KGa-D1b 2.000 0.050 3.987
277.33 
(±0.97) 0.00

287.72 
(±3.18) 

6.43 
(±0.10) 4.033 -9.37(±0.14) E-14 -1.66 -9.38(±0.80)

KGa-D3 1.000 0.049 4.016
0.26 
(±0.04) 

60.5 
(±0.58) 

6.59 
(±0.09) 

65.21 
(±0.80) 4.038 -1.46 (±0.76) E-13 -2.91 -16.44(±0.80)

KGa-P1a 2.000 0.050 4.080
493.49 
(±4.24) 

106.25 
(±1.10) 

478.82 
(±4.35) 

96.09 
(±1.17) 3.980 1.47 (±0.24) E-13 0.80 4.52(±0.73)

KGa-P1b 2.000 0.005 4.022
498.03 
(±6.39) 

113.49 
(±1.68) 

494.89 
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Figure 1: Effluent ∆CAl and ∆CSi variation in KGa-D1 dissolution experiments at pH 4, 22 °C 

with input solutions having (KGa-D1a) no Si and Al (solid symbol) and (KGa-D1b) 500 µM Si 

and no Al (open symbol).  Pumping speed: 0.05 mL/min. 
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Figure 2: Effluent ∆CAl and ∆CSi variations in KGa-D2 dissolution experiments at pH 4, 22 °C 

with input solution having 500µM Si and no Al; (KGa-D2a) pump speed: 0.05ml/min (solid 

symbol) and (KGa-D2b) pump speed: 0.01ml/min (open symbol). 
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Figure 3: Effluent ∆CAl and ∆CSi variations in KGa-D3 dissolution experiments at pH 4, 22 °C 

with input solution having 60 µM Al and no Si; pump speed: 0.05ml/min. 
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Figure 4: Steady state effluent ∆CAl versus ∆CH
+

 in the kaolinite dissolution/precipitation 

experiments at pH 4, 22 °C with varying input solution composition and pumping speed.  
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Figure 5: Steady state effluent ∆CAl versus ∆CSi in the kaolinite dissolution/precipitation 

experiments at pH 4, 22 °C with varying input solution composition and pumping speed. The 

small graph inside is the zoom in graph of KGa-D1a experiment results.  
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Figure 6: Effluent ∆CAl and ∆CSi variations in the KGa-P1 precipitation experiment at pH 4, 22 

°C with input solution having 0.5mM Si and 0.1mM Al; (A)pump speed: 0.05ml/min (solid 

symbol) and (B) pump speed: 0.005ml/min (open symbol).   
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Figure 7: Effluent ∆CAl and ∆CSi variations in the KGa-P2 precipitation experiment at pH 4, 22 

°C with input solution having 1mM Si and 0.1mM Al; pump speed: 0.001ml/min.  
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Figure 8: Effluent ∆Al and ∆Si concentration variations in the KGa-P3 precipitation experiment 

at pH 4, 22 °C with input solution having 1.5mM Si and 0.2mM Al; pump speed: 0.001ml/min.  
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Figure 9:  Kaolinite dissolution/precipitation rate vs. chemical affinity at pH 4, 22 °C; the blue 

dashed line (a) was fitted with TST theory and the red dashed line (b) was fitted with two 

dimensional nucleation model (for details, see the text in the discussion).  
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Figure 10. A) STXM image of kaolinite samples in precipitation experiments.  B). Al XANES 

spectra of kaolinite particles by total electron yield mode in precipitation experiments by STXM 

(circled area highlights the major difference between the spectra). 
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Figure 11: Linear fitting of kaolinite precipitation rate data with a mononuclear two dimensional 

nucleation growth model at the experimental temperature of 22 °C.  
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