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Abstract

A novel method employing machine-based learning to identify messages related to
other messages is described and evaluated. This technique may enable an analyst to
identify and correlate a small number of related messages from a large sample of
individual messages. The classic machine learning techniques of decision trees and
naive Bayes classification are seeded with few (or no) messages of interest and “learn” to
identify other related messages. The performance of this approach and these specific
learning techniques are evaluated and generalized.
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1. Introduction

The goal of LDRD 04-0442 was to help an analyst sort through large amounts of
captured message data to find a few interesting conversations. Building oft previous
work from 2003, we completed a framework to simulate a network of communicating
users and capture their communications. We then went on to design a convenient
graphical interface to allow an analyst to examine captured conversations and applied
several machine learning methods to the problem of finding conversations of interest.

This report describes the software we produced and the machine learning techniques we
applied, and presents results of the tests we performed to evaluate those techniques.
Section 2 explains the simulation, Section 8 the communication capturing program,
Section 4 the graphical interface, and Sections 5-7 the machine learning techniques,
their experimental results, and suggestions for future work. Section 8 closes with our
conclusions.

2. Message Simulation

We simulated a network of communicating users in order to show that we could
reliably capture conversation data and reconstruct conversations. We also used the
simulation to generate realistic message data to use for analysis. Each instance of the
simulation program imitates the behavior of an AOL Instant Messenger client, signing
onto the AIM service, and exchanging messages with other copies of the program. We
chose to work with AIM because it is one of the most popular messaging programs
available. Client communications are drawn from a database of topic-oriented messages.

Each client program is intended to run on a different computer or virtual machine.
Using a program called VMware, we ran 11 virtual machines on each of two computers
and put a client on each one, creating a network of 22 clients. Using virtual machines
instead of physical ones was just a convenience that allowed us to use a small number of
machines to simulate a larger network. The network’s layout is summarized in Figure
1. Note that by capturing packets where we do, we will not see direct communications
between machines like 16 and 17 who are on the same sub-network; however, since all
AIM messages go out to the server and then come back to the recipient, we will capture
any AIM messages between conversants on those two machines.

Client programs get information about how to behave from configuration files. These
tiles determine when the program signs on to AIM, when it signs off, who it talks to in
between, and where it gets the messages it sends. Each of these properties has
probabilistic parameters, so that each time a client runs it will behave slightly
differently but within a characteristic range.
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Figure 1. Virtual network structure.

We configured our 22 clients so that they would each talk to several others in two
different formats. One is the instant message, in which two people send messages
through the AIM server to each other. The other is the group chat, in which any

number of people send messages through the server to the whole group. Figure 2
illustrates the general scheme.

Figure 2. Client communication.



In order to produce somewhat realistic conversations, we drew messages from a
database that was organized into different topics. Previous work on this project
included a program to pull posts from Usenet newsgroups, and we used that program to
acquire 50 conversation topics with hundreds of messages each.

For each instant message or chat exchange, the client programs decide on a topic and
take messages for that conversation from a single section of the database. The messages
are cut short to obey the length limits of the TOC protocol, consecutive messages in an
exchange may not be directly related to one another, and messages sometimes do not
stick to the supposed topic. However, they are valid natural-language communications
that connect loosely, and we can almost always identify the source of a conversation just

by glancing through it.

The client programs communicate with the AIM server using one of the two existing
AIM protocols: Oscar and TOC. Oscar is the official protocol, used by the AIM
software, but it is not publicly available and is only used in non-AIM products through
back-engineering. TOC is an unofficial protocol, but it is publicly available, and
therefore we chose to use it.

Most of the client program is original Java code. To use the TOC protocol, we
imported code from the open-source project “Java AIMBot.” The project was designed
to allow a program to answer instant messages, and with a few modifications and
additions we adapted it to our purpose. The AIMBot code handles all the messages that
a client sends to or receives from the AIM server. Tables 1 and 2 show some of these
messages.

Table 1. Client-to-server messages.

toc_send_im <Destination User> <Message>

toc_chat_join <Exchange> <Chat Room Name>

toc_chat_invite <Chat Room ID> <Invite Msg> <buddy1> [<buddy2> [<buddy3> [...]]]
toc_chat_leave <Chat Room ID>

Table 2. Server-to-client messages.

IM_IN:<Source User>:<Auto Response T/F?>:<Message>

UPDATE_BUDDY:<Buddy User>:<Online? T/F>:<Evil Amount>:<Signon Time>:<IdleTime>:<UC>
CHAT _INVITE:<Chat Room Name>:<Chat Room Id>:<Invite Sender>:<Message>

CHAT _JOIN:<Chat Room Id>:<Chat Room Name>

CHAT _IN:<Chat Room Id>:<Source User>:<Whisper? T/F>.<Message>
CHAT_UPDATE_BUDDY:<Chat Room ld>:<Inside? T/F>:<User 1>:<User 2>...
ERROR:<Error Code>:Var args

The clients log all the messages they send. We used these logs to verify our message
capturing process, which is described in the following section.




3. Communication Capture

Communication capture software was written in a previous stage of this project. We
restructured and rewrote this software in order to achieve our goal of 100% accurate
conversation reconstruction from captured network traffic. The original version of the
“sniffer” processed most network traftic under the assumption of a one-to-one
correspondence between packets and messages. While this was sufficient for the
majority of the messages in a conversation, we noticed some discrepancies between the
transcripts recorded in the client logs and the transcripts reconstructed from the
captured network traftic. There were four major sources for these discrepancies:

1. Packets may contain multiple complete and/or partial messages.
2. Messages may span multiple packets.

8. The “protocol flag” (i.e., the *” indicating AIM messages) may not always be the
first character in the application layer of a packet.

4. Duplicate copies of a single message/packet may be sent and/or received.

Problems one, two and three generally lead to un-recovered messages. Additionally,
problem two can also lead to partially recovered messages while problem four leads to
duplicate messages.

Problem one, that packets may contain multiple complete and/or partial messages, we
were able to resolve to a large extent by extending the original sniffer. Problems two,
three and four arose at approximately the same time. We initially considered adapting
the code in the original sniffer that partially handles packet-spanning messages for the
Yahoo Messenger protocol to work with the TOC protocol. It soon became clear,
however, that this was not a desirable approach. The issue underlying all four problems
was TCP/IP fragmentation. As such, extending the Yahoo Messenger code was clearly
not only inappropriate (why handle the general issue of TCP/IP fragmentation in a
chat-protocol specific manner?), but also would not provide a solution for the “protocol
tflag” problem or the duplicate message problem.

We chose instead to redesign and rewrite the communication capture software. This
had the dual benefits of addressing all four problems inherent in the
design/implementation of the original sniffer, while also isolating and reducing the
amount of protocol-specific processing by doing conversation reconstruction in a more
general and robust framework. The final result was a suite of programs illustrated in
Figure 3.

10
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Figure 3. Communication capture software.

Overview

There are four programs corresponding to the four layers of encapsulation (Link,
Network, Transport, Application) in the exchange of IM/Chat messages. The ultimate
goal of the four programs is the accurate reconstruction of the IM/Chat conversations
contained in the observed network traffic. 'We have already seen that attempting to
reconstruct conversations from packet data alone, without consideration for which
communication stream that packet is a part of and where in that stream the packet
belongs, is bound to fail. Briefly, the new “Sniffer” is responsible for filtering out and
recording TCP/IP packets. The “T'CP Assembler” is responsible for extracting
source/destination information and IP fragment reassembly. The “Stream Analyzer” is
responsible for reconstructing (including duplicate detection and out-of-order packet
receipt) the TCP stream data exchanged (i.e., the socket of communication). The
“Stream Parser” is responsible for recognizing whether the information exchanged over
a socket conforms to a known chat/IM protocol and, if so, extracting the messages from
that communication stream and producing the accurately reconstructed conversation
transcripts.

The Link Layer (Sniffer)

Packets are captured from the primary network device using the winpcap library. As
with the original sniffer, non-IP (v4) and non-TCP packets are ignored. Other than this
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TCP/IP protocol filtering, the new sniffer does not do any byte-level analysis or
processing of the packets. The raw IP datagrams (i.e., the packets stripped of the Link
layer) are passed to a binary dump file for processing by the “I'CP Assembler.”

The Network Layer (TCP Assembler)

The raw IP datagrams are read sequentially from the binary dump file generated by the
Snifter. The IP headers are then parsed for their relevant fragmentation, source, and
destination information. Due to the nature of the IP protocol, once parsed (and
reassembled, if necessary), the only information required for future use for our purposes
(in addition to the TCP/Application payload) is the source and destination IP addresses.
Thus, immediately after parsing, the addressing information and the TCP/Application
payload are stored in a MySQL database and the datagram is forgotten.

The IP fragment reassembly is not currently implemented in the TCP Assembler. No
tragmented IP datagrams arose in any of our simulations, so reconstructed conversation
accuracy was not compromised. In the absence of any actual fragmented IP datagrams,
testing of fragment reassembly code could be done with specially (manually) generated
IP packet data. We chose not to pursue this due to time constraints.

The Transport Layer (Stream Analyzer)

The Stream Analyzer is the most complicated piece of the conversation reconstruction
puzzle. The Stream Analyzer examines the TCP/Application payload from each IP
datagram stored in the database by the TCP Assembler. It then parses the TCP header
to extract the information necessary to reconstruct the data exchanged over the socket.
With this information, it attempts to simulate the processing done at each end of the
socket that led to the observed exchange of packets. By utilizing the information
contained in the TCP header (e.g., SYN, FIN, ACK control information,
Acknowledgement Number and Sequence Number information) the Stream Analyzer is
able to do a byte-level reconstruction of the data exchanged over the socket in question,
reconstruction that is accurate with respect to both the content exchanged and the
order in which it was exchanged. For each reconstructed socket, the Stream Analyzer
stores the stream of application data exchanged in a series of BLOBs (Binary Large
OBjects, which are database structures for binary data) in sequence number order in the
MySQL database. The Stream Analyzer is written to appropriately handle partial
socket observation, meaning that extraneous traffic detected need not be purged from
the database for analysis and will not lead to any erroneous results or program crashes.

It would probably be worth the eftort to store the Application data stream in one single
BLOB in one single socket tuple rather than in a series of BLOBs indexed on sequence
number. This was not pursued due to time constraints. Also, the issue of partial
acknowledgements of packets is still not being handled 100% correctly. Based on the
traffic generated by our simulations, it seems to be an extremely rare event (only
occurred once and did not aftect any of our transcript analysis) but should still be

addressed.
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As with the original sniffer, the Stream Analyzer will ignore Sockets on ports 80 or
8080. We ignored these ports because they are used almost exclusively for HTTP
traffic and increased running time for packet processing without contributing to our
research goals. These ports need not be ignored, and including them will not cause any
problems for the Stream Parser.

The Application Layer (Stream Parser)

The Stream Parser is the last stage in the processing and is responsible for producing
the final conversation transcripts. The Stream Parser examines each reconstructed
socket to determine if the communication exchange corresponds to a known IM/Chat
protocol. If so, the Stream Parser works its way through the stream, parsing and
recording messages as encountered until it reaches the end of the stream. Since
duplicate detection, reordering, etc. are handled by the Stream Analyzer, the parsing
itself is quite straightforward — simply a matter of following the protocol in question.
Also, since the Parser deals with a stream of data and not an atomic unit like a packet,
the “protocol flag” issue is completely sidestepped. Upon completion of this step, the
MySQL database contains the reconstructed conversations (100% accuracy on our
simulations this summer).

Additional protocols can be added to the Stream Parser by adding appropriate methods
and calls to the StreamParser class. Stream Parsing could be greatly simplified by
implementing the single BLOB per socket optimization, as described above. Also,
conversation transcripts come in identical pairs, one transcript from the server
perspective and one transcript from the client perspective.

4. Graphical Interface

To examine captured conversations conveniently, we developed a GUI, or graphical
user interface, called the Conversation Analyzer. It is written in Java, and it essentially
serves as a visual front-end to the database of captured data. Once the packets have
been stored in the table format specified by the Stream Parser, we can use the Analyzer
to group messages into conversations, display the conversations, and manipulate
selections of conversations. Note that conversations are not discarded by the tool, but
are merely re-ordered in how they are presented to the analyst.

To prepare a set of data for use, an Analyzer menu item can be selected that will group
together messages in the database that belong to the same exchange. The process is
necessarily specific to the TOC protocol. It starts by putting together all the messages
that are from one person’s “side” of a conversation — everything that person sent to or
received from a single instant message or chat channel. As shown in Tables 3 and 4, the
bold elements distinguish sides from each other; these elements must match in all
messages belonging to one side of one conversation. A client’s outgoing chat messages
are reflected back as incoming chat messages, so outgoing chats are ignored.

13



Table 3. lIdentifying elements of IM messages.

Outgoing: <source IP address> <server IP address> <socket ID> <recipient> <message>
Incoming: <server IP address> <destination IP address> <socket ID> <sender> <message>

Table 4. Identifying elements of chat messages.

Incoming: <chat room ID> <server IP address> <destination IP address> <socket ID>
<sender> <message>

Depending on where the data were sniffed, one or more sides of each conversation may
have been recorded. With the TOC protocol, the only way to determine whether two
sides belong together is to look at the messages they have in common. The Analyzer
program attempts to put sides together using an arbitrary threshold: if two sides have
at least five consecutive messages in common, they are combined. This has only a very
small chance of combining sides inappropriately. It occasionally leaves sides separate
when it could combine them, but then these are simply treated as separate
conversations.

Once conversations have been assembled, the Analyzer will display a list of the
conversations. We can then select from menu options to manipulate them: display the
text, remove some from the display, combine sides manually, give them labels, print
them to a file, or put selected ones into a temporary group or “selection.” We can make
a selection out of all conversations that involve a certain user or contain a certain word,
and we can take the union and intersection of selections. These basic functions allow us
to examine and organize conversations easily. Figure 4 shows the Analyzer in the
process of doing several of these things.

While this interface is useful for basic functions, it does not solve the motivating
problem of our research, which is that there will be too many conversations to search
exhaustively. Note also that while we can use simple word searches, not all
conversations of interest may use the words we think to search for. It may be difficult
to characterize exactly what makes a conversation interesting. We might find a few
interesting ones and want to find others similar to it, or we might not have anything to
start from at all and want to sift through the list in a more efficient way than top-to-
bottom. This is where machine learning comes in: the Analyzer has the capability to
learn our interests and bring to our attention, more quickly than we could alone,
conversations that are likely to be relevant to us.

14
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Figure 4. Using the Conversation Analyzer.

Machine Learning in the Analyzer

Machine learning techniques typically use a large set of training examples to learn a
concept. In this case, the training examples would be conversations, labeled by a human
as interesting or uninteresting, and the concept would be whether a new conversation
that we have not seen yet is likely to be interesting. Each learning algorithm would
look at the examples and decide, to the best of its ability, what attributes of an example
make it interesting or not. It would then use those assumptions to guess how to label
the new conversation. There is one problem with this usual approach: we would have to
read and label many conversations to use as examples, which would defeat the purpose
of using machine learning to save us work.

Instead, we decided to use an approach similar to one called active learning. The goal of
active learning is to learn a concept using as few training examples as possible. Instead
of accepting a set of labeled examples from the user, the active learning algorithm itself
chooses the examples that would help it the most and asks the user to label them. This

way, the user ends up labeling only as many as the algorithm needs to learn the concept.
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In the spirit of active learning, the Analyzer’s learning algorithms choose the examples
that they think are most likely to be interesting to the user, and the user labels these.

We can designate several conversations as interesting at first by placing them in a
selection in the Analyzer. Then we choose a menu option that starts the learning
process (using one of the algorithms that we have investigated). The algorithm uses
whatever initial information we have given it to learn a simple model, evaluates all the
remaining conversations, and displays to us the one (or more) that is most likely to be
interesting according to that model. We inspect it and hit a button to say that it is
interesting or uninteresting (or that we cannot decide, but that isn’t very useful). If'it is
interesting, the Analyzer adds that conversation to the selection. If not, the
conversation will be re-ordered and no longer appear on the display. Either way, we
have given the program more information, and it uses that information to repeat the
process until we wish to stop.

The type of model that the algorithms learn and the way that they order conversations
is described in the next section. First, though, we had to decide what the attributes of a
conversation would be, because all classification algorithms need to know the properties
that describe an example. The most important aspect of a conversation seems to be the
words it contains. The simplest approach would be to say that conversation A has
attribute B if it contains word B. More sophisticated approaches might take into
account word frequency or order, or even grammatical structures. We could also make
use of the names chosen by the users for their chat sessions and information about the
location of the connection endpoint. But for now we have used a simple version, and
made a “bag of words” — or a list of all the words a conversation contains — to use as
attributes. We used the Porter stemmer to remove prefixes and suffixes, and ignored
very common words.

The Analyzer code could easily be extended to incorporate other learning algorithms.
For now, we have investigated two: decision trees and naive Bayes. The following
sections describe how these methods work and how well they performed in our tests.

For each of the experiments that we describe, we chose beforehand one of the database
topics to be the “interesting” one. We arbitrarily chose six topics, and ran each
experiment six times, using a different “interesting” topic each time, to study the
variation that can occur.

5. Decision Tree Learning

Decision trees are very good at classifying items by finding a few important attributes.
They start with the entire set of training examples, look at all the possible attributes,
and choose the one that best separates the examples. In our case, the best attribute
would be a word that all the interesting conversations have and all the uninteresting
conversations do not have (or vice versa). There may not be an attribute that splits
perfectly that way, but the decision tree algorithm will choose the one that comes
closest, based on one of several possible statistical measures. That attribute will be the
first node of the tree, and the training examples will be split accordingly into two parts.
For each part, the algorithm repeats this process unless the examples in the part are
uniformly interesting or uniformly uninteresting.
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The most common statistical measure for the value of an attribute is nformation gain. It
uses a value called entropy to measure how uniform a set of examples is. The entropy of
a set of examples X is calculated in the following way:

m
EntropyX)=-> p;log, p;
j=1

The different values of j represent the labels an example can have. In our case we could
use j=I means “interesting” and j=2 means “uninteresting.” The variable p;is the
fraction of examples in X that have the label ;. The information gain of an attribute X
over a set of examples 1"is then:

InformatinGain(Y /X) = EntropyY) — Entropyy /X)

In our case, Entropy(7) would be the entropy of the original set of examples, and
Entropy(?7" | X) would be the sum of the entropies of the two parts produced by splitting
on the word X. That is, the value of using the word X to split the examples is the
amount that it decreases the overall entropy. This is a greedy strategy, which means
that it might not find the best possible way to build the tree, but at each step it will do
the best it can.

Another possible measure for the uniformity of a set of examples is the Gini index. The
Gini index of the set S is:

S 2
Gini(S)=1- > p;
j=1

Again, the values of j are the labels an example can have, and p; is the fraction of
examples in § that have the label . The Gini index of § when it is split into two pieces
(81 and §2) by attribute sc is:

Gini® (S, s¢) = %Gini(Sl) +”—rfeini(sz)

The ratios n./n and n:/n are the fractions of examples that were placed into the two
subsets. Unlike information gain, for which larger values correspond to better
attributes, we would choose the attribute whose split caused the smallest Gini index.

Once a decision tree has been built from training examples, it can be used to label new
items. Starting at the top node, it tests whether the new conversation contains the split
word, and follows the corresponding branch. It continues this way until it reaches a
leaf, where all the training examples are uniform. It then gives the new conversation
the same label as those examples.

Using a decision tree algorithm like the one described above, we performed an initial
experiment to see whether the presence and absence of words could be used to classify
conversations. We simulated ten sets of conversation data using the system described
in section 2, gathered them using the programs described in section 3, and used them to
do a ten-fold cross-validation of the decision tree algorithm. That is, we divided the
data randomly into ten equal sized sets, trained on nine sets to produce a tree, measured
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the tree’s accuracy on the tenth set, and repeated ten times using a different test set each
time.

We performed this entire cross-validation process six times, each time labeling a
different topic as interesting. One topic was “rec.arts.books.tolkien,” which came from a
newsgroup that discussed the works of J.R.R. Tolkien, and Figure 5 is an example of a
tree from that experiment. The implication of this tree is that it a conversation contains
the word “tolkien,” it is interesting. If not, but it contains the word “faramir,” it is still
interesting. These words were chosen to maximize the Gini index, as described above.
If'it contains neither of those, it is not interesting. This particular tree was completely
successful in classifying the conversations in the test set.

Interesting

faramir

Interesting Uninteresting

Figure 5. Decision tree example.

The test sets contained 1-2 interesting conversations (those belonging to the topic that
we selected beforehand) and approximately 50 uninteresting conversations. The
decision tree labeled them according to what it had learned from the training set, and
we compared those labels to the true ones. We judged the performance of a decision
tree by the following values:

fraction of /interesting conversations in test set that the tree labeled as

True positive rate . :
Interesting

fraction of /interesting conversations in test set that the tree labeled as

False positive rate ; ;
uninteresting

fraction of uninteresting conversations in test set that the tree labeled as

True negative rate ; .
uninteresting
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fraction of uninteresting conversations in test set that the tree labeled as

False negative rate . )
Interesting
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Performance varied depending on the topic, but in general it was good. The vast
majority of conversations were correctly classified. Some were misclassified, but few
enough that the approach of using words as attributes seemed likely to have some
success. Figure 6 summarizes the results of the ten-fold cross-validation test.

Decision Tree Preliminary Evaluation
100 1 —
o 901 —
e
=
o B0 |
=]
=
£ 40 1 —
<L
20 + —
O B T T T T T
fokien  diabetes ai beatles sql guns
|l True posifive rate B True negative rate |

Figure 6. Decision tree cross-validation.

To use a decision tree in the Analyzer, we had to adapt the algorithm to the active
learning framework. Instead of starting with a large set of positive and negative
examples, we would only have a small set of positive examples that the user had found.
The majority of them, which the user would not have labeled yet, we could not use in
training. We also had to take time efficiency into account. Using Java, which does not
run quickly, the cross-validation tests took around ten minutes to build a tree. That
would not be acceptable in the Analyzer, with the user waiting for results. Finally, we
needed the tree to give not just a label for a new conversation, but a probability that the
new conversation is interesting, so that we could choose the highest-probability one to
present to the user.

When we start the learning process in the Analyzer, the algorithm builds a tree with
the small amount of information that our initial selection provides. As it does so, it
attaches all the examples (labeled and unlabeled) to a branch of the tree. It cares only
about splitting the labeled examples, so it will stop when the positives are separated
from the negatives without trying to differentiate those from unlabeled ones. This is a
key teature, because what we want is for a small number of unlabeled conversations to
be grouped with interesting conversations — those are precisely the ones that would be
most likely to be interesting.

Formally, our system calculates a probability for each branch of the finished tree. The
probability that an unlabeled conversation in a branch is positive is the proportion of
positive examples to total examples in that branch. (We chose this definition because
examples that are grouped together share some attributes, and unlabeled conversations
that share attributes with positively labeled conversations seem most likely to be
positive.) It finds the branch with the highest probability and starts offering the
unlabeled ones in that branch to the user. It will continue to offer them until the branch
runs out of unlabeled conversations or it has gotten three “uninteresting” judgments in
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arow. At that point it takes the new information (the new labels) and repeats the
process.

We tried many modifications to this basic procedure to find which worked the best.
Fortunately, it was often possible to see what we needed to do by looking at the trees
that it constructed — we could see clearly what policies had led to what structures and
change them as necessary. We settled on the following modifications:

* Instead of using all words as potential attributes, we only use words from
interesting conversations. This speeds up the tree-building process, and focuses on
the most relevant attributes.

» Attributes (words) are selected using the Gini index instead of information gain.
Informal observation showed the two measures performing similarly, but the Gini
index version seemed a little better.

e An attribute (word) that gets used to create the highest-probability branch is
removed from consideration, so that same tree cannot be built again. This forces the
algorithm to try new directions instead of using the same attributes repeatedly.

We tested the procedure on all six topics, using two randomly selected conversations
trom each topic as the initial selection. In general, it tended to present uninteresting
conversations for a while, and then start finding the interesting ones fairly quickly.
Figure 7 summarizes the performance. Each experiment is labeled by the topic that we
used as “Interesting” in that experiment.

The performance of a learner on one topic is represented by a stair-step line that starts
at the bottom left. Each time the learner offers a conversation, our judgment of whether
the conversation is interesting or not determines whether the line moves horizontally or
vertically. Ifitis uninteresting, the next point is to the right along the x axis, and if it
is interesting, the next point is up along the y axis. Thus the steeper the line, the better
the performance.

The decision tree performance differs on different topics. Each line moves horizontally
for a while, which we expected since the learner offers some uninteresting conversations
at first before it narrows in on what the user wants. The ideal line is the “Diabetes”
dataset, where there were only four uninteresting conversations, and then it found all
the interesting ones in succession. With the “Tolkien” and “SQL Server” topics it took
longer to start finding interesting ones, but also found them quickly once it began. It
alternated between a couple hits and a couple misses on the “Guns” topic, overall doing
quite well. The “AI” and “Beatles” datasets gave it more trouble, but it still performed
reasonably well. There were about 500 candidate conversations, and the decision tree
learner found almost all of the 10—-12 interesting conversations in each topic in about 30
tries.

In terms of running time the trees built almost immediately at the beginning of a
search, but took up to 8 minutes to build towards the end, which was acceptable for our
purposes but not ideal for an operational setting. Much of this performance can be
attributed to implementing these tools in Java. Java was chosen for ease of
implementation, and these techniques could be re-implemented in another environment
to address speed concerns.
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Decision Tree Dataset Performance Comparison
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Figure 7. Decision tree performance.

6. Naive Bayes Learning

The second machine learning method that we applied to the problem was a Naive Bayes
classifier. In contrast to a decision tree, which selects a few important attributes to use
in classification, a Naive Bayes classifier uses all available attributes to make a
classification decision. The Naive Bayes classifier arrives at its decisions by applying
Bayes’ rule. Formally, Bayes’ rule is as follows:

P(4|B) = P(B|4) * P(4) / P(B)

P(x|y) indicates the conditional probability of x given y, and P(z) indicates the prior
probability of x. For our work, the specific application of Bayes’ rule that we use is:

P(class | conv) = P(conv|class) * P(class) / P(conv)

Here, class is a random variable which can take on the values nteresting, uninteresting, or
unclassified; and conv is the conversation for which we are attempting to calculate the
probability distribution across classifications.

Our conversation model represents each conversation as a Boolean vector, conv =
{wi,ws,. .. W ..... w.} in which w; = #rue it the conversation contains word 7 and w: = false
if not. To simplify the modeling, we then assume that, for all 7 and j, element w: is
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conditionally independent of w; given the correct classification of the conversation. In
less formal terms, this assumption is saying that once we know the correct classification
for a conversation, the probability of any specific word appearing in that conversation is
independent of the presence of any other word in the conversation. This assumption is
why the model is described as “naive.”

The conditional independence assumption, however, allows us to calculate the
P(conv|class) term as a product of individual word probabilities for the given
classification. Thus, we can rewrite P(conv |class) as follows:

P(conv|class) = P(wordi=w: |class)* P(word.=w: | class)...* P(word,=w,

class),

where P(wordi=true|class)is interpreted as the probability that a conversation contains
word; given that its correct classification is class. This observation is the key to the
implementation, because we can estimate the conditional word probabilities simply by
dividing the number of conversations of a given class that contain the word in question
by the total number of conversations in our dataset of that class (Maximum Likelihood
Estimation). We can estimate the prior probability of the classification, P(class), in an
analogous manner. The prior probability of the conversation, P(conv), can be ignored
since it will be constant for a given conversation. Thus, we have all of the information
that we need to solve the equation and derive the probability distribution across
classifications for a given conversation.

To integrate this procedure into the Conversation Analyzer, all conversations start out
as Unclassified, with the exception of any initial positive seeds. We can then use
Maximum Likelihood Estimation to calculate word probabilities and class priors (as
described above). Then we apply Bayes” Rule to obtain estimates for P(Interesting |conv)
and P(Unainteresting | conv) for each conversation that is Unclassified. We find the one
that maximizes the ratio P(Interesting |conv)/P(Uninteresting/conv) and return this
conversation to the user. The user makes a classification decision for the conversation
we returned and we repeat the process until boredom or exhaustion. Since the
algorithm runs quickly, we can actually update our probabilities and re-rank all
remaining unclassified conversations each time we get new information from the user.
Since we are using only the classifier to rank-order the unclassified conversations by
their potential for being interesting (i.e., we are not interested in making actual
classification decisions), we need not worry about calibrating the raw probabilities that
emerge from the classifier itself.

It is important to note that running the Naive Bayes active learner with no seeds at all
achieves results competitive with, and often superior to, those achieved by the seeded
Naive Bayes and the decision tree. Typical behavior for all three algorithms is an initial
“calibration” period in which several uninteresting conversations are presented,
tollowed by a brief period in which all (or almost all) of the interesting conversations are
discovered in quick succession.

Below are two charts that summarize the performance of the seeded (Figure 8) and
unseeded (Figure 9) Naive Bayes classifiers, using the same datasets as the decision tree.
Again, each experiment is labeled by the topic we chose as “interesting” for that
experiment, and there were 10—12 interesting conversations in a set of about 500.

For both initial conditions, across all datasets, we observe a characteristic upward trend
indicative of the behavior described above. The performance graphs are constructed in
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the same way for the decision tree learner. Comparison between the graphs will show
that no method is always better than the others; we see that each learner outperforms
the others on two of the topics.

Naive Bayes Dataset Performance Comparison (2 Seeds)
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Figure 8. Naive Bayes performance with seeds.
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Naive Bayes Dataset Performance Comparison (No Seeds)
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Figure 9. Naive Bayes performance without seeds.

7. Future Work

The results of this preliminary work point to several promising avenues of future
research to pursue. We believe it could be interesting to look at combining the Naive
Bayes and the decision tree active learners. Two advantages of the Naive Bayes over
the decision tree are speed and the fact that the former can be used without any initial
seeds. The decision tree, on the other hand, seems to be less prone to getting stuck in
local maxima than the Naive Bayes. Perhaps we could use the un-initialized Naive
Bayes learner initially and, once it ceases to be effective, use the results generated to
that point as seeds for constructing a decision tree.

Also, it is clear that there is more information contained in a conversation than can be
captured by the simple “bag-of-words” approach. A possible long-term direction of
research is to try to capture some of this additional information by building more
complex models of conversations. Additional information such as word frequencies,
word proximity, grammatical structures and conversation participants could yield a
better classification of interesting conversations.

We have used synthetic data here, and an obvious improvement would be to use real
conversation data, at least for the interesting conversations. We could devise or copy
conversations that we want to be able to find, and test the algorithms’ ability to do so.

Finally, we believe it would be worthwhile to investigate the performance of active

learners based on other well-known machine learning techniques, like hidden Markov
models, support vector machines, clustering, probabilistic link index searching, latent
semantic indexing and genetically trained neural nets. We have started to look into a
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hidden Markov model approach, and it appears to perform similarly to the decision tree
and naive Bayes learners. The HMM has the advantages of considering word sequence
instead of just independent words, and it could also easily be used to classity
conversations into more than two categories. It seems to favor short conversations, and
in fact these appear to account for most of its misses; if we could repair this bias, it
might perform substantially better. Our evaluations of the HMM are only informal at
this point, but since the implementation is in place, work on it could be continued easily.
Since the Conversation Analyzer is designed in a modular fashion, it is also relatively
easy to incorporate new methods into it for further testing.

8. Conclusions

We have presented an active learning approach to the problem of searching large
amounts of captured conversation data, and evaluated three learning techniques that we
have applied. Our approach differs from the traditional machine learning paradigm,
since it starts with a very small amount of information and proceeds incrementally
instead of learning all at once with a large batch of data.

None of the three approaches was clearly the best; each out-performed the others on
two out of the six datasets. However, we can offer observations on why some topics
were easier than others. One characteristic of topics that were better retrieved is a
unique vocabulary. The “diabetes” dataset has this characteristic, and tended to be
picked up well by all the learners. Another characteristic is a sufficiently narrow focus.
The “AI” dataset contained conversations on two distinguishable facets ot the topic of
artificial intelligence, and this often caused learning to occur in two separate runs. A
third characteristic is a good seed, which applies of course only to the seeded Bayes and
decision tree methods. Finding a seed that is representative of the dataset can
substantially improve the results of the search process.

These observations lead to several hypothetical questions. What if clients use
euphemisms instead of key vocabulary terms in order to conceal their conversations?
There are two ways in which these learners could still catch the concealed exchanges.
One is if non-euphemized words, those the clients do not consider to be important, are
used similarly among their conversations. The learners contain no bias towards words
a human might feel are important, and therefore they might find things we would not.
The other way is it a client slipped and used an important term alongside euphemisms;
this would draw the learner’s attention to the euphemisms and lead to finding all
euphemized conversations.

Another question that is important to address is how well these techniques would scale
when the volume of data is much larger. The naive Bayes methods are inherently linear
in the number of conversations being searched, so they would still run quickly. The
decision tree method is more computationally complex, but because of the changes in
the algorithm, it also will tend to scale linearly with the number of conversations being
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searched. Therefore, we do not anticipate running time to be a large problem. Just as
important, though, is how quickly the learners start to focus in on the relevant
conversations. We would need to run large-scale experiments to discover the answer to
this question.

[t is important to note that the approach we have taken in this work does not result in
any data being discarded. Rather we are presenting the data in an order that is likely to
be more useful than random selection. At no time does our algorithm discard a
conversation without being instructed to do so by the analyst. Thus, there is nothing to
preclude an analyst from examining every captured conversation.

To conclude, the programs that we have developed and their uses are listed below:

¢ Message Simulator — simulates communicating agents; currently uses the AIM
TOC protocol, but could be extended to other conversation protocols or different
communication channels.

¢ Communication Capture programs — snift and reconstruct communication streams;
currently expects the AIM TOC protocol, the modular design simplifies extension.

¢ Conversation Analyzer — graphical interface for examining and manipulating
conversations; supports several intelligent search algorithms and could be extended
to include other search techniques or communication protocols.

* Naive Bayes active learner — standalone intelligent search algorithm; could be
integrated into the conversation analyzer.
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