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Abstract 
 

Constitutive modeling is an important aspect of computational solid mechanics.  
Sandia National Laboratories has always had a considerable effort in the development 
of constitutive models for complex material behavior.  However, for this development 
to be of use the models need to be implemented in our solid mechanics application 
codes.  In support of this important role, the Library of Advanced Materials for 
Engineering (LAME) has been developed in Engineering Sciences.  The library 
allows for simple implementation of constitutive models by model developers and 
access to these models by application codes.  The library is written in C++ and has a 
very simple object oriented programming structure.  This report summarizes the 
current status of LAME. 
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1. INTRODUCTION 
 
 
Engineering Sciences at Sandia National Laboratories has a long history of solid mechanics code 
development and analysis in support of the Laboratory’s mission.  A large part of the code 
development effort in Engineering Sciences has been on developing and implementing 
constitutive models for large deformation, solid mechanics codes.  Two codes – transient 
dynamic and quasi-static – have generally been used for analysis, depending on the physics that 
is important to the problem.  For relatively fast events, those that occur in the range of ms, a 
transient dynamic code is needed.  For this purpose a long line of codes, from HONDO [1] in the 
1970’s to PRONTO2D [2] and PRONTO3D [3] in the 1990’s to the current ASC code Presto 
[4], has been developed and used at Sandia.  For engineering problems on a longer time scale, 
those that occur in the range of seconds up to centuries, quasi-static codes have been developed.  
A few quasi-static codes, with different solution algorithms including nonlinear conjugate 
gradients and dynamic relaxation, were developed in the 1980’s and early 1990’s.  These 
incuded JAC [5], JAC3D[6], and SANTOS [7].  These different solution algorithms were 
eventually combined into one code, JAS3D [8], and they are now found in the ASC code Adagio 
[9]. 
 
For either transient dynamic or quasi-static analyses, much of the physics in a problem is done in 
the model for the material behavior.  These constitutive models can be fairly simple or very 
complex depending on the material that needs to be modeled and the loading regime involved.  
The need for new constitutive model development to support Sandia’s mission led to the 
development of a relatively simple interface in our solid mechanics codes for the implementation 
of constitutive models.  Following well documented step by step procedures in the source code, a 
model developer could implement a model in a relatively short time.  In fact, one reason for the 
existence of our solid mechanics codes was as a platform for constitutive model development.  
As noted by Taylor and Flanagan [3], “The development of PRONTO was motivated by the need 
for a code which could serve as a testbed for research into numerical algorithms and new 
constitutive models for nonlinear materials.” 
 
As successful a system as this was, constitutive model development, and more importantly use, 
still had a number of drawbacks.  One drawback was that models needed to be implemented in 
each code separately.  If an analyst wanted to use a model for a transient dynamic analysis, but 
the model only existed in the quasi-static code, then the model would have to be re-implemented 
in the transient dynamic code or the analyst would be simply out of luck.  Furthermore, if a 
model was in each code, implementation differences might cause the two versions of the model 
to behave differently.  Bug fixes to a model were another source of code drift between a model in 
the transient dynamic code and the quasi-static code.  Another problem with model 
implementation in our legacy codes was the reliance on a specific hypoelastic formulation.  
While this does not, in general, limit what types of constitutive models can be implemented, it 
does limit the efficiency of other types of models.  As our material modeling capability has 
grown, these alternative formulations are increasingly more useful.  Finally, another important 
consideration in constitutive model implementation and development was the use and 
development of other Sandia codes that use solid mechanics constitutive models.  These codes 
(e.g. ALEGRA, CTH) could not use models implemented in our codes, which required them to 
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be re-implemented again.  This problem led to the development of the Model Interface 
Guidelines (MIG) by Brannon and Wong [10].  These guidelines have been used by ALEGRA 
and CTH, but they have not been adopted in the ASC solid mechanics codes Presto and Adagio. 
 
With the advent of our ASC codes, Presto and Adagio, we have had the chance to re-examine 
how we do constitutive modeling in our codes.  This re-evaluation was driven by a number of 
factors, not least of which was the difficulty for many model developers to program in an object 
oriented environment.  While the advantages of object oriented programming (OOP) are many, 
for most constitutive model routines a procedural method of coding is often far simpler.  This 
procedural way of programming, usually in FORTRAN, agrees quite well with how problems 
are formulated and solved.  However, even though the desire to simplify the actual constitutive 
model implementation with core routines written in FORTRAN, we still did not wish to loose the 
benefits of an object oriented design.  A simple class definition along with some inheritance 
would go a long way toward a flexible interface between the constitutive model and the finite 
elements.  Thinking of these needs, an interface between the constitutive models and the host 
codes begins to take shape.  In some cases this interface is sharp and well defined; in other cases 
the interface is less well defined.  In either case, the interface can be used to divide the roles of 
the host code and the constitutive models.  If the roles of the constitutive models can be defined, 
then a library can be created that multiple codes can use.  This is a useful development for 
Engineering Sciences since it helps isolate constitutive model development.  Constitutive model 
implementation is easier for model developers; application code developers have consistent 
model implementations across their codes; analysts have access to the same models in different 
codes and the latest improvements/developments from constitutive model developers.  
Recognizing the usefulness of this we have developed the Library of Advanced Materials for 
Engineering (LAME).  Currently LAME includes only three-dimensional solid material models.  
Future work will extend LAME to incorporate structural models needed for the structural 
elements (e.g., beams, plates, and shells) in our ASC codes. 
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2. INTERFACE TO LAME 
 
 
LAME is a constitutive model library.  With any code library, there needs to be a well defined 
interface between the application code (host code) and the library.  The interface for LAME is 
used by a host code to access constitutive models.  It is also used by LAME to access some 
features of the host code.  This host code can be any solid mechanics code, e.g. a finite element 
code, a finite difference code or a material model driver.  In order to develop a useful interface, 
an object oriented design using C++ has been developed for LAME.  The description that 
follows covers the standard interface to models in the LAME library.  Although not documented 
here, work is currently underway to be able to implement ITAR and CRADA protected material 
models in LAME. 
 
2.1. Overview of the Object Oriented Interface 
 
The interface for LAME is principally defined through a base class in C++.  This base class is 
declared in the header file include/models/Material.h.  A few other classes are also 
used in the interface: the MaterialCreator class, the app_interface class and the 
function class.  The interface provides a simple, well defined way for the host code to use 
LAME.  The details of a specific model implementation are left to the material model itself, 
which is derived from the Material base class. 
 
The interface has two principal aspects that need to be understood.  The first are the various 
methods on the base class.  These methods define how the host code will use the constitutive 
models and provide access to the host code for the constitutive models.  These methods can be 
found in the header file.  There are four principal methods that the rest of the interface is 
designed around 
 

int initialize(); 
int loadStepInit(); 
int getStress(); 
int pcElasticModuli(); 

 
These four methods perform constitutive model tasks for the host code.  If a constitutive model 
needs to initialize parameters, e.g. initializing state variables, then this task is done with the 
initialize() method.  If a model does not need to initialize anything, then this method will 
not be implemented on the derived class and the host code will call the initialize() method 
– a virtual method – on the base class – a method that does nothing.  The only method that every 
model will implement is the getStress() method.  This method returns the current stress and 
state variables for the constitutive model.  The base class also has method that access the host 
code.  This is done through the app_interface class and the function class.  A more 
detailed look at the methods available in LAME, along with their implementation, will be 
presented below. 
 
A second aspect of the interface involves the actual variables that are passed between the host 
code and the constitutive models.  Each constitutive model will require different variables for its 
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calculations.  So, in addition to having base class methods that define what the material models 
can do for the host code, a struct is defined that is used for passing arguments between the host 
code and LAME.  This struct – called matParams – is also defined in the header file, 
Material.h.  The matParams structure is shown in Figure 1.  There are other variables that 
can be passed between the host code and LAME that are not shown in Figure 1; the use of many 
of these other variables is still under development.  A detailed description of the variables in the 
matParams structure that are shown in Figure 1 will be presented later. 
 
The material properties are passed to the material model as a reference to a MatProps object.  
MatProps is defined in the header file, include/models/Material.h, as a typedef 
 

typedef map< string, vector<double> > MatProps; 
 
So MatProps is really just a map that associates a string – the material property name – with a 
vector of doubles – the material properties.  The material properties are stored in a vector since a 
material property might have a number of material properties associated with a given name. 
 
It is important to understand these two aspects of the design of LAME.  There are methods that 
are common to all constitutive models and data that is common to all constitutive models.  A 
particular constitutive model may not need to use a particular method or some of the data that is 
passed – but the methods and data defined in the base class will provide all of the methods and 
data that a mechanics code or a constitutive model could need.  If there is some method or data 
that is not currently in the interface – it will be easy to add.  A new method – with a default 
implementation – can be added in the base class and new data can be added to the structure.  Of 
course any modifications to the interface in the library, if they are used by a mechanics code, will 
require some modifications in the host code. 

  struct matParams {
    int nelements; 
    int nintg; 
    double dt; 
    double time; 
    double * strain_rate; 
    double * stress_old; 
    double * stress_new; 
    double * state_old; 
    double * state_new; 
    double * temp_old; 
    double * temp_new; 
    double * left_stretch; 
    double * rotation; 
    . . . 
  }; 

 
 

Figure 1: The matParams structure in LAME 
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2.1.1 The matParams Structure 
 
Before presenting the methods that the interface uses it is useful to understand what data will be 
passed between the application code and the constitutive models.  The matParams structure 
provides this data.  A brief description of the more relevant terms in the matParams structure 
follows: 
 
int nelements : the number of elements that need a material evaluation 
 
int nintg : the number of integration points per element 
 
double dt : the time step 
 
double time : the total solution time 
 
double * strain_rate : a pointer to the un-rotated rate of deformation for the time step. 
 
double * stress_old : a pointer to the un-rotated Cauchy stress at time nt . 

 
double * stress_new : a pointer to the un-rotated Cauchy stress at time 1nt + . 

 
double * state_old : a pointer to the state variables for the model at time nt . 

 
double * state_new : a pointer to the state variables for the model at time 1nt + . 

 
double * temp_old : a pointer to the temperature at time nt . 

 
double * temp_new : a pointer to the temperature at time 1nt + . 

 
double * left_stretch : a pointer to the left stretch tensor at time 1nt + . 

 
double * rotation : a pointer to the rotation tensor at time 1nt + . 

 
There are other quantities that can be passed between a host code and LAME.  These other 
quantities are generally specific to certain solution algorithms in Adagio or they are quantities 
that are currently being tested for a specific model implementation.  Once we are convinced that 
their use and implementation are robust they will be documented. 
 
It is worth noting here that the interface for the constitutive models has been developed from the 
constitutive model implementation in Sandia National Laboratories’ legacy solid mechanics 
codes.  The objective stress rate assumed by this implementation is a Green-McInnis stress rate.  
Therefore, as in our legacy codes, the stress that is passed to LAME – stress_old – is the un-
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rotated Cauchy stress at time nt .  From continuum mechanics the un-rotated stress at time nt  is 

nT  

 
 T

n n n n= ⋅ ⋅T R σ R  (1) 

 
where nσ  is the Cauchy stress at time nt  and nR  is the rotation, derived from the polar 

decomposition of the deformation gradient, at time nt .  Similarly, the rate of deformation and the 

stress at time 1nt +  – strain_rate and stress_new – are also un-rotated.  They have the 

same form as the stress in (1) except that the rotation is evaluated at time 1nt +  

 

 
1 1

1 1 1 1

T
n n

T
n n n n

+ +

+ + + +

= ⋅ ⋅
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d R D R

T R σ R
 (2) 

 
where D  is the rate of deformation and d  is the un-rotated rate of deformation.  Note that it is 
not specified when the rate of deformation is evaluated.  This is because, in general, it varies 
depending on what the finite element code calculates as the rate of deformation.  Sometimes the 
velocity gradient is calculated with respect to the mid-step configuration (incremental 
objectivity) and sometimes it is calculated as the time average of the logarithmic strain over a 
time step (strong incremental objectivity).  So, in general we will not specify what is used for the 
rate of deformation.  In any case it should be understood that the rate of deformation and the 
rotation that is used to un-rotate it may not be consistent.  This is a minor detail that has been 
largely overlooked in the literature (see [11]). 
 
Finally, it must also be realized that any internal state variables that depend on the configuration 
will also need to be stored in the un-rotated configuration – e.g. vectors and tensors.  This could 
have a significant effect on output among other things. 
 
It is necessary for a constitutive model developer to understand the details above since our 
current implementation locks us into a specific type of constitutive model formulation – i.e. a 
hypoelastic Green-McInnis rate.  If a constitutive model developer wants to implement a 
hyperelastic model it is important that they realize that the stress that the application code uses is 
assumed to be the un-rotated Cauchy stress.  Furthermore, if a comparison is made against 
another code that uses a different stress rate – e.g. a Jaumann stress rate – then slight differences 
should be expected in the two results. 
 
In using matParams, the struct is actually created in the host code.  This is done by including 
the header file include/models/Material.h in the host code where the constitutive 
model will be called.  The code that creates matParams would look something like: 
 

lame::matParams parameters; 
 
. . . 
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int nelem, nintg; 
double dt, time; 
double * strain_rate; 
double * stress_old, stress_new; 
double * state_old, state_new; 
double * rotation, left_stretch; 
 
. . . 
 
parameters.nelem = nelem; 
parameters.nintg = nintg; 
parameters.dt = dt; 
parameters.time = time; 
parameters.strain_rate = strain_rate; 
parameters.stress_old = stress_old; 
parameters.stress_new = stress_new; 
parameters.state_old = state_old; 
parameters.state_new = state_new; 
parameters.rotation = rotation; 
parameters.left_stretch = left_stretch; 

 
Of course in this example the values for the number of elements, number of integration points, 
time step, solution time, the un-rotated rate of deformation, the rotation and the left stretch tensor 
need to be calculated by the host code before they are passed to LAME.  Other variables, like 
stress_new and state_new, are calculated by the constitutive model and returned to the 
host code; these pointers need to point to memory that has been allocated for these values.  It 
should also be noted that the terms above (except for the names of the variables in the structure, 
e.g. stress_old) are free to be called whatever makes sense in host code.  All that matters is 
that the variables correspond to what the variables physically need to be for LAME – e.g. 
rotation in the matParams struct must point to the rotation tensor at time 1nt + . 

 
2.1.2 The Application Interface 
 
The application interface used by LAME is defined through the app_interface class.  This 
class can be found in Material.h.  The class provides a hook for LAME to access the host 
code.  The host code will create a class that is derived from app_interface and then pass a 
pointer to the class back to LAME.  The pointer that is passed back will be stored as a static 
variable – so that there will be only one.  LAME will then have a pointer to the object that was 
created in the host code and every model will have access to that pointer. 
 
The main purpose for the application interface is to pass messages for output, warning messages 
and error messages back to the host code.  This is especially important for error messages since 
the host code, which may be running on a number of processors, will have a preferred way to 
terminate the code.  LAME should not, under any circumstances, terminate the code. 
 
The app_interface class in LAME only has one method, reportError 
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virtual void reportError( int error_code, 
                          const char * message, 
                          const into message_length ); 

 
The method is a public method that is also virtual.  The method will be re-implemented in the 
host code in a derived class.  The integer value is an error code that will have one of three values: 
0 is an informational message, 1 is a warning message, and 2 is an error that will print a message 
and terminate the code. 
 
2.1.3 Function Evaluations 
 
The function interface used by LAME is defined through the function class.  This class can 
be found in Material.h.  This class provides a hook for LAME to access functions that are 
defined in the host code.  The host code will create a class that is derived from function and 
then pass a pointer to the class back to LAME.  The pointer that is passed back will be stored as a 
static variable – so that there will be only one.  LAME will then have a pointer to the object that 
was created in the host code and every model will have access to that pointer. 
 
The purpose for the function interface is to allow LAME to use the function evaluation 
capabilities of the host code.  This is useful for any model that has user input functions to 
describe the material response.  It is assumed that a host code will read and store any functions 
related to the constitutive model and have a capability to evaluate these functions.   
 
The function class in LAME has the following methods 
 

virtual void registerFunction( int fnum, 
                               char * name, 
                               char * mat_name, 
                               int length, 
                               int mat_length ); 
 
virtual void evaluateFunction( int fnum, 
                               double & x, 
                               double & y ); 

 
The first method registers a function.  The function name is read in the material input and this 
method assigns an integer to that function.  This vastly speeds up function evaluations in the 
constitutive models. 
 
The second method is used to evaluate a function.  Using the integer assigned to the function in 
the registerFunction method to access that function, this method evaluates the function 
for given abscissa values, x, it returns the ordinate values, y. 
 
Since both methods are virtual, they need to be re-implemented in the host code in a derived 
class. 
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2.2 Data on the Material Base Class 
 
All data on the Material base class is protected data.  There is no public data – all data that 
needs to be accessed by an external application will be accessed through a public method.  There 
is no private data either.  If there were this data would only be accessible by the base class, and 
not any derived class.  We didn’t see a need for this in our design. 
 
2.2.1 Protected Data 
 
The following data is considered as necessary for the constitutive model.  This data is all 
protected data so that classes (i.e. actual constitutive models) that are derived from the 
Material base class will have access to this data – they can set the data and use the data. 
 
2.2.1.1 properties 
 
The properties variable is a pointer to the material property array 
 

double * properties; 
 
Each constitutive model will populate its own material property array based on input received 
from the host code (which is obtained from the user input).  That is, the parsing of the material 
properties from the input deck is performed by the host code and passed via a MatProps 
object which must be populated by the host code.  This material data is then stored in the 
properties array in the LAME material model.  Furthermore, based on the exact material 
property input, the size of this array can vary.  For example, if a constitutive model uses a series 
expansion, the size of the material properties array will vary depending on the number of terms 
that are used on the input deck. 
 
2.2.1.2 num_material_properties 
 
The variable num_material_properties is an integer that holds the number of material 
properties in the property array 
 

int num_material_properties; 
 
Depending on the exact user input, the number of material properties, and thus the size of the 
material property array, can vary. 
 
2.2.1.3 num_state_vars 
 
The variable num_state_vars is an integer that holds the number of state variables for the 
model 
 

int num_state_vars 
 
Depending on the exact user input, the number of state variables can vary. 
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2.2.1.4 state_variable_map 
 
The variable state_variable_map is a map that pairs state variable names with indices in 
the state variable array 
 

map<string,int> state_variable_map; 
 
This map can be used by the host code to output state variables through the public method 
getStateVariableIndex() which returns the state variable number corresponding to the 
string matching a particular state variable alias. 
 
As an example,  suppose a plasticity model has a state variable for the equivalent plastic strain.  
If this state variable is the first state variable in the state variable array we would have 
 

state_variable_map[“EQPS”] = 1; 
 
The map is set through the protected method set_state_variable_alias(). 
 
2.2.1.5 p_function 
 
In order to evaluate functions in LAME, a pointer to a function object is stored in 
p_function 
 

static lame::function * p_function; 
 
The function class is in the lame namespace.  The actual object is created in the host code and 
derived from the function class. 
 
2.2.1.6 p_host 
 
In order to output error messages from LAME, a pointer to the host code is needed.  This is done 
through an app_interface object.  A pointer to this object is stored in p_host 
 

static lame::app_interface * p_host; 
 
The application interface is in the lame namespace.  The actual object is created in the host code 
and derived from the app_interface class. 
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2.3 Methods on the Material Base Class 
 
The methods that are defined on the Material base class provide two things: an interface to 
the application code and utilities for the constitutive models that are derived from the base class.  
The interface methods are public methods.  These methods are accessible by any code with 
access to an object from the library.  The utility methods are protected methods.  These methods 
are accessible by any object that is derived from the base class. 
 
2.3.1 Public Methods 
 
There are a number of public methods that define the interface in the Material base class.  
These methods define what the host code can expect from the constitutive model and what the 
constitutive model can expect from the host code.  They also define the tasks that an arbitrary 
constitutive model needs to do.  If a specific constitutive model does not need a specific task, for 
example an elasticity model will not need an initialization routine at the start of a load step.  In 
this case the model will not implement the method and a default method will be used.  These 
default methods are virtual methods defined on the base class.  In all cases the virtual methods do 
nothing; what they provide is a common interface for the application code. 
 
2.3.1.1 The initialize() Method 
 
The initialize() method provides a way for a constitutive model to set internal state 
variables.  The prototype for the initialize() method is 
 

int initialize( matParams * p ); 
 
Since the number of state variables depends on the number of material points in the mechanics 
code – e.g. in a finite element code this would depend on the number and type of elements – the 
initialization can not be done in the constructor for the model.  In the constructor, the number of 
state variables the each material point needs is specified, but the allocation of that memory is 
done by the application code.  Once the memory has been allocated, the constitutive model can 
initialize that memory through the initialize() method.  While it is possible to compute 
additional properties for a given material in the initialize() method, such property 
completion is typically performed in the constructor of each material model object.  However, if 
those additional properties are needed in the host code, they typically are passed back as state 
variables via the matParams object.  Further code developments for performing this type of 
functionality more elegantly are under consideration. 
 
2.3.1.2 The loadStepInit()  Method 
 
The loadStepInit() method provides a way for a constitutive model to initialize state 
variables at the beginning of a load step.  The prototype for the loadStepInit() method is 
 

int loadStepInit( matParams * p ); 
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Some constitutive models require the calculation of parameters for a specific load step.  One 
example is a property that depends on the temperature.  With the loose coupling between our 
thermal and solid mechanics codes, the temperature at the beginning and end of a time step is 
usually known before a solid mechanics time step is performed.  In the loadStepInit() method we 
can calculate any temperature dependent properties that need to be calculated.  The benefit is that 
these properties are calculated once per time step – not once per iteration.  This can make a big 
difference in a quasi-static analysis.  The temperature dependent properties are stored as state 
variables that can be used in the constitutive model computations. 
 
2.3.1.3 The getStress() Method 
 
The getStress() method does what a constitutive model is developed for – returning the 
stress given a strain input.  The prototype for the getStress() method is 
 

int getStress( matParams * p ); 
 
In this method a constitutive model is called.  This model can be written in FORTRAN, C or 
C++.  The code for the model will exist in a separate file.  Only the call to the constitutive model 
will be in the getStress method, with the possible exception of some pre or post processing 
steps that put the data into the proper form for the constitutive model.  An example of this would 
be if a constitutive model is written with only one stress and state variable array.  Then a 
preprocessing step might be to copy the stress_old array into the stress_new array prior 
to sending the data to the constitutive model.  In a similar way the state_old array would be 
copied into the state_new array. 
 
2.3.1.4 The pcElasticModuli() Method 
 
ADAGIO [9] uses a nonlinear preconditioned conjugate method in solving quasi-static solid 
mechanics problems and incorporates several choices for the preconditioner.  One such choice is 
an isotropic linear elastic preconditioner.  Typically, the moduli for such a preconditioner are set 
once at the beginning of an analysis, but sometimes this is not sufficient.  For instance, material 
models with temperature-dependent moduli can have significant moduli changes that should be 
incorporated into the elastic preconditioner for rapid iterative convergence.  Likewise, some 
models have time-dependent scaling of the bulk and/or shear responses of the materials in order 
to improve convergence in Adagio and the changes in these scalings need to be reflected in the 
elastic preconditioner when it is being used.  The pcElasticModuli() method calculates 
and returns these updated moduli.  The prototype for the pcElasticModuli()method is 
 

int pcElasticModuli( matParams * p ); 
 
2.3.2 Protected Methods 
 
There are a number of protected methods on the base class that define utilities that constitutive 
models can use.  For example, constitutive models will need to get their material properties 
during construction.  There is a protected method on the base class that does this task. 
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2.3.2.1 getNumberProps() Method 
 
Some material properties are contained in arrays, for example the coefficients of a series 
expansion.  For materials with these properties there may be a variable number of terms that are 
read in from the input deck.  This creates the need to dynamically allocate memory for these 
materials.  The method getNumberProps() returns the number of properties associated with 
a given property name 
 

int getNumberProps( string name, 
                    const MatProps & props ); 

 
This method takes the name of the material property as a string along with the MatProps map.  
This method is very useful for determining the number of properties that will go into the material 
property array.  This method is used in the constructor for a constitutive model. 
 
2.3.2.2 getMaterialProperty() Method 
 
Since the material properties are held as an array in a map, LAME has a method that extracts the 
property from the array.  Many properties only have one element in the array while some have a 
variable number of elements.  For this reason the getMaterialProperty() is overloaded 
with an implementation for both cases 
 

double getMaterialProperty( string name, 
                            const MatProps & props ); 

 
double getMaterialProperty( string name, 
                            const MatProps & props, 
                            int n ); 

 
The first method extracts the value for the material property from props when there is only one 
material property.  When the array in props has more than one value, the second method 
extracts the “nth” value in the array.  This method is used in the constructor for a constitutive 
model. 
 
2.3.2.3 set_state_variable_alias() Method 
 
While the material properties are ultimately held in the specific object that is created for the 
material model, the state variables are created and held by the host code.  This is done since the 
total number of state variables is dependent on things outside of LAME, e.g. the number of 
elements in the problem.  The host code, therefore, will have access to all of the state variables 
but will not generally know what they represent.  This can pose a problem for output.  For this 
reason there is a state variable alias in LAME that allows the host code to determine which state 
variable is which.  While this is used for output, the capability could be used for other things in 
the host code. 
 
The set_state_variable_alias() 
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int set_state_variable_alias( string name, 
                              int pos ); 

 
associates the indices for a state variable with a state variable name.  The state variable name is 
passed in as a string while the location in the state variable is passed in as an int.  This 
method is used in the constructor for a constitutive model. 
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2.4 Creating a Material 
 
The principal concept behind the interface between LAME and a host code is that the material 
models all look the same to the host code.  This is accomplished by passing from LAME, to the 
host code, a pointer to a Material object.  The actual object that the pointer points to could be 
an Elastic object, a Viscoplastic object or a Hyperfoam object, etc; the host code will 
not know exactly what object the pointer points to.  One issue associated with this is that all 
material models must have all of the possible methods that the host code might use.  This is 
accomplished by defining virtual functions in the base class and redefining them in the derived 
classes.  This was described in Section 2.3. 
 
A second issue associated with this idea involves creating the object in the first place.  Before we 
can pass a pointer back to the host code we need to actually create the correct object.  In object 
oriented programming this can be done using a factory method.  This is accomplished in LAME 
through what may only be loosely considered a factory method.  A lot of the subtlety of a factory 
method is not seen in LAME since we wanted to design something that is easy to use for 
virtually anyone.  But the basic concept is the same in that it provides a solution to the problem 
of creating a specific derived class. 
 
2.4.1 MaterialCreator Class 
 
The MaterialCreator class defines an object that creates a constitutive model and returns a 
pointer to that model.  Most classes based on a factory method in C++ are more elegant than the 
MaterialCreator class, that is why we say that it is “loosely” a factory method. 
 
The principal method on the MaterialCreator class is the create_material() 
method.  The create_material() method has the following signature 
 

Material * create_material( const string & material_name, 
                            const MatProps & props) const; 

 
The create_material() method is passed the name of the constitutive model and the 
material properties.  The material name is expected as a reference to a string.   The material 
properties are expected as a reference to a MatProps object.  As previously noted, MatProps 
is defined in the header file, include/models/Material.h, as a typedef 
 

typedef map< string, vector<double> > MatProps; 
 
Also recall that the property values are stored in a vector since a material property name might 
actually be associated with an array of values.  For example, in a viscoelastic model a Prony 
series is often used to model relaxation.  In general, a model developer will not know how many 
terms you need in your Prony series.  This capability allows a developer to call a property, for 
example Prony_Coefficient, and expect a list of the coefficients.  All of the Prony 
coefficient are now stored in the map as a vector of doubles that can be accessed with the 
keyword Prony_Coefficient. 
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3. MODELS CURRENTLY IMPLEMENTED 
 
A number of models are already implemented in LAME.  Some of these models have a complete 
implementation – the model is in LAME, it has been tested and all of the expected features work.  
These models, which have a complete implementation, and their tests are being documented in 
separate SAND reports [12,13].  Many models only have a partial, or initial, implementation.  
These models will have a more complete implementation in the future as they are completed and 
tested. 
 
The models that are implemented are able to be used with the Sierra based application codes 
Adagio and Presto.  In fact, the models in LAME have close ties to Adagio and Presto in that 
many of the models were originally implemented in either the Sierra framework or Strumento.  
However, as the capabilities of LAME have increased, model implementation – and even 
development – has increasingly been done in LAME.  The Cowper-Symonds model, the Low 
Density Foam model and the Thermoelastic-Plastic Power Law Hardening Weld model are 
examples of models that are only available in Adagio and Presto through LAME.  Furthermore, 
the Universal Polymer Model is currently being developed in LAME, using Adagio. 
 
Some capabilities, however, still need to be worked out for LAME.  One such capability involves 
the use of arbitrary coordinate systems.  While some orthotropic models are in LAME, these 
models have coordinate systems that are fixed for an element block.  Orthotropic elastic models 
that were implemented in Strumento are able to have coordinate systems that are a function of 
position.  Working out how to use these coordinate systems in LAME has not been done.  It may 
be a simple as what has been done with function evaluations, where the host code is accessed 
from LAME to evaluate coordinate systems, but until the problem is examined in more detail we 
will not know. 
 
Another capability that is needed in LAME is the ability to compile FORTRAN 90 code.  Many 
constitutive models are written in FORTRAN 90 and we would like to implement these models 
in LAME.  However, LAME is a part of the Sierra system in SNTools and FORTRAN 90 is not 
supported on all of their platforms.  Therefore, we need to find some way of compiling the 
FORTRAN 90 code when we have access to a F90 compiler and not compiling the code when 
we do not have a F90 compiler.  This can probably be done through pre-processor definitions, 
but we have not had the time to look into the problem.  We have had success compiling 
FORTRAN 90 code on our desktop machines, so there is no big technical barrier to this problem 
– just a time barrier. 
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Table 1.  Models that are currently implemented in LAME 
 

Model Initial Implementation Complete Implementation 
BCJ yes yes 
BCJ_MEM yes yes 
Bulk yes no 
Cowper-Symonds yes no 
Ductile Fracture yes yes 
Elastic yes yes 
Elastic Fracture yes yes 
Elastic-Plastic yes yes 
EP Power Law yes yes 
Foam Plasticity yes yes 
Incompressible Solid yes yes 
Johnson Cook yes yes 
Honeycomb yes yes 
Hyperfoam yes yes 
Isotropic Geomodel yes no 
Low Density Foam yes no 
Multilinear EP yes yes 
Multilinear EP with Failure yes yes 
Neo-Hookean yes yes 
NLVE Polymer yes yes 
NLVE Thermoset yes yes 
Orthotropic Crush yes yes 
Orthotropic Rate yes yes 
Piezoelectric yes no 
Power Law Creep yes yes 
Shape Memory yes no 
Soil and Foam yes yes 
Solder yes yes 
Solder with Damage yes yes 
Stiff Elastic yes yes 
Thermoelastic yes yes 
Thermo EP Power Law yes yes 
Thermo EP Power Law Weld yes yes 
Mooney-Rivlin yes yes 
Swanson yes yes 
Universal Polymer yes yes 
Viscoelastic Swanson yes yes 
Viscoplastic yes yes 
Viscoplastic Foam yes yes 
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4.  CONCLUSIONS 
 
The Library of Advanced Materials for Engineering (LAME) provides a library with a simple 
interface to a solid mechanics application code.  Furthermore, the interface for implementing a 
model is also extremely simple and provides support for a wide range of constitutive models.  
The amount of object oriented programming knowledge required for implementing a material 
model in LAME is minimal and easy to pattern match.  These aspects of LAME make the library 
very versatile and a useful platform for constitutive model development in support of Sandia 
National Laboratories’ mission. 
 
A few capabilities that are needed still need to be implemented, and certainly more capabilities 
will arise as LAME sees more use.  The current library has a flexible interface and it is believed 
that future capabilities can be provided relatively easily.  In the future, an extension to LAME to 
structural models is being planned.  Finally, current work is already underway on incorporating 
ITAR and CRADA protected models into LAME. 
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APPENDIX A:  EXAMPLE MODEL IMPLEMENTATION 
 
An example model implementation of a linear-hardening elastic-plastic model is presented here.  
Implementation of the linear-hardening elastic-plastic model involves three files.  The first is the 
header file ElasticPlastic.h which sets the function signatures for the methods from the 
Material base class which are replaced with material specific functions (initialize and 
getStress).  The signatures for the FORTRAN routines that are called by these methods are 
also given there.  The second file is the implementation file ElasticPlastic.C which 
implements the constructor, destructor, and initialize and getStress methods.  In the 
constructor, the material properties are retrieved from the MatProps map and stored in the 
properties array and aliases are set for the state variables.  The destructor eliminates the storage 
space that was used for the properties array.  Note that the initialize and getStress 
C++ methods serve to extract the necessary data from the matParams structure in calling the 
FORTRAN routines which perform the necessary numerical calculations.  Finally, the 
FORTRAN subroutines associated with the initialize method which initializes the state 
variables for this model and getStress method which does the actual stress calculation are 
given in elastic_plastic.F.   
 
A.1 ElasticPlastic.h 
 
 
#ifndef _ELASTIC_PLASTIC_H_ 
#define _ELASTIC_PLASTIC_H_ 
 
#include <models/Material.h> 
#include <Lame_Fortran.h> 
 
namespace lame { 
 
  /** 
   * 
   * This is the class for the elastic-plastic linear hardening 
   * constitutive model.  This mode is a hypoelastic model that 
   * uses an elastic predictor with a radial return method to 
   * integrate the flow rule. 
   * 
   * \f$ 
   *     D_{ij} = D_{ij}^{e} + D_{ij}^{p} 
   * \f$ 
   * 
   * \f$ 
   *     \sigma_{ij}^{n+1} = \sigma_{ij}^{n} 
   *     + \Delta t \left( \lambda \delta_{ij} D_{kk}^{e} 
   *                       + 2\mu D_{ij}^{e} \right) 
   * \f$ 
   * 
   * \f$ 
   *     D_{ij}^{p} = \gamma \partial\phi/\partial\sigma_{ij} 
   * \f$ 
   * 
   */ 
 
  class ElasticPlastic : public Material{ 
 
  public: 
 
    ElasticPlastic( MatProps props ) ; 
    ~ElasticPlastic() ; 
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    int initialize( matParams * p ); 
    int getStress( matParams * p ); 
 
  private: 
 
    // 
    // private and unimplemented to prevent use 
    // 
 
    ElasticPlastic( const ElasticPlastic & ); 
    ElasticPlastic & operator= ( const ElasticPlastic & ); 
 
  } ; 
 
  // ****************************************************************** 
  // 
  // FORTRAN subroutine definitions 
  // 
  // ****************************************************************** 
 
  extern "C" void 
    LAME_FORTRAN(elastic_plastic_initialize) 
    ( const int    & nelem, 
      const double * props, 
      double * state_old, 
      double * state_new ); 
 
  extern "C" void 
    LAME_FORTRAN(elastic_plastic_get_stress) 
    ( const int    & npts, 
      const double & dt, 
      const double * props , 
      double * strain_rate, 
      double * stress_old , 
      double * stress_new , 
      double * state_old , 
      double * state_new ); 
 
} // lame 
 
#endif 
 
 

A.2 ElasticPlastic.C 
 
#include <models/ElasticPlastic.h> 
 
namespace lame { 
 
  //****************************************************************** 
  // 
  // This is the constructor for the Elastic Plastic Linear 
  // Hardening model. 
  // 
  // The properties it reads into the properties array are: 
  // 
  //   YOUNGS_MODULUS 
  //   POISSONS_RATIO 
  //   YIELD_STRESS 
  //   HARDENING_MODULUS 
  //   BETA 
  // 
  // There are 8 state variables.  All of them are aliased 
  // for output. 
  // 
  //   0      - equivelent plastic strain 
  //   1 to 6 - components of the back stress tensor 
  //   7      - radius of yield surface 
  // 
  //****************************************************************** 
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  ElasticPlastic::ElasticPlastic(MatProps props){ 
 
    // 
    // Material Property Definitions 
    // 
 
    num_material_properties = 5; 
 
    properties = new double[num_material_properties]; 
 
    properties[0] = getMaterialProperty("YOUNGS_MODULUS",props); 
    properties[1] = getMaterialProperty("POISSONS_RATIO",props); 
    properties[2] = getMaterialProperty("YIELD_STRESS",props); 
    properties[3] = getMaterialProperty("HARDENING_MODULUS",props); 
    properties[4] = getMaterialProperty("BETA",props); 
 
    // 
    // State Variable Definitions 
    // 
 
    num_state_vars = 8; 
 
    set_state_variable_alias("EQPS",0); 
    set_state_variable_alias("ALPHA_XX",1); 
    set_state_variable_alias("ALPHA_YY",2); 
    set_state_variable_alias("ALPHA_ZZ",3); 
    set_state_variable_alias("ALPHA_XY",4); 
    set_state_variable_alias("ALPHA_YZ",5); 
    set_state_variable_alias("ALPHA_ZX",6); 
    set_state_variable_alias("RADIUS",7); 
 
  } 
 
  //****************************************************************** 
  // 
  // The destructor for the Elastic Plastic Linear Hardening 
  // model frees up the memory created for the material properties. 
  // 
  //****************************************************************** 
 
  ElasticPlastic::~ElasticPlastic(){ 
 
    delete [] properties; 
    properties = NULL; 
 
  } 
 
  //****************************************************************** 
  // 
  // The initialize method for the Elastic Plastic Linear 
  // Hardening model initializes the state variables 
  // 
  //****************************************************************** 
 
  int ElasticPlastic::initialize(  matParams * p ) { 
 
    LAME_FORTRAN(elastic_plastic_initialize)( p->nelements, 
           properties, 
           p->state_old, 
           p->state_new ); 
 
    return 0; 
 
  } 
 
  //****************************************************************** 
  // 
  // The getStress method for the Elastic Plastic Linear 
  // Hardening model finds the new stress for the material 
  // 
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  //****************************************************************** 
 
  int ElasticPlastic::getStress( matParams * p ) { 
 
    LAME_FORTRAN(elastic_plastic_get_stress)( p->nelements, 
           p->dt, 
           properties, 
           p->strain_rate, 
           p->stress_old, 
           p->stress_new, 
           p->state_old, 
           p->state_new); 
 
    return 0; 
 
  } 
 
} // lame 
 
 
 

A.3 elastic_plastic.F 
 
 
      subroutine elastic_plastic_get_stress(nelem,dt,props, 
     *     strain_rate,stress_old,stress_new,state_old,state_new) 
c 
c********************************************************************** 
c********************************************************************** 
c 
c description:  
c   elastic plastic material model. 
c 
c formal parameters - input: 
c     nelem         int   number of elements in the workset 
c     dt            real  time increment 
c     strain_rate   real  strain rate 
c     stress_old    real  stress 
c 
c formal parameters - output: 
c     stress_new    real  stress 
c 
c********************************************************************** 
c 
#include <lame_precision.par> 
#include <lame_numbers.par> 
#include <lame_type_sizes.par> 
c 
c make some shorter aliases for tensor component parameters 
c 
      parameter( kxx = 1, kyy = 2, kzz = 3, 
     *           kxy = 4, kyz = 5, kzx = 6 ) 
c 
      dimension stress_old(6,nelem),stress_new(6,nelem) 
      dimension state_old(8,nelem),state_new(8,nelem) 
      dimension strain_rate(6,nelem) 
      dimension props(5) 
c 
      youngs   = props(1) 
      pr       = props(2) 
      yield_stress = props(3) 
      hard_mod     = props(4) 
      beta         = props(5) 
c 
      twog     = youngs/(one+pr) 
      alambda  = twog*pr/(one-two*pr) 
c 
      twogdt = twog * dt 
      alamdt = alambda * dt 



29 

c 
      threeg = twog / two3rds 
      ratio = sqrt( two3rds ) * beta * hard_mod 
      term = one / ( twog * ( one + hard_mod / threeg ) ) 
      ohard = ( one - beta ) * two3rds * hard_mod  
      radius0 = sqrt( two3rds ) * yield_stress 
c 
      do k=1,nelem 
c 
c compute new stress 
c 
         traced = strain_rate(kxx,k) 
     *          + strain_rate(kyy,k) 
     *          + strain_rate(kzz,k) 
c 
         stress_new(kxx,k) = stress_old(kxx,k) + alamdt * traced 
     *                     + twogdt * strain_rate(kxx,k) 
         stress_new(kyy,k) = stress_old(kyy,k) + alamdt * traced 
     *                     + twogdt * strain_rate(kyy,k) 
         stress_new(kzz,k) = stress_old(kzz,k) + alamdt * traced 
     *                     + twogdt * strain_rate(kzz,k) 
         stress_new(kxy,k) = stress_old(kxy,k) 
     *                     + twogdt * strain_rate(kxy,k) 
         stress_new(kyz,k) = stress_old(kyz,k) 
     *                     + twogdt * strain_rate(kyz,k) 
         stress_new(kzx,k) = stress_old(kzx,k) 
     *                     + twogdt * strain_rate(kzx,k) 
c 
c trial stress measured from the back stress 
c 
         s1 = stress_new(kxx,k) - state_old(2,k) 
         s2 = stress_new(kyy,k) - state_old(3,k) 
         s3 = stress_new(kzz,k) - state_old(4,k) 
c 
         smean = ( s1 + s2 + s3 )/3.0 
c 
         ds1 = s1 - smean 
         ds2 = s2 - smean 
         ds3 = s3 - smean 
         ds4 = stress_new(kxy,k) - state_old(5,k) 
         ds5 = stress_new(kyz,k) - state_old(6,k) 
         ds6 = stress_new(kzx,k) - state_old(7,k) 
c 
         dsmag2 = ds1**2 + ds2**2 + ds3**2 
     *          + two * ( ds4**2 + ds5**2 + ds6**2 ) 
c 
         radius = radius0 + state_old(1,k) * ratio 
         r2 = radius * radius 
c 
         if ( dsmag2.gt.r2 ) then 
c 
c trial stress outside yield surface 
c 
            dsmag = sqrt(dsmag2) 
            diff = dsmag - radius 
            xlam = term * diff 
            state_new(1,k) = state_old(1,k) + xlam * sqrt(two3rds) 
            state_new(8,k) = sqrt(two3rds)*yield_stress 
     *           + ratio*state_new(1,k) 
c 
c update back stress 
c 
            factor = ohard * xlam / dsmag 
            state_new(2,k) = state_old(2,k) + factor * ds1 
            state_new(3,k) = state_old(3,k) + factor * ds2 
            state_new(4,k) = state_old(4,k) + factor * ds3 
            state_new(5,k) = state_old(5,k) + factor * ds4 
            state_new(6,k) = state_old(6,k) + factor * ds5 
            state_new(7,k) = state_old(7,k) + factor * ds6 
c 
c update stress 
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c 
            factor = twog * xlam / dsmag 
            stress_new(kxx,k) = stress_new(kxx,k) - factor * ds1 
            stress_new(kyy,k) = stress_new(kyy,k) - factor * ds2 
            stress_new(kzz,k) = stress_new(kzz,k) - factor * ds3 
            stress_new(kxy,k) = stress_new(kxy,k) - factor * ds4 
            stress_new(kyz,k) = stress_new(kyz,k) - factor * ds5 
            stress_new(kzx,k) = stress_new(kzx,k) - factor * ds6 
c 
         else 
c 
            state_new(1,k) = state_old(1,k) 
c 
            state_new(2,k) = state_old(2,k) 
            state_new(3,k) = state_old(3,k) 
            state_new(4,k) = state_old(4,k) 
            state_new(5,k) = state_old(5,k) 
            state_new(6,k) = state_old(6,k) 
            state_new(7,k) = state_old(7,k) 
c 
            state_new(8,k) = state_old(8,k) 
c 
         endif 
c 
      enddo 
c 
      return 
      end 
c 
c*********************************************************************** 
c*********************************************************************** 
c 
      subroutine elastic_plastic_initialize( nelem, props, 
     *     state_old, state_new) 
c 
c*********************************************************************** 
c*********************************************************************** 
c 
c description:  
c   initialization routine for the elastic/plastic material model 
c   with power law hardening. 
c 
c formal parameters - input: 
c     nelem         int   number of elements in the workset 
c     props         real  array of material properties 
c     state_old     real  equivalent plastic strain 
c 
c formal parameters - output: 
c     state_new     real  equivalent plastic strain 
c 
c*********************************************************************** 
c 
#include <lame_precision.par> 
#include <lame_numbers.par> 
#include <lame_type_sizes.par> 
c 
      character*80 message 
c 
      dimension state_old(8,nelem),state_new(8,nelem) 
      dimension props(5) 
c 
c Error checking 
c 
      hard_mod = props(4) 
c 
      if (hard_mod.lt.0.d0) then 
         write(message,101) 
         call lame_report_error(3,message) 
      endif 
c 
c Set initial state variables 
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c 
      yield_stress = props(3) 
      radius = sqrt(two3rds)*yield_stress 
c 
      do k = 1,nelem 
c 
         do i = 1,7 
            state_old(i,k) = zero 
            state_new(i,k) = zero 
         enddo 
c 
         state_old(8,k) = radius 
         state_new(8,k) = radius 
c 
      enddo 
c 
 101  format('Hardening modulus is less than zero') 
c 
      return 
      end 
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