ORNL/TM-12813 (Part 1)

New Insights into Input Relegation
MARTIN MARIETTA Control for Inverse Kinematics of a
Redundant Manipulator
Part 1: On the Orthogonality of
Matrices B and J and Comparison
to the Extended Jacobian Method

c

nseren
eister

.

oX
o >

89]
Y]

DISTRIBUTION OF THIS DOCUMENT 1S UNLIMITED




This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and
Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available
from (615) 576-8401, FTS 626-8401.

Available to the public from the National Technical Information Service, U.S.
Department of Commerce, 5285 Port Royal Rd., Springtield, VA 22161.
NTIS price codes—Printed Copy: A03 Microfiche AC1

This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, com-
pleteness, or usefulness of any information, apparatus, product, or process dis-
closed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily consti-
tute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.




ORNL/TM-12813 (Part 1)

Computer Science and Mathematics Division

NEW INSIGHTS INTO INPUT RELEGATION CONTROL FOR INVERSE
KINEMATICS OF A REDUNDANT MANIPULATOR
PART 1: ON THE ORTHOGONALITY OF MATRICES B ANDJ AND
COMPARISON TO THE EXTENDED JACOBIAN METHOD

M. A. Unseren and D. B. Reister

Center for Engineering Systems Advanced Research

DATE PUBLISHED: JULY, 1995

Prepared by
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831
- managed by
LOCKHEED MARTIN ENERGY SYSTEMS, INC.
for the
U. S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-840R21400

DISTRIBUTION OF THIS DOCUMENT 1§ UNUM*T%?H &%é Y ?E %







CONTENTS
ADSEract. .oouviieiiiiiiiiiiiitiitiiesittiiiiasiitecttttetsiiaesietnnans v
1, Introduction.....c.ccoveiiiuienenraneineeccesorieniecenccnsecaans 1
2. New Insights in Choosing B Orthogonal to J........ccccuvuee. 5
3. Comparison to Related Works........ceieveviivncininnnnnnnen. 7
4. Conclusion....ccciveeueereressessescssesesssssassosssssorsensess 11
5. Acknowledgement......cccieerieieeeerioninneceracenacnsesananes 13

6. References......cccoeveeeveeennss Neseescsesesrsoceannenae eeee ... 15







Abstract

A method for kinematically modeling a constrained rigid body mechanical
system [1, 2] and a method for controlling such a system termed input relega-
tion control (IRC) [3] were applied to resolve the kinematic redundancy of a
serial link manipulator moving in an open chain configuration in [6]. A set of
equations was introduced to define a new vector variable parameterizing the
redundant degrees of freedom (DOF) as a linear function of the joint veloci-
ties [6]. The new set was combined with the classical kinematic velocity model
of a manipulator and solved to yield a well specified solution for the joint ve-
locities as a function of the Cartesian velocities of the end effector and of the
redundant DOF variable. In the previous work a technique was proposed for
selecting the matrix relating the redundant DOF variable to the joint velocities
which resulted in it rows being orthogonal to the rows of the Jacobian matrix.
The implications for such a selection were not discussed in [6]. In Part 1 of
this report a basis for the joint space is suggested which provides considerable
insight into why picking the aforementioned matrix to be orthogonal to the
Jacobian is advantageous. A second objective of Part 1 is to compare the IRC
method to the Extended Jacobian method of Baillieul and Martin [13, 14] and
other related methods.




1 Introduction

The redundancy resolution scheme presented in this report is based on a method
for kinematically modeling a constrained rigid body mechanical system [1, 2] and on
a theory for controlling such a system termed input relegation control (IRC) [3]. The
mechanical system considered in [1, 2] has n actuators whose n generalized velocities
must satisfy a set of k integrable or nonintegrable linear bilateral constraints (k < n).
Such a constrained system has (n — k) position degrees of freedom (DOF). It is easy
to see that there are infinitely many solutions for the generalized velocities which sat-
isfy the constraints. A new set of (n — k) independent generalized velocities, termed
pseudovelocities, was introduced and defined as a linear function of the coupled gen-
eralized velocities . These equations, when combined with the constraints, may be
solved to yield a single, well specified solution for the generalized velocities [1, 2]. The
theory of IRC suggests that several tasks can be accomplished simultaneously when
controlling the constrained system [3]. One task would be to control the motion of
the system while satisfying the constraints. The additional task would be to control
the Lagrangian constraint forces which arise due to the loss of the position DOF.
Control laws are designed for each task, and the control inputs to the actuators are
comprised of the sum of the task controllers (or transformations of them).

A classical example of a control law based on the principles of IRC was provided
in Kankaanranta and Koivo [4{ It was suggested in {4] that the system’s position
DOF can be utilized to explicitly control the pseudovelocities and the pseudocoordi-
nates (i.e., the time integrals of the pseudovelocities) to track reference trajectories.
The loss of the k position DOF gives rise to k force DOF, and Kankaanranta et al.
as well as others |5] have suggested that the force DOF can be used to explicitly
control the system’s k independent Lagrangian constraint forces to track reference
trajectories. The pseudovariable and Lagrangian constraint force task controllers
were transformed into the joint space, which, when applied to the model, resulted in
an explicit decoupling of the position- and force-controlled DOF [4].

To review how the kinematic modeling method [1, 2] and the concept of IRC [?ﬂ
were first applied to the kinematic redundancy resolution during motion of a fixe
base, open chain, serial link redundant manipulator in [6}, it is convenient to present
the classical kinematic velocity model for such a manipulator:

i = Jg (1)

where £ = [2,, 2,,..., :i'M]T is the vector of Cartesian velocities of the end effector

with respect to the base coordinate system of the manipulator. ¢ = [¢, g2, - -, (jN]T
is the vector of joint velocities. Superscript T denotes a matrix transposition and it
is assumed that M < N. The (M x N) Jacobian matrix J(gq) in eq. (1) is assumed
to have full rank M.

The columns of J comprise N vectors in the M dimensional task (Cartesian)
space. Only M of these N vectors comprise a linearly independent set which spans
the task space. The rows of J comprise a set of M vectors in the N dimensional
joint space. These M row vectors comprise a linearly independent set. However,
L = (N — M) additional row vectors are needed to comprise a linearly independent
set which spans the joint space.

The original application of IRC to kinematic redundancy resolution [6] sought
to define those L additiona] row vectors. The idea was to introduce a new vector
variable € = [, €, ..., €] which parameterizes the redundant DOF and define it
as a linear combination of the joint velocities ¢:
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¢ = B 2)

where the L row vectors comprising matrix B(g) are selected such that the composite

(N x N) matrix S(q), defined by:

-3

is nonsingular. It is convenient to partition the inverse of S into two matrices [6]:
S'=[E, F] (4)

where E(g) and F(q) are (N x M) and (N x L) matrices, respectively. Eqgs. (3) and
(4) imply the following five matrix identities:

JE = Ipyqxym s (5)
JF = Oumxz, (6)
BE = 0cxm, (M
BF = Ipx1, (8)
EJ + FB = Ingn- (9)

Here Ijxi denotes a (k x k) identity matrix and Ogx; a (k X 1) matrix of zeros.
Eqgs. (1) and (2) can be combined and solved for the joint velocities:

g=FEz + Fe. (10)

The first term (E ) to the right of eq. (10) is the particular solution to eq. (1) which
causes the end effector to physically move. The second term (F ¢) is the homogeneous
solution to eq. (1) which causes self motion of the joints (i.e., motion of the joints
that does not induce end effector motion).

A designer whom uses IRC to resolve kinematic redundancy of a manipulator
must address two major issues: (i) Selection of the matrices {B, E, F} given J and
(i1) determining e¢. Only when these quantities are known can we compute ¢ using
eq. (10). The first issue is the subject of Part 1 of this report, whereas the problem
of selecting € to optimize a secondary criteria involving self motion of the joints is the
subject of Parts 2 and 3 [7, 8].

In our previous work on the first issue, it was assumed that given J, B is picked,
which immediately leads to the determination of {E, F} by eq. (4). An optimization
technique was suggested for choosing B for manipulators with a single degree of
redundancy (L = 1). The choice resulted in maximizing the determinant of matrix S
where B was restricted to be a normalized vector. It was discovered that the resulting
B was orthogonal to the rows of the Jacobian J. It was also shown that when the rows
of B and J are orthogonal, the columns of E and F are also orthogonal. However, the
implications and advantages of having B orthogonal to J were not discussed in [6].

The L column vectors comprising matrix F in eq. (4) all lie in the null space of
the Jacobian matrix J. They form a basis for the null space of J and are immediately
determined when B is selected such that S is nonsingular. A critical view of the
earlier work reveals that the idea of first choosing B then determining F' (and E) is
somewhat illogical. Indeed, it implies that the rows of S are a suitable set of basis
vectors which span the N dimensional joint space. However, the rows of B may or
may not be orthogonal to the rows of J. It is obvious that the former case is the
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most desirable because orthogonality is the strongest form of linear independence of
a pair of vectors [9]. In section 2 we re-examine the problem of determining matrix
B which provides intuitive insight into the benefits of choosing B to be orthogonal
to J.

Past experience indicates that there is some confusion about differences between
the IRC and Extended Jacobian methods [13, 14] of kinematic redundancy resolu-
tion. In section 3 the two methods are compared based on a mathematical review
of the Extended Jacobian method. The IRC method is also compared to some other
approaches.







2 New Insights in Choosing B Orthogonal to J

In this section we take an alternative view about which of the four matrices
{J, B, E, F} are known apriori and which are unknown. For the purposes of this
report, it is assumed that J and F are known apriori and the problem is to solve for
B and E in terms of the known matrices, while satisfying egs. (5) - (9). There exist
numerical methods for determining a basis for the null space of a rectangular ma-
trix with fewer rows than columns, e.g., the zero eigenvalue matrix theorem [10, 11].
Some analytical techniques for determining such a basis also exist [5, 6, 12]. There-
fore the assumption that F' is known apriori is both logical and reasonable. Insight
into the advantages of choosing B orthogonal to J will be much more clear using this
approach.

Let the columns of the (N x N) matrix G, defined by:

G = [JT, F] (11)

be the basis for the N dimensional joint space.

The basis defined in eq. (11) can provide insight into the problem of determining
B and E such that egs. (5) - (9) are satisfied. Expressing the kth row of B in terms
of the transposed basis vectors gives:

M L
Bkzzakit]i"'z'ﬁjl;?; k=1’2"'°3L (12)

=1 y=1

where J; is the ith row of J and F; is the jth column of F. The kth column of E can
be defined in a similar manner:

M L
Ev=S 0 ¢+ Y Fiep; k=1,2,..., M. (13)

=1 i=1

It is convenient to express egs. (12) and (13) as concise matrix equations:

B = aJ+4FT, (14)
E = JT( + Fe (15)
where a and € are (L x M) matrices, v is an (L x L) matrix, and ¢ is an (M x M)
matrix.
Postmultiplying eq. (14) by [E, F] and invoking eqs. (7) and (8) give:
[a@+7FTE, yF'F] = [Ouum, Iixz]. (16)
The symbolic solutions for v and « based on eq. (16) are:
7= (FTF)7, (17
-1
a=-(F'F) FTE. (18)
Premultiplying eq. (15) by matrix S and invoking egs. (3),(5), and (7) give:
JJT¢ _ | Imxm
[BJTC+5] - loLxM ’ (19)
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The symbolic solutions for { and ¢ based on eq. (19) are given by:
¢= (7777, | (20)

e=-BJT(1J7)7. (21)
Replacing F in eq. (18) by the right hand side of eq. (15) yields:
E=—a. (22)
The identical result can be obtained by replacing B in eq. (21) by the right hand side
o e'(ll”'hsalg)){i)ressions for B and E can now be simplified:
B=aJ+ (FTF) FT, (23)
E=J"(JJ)" - Fa. (24)

It is repeated for emphasis that the term (E &) in eq. (10) is the particular so-
lution to eq. (1). However, when E is defined by eq. (24), the term (F ) contains
a component {— F a £} that lies in the null space of J and thus induces self motion
of the joints. That is to say, the self motion component of solution in eq. (10) is
{F (e — az)} and not (Fe) as we might expect. The point being is that vector
€, defined by eq. (2), does not completely parameterize the redundant DOF in the
solution for the joint velocities given by eq. (10) as long as — Fa & # Onx;. Fur-
thermore, the self motions induced by {F ¢} and {— F az} might conflict with one
another when determining a solution for the joint velocities that satisfies a secondary
objective using self motion of the joints, the topic of Part 2.

To prevent such a potential conflict, a particular solution to eq. (1) is sought which
does not induce self motion of the joints. This will occur when the parameter matrix
a = Opxm in eq. (24). Noting eqgs. (21) and (22), a becomes a matrix of zeros when
the rows of B are selected to lie in the null space of J, i.e.:

JBT = Oprxr . (25)
When eq. (25) applies, the solution for the joint velocities expressed in terms of

the joint space basis G is:
v AL
q-_-.G[(JJ) ‘”]. (26)

€

At this point, eq. (26) is only an intermediate solution for ¢ because ¢ is still
unknown. Further motivation for choosing B orthogonal to J is discussed in section 3
of Part 2 of this report, where € is determined by optimization techniques to yield
the final solution for 4.




3 Comparison to Related Works

The described input relegation control redundancy resolution scheme is compared
to the Extended Jacobian method of Baillieul and Martin [13, 14] and other related
literature in this section. In Baillieul et al., [13, 14] a set of equations of the form
of eq. (2) was introduced with the restriction that € = 0rx1, where, here again,
L = N — M. The solution for ¢ suggested in [13, 14] is:

=51 ° 27
i=5 o] @)
where the square matrix S defined in eq. (3) was referred to as the Extended Jacobian

matrix.
It is convenient to apply the partitioned inverse defined by eq. (4) to simplify

eq. (27):
¢=Ez. (28)

Thus the Extended Jacobian method yields only a particular solution to eq. (1)
whereas the IRC method yields both particular and homogeneous solutions to eq. (1).
In Baillieul et al. [13, 14], it was assumed that the null space F of J is known
a priori. The sth row of B was determined by the following procedure: (i) the
values of the joint positions q are determined such that the Lie derivative of a scalar
performance criteria k{q) in the direction of the ith column of F equates to zero:

oh
i = —F = 2
9=z, F=0 (29)
where g;(q) is the scalar Lie derivative of h, F; signifies the ith column of F, and
t = 1,2,..., L. (ii) the partial derivative of g; with respect to g is obtained:
g
=2 (30)

where B; signifies the ith row of B. The components of the ith row of B are calculated
using the values of ¢ which result in g; = 0. '

Scalar g; could be a highly nonlinear transcendental function of the joint positions.
An analytical procedure for determining the values of ¢ such that g; = 0 was not
discussed in Baillieul et al. [13, 14]. It is true that an example was given in [13,
14] where g was determined such that g; = 0 for a simplistic configuration of a
three link planar revolute manipulator, but even then the link lengths were all set
to unity. However, the problem of determining q such that eq. (29) is satisfied for a
general spatial multilink redundant manipulator must be accomplished by numerical
techniques. _

The symbolic representation of the inverse of S was obtained by the following
procedure in [13]:

(B[ p]= | i S|

Then, by a mathematical observation:




[};]_1 _ [JT (JJT)’I, F] [—BJITM(T]MJT)_I OIf:; ) (32)

Noting eq. <(i4), the solution for E required to solve for ¢ in eq. (28) is obtained from
eq. (32) and may be expressed in terms of the joint space basis G that was defined
in eq. (11):

E=¢G { _I"g}g] (g97)™ (33)

It should be mentioned that the symbolic solution for E in eq. (33) can be obtained
by postmultiplying eq. (9) by JT (J JT ~! and rearranging terms.

By substituting eq. (33) into eq. é28 , the solution for the joint velocities presented
in [13, 14] is expressed in terms of G:

i=G [ _I“gyTl (777) 7 . (34)

Please note that the particular solution to eq. (1) given by eq. (34) contains a compo-
nent which induces self motion of the joints. When B is orthogonal to J, the solution
obltained by eq. (34) is identical to Whitney’s pseudoinverse solution [15] for the joint
velocities. ’

It is repeated for emphasis that the solution for ¢ obtained by IRC would contain
the additional term (F¢) on the right hand side of eq. (34).

In the Configuration Control method [16], a set of L user defined ”self motion”

kinematic functions ® = [¢;, ¢, ..., ¢L]T are defined as functions of the joint vari-
ables, i.e., ® = ®(q). These functions along with the end effector Cartesian coordi-
nates formed a set of N task-related configuration variables. Reference trajectories
were specified for the task-related configuration variables, and adaptive controllers
were devised to control these variables to track the reference trajectories.

Please note that the quantities ® and J, in [16] correspond to the quantities € and
B used here, respectively. In our approach ¢ is an unknown quantity whose value
is determined as part of the inverse kinematics optimization process. One the other
hand, the Configuration Control method does not involve inverse kinematics.

A general solution to eq. (1) was proposed in [17] which can be expressed using
the notation of this paper:

[ 2] [t

In [17], it was claimed that F can be determined analytically such that eq. (6) is
satisfied by solving the determinant equation |J JT| = |FT F|. It was acknowledged
in [17] that the method involves some guesswork. In the example given, the symbolic
(6 x 7) Jacobian J had a simple structure: 24 of its elements were zero valued, four
of its elements were equal to one, and the remainder were functions of the joint
angles. It appeared that the simplicity of their J was instrumental in being able to
solve for the 7 dimensional vector F. The Jacobian matrix considered in this paper
transforms the joint velocities to obtain the Cartesian velocities of the end effector
expressed in the base coordinate system. The symbolic representation of this matrix
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is considerably more complex than the one illustrated in [17] and it may be difficult
or even impossible to solve the determinant equation for F.

An application of the previous work [4] to resolve the redundancy during open
chain motion of a 3-link planar revolute manipulator is discussed in [18] where only
the Cartesian translational motion of the end effector is specified. The procedure
suggested in [18] is equivalent to selecting € to be the Cartesian angular velocity of
the end effector with B = [1,1,1]. But given these choices for {¢, B}, eq. (2)
would in fact comprise the third row of the kinematic velocity model in eq. (1) using
the approach given here. Furthermore, specifying the Cartesian translational and
rotational motions of the end effector of a 3-link planar revolute manipulator does
not constitute a kinematically redundant system.







4 Conclusion

To better understand the advantages of choosing B orthogonal to the Jacobian
J when resolving the kinematic redundancy of a serial link, open chain manipulator
using the input relegation control (IRC) method as suggested in [6], a proper basis
for the N dimensional joint space is needed. In this report it was suggested that the
proper basis consists of the rows of J along with the vectors comprising its null space
(i.e., the columns of F). It was assumed that the basis vectors are known, and the
unknown matrices {B, E} were expressed as linear combinations of the basis vectors.

This formulation proved to be insightful in choosing a specific solution for B and
E. Indeed, it was noticed that when F has a component in the null space of J, the
particular solution to the original kinematic velocity model, namely (£ ), contains
a component which induces self motion of the joints. This is in addition to the self
motion induced by the homogeneous solution to the original system, namely (F'e).
In this situation it can be argued that vector € does not completely parameterize the
redundant degrees of freedom. Moreover, the self motions induced by the particular
and homogeneous solutions might conflict with one another. To prevent such a po-
tential conflict, it was suggested to select B orthogonal to J, which also results in
E 1being orthogonal to F. Now there is no self motion component in the particular
solution.

The report also clarified the distinctions between input relegation control and
the Extended Jacobian method of Baillieul and Martin {)13, 14]. The fundamental
differences are: (i) the Extended Jacobian method yields only a particular solution
for the joint velocities based on the kinematic velocity model, whereas the IRC method
yields a particular and a homogeneous solution to the model. Mathematically, the
Extended Jacobian symbolic solution is obtained by restricting the redundant degree
of freedom quantifying variable e introduced here to be an (L x 1) vector of zeros.;
(ii) In IRC, B is selected to be orthogonal to J such that the particular solution for
the joint velocities contains no component inducing self motion whereas in general
the particular solution obtained by the Extended Jacobian method contributes to end
effector motion and self motion. The methods determine B and E differently.
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