LBL-37438
© UC-404

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

r

s

Materials Sciences Division

Quasiparticle Energy Studies of Bulk
Semiconductors, Surfaces and Nanotubes

X.F. Blase
(Ph.D. Thesis)

December 1994

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098




DISCLAIMER

This document was prepared as an account of work sponsored by the
United States Government. Neither the United States Government
nor any agency thereof, nor The Regents of the University of Califor-
nia, nor any of their employees, makes any warranty, express or im-
plied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe pri-
vately owned rights. Reference herein fo any specific commercial
product, process, or service by its trade name, trademark, manufac-
turer, or otherwise, does not necessarily constitute or imply its en-
dorsement, recommendation, or favoring by the United States Gov-
ernment or any agency thereof, or The Regents of the University of
California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government
or any agency thereof or The Regents of the University of California
and shall not be used for advertising or product endorsement pur-

poses.

Lawrence Berkeley Laboratory is an equal opportunity employer.



DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.




.4

»

LBL-37438
UC-404

Quasiparticle Energy Studies of Bulk Semiconductors,
Surfaces and Nanotubes

Xavier Francois Blase
Ph.D. Thesis

Department of Physics
University of California, Berkeley

and

Materials Sciences Division
Lawrence Berkeley Laboratory
~University of California
Berkeley, CA 94720

December 1994

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

This work was supported in part by the Director, Office of Energy Research, Office of Basic Energy Sciences,
Materials Sciences Division, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098, and
by National Science Foundation Grant No. DMR-~9120269.

oTTl

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED; y




(>

LBL-37438
uc 404

Quasiparticle Energy Studies of Bulk Semiconductors, Surfaces and Nanotubes
by
Xavier Francois Blase

DEA (Ecole Normale Supérieure de Lyon et Université Claude Bernard, France)
1989

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy
in
Physics
in the
GRADUATE DIVISION
of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in Charge:

Professor Steven G. Louie, Chair
Professor Peter Y. Yu

Professor Eugene E. Haller

1994




- Abstract
Quasiparticle Energy Studies of Bulk Semiconductors, Surfaces and Nanotubes.
by
Xavier Francois Blase
Doctor of Philosophy in Physics
University of California at Berkeley

Professor Steven G. Louie, Chair

This dissertation focuses on the understanding of many-electron effects in bulk,
surface, layered or nanostructure (e.g. nanotubes) semiconductors. The influence
of many-body effects on the electronic. excitation energies (quasiparticle band struc-
ture) of these materials is explored. The GW approximation, including local field
effects, for the self-energy operator is used throughout this work to calculate quasi-

particle energies. Specific studies include:

o A study of the newly discovered carbon nanotubes is carried out. Structural
stability and band structures are calculated. A similar study is performed
for boron-nitride (BN) nanotubes, leading to the prediction of their stability.
For both systems, unexpected electronic features with important technological
potentials are predicted. The filling of carbon nanotubes with metal atoms and

the doping of BN nanotubes by carbon and other impurities is also studied.

* A study of the occupied surface states at the H/Si(111)-(1x1) surface is per-

formed. We show that a quantitative understanding of the electronic structure

fa

requires a full quasiparticle calculation even for this simple chemisorption sys-

tem.

e The core level shift of the Si 2p levels for atoms near the H/Si(111)-(1x1)
surface is calculated. We show that a simple first order perturbation theory

using pseudopotential and the local density approximation gives good results

for the observed features in the photoemission spectra of the core electrons.




e A study of the quasiparticle energies of bulk hexagonal BN and those of an

isolated BN sheet is done. The results provide a physical understanding of the
quasiparticle band structure of BN nanotubes. A nearly-free electron state
with a wavefunction in the inter-layer or vacuum region is shown to compose

the bottom of the conduction bands.

e A novel mixed-space formalism for the calculation of the dynamical screening
effects and electron self-energy operator in solids is presented. This approach
provides an efficient algorithm to calculate quasiparticle energies for large sys-

tems.
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Chapter 1

Introduction and Overview

This dissertation is on the study of the structural and electronic properties of
real materials using first-principles quantum mechanical methods. Two approaches
are employed extensively: the density functional theory (DFT) [1] for ground-state
properties and the quasiparticle self-energy approach [2] within the GW approxima-
tion [3] for electronic excitation properties. Calculations have been carried out to
explain and predict the properties of several systems of significant current interest,
including the newly discovered carbon and B-C-N composite nanotubes, semicon-
ductor surfaces and layered materials, and wide band gap II-VI compounds. A novel
approach for quasiparticle energy calculations is also developed.

In the past decade, considerable progiess has been made in calculating the struc-
tural and electronic properties of materials within the local density approximation
(LDA) [1] to DFT. More efficient nonlocal [4] and ultrasoft pseudopotentials [5]
reduce considerably the effort of computations. New algorithms to iteratively di-
agonalize the Hamiltonian matrix [6] or to find directly the eigenvalues by efficient
minimization techniques [7] have been developed and implemented, and systems
with several hundreds of atoms can now be studied. Very recently, several N-linear
methods have also been proposed [8, 9, 10, 11] in which the computing time scales
linearly in the number of atoms N in the unit cell in the large N limit. Such
improvements in the efficiency of state-of-the-art LDA calculations have allowed
tremendous progress in the understanding of the ground-state properties of an ever
expanding range of materials. The predictive power of ab initio calculations have

been enhanced to such an extent that DFT-LDA are now being used in attempts to

“design” new materials [12]. We present in Chapter 2 a study within LDA of the




Chapter 1. Introduction and Overview

novel carbon and boron-nitride nanotubes. The metastability of carbon nanotubes
is confirmed by our theory [13] and the existence of BN nanotubes is predicted [14].
In addition, unusual and possibly technologically important electronic features are
shown to arise in these structures. In the case of carbon nanotubes, hybridization
of the o* and 7* states of graphene is shown to be as important as band folding
effects in determining the metallicity of small radius carbon nanotubes. For the
BN nanotubes, we predict the lowest conduction state to be free-electron like with
charge density localized inside the tube, leading to a remarkable constancy of the
band gap independent of the tube size and helicity. Further, substitutional doping
of BN nanotubes by carbon is studied. We show that carbon impurities substitut-
ing B atoms yield too deep a donor level to populate efficiently the bottom of the
nanotubes conduction bands. Finally, we study the filling of carbon nanotubes by
metallic atoms. We show that, for small radius nanotubes, microscopic processes
such as interatomic charge transfer are responsible for the “intercalation within” of
carbon nanotubes by metallic atoms.

Although ground-state properties such as structure, binding energies, and vi-
brational properties can be obtained within DFT, those associated with exciting
electronically the system into a higher energy state are beyond the scope of a
ground-state theory. As a consequence, the Kohn-Sham eigenvalues, used within
DFT to determine the ground-state total energy of real-materials, are well-known
to yield large errors when compared to experiment for fundamental quantities such
as band gap, interface- and surface-state energies, or semiconductor band offsets.
These problems are related to the approximate use of the Kohn-Sham eigenvalues for
quasiparticle energies. In particular, they do not invalidate the band structure pic-
ture of solids, which have proven to be a very convenient and successful framework
for understanding electronic excitations. This is exemplified in this thesis where we
show that the photoemission spectra of real materials can be explained quantita-

tively and even predicted, provided that they are properly interpreted as transitions
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between quasiparticle states of the many-electron systems. These quasiparticles,
which are the particle-like excitations of an interacting many-electron system, pro-
vide a bridge between a rigorous many-body theory and the very “practical” band
structure picture. We note, however, that such an approach relies on the presence of

“well resolved” peaks in the experimental spectra used to characterize the electronic

states of the system of interest. Because a quasiparticle is defined and experimen-

tally observed as a peak in the spectral density of the interacting system, it is of
course required that these spectral peaks be well defined and do not overlap to form
a featureless background. Equivalently, the lifetime of these particle-like excitations
must be largér than the mean interaction time of the experimental probe with the
crystal. This condition insures the “functionality” of the quasiparticle approach.

For a detailed exposition on the concept of quasiparticle, we list in the bibliog-
raphy references for the Fermi liquid theory [15] which lays the formal framework
for the present approach. In brief, the “many-body” approach incorporates the fact
that bare electrons in solids are strongly interacting with each other via the Coulomb
potential V. To deal with the complexity of the many-body problem, we assume, as
a starting point, that the non-interacting electrons evolve “continuously” (when the
Coulomb interaction is adiabatically switched on) into “identifiable” quasi-particles.
By continuously, we mean that in the process of switching on the interaction, no
phase transition occurs which radically changes the structure of the energy spectrum
so that the one-to-one correspondence between the electrons and the quasiparticles is
not broken (important counter-examples are the Wigner crystallization at low elec-
tronic density and the superconducting transition). These quasiparticles can then
be roughly described as electrons surrounded by a polarization cloud or exchange-
correlation hole. Therefore, the interaction of an electron with its surrounding can
be recast as a self-energy for the quasiparticle.

To obtain now an expression for the self-energy operator, one notes that the

screened interaction W in a solid is in general much weaker than the bare Coulomb
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potential. Consequently, an expansion of the self-energy operator in terms of W
converges rapidly. Taking the first term of this expansion yields the so-called GW
approximation [3] for the self-energy operator (with G being the electron propaga-
tor). It is this approximation which is used throughout this thesis. Further, following
the pioneering work by Hybersten and Louie [2] who provided for the first time a
practical method to calculate ab initio the quasiparticle energies of real materials in
the GW approximation, this approach has been shown to yield for semiconductors
bulk [2, 16, 17], surface [18, 19, 20, 21], interface [22] and superlattice [23] quasi-
particle energies accurate to within 0.1 eV when compared to various spectroscopic
experiments. The method has also recently been successfully applied to complex
materials such as solid Cgq [24].

As part of this thesis, we study using the self-energy approach [2] several mate-
rials of important theoretical and technological interests. We focus specifically on
systems in which the structural and electronic properties depend on the interplay of
physically very different electronic states. For example, the study-of a surface sys-
tem requires that the theoretical approach employed be able to treat with the same
accuracy both extended bulk states and localized surface states. We present also
the example of layered materials where layer states and inter-layer states coexist.
Finally, II-VI compounds are materials in which the interaction of the core-like 3d
states with the covalent s and p levels has a crucial influence on both the structural
and electronic properties.

In Chapter 3, we present a study of the surface states of the H/Si(111)-(1x1)
surface [25]. Because of both its simplicity and the availability of recent state-of-
the-art high-resolution angle-resolved photoemission data, this system is an ideal
prototype for studying many-body effects at a semiconductor surface. Comparison
of the quasiparticle surface-state energies with those from LDA eigenvalues shows
that the self-energy corrections are very large, typically two to three times larger

than the corrections found in previous calculations on other semiconductor surface



systems. For some of the surface states, their energy locations are extracted by the
self-energy operator from the bulk continuum where they were incorrectly located
within LDA. In addition, the calculated dispersion of theses surface states (which is
found to be too large by ~ 1 eV within LDA) is brought to perfect agreement with
experiment.

In Chapter 5, we study the quasiparticle band-structure of bulk hexagonal BN
as well as that of an isolated BN sheet [26]. These systems are technologically im-
portant since bulk BN is an extremely hard material and possesses the widest band
gap of all the III-V compounds. Also, theoretical calculations on an isolated BN
sheet are used to provide informations for the analysis of the properties of the BN
nanotubes. The self-energy correction opens the LDA band gap of hexagonal BN
by as much as 1.7 eV. In the case of the isolated BN sheet, LDA and GW in fact
do not yield the same conduction band ordering, leading to a different identification
of the states which determine the band gap. This is related to an exceptionally
large k-dependency of the self-energy of the various electronic states in this partic-
ular system. The importance of an interlayer state in determining the gap of bulk
hexagonal BN is demonstrated. A corresponding “sheet” state, in the case of the
isolated BN sheet, plays the same role in determining its band gap.

Although the reliability of the present self-energy approach to describe quasipar-
ticle energies has been clearly demonstrated for s-p bonded materials, calculations
within this formalism have been restricted to the study of systems with less than 100
atoms. The primary reason is that calculations with the self-energy approach re-
quire a significant increased complexity in the formalism as compared to DFT-LDA
calculations. In particular, because dynamical and local-fields effects are crucial for
accurately describing the screening in real materials [2], they are both taken into
account in the present quasiparticle formalism. Therefore, the self-energy opera-
tor is non-local, energy-dependent and in general non-Hermitian. Its calculation

is computationally much more demanding than simply solving the local and time-
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independent Kohn-Sham equation within LDA.

To improve on this situation, we propose in Chapter 6 a novel mixed-space
formalism for the quasiparticle energy calculations within the GW approximation.
This new approach is shown to be computationally more efficient than the existing
reciprocal-space formalism [2], in particular for calculations on large size supercells,
or supercells in which the vacuum region constitutes a large part of the unit-cell
(molecules, clusters, surfaces, etc) or systems which exhibit significant electronic
charge density inhomogeneities (transition metals, II-VI compounds, etc). Results
for bulk Si and the H/Si(111)-(1x1) surface are presented. In addition, going be-
yond the generalized plasmon pole model generally used in previous quasiparticle
calculations, we implement an explicit calculation of the frequency dependence of
the dielectric matrix. This effort is motivated in part by our attempt to calculate
the quasiparticle energies of the 3d levels in cubic ZnS. We show in this case (see
Appendix A) that the use of the generalized plasmon pole model for the extension
to finite frequencies of the static dielectric matrix may not be adequate. We note
here that most of the equations on which the quasiparticle GW formalism is based
will be presented in Chapter 6 (besides an introduction in section 3.2.2). Readers
who are not familiar with the self-energy approach may want to read this chapter
first.

To close this introductory chapter, we would like to note that sometimes it is
not necessary to carry out heavy computational calculations to get “trends” and
understanding of the behavior of materials and that under appropriate conditions
simple model Hamiltonians can reproduce fairly well many properties of materi-
als while providing, at the same time, a very simple picture of the basic driving
mechanisms for the properties of interest. For example, in Chapter 4, a simple
first-order perturbation theory gives excellent results for the the Si 2p core level
shift at the H/Si(111)-(1x1) surface [27]. As another example, we show in Appendix

A that a simple Hubbard Hamiltonian, based on parameters derived from ab ini-




tto total energy calculations, yields excellent results for the binding energies of the
two-phonon bound states at the H/C(111)-(1x1) surface [28]. We note however
that semi-empirical methods may sometimes fail ttoo describe new materials or new
situations because the transferability of the parameters used in such approaches is
never certain. This is exemplified in Chapter 2 where it is shown that tight-binding
(TB) approaches, with parameters designed to reproduce the electronic properties
of bulk hexagonal graphite and BN, fail to describe the novel electronic properties of
nanotubes induced by the curvature and nanoscale size of these structures. Another
example is given in Chapter 5 where a nearly-free-electron state is discovered which
cannot be described by the usual localized basis sets used in TB. Of course (and
this is a motivation for this work) the lack of transferability of a theoretical model
(such as the uniform electron gas model for LDA) limits also the predictive abilities
of ab inito methods. There is the usual temptation to try to overcome the problem
by adding additional layers of complexity to the existing theories. It is definitely a
very difficult task to maintain both a balance and a bridge between the more and

more complex theories and the simple models, so that the physical understanding

of the properties of real materials may benefit from both types of approaches.




Chapter 2

Structural and electronic properties of nanotubes

2.1 Introduction

Since the discovery of graphitic nanotubes [29] created in an arc discharge be-
tween two carbon rods, much experimental and theoretical efforts have focused on
the synthesis and understanding of these novel quasi one-dimensional structures.
Using iron [30] or cobalt [31] based catalysts, single- or multi-wall carbon nanotubes
can be selectively synthesized. Tubes with diameter as small as 7 A have been ob-
served [30]. Carbon nanotubes, which are found capped after synthesis, can also
be opened and filled with atoms, molecules or small clusters [32]. Further, based
on similarities between carbon and BN-based materials, BN nanotubes have been
investigated [14]. By heating of amorphous BN to 1100°C, large turbostratic tubu-
lar BN structures have been obtained [33]. Recently, B,C,N, nanotubes have been
observed [34] using composite carbon/BN anode rods under arc discharge. A quan-
titative determination of the chemical composition of these nanotubes suggests the
presence of BCs; and BCyN nanotubes. The existence of these tubes have been
previously predicted by theoretical calculations [35, 36].

In this chapter, we present a theoretical study of the structural and electronic
properties of carbon and BN nanotubes. An ab initio pseudopotential approach is
used in the framework of the local density approximation (LDA). In section 2.2,
small single-wall carbon nanotubes are discussed. We show that carbon nanotubes,
with diameter down to 5.5 A, are metastable. In particular, contrary to what have
been recently suggested, their strain energy is not large enough that they would

open into carbon strips. Further, the metallicity of these tubes is studied as a
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function of their size and chirality. In previous calculations [37, 38], classification of
the carbon nanotubes as metals or semiconductors was determined on the basis of
how the underlying graphite band structure is “folded” when one applies the tubes’
azimuthal periodic boundary conditions. Although early work [37, 38, 39] has noted
that hybridization of the graphitic o,n,7* and o™ states should occur because of the
curvature of the tubes, the importance of these effects was not fully appreciated. The
tube states near the Fermi level were described as chieﬁ_y 7 and 7 states. Recently
[30], nanotubes with very small radii were experimentally produced, with diameters
as small as 7 A. We show here that sufficiently strong hybridization effects occur in
such tubes which dramatically change the band structure proposed in these previous
works.

Iﬁ section 2.3, we present extensive LDA and quasiparticle calculations per-
formed on boron nitride (BN) single-wall and multi-wall nanotubes. Strain energies
are found to be smaller for BN nanotubes than for carbon nanotubes of the same
radius, owing to a buckling effect which stabilizes the BN tubular structure. For
tubes larger than -9.5 A in diameter, the lowest conduction band is predicted to be
free electron-like with electronic charge density localized inside the tube. For these
tubes, this band is at constant energy above the valence band maximum. Conse-
quently, in contrast to carbon nanotubes, single and multi-wall BN nanotubes have
constant band gap, independent of their radius and helicity.

In section 2.4, we study the doping of bulk hexagonal BN by substitution of a
boron atom by a carbon atom. We show that the carbon impurity yields a deep
donor level located 0.5 eV below the bottom of the conduction band which is free
electron-like. Finally, the metallic filling of carbon nanotubes is investigated in

section 2.5.

2.2 Hybridization effects and metallicity in carbon nanotubes

We have carried out both ab initio pseudopotential local density functional
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(LDA) calculations and Slater-Koster [40] tight-binding (TB) calculations. Fol-
lowing the notation of Ref. [38], we study the tubes (n,0), with n ranging from 6
to 9. As illustrated in Fig. 2.1(a), tube (n,0) corresponds to wrapping a section of
a graphitic sheet in the indicated orientation with n hexagons around the tube cir-
cumference. The diameter of these tubes ranges from 4.78 A for (6,0) to 7.20 A for
(9,0). The LDA electronic structure calculations were performed using a planewave
basis set. We generated first a semilocal pseudopotential following the scheme of
Troullier and Martins [41] and made it fully nonlocal according to the Kleinman and
Bylander procedure [4]. The energy cut-off for the electronic wave-functions was set
at E.:= 49 Ry leading to an 0.05 eV convergence of the band energies. The very
large number of planewaves needed for this type of calculation (ranging from 13,500

for (6,0) to 19,000 for (9,0)) required the use of an efficient iterative diagonalization

~ scheme [42]. The LDA calculations were carried out in a supercell geometry with

a hexagonal array of tubes, with the closest distance between atoms on different
tubes being 5.5 A. This permitted the neglect of tube-tube interactions. For the
TB calculations, we used the first and second nearest neighbor parameters proposed
in Ref. [43] for graphite.

Along the axes of the tubes, the length of the unit cell was set by assuming that
the tube was generated simply by rolling a graphite sheet segment [37]. Using the
Hellman-Feynman theorem, we found that the stresses imposed on each supercell
were negligible in the axis direction. The most important structural change was the
tendency of the tube to reduce its radius from that given by the above rolling. This
effect was nonetheless small, ranging from 1.6 % reduction for (6,0) to nearly zero
for (9,0). We found similar results within a tight-binding total energy miﬁimization
scheme [44]. The effect of this relaxation on the electronic band structure was
negligible. We also relaxed the internal coordinates of the atoms using Hellman-
Feynman forces. The forces were very small, and all the atoms remained equivalent

within the unit cell.
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Our results for the band gaps are given in Table 2.1, compared with those from
previous TB work [37]. We find major differences between the results from LDA
and the TB calculations. The most significant difference occurs for the tube (6,0)
which has been previously predicted to be a small gap semiconductor [37]. We find
in this work that, within LDA, tube (6,0) is a metal. In addition, we find that tubes
(7,0) and (8,0) are semiconductors, counsistent with previous calculations, but with
a much smaller gap than those from TB based works. This discrepancy is mainly
due to a singly degenerate state which is much lower in our LDA calculations than
in the TB work. LDA is known to underestimate the value of the band gap of many
materials, but the narrowing of the gap here is due primarily to curvature effects,
as evidenced by the dependence on tube size.

In Fig. 2.2 we show the band structure and density of states (DOS) for the tube
(6,0). The singly degenerate state mentioned above is labeled by (a). At T, this state
is 0.83 eV below the doubly degenerate state that forms the top of the valence band
in TB calculations. This band overlap makes the tube (6,0) a metal within LDA
with a density of states at the Fermi level equal to D(Ep) = 0.07 states/eV-atom.
For this tube, we also performed an independent LDA calculation using a semilocal
pseudopotential and another diagonalization scheme as described in Ref. [24]. The
two LDA band structures were in excellent agreement. We also checked that this
state is insensitive to the small structural relaxation effects described above.

As we shall show, state (a) occurs in all (n,0) tubes for symmetry reasons, but its
energy at I' varies with n. For the tubes (7,0) and (8,0), state (a) does not close the
gap but reduces significantly its value as compared to TB calculations. For these
two tubes, the state (a) at I' lies between the two doubly degeneratve states that
form the top of the valence and bottom of the conduction bands in TB calculations.
This state reduces the TB gap by 1 eV for (7,0) and by 0.6 eV for (8,0). For the
tube (9,0), the state (a) lies just above the TB LUMO state and therefore does not

fall within the gap.

11
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The discrepancy between TB and LDA calculations decreases as the radius of
the tube increases. This is consistent with the notion that, in large tubes with
small curvatures, one obtains a good description of the nanotube band structure by
“folding” the graphite sheet band structure. However, this idea implicitly relies on
the assumption that states around the gap or Fermi level are essentially 7 or #*
derived [38, 39]. This is not true for small tubes where the curvature is so strong
that large hybridization effects occur. We show in Fig. 2.3 the charge density
distribution for the state (a) at I" for the tube (6,0). One can see that most of the
wave-function is localized outside the tube. If this state is mostly © or n* derived,
it should have equal weight inside and outside the tube. Detailed analysis of the
o*-m* hybridization in (n,0) tubes also indicates that this state should be mostly
outside of the tubes for k-vectors near the tube’s zone center. We show below that
it is crucial to accurately describe the o* states and their interaction with the 7*
complex before one is able to reproduce within TB the behavior of the state (a) in
our LDA calculation.

To study the effects of hybridization on the state (a) of tube (6,0), we begin with
a planar sheet of graphite with the unit cell described in Fig. 2.1(a). Because state
(a) is singly degenerate, in the “band folding” language, it must be derived from the
I'-M line of the graphite sheet Brillouin zone (BZ), and must occur in all (n,0) tubes.
As a result of the boundary conditions of the tube, M is folded onto I'. We plot in
Fig. 4(a) the corresponding TB bands along the I-X direction of the tube (see Ref.
[37]). From the symmetry of the tube, singly degenerate states only mix with each
other and not with states of higher degeneracy, so only these need be considered in
the analysis of the behavior of state (a). The dashed lines are the singly degenerate
bands coming from the folding of the 7* and ¢* graphite bands along the I'-M line of
the hexagonal graphite BZ (Fig. 2.1(b)) onto the I'-X line of the tube BZ. Next we
bend this graphite sheet along the AB direction while imposing the proper periodic

boundary conditions in order to mimic a continuous transformation of the graphite




o

2.2. Hybridization effects and metallicity in carbon nanotubes

sheet onto the (6,0) tube. This procedure distinguishes the zone folding effects from
the curvature effects.

Fig. 2.4 illustrates the evolution of our TB band structure under this trans-
formation for two of these “intermediate” structures. Their radii of curvature are
between R = co of planar graphite (Fig. 2.4(a)) and R =2.39 A of tube (6,0) (Fig.
2.4(d)). For a curved sheet of graphite, the 7* and o* states mix and repel each
other, resulting in a lowering in energy of the (originally) purely 7* states. It is the
lower hybridized 7* band which gives rise to the singly degenerate state (a) near
Er in the LDA calculation. Therefore, within the TB Hamiltonian of Ref. [43], this
state does exist, bﬁt it is not low enough in energy to make the tube metallic as
found in the LDA calculation. We note also that, with a localized basis set limited
to 2s and 2p orbitals, TB calculations are unable to describe large charge transfer
asymmetrically away from the atoms. However, in our LDA calculations, we find
the total potential to be locally symmetric inside and outside the tube so that the
localization of the state (a) outside the tube must be mainly due to hybridization
and not electrostatic effects. Similar studies have been made for tubes (7,0), (8,0),
and (9,0), yielding similar results.

Some workers [45, 46] have recently suggested that tubes with radii smaller than
~3 A will not be stable. They argue that, for such tubes, the elastic strain energy
per atom stored in the rolled sheet is larger than the dangling bond energy per atom
for the flat graphitic strip obtained by “cutting” the tube along its cylindrical axis.
In order to address this question for the tubes of our study, we carry out LDA total
energy calculations for the (6,0) tube with radius 2.39 A and the corresponding
strip. We find that the tube is energetically more stable than the strip. This implies
that the critical radius below which tube energy exceeds strip energy for the (n,0)
tubes is less than the (6,0) tube radius. This result is in agreement with a force-

field calculation [46] which predicts the critical radius to be ~ 2 A, in contradiction

with the semi-empirical calculation of Ref. [45] which predicts the critical radius
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to be ~ 3.85 A. However, we stress that as long as the tube and strip energies
are comparable, kinetic effects will still dominate the growth process. Thus, total
energy comparisons may not be relevant to the question of tube stability.

In conclusion, large 7*-0™ hybridization effects can occur in small nanotubes
which drastically change the electronic band structure from that obtained by simply
“folding” the graphite sheet band structure. These effects are demonstrated in our
study of tubes (6,0) to (9,0), some of which are comparable in size to the smallest
tube experimentally observed thus far. Our results show that, for this class of tubes,
hybridization effects change the energy and character of the lowest lying conduction
band states with important consequences to the metallicity and transport properties
of the tubes. An implication of this result is that hybridization effects could also
play an important role in doped small nanotubes with metallic dopants either inside

or on the tubes.

2.3 Stability and band gap constancy of BN nanotubes

In a recent paper [47], the existence of boron nitride (BN) nanotubes was pro-
posed. It was suggested that these tubes may be stable and their electronic prop-
erties were studied within an empirical Tight-Binding (TB) approach. However,
because of the lack of a total energy calculation scheme within TB for BN based
materials, no evidence for the stability of BN nanotubes was given and the calcu-
lations were restricted to tubes with the “ideal” geometry given by rolling a single
sheet of hexagonal BN into a tubular shape. In addition, as shown in the previous
section, the large curvature of small tubes may induce strong hybridization effects
which strongly modify the band structure given by a standard s-p Slater-Koster TB
scheme.

We have carried out ab initio pseudopotential local density functional (LDA)
calculations to study from first-principles the structural stability of this novel form

of BN. Further, we have studied the electronic properties of BN nanotubes, both
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within LDA and within the more accurate quasiparticle approach. The electronic
properties of multi-wall BN tubes are also investigated. The calculation of the
quasiparticle energies is performed using the self-energy approach [2}, based on the
GW approximation [3]. Technical details for the quasiparticle calculations will be
described in Chapter 5. Pseudopotentials and electron wavefunctions are expanded
in a planewave basis. The energy cut-off for the electronic wavefunctions is set at
E.u= 45 Ry to converge both total energies and eigenvalues. Boron and nitrogen
pseudopotentials are generated following the Kleinman and Bylander procedure [4].
The calculations are carried out in a supercell geomeﬁy with a hexagonal array
of tubes. The closest distance between atoms on neighboring tubes is set at 5 A.
Within this geometry, tube-tube interactions are negligible.

By minimizing both stress and Hellman-Feynman forces, we determine first the
equilibrium geometry for (n,0) and (n,n) tubes with diameters ranging from 4 to 12
A (index notations for the tubes refer to the convention of Ref. [37, 38] as defined
for graphitic nanotubes). The main relaxation effect is a buckling of the boron-
nitrogen bond, together with a small contraction of the bond length (~ 1%). In the
minimum energy structure, all the boron atoms are arranged in one cylinder and all
the nitrogen atoms in a larger concentric one. We plot in Fig. 2.5 the structure of
a BN (8,0) tube corresponding to the calculated buckling.

Due to charge transfer from boron to nitrogen, the buckled tubular structure
forms a dipolar shell. The distance between the inner “B-cylinder” and the outer “N-
cylinder” is, at constant radius, mostly independent of tube helicity and decreases
from 0.2 a.u. for the (4,4) tube to 0.1 a.u. for the (8,8) tube. As a result of this
buckling, each boron atom is basically located on the plane formed by its three
neighboring nitrogen atoms so that the sp? environment for the boron atom in the
planar hexagonal structure is restored (at most, the NBN angles differ from 120°

by 0.2% for the smallest tube). This tendency for three-fold coordinated column

IIT atoms to seek 120° bond angle is extremely strong. For example, it explains
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the atomic relaxation of the (110) and (111)-2x2 surfaces of GaAs and other III-V
compounds [48]. On the other hand, the BNB angles approach the value of the
bond angle of the s?p® geometry. This is also consistent with previous calculations
performed on small BisNj, clusters [49] where a similar buckling of the BN bond
was observed for a monocyclic ring structure. Buckling and bond length reduction
induce a contraction of the tube along its axial direction by a maximum of 2% for
the smallest tube studied.

Energies per atom for the relaxed tubes are plotted in Fig. 2.6 as a function
of the tube diameter. The zero of energy is taken to be the energy per atom of
an isolated hexagonal BN sheet. On the same graph, the energy per carbon atom
above the graphite sheet energy is represented. As for graphitic tubes, BN tube
energies follow the classical 1/R? strain law, where R is the average radius of each
tube. However, for the same radius, the calculated strain energy of BN nanotubes
is smaller than the strain energy of graphitic tubes. This is related mostly to the
buckling effect which reduces significantly the occupied band energy in the case of
the BN compounds. Therefore, it is energetically more favorable to fold a hexagonal
BN sheet onto a nanotube geometry than to form a carbon nanotube from a graphite
sheet. Based on the existence of carbon nanotubes, we predict that BN nanotubes
are metastable structures.

We also address the question of stability of a small tube versus opening into a
strip of hexagonal BN [45]. We performed total energy calculations for the strip
corresponding to the small tube (6,0), allowing complete relaxation of the strip
geometry. As shown on Fig. 2.6 (filled square), the strip is less stable than the
corresponding tube. As for carbon nanotubes, BN nanotubes with a radius larger
than 4 A are stable with respect to a strip.

Because of its large iomnicity, a hexagonal BN sheet is a large gap semiconductor
in contrast to graphite which is semimetallic. Consequently, on the basis of a band

folding analysis {38, 37], BN nanotubes are large gap semiconductors, with direct gap
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at I' for (n,0) tubes and indirect gap for (n,n) tubes. However, strong hybridization
effects can occur because of curvature of the tubes which may strongly modify the
band structure given by the band folding analysis. As for carbon nanotubes, the
present ab initio LDA calculations show that for small (n,0) tubes, a 7*-¢* hybridized
state significantly reduces the gap predicted by the band folding analysis. Consistent
with its carbon analog, this state is at the zone-center k-point I' with wavefunction
localized outside the tube. It corresponds to the hexagonal BN 7* state at K which
is folded onto the tube I' point when rolling the BN sheet onto a (n,0) tube. Once
folded, this state lowers its energy by interacting with the ¢* state at I". However,
the consequences of the energy lowering of this state are less important than that in
the case of carbon nanotubes since (n,0) BN tubes remain large gap semiconductors
with a LDA minimum band gap of 2.5 eV for the (6,0) tube. With decreasing tube
curvature, the hybridization effects are less important. For (n,0) tubes such that
n > 12 (which corresponds to a diameter larger than 9.5 4), the hybrid state does
not play any role in determining the gap of the BN tubes.

For (n,n) tubes, the key feature is the bottom of the conduction band at I". For
all (n,n) tubes studied, this state is, within LDA, located at around 4 eV above
the top of the valence band, independent of tube radius. In addition, this state is
uniquely characterized by a remarkable charge density distribution. As shown in
Fig. 2.7 for the (6,6) tube, this state yields a nearly constant charge density filling
the interior of the tube. Since in this region the tube potential is constant, this state
has a nearly-free-like electron (NFE) behavior. The effective mass at I" for this NFE
band is calculated to be m* = 1+£0.1 m, for all tubes, where m, is the free electron
mass.

In a band folding analysis, this NFE state corresponds to the bottom of the
conduction band at I" for hexagonal BN. This is shown in Fig. 2.8 where we compare

the LDA band structure for the BN (4,4) tube to the LDA hexagonal BN band

structure. In this calculation, the distance between two BN planes is set to the (4,4)
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tube diameter. We select directions in the hexagonal Brillouin zone (BZ) which, in
a band-folding analysis, would yield the tube top of the valence and bottom of the
conduction bands. As one can see, the bottom of the conduction band is very similar
in both structures, with hardly any modification in position and shape around the
center of the zone. For hexagonal BN, the charge density of the state at the bottom
of the conduction band is located on the nitrogen atoms and in the interplanar
region. This state is the analog of a ¢* state at I' in graphite [50] and has been
referred to as the interlayer state.

Since the NFE tubule state at I' is the image of the interlayer state in the band-
folding mapping, it exists in all tubes independently of their helicity. We note that
the NFE-state is very constant in energy and does not hybridize with curvature: this
is because its wavefunction does not overlap with those of other states which are
mostly localized on the tube wall. This explains that, even for the smaller tubes, the
LDA band gap is stabilized at around 4 eV, except for the few (n,0) tubes with n <
12. Even for these tubes, for which the 7n*-¢* hybrid state forms the bottom of the
conduction band, the NFE-state is, within LDA, localized at 4 eV above the top of
the valence band. We have studied also the band structure of two concentric tubes
(in the case of carbon, most graphitic “needles” are formed of concentric tubes). We
select the (4,4) and (9,9) tubes. The difference between their radii is comparable to
the Van der Waals equilibrium distance between two layers in bulk hexagonal BN.
Tube-tube interaction hardly modifies the energy and wavefunction of the innermost
tube NFE state, which remains the bottom of the conduction band at 4 eV above
the top of the valence band. We predict therefore that for all BN tubes (except the
(n,0) tubes with n < 12) the band gap is stabilized around 4 eV (LDA value) and
the bottom of the conduction band is a NFE-like state.

Since a band-folding analysis correctly describes the band structure of most BN
tubes, we perform a more accurate description of the electronic properties of these

tubes by studying within the quasiparticle formalism the electronic band structure
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of hexagonal boron-nitride compounds. This study is reported in details in Chapter
5 and we give here a “preview” of the results which are used to understand the
properties of BN nanotubes. Several structures are studied which are composed
of periodically repeated layers of hexagonal BN sheets, with an interlayer distance
varying from d= 5.5 A (diameter of the (4,4) tube) to d= 13.5 A. By including
layer-layer interactions, we investigate the effects of the overlap of orbitals inside
small tubes and of tube-tube interactions in multi-wall structures. For d = 13.54,
two neighboring layers do not interact. Therefore, the corresponding band structure
can be used to obtain the band structure of large diameter BN tubes. For all these
layered structures, the quasiparticle band gap is indirect between the top of the
valence band at M and the bottom of the conduction band at I'. The calculated band
gap is very stable around 5.5 eV for all inter-layer distances d. This is in excellent
agreement with the experimental value of 5.8 eV for bulk hexagonal boron-nitride
[51]. Therefore, the quasiparticle calculation confirms the physical picture given by
the LDA approach: single-wall and multi-wall BN nanotubes are nearly constant
gap materials with a band gap around 5.5 eV (quasiparticle value). In addition, the
lowest occupied state is a NFE-like state with charge density localized inside the
tube.

As discussed above, for bulk BN, the interlayer state has a maximum and nearly
uniform charge density in the vacuum region between BN layers. For d = 13.5A4, the
“interlayer state” does not overlap with the one of a neighboring layer. However,
it remains localized in the vacuum region with a maximum charge density at ~ 2
A away from the corresponding BN plane. Consequently, for very large tubes, we
expect the charge density for the NFE-state at I' to be localized in a region at about
2 A away from the interior of the tube wall and to remain NFE-like. We remark that
the interlayer state described here does not exist in a usual TB calculation based on
a minimal (3s,3p,,3p,,3p,) basis. Therefore, even in the limit of large nanotubes, for

which hybridization effects are negligible, a simple TB picture would not describe
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correctly the nature of the BN tube gaps. This is contrary to the case of carbon
nanotubes where TB and LDA results agree for large tubes. In the case of graphite,
the interlayer state within LDA is 2 eV above the bottom of the conduction band so
that this NFE state is at higher energy in the conduction bands and does not play
any role in the metallicity and doping properties of the carbon nanotubes.

In conclusion, we find that the wrapping of the planar hexagonal stru‘cture onto a
tube geometry is slightly more favorable for BN tubes than carbon nanotubes. This
is mostly related to a buckling effect which stabilizes the BN tubular structure.
The BN nanotubes are predicted to be wide gap semiconductors with a value of
~ 5.5 €V, independently of their radius and helicity. This insensitivity of the BN
tube band gap to variations in radius, helicity and coaxial arrangement, may be of
crucial importance for technological applications because samples containing many
different sizes and structures, single-wall or multi-walls tubes, could be grown with
predictable electronic properties [52]. This constant gap value is related to the
bottom of the conduction band state, which has a nearly-free-electron-like behavior
with charge density localized inside the tube. We expect this property to have
important technological implications particularly in the case of n-type doping (we
study in the next section the possibility of doping BN nanotubes by substitution of
an nitrogen atom by a carbon atom). The origin of the NFE state will be discussed

in more details in Chapter 5.

2.4 Carbon doping of BN nanotubes

The present study is motivated by a recent experimental attempt to synthesize
B.CyN; nanotubes using an arc—discharge technique between mixed graphite-BN
electrodes [34]. The nanotubes observed were identified as being BC;N and BC;
nanotubes. This synthesis confirmed the early theoretical prediction [53] that such
compounds could be metastable. However, no pure BN nanotubes were observed.

This indicates that C is very likely to form bonds with B and N and carbon appears
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to be an obvious candidate for substitutional doping of BN nanotubes. (We suggest
the possible use of tungsten instead of carbon in the electrodes in order to synthesize
pure BN nanotubes. The introduction of a thin carbon vapor in the reaction chamber
would then lead to a carbon doping of the BN nanotubes).

In the previous section, we concluded that a good description of the band struc-
ture of BN nanotubes could be obtained through band folding analysis of the band
structure of the related “gedanken” BN(d) structures. Therefore, doping properties
of BN nanotubes and BN(d) structures should be similar. The doping of BN(d=5)
by substitution of a boron atom by a carbon atom is studied here. The 5 A sep-

aration between two neighboring BN layers is comparable to the diameter of the

BN(6,0) tube. In each BN plane, we substitute a boron atom by a carbon atom and

put the carbon impurity in the center of a 3x3 and a 5x5 supercell. With such a
geometry, two carbon atoms are located, respectively, at 13.05 A and 21.75 A away
from each other. The calculations are carried out with a cut-off of E.,; = 36 Ry
in the planewave expansion of the eigenstates. This corresponds to an average of
16,000 planewaves in the case of the 5x5 supercell, and an iterative diagonalization
technique is used to calculate the lowest desired eigenvalues.

We first minimize the total energy of the system by simultaneously moving the
atoms in the direction of the Hellman-Feynman forces and reducing the stress on
the unit cell. Because the C-N bond length is different from the 1.45 4 B-N bond
length in hexagonal BN (in BCyN, the C-N bond length has been calculated to be
1.35 A [53]), the nitrogen atoms around the carbon impurity relax from their original
position. At equilibrium, we find that the C-N bond length is equal to 1.42 A. The
relaxation of other atoms is negligible. In the case of the 3x3 supercell, we find a
similar relaxation with a 45 Ry cut-off. The relaxation energy is equal to 0.19 eV
per carbon impurity.

We perform LDA band-structure calculations for both the 3x3 and 5x5 su-

percells in their equilibrinm geometry. The band structure for the 3x3 supercell is
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plotted in Fig. 2.9. The donor level is easily identifiable as the nearly non-dispersive
band (solid line) below the bottom of the conduction band of the corresponding un-
doped BN system (the non-zero dispersion is an artifact of the finite size of the 3x3
unit cell). The donor binding energy at I' is calculated to be 0.537 eV for the 3x3
cell and 0.516 eV for the 5x5 cell. The good agreement between these two values
indicates a good convergency of the present calculation with respect to supercell
size. We plot in Fig. 2.10 the total charge density difference between the C-doped
and the undoped BN systems in the 3x3 geometry. As expected, the charge excess
is localized on the carbon atoms and hardly overlaps from one supercell to another.

In conclusion, we find that the substitution of B by C in hexagonal BN yields
a deep defect level with a binding energy of ~ 0.5 eV. Therefore, carbon does
not constitute a donor for doping BN and, at room temperature, very few carriers
will populate the NFE state which lies at the bottom of the conduction bands of
hexagonal BN. From a band-folding analysis, the same conclusion holds for BN

nanotubes.

2.5 Filling of carbon nanotubes with metallic atoms

Several recent experimental and theoretical studies have shown evidence that
carbon nanotubes can be filled, or “intercalated” within, by atoms, molecules, or
small clusters. Specific examples include the filling of nanotubes by lead oxides [54],
HF molecules [55], superconducting TaC single crystals [56], and liquid metals such
as sulfur, selenium or rubidium [57]. However, the mechanisms and the conditions for
filling are not understood and seem to differ significantly from one case to another.
For example, in Ref. [56], carbon nanotubes have been shown to grow “around” the
TaC clusters, while all other examples deal with filling of tubes which are already
formed. Among these latter examples, a distinction can be made between cases
where the filling is made on previously opened nanotubes [55, 57] and cases where

the opening and the filling are concomitent [54]. On more general grounds, it is clear
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that the filling of carbon nanotubes will be very sensitively depending on factors such
as the relative size of the nanotubes and the filling structure, the phase in which these
structures can be found at the arc-temperature, the binding energy, viscosity, surface
tension of this phase, and also the static or induced polarizability of the tubes and
filling materials in the presence of each other. The very wide interest in the filling of
nanotubes is of course motivated by the large range of possible applications that can
be thought of for such filled nanotubes. In particular, in light of our results in the
previous sections, the doping of carbon or BN nanotubes to populate the bottom of
the nanotube conduction bands would be of great interest. The conductivity of these
1-dimensional materials will also be of great fundamental and practical interest. The
superconducting transition temperature of TaC encapsulated in carbon nanotubes
[56] have been measured to be 10.0 K. It is suggested that in such a system, both
superconducting electrons and mediating phonons come from the TaC crystal alone,
and the carbon nanotubes are just used as “cages” to enforce 1-dimensionality.
This role of cage was also suggested in Ref. [54] in another context. The carbon
nanotubes were thought of as molds for the fabrication of nanoscale metallic wires.
Protection of chemical or biological functions can also be suggested as a use for the
nanotubes in the “cage mode”. Finally, many interesting phenomena can arise from
the interaction between the nanotube and its filling. By analogy with alkali-doped
fullerites (fullerides), it is of course interesting to counsider filling candidates which
will add conduction carriers while the tube “provides” the phonons (or vice-versa) in
a possible superconducting phase. Further, as shown below, a chain of alkali atoms
filling in the tubes would lose one electron per atom to the carbon tube, forming a
conducting tube enclosing a 1D ionic chain.

We have carried out a study of the stability and electronic properties of metal-
filled small radius nanotubes. We focus on potassium as a prototypical intercalant.

We show that potassium does “intercalate” inside small radius carbon nanotubes.

This is consistent with the fact that potassium atoms easily intercalates graphite
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[58]. We perform ab initio pseudopotential LDA calculations using the same carbon
pseudopotential as in section 2.2. The pseudopotential for K is generated in the
ground state configuration of the atom using the scheme by Troullier and Martins
[41]. An energy cut-off of 36 Ry is used in the expansion of the eigenstates in a
plane-wave basis. As in the previous section, an hexagonal two-dimensional array
of tubes is used, with a closest distance of 5.5 A between atoms on neighboring
tubes. We then intercalate one potassium atom per unit cell along the axis of the
tube. This corresponds to 1 K atom per 4n C atom in the case of (n,0) nanotubes
studied here. The geometry of a single K-doped (7,0) carbon tube is represented in
Fig. 2.11. We note that the K-K distance in a free K linear chain is calculated to
be 7.72 a.u. within LDA. In the geometry used here to study the intercalation of
carbon nanotubes, the K atoms are located 8.22 a.u. apart from each other along
the axis of the tube. We note, however, that the “bulk modulus” of the linear chain
is very small (we calculate it to be 0.073 eV/a.u.) and the difference in energy for
the chain with K atoms located 8.22 a.u. apart, as compared to 7.72 a.u., is only
0.011 eV per K atom.

Furthermore, we study the possibility for a Peierls transition to induce a dimer-
ization of the K chain. Starting from a linear chain with two atoins per unit cell
(that is the unit cell length is now 15.44 a.u.), we dimerize the two atoms in the unit
cell without changing the unit cell length. In order to sample carefully the band gap
opening at the Fermi level, we increase the k-point sampling to 150 points in the
irreducible part of the BZ. We find that for dimerization corresponding to a bond
length contraction larger than Aa=0.08 a.u, the linear chain is more stable by at
least 0.04 meV /atom. Smaller Aa contractions have not been studied. This means
that if a Peierls transition would occur, its effect will be insignificant and will be
destroyed at temperature larger than 0.46 K.

Table 2.2 gives the calculated heat of formation of K-intercalated carbon nan-

otubes. The reference of energy for the heat of formation is the energy of the isolated
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tube plus the energy of a K atom in the crystal bee phase. We note that the binding
energy of K in the crystal phase, as compared to the isolated atom in its ground-
state configuration, is 0.94 eV/atom [59]. Therefore, the intercalation energy gain
for a K atom coming from the gas phase will be larger than the value reported in
Table 2.2 by roughly 0.94 eV/atom. We study the evolution of the binding energy
for the intercalation of potassium atom as a function of nanotube radius. For too
small a radius, the potassium atom does not want to go inside. This can be simply
understood in terms of the atomic radius of both potassium and carbon atoms as
compared to the tube radius. These values are reported in Table 2.3. One can see
that in the case of the smallest (6,0) tube, the sum of the potassium plus carbon
atomic radii exceeds significantly the (6,0) tube radius (2.39 A). Therefore, for such
a small tube, the repulsion energy due to the overlap of the potassium and carbon
valence charges is too strong and the potassium atoms cannot “fit” inside. For larger
tubes, this restriction is less severe and potassium does fit inside the tubes. We note
that in graphite K-intercalated compounds, the graphite plane-plane distance has
been measured to be equal to 5.35 A. This corresponds roughly to the diameter
of the (7,0) tube. This is consistent with our finding that the largest intercalation
energy for the filling of carbon nanotubes by K atoms is obtained for the (7,0) tube.

To trace the origin of the stabilization observed, we plot in Fig. 2.12(a) the
band structure of the (7,0) tube alone as compared to (in Fig. 2.12(b)) the band
structure of the (7,0) tube with potassium inside. In Fig. 2.12(a), NFE labels the
nearly-free electron band analog to the NFE band described in the previous section
for the BN tubes. We note that in the case of carbon tubes, this band is at higher
energy as compared to the BN tubes case and does not play any role in determining
the metallicity of the carbon nanotubes. Further, with introduction of the K atoms
inside the tube, the potassium 4s band hybridizes with the NFE tube state of the

undoped tube. Indeed, both states are singly degenerate and have a charge density

localized along the axis of the tube. The resulting two hybrid bands are labeled («)
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and (f) in Fig. 2.12(b) and their corresponding charge density at I is plotted in Fig.
2.13. From the calculations, it is clear that the introduction of the potassium atom
inside the tube hardly modifies the band structure of the occupied states. We reach
the same conclusion for the intercalation of the smaller (6,0) tube by K. This can be
understood by looking at the LDA energy levels of the isolated atoms as reported in
Table 2.3. One can see that the valence 4s energy level of potassium is significantly
higher in energy than both the 2s and 2p energy level of carbon. For the conduction
bands, the main effect is the interaction of the K 4slevel with the NFE band. This is
not surprising since the charge density of both states strongly overlap along the axis
of the tube. Further, since the potassium 4s band lies above the Fermi level in Fig.
2.12(b), the 4s electron of potassium would gained energy by being transferred to the
nanotube states. The shift up of the Fermi level from Fig. 2.12(a) to Fig. 2.12(b)
indeed corresponds to roughly one electron. Such a charge transfer is illustrated in
Fig. 2.14(a) where we plot, in a plane perpendicular to the tube and going through
a potassium atom, the total charge density corresponding to the states between the
Fermi level of Fig. 2.12(a) and the one of Fig. 2.12(b). Because no hybridization
occurs (the introduction of the potassium chain induces mainly a rigid shift of the
nanotube band structure), we conclude that the interaction between the chain and
the tube is mainly electrostatic.

The heat of formation can then be explained in a simple classical picture as the
internal energy of a tubular capacitor composed of the linear potassium chain (the
anode) and the carbou tube (the cathode). For larger tubes, this interaction energy
decreases because both the charge transfer is smaller and the distance between the
two “plates” of the capacitor increases. Since the atomic ionization energy decreases
for alkali atoms with increasing mass, we expect even larger binding energy for Rb
and Cs in carbon tubes of appropriate radius. We plot also in Fig. 2.15(b) the charge
transfer for an K atom localized outside the tube at a distance comparable to the

tube radius. The same kind of electrostatic effects as described above is expected
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to “glue” the K atoms on the outside of the graphite tubes. Accurate total energy
calculations are difficult in this case because of a strong dipole-dipole interaction
between unit cells. We note however that atoms attracted to the outside of the
tubes can be easily “washed” away from the tube wall, while atoms inside the tube
are protected against any mechanical or chemical agent active in the environment.

Preliminary calculations have been performed for the intercalation of lead inside
carbon nanotubes. We find a very large positive formation energy of 4.5 eV/Pb for
intercalation inside a (6,0) tube. Therefore, Pb will not intercalate inside the carbon
nanotubes. Since Pb has a smaller atomic radius than K, the argument given above
for non-intercalation of K inside a (6,0) tube does not hold for Pb. The ratio of
the atomic radius of Pb to the (6,0) tube radius is equivalent to the ratio of K to
the (9,0) tube. This suggests that Pb is much less likely to intercalate nanotubes
as K does and that the interaction of Pb with the carbon wall is different in nature
from the electrostatic interaction found in the case of K. We plot in Fig. 2.15, the
Pb-intercalated (6,0) tube band-structure (Fig. 2.15(b)) as compared to the non-
intercalated (6,0) tube band structure (Fig. 2.15(a)). The comparison of the two
band-structures shows significant hybridization effects between the Pb-chain energy
levels and the tube bands. In particular, the 6s Pb-chain band (indexed by (a))
induces significant cha}nges in the tube band structure down to -6 eV below the
Fermi level. In the conduction bands, the most important effect is the hybridization
between the p, Pb-chain state (2 being the tube axis direction) (labeled v and +") and
the m*-o* states described in section 2.2 (labeled £ and #'). This can be understood
by noting that, in Table 2.3, the atomic levels of Pb, contrary to K, are very close
in energy to the C 2s and 2p energy levels. This hybridization, which does not
give rise to charge transfer, reduces significantly the electrostatic energy gained by
transferring electrons from the metallic chain to the carbon nanotubes. Therefore,

the picture given above for the case of K of a charge transfer with electrostatic

interaction breaks down for Pb. However, further calculations, including a study of
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intercalation of Pb with tubes larger than the (6,0) tube, are necessary to gain more
insight into the physics of Pb-intercalated tubes.

We note that, in Ref. [57], pure metals in the liquid phase were found to be
drawn inside carbon nanotubes only if their surface tension is smaller than a cut-off
value between 100 and 200 mN/m. These experimenté,l findings were explained in
terms of classical arguments which relates the wetting properties, and in particular
the liquid-solid contact angle, to the values of the surface tension at the solid-vapor
and solid-liquid interface. Since the surface tension of liquid K is roughly 390 mN /m,
it should not intercalate inside nanotubes. However, the tubes synthesized in Ref.
[57] were of the order of 10 nm wide in diameter. This is much larger than the tubes
we study in this section. As pointed out by the authors of Ref. [57], the classical
and macroscopic arguments they used are expected to break down for very small
size nanotubes. This is confirmed:by the present work where charge transfer and
hybridization effects at the atomic level are shown to be responsible for the filling

properties of small size carbon nanotubes by metallic atoms.

2.6 Conclusion

In this chapter, some fundamental structural and electronic properties of carbon
and BN nanotubes were studied. We showed that important and unexpected prop-
erties arise from the nanometer size scale and reduced dimensionality of these new
compounds. However, many interesting questions and problems remain unanswered.
A important issue is the understanding of the growth mechanism respousible for the
synthesis of nanotubes. Are the tubes growing capped or uncapped? Do they grow
from an end in contact with the electrode or from a free end 7 What is the influ-
ence of the electric field in the arc 7 The answers to these questions will certainly
improve our ability in the making of nanotubes, so that a better control over the
size, helicity or filling of the tubes may be achieved during the synthesis process.

Another important direction is the study of the electronic excitations in nanotubes
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which is important for the application of their optical and transport properties.
Such an area is yet to be explored in any details both theoretically and experimen-
tally. Experimentally, as mentioned above, the difficulty comes from being able to
synthesize and isolate tubes with well defined radius and helicity. For example, the
large variety of transport responses, which are expected from single carbon nan-
otubes with varying radius and helicity, have been recently shown to be averaged
out in experiments performed on pellets of nanotubes (the respounse is then similar
to that of plain polycrystalline graphite pellets [60]). From the theoretical point
of view, the large size of the supercells used in the previous section to study the
nanotubes is such that it is not practicable to calculate their electronic excitations
using more accurate ab initio many-body formalisms. Even more difficult would be
the calculation of the polarizability of an open-ended nanotubes, because this would
require the construction of a supercell which extend also in the direction of the tube
axis. This kind of study is nevertheless crucial for the understanding of the growth
mechanism of nanotubes.

To overcome this problem, we present and test in Chapter 6 a novel approach for
the calculation of the dynamical RPA dielectric response. This approach, based on
a mixed-space implementation of the linear response theory, is particularly efficient
in the case of large supercells which contain a significant amount of vacuum space.
Nanotubes are ideal candidates for the use of such an approach. Applications of
this novel formalism to quasiparticle calculations will be also discussed in Chapter
6.

There are many other issues remaining to be explored:

- because of the strength of the C-C or B-N bonds, we can expect very interesting
plastic properties for these “nanometer fibers”.

- the chiral structures of some nanotubes suggest that chiral currents may be possible
on such tubes. This would lead to a net induced magnetic field along the tube axis,

and tubes would then be nanoscale solenoids. Preliminary results show that BCyN
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nanotubes may be candidate to support such chiral currents [61].
- the study of the capillarity action of nanotubes should tell us if such “nanometric
straws” can be used to “pump” selected compounds at the atomic or molecular level.
Direct applications to the extraction and protection of atoms and molecules can be
suggested.
- a recent experimental study [62] showed that carbon nanotubes have a significantly
larger orientationally averaged magnetic susceptibility than any other forms of car-
bons. A theoretical study for the understanding of such a phenomenon would be of
great interest.
- because interaction between concentric tubes in multi-wall nanotubes is small (Van
der Waals interactions), one expects some concentric tubes to be incommensurate
to each other. In such a case, what becomes of the band structure picture when
the periodicity is broken along the axis of the tubes ? This is reminiscent of quasi-
crystals, and we expect localized states to appear which may modify significantly
the transport properties of the concentric nanotubes as compared to single-wall
nanotubes.

This short list is of course not exhaustive. We can expect many more novel
phenomena to arise from this new class of materials, which will challenge the imag-

ination of the materials community.
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Table 2.1: Band gap (in eV) of selected carbon tubes. All gaps given are
direct and at the [-point. For the metallic case, the overlap of the bands is
given as a negative gap.

tube Tight Binding Present calculations
Ref. [37] TB LDA
(6,0) ~ 0.2 0.05 metal (- 0.63)
(7,0) ~1 1.04 0.09
(8,0) 1.22 1.19 0.62
(9,0) 0.04 0.07 0.17

Table 2.2: Diameter (4) and binding energy (eV/K atom) for K-intercalated
(n,0) carbon tubes. The heat of formation is defined as the energy of the
K-intercalated tube (in the geometry described in the text) minus the energy
of the tube alone and the energy of a K atom in the BCC crystal structure.

tube | diameter (A) | binding energy (eV)

] (6,0) 478 0.001
(7,0) 5.56 112
- (8,0) 6.34 1.07

(9,0) 7.13 0.30
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Table 2.3: Selected radii and atomic energy levels for C, K and Pb cal-
culated in the ground state configuration from LDA calculations. For Pb,
semi-relativistic energies are provided. Energies are in eV and radii in A. The
atomic radii are given for the element in the crystal environment (the crystal
type is indicated in parenthesis). For K, the ionic radii is given for the isolated

101.

C K Pb
atomic radius (diamond)  0.77 | (bec) 2.26 | (fcc) 1.75
ionic radius (K*t) 1.33
crystal E, 0.94 2.04
atomic levels (LDA) (2s) -13.63 | (4s) -2.42| (6s) -12.20
(2p)  -5.41 | (4p) -0.84 | (6p) -4.81
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Figure 2.1: (a) Unit cell of the (6,0) carbon tube mapped onto the graphite
sheet. For the tube, point A is rolled onto point B. (b) Brillouin zone of the

graphite sheet. The vertical lines mark the set of allowed k vectors for the
tube.
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Figure 2.2: Band structure and density of states (states/eV-atom) for the
(6,0) carbon tube. The energies are in eV and the zero is at the Fermi level.
We trace the ¢*-7* hybridized band (a) around the center of the Brillouin
zone as a guide to the eye.
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Figure 2.3: Contour plot of the charge density for o*-7* hybrid state (a) at T’
for (6,0) carbon tube. The contours are in a plane perpendicular to the axis of
the tube which contains six carbon atoms. The numbers quoted are in units

of e/[a.1.]3. The circle represents a cross section of the cylinder on which the
atoms lie.
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Figure 2.4: Evolution of the graphite TB bands near the Fermi level for the
(6,0) geometry under increasing curvature. Energies are in eV and the zero is
set at the Fermi level. The dashed curves mix strongly with each other due
to curvature. In an LDA calculation, the lower one would span the gap. The
radil of curvature are indicated.
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Figure 2.5: Buckled BN (8,0) tube. The larger atoms are the N atoms and
the smaller one the B atoms. The B-N bond length is set to 1.34 A.
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Figure 2.6: Total energy of nanotubes in eV/atom as a function of tube
diameter (in A) The black circles represent the BN nanotube energies above
the energy of an isolated hexagonal BN sheet. The opened circles represent the
graphite nanotubes energies above the energy per atom of an isolated graphite
sheet. The solid and dashed lines are guides to the eye. The energy of the
strips corresponding to the (6,0) BN and carbon tubes are given respectively

by the filled and empty square.
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oN

B

Figure 2.7: Contour plot of the charge density corresponding to the bottom of
the conduction band state at I for the (6,6) BN nanotube. a) Plot in a plane
containing the axis of the tube and N atoms. N atoms are indicated by empty
circles. b) Plot in a plane perpendicular to the tube axis containing B and N
atoms. B atoms are represented by filled circles. The minimum contour line
(dashed line) corresponds to 0.04 e/[a.u.]® and the maximum to 0.026 e/[a.u.]
(thicker black line). We draw the two concentric B- and N-cylinders to stress
the buckling relaxation. The parabolic dispersion of the NFE state can be
described through the band-folding picture (see text).
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Figure 2.8: Band structure of the BN (4,4) tube compared to hexagonal BN
band structure plotted along high-symmetry directions of the 2D hexagonal
Brillouin zone. X is between [ and K with '’ X = 3/4 ' K. Energies are in eV

and the zero of energy is at the top of the valence band for both structures.
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Figure 2.9: Band structure for the hexagonal BN-C doped system in the 3x3
supercell geometry. Energy bands are plotted along high-symmetry directions
of the 2D hexagonal Brillouin zone. The solid line indicates the donor level
Energies are in eV. The zero of energy is set to the Fermi level.
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Figure 2.10: In-plane charge density for the C-doped BN sheet minus the
charge density of the undoped sheet in the the 3x3 supercell geometry. The
full line contours indicate an excess of charge and the dotted line contours a
deficit of charge. Two carbon atoms are represented. 20 contours are plotted
with constant density increment between the minimum and maximum value
of the differential charge.
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Figure 2.11: Atoms and bonds representation of an K-intercalated (7,0) car-
bon nanotube. The diameter of the tube is 5.56 A, the C-C bond length 1.43
A and the radius of the K atoms as been set to roughly the atomic radius. 3
unit cells are represented.
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Figure 2.12: Band structure for (a) pure (7,0) carbon nanotube and (b)
K-intercalated (7,0) carbon nanotube. Energies are in eV. The reference of
energy is taken to be the top of the valence band for the undoped tube. NFE
labels the nearly-free electron band of the undoped tube while o and 3 label
the two bands resulting from the hybridization of the undoped tube NFE band
with the 4s K-chain band.
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Figure 2.13: Contour plot of the charge density associated with the NFE
state and the NFE-K,; hybrid states o and § at ' for the K-doped carbon

(7,0) tube.
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Figure 2.14: (a) Projection on a plane perpendicular to the tube axis of
the charge density associated with all states with energy between the zero of
energy and the Fermi level of the band-structure for the K-intercalated (8,0)
carbon nanotube as represented in Fig. 2.12. (b) Same plot, but with the K
atoms outside the tube and distant from the tube wall by the tube radius.
The lengths indicated on the framing boxes are in unit of 22.61 a.u.
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Figure 2.15: LDA band-structure for (a) an isolated (6,0) carbon tube and
(b) a Pb-intercalated (6,0) tube. The label « indicates the Pb-chain 6s band.
The labels 3-8’ and -7’ indicate respectively the the o*-7* hybrid tube band
and the Pb-chain 6p, band which have hybridized in the Pb-intercalated tube.
Energies are in eV.
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Self-Energy Effects on the Surface States of
H-Si(111)-(1x1)

3.1 Introduction

Recently, the development of a new wet chemical treatment [63, 64] has allowed
the preparation of very flat, highly stable and nearly defect free hydrogen-terminated
Si(111) surfaces. The quality of these surfaces is characterized by the exceptionally
small linewidth of electronic and vibrational states in photoemission [65] and vi-
brational [63, 64, 66] spectroscopy experiments. This has generated much renewed
interest in this system since measurements can now unravel very fine structures in
the spectroscopic data with very little inhomogeneity or impurity broadening.

The present work is motivated by a recent high resolution angle resolved pho-
toemission spectroscopy (ARPES) experiment performed on such an “ideal” H-
Si(1 11)121 surface [67]. The spectra were obtained using the French-Swiss beam
line (SU3) at SuperACO in LURE [68]. The quality of the surface, combined with
a state-of-the-art instrumental resolution (25 meV for valence states), vields surface
states in the ARPES data with a typical lineWitdhi of 300 meV, much smaller than
those measured with samples from other preparation methods such as by adsorb-
ing atomic hydrogen on freshly cleaved Si(111) surfaces [69] or those of the ideally
H-terminated Si(111)1x1 surfaces obtained by removal of an indium adalayer by
atomic hydrogen [70].

In this chapter, we address mainly the issue of the surface states located in the
Si valence bands. Surface states in the conduction bands have also been previously

studied experimentally and theoretically [71] but these states are weak resonances.




3.2. Theoretical methods

Surface states in the valence bands of the H/Si(111) surface have been examined
in several previous calculations [71, 72, 73, 74]. Although the character of these
states is qualitatively understood, discrepancies in their energy locations as large
as 1 eV were found between theory and experiment. This is because the previous
studies were either semi-empirical [72, 73, 74] in nature or were based on the local
density approximation [71] which does not provide an accurate description of the
quasiparticle energies measured in the photoemission process.

In order to make a direct comparison with the experimental data, we have per-
formed a first-principles calculation of the quasiparticle surface state energies. The
computation of the quasiparticle energies is achieved using the self-energy method
[2] which has been referenced and discussed in Chapter 1.

The remainder of this chapter is organized as follows: in section 3.2, we dis-
cuss the theoretical methods employed in this study. The ab initio pseudopotential
method employing a plane wave basis set in a supercell slab geometry was used to
determine the surface structure and vibrational properties of the Si-H stretching
mode. The bulk and surface state energies were calculated using the first-principles
quasiparticle approach. In section 3.3, the theoretical results are presented and
compared with data from spectroscopic measurements. Finally, a summary and

conclusions are given in section 3.4.

3.2 Theoretical method.s

3.2.1 LDA ab initio pseudopotential total energy calculations

The LDA calculations were carried out using ab tnitio pseudopotentials. For
Si, we use the Hamann, Schliiter and Chiang pseudopotential scheme [75]. For hy-
drogen, the pseudopotential is obtained using a modified Kerker scheme [76] based

on the inversion of the exact hydrogenic Schrodinger equation. This scheme pro-

vides a very smooth pseudopotential for hydrogen with excellent transferability. The
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Ceperley-Alder exchange and correlation potential [77] was used. The potentials and
eigenstates are expanded in a planewave basis. The calculations were carried out us-
ing a cut-off of E,,; = 16 Ry in the planewave expansion of the wavefunctions. This
cut-off corresponds to an average of 2200 planewaves in the basis set for the surface
calculation described below. We exploited an iterative diagonalization technique [6]
to calculate the desired lowest eigenstates. A 4x4x1 grid in the Monk-Pack scheme
[78] was used to generate 10 special k-points in the irreducible part of the two -
dimensional surface Brillouin zone (SBZ).

In each supercell, we have a 12 layer Si slab terminated by hydrogen saturating
the dangling bond on each side. With this geometry, our slab retains inversion
symmetry. The vacuum between adjacent slabs was chosen to be 12 a.u. This
vacuum region is large enough as confirmed by the absence of dispersion for the slab
band structure in the direction normal to the surface and by the flatness of the total
pbtential in the middle of the vacuum region. We checked also the convergence in
the thickness of the slab: the overlap through the slab for the surface states located
on two hydrogen atoms on the opposite side induces a splitting of the surface state
energies which is at most 0.1 eV. The surface state energies given below are taken
to be simple algebraic average of the energy of the split levels.

For the specific study of the Si-H stretching mode, we increased the energy cut-off
up to E.: = 20 Ry: going from 16 Ry to 20 Ry reduces the fundamental frequency
by 8 %.

3.2.2 First-principles quasiparticle approach to electron excitation en-

ergies

The computation of the quasiparticle energies is achieved using a self-energy
approach. In this formalism, the Schrodinger-like equation solved to obtain the

one-particle excitation energies E,, is given by:

[T + Viar (r) + Vig (£)] 0% (x) + / & S(r,r'; EP)IP(r)) = EPYP(r),  (3.1)
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where T is the kinetic energy operator, V., the external potential, and Vy a mean-
field electron-electron interaction potential (the Hartree potential in this case.) The
self-energy operator ¥ includes the effects of exchange and correlation: it is non-
local, energy-dependent and non-hermitian in general.

In the GW approximation [2, 3] used in this calculation, ¥ is taken to be the

first order term in an expansion in successive powers of the screened interaction W:

(e, v; E?) = i [ —e F G(x,x; E - ENW(x,v; E'), (3.2)

where G is the dressed one-particle Green’s function. Our approach [2] is to make the
best possible approximation for G and W. As shown in previous GW calculations
in semiconductors, the LDA wavefunctions accurately describe the quasiparticle

wavefunctions in semiconductors so that we may write:

Z ;nk ;; ?_I{Zln (3.3)
with |nk > the LDA eigenfunctions and F,i the self-consistent quasiparticle energies
(n is a negative infinitesimal for energies above the Fermi energy and a positive
infinitesimal below).

The screened Coulomb interaction W = V % ¢! is calculated in Fourier space
using the Hybertsen-Louie scheme [2, 79]. V is the bare Coulomb potential and ¢!
the inverse dynamical dielectric matrix. In calculating ¢, the static polarizability

x° is evaluated in the Adler-Wiser formulation [80, 81] within the Random Phase

Approximation (RPA):

4 < v, ke M T k£ q> < ¢,k + q|eHE)T |y k>

Xee (@)= 5 > ,
Q ok €k — €cktq Tt 20

(3.4)

The above equation has been explicitely written for a system with an energy gap

between occupied and unoccupied states. Local field effects are taken into account
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so that the polarizability matrix is non-diagonal in reciprocal space. This is the
most time consuming part of our scheme. The dielectric function eg ¢ (q) is then

calculated within RPA:

cea(q) = bag — 4re?
ce(q) = baar T+ GP Xea (d) (3.5)

and the inverse dielectric function is obtained through inversion of Eq. 3.5. Spe-
cial care must be taken for the head (G, G'=0) and wings (G=0 and G’ # 0, or
vice-versa) of xg g (q) when q — 0 and the applicability of Eq. 3.5 relies on the
knowledge of the coefficients for the ¢*> dependence of the head and q dependence
of the wings in the long wavelength limit. Such leading coefficients can be obtained

from k - p perturbation theory, yielding in particular:

. <uv,k|—2iq-V Vi, iq-rlle, k >
< v, kleT* ek +q>= v k| - 2iq - r+[ENL iq.-rile , (3.6)
v,k T ek

where Vi is the non-local part of the ionic pseudopotential. This step is one of the
bottle-neck of the calculation, scaling as N® for the calculation of the head, where
N is the number of planewaves used to expand the wavefunctions. We will see in
Chapter 6 that such a N° calculation can be avoided in a mixed-space formalism.
Once the static inverse dielectric matrix ¢~ !(q,w = 0) is obtained, we extend e~ ! to
finite frequencies using a generalized plasmon pole model [79] which yields a differ-
ent pole at @wg g'(q) for each element eal’G, (q;w) of the inverse dielectric matrix.
The strength and position of each pole are uniquely determined by imposing that

eG o (q;w) satisfies both the Kramers-Kronig relations:

2 < 1
Reeglgqiw = 0) = Sgor + g /o & Imeg a(aw) (3.7)

and the generalized f-sum rule:

_m, 2@+G) (a+G) p(G-G)
27 la+ G p(0) 7

/Ooo dw w Im ege{qw) = (3.8)
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where w, = ne?/mc is the classical plasmon frequency.
The quasiparticle excitation energies are then calculated using first order per-

turbation theory:

E% = ER* + <nk|S(ER) — VIPAnk > . (3.9)

The validity of Eq. 3.9 is based on that the LDA and quasiparticle wavefunctions
are, in general, in excellent agreement [2]. Thus, one needs only to calculate the
diagonal elements of the difference Hamiltonian X(E% ) — VEPA,

In the calculation, the static polarizability x°(q,w = 0) was evaluated using 10
special g-points in the irreducible part of the SBZ. The x& g matrix elements were
calculated for |q + G| < 3.0 a.u. which yields dielectric matrices of average size of
950 950 for each special g-point. This is sufficient to describe the local field effects
in the dielectric screening in the present case. We also included transitions up to
350 conduction bands for each k-point.

The calculation of the self—energy matrix elements [2] requires smaller cut-off: we
used |q + G| < 2.8 a.u. to converge the bare exchange energies and |q + G| < 2.1
a.u. for the dynamical part of . Over 350 bands in the summation over conduction
states were used for the Coulomb-hole term [2]. With these cut-offs, the self-energies

are found to converge to within 0.1 eV.

3.3 Results and analysis

3.3.1 Structure and H/Si stretching mode

By total energy minimization within LDA, we find that the Si-H bond length for
the unreconstructed surface is 2.87 a.u, in good agreement with previous calculations
(2.80 a.u. [71] and 2.90 a.u. [82]). For the silicon substrate, we start with the

experimental bulk silicon lattice constant. The first layer is found to be slightly
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relaxed inward by 0.075 a.u. while relaxation of deeper layers is negligible. The
inward relaxation of the first layer is 0.03 a.u. larger than the value calculated in
Ref. [82): difference in the number of layers, width of the vacuum space and k-point
sampling may account for this discrepancy which has only a very small effect on
the total energy. The position of the surface states and the parameters of the Si-H
stretching vibrational mode are insensitive to such a small variation in the first layer
relaxation. We give in Fig. 3.1 a schematic representation of the H/Si(111)-(1x1)
surface with the calculated LDA equilibrium bond lengths given in A.

The stretching vibrational mode of the Si-H bond was investigated using the
frozen-phonon method of Ref. [83]. We find that the hydrogen moves in a potential
well (see Fig. 3.2) which can be well described using the following fourth order

polynomial expression:

V(z) = Vg + 0.5432% — 0.7812% + 0.7712%, (3.10)

where the energies are in Ry and z is the deviation from equilibrium of the Si-H
bond length in Angstrom. With this potential, we find a harmonic frequency of
Qo= 251.2 meV (2025.0 cm™!) and the difference between the overtone frequency
and twice Ay to be —2I'= 4.1 meV (33.4 em™?) in excellent agreement with the
theoretical value in Ref. [82] in the case when no coupling with the wagging modes
is considered. As described in Ref. [82], these values can be successfully used as
parameters to describe phonon-phonon interactions through a negative-U Hubbard
type Hamiltonian which yields an excellent value for the binding energy of the two-

phonon bound state recently observed in this system.

3.3.2 Surface-state energies

The results of the LDA and quasiparticle surface-state band structure calcula-
tions are presented in Fig. 3.3 . In the background is the continuum of Si bulk

quasiparticle states projected along the (111) direction onto the SBZ. For each &
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parallel to the surface (along I-K-M-T), we projected the energy levels of the quasi-
particle bulk states of 100 regularly spaced k-points of the bulk fecc Brillouin zone.
This presentation of the projected quasiparticle band structure, in contrast to a
uniform shading of the bulk continuum, allows the detection of lines of high density
of bulk states in the continuum . They are in excellent agreement with the ARPES
data [67] and are valuable in identifying bulk peaks as compared to surface related
peaks in spectroscopic data. These bulk states are calculated in the framework of our
first-principle quasiparticle approach using the usual diamond-structure unit cell of
bulk silicon. Most importantly for the study of surface states, the calculated pockets

in the projected bulk band structure are in excellent agreement with experiment.

LDA results

In Fig. 3.3, the LDA surface state eigenvalues are given by the solid lines while
the experimental values are given by the black squares. Well-defined surface states
exist in each local gap (or pocket) of the projected bulk band structure near K
and M. These states have wavefunctions which are highly localized at the surface
(Fig. 3.4(a),(c),(d)). The states (a) at K (Fig. 3.4(a)) and (2’) at M (Fig. 3.4(d))
are the results of the'hybridization of the Si 3p, orbital with the H 1s orbital,
while interactions of the Si 3s and the H 1s orbitals are responsible for the low
lying surface states (b) at -7.85 eV at K. The enhancement of the k-resolved local
density of states (LDOS) on the first H layer at the calculated surface state energies
as compared to the bulk density of states (DOS) at K and M (Fig. 3.5(b),(c))
further illustrates the localized character of these states. The state (a’) at K is
found in the LDA calculations to be within the bulk continuum but of a different
symmetry than the surrounding bulk states. The corresponding wavefunction (see
Fig. 3.4(b)) is very delocalized as compared to the state (a’) at M. However, an
analysis of the symmetry of this state clearly shows that this state is hydrogen

induced and is the continuation of the bona fide surface band (a’) along K to M.
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An angular decomposition of the wavefunction around the hydrogen atom and the
first layer silicon atom showed distinctly a different character for this state from that
of surrounding bulk states: the states (a’) at M and K have the same character at
the surface.

To examine whether the larger delocalization of the surface state (a’) at K is the
result of being incorrectly positioned within LDA, we performed a Slater-Koster [40]
tight-binding (TB) calculation on our 12 Si-layer slab using Pandey’s nearest and
second nearest neighbors parameters [73]. (The TB results do not yield a surface
resonance for the surface state (a’) at K.) We compared first our tight-binding
surface state energies with Pandey’s results for a 36 Si-layer slab. The results are
quoted in Table 3.1. The energies of the surface states as given by the two TB
calculations differ by less than 0.11 eV (which also confirms that our slab is thick
enough). Consistent with Pandey’s findings, our tight-binding calculation locates
the state (a’) at K well within the small pocket of the projected bulk continuum.
Moreover, in agreement with our LDA calculations, the wavefunction at K is much
less localized than that at M: only 35 % of the wavefunction is localized on the
two outermost layers at K as compared to 69 % at M. This shows that, because
of symmetry, the state (a’) hardly resonates with the nearby bulk states at K and
that the corresponding delocalization of the wavefunction is rather insensitive to
its position in energy as compared to the bulk continuum edge. This will be of
some importance in our self-energy calculation which assumes that the LDA and
quasiparticle wavefunctions are in good agreement.

The LDOS at I is given in Fig. 3.5(a) : the features in the LDOS for the center
of the slab from -7 eV to -2 eV illustrate the finite size effects related to the slab
geometry but the enhancement of some of these structures in the H layer LDOS
indicates that surface resonances exist in this energy range as reported in previous
calculations [71, 73, 74].

The LDA energies of the surface states at K and M are also reported in Table
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3.1. As compared to experiment, LDA underbinds the occupied surface states.
This is consistent with previous calculations [84] for other surfaces, but the effect
is significantly larger in the present case. This is related to the very localized 1s
hydrogen orbital forming the surface states in the present system: Fig. 3.4 shows
that the wavefunctions of the bonding surface states are not centered in the middle
of the H-Si bond but fall into the deep well created by the hydrogen nucleus. The
discrepancy in the energy position between LDA and experiment for the state (a’) at
M and the state (b) at K is larger by a factor 2 to 3 as compared to that for surface
 states at the As-Si(111) surface [19]. This difference between the two systems can
be partially understood by examining the atomic calculations. Fig. 3.6 shows the
error in the LDA eigenvalue energy for the highest occupied state as compared to
the experimental ionization energy. It is well known that the discrepancy is very
large for all atoms [85]. This error, resulting from using LDA exchange-correlation
potential as an approximation to the self-energy operator, is therefore large. In
the case of surface state energies, we are interested in their relative position to
bulk states. Thus the energy differences between substrate and adsorbate levels are
important. The cancellation of error is much more favorable in the As-Si system
than the H-Si system. These differences are quoted in Table 3.2. One can see that
the discrepancy is worse for the energy difference H(1s)-Si(3s): this is relevant for
the state (¢) at K.

In addition to not yielding the correct position of surface states relative to bulk
states, LDA in the present case does not give the correct dispersion for the surface
states. For example, for the surface band (a’) between M and K, while the exper-
imental data do no show any dispersion, the LDA calculation gives a dispersion of

0.42 eV.

Quasiparticle results

Because spectroscopic measurements can be understood in terms of excitations
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between quasiparticle states of an interacting electron system, our quasiparticle self-
energy approach yields results in much better agreement with photoemission data
than LDA. In the present case, very large self-energy corrections to the position of
the LDA surface states are found: the self-energy corrections for the state (a’) at
M and the state (b) at K are 2 to 3 times larger than those for the surface states
at the As-Si(111) surface [19]. This can be understood from the important non-
local and dynamical effects induced by the high degree of localization of the surface
states in the H/Si system. For selected k-points of the surface Brillouin zone, our
calculated quasiparticle energy levels are given in Fig. 3.3 by the open circles. The
specific energy levels for the quasiparticle surface states at X and M are quoted in
Table 3.1. The agreement between our quasiparticle theory and the recent ARPES
experiment is excellent: the discrepancy is at most 0.17 eV for the higher binding
energy surface state at K. This is much smaller than the 0.79 eV discrepancy for
this state as calculated within LDA.

As a consequence of the improvement in the overall position of the surface states,
the self-energy approach yields also an impressive improvement in the dispersion of
all the surface states. This again may be understood from the sensitivity of the
self-energy operator to the localization of the surface states. We compare in Fig. 3.7
the exchange-correlation energies for different states of the band (a’) between K
and M as given by different approximations. The bare Fock exchange, the LDA and
the GW exchange-correlation operators have very different k-dependent behavior.
Recall that the surface state (a’) is more localized at M than at K. The LDA
exchange-correlation operator is much less sensitive to localization than the self-
energy operator 3 and thus underestimates by 0.3 eV the dispersion of the exchange-
correlation energy for the band (a’) between K and M. As expected, the bare
exchange operator, which neglects screening effects, overestimates the dispersion.
In contrast to both the LDA and bare exchange approximation, the self-energy

approach yields a dispersion which is in almost perfect agreement with ARPES
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data.

The self-energy operator is also more sensitive to wavefunction character as a
consequence of its non-locality. The state (a’) at K , which differs from surrounding
bulk states by its strong hydrogenic character at the surface H site, is successfully
extracted from the bulk continuum by the self-energy approach. It is important to
note that even in the tight-binding calculation which locates the surface state (a’)
at K well within a pocket, the wavefunction at K is still much less localized than
at M. This shows that the wavefunction (a’) at K does not change when extracted
from the bulk continuum and the use of the LDA wavefunction to describe the
quasiparticle wavefunction for this state is valid.

The small discrepancy between theory and experiment for the surface states at
higher binding energy near K could be due to several effects. First, because the
static part of the dielectric function is calculated exactly within the RPA, we expect
the generalized plasmon pole model used to extend the dielectric function to finite
frequency to be more accurate in the low energy range. Therefore, the self-energy of
the smaller binding energy states are the most accurate within our scheme. Second,
we neglect the influence of finite lifetime effects on the position of the quasiparticle
energies. Since states closer to the gap edges have a larger lifetime, we expect these
effects to be more important for states at higher binding energy. We emphasize that
these discrepancies are small: the discrepancy is within the combined uncertainties

of GW theory and experiment.

3.4 Conclusion

We calculated within the GW approximation the quasiparticle energies for occu-
pied surface states of the H-Si(111)1x1 surface. This approach yields quasiparticle
energies in excellent agreement with a recent high-resolution angle resolved pho-
toemission spectroscopy performed on the ”ideally” prepared surface. The ability

of our first-principles quasiparticle approach to describe the dynamical and non-
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local effects in this highly anisotropic system, exhibiting very localized states on
the Si-H bond, has been exemplified. Our LDA calculations also confirm that LDA
combined with a slab model can accurately describes the ground-state properties
of such surfaces and that the LDA wavefunctions are an excellent starting point
for quasiparticle calculations in the Hybertsen-Louie formulation within the GW

approximation.
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Table 3.1: Energies of surface states at K and M (in eV with zero at the top
of the valence band) for the H/Si(111)-(1x1) surface.

k-point Tight Binding Present calculations Exp.
(Ref. [73] ) TB LDA GW (Ref. [67])

K -3.88 -3.82 -3.22 -3.82 -3.80
-5.02 494 -429 -476 -4.78

-8.83 -8.94 -7.85 -8.47 -8.64

M -4.94 -4.86 -3.87 -4.63 -4.76

Table 3.2: Energy difference between selected LDA atomic levels for Si, As
and H as compared to experiment. The energies are given in eV.

H(1s)-Si(3p) As(4p)-Si(3p) H(1s)-Si(3s) As(4p)-Si(3s)

LDA -2.17 -1.2 4.48 5.46
Exp. -5.45% -1.6% -0.14? 3.65°

Upper indices (a) and (b) refer to Ref. [86] and Ref. [87].
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l
{
\
i
|
|
|
|

Figure 3.1: Schematic view of the H/Si(111)-(1x1) surface. The equilibrium

distances as calculates within LDA are given in A. Az indicates the magnitude
of the inward relaxation of the first Si layer.
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Figure 3.2: Calculated potential well of H-Si bond as a function of the dis-
placement from equilibrium bond length. The open squares are the calculated
points and the solid line is a fourth order polynomial least-square fit.
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The black squares represent the experimental data. In the

Figure 3.3: Surface state bands calculated within LDA (full lines) and GW

background is the projected Si bulk GW band structure.’

energy scale is at the top of the valence band.

(open circles).
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Figure 3.4: Contour plot in the [110] plane of selected surface-state wave-
functions and corresponding xy-averaged charge density plotted along the sur-
face normal direction z. The values which label the contours correspond to
(27)3|4]* where 1 is the corresponding wavefunction normalized such that
[ dV |¥|*= 1, with Q, the unit cell volume. The xy-average charge density
9vc

is normalized to unity within one unit cell. (a), (b), (¢) and (d) correspond
respectively to the LDA calculated states at -3.22 eV, -4.29 eV, -7.85 eV at
K and the state at -3.87 eV at M. The wavefunctions are plotted from the
middle of the slab to the middle of the vacuum. The dots represent the sili-
con atoms contained in the [110] plane and the squares represent the hydrogen
atoms. The dashed lines point to the charge density on the hydrogen or silicon
atom.
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k—resolved Local Density of States

Energy (eV)

Figure 3.5: k-resolved LDOS for selected k-points as calculated in the LDA.
The solid line correspond to the bulk DOS. The upper long-dash line corre-
sponds to the H-layer LDOS and the middle short- dash line to the "center
of the slab” LDOS (innermost 4 Si layers included). The arrows indicate the
position of the surface states as given by the LDA eigenvalues.
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Figure 3.7: Energy dispersion for different approximations to the exchange-
correlation operators for the surface-state band (a’) at selected points between
K and M. The zero of energy scale is taken at K. The solid line corresponds
to the GW self-energy ¥ operator, the dashed line to the LDA operator and
the dotted line to the bare Hartree-Fock operator. The empty squares are the
points where the energies have been calculated (in eV).



Chapter 4

Si 2p core level chemical shifts at the H/Si(111)-(1x1)

surface

4.1 Introduction

As discussed in the previous chapter, a recently developed method of chemically
etching silicon in buffered HF solutions allows the preparation of H-Si(111)-(1x1)
surfaces with ideal H termination and high degree of homogeneity [63, 64]. The
excellent quality of the surfaces obtained with this method, both with respect to
the chemical purity and structural perfection, has been demonstrated by a variety of
techniques [63, 64, 67]. The availability of such high quality surfaces has permitted
very accurate experimental studies of the electronic structure of Si-H surfaces [67].
In particular the Si 2p core level spectra have been studied in great detail. Using
surface sensitive spectra, this study was able to separate very clearly the bulk from
the surface components of the Si 2p core level spectrum. Six lines were resolved
within the Si 2p;/, peak. Two of them were assigned to phonous, one to the bulk
core level, and three to surface components. The three surface components however
did not have a clear interpretation.

Motivated by experiment, we have carried out a first-principles calculation of the
Si 2p core level shifts for Si atoms near the H/Si(111)-(1x1) surface. Pseudopoten-
tials and a planewave basis are used to implement the local density approximation
(LDA) of the density functional theory. All-electron calculations are in principle
more desirable since they describe explicitly the core-valence interactions and core
relaxation effects. However, pseudopotential calculations are easier to perform for

large systems, and recently frozen-core-pseudopotential approaches have been used
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successfully to calculate core levels shifts [88, 89]. Following this line of work, we
show in this Chapter that the use of a first-order perturbation theory to describe
core-valence interaction in the framework of an ab initio pseudopotential approach
gives good results for the Si 2p core level shift for the H/Si(111) surface. Contrary
to methods based on total energy differences [89], our method can describe the split-
ting of a degenerate core level by the surface potential: this is of crucial importance
in this work. In Ref. [88], a method similar to our approach has been proposed, but
no experiment was available to demonstrate its validity. Here we show for the first
time that this scheme gives excellent results when compared to experiment [67].
To describe the changes in the chemical environment at the surface as compared
to the bulk, we must be able to describe accurately the modifications in both the
ionic and electronic potentials. For the ionic potential, since the core regions do not
overlap between neighboring atoms, the core electrons of each atom experience the
tails of the real ionic potentials from neighboring atoms. We checked this by varying
the extent of the pseudocore of both the H and Si atoms and no significant changes
in the core level shifts were observed. More challenging is the description of the
electronic potential felt by the core electrons. We find that the DFT-LDA formal-
ism gives good results to describe such an interaction [90]. In the present scheme,
we must in addition deal with the core-valence partitioning introduced by the pseu-
dopotential technique. Since the core is frozen in the pseudopotential approach,
core relaxation effects are not considered. Consequently, our calculations formally
describe the escape of the core electrons in the sudden (or vertical) approximation
and relaxation effects are neglected. Alternatively, the present theory corresponds
to making the assumption that relaxation effects are similar for both surface and
bulk atoms and that the core level shifts are mainly given by the potential changes.
We agree with the conclusions of Ref. [89] that this might be a crude approximation
in the case of surfaces with dangling bonds. However, consistently with Ref. [90],

we show that in the present case of saturated surfaces, the present approximation
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gives good results.

4.2 Test of the method on the isolated atom core-level shifts

To study the validity of using perturbation theory, we look first at the isolated
atom and study the shift in energy of the Si 2p atomic core level under a change
in occupation of the 3p shell. In our perturbative approach, the zeroth-order wave
function is taken to be the LDA all-electron Si 2p core level ¥, of the atom in
its ground state configuration. Results are reported in Table 4.1. We calculated
the matrix elements < W9 |VEyc|¥), > in various valence configurations of the
atom. V} % is the Hartree, exchange and correlation potential created by the
valence electrons in the pseudopotential calculations. The shift of these matrix
elements going from the ground state configuration to an excited-state configuration
is compared to the shift AE®® of the all-electron Si 2p eigenvalue under the same
chemical change. Values for < g,| AV %(¢)y, > and < 1, | AVE|thy, > are also
reported. 1y, is the all electron Si 2p wavefunction for the given configuration (that
is we allow the wavefunction to relax from W9, under the valence configuration
change) and V**° the all-electron LDA electronic potential. A indicates the changes
between the studied configuration and the ground state configuration used as a
reference. We looked at excited configuration with charge transfer comparable to
or larger than the one expected in the solid, including ionic configurations. The
agreement between the all-electron and pseudopotential calculations is very good,
with largest error of about 9 % in the extreme case of complete ionization of the
valence shell. This shows that the relaxation of the Si 2p wavefunctions is very
small, that the change in the electronic potential created by the valence electrons

only is responsible for virtually all the effect and that this change is well described

in the pseudopotential approach.
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4.3 Core-level shifts in the crystal

We turn now to the calculation of the core level shifts at the surface. Since
the crystal potential is not spherically symmetric, we consider as zeroth-order wave
functions the set of 6-fold degenerate spin-orbitals associated with the 2p atomic
level in the (Hy, L?, L.) representation, where Hj is the atomic potential in the
absence of spin-orbit splitting and L the angular momentum operator. The angular
part of the wavefunctions is written with usual notation: Wi (7) = Ry, (r) x Y™ (Q5)
with m taking the values —1,0,1. The perturbation Hamiltonian contains the spin-
orbit term —\L - S , Where S is the spin momentum operator, and the crystal field
potential V(7). The strength of the spin-orbit coupling A is taken to reproduce the
experimental [67] splitting between the 2p, ,, and 2p;,, levels in the crystal, and has
the value A = 410 meV.

The electronic part of the crystal potential is the same as that calculated in
Chapter 3. To model the surface, we performed a supercell calculation with each
supercell containing a 12-layer Si slab terminated by hydrogen saturating the dan-
gling bonds on each side. The potential was expanded in a planewave basis with
a kinetic energy cut-off E,,., = 20 Ry. In the present work, we increase the ionic
potential cut-off up to 56 Ry. For cut-offs smaller than 25 Ry, we find that the
fluctuations of the ionic potential contribution to the core level shift as a function
of Enqe 1s of the same order of magnitude as the final result. We find that the short
range non-local part of the ionic potential has no contribution to the core level shift.

We calculate first the matrix elements V. of the crystal potential in the

(Ho, L?, L,) representation. We write then:

Vwl®) = [T ()G F - F) V) U (-7, (4.1)

where 7 indicates the position of a Si atom in the supercell. V(7) is the sum of
the ionic and electronic potentials. Since we deal only with local potentials, it is

convenient to work in Fourier space. Using the expansion of planewaves in terms
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of spherical harmonics, we get a multipole expansion of the potential and we may

write:

Vit (F) = S VD, (7), (4.2)
with

(L) ' (7)) = 4mifx

Sg VIG)E ST [ridrjn(Gr)Ry,(r) TulYH QeI (Im' [ YH(Qy) | 1m), (4.3)

where | 1m) is the spherical harmonic ¥7"(Q7) and jr the spherical Bessel function
of order L.

The selection rules for the angular integrals restrict terms of the sum in Eq. (4.2)
tb L=0,2. This implies that only two radial integrals need to be calculated numeri-
cally for each star of G vectors. Independent of the symmetry of the Hamiltonian,

Eq. (4.3) yields the following set of relations:

VO () = VO7)b (4.4)
VAR =ve_ (7)) = ——Vo%(“) (4.5)

and in the case of a Cj, site-symmetry:

(2)(—.) _ (2) ( 7) = (2) ( ) =0 (4.6)

Eq. (4.4) indicates that the matrix V, m, O (7) yields a rigid shift of the core level
but does not induce any splitting of this level. On the other hand, the quadrupolar
contribution (L=2) can in general couple different m and m’ sublevels. However,
in our geometry, these terms also must be zero because of the Cs, site-symmetry.
Therefore, the matrix V,Ef.,)m(?) is diagonal and, following Eqs. (4.5), only one matrix

element needs to be calculated. Further, if we now consider the 7; symmetry of bulk

silicon, Vo(o) and V; 1) must be equal and therefore zero to satisfy Eqgs. (4.5). This is
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also confirmed numerically in our calculations. We report in Table 4.2 the evolution
of VO and V® = VO(,%) for different values of 7. At the surface, V(® is large and
is responsible for the splitting of the core level (see below). As we go from the
surface to the bulk, this matrix element decreases rapidly. This is an effect of the
rearrangement of the charge density at the surface in order to screen the surface
potential and restore the T; symmetry of bulk silicon. For the innermost silicon
atom, we find that V) (7) = —1.5 meV ; as expected, the crystal field splitting on
this atom is negligible.

To diagonalize the perturbation Hamiltonian containing both the crystal field
potential V(7) and the spin orbit interaction —~AL - §, we express first the matrix
Vit m in the (Ho, L?, J?, J,) representation where J = L + 5 is the sum of the
angular momentum and electronic spin. In this basis set, the spin-orbit matrix is
diagonal and yields the 2 levels 2p; /; and 2p3/3, with degeneracy 2 and 4, respectively.
Using Table 4.2 and taking as reference of energy the 2p3/; energy level on the
innermost silicon atom of our slab, we find that the 2ps3/; core level of a silicon
atom at the surface is split into two peaks T} and T at positions E(T;) = —40
meV and E(7,) = —114 meV on the higher binding energy side of the bulk core
level (we neglect the —1.5 meV splitting of the "bulk” 2p;/, core level). In terms of
group theory analysis, this splitting can be explained by looking at the dimension
of the irreducible representations compatible with the Si 2p orbital symmetry for
respectively the bulk T, and the surface C;, double groups. The subsurface silicon
atom 2pss, level (T3) is shifted to E(T3) = 116 meV at lower binding energy but
its splitting is negligible as compared to the resolution of the experiment [67]. For
the Si 2p;/y core level, the surface potential gives rise to just two peaks, one at -83
meV and the other at 116 meV relative to the 2p,/, bulk level. These peaks are
associated respectively with the surface and subsurface Si atoms. No splitting is
expected according to group theory analysis.

In addition to the position of the peaks, it is important to estimate their height
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in order to compare theoretical results to experimental results. Group theory anal-
ysis predicts that 77, T5 and the Si 2p;, surface level are all two fold degenerate.
Therefore, the relative heights of these peaks should be given by the ratios of the
corresponding electric dipole matrix elements. We calculated the matrix elements:
< eiKFIX,,J\II;’;7 > where X, is x,y or z according to the polarization of the light
source. This is consistent with the sudden approximation and the final state is cho-
sen to be a planewave. Using these, we can estimate the relative intensities of the
peaks 17, Ty and 2p; s, for the surface atom, as well as the ratio of the 2p;/, to the
2p1 /2 peaks for the subsurface and bulk atoms.

With this set of theoretical values, a new fit for the data of Ref. [67] has been
performed [91]. We present in Fig. 4.1 two of these fits. Both bulk and surface
sensitive spectra are studied. The incoming light was polarized such that the electric
field is parallel to the surface [92]. For this new set of fit, the 70 meV splitting
between 77 and 75 has been respected. Because this splitting is dictated by the
local properties of the potential at the surface (as shown in Table 4.2, this splitting
is already negligible for atoms of the subsurface), it is insensitive to finite size effects
induced by the slab model. Therefore, we believe that this value is well described
in our calculation. For the same reason, the ratio of 0.4 for the relative height

I(T1)/I(T3) that we find in the case of an imposed parallel polarization. With

these two coustraints, the best fit yields surface and subsurface peaks in excellent

agreement with our theoretical results aside from a rigid shift of -31 meV (allowing
a £ 6 meV uncertainty on the experimental values). This rigid shift is related to
the uncertainty on the position of the bulk peaks in our slab calculation. This kind
of systematic error has been estimated to be 100 meV for a 8 layers Si slab [89] so
that a rigid shift of 31 meV is reasonable for our larger 12-layer Si slab.

A comparison between theory and the fit values is presented in Table 4.3.
In addition to the peak locations, we find that for the surface peaks, the ratios

I(2p1/,)/I(T3) is calculated to be 0.79 in very‘ good agreement with the experimen-
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tal value of 0.71 [93]. For the subsurface and bulk peaks, the calculated ratios
I(2p12)/1(2ps/2) are 0.50 in both cases. We emphasize that the only constraint on
the experimental fit is the shape of the T, peak as plotted in Fig. 4.1.

4.4 Conclusion

In conclusion, this work shows that the use of a first-order perturbation theory
in the framework of a pseudopotential approach gives excellent results for the calcu-
lation of the core level shifts at the surface of a saturated system. We show that the
surface Si 2p3/; peak is split into two components by the surface crystal field. The
present interpretation of the data of Ref. [67] gives a consistent description of the
observed surface induced features: both peak positions and intensities are explained
by the theoretical calculations. Experiment performed with different polarizations
are suggested to further test the validity of our calculations. In particular, for the
case of a polarization perpendicular to the surface, we predict the ratio I(73)/1(T3)
to be close to 4.1 (instead of 0.4 in the present case). The peak T} ,, which corre-
sponds to the sum of the peaks 77 and T3, would then be displaced towards smaller

binding energies [94].
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Table 4.1: Core level shift for the Si 2p atomic core level under various
valence shell configurations. The reference of energy is the all-electron ground
state s2p? configuration. The second column gives the core level shift from
an all-electron calculation. The other columns give the results for various
approximations. Energies are in eV.

AB™  <AVEF >y, <AV >p0 <AV >0
stpt5d0s | -0.2295 -0.2232 -0.2295 -0.2281
sPp?d%s | -0.2818 -0.2823 -0.2708 -0.2694
?pts | -0.32627 -0.320766 -0.326275 -0.32546
stp? | -0.38448 -0.37400 -0.384477 -0.37239
s2p? -0.69999 -0.684577 -0.699979 -0.69540
s2p® | -1.571513  -1.520704 -1.571431 -1.547644
slp® -2.67917  -2.561516 -2.678618 -2.58616
5990 -3.76403 -3.56228 -3.76225 -3.42411

Table 4.2: Monopolar and quadrupolar contributions V(©® and V) to the
crystal potential matrix elements for different silicon atoms 7. For the
monopole contribution, only the difference from the value Vo(ﬁ), where 0
is the innermost silicon of our slab, is given. The energies are in meV.

7 VO>F) - VO@G) | vE(F)
surface silicon -79 =70
subsurface silicon 116 2.8
second layer silicon 9 -0.5
innermost silicon 0 -1.5

77
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Table 4.3: Theoretical and experimental values for the Si 2p core level shift.
Shifts at the surface and subsurface for the Si 2p3;) related peaks are given
with respect to the bulk Si 2ps/y level. The corresponding shifts for the Si
2py/2 level are given with respect to the bulk Si 2p; ), level. The theoretical
values for the subsurface shifts are the same for both the Si 2p; /5 and Si 2p, /9
levels. The energies are in meV. The experimental values have a + 5 meV
uncertainty.

T This work Exp.
surface Si 2ps/y (-114,-44) (-150,-80)
surface Si 2py/; -83 -120

subsurface silicon Si 2p 116 88
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Intensity (arb. units.)

Pl
-1.5 -1 -0.5 0
Relative binding energy (eV)

Figure 4.1: (a) Siy, spectrum taken at hry=108 eV and normal emission to
optimize the bulk component. The light is polarized in a direction parallel
to the surface. The 77 peak is the surface 2p3/; peak composed of the two
components T} and 75 as shown in the insert of (b). The peak designated by
T3 is the subsurface (or backbond) Si 2p3/, feature. (b) Surface sensitive Siy,
spectra at hv= 130 eV. The light is polarized in a direction parallel to the
surface.
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Chapter 5

Quasiparticle band-structure of hexagonal BN

In this chapter, we study layered hexagonal BN structures. This work is car-
ried out in conjunction with our study of the BN nanotubes. Compared to bulk
semiconductor calculations, we are here confronted with the added complication of
describing correctly the interactions between neighboring layers. These interactions
are, in particular, responsible for the dispersion of the quasiparticle energy bands
along directions perpendicular to the planes of atoms. In the case of bulk hexagonal
BN, such dispersions can be as large as 2 eV. This is very large considering that two
neighboring BN layers are 3.4 A apart. Further, we find that these dispersions are
nearly identical within LDA and GW. These two facts suggest that the layer-layer
interactions in hexagonal BN are stronger than Van der Waals forces and are well
described within LDA.

A striking feature of hexagonal BN from our calculations is the presence, at the
bottom of the conduction bands, of an interlayer state with a charge density mostly
localized in between two neighboring layers. When the BN layers are separated far
from each other, this state evolves into a “single-layer” state of which the charge
density has a maximum at 3.3 a.u. away from the plane of atoms. This state
displays a nearly-free-electron-like character and, unlike other electronic states, the
self-energy correction to LDA is negligible for this state. This state is the origin of

the BN nanotubes nearly-free-electron-state described in section 2.3 of Chapter 2.

5.1 Introduction

Recently, using an analogy between carbon and BN-based materials, the exis-

tence of BN nanotubes has been suggested [14, 47]. Because these nanotubes can be
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viewed as being generated by rolling a sheet of hexagonal BN onto itself, this simple
sheet structure has been the object of current interest [14, 95]. Further, it has been
shown [14] that, in the case of multi-wall and single-wall BN nanotubes, the effect
of intra- or inter-wall interactions on the electronic levels could be reproduced in
a band-folding analysis by allowing the isolated BN sheet to interact appropriately
with neighboring BN layers. In addition, the intrinsic properties of bulk BN mo-
tivate this study, since cubic BN is an extremely hard material [96] and displays
the largest band gap of all III-V compounds. In this work, both bulk hexagonal
BN and the isolated BN sheet are investigated. To our knowledge, this is the first
quasiparticle calculation for bulk hexagonal boron nitride [97]. We also have exam-
ined intermediate structures éomposed of a periodic repetition of BN layers with an
interlayer distance varying from d = 5.5 A to d = 13.5 A and analyzed the effect of
the interlayer interaction on the band structures. We will use the notation, BN(d),
for such hypothetical compounds.

As discussed before, because the density functional theory is a ground-state
formalism, standard local density approximation (LDA) band structure calculations
do not yield the true quasiparticle energy levels. In particular, it is well known
that LDA underestimates the band gap of most semiconductors. In this Chapter,
we show that LDA not only underestimates the gap of the structures under study,
but also yields an incorrect ordering of the conduction bands in the case of the
isolated BN sheet. In fact, for this system, the self-energy correction is strongly
band- and k-dependent and therefore plays a more drastic role than one would
expect from a simple ”scissor” approach sometimes used to describe the results of
self-energy corrections. As in the previous Chapters, the quasiparticle calculations
are carried out using the Hybertsen-Louie method [2] which is based on Hedin’s GW
approximation [3] for the electron self-energy operator. |

This Chapter is organized as follows. In section 5.2, the theoretical methods

and technical details are discussed for the LDA and quasiparticle calculations. In

81




82

Chapter 5. Quastparticle band-structure of hexagonal BN

section 5.3.1, the LDA band structures are given and the wavefunctions of the states
controlling the band gaps are presented. In particular, it is shown that an interlayer
free-electron-like-state forms the bottom of the conduction band in most structures.
In the case of an isolated sheet, the interlayer state transforms into a state with a
large extension into the vacuum, away from the plane of atoms. In section 5.3.2, the
quasiparticle band structures are given, and the differences between the quasiparticle
and the LDA results are discussed. Discrepancies with a previous quasiparticle band
structure calculation performed on an isolated BN sheet [95] is analyzed. In section

5.4, a summary and conclusions are given.

5.2 Theoretical methods

We carry out ab initio pseudopotential LDA calculations, using a planewave
expansion for the pseudopotentials and wavefunctions. The energy cut-off for the
electronic wavefunctions is set at E.,;= 36 Ry. Boron and nitrogen pseudopotentials
are generated following the Troullier and Martins pseudopotential generation scheme
[41]. The Ceperley-Alder exchange and correlation potential [77] is used. The B-N
bond length is set to the experimental distance of 1.45 A. The distance between
two layers is chosen to be 3.34 A for bulk hexagonal BN. For this structure, AB
stacking with each B atom on top of a N atom is imposed in each unit cell. A 4x4x2
grid in the Monkhorst and Pack scheme [78] is used to generate 20 points in the
irreducible Brillouin zone (BZ). The conventional notation for the hexagonal BZ are
reproduced in Fig. 5.1. Among these 20 irreducible k-points, 10 are located in the
I'MK area and 10 in the ALH area.

For BN(d) structures, we choose an AA stacking with identical atoms on top of
each other. This permits us to reduce the size of the unit cell by a factor two as
compared to the stacking in bulk hexagonal BN, and the results make no difference
in the limit of the isolated sheet. Both the isolated sheet and the intermediate BN(d)

structures have the Dg, symmetry, while bulk hexagonal BN transforms according
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to the symmetries of the smaller Cg, group. The inter-layer distance is varied
between d = 5.5 A4 and d = 13.5 A until stabilization of the electronic energy levels
is achieved. We then obtain the band structure of an isolated BN sheet within this
supercell approach.

The quasiparticle calculations are carried out using the scheme presented in
section 3.2.2 of Chapter 3. The dielectric matrix is truncated at |q+ G| = 3 a.u.
This is sufficient to describe the local-field effects in the present cases. The k-
point sampling used for the BZ summations involved in the calculation of both the
dielectric matrix and the self-energy matrix elements is the same as those used in
the LDA calculations. We include 40 bands per atom in the unit cell to perform the
summation over the conduction bands for the calculation of the RPA independent-
particle polarizability. The same number of bands is used to calculate the electron
Green’s function. Finally, a cut-off of |q+ G| = 4 a.u. is used to converge the
bare-exchange contribution to the self-energy. Coulomb-hole and screened-exchange
terms converge faster, and we set |q+ G| < 3 a.u. for these calculations. This set

~ of convergency parameters gives quasiparticle energies converged to within 0.1 eV.

5.3 Results

5.3.1 LDA calculations

In Fig. 5.2, the LDA band-structure for bulk hexagonal boron-nitride is plotted
along high symmetry directions of the BZ . The energy levels at high-symmetry
points are reported in Table 5.1. Because of layer-layer interactions, the dispersion
along the c-axis is non-negligible as can be seen from the band structure along the
T'A, ML and KH directions. Within LDA, we find that bulk hexagonal BN is a large
gap semiconductor, with an indirect gap of 3.9 eV between the top of the valence
band near K and the bottom of the conduction band at M. The top of the valence

band, located near K along KI' (we will use the notation T} for this point), is very
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close in energy to the highest occupied (HO) state at H (within room temperature
in our calculations). The direct gap at I is found to be 5.95 eV. Both the indirect
band gap and the direct gap at I' are smaller than in cubic BN [98]. The direct band
gap at I' is most sensitive to the structure. It changes by 2.65 eV between the cubic
and hexagonal stfucture (As discussed below, this is due to the “interlayer” nature
of the conduction band minimum in the case of the hexagonal structure). We note
that for AIN and GaN compounds [99], the direct gap at I' differs by at most 0.3
eV between the cubic and the wurtzite structure (both exhibit sp? hybridization).
By analogy, we conclude that the indirect gap at I' must be also smaller by at least
2 eV for hexagonal BN as compared to wurtzite BN. This should help to identify
the structurality of tubular BN in its recently predicted novel forms [34]. In Fig.
5.3(a),(b) and (c), electron densities are given for the bottom of the conduction
band at M and the HO state at K and H, respectively. For the lowest unoccupied
(LU) state at M, the charge density is localized on the boron atoms while for the
HO state at K and H, the charge density is localized on the nitrogen atoms. All
of these states display a m or n*-like character. We note the difference of charge
localization for the HO state at K and H. A phonon-assisted optical transition from
H to M would require phonons propagating along the c-axis. We expect these two
features to help in the identification of the character of the states involved in either
p-type doping or optical experiments.

We study also the LU state at I". The corresponding charge density is represented
in Fig. 5.3(d). This state has most of its charge concentrated in the inter-layer region.
The xy-average charge density plotted along the c-axis shows a strong maximum at
the midpoint between the two neighboring BN layers. This state is the analog of
the interlayer-state in graphite. The remaining charge on the BN planes is located
mostly on the nitrogen atoms. This is in contrast to graphite where the on-plane
charge for the inter-layer state is equally distributed on each carbon atom. The

difference in ionicity between B and N explains this feature for hexagonal BN.
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As intermediate structures between bulk hexagonal BN and an isolated sheet, we
study the BN(d) “gedanken” compounds. We vary the inter-layer distance d from
5.5 A to 13.5 A (we note that d=3.4 A is the bulk hexagonal interlayer distance).
Stabilization of the band-structure is observed for d larger than 11.5 A. This is
established by comparing with the band structure of the system with d=13.5 A.
With the interlayer distance increasing from d=5.5 A to larger values, the energy
of the valence states and lowest unoccupied states hardly changes, except for the
LU state at I' which moves up in energy. This is not surprising since this state
is the analogue of the inter-layer state in bulk hexagonal BN and has a very large
extension into the interlayer region. We show in Fig. 5.4 the evolution of the charge
density for this state for d=5.5, 9.5 and 13.5 A. As one can see, the corresponding
wavefunctions from neighboring planes strongly overlap for d=5.54 and d=9.5A4.
Only for d=13.5 A, this overlap begins to be negligible. In the case of d=13.5 A,
we also plot the average potential along the c-axis. This potential is very flat in
the middle of the inter-layer region, insuring that indeed the BN layers are not
interacting. We list in Table 5.2 the energy of the band gap edge states at I', K and
M. The eigenvalues stabilize for d > 11.5 A. We check that for BN(d=13.5) there
is no dispersion along the I'A direction, which confirms that for such a layer-layer
distance, two neighboring planes are not interacting. For d < 6.5 A, the bottom
of the conduction band is at I' within LDA. For larger inter-layer distances (and
therefore for the isolated sheet), it is at K. For all structures, the top of the valenée
bands is at M. The LDA band-structure for d=13.5 A is presented in Fig. 5.5. Using
our results for BN(d=13.5), we conclude that, within LDA, the isolated BN sheet
is a 4.3 eV indirect gap semiconductor.

The lowest unoccupied level at I is a state which extends into the vacuum region
with a maximum charge density at about 3.3 a.u. away from the plane of atoms.

Such a state is difficult to understand in terms of B or N atomic orbitals. We note

in Fig. 5.3(a),(b),(c) that the p,-like orbitals associated with the BN sheet have a
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maximum charge density which is localized at most at 0.75 a.u. away from the
atomic layer. Another important feature of the LU state at I' is that its in-plane
effective mass is calculated to be m* = 0.95 - 0.05 in units of the free electron mass
(the value varies slightly along the different planar directions). Therefore, this state
displays a nearly-free electron (NFE) like character, and an electron in this state
would be mainly sensitive to the crystal potential averaged over the plane parallel to
the BN layers. We denote this potential V., (z), where z is the distance of the electron
from the BN layer to which it is bound [100]. Following this idea, we solve the one-
dimensional Schrédinger equation for an electron in the V,(z) potential associated
with an isolated BN sheet. Practically, we use the V,,(2) potential calculated for the
BN(d=13.5) structure and set the vacuum level to the value of V,,(z) at 6.5 A away
from a given BN layer. We plot this potential in Fig. 5.6 together with the charge
density for the bound state (n=0,1,2) solutions of this one-dimensional Schrodinger
equation. The most important result is that the n=2 level (located -0.55 eV below
the vacuum level) is very similar in shape to the charge density (represented in Fig.
5.4(c)) of the NFE state in BN(d=13.5). In particular, the n=2 level charge density
has a maximum at around 4.1 a.u away from the BN layer. This is larger than the
value of 3.3 a.u. that we find for the NFE-state but the qualitative agreement is
satisfying, accounting for the simplicity of the model. Thus, our physical picture is
that the NFE planar state is indeed the n=2 loosely bound state due to the attractive
planar average potential of a BN sheet but slightly modified by the discrete atomic
potentials. The n=0 and n=1 states are so tightly bound to the BN sheet that they
are strongly modified by the crystal potential and become indistinguishable from
states obtained within a tight-binding description. We believe that such NFE plane

states could be a very general feature of isolated crystalline sheet.

5.3.2 Self-energy calculations

We have performed self-energy calculations for bulk hexagonal BN, BN(d=5.5),
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BN(d=7.5) and BN(d=13.5). As a first step, the static inverse dielectric matrix
ee (q) is calculated within the random phase approximation. From this calculation,
the macroscopic dielectric constant can be extracted using the relation €y = €59 (q =
0). We find €3,=4.9 for bulk BN and ey=3.3 for both BN(d=5.5) and BN(d=7.5).
This can be compared to the value of €5, = 4.5 for cubic BN [97]. Using the Philips
and van Vechten empirical relation (see formula (6) of Ref. [97]), one can see that the
larger the average gap the smaller the macroscopic dielectric constant. Therefore,
the ordering of the dielectric constants for these materials is consistent with the
values for their respective gaps, since the band gap for cubic BN was calculated
[98] to be 4.2 eV within LDA (which is larger than all LDA gaps calculated in the
present work). However, owing to their different dimensionality, the plasmon energy
for bulk BN structures and the isolated sheet may be significantly different and such
an empirical relation cannot be straightforwardly used.

The quasiparticle band structure of bulk hexagonal BN is represented in Fig. 5.7.
The main effect of the self-energy correction is to open the gap from 3.9 eV (LDA
value) to 5.4 eV. Within GW, the calculated band gap is smaller for bulk hexagonal
BN than for bulk cubic BN by 0.9 eV [97]. This is consistent with the closing of the
gap going from diamond to graphite (in the case of BN, the ionicity gap prevents
the occurrence of a semimetallic behavior). Quasiparticle eigenvalues are reported
in Table 5.1 together with the LDA energies for high symmetry points. Because
the self-energy is weakly k-dependent in this case, the GW band structure is very
similar to the LDA band structure except for the band gap value. In particular,
the gap remains indirect between the top of the valence band at T; near K and the
bottom of the conduction band at M. We note that the self-energy correction for
the HO state at H and K are nearly identical so that the LDA energy difference
between the top of the valence band and the HO state at K is not changed by the

self-energy correction and both states remain very close in energy.

For BN(d=5.5), the self-energy correction AE(ELPA) = ESF _ ELDA ig rep-
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resented in Fig. 5.8. Contrarily to bulk hexagonal BN, the self-energy correction
AE(ELPA) is strongly k-dependent. In particular, the correction to the lowest-
occupied state at I' is negligible, while the self-energy correction for the LU state
at K and M are both equal to 0.6 -0.1 eV. As a result, not only is the gap opened
up in the quasiparticle approach but, in addition, the ordering of the lowest con-
duction bands is modified. In particular, the bottom of the conduction band is
displaced from K to I' by the quasiparticle treatment. Therefore, within GW, the
gap is indirect between K and I'. We note that, because the LU state at I" displays
a nearly-free-electron like character, it is not surprising that the LDA exchange-
correlation potential and the self-energy operator yield the same expectation value
for this state.

We performed the same self-energy calculation for BN(d=7.5). The self-energy
corrections to the LDA eigenvalues are similar to those obtain for BN(d=5.5) within
the accuracy of the method. This is presented in Table 5.3 for selected k-points.
The stability of the quasiparticle corrections for d > 5.5 A allows us to obtain the
quasiparticle band structure of the isolated boron-nitride sheet. For this structure,
we find the quasiparticle gap to be 6 eV and the conduction band minimum at I
(see Fig. 5.9). The gap value is intermediate between the gap for bulk hexagonal
and cubic BN (respectively 5.4 and 6.3 eV within GW). We note that layer-layer
interaction increases the dispersion of the electronic bands and tends to reduce the
gap. This effect can be used to understand the smaller gap of bulk hexagonal BN
as compared to the isolated sheet [102].

We note that the present results show some discrepancies with a recent self-
energy calculation [95] for an isolated BN sheet. The work in Ref. [95] was based on
the Mgller-Plesset perturbation theory, and STO-3G gaussian orbitals were used.
The most important difference between the two sets of results is that the state
predicted in the present work to be the bottom of the conduction band within GW
(the NFE state at I') was reported to be 12.3 eV above the LU state at K in Ref.



5.4. Conclustion

[95]. This state is shown here to have a very large extension in the vacuum region.
Such an extended state is easily described using a plane-wave basis. However, a
localized basis such as STO-3G or a Slater-Koster type (3s,3p,.3p,,3p-) basis [103]
would have difficulty in reproducing the extension of such a wavefunction away from
the atoms. A previous tight-binding (TB) calculation performed on bulk hexagonal
BN [47] shows that the LU state at I is (within TB) located 10 eV above its “LDA-
planewave basis” analogue (we aligned the bottom of the conduction band at K in
both calculations). This is consistent with the results of Ref. [95] where the use of

a limited localized basis underbinds the extended states.

5.4 Conclusion

We have calculated the quasiparticle band structure of the most common al-
lotropic form of bulk BN which is hexagonal. The band gap is indirect and calcu-
lated to be 5.4 eV (that is 0.9 eV smaller than cubic BN). The isolated BN sheet
has also been studied. The band gap of the sheet is calculated to be 6.0 eV. The
hottom of the conduction band is a state with charge density which has a very large
extent into the vacuum region. This feature makes its study difficult for theoretical
methods based on the use of localized basis functions. The present results have
been used to calculate the quasiparticle band-structure of BN nanotubes [14]. In
particular, the LU state for these tube is found to be a nearly-free-electron state
with charge density localized along the axis of the tubes. This free-electron-tubular
staf.e is derived from the “sheet” state of the isolated BN sheet when the planar

structure is rolled into a tubular shape.
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Table 5.1: Bulk hexagonal BN eigenvalues at high-symmetry points. The
energies are in eV. The top of the valence band is taken to be the zero of
energies for both LDA and GW results.

k-point LDA GW
T 17.94 -19.87
Ty, -17.65 -19.57
T, 6.33  -7.33
Ty 412 -4.80
Ts, 145  -1.69
s, 132 -1.57
I 463  5.96
Ts, 10.06 12.61
Ks, 14.14 -15.91
K1 -8.05 -9.01
Kas 789 -8.82
Ka, 717 -8.45
Ks, 014 -0.14
Kse 450  6.19 )
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Table 5.2: LDA band edge states energies at I, K and M for various BN
interlayer distances d. The energies are in eV. The top of the valence band
K3, is taken to be the zero of energies.

interlayer distance (A)

state 5.5 7.5 9.5 115 135

T, 143 -1.50 -1.57 -1.57 -1.57
I 3.97 419 451 461 461
Ksy 0.00 0.00 0.00 000 0.00
Ks. 441 436 433 432 432
Ms, | -0.95 -0.97 -0.99 -0.99 -0.99
Mie 457 449 445 443 443
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Table 5.3: Selected energy levels at I, K and M for BN(d=5.5), BN(d=7.5)
and BN(d=13.5) within LDA and GW. The energies are in eV. The top of
the valence band is taken to be the zero of energies for both LDA and GW
results.

d=5.5 d=7.5 d=13.5
LDA GW LDA GW LDA GW

Ty, -17.81 -19.74 -17.81 -19.75 -17.98 -19.92

I's, -56.31 -6.21 -5.32 -6.23 -5.40 -6.31
I's, -1.43  -164 -1.50 -1.61 -1.57 -1.68
e 3.97 5.52 4.19 5.58 4.61 6.00
Ks, -14.16 -15.82 -14.16 -15.84 -14.37 -16.05
K -798 -884 -7.99 -886 -8.21  -9.08
K, -7.18 837 -7.19 -840 -7.35 -8.56
K;, 0.00 0.00 0.0 0.0 0.00 0.00
Ks. 4.41 6.45 4.36 6.46 4.27 6.37

K. 12.32 1444 1210 14.16 11.93 13.99
My, -14.73 -16.42 -14.73 -16.05 -1494 -16.26

Ms, -8.92 -10.15 -891 -9.92 -9.10 -10.11
M, -4.22 472 424 -4.73 -4.44 -4.93
Ma, -0.95 -1.15 -097 -1.08 -0.96 -1.07
M, 4.57 6.65 4.49 6.39 4.43 6.33

Ma, 9.19 1142 924 1226 9.256 12.27
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Figure 5.1: High symmetry points and directions are labeled for the irre-
ducible part of the hexagonal Brillouin zone.
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Figure 5.2: LDA band structure for bulk hexagonal boron nitride plotted
along high symmetry directions of the BZ. The energies are in eV. The top of
the valence band is taken to be the zero of energies. The edges of the gap are
indicated by horizontal lines as a guide to the eyes.
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Figure 5.3: Contour plots in a plane perpendicular to the BN layers of the
charge density of selected states for bulk hexagonal BN. BN layers are indi-
cated by horizontal lines. N atoms are represented with filled circles and B
atoms with empty circles. In addition, the charge density averaged over planes
parallel to the BN layers is represented as a function of the distance perpen-
dicular to the BN layers; this charge density is normalized to unity within one
unit-cell. Figures (a), (b), (c¢) and (d) correspond respectively to the LUMO
state at M, the HOMO state at K, the HOMO state at H and the LUMO state
at I'. In (d), contours labeled (1) and (2) correspond to a charge density of
respectively 0.16x10™4 and 0.63x10™* electron/a.u.?. The maximum charge
density is 1.26x107* electron/a.u.? on the nitrogen atoms.
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Figure 5.4: Contour plot in a plane perpendicular to the BN layers of the
charge density of the LUMO state at I’ for (a) BN(d=5.5), (b) BN(d=9.5)
and (c¢) BN(d=13.5). BN layers are indicated by horizontal lines. N atoms are
represented with filled circles and B atoms with empty circles. In addition, the
charge density averaged over planes parallel to the BN layers is represented as
a function of the distance to the BN layers. This charge deusity is normalized
to unity within one unit-cell. In (c), contours labeled (1), (2 and (3) corre-
spond to a charge density of respectively 0.14x 1074, 0.43x 107 and 0.28x 1074
electron/a.u.2. The maximum charge density is 0. 85x10~* electron Ja.u.?® on
the nitrogen atoms. The total potential averaged over planes parallel to the
BN layers (Vzy(2)) is also represented. Vy,(z) varies from -2.05 Ry to the
vacuum level (origin of energies).
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Figure 5.5: LDA band structure for an isolated BN sheet plotted along high
symmetry directions of the BZ. The energies are in eV. The top of the valence
band is taken to be the zero of energies. The edges of the gap are indicated
by horizontal lines as a guide to the eyes.
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Figure 5.6: (a) Vy4(2) potential and (b) bound eigenstate charge densities are
represented. The potential is in Rydberg and the distance in a.u. Positions of
the eigenvalues with respect to the vacuum level are represented by horizontal
line in (a).
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Figure 5.7: GW band structure for bulk hexagonal boron nitride plotted
along high symmetry directions of the BZ. The energies are in eV. The top of
the LDA valence band is taken to be the zero of energies. The edges of the
LDA gap are indicated by horizontal lines as a guide to the eyes.
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Figure 5.8: The self-energy correction E,?,f ~ ELDA versus the LDA eigenval-

ues ELPA is represented for BN(d=>5.5). The energies are in eV. The hollow

hexagon represents the self-energy correction for the LUMO state at .
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Figure 5.9: GW band structure for an isolated BN sheet plotted along high
symmetry directions of the BZ. The energies are in eV. The top of the LDA
valence band is taken to be the zero of energies. The edges of the GW gap
is indicated by solid horizontal lines and the LDA gap by dashed horizontal
lines as a guide to the eyes.
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Chapter 6

A mixed-space formalism for quasiparticle energy

calculations

6.1 Introduction

The use of reciprocal space formalisms, in which all quantities of interest are ex-
panded in a planewave (PW) basis, has imposed itself as a privileged tool to study
the properties of periodic systems. The simplicity of such formalisms, the orthonor-
mality of the PW basis, the unambiguous way of controlling the convergency with
respect to the number of basis functions, and the efficiency of fast Fourier transforms
(FFT) explain the success of these methods [104]. However, the drawbacks of the
PW basis are well-known and are related mainly to the difficulty in using them to
describe localized states and to the fact that each region of real space is necessarily
described by the same number of planewaves. For systems containing several types
of atoms, the deepest potential controls the planewave energy cut-off so that the
shallow atomic potential regions are unnecessarily over-converged. Another com-
mon situation in modern calculations concerns the study of molecules (or surfaces)
in a supercell (or slab) geometry where the vacuum constitutes a large part of the
unit cell. Since the number of planewaves needed (at a given energy cut-off) is pro-
portional to the cell volume, a large fraction of CPU-time and memory is spent in
describing the vacuum region [105].

For these systems, the use of a real-space formalism presents some advantages.
First, localized objects are easily described and different basis functions can be used
to describe different regions of space. Another crucial advantage is related to the

decay at “large” distance of the screened Coulomb interaction. This is the origin
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of the success of recent N-linear methods (where N is the number of atoms in the
unit cell) proposed to perform band structure calculations in crystals [8, 9, 10, 11].
Furthermore, there is a strong motivation for developing a real-space approach for
the study of response functions such as pair distribution functions, Green’s functions,
polarizability, self-energy operator and vertex correction, which are known to have
a shorter range than the screened Coulomb potential.

We present in this Chapter a mixed-space formalism for the calculation of the
dielectric response of infinitely extended periodic systems. The response functions
f(r,r’) of interest are directly calculated on a (r,r’) grid in real space. No local-
ized basis such as gaussians, Slater-type, or atomic orbitals are used in the present
scheme. In particular, the problems of convergency, non-orthonormality and explicit
dependence in ionic coordinates associated with these basis are avoided [106]. In
this respect, our method is significantly different from recent real-space approaches
based in particular on the use of linear muffin-tin orbitals to express and calculate
the dielectric matrices [107], self-energy operator, and quasiparticle energies [108] of
periodic systems.

The obvious difficulty related to a purely real-space formalism is that a typical
response function, such as the independent polarizability x°(r,r’), do not have the
full translational symmetry of the crystal; that is for two lattice vectors R and R/,
X’(r+ R,r + R') is in general not equal to x°(r,r’) unless R = R’. Therefore,
in theory, x°(r,r’) needs to be calculated for r in a single Wigner-Seitz (WS) cell
and r’ in the entire crystal. In practice [109], the response function x°(r,r’) decays
rapidly as |r — r'| — co so that for each r, x°(r,r’) would need to be calculated only
for r’ in a sphere of radius Ry, around r. However, for metals, and also small gap
semiconductors, the decay of the response function may be slow and R,,,, could
span the length of many unit cells so that the computational task would remain

considerable.

We show here that x°(r,r’|w) (and related response functions) can be written in
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terms of a “mixed-spaced” respounse function qu(r, r’) where r and r’ are restricted
to a single Wigner Seitz (WS) cell and q spans the irreducible part of the Brillouin
zone (BZ). This method is shown to be very general, and its application to the
calculation of the self-energy operator in the GW approximation [3] is presented.
This chapter is organized as follows. In section 6.2, the formalism for calculation
of the polarizability, self-energy operator and quasiparticle energies is presented. In
section 6.3, some results are given, and in section 6.4, some extensions of this work
and perspectives associated with this method are given. Section 6.5 concludes this

chapter.

6.2 Formalism |

6.2.1 The independent-particle polarizability

The independent polarizability x°(r,r’|w), which can be explicitly written in

terms of the eigen-solutions (g;,%;) of a one-electron Hamiltonian [110]:

5 (x) 5 ()5 (x') s (r')
g —€j+w+in

X (rxw) = 3 (fi = f5)

2

; (6.1)

where 77 is a positive infinitesimal, is the usual starting point for dielectric screening
and, subsequent, self-energy calculations. Taking the (i,j) pairs of states to be the
usual (nk,n’k’) Bloch states, it is straightforward to show that:

O(r,rlw) = 37 e 0 rw) (6.2)
q

with

mobta () Uk () Uy (F) U ot o ()
Enktq — Swk +w + 1)

T w) = 3 (faprg— Fok) —

!
n,n'k

,  (63)
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where the u’s are the periodic part of the Bloch states. Obviously, the X%’S are
periodic in space, so that they need to be calculated ounly for r and r’ within a

single WS cell. In the following, the variable r will be understood to span the entire

space, while the variable { will be restricted to a single WS cell. The fact that qu ‘

is a periodic function is the advantage of the present mixed-space formalism over a
straightforward implementation of Eq. 6.1 in real-space. We can rigorously “fold”
the entire space onto a single WS cell without having to rely on the decay rate of
the response function of interest [111]. In particular, as shown below, the domain
of integration of all real-space integrals involved in the calculation of the dielectric
response function, the self-energy operator, and the quasiparticle energies can be
rigorously restricted to a single WS cell. We emphasize that the combination of
Egs. 6.2 and 6.3 is just a partitioning of the double sum over states in Eq. 6.1
and does not introduce any additional Brillouin zone (BZ) summation. On the
contrary, because the e*4(r'~*) phase factor is explicitly preserved in our formalism
(in particular not integrated as in Eq. 6.1), conservation of momentum can still be
used to restrict BZ summations.

Equation 6.2 can be inverted and we obtain:

&G = 3 e RO 00 R.C) (6.4)

In particular, if x° is known from the calculation of xg on a given g-grid in the
irreducible part of the whole BZ, then one can calculate easily qu at any g-point in
the BZ. We note also that the independent polarizability in reciprocal space can be

written:

xa,o(aw) = ﬁ—lv;; // d¢d¢ e ¢ Xq (¢, ¢'w) el& ¢ (6.5)

The inversion of equation 6.5 reads:
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X3¢ lw)= Y &\ o (alw) e (6.6)
G,G'

The set of equations 6.1, 6.3, 6.4, 6.5 and 6.6 establishes the relations among the
present “mixed-space” formalism, the direct real-space formalism, and the reciprocal
space formalism. The same set of relations will be used throughout this chapter to
define other mixed-spaced quantities (such as the full polarizability x4, the inverse
dielectric matrix e{ll, the screened potential Wq, and the self-energy operator Xq)
and relate them to their real-space or reciprocal space counterparts.

Compared to the usual Adler-Wiser reciprocal-space formalism, where the

x?;,G,(q) are written (for systems with a gap and w=0):

() = 4 > < v, k|e” )T k4 q > < ¢, k + g9ty k > ,
Q2 cvk Evk T €ck+q
(6.7)

the present “mixed-space” scheme (as also the “direct” real-space scheme) does
not require the calculation of any matrix elements. This simplification contributes
largely to the efficiency of the present scheme as compared to a reciprocal-space
approach. Indeed, the calculation of the matrix elements in Eq. 6.7 scales as N%y;,
in reciprocal space, where Npw is the number of planewaves used to expand the
electron wavefunctions. Further, since such matrix elements must be computed for
each combination of valence and conduction bands and G-vector, the calculation in

reciprocal space of the polarizability matrix X[c)l scales as N2, . N3, N, where Ngiom

atom
is the number of atoms in the unit cell and Ng the size of the dielectric matrix. (Ng
and Npw scale also as Ngm, but we keep distinct notations here because Npw
accounts also for the chemical nature of the atoms. This is a crucial information in

this type of calculation. Ng is usually one order of magnitude smaller than Npw ).

This should be compared to the N?

atom

Ng scaling of the mixed-space approach, where
N¢ is the number of real-space grid point in the WS cell. Therefore, the ratio of

the mixed-space approach to the reciprocal space approach scales as Ng /Niy Ne,



6.2. Formalism

where N, and Ng are formally equivalent through Fourier transform. Thus, the
reduction in computational effort is then equal to Ng/Npw. In addition, the
scaling given above does not take into account the use of a cut-off technique in real-
space which, formally, reduces by another factor N./Npw the cost of the mixed-space
approach in the limit of large unit cells.

We note that an alternative scheme would be to adopt a “reciprocal-space” ap-
proach but with calculation of the matrix elements in real-space using fast Fourier

‘reciprocal-space” approach would scale as

NgN¢Log(N;). This is then equivalent to the N?

atom

transform techniques. In this case, the

N . N¢ scaling given above

for the mixed-space approach. Also, it is important to consider the fact that in
the reciprocal-space approach, the number Ng taken to be the size of the dielec-
tric matrix is the number of G-vectors within the sphere of radius G,,,; which is
inscribed inside the polyhedron defined by G; < Gpmar (with G; the components of
the G vectors). For a typical BCC or FCC packing, the sphere is roughly 30 %
smaller in volume than the corresponding polyhedron, which means that Ng may
be actually smaller than N,. This explains why, in the case of bulk silicon (see
below), we find “only” a 50 % saving for the mixed-space approach as compared
to the reciprocal-space approach (and not one order of magnitude as stated above).
As mentioned above, in the case of large unit cells, the scaling of the mixed-space
approach reduces to NatomNg, that is one Ngom factor less that the “alternative”
reciprocal-space approach. It is obvious that for large unit cells and for unit cells
containing vacuum and/or several types of atom, the saving over the number of grid
points effectively used in real-space can easily over-reach the 30% factor described

above.

6.2.2 The inverse dielectric response function

Within RPA, the dielectric matrix e(r, r'|w) can be calculated from the indepen-

dent polarizability x°(r,r’|w) using the following equation:
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er,v'|lw) = 6(r—1') — /drl V(r,r1) x°(r1,v|w) (6.8)

where V is the bare Coulomb potential. We may define a “mixed-space” dielectric

function €4 by the following equation:

a6, ¢) = 8¢ =)~ [ daa Va(6,) x5(61,¢) (6.9)

where V is related to the Coulomb potential V by the following transformation:

Va((,G1) = Z V( g+R (1) et aCHR=G) (6.10)

Further, the inversion of eq yields eg*

. It is easy to verify that egls(q), e 2(r, 1)
and €5'(¢, (') are related to each other through similar relations written in Eq. 6.2,
6.4, and 6.5 for the independent polarizability.

We note that Y~/q can be efficiently calculated using standard Ewald summation
techniques [112]. However, the definition of Vq as ¢ — 0 requires special care. It is

a standard result that (in 3D):

Qg [C+R-G]

As expected (see the analysis by Pick et al [113]), f/q, and also eq, are non-analytic

- 0(312.) . (6.11)

for g — 0. We describe in the Appendix to this Chapter how such singularities can
be handled in the present formalism.

In the case of isolated molecules in a supercell geometry, one can formally argue
that the length of the smallest lattice vector R is infinite. Then, the summation
over R’s in the definition of V can be dropped, leading to a perfectly well defined
expression for q = 0. Physically, this means that we switch off the undesirable

cell-cell interactions.
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6.2.3 The self-energy operator and quasiparticle energies
In this section, we extend the mixed-space formalism to the calculation of the

quasiparticle energies in the GW approximation. Following the expression for the

self-energy operator ¥ in real-space:

dF’

(e, xs By =1 o

e G(x,v';E - E)W(r,v;E) , (6.12)

we define the mixed-space screened interaction

We(¢,¢) = [ dt Ta(¢, ) 56, ¢) (6.13)

and the mixed-space Green’s function

Ung({)ung({)
G "w) = A/ Pngts 1o ‘
a(¢, C'lw) Enj p—: (6.14)
It is then straightforward to show that
E(r,tiB) = Y €90 54(¢, (G E) (6.15)
q

where

dE' _sp
So((,C3E) =i 3 [ 5= e Gauql(,CiE~ B) Wal(,C3B) . (616)
ql

Further, the matrix elements of ¥ with the electron wavefunctions can be written

< K[S(E)K >= N8k~ K) [ dCd' 435(0) Sk(6, ¢ B) e (6.17)

where conservation of momentum has been used. Equation 6.17 is the key equation

for quasiparticle self-energy calculations.

109



110

Chapter 6. A mized-space formalism for quasiparticle energy calculations

6.3 Results and discussions

We perform test calculations on bulk silicon and on the H/Si(111)-(1x1) surface
in a supercell slab geometry. For each case, we generate first the electron wave-
functions in a planewave basis using standard pseudopotential LDA calculations. In
the case of the H/Si(111)-(1x1) slab, the details of the unit cell geometry and the
LDA calculations are described in Chapter 3. The wavefunctions are then Fourier
transformed into real space onto a grid with dimensions equivalent to the G-space
grid used in the LDA calculation (e.g. a 18x18x18 grid for bulk silicon which
corresponds to a 12 Ry energy cut-off for the expansion of the wavefunctions in
reciprocal-space). Further, one grid point out of n is kept in each direction to build
the real-space grid on which qu(g ,¢") will be calculated. The convergency with
respect to the real-space grid size (that is with respect to n) is then studied by
Fourier transforming Xg(g , (") back to reciprocal-space using Eq. 6.5. The resulting
matrix elements, which will be written FT[Xg(C ,{)]a,c, are then compared to the
X9(G, G’) calculated in reciprocal-space using the existing method [2]. The com-
parison is performed for |q + G| and |q + G’| up to the typical cut-off value G
used in reciprocal space to determine the dielectric matrix size (e.g. Gpe= 3 a.u.
for bulk silicon). As expected, we verify that a good agreement is reached when the
real-space grid is equivalent to the G-space grid on which xq(G,G’) is calculated
in the reciprocal space approach. In the examples treated below, this corresponds
roughly to selecting n=3 (that is Npy= 27 N, with the notations of section 6.2.1).

Similar tests are performed for e4(¢, (") and €5'(¢, ().

6.3.1 Bulk Silicon

We calculate for selected g-points the independent polarizability xq(¢, (") on dif-
ferent real-space grids. The summation over the BZ in equation 6.3 is performed

with a 4x4x4 Monkhorst-Pack grid in the BZ and 80 states are used in the sum-
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mation over conduction bands. The results are presented in Table 6.1 where we
compare FT[xq(¢,{")]g,e' to x& g /(q) for various set of (G, G'). The xg g.(a)’s
were calculated using the same BZ sampling and the same number of conduction
bands. We include sets of (G, G’) such that |q + G| and |q + G’| are smaller than
3 a.u. (which is- the typical cut-off used for self-energy calculations on bulk Si). We
see that the diagonal elements are excellently converged for a 6x6x6 grid in the
WS cell, and the non-diagonal elements are well converged for small and medium
G vectors and reasonably well converged for the largest G vectors considered. We
note that large G vectors account for the very short-range behavior of the screening
effects, and we do not expect the small discrepancy observed for these G vectors to
have a large effect on the values of ¢71.

Further, with Xg(( ,¢") calculated on the 6x6x6 grid, we calculate eq((, () fol-
lowing Eq. 6.9 and by inversion we obtain eal(c ,("). The results are summarized in
Fig. 6.1 where we compare FT[e5' (¢, (')]a,a' to the €5' (G, G)’s calculated in recip-
rocal space. In Fig. 6.1(a), the diagonal elements FT[eq(¢, (')le,g and e(‘;l’G(q) are
given (filled circles and left vertical axis) together with the corresponding percent
error (open triangles and right vertical axis). The results are in nearly perfect agree-
ment, and the two sets of data are nearly indistinguishable. The maximum per cent
error is smaller than 0.1 %, indicating the accuracy of the present calculation. In
Fig. 6.1(b), the non-diagonal elements FT[eq((, {']a,c are ploted versus the corre-
sponding eafG,(q). The points obtained land nicely on the diagonal line, indicating
again the accuracy of the present calculations. The largest errors are related to the
large G-vectors off-diagonal elements near the origin on the graph. These matrix
elements, which are smaller than 1 % of the diagonal elements, hardly contribute
to the screening properties. We emphasize that the accuracy of the mixed-space
approach as compared to the reciprocal space approach has more significance than

simply noting that, via Fourier transform, a 6 x6x6 grid in real-space contains for-

mally as much information as a 6x6x6 grid in reciprocal space. Indeed, the matrix
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elements calculated in the reciprocal-space approach require to include (for the same
accuracy) Fourier components of the wavefunction up to Gpe, = 12 Ry in reciprocal
space, which amounts to a 18 x18x 18 sampling grid. This illustrates the power of a
real-space approach as compared to the reciprocal approach and explains why, even
for bulk silicon, we find the mixed-space approach to be already as efficient as the
fully reciprocal space approach. Therefore, the present method has significantly bet-
ter scaling properties than the reciprocal-space approach, with a crossover between
the two methods which occurs for systems as small as bulk silicon.

In a recent study, a “direct” real-space scheme, based on the straightforward
implementation of Eq. 6.1 combined with a real-space cut-off technique, has been
tested for silicon [109]. We note that in the calculation of x°(r,1’) given by Eq. 6.1
the entire point group of the crystal can be used to reduce the number of independent
matrix elements needed to be actually calculated. Practically, one of the variable
(say r) can be restricted to the irreducible part of the Brillouin zone (IBZ), the
other variable spanning a sphere of radius R,,,, around r (see Fig. 6.2). In the
mixed-space approach, for a given xg(r,r’), only the small group of q can be used
to reduce the number of (r,r’) pairs for which the summation over k-points, valence
and conduction bands must be performed. However, as soon as R, is larger than
the “average” WS cell radius Ry s, the effective folding of the entire space on a single
WS cell in the mixed-space approach quickly counter-balance this disadvantage.
This is illustrated in Fig. 6.2 where we compare the WS cell for bulk silicon to
‘a sphere a radius Rouz (Rmez ~ 16 a.u.) centered on a given point r in the WS
cell. As soon as R is larger than Rws (Rws ~ 7 a.u. for bulk silicon), the
area spanned by r’ becomes rapidly much larger in the real-space approach than in
the present scheme. For a more quantitative analysis, we calculate the number of
“independent” (r,r’) pairs needed in the calculation of x°(r,r’) as a function of the
cut-off radius R, 4,. Our 6xX6x6 grid in a single WS cell is periodically repeated

over the entire space for use in the direct method. The curve corresponding to the
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real-space method is plotted in Fig. 6.3 (long dash line). As expected, the number

of pairs scales as R? ,_ (that is as the volume of the sphere built around each r in the

maz
IBZ). We discuss now the number of independent pairs required in the calculation
of the X?;(r, r’')’s. The average number of pairs for the q’s on a 4x4x4 Monkhorst-
Pack mesh in the BZ is given in solid line. Because, for each (r,r’) pair accounted
for in this graph, a double summation over the BZ need to be performed in both
formalisms ( compare Eq. 6.1 for the real-space approach to Egs. 6.2 and 6.3 for
the mixed-space approach), the ratio of the long dash line to the solid line (for a
given Roq.) gives really the ratio of the total number of operations performed to get
x%(r, 1) to the number of operations performed to obtain all xg(r,r’). The cross-
over between the two schemes takes place at R, ~ 6 a.u. Following Ref. [109]
(and as confirmed in the next section), a cut-off of 16 a.u. is needed in the case of
bulk silicon for a good convergency of x(r, r’) in the direct real-space approach. For
such a cut-off, the mixed-space approach is manifestly advantageous over the direct
method. Even in the case where “no-symmetry” q-points are used in the present
mixed-space approach (upper dotted line), the cross over takes place at Ry ~ 10
a.u. This illustrates the advantage of the mixed-space scheme as compared to the
direct scheme. We emphasize that the advantage should be even more considerable
in the case of metals or small gap semiconductors for which R, may be very large.
We note however that, in the limit of large size unmit-cell (that is when Ripner is
smaller than Ry s), both methods are identical. In particular, if the BZ sampling

reduces to the center of the zone I', then obviously x)_p(r,*') = x°(r,r’).

6.3.2 H/Si(111)-(1x1) slab

As in the case of silicon, we calculate first X%(QC') on various grids cover-
ing the unit cell (with decreasing spacing between the grid points) and compare

FT[xq(¢,¢)]a,a to the x& g (a)’s calculated in chapter 3 (as for silicon, the recip-

rocal space cut-off used for the dielectric calculations in H/Si(111)-(1x1)is |q + G| <
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3 a.u.). Results are reported in Table 6.2. With a 6 x6x40 grid covering the WS cell,
a good convergency of both diagonal and non-diagonal matrix elements is achieved.
This grid is similar to the reciprocal space G-vectors sampling grid imposed by the
3 a.u. cut-off.

We test now the possibility of taking off the grid sampling points which are
located in the vacuum between neighboring slabs. We proceed by subtracting from
the mesh entire planes of 6x6 grid points, starting from the planes in the middle
of the vacuum and progressing towards the surfaces (the planes of grid points are
symmetrically removed from the mesh on both sides of the slab). We find that
seven 6x6 layers of grid points can be kept out of the summation in Eq. 6.5 while
keeping the FT[x}(¢, ("), within 1% of their value on the initial 6x6x40 grid.
This procedure yields a 6x6x33 grid in real-space and 35% of the CPU-time can
be saved by using this grid instead of the 6 x6x40 one.

Further, we plot in Fig. 6.4 the maximum value of | X0q=r(C ,{")| for a given |¢ — ']
as a function of [( — (’|. We see that x has a decay length which is significantly
smaller than Rws in this case (the maximum |¢ — '] allowed by the WS cell is ~
45 a.u.). Thus, we impose a real-space cut-off R, upon the 6x6x33 grid, that is
we calculate only the xg (¢, (") such that ¢ ~ ¢ | < Riee- The results are reported
in Table 6.2 for different R,,,.. We see that a cut-off a 16 a.u. can be used which
keeps the calculated FT[xq(¢,¢")]g,q within 1% of the values given in Table 6.4
for the 6x6x33 grid. As expected, it is the “long-range” matrix elements which are
the most sensitive to a cut-off in real space. This cut-off is the same as used in Ref.
[109] for bulk silicon in the direct method. It is important to note that, within a
unit-cell, the decay rate of the xJ (¢, {)’s is comparable to the decay rate of x°(r,r’).

The combination of both neglecting sampling points in the vacuum and impos-
ing a real-space cut-off adds up to a ~ 58 % saving in CPU-time as compared to
the initial regular 6x6x40 grid (see Table 6.3). We plot in Fig. 6.5 a schematic
representation of the intersection of the [110] plane with the WS cell. Oun the left
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panel, we schematically represent in shaded the “effective” size of the unit cell once
the vacuum (unshaded areas) have been “subtracted off” the sampling grid. On the
right panel, we symbolize in addition the effect of imposing a real-space cut-off by
drawing the portion of effective material (excluding the vacuum) which is intersected
by a 16 a.u. radius circle centered on a surface H atom. We note that the number of
G-vectors needed in the reciprocal-space approach would roughly correspond (via
Fourier transform) to a real-space grid covering the entire WS cell, including vac-
uum. In the “direct” real-space method, the entire shaded semi-circle would need
to be sampled. In the mixed-space approach, only the portion of this semi-circle
which intersects the WS cell need to be considered. This illustrates the efficiency of
the mixed-space approach as compared to both the real-space and reciprocal space

approaches.

6.4 Perspectives

An important issue not addressed in this chapter is how to deal with the fre-
quency dependence of the response functions and with the energy integration in-
volved in the calculation of the self-energy operator. We note that the approach
used throughout the previous chapters was based on the Hybertsen-Louie’s general-
ized plasmon pole model [79] for eg,g/(q,w). Such an approach, although has been
proven successful for all the systems studied in the previous chapters, may fail to
describe correctly the dynamics of electronic excitations in complex materials where
more than one “type” of electron is involved. This is exemplified in Appendix A
where it 1s shown that the generalized plasmon-pole model probably fails to describe
correctly the dynamics of both the very localized Zn 3d electrons and the valence
s-p electrons of cubic ZnS. Further, it is obvious that a plasmon-pole-type model
is not easily adaptable to a real-space approach. For these two reasons, it appears

preferable to ”explicitly calculate” eg Y¢, {'|w). On a more general point of view, the

knowledge of the frequency dependance of €7 yields straightforwardly the quasipar-
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ticle lifetime. Also, this would allow the calculation within the present many-body
approach of quantities such as Compton profiles or the total energy of the system.

The explicit calculation of the dynamical behavior of the response functions is
a problem which has attracted a lot of attention recently. We note first that the
direct use of Eq. 6.1 with w on the real axis yields singularities which are difficult
to handle. A cure to this problem is to calculate e5'(¢,('|w’) for a set of w’ slightly
off the real axis, that is take w’ = w + ¢/, where w is on the real axis and A is a
small real number. This is equivalent to introducing a lorentzian broadening of the
electronic energy levels (that is a finite lifetime) and the problem of the singularities
is circumvented. This method is straightforward to implement and has been used
with success to look at the dynamical behavior of atoms [114], clusters [115, 116]
and crystals [117]. We note however that, in the case of molecules or small clusters,
the plasmon modes may be very sharp (less than 1 eV) so that the spacing needed
between successive w’s for which ¢! is calculated may be quite small. Since typical
plasmon frequencies range from 10 to 30 eV, the calculation of e(‘ll(c ,¢") may have
to be repeated 10 to 30 times, which is computationally very expensive for 1arge
systems.

Another method, which has been used in some early GW calculations [109], is
to calculate the Green’s function G(w), the polarizability x°(w) and further the di-
electric function ¢~!(w), for w on the imaginary axis. The advantage here is that
these functions are relatively structure-less on the imaginary axis, so that much less
w-frequencies need to be included in the integration of Eq. 6.12 to calculate the
self-energy operator. The integration along the imaginary axis can be then contin-
uated onto the real-axis by use of the Cauchy theorem. However, a serious problem
related to this method comes from the fact that the self-energy operator X(F) must
be calculated on the quasiparticle energy E=FE?F. Practically, ©(E = E9F) is eval-
uated from L(F = ELPA) through a Taylor expansion of 2(E) around E=ELPA. If

Y(FE) is known only for E on the imaginary axis, such a Taylor expansion is valid
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'only for E outside the E(k) spectrum, so that only the self-energy of the band edge
states can be obtained. In addition, if the explicit w-dependancy of ¢~1(w), for w
along the real axis, is of interest, then this method cannot be used.

More recent approaches [118, 119, 109] are based on the possibility of analytically
continuing x°(r, 7’|w) from w in the complex plane to w near the real axis. The basic
idea is to seek if a response functions f(w) can be written (for a large range of w

slightly off the real axis) in the form:

N

fl)y=3 ——, (6.18)

i=1 bz — W

with a small number N of complex pairs (a;, b;) which may be determined by ex-
plicitly calculating f(w) on selected w’s in the complex plane. Recent calculations
performed on bulk silicon [109] suggest that N=2 yields good results for the calcu-
lation of the quasiparticle energy.

Further, a promising approach is to combine the present MS approach to the
imaginary-time technique introduced in Ref. [109]. The idea is to define MS-

Imaginary-Time Green’s functions

Gr(r,v'lit) = i3, Yu (@)Y @) e 7<0 (6.19)

= —iY, Ya()P5(r) e % 7>0 (6.20)

and calculate xq(r,r’[i7) as follows

Xy(x,r'jit) = —iy Gy(r,x'lir) Gy o(t, x| —i1) . (6.21)
k

The important advantage of this approach is that the summations over valence and
conduction bands can now be decoupled, leading in the large system size limit to a N2
scaling for the calculation of an entire xq(r,r’|¢7) matrix. We note that "imaginary
frequency” quantities can be obtained as the Fourier transformed of their ”imaginary

time” analogues and that, as mentioned above, analytical continuation techniques

can be used to map the imaginary-frequency axis to the real-frequency axis.
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The possibility of including such methods in the present formalism is currently

under study.

Another important issue in dielectric response and self-energy calculations is
related to the possibility of calculating x°(w) without performing any summation
over conduction states as done in Eqgs. 6.1 and 6.3. These methods are based on

the use of the following relation [114]:

X (e rw) = 30 9 (0)¥ak(’) Glr,rlegx +w)
n,kK

+n k(1) P 1 (1) G*(1, 1| ) — W) (6.22)

instead of Eq. 6.1. The needed Green’s functions are then calculated by inverting

their equation of motion, that is, formally:

, 1
G(I‘,I‘ ‘(JJ) =< I‘|m

I’ > (6.23)
so that no summation over the conduction bands is needed. Such an approach has
been successfully applied to the calculation of the dynamical dielectric respounse of
atoms [114, 120], clusters [116], crystal semiconductors [121] and metals {117]. This
is an important improvement because the number of conduction states which need
to be included may be very large for unit cells containing a large number of atoms
(an average of 30 to 40 bands per atom is usually included in the calculation of
x°). Using iterative schemes, thé inversion required in Eq. 6.23 scales as N?Ny..,
where N is the number of grid points r and Ny, the number of iterations needed to
reach convergency. Since practically Ny, is usually much smaller than the number
of conduction bands, this method offers a significant saving. In addition, such an
approach saves the calculation of the conduction states in the step preceding the
actual calculation of x°. State-of-the-art LDA band structure algorithms scales

linearly in CPU-time and memory with the number of bands to be calculated. We

note also that all pseudopotentials, and in particular the most popular (because it
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is the most efficient!) non-local Kleinman-Bylander pseudopotentials, are not as

reliable for the calculation of conduction states as they are for the valence bands.

6.5 Conclusion

We presented in this chapter a method which aims at providing a more efficient
self-energy calculation scheme. A particularly important domain of application for
the new formalism is the calculation of the dielectric function and, further, of the
self-energy effects on “low-dimension” systems, such as surfaces, nanotubes, small
molecules or clusters in a supercell geometry. It is well known that the self-energy
corrections to the LDA eigenvalues for such systems is in general larger than the typ-
ical self-energy corrections calculated for extended crystalline systems. For example,
it was shown in Chapter 3 that the self-energy correction for H chemisorption, which
resemble molecular orbitals, was much larger than the seli-energy corrections to the
extended bulk states. It is this “differential” correction which led to improving
within GW the position of the surface states as compared to the bulk state energy
continuum.

However, both dielectric function and self-energy calculations in the framework of
the GW approximation are relatively scarce for “real” low-dimension systems such as
molecule or clusters. Excitations in metallic clusters, such as alkali or alkaline-earth
clusters [116, 118], were mostly investigated in the jellium model. This approach is
justified by the fact that the atomic potential for these atoms is very soft, leading
to a nearly-free-electron like charge distribution in the cluster environment. In such
a jellium model, the goal is mérely to study the effect on the dielectric response of
confining these nearly-free electrons on given geometrical shapes such as spheres,
cylinders or “dots”.

It was shown however that the “introduction” of the crystal lattice can change

dramatically the position of the plasmon peaks of metallic clusters [122, 123] or

crystals [117]. A specific example is the dramatic dependence, for Sb, clusters
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[123], of the photoionization spectra on the molecular architecture. Further, for
semiconducting or insulating systems, we expect the introduction of the discrete
atomic structure to have even more important effects on the dynamical dielectric
response and further the self-energy corrections. As emphasized in Chapter 2, a
study of the dielectric response of nanotubes beyond the jellium model [124] would
be very interesting. Further, the study of the polarizability and dielectric response
of open-ended nanotubes would bring much insight in fundamental questions such

as the growth mechanism and capillarity of nanotubes.

Other systems of interest to which the mixed-space approach would be useful
are those composed of several types of atoms combining soft and “deep” potentials
in the same unit cell. An important example is the 1I-VI wide gap semiconductors
involved in particular in the making of blue-green lasers. We show in Appendix
A, where we study cubic ZnS, that while s or p-like valence wavefunctions can be
described with an average of 300 planewaves, more localized 3d electrons requires
a minimum of 5000 planewaves to be accurately described. In a reciprocal space
formalism, the 3d electrons define the number of plane-waves used to describe all
states. In real-space, it is straightforward to build a fine mesh around the Zn atoms
(on which the 3d levels are localized) and a much coarser mesh in the remaining
part of the unit cell. This scheme would constitute a considerable saving. Another
example of interest would be the study of impurities in metals, where typically the
metallic ionic potentials are very soft but the impurity potential very deep (e.g.
oxygen). Because the unit cell is usually very large (depending on the effective Bohr
radius of the impurity state), a study in reciprocal space of the quasiparticle energies
of such systems would be prohibitively costly using the energy cut-off imposed by
the impurity. As in the case of ZnS, a mixed-space approach with an “adaptive”

grid should allow such a study.

The above list of examples is of course not exhaustive. We expect that the new
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formalism presented here will open many doors and allow the study of new systems.
Because the work presented in this Chapter is, in some sense, more “technical”
and conceptual, most of its interest lies ahead in the variety and interest of the

applications it will allow to tackle.

6.6 Appendix: The long-wavelength limit

In the long-wavelength limit (q — 0), the mixed-space potential V can be written

(see Ref. [112]):

512— + AQ(C> gl) ’ (624>

where Aq is analytic for g — 0. Further, using k - p perturbation theory, one can

-~ ’ T
Va(¢.¢) = —S;;
write (see below):

oo = Xyeo + 084, C) + 2°Ca(6,0) (6.25)

q
a matrix which can be symbolically written: D/¢*+E/q+F +¢G, where again D,

where Bq and Cq are analytic for ¢ — 0. To obtain €3 we need therefore to invert
E, F and G are analytic in q. We note that it is important to “keep track”, beyond
the leading term, of the singularities all through the inversion (see Ref. [113]) in
order to obtain the analytic behavior of e;l. One could then formally expand the
inverse matrix as follows:

(g + % +F+¢G) 1= ¢D!'I-D'E+..], (6.26)

but it is straightforward to show that D is a singular matrix so that the above
expansion cannot be used as such.
An alternative approach is to Fourier transform x‘.; to reciprocal space where the

singularities are easy to handle (see Ref. [113]). We note however that the Fourier

transform of x%_o({,¢’) to reciprocal space yields (because of the wavefunctions
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orthogonality) zero for the head and wings of xg g/(q — 0). This is consistent with
the fact that the matrix elements of xg g/(q — 0) are proportional to |q for g
going to zero and G (or G') equal to zero. Taking the exact q — 0 linﬁt requires
therefore the calculation of the proportionality coefficient for each of these matrix
elements. This can be done using k - p perturbation theory. In the case of non-local

pseudopotentials Vi, this leads to

¢v,k+q(g) = ¢vk<§) + g eiq-( Z an(vk)d}nk(() ’ (627)
n#Ev

with (A = m = 1 in Rydberg)

<nk|—1q-V Vv, 1q - k>
(k) = <K E”:_[GN: qorvk> (6.28)

where q is the unitary vector in the direction of q. This is equivalent to the reciprocal

space formulation for the long-wavelength matrix elements (see Appendix B, Ref.

[79])

. < v, k| —2q- Ve + [Vwi,iq-1llc,k >
< v,kle7"T |,k +q >= v k|~ 2%q €r+ [GNL iq - rlle ,  (6.29)
ok T Evk

The calculation of such matrix elements, which involves the commutator [Vyz,q - 1],
is é serious bottleneck in the generation of the independent-particle polarizability
since such matrix elements have to be computed for each valence and conduction
bands. We note in addition that the use of k - p perturbation theory disables
the decoupling of the valence and conduction bands which could be gained in an
imaginary-time formalism. |

For these reasons, a ”direct” approach is preferable. In this approach, the addi-
tional cost related to treating the q — O limit is transferred to the solving of the
Kohn-Sham Hamiltonian for a set of k-points on a slighlty shifted grid {k + q},
where {k} is the k-point grid used in the summation of Eq. 6.3. We note that only

the valence wavefunctions in the {k + q} set are required, so that modern iterative
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techniques can be used to calculated efficiently the eigenfunctions needed. Prelim-
inary results show that the present method is numerically very stable with respect
to the choice of q. For example, in the case of bulk silicon, we verify that q = 0.01
(1,1,1) and q = 0.001 (1,1, 1) yield both excellent results for the matrix elements
of the independent-particle polarizability and dielectric response in the long wave-
length limit. We note that, as expected, the q — 0 singularity of Vq in Eq. 6.24
comes from the infinite summation over lattice vectors in Eq. 6.10, that is from
the long-range behavior of the Coulomb potential. In practice, the Ewald summa-
tion is truncated to a finite number of unit cells, that is |R| < Na where a is the
lattice constant and N the number of unit cells considered in each direction in the
Ewald summation. This imposes the size of the smallest non-zero BZ k-point to be
roughly 27 /Na. In the case of bulk silicon, the g-points selected above correspond
to including N = 35 to 350 unit-cells in the Ewald summation. We verify that for
N > 30, the Ewald summation is indeed extremely well converged.

An important case is the one of an isolated cluster or molecule in a supercell
geometry. In this case, the BZ summations are restricted to the center of the zone I'
point and the MS formalism is identical to the direct real-space approach. Indeed,

Eq. 6.2 reads then

X, rjw) = xop(r,riw) . (6.30)

and Eq. 6.9 become identical to Eq. 6.8. This means that V is now the real Coulomb
potential restricted to a single unit cell, consistently with taking the R — +oc limit
in Eq. 6.10. In practice, this is equivalent to cutting off the spurious cell-cell
interactions which arise from the long-range tail of the Coulomb potential. As a
consequence, one can take q exactly equal to O in Eq. 6.3. This is a considerable
advantage of a real-space approach as compared to a reciprocal-space method since
(a) we do not need to calculate the valence wavefunctions on a slightly shifted grid

and (b) the full group of the crystal can be used to reduce the cost of the calculations.
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Finally, we note that even if timé—dependent LDA (TDLDA) is preferred over
RPA,
dVXc(l‘)

Vir,r1) = Vo(r—r1) + “an(r) 6(r —r1), (6.31)

then the LDA exchange-correlation kernel does not introduce any singularity in
q since the summation over lattice vectors R is prevented by the locality of the
LDA exchange-correlation potential (in other words, the LDA kernel is infinitely
short range). In the case where non-local kernels may be preferable (to include for
example vertex correction beyond TDLDA), one expects such kernels to decay much
faster than the bare Coulomb potential and therefore to be analytic in the q — 0

limit [125].
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Table 6.1: Convergency of selected FT[X(‘;:X(C ,{'lw =0)]g g for bulk Si as
a function of the mesh used in real space.

G and (JGJ*) G’ and (|G']?) 4x4x4 6x6x6 8x8x8 10x10x10

000(0.281) 000 (0.281) |-0.02754 -0.02721 -0.02720 -0.02720
01-2(4781) 01-2(4.781) |-0.02892 -0.01593 -0.01592 -0.01592

132(8532) 132(8532) |-0.02593 -0.00374 -0.00369 -0.00369
010(1.031) -10-1(1.031) | 0.00841 0.00716 0.00715  0.00715
132(8532) 110(1.031) |-0.00161 -0.00153 -0.00150 -0.00150
132(8532) 232(7.782) | -0.00945 -0.00155 -0.00147 -0.00148

Table 6.2: Convergency of selected FT[X?FP((, {'|w = 0)]g, g for H/Si(111)
as a function of the mesh used in real space.

G G’ 6xX6x32 6x6x36 6x6x40 6x6x48 6xX6%x64
00-1 00-1 -0.00426 -0.00421 -0.00421 -0.00421 -0.00421
327 327 -0.00208 -0.00205 -0.00205 -0.00205 -0.00205

327 1-27 0.00029 0.00028 0.00028 0.00028 0.00028
0014 0014 -0.02494 -0.01933 -0.01819 -0.01792 -0.01790
0014 -1011 0.00642 0.00530 0.00517 0.00510 0.00509
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Table 6.3: Convergency of selected FT[x¢_p(¢,{'|v = 0)]g,q for H/Si(111)
as a function of the number of grid points in the vacuum taken off the real
space mesh. Starting from a 6x6x40 grid covering the entire Brillouin zone,
successive “layers” of grid points in the vacuum are subtracted to the mesh.

G G’ 6xX6x39 6x6x37 6xX6%x35 6x6x33 6x6%31

00-1 00-1 -0.00421 -0.00421 -0.00420 -0.00419 -0.00427
327 327 -0.00205 -0.00205 -0.00205 -0.00205 -0.00204
327 1-27 0.00028 0.00028 0.00028 0.010028 0.00028
0014 0014 -0.01819 -0.01818 -0.01819 -0.01826 -0.01813
0014 -1011 0.00517 0.00516 0.00516 0.00518 0.00508

CPU saved (%) 4.9 14.4 23.4 31.9 39.9

Table 6.4: Convergency of selected FT[XBFP(C,C')]G,G: for H/Si(111) as a

function of the real-space cut-off R4, We study the 6x6x33 mesh and

impose in addition |{ — {/| € Rpmqy to determine the pairs (¢,{’) for which
0 n

xq(¢,¢’) is calculated.

G G’ 40 30 20 16
00-1 00-1 -0.00419 -0.00419 -0.00417 -0.00413
327 327 -0.00205 -0.00205 -0.00205 -0.00205

327 1-27 | 000028 0.00028 0.00028 0.00028

0014 0014 |-0.01826 -0.01826 -0.01826 -0.01823

0014 -1011 | 0.00518 0.00518 0.00518 0.00518
CPU saved (%) 31.93 36.5 49.79 58.0




6.7. Tables and Figures

©
—

0.8 °® - 0.08

L 06 Ee “ 0.06
=% 0.4 ’ ~ 0.04

A

W 02F4, R A
O III?II?IAJAIIII‘IIIJI O

0 2 4 6 8 10
lg+G2 (a.u.)

percent error

0.06 l"ll]llllllll‘lllll

N
=

0.04

0.02

(G,G)

1

€q

-0.02

—-0.04

IIIIII‘II|IIIII|IIIIII
llIllllelII]lIlIlllllll

_0.06:LI!'IIIIIII'IIJ_LII!J_II[
-0.04 0 0.04

FFTe2x(¢.¢)]

Figure 6.1: (a) The diagonal elements of eq_=1X for bulk silicon are plotted
as a function of |¢ + G|? in a.u. ( left vertical axis and filled circles). The
corresponding error in % between eal’G(q = X) and FT[e;le(g {Mle,c is
also given ( right vertical axis and empty triangles). (b) The non-diagonal
elements of eaG,(q = X) are plotted as a function of the corresponding

F T[e; x (¢, ¢")lg,g non-diagonal elements. The solid line is a guide to the
eyes.
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Figure 6.2: The Wigner-Seitz cell for bulk Si is drawn. For a selected r in the
Wigner-Seitz cell, a circle of radius ~ 16 a.u., centered on r, is represented to
indicate the domain spanned by r’ in the “direct” real-space approach.
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nbr of (r,r’) pairs / 108

Figure 6.3: Number of “independent” pairs (r,r’) (see text) in the case of
bulk silicon corresponding to a 6x6x6 grid in the Wigner Seitz (WS) cell.
The long dash line (with the label “real-space —”) corresponds to the real-
space approach. The solid line (with the label "q=4x4x4") corresponds to the
average number of pairs sampled for g’s on a 4x4x4 Monkhorst-Pack grid in
the BZ, and the upper dotted line (with the label “q arbitrary”) corresponds
to the case where the small group of each q considered is restricted to the
identity. The lower dotted line (with the label “q=I"") applies when all BZ
summations are restricted to the center of the zone.
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Figure 6.5: Symbolic representation of the cross-section in the [110] plane of
a Wigner Seitz (WS) cell of the H/Si(111)-(1x1) surface. The left panel shows
in shaded area the effective Wigner Seitz cell excluding vacuum. The right
panel shows the effective Wigner Seitz cell spanned by ¢’ in the calculation of
Xg(( ,¢') for ¢ on an hydrogen atom. In the mixed-space approach, only the
portion of the shaded semi-circle which intersects the WS cell is sampled, while
in the real-space method, the entire shaded semi-circle need to be considered.
The empty circles represent the Si atoms and the empty squares the hydrogen
atoms. Bonds are symbolically represented by thick solid lines.
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Appendix A

Quasiparticle energy calculations for cubic ZnS

The technological importance of II-VI semiconducting compounds is mainly re-
lated to the making of blue-green short-wavelength lasers [126]. From the theoretical
point of view, II-VI semiconductors are challenging compounds; it is known [127]
that their structural and electronic properties (in particular the band gap) are im-
portantly related to the position of the metal 3d levels in the valence bands. In
the case of cubic ZnS, in addition to the usual problem with the LDA gap, because
LDA underestimates the binding energy of the Zn 3d levels by as much as 4 eV, the
p-d repulsion is severely overestimated, leading to a 1.56 eV band gap as compared
to the experimental value of 3.8 eV. To explore this problem, we perform in this
Appendix a quasiparticle calculation of the band-structure of cubic ZnS. To describe
the influence of the Zn 3d levels on the electronic band structure, we study both
cubic ZnS with the 3d levels frozen into the core and with the 3d levels fully included
in the valence band. We use, respectively, the notations ZnS,, and ZnS,,4 for these
two systerns.

The LDA calculations for ZnS,,q are carried out using the Zn and S pseudopoten-
- tials described in Ref. [128]. In the case of ZnS,,, the non-local d channel is derived
from the atomic unoccupied 4d level and core correction is used in generating the
pseudopotential. Eigenfunctions and pseudopotentials are expanded in a planewave
basis. For ZnS,,, planewaves with energy up to Ec.:= 20 Ry are used to describe
the wavefunctions. For ZnS;,q, the cut-off is increased up to E,;= 80 Ry in order
to describe correctly the Zn 3d component of the pseudopotential.

LDA calculations are performed using the experimental lattice constant, that is

a = 10.22 a.u. for ZnS in the zinc-blende structure. The Ceperley-Alder exchange



and correlation potential is used. We present in Fig. A.1 the LDA band structure
for ZnS;, (dotted lines) and ZnS,,q (full lines) and the energy levels at I' are given
in Table A.1 for both systems. The two band structures have been aligned at
the bottom of the conduction band at I. In the zinc-blende structure, the crystal
symmetry is the tetrahedral T; group. The top of the valence band at I' is a 3-fold
p-like state which transforms according to the I'y5 representation of the group. The
bottom of the conduction band is a singly degenerate s-like state at I and transforms
according to the I'; representation. I'; and I';5 levels do not couple in the tetrahedral
environment. In the crystal potential, the 5-fold 3d atomic level is split into a 2-fold
I'19, complex and a 3-fold I's;, complex. In the tetrahedral environment, the I'iq,
does not couple to neither I'; or I';5 levels. We note on Fig. A.1 that the (I'y, —I'1.)
energy difference is indeed insensitive to the introduction of the 3d levels. However,
the I'ys, states can couple with the p-like I';5, states at the top of the valence band
and p-d hybridization may be expected to occur between the top of the valence band
and the 3d levels. The top of the valence band is pushed up to higher energy while
the bottom of the conduction bands does not move (since it does not couple to the
d levels). As a result, the LDA band gap reduces from 2.37 eV (for ZnS,,) to 1.56
eV (for ZnS,,q) under introduction of the d level in the valence complex.

We perform first a quasiparticle calculation on ZnS;, following the procedure
described in section 3.2.2. We calculate the static dielectric response in the random
phase approximation (RPA). In the summation over the conduction bands, 80 bands
are included. Local field effects are taken into account by calculating the off-diagonal
elements of the inverse dielectric response e5éy (¢) with a cut-off of |g + G| < 3 a.u.
The dielectric constant is calculated to be 5.43 for ZnS,,. This is 4.5-6.5 % larger
than the experimental value of 5.1-5.2. Calculations performed on IV or III-V
compounds show that the RPA macroscopic dielectric constant is on the average
larger than the experimental one by at least 10 %. The relatively better agreement

found here indicates that the 3d levels are also slightly polarizable and that they
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should yield a small, but not negligible, contribution to the polarizability of the
present system.

We turn now to the calculation of the quasiparticle energies. Results are reported

in Table A.1 along with the LDA values. The self-energy corrections to the LDA

energy for states at I for ZnS,, are represented in Fig. A.2 (empty circles). In
particular, the band gap opens from 2.37 eV (LDA value) to 3.97 eV. We study
also the influence of using core-correction when generating the Zn pseudopotential.
Results are reported in Table A.2. We do not observe any significant modification
of both the LDA and quasiparticle band-structures. We also test the accuracy of
using the Levine-Louie model dielectric function [129] as compared to RPA (see
Table A.2). Cousistently with previous calculations [17], the two approaches give
very similar results for states around the gap, even though (see Fig. A.2), the model
yields too small a screening in the intermediate range. We note that the GW band
gap of 3.97 eV obtained in this calculation is actually larger than the experimental
band gap. This is unusual since previous calculations on s-p bonded semiconductors
show that the GW band gap is usually slightly smaller than the experimental value.
This fact is just a reminder that in real cubic ZnS, p-d repulsion is a factor of
importance and that a quasiparticle calculation performed on ZnS,,, should yield a
smaller gap.

We then perform the self-energy calculation of the band-structure of ZnS,,q. We
include 120 bands in the summation over the conduction states and the dielectric
matrix is cut at |q+ G| < 4 a.u. With these values, the macroscopic dielectric
constant is calculated to be ey = 7.58. This is at least 43 % larger than the exper-
imental value. This means that the use of the LDA eigenvalues and eigenfunctions
to calculate within RPA the dielectric constant of cubic ZnS leads to a severe over-
estimation of the polarizability of the 3d levels. Both the severe reduction within
LDA of the Zn 3d to conduction band energy differences and the introduction of too

strong a p character in these 3d levels (which allows transitions which should be by




symmetry disallowed), can explain this fact. If we use further this static dielectric

function to calculate the quasiparticle energies of ZnS,,q, we obtain the self-energy

corrections to LDA as plotted in Fig. A.2 (filled circles). The most striking result
is that the self-energy correction, instead of bringing the 3d levels down to a larger
binding energy, worsens the situation by pushing them up in energy by as much as
2.90 eV. In addition, the self-energy correction for states near the gap is reduced
as compared to the ZnS,, case, while the self-energy for the bottom of the valence
band is increased. We do not have, at the time of redaction of this section, a clear
explanation for such a failure of GW. However, we feel that this “unsuccessful”
calculation contains novel and important informations concerning the limits of the
present self-energy approach. In the following, we enumerate some facts and the
results of some “computational experiments” which suggest the possible origin(s) of

the problem:

a) We look at the Hartree-Fock eigenvalues associated with the Zn 3d levels, that is

we calculate:

EfF = P+ < tsalVa — Vipalthsa > (A1)

where V,, is the bare exchange operator. Since the bare exchange operator does
not require the knowledge of the screening, it is free from the errors found for the
dielectric matrix. Further, since the 3d levels system does not couple to the I';,
LUMO state, we are confident that the self-energy correction to LDA found for
this state in the ZuS,, system (0.42 eV) applies to the ZnS,,; system. With this
correction, we can estimate the “correct” quasiparticle energy for this state in ZnS;,q.
We find that the “Hartree-Fock” 3dlevels obtained from Eq. A.1 are located around
12.8 eV below the “correct” quasiparticle energy of the LUMO state at I'. This is
in excellent agreement with the experimental value of 13-13.5 eV for this transition

energy. This computational “experiment” seems to indicate that vertex corrections

should not contribute significantly to the Zn 3d quasiparticle energy.
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b) We find that the LDA wavefunctions are not in the present case a good approx-
imation for the quasiparticle wavefunctions. As explained above, the p-d coupling is
severely over-estimated within LDA, so that both the I'ys5, and the I';5, levels have,
respectively, too much p and d character. We check this by calculating the non-
diagonal elements of the self-energy operator. Results are reported in Table A.3.
We look first at the ZnS,, system. Most non-diagonal elements are zero because of
symmetry arguments. For example, the non diagonal elements between the I'y,, and
I'15, occupied states are strictly equal to zero in ZnS,,. Nevertheless, as exemplified
in Table A.3, the I';, and I'j levels can couple and the self-energy operator yields
indeed a large non-diagonal element between these two levels. However, this matrix
element is equal, within 0.27 %, to the LDA exchange-correlation potential expecta-
tion value between the same states, so that for the difference operator (X — V,EP4),
this non diagonal element is negligible as compared to the diagonal terms. Turn-
ing now to the case of ZnS;,4, we calculate the non-diagonal elements that couple
the I'ys, to the I'ys, levels. As shown in Table A.3, the non-diagonal elements of
(X —VLPA) between these levels can be of the same order of magnitbude as compared
to the diagonal self-energy correction itself. However, we notice that the I'y, levels
cannot couple to the I'ys, p-like levels and we check indeed that the non-diagonal
elements of & and V.2P4 are zero with the 'y, I'y5 or I'y3 levels. This indicates that

the problem does not entirely lie in the quality of the LDA wavefunctions.

¢) To improve upon the mediocre quality of the LDA eigenvalues and wave-
functions, we build an ansatz pseudopotential for Zn designed to yield better Zn 3d
eigenvalues and eigenfunctions in the LDA self-consistent calculation. Our scheme is
to add to the Zn pseudopotential a short range attractive potential §V'(|r|) adjusted
such that it pulls down the 3d levels to their experimental position. Formally, the

energy levels obtained with such a potential can be written

E=<T>+< Vo> L <V >+ < Ve > (A2)




where T is the kinetic operator, V%™ the ionic pseudopotential, Vy the Hartree
potential and V,. = VLPA 4 5V(|T|)Pd; Because of the projector P; on the L=2
spherical harmonic, 6V (|r]) will be seen only by the 3d electrons. Roughly speaking,
ch is an effective exchange-correlation potential designed to mimic the Hartree-Fock
exchange operator for the 3d levels only. We verify indeed that for the 3d levels:
< Ve >3q ~ < Vo >34. With this ansatz Hamiltonian, we find that the s and p
levels are very similar to those obtain for the ZnS,, system, except for the band gap
which we find to be 2.50 eV instead of 2.41 eV for the ZnS;, system. This may seem
surprising since the 3d levels, even located 10 eV below the top of the valence band,
should still exert a small repulsion effect on the I'y5 states, leading to a smaller gap as
compared to ZnS;,. However, because indeed there is still a small p-d coupling, the
I';5 states feel, through their d component, the attractive §V (|r|)P; potential. We
find the expectation value of 6V (|r|)P; with the I'y5 states to be -0.4 eV. Without
this contribution, the band gap would be 2.1 eV, that is 0.31 eV smaller than in
the ZnS,, case. This 0.31 eV is therefore an estimate of the “real” p-d repulsion
in cubic ZnS. We check that, as expected, 6V (|r|)P; has no matrix elements with
the I'y. and I'y, levels. Further, with this new set of eigenvalues and eigenfunctions,
we calculate the RPA response function. We find €5, to be 5.68, that is in much
better agreement with experiment. We perform then the self-energy calculations.

The quasiparticle energies are obtained through

EF = F+ < 9| -V, |Y > (A.3)

where (E, %) are the eigenvalues and eigenfunctions obtained from the LDA cal-
culation performed with 6V (|r|)P; added to the original LDA Hamiltonian. The
quasiparticle band gap is calculated to be 3.73 eV in excellent agreement with ex-
periment. However, the Zun 3d levels land around 4-4.5 €V below the top of the

valence band. This is comparable to the position of the 3d levels in the quasipar-

ticle approach for the original ZnS;,4 system. Therefore, even with a “correct” p-d
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coupling and a good static dielectric function, yielding quasiparticle s-p levels in
excellent agreement with experiment, the 3d levels are not well treated within the

present GW approach. However, again, we verify that the Hartree-Fock treatment:

EF = Esat <salVi — Veelthsa > (A4)

yields the experimental position for the 3dlevels. Therefore, the failure of the present
GW approach for the 3d levels lies in the fact that self-energy operator ¥ = iGW
and the bare Fock operator V, do not yield the same expectation value for the
3d levels. Equivalently, the Coulomb-hole and screened-exchange contributions to
> = ¢GW do not cancel out as they should. Since the GW approximation per se
is found to be reasonable, this suggests that the dynamical effects are ill-described
within the present generalized plasmon-pole approach.

In conclusion, we suggest the following scheme to perform a fully ab initio study
of the ZnA compounds, with A= O, S, Se or Te. We follow the prescription of
(c) to yield a better basis for the self-energy calculation. However, to avoid the
“empirical” aspect of the scheme presented in (c), we perform both an atomic LDA

and HF calculation for Zn and build 6V (|r|) to be:

SV (Ir[) = VEPetom ([r]) — VgPAstm(|r]) (A.5)

Because the 3d levels do not relax significantly in the crystal, we can write:

< 6V("f‘|> S 4« VxLCDA,crystal' S~ < V;HF,atom >~ < VxHF,crystal > <A6)

where the expectation value is understood to be taken over the 3d states. The 3d
levels are therefore treated in an Hartree-Fock way while the s and p electrons feel
the standard LDA exchange-correlation potential. We have tested this approaéh and
find similar results as the one given in (c), but this scheme has the advantage of being

parameter free [130]. Further, it appears necessary to go beyond the generalized
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plasmon-pole model to describe correctly the dynamical effects on the self-energy
operator for the 3d levels. A recent self-energy calculation performed on Ni {108]
yielded reasonable resnlts within the GW approximation. while calculating explicitly
the energy dependence of the dielectric function. Further, the spectral function
calculated in this work exhibited two peaks around -20 and -30 eV. These peaks
were identified as plasmon peaks. This confirms that the one plasmon pole model
may fail for such systems. It is not surprising that the localized 3d levels and
extended s-p states do not share the same dynamics, and we expect the 3d levels
to yied a plasmon peak at higher energy than the s-p electrons. We indicate to the

reader that a systematic study, within the GW approximation. of the quasiparticle

band structure of II-VI compounds with d electrons in the core Las been carried out

in Ref. [131].
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Table A.1: LDA and GW eigenvalues at " for zinc-blende ZnS,, and ZnSspq.
The zero of energy is set at the top of the valence bands. Energies are in eV.

ZnSs, ZnSspq exp.
LDA GW | LDA GW

T, -12.63 -12.73 | -13.47 -14.55
Tasy -6.93 -447 | ~-10
rlzv —646 -349 ~ -10
[isy 0.00 0.00 0.00 0.00 0.00
T 2.37 3.97 1.56 2.26
Iisc 6.83 8.87 5.96 6.91
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Table A.2: Quasiparticle energies at high-symmetry points for ZnS,,. The
influence of the core-correction in the pseudopotential and of the use of the
Levine-Louie model dielectric function as compared to full RPA is presented.
Energies are in eV and referenced to the top of the valence band in each case.

level | Without core correction With core correction Exp.
LDA GW-RPA LDA GW-model GW-RPA
Iy, | -12.61 -12.71 -12.63 -13.42 -12.73 -13.5
Tis 0 0 0 0 0 0
Iy 2.47 4.22 2.373 3.98 3.97 3.80
I'ise | 6.82 8.91 6.83 8.74 8.87 8.35
X1, | -10.89 -11.06 -10.92 -11.71 -11.08 -12.0
X5, | -4.61 -4.82 -4.591 -4.89 -4.80 -5.5
X5y | -1.93 -2.00 -1.935 -2.06 -2.01 -2.5
Xic | 3.66 5.45 3.548 5.14 5.30
X3, | 4.40 6.31 4.339 6.025 6.20 4.9
Ly, |-11.33 -11.48 -11.352 -12.15 -11.50 -12.4
L, | -4.89 -5.10 -4.90 -5.2 -5.11 -5.5
Ls, | -0.74 -0.76 -0.73 -0.78 -0.78 -1.4
L. 3.66 5.53 3.60 5.28 5.425
L. 7.33 9.38 7.29 9.17 9.289
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Table A.3: Real-part of the non-diagonal elements for the self-energy %,
the LDA exchange-correlation potential V.2ZP4 and the difference & — VEDA
operators. Values are given for selected levels of Si, ZnS;, and ZnS,4. ZnS is

in the zinc-blende structure. Energies are in eV.

(1,_]) <X > < VxI;DA > < z - V;I;DA >4
Si

(1,9) | -1.7741  -1.7759 0.0018
ZnS;,

(1,5) 2.9827 2.9745 0.0082
ZnSspd

(2,7) 0.4664 0.7894 -0.3230

(2,8) | -2.3520  -3.8349 1.4823

(2.9) | -0.0558  -0.0396 -0.0162
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Figure A.1: LDA band structures for ZnS;, (solid lines) and ZnS,,4 (dotted
lines). Both band structures have been aligned at the bottom of the conduction
bands at I'. The zero of energies is the top of the valence band of ZnS,,4. The

energies are in eV.
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Appendix B

Two-phonon bound states at the H/C(111)-(1x1) surface

In order to explain an anomaly in the Raman spectrum of bulk diamond [132],
the existence of a two-phonon bound state was suggested [133]. Even though it
was shown later [134] that such a state cannot exist in bulk diamond (the effective
anharmonic coupling between optical phonons is actually repulsive in this system),
the mechanism for the pairing of two delocalized vibrational quanta was understood.
Because the localization of two phonons over a few bond lengths requires a large
negative phonon—phoﬁon coupling compared to the one-phonon energy dispersion,
two-phonon bound states were suggested to be found mainly in molecular crystals,
where the intra-molecular forces are usually much larger than the Van der Waals
inter-molecular forces. However, recently, the existence of a two-phonon bound
state was observed at the hydrogen covered Si(111) surface [135]. Two reasons
favor the existence of this state. First, the bond formed by the adsorbate with the
substrate atom exhibits a strong molecular character. Second, the lower dimension
of a surface, as compared to bulk, favors the existence of bound states. We present
in this paper a calculation of the binding energy of a two-phonon bound state at the
H/C(111)-(1x1) surface. We show that the anharmonic phonon-phonon coupling
is larger than in the case of the H/Si(111)-(1x1) surface. In addition, the one-
phonon energy dispersion is much smaller in the present case of carbon susbtrate.
Both arguments lead to a larger binding energy for the two-phonon bound states at
the H/C(111)-(1x1) surface. The dispersion of the two-phonon bound state band is
calculated to be 14 times smaller than its analogue at the H/Si(111) surface, leading
to very localized two-phonon bound states.

We use a slab model to study theoretically the vibrational modes of H on the



C(111)-(1x1) surface. Total energies are calculated within the local density ap-
proximation of the density functional theory. The wavefunctions are expanded in a
planewave basis and the ionic potentials are described by ab initio pseudopotentials.
Technical details for the slab geometry, energy cut-off and carbon pseundopotential
can be found in Ref. [136]. Following a previous work on H/Si(111)-(1x1) surface
[67, 137], an hydrogen pseudopotential has been generated to describe the proton
Coulombic potential.

We perform a large number of frozen-phonon calculations and determine the
coefficients of the fourth-order polynomial used to model the potential in which

each hydrogen atom is moving in phase with others:

m
Viz,y,2) = Vo+ 3[w§zz2 + ng(aﬂ + y2)] + a3z’ + bs(2? + y2)z

tagz? +by(z? + 9y2)2 + cy(z® +92)? . (B.1)

This potential includes the effects of both the anharmonicity of the stretching mode
and the coupling between stretching and wagging motions. The mass m is the
reduced mass of the C-H two-body problem. We plot in Fig. B.1(a) the calcu-
lated potential for the (x=y=0) stretching motion and in Fig. B.1(b) for the (z=0)
wagging motion. In Fig. B.1(b), for each value of p = /22 + y? that we consid-
ered, we plot two points which correspond to the maximum and minimum value of
V(x,y,2=0). One can see that for the range of p-values considered, (which corre-
sponds to wagging angles smaller that 6,,,, < 1.2°), the anisotropy is very small.
This justifies the choice of a (X,y)-symmetrical potential for the motion of H at the
diamond surface. The values for the coefficients of Eq. B.1 are reported in Table
B.1, together with the results of Ref. [136] for the uncoupled C-H stretching mode.
The small difference between the two studies can be accounted for by the use of
a pseudopotential for hydrogen instead of the full Coulombic potential. We report
also the coefficients obtained in Ref. [138] for the H/Si(111)-(1x1) system. We note

that while the frequency wp, and wy, for the uncoupled motions are much larger in
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the H/C case, the wagging-stretching coupling coefficients b3 and b4 are comparable
in both systems. Therefore, the coupling between the wagging and stretching modes
is relatively less effective in the case of the diamond substrate.

This model potential is then diagonalized in the basis of the 3D harmonic oscilla-
tors | ny, 1y, n, >, and quantum numbers up to n, = n,=10 and n,=20 are included
to converge the lowest eigenvalues up to the second excited stretching mode. The
eigenmodes | v > are no longer pure wagging or stretching modes. We present in
Fig. B.2 the potential felt by the hydrogen around its equilibrium position, together
with the ground-state, first excited stretching mode, first excited wagging mode and
second excited stretching level densities. The deviation of the potential shape from
an ideal ellipsoid is mainly due to the anharmonicity of the stretching mode. In par-
ticular, the extra node observed in the plot of |¥gtreten 2|? Originates from the coupling
through anharmonicity to higher stretching modes. Because the stretching-wagging
coupling is relatively weak, the identification of the lowest eigenstates as (renormal-
ized) wagging or stretching modes is still unambiguous. We present in Fig. B.3(b)
(solid line) the theoretical absorption spectrum for transition from the ground state
for a s-polarized light, that is, we plot: ¥, |<v=10]z|v >[*6(w — wy,) as func-
tion of w, where wy, = E(v) — E(v = 0). The theoretical “spectrum” clearly
isolates a transition corresponding to a state at 2740 cm™! above the (¥=0) ground
state. This state, with a weight of 84 % on the | n, = ny, = 0,n, = 1 > basis
vector, is clearly identified as the first excited stretching level |v; > for the cou-
pled system. Because of the anharmonicity, this state has also a 7% weight on the
| ny = ny = 0,n, = 2 > vector. A 3.4% weight on both | n, = 2,7, =0,n, =0 >
and | n, = 0, n, = 2,n, = 0 > expresses the coupling between the stretching
and the wagging. Further, we plot (dotted line) ¥, |< v |z | v >[*6(w — w,,,)
where w,,, = E(v) — E(v;). This again isolates a transition corresponding to a
state at 2633 cm™! above the (v;) energy level with a weight of 46.6 % on the

| ng = ny = 0,n, = 2 > basis vector and 16.4 % on the |n; = ny, = 0,n, =3 >



vector. This state is associated with the second excited stretching level |, > for
the coupled system.

Results for the theoretical and experimental wagging and stretching frequen-
cies are reported in Table B.2, together with an anharmonic shift -2I' = (E(v,) —
E(1n))—(E(v1)— E(vy)) of 107 cm™! for the calculated stretching mode. The agree-
ment between theory and experiment seems good. In particular, the position of the
absorption peaks in figures B.4(a) and B.3(b) match excellently if we allow a 97

! rigid shift of the theoretical spectrum to larger energy. We note that -2T" is

cm”
rather insensitive to the stretching-wagging coupling (we calculate the anharmonic
shift of the uncoupled stretching mode to be 107.7 cm™!). This is consistent with the
fact that the stretching-wagging coupling is relatively weak in the present system.
In the case of H/Si(111)-(1x1), the effect of the coupling with the wagging modes
has been calculated [138] to result in nearly doubling the anharmonic shift of the
stretching mode.

In terms of the phonon picture, the above | ¥ = 1 > mode corresponds to the
one-phonon mode at the Brillouin zone center I'. We can also calculate the frequency
w1(M) of the one-phonon mode at the zone edge M using the frozen-phonon scheme
with neighboring atoms moving out of phase. We find w;(T) — wi(M) = 2 em~F,
indicating a rather weak dispersion. The entire one-phonon band wi (k) can then be
calculated using the tight-binding model for the surface hexagonal C-H bond lattice,

which yields, in the first-nearest-neighbor approximation:

wi(k) = 2 t [ cos(2mk1) + cos(2mky) + cos(2m (k1 — k2))] (B.2)

with k = (k;, k9) in reciprocal latttice vector coordinates. This is presented in Fig.
Fig. B.5(a) for k along the high-symmetry directions of the hexagonal Brillouin zone.
The very small dispersion and rather large anharmonicity suggests the existence of

two-phonon bound state. Moreover, in view of the very narrow phonon dispersion,

we may take the anharmonic shift I’ for a single C-H bond to be the same as
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that calculated I' above for the zone center mode, that is -2IV=107 cm™! with an
uncertainty much less than 2 cm™!. To study the interaction between the stretching

modes of the C-H bonds at the H/C(111)-(1x1) surface, we use the Hubbard-like
Hamiltonian proposed in Ref. [138]:

H=1t Y bfb + > bfofbb, (B.3)
<3,5> 1

where b; and b} are the harmonic oscillator annihilation and creation operators
for a C-H bond on site i (the energy reference is taken to be the ground-state
frequency of the C-H modes). The pairs < 7,7 > index neighboring sites. The
one-body operator is the usual hopping term which yields the phonon bands in the
harmonic approximation. The two-body term expresses the fact that, because of the
anharmonicity, the system gains an energy 21" by localizing two vibrational quanta
on the same C-H bond. This model Hamiltonian is valid in the limit of a large I/t
ratio [138]. We shall see that this condition is fully satisfied in the present case. To
study the extended and localized collective modes of the surface 2D hexagonal lattice
of interacting C-H bonds, we go from the harmonic single-bond oscillators basis to

the surface extended harmonic phonon basis by building the phonon creation and

destruction operators af and ax:

1 QR
0y = —— E e'd i b, B4
8 vN & (B4)

where R; runs over the N sites of the system and Eq. B.3 becomes then, in the C-H

surface phonon basis:

/

r
H=>Y wk)ef ax += > af a*Q'_k ax aQ-k (B.5)
k N Q.kk'

where w; (k) is the energy of a phonon with vector k. Q is the momentum associated

with the two-phonon states solution of Eq. B.3. Therefore, the on-site “negative I'"”

term of Eq. B.3 yields an effective attractive phonon-phonon interaction. Within the




nearest-neighbor tight-binding model, w; (k) depends on t and w;(T) — w; (M) = 2t.
We therefore find t=0.25 cm™. We note that the hopping parameter t obtained
here is much smaller than the value t5;=0.8 cm™! cale¢ulated for the H/Si(111)-
(1x1) surface [138]. This can be understood from the much smaller polarizability of
the C-H bond which over compensates the fact that the nearest-neighbor distance
for the C-H lattice is smaller than the one at the H/Si(111)-(1x1) surface. Our
values for t and I yield a ratio I/t which is much larger at the H/C(111) surface
than at the H/Si(111) surface. This indicates that a strongly bound two-phonon
state should exist in the present system [139]. |

The inversion of the Hubbard equation is standard [140]. Because Q is a good
quantum number for the two-phonon states solution of the Hamiltonian B.5, the

eigenstates of this Hamiltonian can be written:

W(Q>= Y xxafad_, 0>, (B.6)
k

where |0 > is the ground state of the system. It is easy to show then that:

H[p(Q>=) [wik) +wi(Q —K)] xz afad_,|0 >
Kk

2T
t N O xwr) D adab 0> (B.7)
K X

where boson commutation relations have been used, so that the eigenvalue equation

H|Y(Q) >= w2(Q)|¥(Q) > can then be written:

1 1 1
N Y onmre@-P-m@ -

This equation, for excitations with wave-vector Q, yields (N-1) energies in the quasi-

(B.8)

continuum of unbound two single-particle states w2(Q) = w1(k)+w1(Q—k) (shown

in Fig B.5(b)) and one solution w,(Q) out of this continuum (shown in Fig B.5(c)).

With the calculated values of t and IV, we find that this latter solution is located
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110 cm~! below the one-phonon state energy at I. This value is taken to be the
two-phonon binding energy E, for the H/C(111)-(1x1) surface [141]. The agreement
with experiment is excellent (see Table B.2). As expected, the present binding
energy for H/C is much larger than the one measured [135] and calculated [138] for
the H/Si(111)-(1x1) surface. The dispersion of the two-phonon bound state band is
calculated to be 0.01 cm ™!, which is 14 times smaller than the dispersion calculated
for the two-phonon bound state on the H/Si(111) surface. Both the larger binding
energy and the absence of dispersion indicates a very localized two-phonon bound

state.



B.1.

Table B.1: Parameters for the potential felt by an hydrogen atom at the

C(111)-(1x1) surface.

Tables and Figures

H/Diamond H/Si
This work Ref. [136] | Ref. [138]

woz(meV) | 355.74 250.84
Woz(meV) 146.40 69.35
as (eV/A%) | -28.34 -28.01 11.13
by (eV/A%) | 5.45 4.00
as (eV/AY | 28.23 2741 9.94
by (eV/AY | 1246 “11.66
ca (eV/AY | 0.68 0.78

Table B.2: Experimental and theoretical stretching and wagging frequencies
w, and wy, together with the anharmonic shift -2I" and the two-phonon bound

state energy Ep, are given in cm™! (1 meV = 8.04 cm™1).

Theory Experiment

2740
1189
107
-110

2838 + 2
1331 £ 1

-110 £ 5
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Figure B.1: (a) Calculated potential well for (a) the (x=y=0) hydrogen mo-
tion as a function of the displacement z from equilibrium bond length and
for (b) the wagging mode (z=0) as a function of the displacement p from the
equilibrium position. The open squares are the calculated points and the solid
lines are a fourth order polynomial least-square fit.
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Figure B.2: Presented from left to right: contour plots in the y=0 plane of
the potential felt by the hydrogen atom at the surface and of the wavefunction
squared of the ground state, first excited wagging mode, first excited stretch-
ing mode and second excited stretching mode. For the potential, the contours
correspond to energies ranging from wg,/2 to Twy,/2 by increment of wp,/2.
For each eigenstate density, we plot 10 density contours with constant incre-
ment between the minimum and maximum in-plane density. The position of
the carbon atom is indicated as a guide to the eyes. All figures have rotational
symmetry around the z axis. :
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Figure B.3: In the upper panel, contour plots in the y=0 plane of the poten-
tial felt by the hydrogen atom in the harmonic case (left), when the stretching
anharmonicity is included (center) and finally when both anharmonicity and
coupling to the wagging are included (right). The contours correspond to en-
ergies ranging from wy, /2 to 7wg./2 by increment of wy, /2. In the lower panel,
the second-excited stretching mode wavefunction |¢st,.etch,2|2 corresponding to
the potential plotted right above are presented in the y=0 plane.
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Figure B.4: a) Infrared SFG probe spectrum on the H/C(111)-(1x1) surface
showing the fundamental vg_,; vibrational transition (open circles) and the
V19 vibrational transition (solid squares). The inset is expanded five times.
Solid lines are fit to the experimental data points. b) Theoretical absorption
spectrum for the stretching modes of the C-H bond with incoming s-polarized
light. The solid line corresponds to the vg_,; transition and the dashed line
to the v1_,o transition. A 1 meV gaussian broadening for the energy levels
has been used and the relative peak height between the two transitions is
arbitrary. Frequencies are in cm™!.
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Figure B.5: Dispersion along high-symmetry directions for (a) the one-
phonon states, (b) the unbound two-phonon continuum and (c) the two-
phonon bound states. Energies are in cm™!. Note that the energy scale
of (c) is 150 smaller that the energy scale for (a) and (b). However, (a), (b)

and (c) share the same energy reference.
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