skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development and Integration of Hardware and Software for Active-Sensors in Structural Monitoring

Thesis/Dissertation ·
DOI:https://doi.org/10.2172/921906· OSTI ID:921906
 [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

Structural Health Monitoring (SHM) promises to deliver great benefits to many industries. Primarily among them is a potential for large cost savings in maintenance of complex structures such as aircraft and civil infrastructure. However, several large obstacles remain before widespread use on structures can be accomplished. The development of three components would address many of these obstacles: a robust sensor validation procedure, a low-cost active-sensing hardware and an integrated software package for transition to field deployment. The research performed in this thesis directly addresses these three needs and facilitates the adoption of SHM on a larger scale, particularly in the realm of SHM based on piezoelectric (PZT) materials. The first obstacle addressed in this thesis is the validation of the SHM sensor network. PZT materials are used for sensor/actuators because of their unique properties, but their functionality also needs to be validated for meaningful measurements to be recorded. To allow for a robust sensor validation algorithm, the effect of temperature change on sensor diagnostics and the effect of sensor failure on SHM measurements were classified. This classification allowed for the development of a sensor diagnostic algorithm that is temperature invariant and can indicate the amount and type of sensor failure. Secondly, the absence of a suitable commercially-available active-sensing measurement node is addressed in this thesis. A node is a small compact measurement device used in a complete system. Many measurement nodes exist for conventional passive sensing, which does not actively excite the structure, but there are no measurement nodes available that both meet the active-sensing requirements and are useable outside the laboratory. This thesis develops hardware that is low-power, active-sensing and field-deployable. This node uses the impedance method for SHM measurements, and can run the sensor diagnostic algorithm also developed here. Finally, the need for an integrated system for SHM is of primary consideration in this thesis. Without such a system the widespread adoption of SHM will not take place, and this thesis addresses the issue by developing an integrated SHM solution. The solution incorporates active-sensing impedance-measurement based hardware and software with a combination of existing damage-detection algorithms. The result is an integrated system for in-field measurement, validation and analysis of structures. The system specifically incorporates the sensor validation procedure and sensor node also developed in this thesis. In conclusion, recommendations for the future direction of this research topic are made.

Research Organization:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC52-06NA25396
OSTI ID:
921906
Report Number(s):
LA-14342-T; TRN: US200802%%959
Country of Publication:
United States
Language:
English