skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: ENDF/B-VII.0 Data Testing Using 1,172 Critical Assemblies

Technical Report ·
DOI:https://doi.org/10.2172/923135· OSTI ID:923135

In order to test the ENDF/B-VII.0 neutron data library [1], 1,172 critical assemblies from [2] have been calculated using the Monte Carlo transport code TART [3]. TART's 'best' physics was used for all of these calculations; this included continuous energy cross sections, delayed neutrons in their spectrum that is slower than prompt neutrons, unresolved resonance region self-shielding, the thermal scattering (free atom for all materials plus thermal scattering law data S({alpha},{beta}) when available). In this first pass through the assemblies the objective was to 'quickly' test the validity of the ENDF/B-VII.0 data [1], the assembly models as defined in [2] and coded for use with TART, and TART's physics treatment [3] of these assemblies. With TART we have the option of running criticality problems until K-eff has been calculated to an acceptable input accuracy. In order to 'quickly' calculate all of these assemblies K-eff was calculated in each case to +/- 0.002. For these calculations the assemblies were divided into ten types based on fuel (mixed, Pu239, U233, U235) and median fission energy (Fast, Midi, Slow). A table is provided that shows a summary of these results. This is followed be details for every assembly, and statistical information about the distribution of K-eff for each type of assembly. After a review of these results to eliminate any obvious errors in ENDF/B data, assembly models, or TART physics, all assemblies will be run again to a higher precision. Only after this second run is finished will we have highly precise results. Until then the results presently here should only be interpreted as approximate values of K-eff with a standard deviation of +/- 0.002; for such a large number of assemblies we expected the results to be approximately normal, with a spread out to several times the standard deviation; see the calculated statistical distributions and their comparisons to a normal distribution.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
923135
Report Number(s):
UCRL-TR-235178; TRN: US0802210
Country of Publication:
United States
Language:
English