SANDIA REPORT

SAND2004-2895
Unlimited Release
Printed June 2004

Xyce™ Parallel Electronic Simulator
Users' Guide, Version 2.0

Eric R. Keiter, Scott A. Hutchinson, Robert J. Hoekstra, Eric L. Rankin,
Roger P. Pawlowski, Deborah A. Fixel, Thomas V. Russo, Lon J. Waters,
Steven D. Wix

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401

Facsimile: (865)576-5728

E-Mail: reports@adonis.osti.qgov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847

Facsimile: (703)605-6900

E-Mail: orders@ntis.fedworld.gov

Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2004-2895
Unlimited Release
Printed June 2004

st e F U e A S B N R S e R e e e IS L R e e S e]
Xyce™ Parallel Electronic Simulator

Users’ Guide, Version 2.0

Eric R. Keiter, Scott A. Hutchinson, Robert J. Hoekstra,
Eric L. Rankin, Roger P. Pawlowski, Deborah A. Fixel
Computational Sciences

Thomas V. Russo, Lon J. Waters and Steven D. Wix
Component Information and Models

Sandia National Laboratories
P.O. Box 5800
Mail Stop 0316
Albuquerque, NM 87185-0316

June 30, 2004

Abstract

This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has
been designed as a SPICE-compatible, high-performance analog circuit simulator, and
is capabable of simulating electrical circuits at a variety of abstraction levels. Primarily,
Xyce has been written to support the simulation needs of the Sandia National Labora-
tories electrical designers. This development has focused on improving capability over
the current state-of-the-art in the following areas:

W Capability to solve extremely large circuit problems by supporting large-scale par-
allel computing platforms (up to thousands of processors). Note that this includes
support for most popular parallel and serial computers,

B Improved performance for all numerical kernels (e.g., time integrator, nonlinear
and linear solvers) through state-of-the-art algorithms and novel techniques.

B Device models which are specifically tailored to meet Sandia’s needs, including
many radiation-aware devices.

Xyce™ Users’ Guide

B A client-server or multi-tiered operating model wherein the numerical kernel can
operate independently of the graphical user interface (GUI).

B Object-oriented code design and implementation using modern coding practices
that ensure that the Xyce Parallel Electronic Simulator will be maintainable and
extensible far into the future.

Xyce is a parallel code in the most general sense of the phrase - a message passing
parallel implementation - which allows it to run efficiently on the widest possible number
of computing platforms. These include serial, shared-memory and distributed-memory
parallel as well as heterogeneous platforms. Careful attention has been paid to the
specific nature of circuit-simulation problems to ensure that optimal parallel efficiency
is'achieved as the number of processors grows.

One feature required by designers is the ability to add device models, many specific
to the needs of Sandia, to the code. To this end, the device package in the Xyce
Parallel Electronic Simulator is designed to support a variety of device model inputs.
These input formats include standard analytical models, behavioral models look-up
tables, and mesh-level PDE device models. Combined with this flexible interface is an
architectural design that greatly simplifies the addition of circuit models.

One of the most important feature of Xyce is in providing a platform for compu-
tational research and development aimed specifically at the needs of the Laboratory.
With Xyce, Sandia now has an “in-house” capability with which both new electrical
(e.g., device model development) and algorithmic (e.g., faster time-integration meth-
ods) research and development can be performed. Ultimately, these capabilities are
migrated to end users.

Xyce™ Users’ Guide

Acknowledgements

The authors would like to acknowledge the entire Sandia National Laboratories HPEMS
(High Performance Electrical Modeling and Simulation) team, including Carolyn Bogdan,
Regina Schells, Ken Marx, Steve Brandon, David Shirley and Bill Ballard, for their sup-
port on this project. We also appreciate very much the work of Becky Arnold and Mike
Williamson for the help in reviewing this document.

Lastly, a very special thanks to Hue Lai for typesetting this document with ITEX.
Trademarks

The information herein is subject to change without notice.
Copyright @© 2002-2003 Sandia Corporation. All rights reserved.
Xyce™ Electronic Simulator and Xyce™ trademarks of Sandia Corporation.

Orcad, Orcad Capture, PSpice and Probe are registered trademarks of Cadence Design
Systems, Inc.

Silicon Graphics, the Silicon Graphics logo and IRIX are registered trademarks of Silicon
Graphics, Inc.

Microsoft, Windows and Windows 2000 are registered trademark of Microsoft Corporation.
Solaris and UltraSPARC are registered trademarks of Sun Microsystems Corporation.
Medici, DaVinci and Taurus are registered trademarks of Synopsys Corporation.

HP and Alpha are registered trademarks of Hewlett-Packard company.

Amtec and TecPlot are trademarks of Amtec Engineering, Inc.

Xyce’s expression library is based on that inside Spice 3F5 developed by the EECS De-
partment at the University of California.

All other trademarks are property of their respective owners.

Contacts

Bug Reports http://tvrusso.sandia.gov/bugzilla
Email xyce-support@sandia.gov
World Wide Web http://www.cs.sandia.gov/xyce

Xyc e @ Sandia National Laboratories

http://tvrusso.sandia.gov/bugzilla
mailto:xyce-support@sandia.gov
http://www.cs.sandia.gov/xyce

Xyce Users’ Guide

This page is left intentionally blank

Contents

1. Introduction
1.1 XYCE OVEIVIEW . ..
1.2 Xyce Capabilities
Support for large-scale parallel computing
Improved performance for all numericalkernels
Flexible Device Package Design. i,
Modeling Fidelity i e
Analysis capability
Object-oriented code design and implementation.......................
1.3 Description of Documentot
1.4 Reference GUIdEt i e
1.5 HowtoUsethisGuUide i i eee
2. Installing and Running Xyce
2.1 Xycelnstallation
2.2 RUNNING XY C@. ...ttt et
Command Line Simulation
Command Line Arguments s
Running XyceinParallel i
3. Simulation Examples with Xyce
3.1 Example Circuit Construction...........o i
3.2 DCSWeep Analysisc.iiiiiiiiii i i
3.3 Transient ANalysist e
4, Netlist Basics
4.1 General OVEIVIBWttt ettt et e e et
Introduction
Netlist Elements e
4.2 Devices Available for Simulation.....
Analog DeviCes e
4.3 Parameters and EXpressions e
Parameters i
How to Declareand Use Parameters i,
EXPressions it e

27
28
31
33

Xyce™ Users’ Guide CONTENTS

5. Working with .MODEL Statements 47
5.1 Definitionof a Model e 48
Defining models using model parameters 48
Defining models using subcircuitnetlists oo 48

5.2 Model Organizationo.ieiimii Sill
Model llbraries e e 51

Model library configuration i 51

6. Analog Behavioral Modeling 53
6.1 Overview of Analog Behavioral Modeling ..., 54
6.2 Specifying ABM DEVICES 0. .ot it 54
Additional constructs for use in ABM expressions. 55

Lookup Tables in Analog Behavioral Modeling 55
Alternate behavioral modelingsources i 56

7. Analysis Types 57
7.1 INtrodUuCtion . ..o e e 58
7.2 DO ANAIYSIS. ..o ovt ittt i e 58
Setting Up and RunningaDC Sweep 58

OP ANalySiS ..ottt e 58

7.3 Transient ANalysisoouiiie i e 61
Defining a Time-Dependent (transient) Source 61
Transient Calculation Time Steps it e 62
Checkpointingand Restarting. o i 62

7.4 STEP Parametric Analysis ... 65
Sweeping over a Device Instance Parameter 65
Sweeping over a Device Model Parameter 67
Sweepingover Temperature it 67

Special cases: Sweeping Independent Sources, Resistors, Capacitors 67

8. Using Homotopy Algorithms to Obtain Operating Points 71
8.1 Homotopy Algorithms Overviewo 72
HOMOTOPY Algorithms AvailableinXyce 72

Cl2 (S ES S 000a0000050600060066000000900050600660606630300600600000008004500000E 72
MOSFET HOMOOPYot e e 72

Natural Parameter Homotopy oo i e 74

9. Results Output and Evaluation Options 77
9.1 Control of Results QUpUL.o i e 78
CPRINT COMMANd ..ottt e i e it e e 78

9.2 Additional Output Optionso 78
.OPTIONS QUTPUT Commandttt s 78

9.3 Evaluating Solution Results o 80
10. Guidance for Running Xyce in Parallel 81
10,0 IR EHEM 0a0anc00a0a0000000600060000090000000000000060000003030900009000000C 82

CONTENTS Xyce™ Users’ Guide

10,2 MEChANICS ... it e e e e 82
10.3 Problem Size. 82
Smallest Possible Problem Size it 82

Ideal Problem Size. e 82

10.4 Linear Solver Options 83
10.5 Partitioning Optionsot e 83
Chaco Static Partitioningof Circuit o it 84

Zoltan Partitioning of the Linear System 84
Singleton Filtering of the LinearSystem 84

10.6 Recommended Partitioning and Solver Options........................ooill 85
11.PDE Device Simulation with Xyce 87
111 Introductiono i 88
Equations e 88
Discretization e e 90

11.2 One Dimensional Example e 91
Netlist Explanation 92
Boundary Conditions and Doping Profile 93
ReSUIS . .. e 93

11.3 Two Dimensional Example i 95
Netlist Explanation e 95
Doping Profile e 97
Boundary Conditions and Electrode Configuration 97
ResUlts e 97

114 Doping Profile. i i et e 102
Manually Specifyingthe Doping i i, 102
Default Doping Profiles 105

11,5 EleCtrodes . ..ot e 107
Manually Specifyingthe Electrodes 107
Electrode Defaults 110

11,6 MeEsShes ... e 111
Meshes from the SG Framework (External,2D) 111
Cartesian Meshes (Internal, 1Dand 2D) i ... 111
Cylindrical meshes, 2D i 111

11.7 Mobility MOEISo e 113
11.8 Bulk Materials. e 114
11.9 SOIVEr OPliONS ..ottt e 115
11.100utput and Visualization i e 116
Using the .PRINT Command ittt 116
Multi-dimensional Plots e 116
Volume Averaged Data i 117

“yee™ Users’ Guide

This page is left intentionally blank

10

Figures

2.1 Platform scripts for running Xyce. i 24
3.1 Schematic of diode clipper circuit with DC and transient voltage sources. ... 29
3.2 Diode clippercircuitnetlist. 30
3.3 Diode clipper circuit netlist for DC sweep analysis. 32
3.4 DC sweep voltages atVin,node2andVout................ 33
3.6 Sinusoidal input signal and clippedoutputs. 34
3.5 Diode clipper circuit netlist for transient analysis. 35
5.1 Example subcircuitmodel. 49
5.2 Example subcircuitmodel. 50
7.1 Diode clipper circuit netlist for DC sweep analysis. 59
7.2 DC sweep voltages at Vin,node2andVout........... 60
7.3 Diode clipper circuit netlist for step transient analysis. 66
7.4 Diode clipper circuit netlist for 2-step transient analysis. 68
8.1 Example MOSFET homotopy netlist. 73
8.2 Example natural parameter homotopy netlist. 75

9.1 TecPlot plot of diode clipper circuit transient response from Xyce .prn file... 80

11.1 MOSFET Mesh Example e e 89
11.2 One dimensional diode netlist. a1
11.3 Voltage regulator schematic.. 92
11.4 Transient Result for voltage regulator. 94
11.5 Two-dimensional BJT netlist. i 96
11.6 Two-Dimensional BJT Circuit Schematic 99
11.7 Initial Two-Dimensional BJTResult 0 o... 100
11.8 Final Two-Dimensional BT Result. 100
11.9 |-V Two-Dimensional BJT Result, 101
11.10ne-dimensional example, with detailed doping. 103
11.11Doping Profile e 104
11.12Two-dimensional example, with detailed doping and detailed electrodes. ... 108
11.1ylindrical Mesh Example. i 112

11

Xyc e™ Users’ Guide

This page is left intentionally blank

12

Tables

1.1 Xyce typographical conventions. i i 20
2.1 List of Xyce command linearguments. 25
3.1 DC Analysis References 33
3.2 Transient Analysis References.. i i 36
4.1 Analog Devices References. i i i 40
4.2 Analog Device Quick Reference. i 42
4.3 Expression operators.co i e 45
4.4 Functions in arithmeticexpressions 46
7.1 Summary of time-dependent sources supported by Xyce. 61
7.2 Default parameters for independent sources. 69
9.1 PRINT command Options. ittt 79
11.1 Description of the flatx, flaty doping parameters 105
11.2 Default Doping profiles for different numbers of electrodes 106
11.3 Electrode Material Options e 109
11.4 Mobility models available for PDE devices. 113

13

xyce" Users' Guide

This page is left intentionally blank

14

1. Introduction

Welcome to Xyce

The Xyce Parallel Electronic Simulator has been written to support, in a rigorous manner,
the simulation needs of the Sandia National Laboratories electrical designers. It is targeted
specifically to run on large-scale parallel computing platforms but also runs well on a variety
of architectures including single processor workstations. It also aims to support a variety
of devices and models specific to Sandia needs.

15

X ‘;_;;,—@m Users’ Guide Introduction

1.1 Xyce Overview

The Xyce Parallel Electronic Simulator project was started in 1999 to support the simula-
tion needs of electrical designers at Sandia National Laboratories. At this point, the current
release of Xyce is version 2.0, and the code has evolved into a mature platform for large
scale circuit simulation.

Xyce is a parallel code in the most general sense of the phrase - a message passing
parallel implementation - which allows it to run efficiently on the widest possible number
of computing platforms. These include serial, shared-memory and distributed-memory
parallel as well as heterogeneous platforms. Furthermore, careful attention has been paid
to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency
is achieved even as the number of processors grows.

Xyce includes several unique features. In addition to allowing the simulation of circuits of
unprecedented size, Xyce includes novel approaches to numerical kernels including time
integration algorithms, nonlinear and linear solvers. The primary driver for this numerical
innovation has been the need to simulate very large scale circuits (100,000 devices) on
the analog level. However, it has yielded benefits, in terms of robustness and efficiency, for
all classes of problems. Ideally, the increased numerical robustness minimizes the amount
of simulation “tuning” required on the part of the designer.

Another feature of Xyce is the ability to add device models, many specific to the needs
of Sandia, to the code. To this end, the device package in the Xyce Parallel Electronic
Simulator is designed to support device model at various levels of abstraction. These
include standard analytical models, behavioral models and look-up tables, and device-
scale PDE models. Combined with this flexible interface is an architectural design that
greatly simplifies the addition of circuit models.

1.2 Xyce Capabilities

Xyce has a number of unique features which are described in this section.

Support for large-scale parallel computing

Xyce is a truly parallel simulation code, designed and written from the ground up to support
large-scale (up to thousands of processors) parallel computing architectures. This gives
Xyce the capability to solve circuit problems of unprecedented size in time frames that
make these simulations practical.

Xyce is a parallel code that uses a message passing parallel implementation, which allows
it to run efficiently on the widest possible number of computing platforms. These include se-
rial, shared-memory and distributed-memory parallel as well as heterogeneous platforms.

16

1.2 Xyce Capabilities Xyce " Users’ Guide

Furthermore, careful attention has been paid to the specific nature of circuit-simulation
problems to ensure that optimal parallel efficiency is achieved even as the number of pro-
cessors grows (parallel scaling).

Improved performance for all numerical kernels

In writing Xyce from scratch, new algorithms and heuristics have been used which improve
the overall performance of the numerical kernels for a given level of accuracy. As an
example, several new nonlinear solution options are available which, when coupled with
iterative linear solvers, can reduce execution time for many problems.

Flexible Device Package Design

Another feature of Xyce is the ability to add a variety of device model types, specific to
the needs of Sandia, to the code. To this end, the device package ' in Xyce has been
designed with a flexible device-model interface that greatly simplifies the development of
circuit models. The device package interface has support for the standard “analog” or
SPICE-type models, behavioral models and even PDE-based device models.

Modeling Fidelity

The requirements of Sandia National Laboratories’ electrical designers include the ability
to model circuit phenomena at varying levels of fidelity - even within a given simulation.
While Xyce is primarily an analog circuit simulator, it has been designed to support a
range of fidelities. To achieve this, the code has been designed with an infrastructure that
supports coupled simulation at several distinct abstraction levels: device, analog, digital
and mixed-signal. The code currently supports analog simulation and device-scale simula-
tion. Development is proceeding to support digital/mixed-signal modeling, and this will be
available in a later release.

Analysis capability

Xyce currently supports DC and transient as well as a variety of optimization and design
options available from the DAKOTA optimization framework [1] . This document does not
cover the coupling of Xyce with DAKOTA. Sandia customers may contact the Xyce team
for assistance with this “developing” capability. Full support is expected in the next major
release.

'The term “package” is a Unified Modeling Language (UML) term which refers to a group of classes,
something akin to a module and is largely used in object-oriented programming.

17

Xyce™ Users’ Guide Introduction

Object-oriented code design and implementation

Xyce was designed and written from the ground up utilizing modern coding practices to
ensure the optimal combination of code performance, code maintenance and code exten-
sibility. This design allows for rapid implementation of new capability as well as long term
maintenance of the code.

1.3 - Description of Document

For the user, this document contains a description of the Xyce Parallel Electronic Simula-
tor, in which the following topics are specifically addressed. Chapter 2 gives a quick-start
guide to installing and running Xyce. Chapter 3 gives some examples of using the code.
Chapters 4 through 7 describe the netlist language and its usage in Xyce. Chapter 8
covers the use of continuation algorithms, which is a unique capability for a circuit code
such as Xyce. This is followed by Chapter 9 that covers analyzing the results output by
the code. Chapter 10 provides guidance for running Xyce in parallel. The final chapter,
Chapter 11 described the usage of mesh-based devices, which are based on solving a set
of discretized partial differential equations (PDE) on a mesh, similar to commercial device
simulators such as Medici.

18

1.4 Reference Guide Xyce" Users' Guide

1.4 Reference Guide

A companion document, the Xyce Reference Guide [2], contains more detailed information
about a number of topics. Included in this document is a netlist reference for the input-
file commands and elements supported within Xyce; a command line reference, which
describes the available command line arguements for Xyce; and quick-references for users
of other circuit codes, such as Orcad’s PSpice [3] and Sandia’s ChileSPICE.

1.5 How to Use this Guide

This guide is designed so you can quickly find the information you need to use Xyce. It
assumes that you are familiar with basic Unix-type commands, how Unix manages applica-
tions and files to perform routine tasks (e.g., starting applications, opening files and saving
your work).

Typographical conventions

Before continuing in this Users’ Guide, it is important to understand the terms and typo-
graphical conventions used. Procedures for performing an operation are generally num-
bered with the following typographical conventions.

19

xyece™ Users’ Guide

Introduction

Notation

Verbatim text

Example

xmpirun -np 4

Description

Commands entered from
the keyboard on the
command line or text
entered in a netlist.

Bold Roman Font

Set nominal temperature
using the TNOM option.

SPICE-type parameters
used in models, etc.

DEBUGLEVEL

Feature that is designed
primarily for use by Xyce
developers.

[text in brackets]

Xyce [options] <netlist>

Optional parameters.

<text in angle brackets>

Xyce [options] <netlist>

Parameters to be inserted
by the user.

<object with asterisk>=*

K1 <ind. 1> [<ind. n>*]

Parameter that may be
multiply specified.

<TEXT1|TEXT2>

.PRINT TRAN
+ DELIMITER=<TAB|COMMA>

Parameters that may only
take specified values.

Table 1.1. Xyce typographical conventions.

20

2. Installing and Running
Xyce

Chapter Overview

This chapter describes the basic mechanics of installing and running Xyce. It includes the
following sections:

B Section 2.1, Xyce Installation

B Section 2.2, Running Xyce

21

Xyce™ Users’ Guide Installing and Running Xyce

2.1 Xyce Installation

To obtain a copy of Xyce, contact the Xyce development team athttp://www.cs.sandia.gov/xyce.
Once you have the distribution file, install Xyce from the command line by following the in-
structions below. Examples are given for reference.

Instructions Examples

Install_Xyce_linux.tar.gz (Linux

Installation packages are named Serial)
according the target operating system and | Install_Xyce_linux_MPI.tar.gz (Linux
architecture (parallel or serial). Parallel)

Install_Xyce_windows.zip (Windows)

Unpack the appropriate package for your
platform. A similarly named installation
directory is then created. Windows users
can unpack with programs such as
WinZip, PKZip, Winrar, etc.

Enter this directory and run the
installation shell script. Windows users
should run the install.bat batch file.

$ gzip -d Install_Xyce_linux.tar.gz
$ tar xf Install_Xyce_linux.tar

$ cd Install_Xyce_linux
$ sh install_linux.sh

Where should Xyce be installed?
/usr/local/Xyce-2.0

Provide the requested information.

Completing the steps above will unpack Xyce to the specified directory. IMPORTANT
NOTE: if installing both serial and parallel versions of Xyce, you must specify differ-
ent directories for each installation location. Failure to use different directories will
cause the second installation to overwrite parts of the first and will likely yield an
install that does not function. Under the specified installation directories, the following
subdirectories will be created:

B bin contains the executable used to start Xyce. The executable name will vary de-
pending on the target operating system and architecture.

— runxyce is the shell script for starting serial Xyce on Unix platforms.
- runxyce.bat is the batch file for starting serial Xyce on Windows.
- xmpirun is the wrapper script for mpirun used for running Xyce in parallel mode.

B doc contains the Xyce Users’ Guide, comprehensive Reference Guide, and Release
Notes. Read these for more information about this release and for detailed instruc-
tions on how to use Xyce.

B lib contains configuration files, libraries, and metadata for Xyce.

22

2.2 Running Xyce Xyce™ Users’ Guide

B test contains sample netlists and verification tools.

2.2 Running Xyce

ChileCAD [4], a GUI for Xyce is under development and will be part of the overall simulation
framework by autumn of 2004. This manual only describes how Xyce is run from the
command line. This section outlines how to run Xyce for both serial and MPI parallel
simulations. :

Command Line Simulation

Running Xyce from the command line is straightforward. The scripts xmpirun and runxyce
created during installation (see Section 2.1) set up the runtime environment and execute
Xyce. (Microsoft Windows users should launch the “Command Prompt” window and use
the runxyce.bat batch file.) Depending on whether you are using a version compiled with
MPI support or a serial version, there are two ways to begin running Xyce:

B Running serial Xyce:
> runxyce [options] <netlist filename>
B Running Xyce in parallel:

> xmpirun -np <# procs> [options] <netlist filename>

where [options] are the command line arguments for Xyce. For example, to log output to
a file named sample.log type:

$ runxyce -1 sample.log <netlist filename>

The next example runs parallel Xyce on four processors and places the resulisinto a
comma separated value file named results.csv:

$ xmpirun -np 4 -delim COMMA -o results.csv <netlist filename>

These examples assume that <netlist filename> is either in the current working direc-
tory or includes the path (full or relative) to the netlist file. Enclose the filename in quotation
marks (" ”) if the path contains spaces. Help is accessible with the -h option.

For MPI runs, [options] may also include command line arguments to mpirun. Consult the
documentation installed with MPI on your platform for more details on MPI options. The

23

(yce™ Users’ Guide Installing and Running Xyce

-np <# procs> denotes the number of processors to use for the simulation. NOTE: It is
critical that the number of processors used is less than the number of devices and voltage
nodes in the netlist. The appropriate script used to run Xyce for each supported platform
is listed in the Table 2.1.

Com!auter Serial Executable MPI Executable
Architecture
Apple PPC OSX Not Available
HP/Compaq Trug4
SGl 64 bit IRIX 6.5 e .
Xmpirun
Intel X86 Linux
Intel X86 FreeBSD
Microsoft
Intel X86 Windows runxyce.bat Not Available
2000

Figure 2.1. Platform scripts for running Xyce.

While Xyce is running, the progress of the simulation is output to the command line window.
See the Xyce Reference Guide for complete list and explanation of command line options.

Command Line Arguments

Xyce supports a handful of command line arguments which must be given before the
netlist filename. While most of these are intended for general use, others simply give
access to new features that, while supported, are not enabled by default. These options
are designated as frial options. The general usage is as follows:

runxyce [arguments] <netlist filename>

Table 2.1 gives a complete lists of command line options. In this table, the shaded rows
indicate the trial options. DEPRECATED options are no longer supported and will be
removed from future releases.

Argument Description

Help option. Prints usage and exits.

-V Prints the version banner and exits. -v -

24

2.2 Running Xyce (yce™ Users’ Guide

Argument Description Usage Default

5 DEPRECATED. Use the old version of the | _ -
netlist parser. e S :

. T (T -delim
-delim Set the output file field. -
<TAB|COMMA | string>

-0 Place the results into specified file. -0 <file> -

-l Place the log output into specified file. -1 <file> -

-Nox Use the NOX nonlinear solver. -nox <on|off> on

-dva Use faster direct vector access. -dva <on|off> on

-dma Use faster direct matrix access. -dma <omn|off> on

Table 2.1: List of Xyce command line arguments.

Running Xyce in Parallel

A parallel version of Xyce is available for several different platforms as shown in Table 2.1.
Running Xyce in parallel requires that the correct version of mpirun is used. Use the script
xmpirun to call the correct version with the appropriate parameters. For example, to run
Xyce on two processors with an example netlist, type:

xmpirun -np 2 anExampleNetlist.cir

In general the number of processors is specified by using the -np argument to the appro-
priate mpirun command. Some specific considerations are given below.

Running Xyce under MPICH

The MPICH implementation of MPI requires that there exist a file of machines on which to

run. On RedHat Linux this is installed in /usr/lib/mpich/share. On FreeBSD this is installed

in /usr/local/mpich/share. This file must contain one line for each machine on which a pro-

cess may be started. If you do not have write access to the directory in which the default
machines file is stored you may specify an alternate file with the -machinefile <machinefilename>
option to mpirun.

MPICH executes parallel jobs by using the remote shell (rsh) or secure shell (ssh) to the
target machine. You might, therefore, be prompted for a password when starting up a
multiple processor job.

25

Xyce™ Users’ Guide Installing and Running Xyce

Running Xyce under LAM MPI

Unlike MPICH, LAM MPI requires a daemon process to be running on each machine that
will service parallel jobs. This daemon is started by using the 1amboot program. By default,
lamboot will run a daemon on the local machine, but it may be given a file name containing
a list of machines for multiple-machine jobs. Consult the bhost man page for the format of
the file.

lamboot runs a program called lamd which will remain running until it is halted. As long
as lamd is running you may continue to run parallel jobs. Halt 1amd using the lamhalt
command.

Guidance

This chapter has given the basic mechanics of running Xyce in parallel. For general guid-
ance regarding solver options, partioning options, and other parallel issues, refer to chap-
ter 10. Distributed memory circuit simulation still contains a number of research issues, so
obtaining an optimal simulation in parallel is a bit of an art.

26

3. Simulation Examples
with Xyce

Chapter Overview

This chapter provides several simple examples of Xyce usage. An example circuit is pro-
vided for each available analysis type.

B Section 3.1, Example Circuit Construction
B Section 3.2, DC Sweep Analysis

B Section 3.3, Transient Analysis

27

Xyce™ Users’ Guide Simulation Examples with Xyce

3.1 Example Circuit Construction

This section describes how to use Xyce to create the simple diode clipper circuit shown in
Figure 3.1.

While a schematic edit and capture capability is under development, Xyce currently only
supports circuit creation via netlist editing. Xyce supports most of the standard netlist
entries common to Berkeley SPICE 3F5 and Orcad PSpice. For users who are familiar
with PSpice netlists, the differences between PSpice and Xyce netlists are listed in the
Xyce Reference Guide [2].

Example: diode clipper circuit
1. Open a new netlist file using a standard text editor (e.g., VI, Emacs, notepad, etc.).
2. Type the title on the first line of the netlist:

Diode Clipper Circuit

3. Create a 5V DC voltage source between nodes 1 and 0 by typing the following on a
new line:

VCC 1 0 5V

4. Create another DC voltage source between nodes 3 and O by entering the following
on a new line:

VIN 3 0 OV

5. Place the diodes in the circuit between nodes 2 and 1, and nodes 0 and 2, respec-
tively, by entering the following lines:

D1 2 1 DIN3940
D2 0 2 DiIN3940

6. Enter resistors R1, R2, R3 and R4, respectively:

R1 2 3 1K

R2 1 2 3.3K
R3 2 0 3.3K
R4 4 0 5.6K

7. Place the capacitor in the circuit:

28

3.1 Example Circuit Construction Xyce™ Users’ Guide

Cl1 24 0.47u
8. Add the diode model to the netlist to complete it as Figure 3.2.

9. Complete the netlist by entering .END on the last line in the file. Save the file as
clipper.cir. The complete netlist is shown in Figure 3.2 and the schematic in
Figure 3.1.

The netlist in Figure 3.2 illustrates some of the syntax of a netlist input file. Netlists begin
with a title (e.g., “Diode Clipper Circuit”), support comments (lines beginning with the
“x” character), devices, model definitions and the “.END" statement.

This netlist file is not yet complete and will not run properly using Xyce (see Section 2.2
for instructions on running Xyce) as it lacks an analysis statement. As you proceed in this
chapter, you will see how to add the appropriate analysis statement and run the clipper
circuit.

R2 ZS

DiIN2s0
e,

;ge

0.47u

8T A

D1IN2840

Figure 3.1. Schematic of diode clipper circuit with DC and tran-
sient voltage sources.

29

yee™ Users’ Guide Simulation Examples with Xyce

Diode Clipper Circuit
*

* Voltage Sources

VvCC 1 0 5V

VIN 3 0 OV

* Diodes

D1 2 1 DIN3940

D2 0 2 D1N3940

* Resistors

R1 2 3 1K

R2 1 2 3.3K

R3 2 0 3.3K

R4 4 0 5.6K

* Capacitor

Cl1 2 4 0.47u

*

* GENERIC FUNCTIONAL EQUIVALENT = 1N3940
* TYPE: DIODE

* SUBTYPE: RECTIFIER
.MODEL D1N3940 D(

+ IS = 4E-10
+ RS = .105
+ N = 1.48
17 TT = 8E-7
+ CJO = 1.95E-11
+ V] = .4

+ M= .38

+ EG = 1.36
+ XTI = -8

+ KF = 0

+ AF =1

+ FC = .9

+ BV = 600

+ IBV = 1E-4)
*

Figure 3.2. Diode clipper circuit netlist.

30

3.2 DC Sweep Analysis Xyce™ Users’ Guide

3.2 DC Sweep Analysis

This section illustrates how to run a DC sweep analysis using Xyce. In this example we
examine the DC response of the clipper circuit by running a DC sweep of the input voltage
source (Vin) and reviewing at the results generated by Xyce. This example demonstrates
using DC sweep analysis parameters that vary Vin from -10 to 15 volts in 1 volt steps.

Example: DC sweep analysis

To set up and run a DC sweep analysis using the diode clipper circuit:

1. Open the diode clipper circuit netlist file (clipper.cir) using a standard text editor
(e.g., VI, Emacs, notepad, etc.).

2. Enter the analysis control statement in the netlist:
.DC VIN -10 15 1

3. Enter the output control statement:
.PRINT DC V(3) V(2) V(4)

4. Save the netlist file and run Xyce on the circuit. For example, to run serial Xyce:
> runxyce clipper.cir

5. Open the results file (clipper.cir.prn) and examine (or plot) the output voltages that
were selected for nodes 3 (Vin), 2 and 4 (Out). Figure 3.4 shows the output plotted
as a function of the swept variable Vin.

The modified netlist is shown below in Figure 3.3.

31

(yce™ Users’ Guide Simulation Examples with Xyce

Diode Clipper Circuit with DC sweep analysis statement
*

* Voltage Sources

VvCC 1 0 5V

VIN 3 0 OV

* Analysis Command

.DC VIN -10 15 1

* Jutput _

.PRINT DC V(3) V(2) V(4)
* Diodes

D1 2 1 DIN3940

D2 O 2 DIN3940

* Resistors

R1 2 3 1K

R2 1 2 3.3K

R3 2 0 3.3K

R4 4 0 5.6K

* Capacitor

Cl1 24 0.47u

*

* GENERIC FUNCTIONAL EQUIVALENT = 1N3940
* TYPE: DIODE

* SUBTYPE: RECTIFIER
.MODEL D1N3940 D(

+ IS = 4E-10
+ RS = .105
+ N =1.48
+ TT = 8E-7
+ CJO = 1.95E-11
+ V] = .4

+ M= .38

+ EG = 1.36
+ XTI = -8

+ KF = 0

+ AF =1

+ FC = .9

- BV = 600

+ IBV = 1E-4)
*

Figure 3.3. Diode clipper circuit netlist for DC sweep analysis.

32

3.3 Transient Analysis Xyce™ Users’ Guide

—{3) (Vin) |
—_—Vi2
_—VH) (Vout)

Yoltage [volts]
w1

10 -5 i 5 10 15
Vin [volts]

Figure 3.4. DC sweep voltages at Vin, node 2 and Vout.

Table 3.1 gives references for further explanation of the supported DC sweep analysis.

To find out more about...

DC analysis for analog designs Chapter 7.2, DC Analysis

Table 3.1. DC Analysis References

3.3 Transient Analysis

This section shows how to run a transient analysis using Xyce. In this example, we look
at the transient response of the clipper circuit to a sinusoidal input voltage source (Vin)
and review the results generated by Xyce. This example utilizes a sinusoidal input voltage
source running at a frequency of 1 kHz and amplitude of 10 volts. To set up this example,
we must modify the netlist to include this source.

Example: transient analysis

To set up and run a transient analysis using the diode clipper circuit:

1. Open the diode clipper circuit netlist file file (clipper.cir) using a standard text editor
(e.g., VI, Emacs, notepad, etc.).

33

Xyce™ Users’ Guide Simulation Examples with Xyce

2. If you added DC analysis statements in the previous example, remove them (see
Figure 3.4).

3. Enter the analysis control in the netlist:
.TRAN 2ns 2ms

4. Modify the input voltage source (Vin) to generate the sinusoidal input signal:
VIN 3 0 SIN(10V 1kHz)

5. Save the netlist file and run Xyce on the circuit. For example, to run serial Xyce:
> runxyce clipper.cir

6. Open the results file and examine (or plot) the output voltages for nodes 3 (Vin), 2
and 4 (Out). The plot in Figure 3.6 shows the output plotted as a function of time.

The modified netlist is shown in Figure 3.5.

Y (3) (ViN)
—V(2)
= Vi4) (Vout) |

Voltage [V]
L =]

-10

0.0E+00 5.0E-04 1.0E-03 1.5E-03 2.0E-03
Time [s]

Figure 3.6. Sinusoidal input signal and clipped outputs.

Table 3.2 below gives references for further explanation of the supported transient analysis.

34

3.3 Transient Analysis Xyce™ Users’ Guide

Diode Clipper Circuit with transient analysis statement
*

* Voltage Sources

VCC 1 0 BV

VIN 3 0 SIN(OV 10V 1kHz)
* Analysis Command

.TRAN 2ns 2ms

* Qutput

.PRINT TRAN V(3) V(2) V(4
* Diodes

D1 2 1 DIN3840

D2 0 2 DIN3940

* Resistors

R1 2 3 1K

R2 1 2 3.3K

R3 2 0 3.3K

R4 4 0 5.6K

* Capacitor

Cl1 2 4 0.47u

*

* GENERIC FUNCTIONAL EQUIVALENT = 1N3940
* TYPE: DIODE

* SUBTYPE: RECTIFIER
.MODEL D1N3940 D(

+ IS = 4E-10
+ RS = .105
+ N = 1.48
+ TT = 8E-7
+ CJO = 1.95E-11
+ V]l = .4

+ M= .38

+ EG = 1.36
- XTI = -8

+ KF =0

+ AF =1

+ FC = .9

+ BV = 600

+ IBV = 1E-4)
*

Figure 3.5. Diode clipper circuit netlist for transient analysis.

35

Xyce™ Users’ Guide Simulation Examples with Xyce

To find out more about...

Transient analysis for analog designs Chapter 7.3, Transient Analysis

Table 3.2. Transient Analysis References.

36

4. Netlist Basics

Chapter Overview

This chapter contains introductory material on netlist syntax and usage. Sections include:

B Section 4.1 General Overview
B Section 4.2 Devices Available for Simulation

B Section 4.3 Parameters and Expressions

37

Xyce™ Users’ Guide Netlist Basics

4.1 General Overview

Introduction

Using a netlist to describe a circuit for Xyce is the primary method used for running a circuit
simulation. Netlist support within Xyce largely conforms to that used by Berkeley SPICE
3F5 with several new options for controlling functionality unique to Xyce. In a netlist, the
circuit is described by a set of “element lines” which define the circuit elements and their
values, the circuit topology (the connection of the circuit elements), and a variety of control
options for the simulation. The first line in the netlist file must be a title and the last line
must be “.END". Between these two constraints, the order of the statements is irrelevant.

Netlist Elements

An “element line”, for which the format is determined by the specific element type, defines
each circuit element instance. The general format is given by:

<type><name> <node information> <element information...>

The <type> must be a letter (A through Z) and the <name> follows immediately. For ex-
ample, RARESITOR specifies a type=resistor with a name ARESITOR. Fields on a line are
separated by spaces, commas, an equal sign or a left or right parenthesis.

A number field may be an integer or a floating-point value. Either one may be followed by
one of the following scaling factors:

Symbol Equivalent Value

T 1012
G 10°
Meg 106
K 103
mil 25.476
m 1073
u (1) 10-6
n 1079
p 10-12
i L=

38

4.1 General Overview Xyce™ Users' Guide

Node information is given in terms of node names, which are arbitrary character strings.
The only requirement is that the ground node is named ’0’. There are some restrictions on
the circuit topology:

B There can be no loop of voltage sources and/or inductors.
B There can be no cut-set of current sources and/or capacitors.

B Every node must have a DC path to ground.

B Every node must have at least two connections (with the exception of unterminated
transmission lines and MOSFET substrate nodes).

The following line provides an example of an element line that defines a resistor between
nodes 1 and 3 with a resistance value of 10kS2.

Example: RARESISTOR 1 3 10K

Title, Comments and End

The first line of the netlist is the title line of the netlist and is included in the output file. It is
a common mistake to forget the meaning of this first line and begin the circuit elements on
the first line; doing so will probably result in a parsing error.

Example: Test RLC Circuit
The “.End” line must be the last line in the netlist.
Example: .END

Comments are supported in netlists and are indicated by placing an asterisk at the be-
ginning of the comment line. They may occur anywhere in the netlist but they must be
at the beginning of a line. Xyce also supports “in-line” comments. An in-line comment is
designated by a semicolon and may occur on any line. Everything after the semicolon is
taken as a comment and ignored. Any line that begins with leading white space is also
considered to be a comment.

Example: * This is a netlist comment.
Example: WRONG:.DC * This type of inline comment is not supported.
Example: .DC ; This type of inline comment is supported.

39

Cyce™ Users’ Guide Netlist Basics

Netlist Commands
Command elements are used to describe the analysis being defined by the netlist. Exam-

ples include analysis types, initial conditions, device models and output control. The Xyce
Reference Guide [2] contains a reference for these commands.

Example: .PRINT TRAN V(Vout)

Analog Devices

The analog devices supported include most of the standard circuit components normally
found in circuit simulators such as SPICE 3F5, PSpice, etc., plus several Sandia specific
devices.

Example: D_CR303 N_0065 0 D159700

Table 4.1 below gives references for further explanation of the supported analog devices.

To find out more about...

Analog devices Xyce Reference Guide [2]

Table 4.1. Analog Devices References.

4.2 Devices Available for Simulation

This section describes the different types of analog devices supported in Xyce. These
include standard analog devices, sources (dependent and independent) and subcircuits.
Each device description has the following information:

B A description and an example of the netlist syntax

® The corresponding model types and descriptions, where applicable

B The corresponding lists of model parameters and descriptions, where applicable

B The associated circuit diagram and model equations (as necessary)

These analog devices include all of the standard circuit components needed for most ana-
log circuits. User defined models may also be implemented using the .MODEL (model
definition) statement and macromodels as subcircuits using the . SUBCKT (subcircuit) state-
ment.

40

4.2 Devices Available for Simulation Xyce" Users’ Guide

Analog Devices

Xyce supports many analog devices, including sources, subcircuits and behavioral mod-
els. The devices are classified into device types, each of which can have one or more
model types. For example, the BJT device type has two model types: NPN and PNP.

The device element statements in the netlist always start with the name of the individual
device instance. The first letter of the name determines the device type. The format of
the following information depends on the device type and its parameters. The Device Type
summary table (Table 4.2) lists all of the analog devices supported by Xyce. Each standard
device is then described in more detail in the following sections. Except where noted, the
devices are based upon those found in [5].

Table 4.2 is a summary of the analog device types and the form of their netlist formats. For
a more complete description of the syntax for supported devices, see the Xyce Reference
Guide. [2].

. Designator : :
Device Type 9 Typical Netlist Format
Letter
. C<name> <+ node> <- node> [model name] <value>
Capacitor ©
+ [IC=<initial value>]
L<name> <+ node> <- node> [model name] <value>
Inductor IL
+ [IC=<initial value>]
] R<name> <+ node> <- node> [model name] <value>
Resistor R
+ [L=<length>] [W=<width>]
. D<name> <anode node> <cathode node>
Diode D
+ <model name> [area value]
< > <i > [<ind. n>*
Midual Indictor K K<name> <inductor 1> [<ind. n>%*]
+ <linear coupling or model>
Independent Voltage v V<name> <+ node> <- node> [[DC] <value>]
Source + [transient specification]
Independent Current I I<name> <+ node> <- node> [[DC] <value>]
Source + [transient specification]
Voltage Controlled E E<name> <+ node> <- node> <+ controlling node>
Voltage Source + <- controlling node> <gain>
Voltage Controlled e G<name> <+ node> <- mnode> <+ controlling node>
Current Source + <- controlling node> <transconductance>
Nonlinear Dependent B B<name> <+ node> <- node>
Source (B Source) + <I or V>={<expression>}
. . <name> <collector node> <base node> <emitter
Bipolar Junction Q
f > < >
Transistor (BJT) 3:;_139] [substrate node] <model name> [area

4

=™ Users’ Guide

Netlist Basics

Device Type

Designator

Typical Netlist Format

Letter

M<name> <drain node> <gate node> <source node>

MOSFET M + <bulk/substrate node> <model name>

+ [common model parameter]#*

T<name> <A port + node> <A port - node>
Transmission Line B + <B port + node> <B port - node>

+ <ideal specification>

S« > <+ itch de> <- i >
Voltage Controlled . name switch node switch node

: + <+ controlling node> <- controlling node>

Switch

+ <model name>
Subcircuit : X<name> [node]* <subcircuit name>

+ [PARAMS: [<name>=<value>] *]
PDE Devices 7 Z<name> <nodel> <node2> [node3]

+ [node4] <model name>

Table 4.2: Analog Device Quick Reference.

4.3 Parameters and Expressions

In addition to explicit values, the user may use parameters and expressions to symbolize
numeric values in the circuit design.

Parameters

A parameter is like a programming variable that represents a numeric value by name. Once
you have defined a parameter (declared its name and given it a value) at a particular level
in the circuit hierarchy, you can use it to represent circuit values at that level or any level
directly beneath it in the circuit hierarchy. One way that you can use parameters is to apply
the same value to multiple part instances.

How to Declare and Use Parameters

In order to use a global parameter in a circuit, one must:

B define the parameter using a . PARAM statement within a netlist

B replace an explicit value with the parameter in the circuit

Note that Xyce reserves several keywords that may not be used as parameter names.

These are:

42

4.3 Parameters and Expressions Xyce™ Users’ Guide

B Time
H VvVt
B Temp

B GMIN

However, in this release of Xyce, only Time is predefined.

Example: Declaring a parameter

1. Locate the level in the circuit hierarchy at which the .PARAM statement declaring a
parameter will be placed (note: a global parameter that can be used anywhere in the
netlist can be declared by placing the .PARAM statement at the top-most level of the
circuit).

2. Name the parameter and give it a value. The value can be numeric or given by an
expression:

.SUBCKT subcktl nl n2 n3
.PARAM res = 100
*

* other netlist statements here
*

.ENDS

3. Note: the parameter “res” can be used anywhere within the subcircuit subckt1 includ-
ing subcircuits defined within it, but cannot be used outside of subckti.

Example: Using a parameter in the circuit

1. Find the numeric value that is to be replaced by a parameter: a device instance
parameter value, model parameter value, etc. The value being replaced must be
accessible with the current hierarchy level.

2. Replace the numeric value with the parameter name contained within braces ({}) as
in:

R1 1 2 {res}

Expressions
In Xyce, an expression is a mathematical relationship that may be used any place one

would use a number (numeric or boolean). Except in the case of expressions used in
analog behavioral modeling sources (see Chapter 6) Xyce evaluates the expression to a

43

Xyece™ Users’ Guide Netlist Basics

value when it reads in the circuit netlist, not each time its value is needed. It is therefore
necessary that all terms in an expression be known at the beginning of the run.

To use an expression in a circuit netlist:

1. Locate the value to be replaced (component, model parameter, etc.).
2. Substitute the value with an expression utilizing the {} syntax:
{expression}
where expression can contain any of the following:

B available operators from those in Table 4.3

B included functions from those in Table 4.4

B user-defined functions

B user-defined parameters that are within scope
B literal operands

The braces ({}) instruct Xyce to evaluate the expression and use the resulting value.

Additional time-dependent constructs are available in expressions used in analog
behavioral modeling sources (see Chapter 6).

Example: Using an expression

Scaling the DC voltage of a 12V independent voltage source, designated VF, by some
factor can be accomlished by the following netlist statements (in this example the factor is
1.5):

.PARAM FACTORV=1.5
VF 3 4 {FACTORV#*12}

Xyce will evaluate the expression to:

12 = 1.5 or 18 volts

'Logical and relational operators are used only with the IF () function.

44

4.3 Parameters and Expressions Xyce" Users’ Guide

Sl Operator... Meaning
operator...
arithmetic + addition or string concatenation

= subtraction

* multiplication

/ division

* % exponentiation
logical ~ unary NOT

boolean OR

- boolean XOR

& boolean AND
relational == equality

I= non-equality

> greater-than

>= greater-than or equal

< less-than

<= less-than or equal

Table 4.3. Expression operators

45

Xyce™ Users’ Guide

Netlist Basics

Function... Meaning... Explanation...
ABS(x) |z|
SQRT(x) VT
MIN(x,y) min(z,y) minimum of x and y
MAX(x,y) max(z,y) maximum of x and y
EXP(x) e®
LN(x) In(z) log base e
LOG(x) log(x) log base 10
SIN(x) sin(z) x in radians
ASIN(x) arcsin(x) result in radians
SINH(x) sinh(x) x in radians
ASINH(x) sinh ™ (x) result in radians
COS(x) cos(x) z in radians
ACOS(x) arccos(x) result in radians
COSH(x) cosh(z) x in radians
ACOSH(x) cosh™!(x) result in radians
TAN(X) tan(z) x in radians
ATAN(x) arctan(z) result in radians
TANH(x) tanh(x) z in radians
ATANH(x) tanh™!(z) result in radians
ATAN2(x,y) arctan(y/x) result in radians
SGN(x) +1ifz >0
Qifz=0
1ifz <0
STP(x) 1ifz>0 suppress a value until a given time
0 otherwise
URAMP(x) zifz >0
0 otherwise
R iisie, (et oo ispo e lons
y otherwise
DDT(x) time derivative of
SDT(x) time integral of =

46

Table 4.4. Functions in arithmetic expressions

5. Working with .MODEL
Statements

Chapter Overview

This chapter contains model ideas and a summary of the ways to create and modify mod-
els. Sections include:

B Section 5.1, Definition of a Model

B Section 5.2, Mode! Organization

47

Xyce™ Users’ Guide Working with .MODEL Statements

5.1 Definition of a Model

A model describes the electrical performance of a part. A part is a component in the circuit
with specific simulation properties that define the part. In a netlist, a part is identified by its
implementation properties designated by the associated model name.

Depending on the given device type, a model is defined as either:

B a model parameter set

B a subcircuit netlist

Both methods of defining a model use a netlist format, with precise syntax rules as de-
scribed below.

Defining models using model parameters

Xyce currently has no built-in models. However, models can be defined for a device by
changing some or all of the model parameters from their defaults via the .MODEL syntax.
For example:

M5 3 2 1 0 MLDAD1
.MODEL. MLOAD1 NMOS (LEVEL=3 VT0=0.5 CJ=0.025pF)

This example defines a MOSFET device, then specifies parameters defining that device in
the .MODEL line.

Most device types in Xyce support some form of model parameters. Consult the Xyce
Reference Guide [2] for the model parameters supported by each device type.

Defining models using subcircuit netlists

In Xyce, models may also be defined using the subcircuit syntax: .SUBCKT/.ENDS. This
syntax includes:

W netlists to define the configuration and function of the part.

B variable input parameters to modify the model.

See Figure 5.1 for an example.

48

5.1 Definition of a Model Xyce™ Users’ Guide

*¥x*xxother devices

X565 6 7 8 13dscl PARAMS: ScaleFac=2.0
X6 9 10 11 12 13dscl

*x¥x*kmore netlist commands

*x*x SUBCIRCUIT: 13dscl

% Parasitic Model: microstrip
*** Only one segment

.SUBCKT 13dscl 1 3 2 4 PARAMS: ScaleFac=1.0
C01 1 0 4.540e-12

RGO1 1 0 7.816e+03

L1 15 3.718e-08

R1 5 2 4.300e-01

Cl 2 0 4.540e-12

RG1 2 0 7.816e+03

C02 3 0 4.540e-12

RG02 3 0 7.816e+03

L2 3 6 3.668e-08

R2 6 4 4.184e-01

C2 4 0 4.540e-12

RG2 4 0 7.816e+03

CM012 1 3 5.288e-13

KM12 L1 L2 2.229e-01

CM12 2 4 {5.288e-13*ScaleFac}
.ENDS

Figure 5.1. Example subcircuit model.

In this example, a subcircuit model called 13dsc1 implementing one part of a microstrip
transmission line is defined between the .SUBCKT/.ENDS lines, and two diferent instances
of the subcircuit are used in the X lines. This somewhat artificial example shows how input
parameters are used; the last capacitor in the subcircuit is scaled by the input parameter
ScaleFac. If input parameters are not specified on the X line (as in the case of device X6),
then the default values specified on the .SUBCKT line are used. Non-default values are
specified on the X line using the PARAMS: keyword. For precise syntax consult the Xyce
Reference Guide [2].

Subcircuit Hierarchy

Xyce supports the definition of subcircuits within other subcircuits. Each subcircuit defini-
tion introduces a new level in the circuit hierarchy with the top level being the main circuit. If

49

Xyce™ Users’ Guide Working with .MODEL Statements

a second level is defined, it is composed of the subcircuits in the main circuit and each sub-
sequent level is composed of the subcircuits contained in the previous level. A subcircuit
may also contain other definitions such as models via the .MODEL statement, parameters
via the .PARAM statement, and functions via the .FUNC statement.

In this context, the subcircuit defines the “scope” for the definitions it contains. That is,
the definitions contained within a subcircuit can be used within that subcircuit and/or within
any subcircuit it contains. Any definitions occuring in the main circuit have global scope
and can be used anywhere in the circuit. A name, such as a model, parameter, function or
subcircuit name, occurring in a definition at one level of a circuit hierarchy can be redefined
at any lower level contained directly by the subcircuit. In this case, the new definition
applies at the given level and those below.

In the following example, the model named MOD1 can be used in subcircuits SUB1 and SUB2
but not in the subcircuit SUB3. The parameter P1 has a value of 10 in subcircuit SUB1 and a
value of 20 in subgcircuit SUB2.

.SUBCKT SUB1 1 2 3 4

.MODEL MOD1 NMOS(LEVEL=2)

.PARAM P1=10

*

* subcircuit devices omitted for brevity
*

.SUBCKT SUB2 1 3 2 4

.PARAM P1=20

*

* subcircuit devices omitted for brevity
*

.ENDS

.ENDS

.SUBCKT SUB3 1 2 3 4
*

* subcircuit devices omitted for brevity
*

.ENDS

Figure 5.2. Example subcircuit model.

50

5.2 Model Organization Xyce™ Users’ Guide

5.2 Model Organization

While it is always possible to make a self-contained netlist in which all models for all
parts are include along with the circuit definition, it is often more convenient to organize
frequently-used models into separate model libraries. Xyce provides a very simple mecha-
nism that allows this organization. Models are simply collected into model library files, and
then accessed by netlists as needed by insertion of an . INCLUDE directive. This section
describes the process in detail.

Model libraries

Device model and subcircuit definitions may be organized into model libraries. These
libraries are text files (similar to netlist files) that have one or more model definitions. Model
library names usually end with a .1ib extension, but may be named using any convention
the user chooses.

As a rule-of-thumb, model libraries files typically include similar model types. In these files,
the header comments describe the models therein.

Model library configuration

In Xyce, model libraries are implemented using the .INCLUDE statement. Once a file is
included, its contents are available to the netlist just as if the entire contents had been
inserted directly into the netlist.

As an example, one might create the following model library file called bjtmodels.1ib,
containing .MODEL statements for common types of bipolar junction transistors:

*bjtmodels.1lib

* Bipolar transistor models

.MODEL Q2N2222 NPN (Is=14.34f Xti=3 Eg=1.11 Vaf=74.03 Bf=5 Ne=1.307
+ Ise=14.34f Ikf=.2847 Xtb=1.5 Br=6.092 Nc=2 Isc=0 Ikr=0 Rc=1

+ Cjc=7.306p Mjc=.3416 Vjc=.75 Fc=.5 Cje=22.01p Mje=.377 Vje=.75

+ Tr=46.91n Tf=411.1p Itf=.6 Vtf=1.7 Xtf=3 Rb=10)

.MODEL 2N3700 NPN (IS=17.2E-15 BF=100)

.MODEL 2N2907A PNP (IS=1.E-12 BF=100)

The models Q2N2222, 2N3700 and 2N29074A could then be used in a netlist by including the
bjtmodels.1lib file.

51

Xyce™ Users’ Guide Working with .MODEL Statements

.INCLUDE "bjtmodels.lib"
Q1 1 2 3 Q2N2222

Q2 5 6 7 2N3700

Q3 8 9 10 2N2907A
*other netlist entries
.END

Because the contents of an included file are simply inserted into the netlist at the point
where the . INCLUDE statement appears, the scoping rules for . INCLUDE statements is the
same as for other types of definitions as outlined in the preceding section. Note that the
path to the library file is assumed to be relative to the execution directory, but absolute
pathnames are permissible.

52 -

6. Analog Behavioral
Modeling

Chapter Overview

This chapter contains a description of analog behavioral modeling in Xyce. Sections in-
clude:

B Section 6.1,0verview of Analog Behavioral Modeling

B Section 6.2, Specifying ABM Devices

53

Xyce™ Users’ Guide Analog Behavioral Modeling

6.1 Overview of Analog Behavioral
Modeling

The analog behavioral modeling capability of Xyce provides for flexible descriptions of
electronic components in terms of a transfer function or lookup table. In other words,
a mathematical relationship is used to model a circuit segment removing the need for
component by component design.

The primary device used for analog behavioral modeling in Xyce is the B device, or non-
linear dependent source. A B device can serve as a voltage or current source, and by
using expressions dependent on voltages and currents elsewhere in the circuit the user
can produce any desired behavior.

6.2 Specifying ABM Devices

ABM devices (B devices) are specified in a netlist the same way as other devices. Cus-
tomizing the operational behavior of the device is achieved by defining an ABM expression
describing how inputs are transformed into outputs.

For example, the pair of lines below would provide exactly the same behavior as a 10K re-
sistor between nodes 1 and 2. It is written to be a current source with the current specified
using Ohm’s law and the constant resistance.

.PARAM Resi=10K)
Blinearres 1 2 I={(V(2)-V(1))/Resi}

A nonlinear resistor could be specified similarly:

.PARAM R1=0.15

.PARAM R2=6

.PARAM E2 = {2xE1}

.PARAM delr = {R1-RO}

.PARAM k1 = {1/E1x%2}

.PARAM 12 = {RO+sqrt(2)*delr}

.FUNC Rregi(a,b,c,d) {a +(b-a)*c/d}
.Func Rreg2(a,b,c,d,f) {a+sqrt(2-b*(2xc-d)**2)*f}

Bnlr 4 2 V = {I(Vmon) * IF(
+ V(101) < E1, Rregl(RO,R1,V(101),E1),

54

6.2 Specifying ABM Devices Kyce" Users’ Guide

IF(

V(101) < E2, Rreg2(R0,k1,E1,V(101),delr), R2
)

)}

+ + + 4+

In this example, Bnlr provides a voltage between nodes 4 and 2, and the voltage is de-
termined using Ohm’s law with a resistance that is a function of the voltage on node 101
and a number of parameters. These two examples demonstrate how the B source can be
used either as a voltage source (by specifying V={expression}) or as a current source
(with I={expression}).

Note that unlike expressions used in parameters or function declarations, expressions in
the nonlinear dependent source may contain voltages and currents from other parts of the
circuit, or even explicit time-dependent functions. These expressions are evaluated every
time the current or voltage through the source are needed.

Additional constructs for use in ABM expressions

ABM expressions follow the same rules as other expressions in a netlist with the additional
ability to specify signals (node voltages and voltage source currents) and explicitly time-
dependent functions in the expression. In ABM expressions, refer to signals by name.
Xyce recognizes the following constructs in ABM expressions:

B V(<node name>)

B V(<node name>,<node name>)
B I(<voltage source name>)
B The variable TIME

B Lookup tables

In a hierarchical circuit (a circuit with possibly nested levels of subcircuits), voltage source
names that appear in an ABM expression must be the name of a voltage source in the
same subcircuit as the ABM device. Similarly, node names in an ABM expression must be
the node names of one or more devices in the same subcircuit as the ABM device.

Lookup Tables in Analog Behavioral Modeling

Lookup tables provide a means of specifying a piecewise-linear function in an expression.
A table expression is specified with the keyword TABLE followed by an expression that is
evaluated as the independent variable of the piecewise linear function, followed by a list of
pairs of independent variable/dependent variable values. For example

55

Xyce™ Users’ Guide Analog Behavioral Modeling

Example: B1 10 V={TABLE {time} = (0, 0) (1, 2) (2, 4) (3, 6)}

will produce a voltage source whose voltage is a simple linear function of time. At¢ = 0 the
voltage is 0 volts, at time ¢ = 1s the voltage is 2 volts, and at times in between the voltage
is determined by linear interpolation.

The independent variable of the table source does not have to be a simple expression:

Example: B1 1 0 V={TABLE {V(5)-V(3)/4+I(V6)*Res1} = (0, 0) (1, 2) (2, 4) (3, 6)}

Alternate behavioral modeling sources

In addition to the primary nonlinear dependent source, the B source, Xyce also supports
the PSpice extensions to the standard Spice voltage- and current-controlled sources, the
E, F, G and H sources. These sources are provided for PSpice compatibility, and are con-
verted internally into B sources. See the Netlist Reference chapter of the Xyce Reference
Guide [2] for the syntax of these compatibility devices.

56

7. Analysis Types

Chapter Overview

This chapter contains a description of the different analysis types available in Xyce. It
includes the following sections:

W Section 7.2, DC Analysis
B Section 7.3, Transient Analysis

B Section 7.4, STEP Parametric Analysis

57

Xyce™ Users’ Guide Analysis Types

7.1 Introduction

Several simulation analysis options are supported within Xyce. For basic analysis, Xyce
currently supports DC and transient analysis; AC analysis is intended to be supported in a
future release. STEP parametric analysis, which applies an outter parameter loop to either
DC or transient analysis is available. Also, a variety of optimization and design options are
available via coupling with the DAKOTA optimization framework [1]. While DAKOTA is not
distributed as part of Xyce, Sandia customers may contact the Xyce team for assistance
with this capability.

7.2 DC Analysis

The DC sweep analysis capability in Xyce carries out a sweep, in DC mode, on a circuit.
DC sweep is supported for a source (current or voltage), through a range of specified
values. As the sweep proceeds, the bias point is computed for each value in the specified
range of the sweep.

If the variable to be swept is a voltage or current source, a DC source must be used. The
DC value is set in the netlist (see the Xyce Reference Guide [2]). In simulating the DC
response of an analog circuit, Xyce eliminates any time dependence from the circuit. This
is accomplished by treating all capacitor elements as open circuits, all inductor elements
as short circuits and using only the DC values of both voltage and current sources.

Setting Up and Running a DC Sweep

Following the example given in Section 3.2, the diode clipper circuit netlist is shown in
Figure 7.1 with a DC sweep analysis specified. Here, the voltage source Vin is swept from
-10 to 15 in 1 volt increments, resulting in 26 DC operating point calculations. Note also
that the default setting for Vin is ignored during these calculations. All other source values
use the specified values (VCC = 5V in this case).

Running Xyce on this netlist produces an output results file named clipper.cir.prn.
Plotting this data produces the graph shown in Figure 7.2.

OP Analysis

Xyce also supports .0P analysis statements. In Xyce, .0P should be considered as a
shorthand for a single step DC sweep, in which all the default operating point values are
used. One can also consider . 0P analysis to be the operating point calculation which would
occur as the intitial step to a transient calculation, without the subsequent time steps.

58

7.2 DC Analysis Xyce™ Users’ Guide

Diode Clipper Circuit

** Voltage Sources

VCC 1 0 5V VIN 3 0 OV

* Analysis Command

.DC VIN -10 15 1

* Output

.PRINT DC V(3) V(2) V(4)

* Diodes

D1 2 1 DIN3940 D2 O 2 DIN3940
* Resistors

R1 2 3 1K

R2 1 2 3.3K

R3 2 0 3.3K

R4 4 0 5.6K

* Capacitor

Cl1 24 0.47u

x% GENERIC FUNCTIONAL EQUIVALENT = 1N3940
= TYPE: DIODE

* SUBTYPE: RECTIFIER

.MODEL D1N3940 D(

+ IS = 4E-10
+ RS = .105
+ N = 1.48
+ TT = 8E-7
+ CJO = 1.95E-11
+ vVl = .4

- M= .38

+ EG = 1.36
+ XTI = -8

+ KF = 0

+ AF = 1

- FC = .9

+ BV = 600

+ IBV = 1E-4)
* .END

Figure 7.1. Diode clipper circuit netlist for DC sweep analysis.

59

Xyee™ Users’ Guide Analysis Types

—_—{3) [Vin) |
s V(2)
(4] (Vout) |

Voltage [volts]
v

=10 -5 0 5 10 15
Vin [volts]

Figure 7.2. DC sweep voltages at Vin, node 2 and Vout.

This capability was mainly added so that the code would be able to handle legacy netlists
which used this type of analysis statement. In most versions of SPICE, using . OP will result
in extra output which is not available from a DC sweep. That additional output capability
has not yet been implemented in Xyce.

60

7.3 Transient Analysis Xyce™ Users' Guide

7.3 Transient Analysis

The transient response analysis simulates the response of the circuit from TIME=0 to a
specified time. Throughout a transient analysis, any or all of the independent sources may
have time-dependent values.

In Xyce, the transient analysis begins by performing its own bias point calculation at the
beginning of the run, using the same method as used for DC sweep. This is required to set
the initial conditions for the transient solution as the initial values of the sources may differ
from the their DC values.

To run a transient simulation, the circuit netlist file must include a . TRAN command with the
parameters required for the desired transient analysis (see the Xyce Reference Guide [2]).
In addition, the netlist must contain one of the following:

B an independent, transient source (see Table 7.1),
B an initial condition on a reactive element, or

B atime-dependent behavioral modeling source (see Chapter 6)

Defining a Time-Dependent (transient) Source

Overview of Source Elements

Source elements, either voltage or current, are entered in the netlist file as described in the
Xyce Reference Guide [2]. Table 7.1 list the time-dependent sources available in Xyce for
either voltage or current. For voltage sources, the name is preceeded by the letter V while
current sources are preceeded by the letter I.

Source Element Name Description

EXP Exponential Waveform

PULSE Pulse Waveform

PWL Piecewise Linear Waveform
SFFM Freguency-modulated Waveform
SIN Sinusoidal Waveform

Table 7.1. Summary of time-dependent sources supported by
Xyce.

61

Xyce™ Users' Guide Analysis Types

To use one of these time-dependent or transient sources, the user must place the source
element line in the netlist and characterize the transient behavior using the appropriate
parameters. Each transient source element has a separate set of parameters dependent
on its transient behavior. In this way, the user can create analog sources which produce
sine wave, square pulse, exponential pulse, single-frequency FM, and piecewise linear
waveforms.

Defining Transient Sources

To define a transient source:

B Select one of the supported sources: independent voltage or current source.
B Choose a transient source type from Table 7.1.

B Provide the transient parameters (see the Xyce Reference Guide [2]) to fully define
the source.

Below is an example of an independent sinusoidal voltage source in a circuit netlist. It
creates a voltage source between nodes 1 and 5 that oscillates sinusoidally between -5V
and +5V with a frequency of 50 KHz.

Example: Vexample 1 5 SIN(-5V 5V BOKHz)

Transient Calculation Time Steps

During the simulation, Xyce uses a calculation time step that is continuously adjusted for
accuracy and efficiency (see [6]). During periods of circuit idleness the calculation time
step is increased, and during dynamic portions of the waveform it is decreased. This
release of Xyce does not allow the user to specify a maximum time step.

The internal calculation time steps used might not be consistent with the output time steps
requested by the user. By default Xyce outputs solution results at every time step it cal-
culates. If the user selects output timesteps via the .0UTPUT statement (see Chapter 9)
then Xyce will output results for the closest time step that follows the time requested by the
user. There is currently no mechanism for forcing Xyce to output at precise user-specified
times.

Checkpointing and Restarting
The .0PTIONS RESTART command (in the netlist) is used to control all checkpoint output

and restarting. Checkpointing and associated restart can be extremely useful for long
simulations. In essence, Xyce allows the user to save the state of the simulation during a

62

7.3 Transient Analysis Xyce" Users’ Guide

run (at intervals the user specifies) (checkpointing). This checkpoint data can then be read
in to restart the simulation from any of the saved (checkpointed) time points.

Checkpointing Command Format

B .OPTIONS RESTART PACK=<0|1> JOB=<job name> [INITIAL_INTERVAL=<interval>
[<t0> <i0> [<t1> <il1>...]1]]
PACK=<0| 1> indicates whether the restart data files will contain byte packed data(1)
or not(0). JOB=<job name> identifies the prefix for restart files. The actual restart files
will be the job name appended with the current simulation time (e.g. namele-05 for
JOB=name and simulation time 1e-05 seconds). Furthermore, the
INITIAL_INTERVAL=<interval> identifies the initial interval time used for restart out-
put. The <tx ix> intervals identify times (tx) at which the output interval (ix) will
change. This functionality is identical that described for the .0PTIONS OUTPUT com-
mand (see Section 9.1).

B Example - generate checkpoints at every time step (default):
.OPTIONS RESTART JOB=checkpt
B Example - generate checkpoints every 0.1 ps:
.OPTIONS RESTART JOB=checkpt INITIAL_INTERVAL=0.lus
B Example - generate unpacked checkpoints every 0.1 us:
.OPTIONS RESTART PACK=0 J0B=checkpt INITIAL_INTERVAL=0.lus

B Example - Initial interval of 0.1 us, at 1 us in the simulation, change to interval of 0.5
us, and at 10 us change to an interval of 0.1 ps:

.OPTIONS RESTART JOB=checkpt INITIAL_INTERVAL=0.lus lus 0.5us
+ 10us 0.1lus

Restarting Command Format

B .OPTIONS RESTART <FILE=<filename> | JOB=<job name> START_TIME=<time>>
+ [INITIAL_INTERVAL=<interval> [<t0> <i0O> [<t1> <ii1> ...]1]1]

To restart from an existing restart file, the file can be specified by using either the
FILE=<filename> parameter to explicitly request a file or

JOB=<job name> START_TIME=<time> to specify a file prefix and a specific time. The time
must exactly match an output file time for the simulator to correctly load the file. To continue
generating restart output files, INITIAL_INTERVAL=<interval> and following intervals can
be appended to the command in the same format as described above.

B Example - Restart from checkpoint file at 0.133 ps:

63

Xyce™ Users’ Guide Analysis Types

.OPTIONS RESTART JOB=checkpt START_TIME=0.133us
B Example - Restart from checkpoint file at 0.133 us :
.OPTIONS RESTART FILE=checkpt0.000000133
B Example - Restart from 0.133 us and continue checkpointing at 0.1 ps intervals:

.OPTIDNS RESTART FILE=checkpt0.000000133 JOB=checkpt_again
+ INITIAL_INTERVAL=0.l1lus

64

7.4 STEP Parametric Analysis Xyce™ Users’ Guide

7.4 STEP Parametric Analysis

The . STEP command performs a parametric sweep for all the analysies of the circuit. When
this command is invoked, all of the typical analysis, such as .DC or .TRAN analysis are
performed at each parameter step.

This capability is very similar to the STEP capability in PSPICE and ChileSPICE, but not
identical. Efforts will be made in future releases to make the .STEP capability in Xyce
100% compatible with those codes. In Xyce, .STEP can be used to sweep over any device
instance or device model parameter, as well as the circuit temperature. Currently, there is
not a capability for sweeping global parameters, as specified by a . PARAM statement.

Sweeping over a Device Instance Parameter

One specifies a .STEP analysis by simply adding a . STEP line to a netlist. .STEP by itself
is not an adequate analysis specification, as it merely specifies an outer loop around the
normal analysis. There needs to be a standard analysis line, such as . TRAN or .DC as well.

A typical . STEP line looks like this:
Example: .STEP M1:L 7u 5u -1u

This has a very similar format to the .DC line. In this example, M1:L is the name of the
parameter, 7u is the initial value of the parameter, 5u is the final value of the parameter,
and -1u is the step size. Currently, Xyce can only handle linear sweeps.

The example uses M1:L as the parameter, but it could have been any model or instance
parameter that existed in the circuit. Internally, Xyce handles the parameters for all device
models and device instances in the same way. You can uniquely identify any parameter
by specifying the device instance name, followed by a colon (:), followed by the specific
parameter name. For example, all the MOSFET models have an instance parameter for
the channel length, L. If you have a MOSFET instance specified in a netlist, named M1,
then the full name for M1’s channel length parameter is M1:L.

A simple application of .STEP to a device instance is given in figure 7.3. This is the same
diode clipper circuit as was used in the transient analysis chapter, except that a single line
(in red font) has been added. The .STEP line will cause Xyce to sweep the resistance of
the resistor, R4, from 3.0 KOhms to 15.0 KOhmes, in increments of 2.0 KOhms. This means
that a total of seven transient simulations will be performed, each one with a different value
for R4.

As the circuit is executed multiple times, the file output needs to be a little more sophisti-

cated. The .PRINT statement is still used in much the same way as before. However, there
is a separate *.prn output file for each .STEP increment.

65

Xyce™ Users’ Guide Analysis Types

Transient Diode Clipper Circuit with step analysis
* Voltage Sources
VCC 1 0 5V
VIN 3 0 SIN(OV 10V 1kHz)
* Analysis Command
.TRAN 2ns 2ms
* Output
.PRINT TRAN V(3) V(2) V(4)
* Step statement
.STEP R4:R 3.0K 15.0K 2.0K
* Diodes
D1 2 1 DiN3940
D2 0 2 DIN3940
* Resistors
R1 2 3 1K
R2 1 2 3.3K
R3 2 0 3.3K
R4 4 0 5.6K
* Capacitor
Cl1 24 0.47u
* GENERIC FUNCTIONAL EQUIVALENT = 1N3940
* TYPE: DIODE SUBTYPE: RECTIFIER
.MODEL D1N3940 D(

+ IS = 4E-10
+ RS = .1056
+ N = 1.48
+ TT = 8E-7
i CJO = 1.95E-11
+ V] = .4

+ M= .38

+ EG = 1.36
+ XTI = -8

+ KF = 0

+ AF = 1

+ FC = .9

+ BV = 600

+ IBV = 1E-4)
*

Figure 7.3. Diode clipper circuit netlist for step transient analysis.

66

7.4 STEP Parametric Analysis Xyce™ Users’ Guide

The naming convention for .STEP simulation *.prn files is the same as in the non-.STEP
case, except that the string "STEP*” is added to the name, where the ™" is an integer
number indicating the step.

The example file given in figure 7.3 has a filename of clip.cir. The output files generated by
the .PRINT statement are:

clip.cir.STEPO.prn for R4 = 3.0K
clip.cir.STEP1.prn for R4 = 5.0K
clip.cir.STEP2.prn forR4 = 7.0K
clip.cir.STEP3.prn for R4 = 9.0K
clip.cir.STEP4.prn forR4 = 11.0K
clip.cir.STEPS.prn forR4 = 13.0K
clip.cir.STEP6.prn forR4 = 15.0K

These files will be similar in length, but not identical, as changing the resistance changes
the numerical requirements a little bit, resulting in slightly different time step sizes.

Sweeping over a Device Model Parameter

Sweeping a model parameter can be done in an indentical manner to an instance param-
eter. Figure 7.4 contains the same circuit as in figure 7.3, but with a new . STEP line added.
The new .STEP line refers to a model parameter, D1N3940:IS. Note that separate .STEP
lines is the correct way to specify multiple parameters for . STEP analysis. Each parameter
needs its own separate line. In this respect, the . STEP line syntax differs from the .DC line
syntax.

Sweeping over Temperature

It is also possible to sweep over temperature. To do so, simply specify temp as the param-
eter name. It will work in the same manner as . STEP when applied to model and instance
parameters.

Special cases: Sweeping Independent Sources, Resistors,
Capacitors

For some devices, there is generally only one parameter that one would want to actually
sweep. For example, a linear resistor's only parameter of interest is the resistance, R. Sim-
ilarly, for a DC voltage or current source, one is usually only interested in the magnitude of
the source. Finally, linear capacitors generally only have the capacitance, C, as a parame-
ter of interest. To make things easier for the user, these three types of devices have default
parameters. Examples of usage are given below.

67

(yce' Users’ Guide Analysis Types

Transient Diode Clipper Circuit with step analysis
* Voltage Sources
VCC 1 0 5V
VIN 3 0 SIN(OV 10V 1kHz)
* Analysis Command
.TRAN 2ns 2ms
* Output
.PRINT TRAN V(3) V(2) V(4)
* Step statements
.STEP R4:R 3.0K 15.0K 2.0K
.STEP D1N3940:I8 2.0e-10 6.0e-10 2.0e-10
* Diodes
D1 2 1 DIN3940
D2 0 2 DIN3940
* Resistors
R1 2 3 1K
R2 1 2 3.3K
R3 2 0 3.3K
R4 4 0 5.6K
* Capacitor
Cl1 24 0.47u
* GENERIC FUNCTIONAL EQUIVALENT = 1N3940
* TYPE: DIODE SUBTYPE: RECTIFIER
.MODEL D1N3940 D(

+ IS = 4E-10
+ RS = .105
+ N = 1.48
+ TT = 8E-T
+ CJ0 = 1.95E-11
+ Vvl = .4

+ M= .38

+ EG = 1.36
+ XTI = -8

+ KF =

+ AF = 1

+ FC = .9

+ BV = 600

+ IBV = 1E-4)
*

Figure 7.4. Diode clipper circuit netlist for 2-step transient analy-
sis.

68

7.4 STEP Parametric Analysis

Xyce™ Users’ Guide

Example:
.STEP R4 3.0K 15.0K 2.0K
.STEP VCC 4.0 6.0 1.0
.8TEP ICC 4.0 6.0 1.0
.STEP C1 0.45u 0.50u 0.1u

Independent sources require some extra explanation. There are a number of different
types of independent source, and only some of them have default parameters. Sources
which are subject to .DC sweeps (swept sources) do not have a default parameter, as this
could easily lead to infinite loops. The various independent source defaults are defined in

the table.

Source Type
Sinusoidal source

Default
Vo (DC _.'alue, Offset)

Exponential source

V1 (DC value, Initial value)

Pulsed source

V2 (Pulsed value)

Constant, or DC source

VO (Constant value)

Piecewise Linear source No default
SFFM source No default
Swept source (specified on a .DC line) No default

Table 7.2: Default parameters for independent sources.

69

ce™ Users’ Guide

This page is left intentionally blank

70

8. Using Homotopy
Algorithms to Obtain
Operating Points

Chapter Overview

This chapter includes the following sections:

M Section 8.1, Homotopy Algorithms Overview

B Section 8.2, Examples

71

Xyce™ Users’ Guide " " Using Homotopy Algorithms to Obtain Operating Points

8.1 Homotopy Algorithms Overview

The most difficult type of numerical nonlinear circuit problem to solve is a DC operating
point. Unlike transient analysis, DC operating point analysis cannot rely on the results of
a previous time step. Also, operating points often have multiple solutions, both valid and
invalid.

Homotopy methods can often provide solutions to difficult nonlinear problems when other,
more conventional numerical methods fail. In recent years, these techniques have been
applied to circuit analysis. As of the Xyce Version 2.0 release, some of these algorithms
have been added to Xyce. This chapter gives an introduction to the usage of homotopy
algorithms (also called continuation algorithms) in Xyce. For a more complete description
of solver options, see the Xyce Reference Guide [2].

HOMOTOPY Algorithms Available in Xyce

There are two general types of homotopy which are available in Xyce. The first (which is
set with .options nonlin continuation=1), is a simple natural parameter homotopy, in
which the homotopy parameter is an already-defined input parameter to a device model
or instance. This algorithm can be useful, but often is not. The most obvious natural
parameters to use (the magnitudes of independent sources) tend to lead to turning points
in the continuation.

The second is an algorithm which is designed especially for MOSFET circuits [7]. This
algorithm involves two internal MOSFET model parameters, one for the MOSFET gain,
and the other for the nonlinearity of the current-voltage relationship. This algorithm is
invoked with .options nonlin continuation=2. This algorithm has proved to be very
effective in large MOSFET circuits.

8.2 Examples

MOSFET Homotopy

Figure 8.1 contains a MOSFET homotopy example netlist. Note that this is a usage exam-
ple - the circuit itself does not require homotopy to run. Circuits which are complex enough
to require homotopy would not fit on a single page. The lines pertainent to the homotopy
algorithm are highlighed in red.

Explanation of Parameters, Best Practice

Note that this example shows one set of options, but there are a number of other combi-
nations of options that will work.

72

8.2 Examples Xyce™ Users’ Guide

THIS CIRCUIT IS A MOS LEVEL 1 MODEL CMOS INVERTER
.TRAN 20ns 30us O bns

.PRINT tran v(vout) v(in) v(1)

.options timeint reltol=b5e-3 abstol=1e-3

.options linsol ksparse=1

* HOMOTOPY Options
.options device voltlim=0

.options nonlin continuation=2

.options loca stepper=0 predictor=0 stepcontrol=1
initialvalue=0.0 minvalue=-1.0 maxvalue=1.0
initialstepsize=0.2 minstepsize=1.0e-4
maxstepsize=5.0 aggressiveness=1.0
maxsteps=100 maxnliters=200

+ + + +

VDDdev VDD 0O 5V

RIN IN 1 1K

VINI 1 0 &5V PULSE (5V OV 1.5us 5ns 5ns 1.5us 3us)
R1 VOUT 0 10K

c2 VOUT 0 0O.1p

MN1 VauT 1IN O 0 CD4012_NMOS L=bu W=175u
MP1 VOUT 1IN VDD VDD CD4012_PMOS L=5u W=270u
.MODEL ¢d4012_pmos PMOS

.MODEL c¢d4012_nmos NMOS

.END

Figure 8.1. Example MOSFET homotopy netlist.

73

Xyce™ Users’ Guide Using Homotopy Algorithms to Obtain Operating Points

There are a number of "best practice” rules, which are illustrated by the example in fig-
ure 8.1. They are:

B voltlim=0. This is generally required - the homotopy algorithms will usually break if
this is not set.

B continuation=2. This specifies that we are using the special MOSFET homotopy.
This is a 2-pass homotopy, in which first a parameter having to do with the gain is
swept from 0 to 1, and then a parameter relating to the nonlinearity of the transfer
curve is swept from O to 1.

B initialvalue=0.0. This is required.
B maxvalue=1.0. This is required.

B stepcontrol=1. This specifies that the homotopy steps are adaptive, rather than
constant. This is recommended.

B naxsteps=100. This sets the maximum number of continuation steps for each param-
eter. For the special MOSFET continuation (which has 2 parameters), this means a
maximum of 200 steps.

B maxnliters=200. This is the maximum number of nonlinear itérations, and has
precedence over the similar number which can be set on the .options nonlin line.

B aggressiveness=1.0. This refers to the step size control algorithm, and the value
of this parameter can be anything from 0.0 to 1.0. 1.0 is the most aggressive. In
practice, try starting with this set to 1.0. If the solver fails, then reset to a smaller
number.

Natural Parameter Homotopy

Figure 8.2 contains a natural parameter homotopy netlist. It is the same circuit as was
used in figure 8.1, except that some of the parameters are different. As before, the lines
pertainent to the homotopy algorithm are highlighed in red.

Explanation of Parameters, Best Practice

There are a few differences between the netlist in figure 8.1 and figure 8.2. They are:

B continuation=1. Sets the algorithm to use natural parameter homotopy.

B conparam=VDDdev. If using natural parameter homotopy, this is required. It sets
which input parameter to use. The parameter name is subject to the same rules as
parameter used by the . STEP capability. (See section 7.4). In this case the parameter
is the magnitude of the DC voltage source, VDDdev. For this type of voltage source,
it was possible to use the default device parameter (see section 7.4)

74

8.2 Examples Xyce™ Users’ Guide

THIS CIRCUIT IS A MOS LEVEL 1 MODEL CMOS INVERTER
.TRAN 20ns 30us O 5ns

.PRINT tran v(vout) v(in) v{1)

.options timeint reltol=be-3 abstol=le-3

.options linsol ksparse=1

* HOMOTOPY Optiomns
.options device voltlim=0

.options neonlin continuation=1

.options loca stepper=0 predictor=0 stepcontrol=1
conparam=VDDdev

initialvalue=0.0 minvalue=-1.0 maxvalue=5.0
initialstepsize=0.2 minstepsize=1.0e-4
maxstepsize=5.0 aggressiveness=1.0
maxsteps=100 maxnliters=200

+ + + + +

VDDdev VDD O 5V

RIN IN 1 1K

VIN1I 1 0 5V PULSE (5V OV 1.5us 5ns 5ns 1.5us 3us)
R1 VOUT 0 10K

c2 VvouT 0 O0.1p

MN1 VOUT IN G O CD4012_NMOS L=5u W=175u
MP1 VOUT 1IN VDD VDD CD4012_PMOS L=bu W=270u
.MODEL cd4012_pmos PMOS

.MODEL cd4012_nmos NMOS

.END

Figure 8.2. Example natural parameter homotopy netlist.

75

Xyce™ Users’ Guide Using Homotopy Algorithms to Obtain Operating Points

Using the magnitudes of independent voltage and current sources is a fairly obvious ap-
proach. Unfortunately, it doesn’t seem to work very well in practice.

76

9. Results Output and
Evaluation Options

Chapter Overview

This chapter illustrates how to output simulation results to data or output files.

B Section 9.1, Control of Results Output
B Section 9.2, Additional Output Options

B Section 9.3, Evaluating Solution Results

77

Xyce™ Users’ Guide Results Output and Evaluation Options

9.1 Control of Results Output

Xyce supports only one solution output command, .PRINT. .PRINT is quite flexible, and
supports several output formats.

.PRINT Command

The .PRINT command sends the analysis results to an output file. Xyce supports several
options on the .PRINT line of netlists that control the format of the output. The syntax for
the command is as follows:

B .PRINT <analysis type> [options] <output variable(s)>

Example: .PRINT TRAN FILE=Output.prn V(3) V(2) V(4)

Table 9.1 gives the various options currently available to the .PRINT command. For further
information, see the Xyce Reference Guide [2].

9.2 Additional Output Options

.OPTIONS OQUTPUT Command

The main purpose of the .0PTIONS QUTPUT command is to provide control of the frequency
at which data is written to files specified by .PRINT TRAN commands. This can be espe-
cially useful in controlling the size of the results file for simulations which required a large
number of time steps. An additional benefit is that reducing the output frequency from the
default, which outputs results at every time-step, can improve performance. The format for
controlling the output frequency is:

B .0PTIONS OUTPUT INITIAL_INTERVAL=<interval> [<t0> <i0> [<t1> <il> ...]]

where INITIAL_INTERVAL=<interval> specifies the starting interval time for output and
<tx ix> specifies later simulation times (tx) where the output interval will change to (ix).

The following example shows the output being requested (via the netlist . OPTIONS OUTPUT
command) every .1pus for the first 10us, every 1us for the next 10us, and every 5us for the
remainder of the simulation:

Example: .OPTIONS OUTPUT INITIAL_INTERVAL=.1lus 10us lus 20us bus

78

9.2 Additional Output Options Xyce™ Users’ Guide

Option. .. Action...

Controls the output format. The STD
format outputs data in standard columns.
The NOINDEX format is the same as the
standard format except that the index
FORMAT=<STD | NOINDEX | PROBE> column is omitted. The PROBE format
specifies that the output should be
formatted to be compatible with the
PSpice Probe plotting utility. The default is
STD.

Allows the user to specify the output
filename. The default is the netlist
FILE=<output filename> filename with the characters “. prn”
appended (e.g., foo.cir.prn where
foo.cir was the input netlist filename.

Allows the user to control the column

IDTH=<pri i idth> .
WIDTH=<print field width width for the output data.

Controls the number of significant digits

PRECISION=<floati i ision> i i
oating point precision past the decimal point.

Specifies the absolute value below which

FILTER=<filt fl lue> . . 3
tiber troob valtue output variables will be printed as 0.0.

Specifies an alternate delimiter between
DELIMITER=<TAB| COMMA> columns of output in the STD output
format.

Table 9.1. .PRINT command options.

79

xyce™ Users’ Guide Results Output and Evaluation Options

Note: Xyce will output data at the next time that is greater-than or equal to the current
interval time. This means that output might not correspond exactly to the time intervals
due to the adaptive time stepping algorithm.

9.3 Evaluating Solution Results

This section describes how to view graphical waveform analysis of the simulation results
generated by Xyce. You can use the solution output features of Xyce in conjunction with
graphing tools (e.g., TecPlot, gnuplot, MS Excel, etc.) to analyze graphically the waveform
data created by a Xyce circuit simulation (see Figure 9.1 below for an example plot using
TecPlot, http://www.amtec.com). In addition, by using the FORMAT=PROBE option to the
.PRINT command, Xyce is able to output .csd files which can be read by the PSpice
Probe utility to view the results. See the PSpice Users Guide [3] for instructions on using
the Probe tool, and the Xyce Reference Guide [2] for details on the options to the .PRINT
command.

Frame 001 [13 Oct 2002 |
[Foame

Voltage [volts]
o

S LS LA LAAEE BARE

TR R
0.0015 0.002

(I B
0.001
Time [sec.]

o NI
0 0.0005

Figure 9.1. TecPlot plot of diode clipper circuit transient response
from Xyce .prn file.

Xyce produces two types of output: the simulation output file and the waveform data file.
The calculations and results reported in the simulation output file can be thought of as an
audit trail of the simulation. However, graphical analysis of data in the waveform data file
is the most useful and accommodating way to evaluate simulation results.

80

http://www.amtec.com

10. Guidance for
Running Xyce in Parallel

Chapter Overview

This chapter gives guidance on how to run a parallel version of Xyce. It includes the
following sections:

B Section 10.1, Introduction

W Section 10.2, Mechanics

W Section 10.3, Problem Size

B Section 10.4, Linear Solver Options

B Section 10.5, Partitioning Options

81

Xyce™ Users’ Guide Guidance for Running Xyce in Parallel

10.1 Introduction

Xyce has been designed, from the ground up, to support a message-passing parallel im-
plementation. As such, Xyce is unique among circuit simulation tools, and many of the
issues pertainent to running in parallel are still research issues. However, Xyce is now ma-
ture enough that some general principles have emerged, for effectively running problems
in a parallel environment.

10.2 Mechanics

Parallel simulations must be run from the command line. Details of how to do this are given
in section 2.2.

10.3 Problem Size

Due to the overhead of interprocessor communication, running Xyce in parallel is only
useful for large circuit problems. Also, for any problem size, there is an optimal number of
processors. As one increases the processor count, the amount of communication required
increases and the work per processor decreases. This increase in communication will slow
a simulation down, while the reduction in work per processor will have the reverse effect.
If the number of processors is too large, the benefit of distributing the problem will be
outweighed by the high cost of communication overhead. Such a limit exists for every size
of problem, and increasing the processor count beyond this point is counterproductive.
This issue is most pronounced for platforms with a high communication cost, such as
Beowulf clusters.

Smallest Possible Problem Size

Circuits are comprised of a discrete set of components (voltage nodes, devices, etc.). To
run in parallel, it is preferable that Xyce be able to put at least one discrete part of the
problem on each processor. In practice, this means that the number of processors should
be less than the number of nodes in the circuit. Xyce is capable of simulating smaller
problems, but it is not recommended, due to solver instabilities.

Ideal Problem Size

To take full advantage of Xyce’s parallel capability, the problem should be relatively large. A
good metric for estimating how many processors one should use is the number of devices
per processor. The ideal number of devices per processor is very machine and problem

82

10.4 Linear Solver Options Xyce™ Users’ Guide

dependent. For machines such as SGI Challenger platforms, with relatively fast communi-
cation speeds in comparison to processor performance, reasonable speedups can be seen
for 100’s of devices per processor. For Beowulf clusters with relatively slow communica-
tion speeds in comparison to processor performance, 1000’s of devices per processor are
required to achieve reasonable speedups in parallel. These numbers are very problem-
dependent, as the effectiveness of the load balance and partitioning can vary a lot.

10.4 Linear Solver Options

There are several different linear solvers available in Xyce version 2.0. They are:

B The Aztec iterative solver library.
B SuperLU.

B Kudert Sparse (KSparse).

For Xyce version 2.0, only Aztec is available in parallel. For future versions of Xyce, a
parallel direct solver will be available for moderate problem sizes.

10.5 Partitioning Options

Xyce currently has two graph partitioning options available. These partitioning utilities
subdivide the circuit problem into sections that are then distributed to the processors. A
good partition can have a dramatic effect on the parallel performance of circuit simulation.
There are two key components to a good patrtition:

B Effective load balance.

B Minimizing communication overhead.

An effective load balance ensures that the computational load of the calculation is equally
distributed among the available processors. Minimizing communication overhead seeks
to distribute the problem in a way that reduces the impact of underlying message passing
during the simulation run. For runs with a small number of devices per processor the
communication overhead becomes the critical issue, while for runs with larger numbers of
devices per processor the load balancing becomes more important. Xyce has integrated
within it two partitioning libraries - the Chaco static partitioner and the ZOLTAN library of
parallel partitioning heuristics.

83

Xyce™ Users’ Guide Guidance for Running Xyce in Parallel

Chaco Static Partitioning of Circuit

Chaco is accessible using the * .OPTIONS PARALLEL PARTITIONER=0’ line in the netlist. By
adding this line to the netlist, Chaco will be used to partition the initial circuit before it is dis-
tributed to processors. Chaco partitioning can be controlled through a >Chaco_User_Params’
file that must be in the execution directory. See the Chaco User Guide [8] for details.

Currently, one parameter is available for Chaco partitioning: using ’DISTRIBINDSRCNODES=0"
as a parallel option can be very effective for an improved partitioning, especially for large
digital circuits. Adding this parameter to the parallel options allows Xyce to replicate in-
dependent voltage sources across all processors that have devices connected to them.
In many cases this can dramatically reduce the interprocessor connectivity and reduce
the communication overhead substantially. The parameter value determines the fractional
degree of connectivity for a voltage source required before allowing it to be replicated.
Therefore setting to zero allows all voltage sources to be replicated as necessary. Setting
the value to larger numbers has proven to be ineffective.

Due to the renaming and distribution of some independent sources and their associated
voltage nodes, restarting can only be done when the restarted run uses an identical num-
ber of processors and partitioning as the job that created the restart files.

Zoltan Partitioning of the Linear System

Zoltan is accessible through the * .0PTIONS LINSOL’ control line in the netlist. By adding
an options ’TR_LOADBALANCE=1’ to the linear options, the linear system is statically load
balanced based on the graph of the Jacobian matrix. The local system is also reordered
based on nested dissection which should improve conditioning and minimize fill. These
techniques can be very effective for improving the efficiency of the iterative linear solvers.
See the Zoltan User Guide [9] for details.

Singleton Filtering of the Linear System

Singleton filtering refers to the reduction of the linear system through removal of all rows
and columns with single non-zero entries. The values associated with these removed
entries can be resolved as pre/post solve linear operations. A by-product of this reduction
is a more tractable, sparser linear system for both the load balancing and linear solver
algorithms. This functionality is turned on by adding the *TR_SINGLETON_FILTER=1’ option
to the ’ .OPTIONS LINSOL’ control line in the netlist. It is also recommended to add the
'TR_SOLVERMAP=1 TR_REINDEX=1 USE_IFPACK_PRECOND=1’ to the > .OPTIONS LINSOL’ as
well to improve the solver robustness with singleton filtering. In the future, it is expected
these options will be use as default.

84

10.6 Recommended Partitioning and Solver Options Xyce™ Users’ Guide

10.6 Recommended Partitioning and
Solver Options

A recommended set of options for parallel problems is given below. These options include
singleton filtering as well as Chaco and Zoltan partitioning of the circuit and linear system
respectively. The additional settings can improve the performance of the preconditioned
linear solver. '

B .OPTIONS PARALLEL PARTITIONER=0 DISTRIBINDSRCNODES=0

B .0PTIONS LINSOL TR_LOADBALANCE=1 TR_SINGLETON_FILTER=1 TR_SOLVERMAP=1 TR_REINDEX=1
USE_IFPACK_PRECOND=1

An important caveat is that the performance and convergence of the linear solver for par-
allel problems can be substantially less robust for some circuits. This is a known issue
with parallel iterative solution of linear problems. If Xyce is not performing as expected for
these problems, please consult the developer team.

85

Xyce" Users’ Guide

This page is left intentionally blank

86

11. PDE Device
Simulation with Xyce

Chapter Overview

This chapter gives guidance on how to use the mesh-based device simulation capability of
Xyce. It includes the following sections:

B Section 11.1, Introduction

Section 11.2, One Dimensional Example
Section 11.3, Two Dimensional Example
Section 11.4, Doping Profile

Section 11.5, Electrodes

Section 11.6, Meshing

Section 11.7, Mobility Models

Section 11.8, Bulk Materials

Section 11.9, Solver Options

Section 11.10, Oulput and Visualization

87

Xyee™ Users’ Guide PDE Device Simulation with Xyce

11.1 Introduction

This chapter describes how to use the mesh-based device simulation funcionality of Xyce.
This capability is based on the solution a coupled set of partial differential equations
(PDEs), discretized on a mesh such as the one in Figure 11.1. While the rest of Xyce
is intended to be similar to analog circuit simulators such as SPICE, the PDE device ca-
pability is intended to be similar to well-known device simulators such as PISCES [10] and
DaVinci [11].

Two different PDE devices are available Xyce: a one-dimensional device and a two-
dimensional device. These two devices have been implemented in a manner which allows
them to be invoked in the same way as a conventional lumped parameter circuit device.
Generally, this capability is intended for very detailed simulation of semiconductor devices,
such as diodes, bipolar transistors, and MOSFETs. One possible application of this ca-
pability is the evaluation and/or analysis of conventional SPICE-style lumped parameter
models.

NOTE: As of Xyce Release 2.0, the PDE-based devices should still be considered to
be a beta-level capability. The primary focus of Xyce has been traditional analog circuit
simulation, so the PDE devices have not been subject to the same level of testing as the
traditional, SPICE-style devices. The PDE device simulator in Xyce should be regarded as
a prototype for Charon, a high performance 3D device simulator that is under development
at Sandia.

NOTE: To avoid conflicts, some of the netlist specification (particularly the use of brackets
[in the doping and electrode specifications) will be changed for Xyce Release 2.1.

Equations

The equations of device simulation are described by many references including Kramer [12]
and Selberherr [13]. The most common formulation, and the one that is used in Xyce, is
the drift-diffusion (DD) formulation. This formulation consists of three coupled PDE’s: a
single Poisson equation for electrostatic potential and two continuity equations; one each
for electrons and holes.

Poisson equation

The electrostatic potential ¢ satisfies Poisson’s equation:
— V- (eVg(z)) = p(x) (11.7)

where p is the charge density and ¢ is the permittivity of the material. For semiconduc-
tor devices, the charge density is determined by the local carrier densities and the local
doping,

p(z) = q(p(z) — n(z) + C(z)) (11.2)

88

11.1 Introduction Xyce Users’ Guide

m|
o
A

= $H

-2.5E-05

-5E-05

\

\

-7.5E-05

—— K
—

-1E-04

-0.000125

-0.00015

T

-0.000175

™

IMI el L

T |
5E-05 0.0001 0.00015 0.0002

-0.0002 =

Figure 11.1. MOSFET Mesh Example.

Here p(z) is the spatially-dependent concentration of holes, n(z) the concentration of elec-
trons, and ¢ the magnitude of the charge on an electron. C(z) is the total doping con-
centration, which can also be represented as C(z) = Nj,(z) — N, (z), where N} the
concentration of positively ionized donors, NV the concentration of negatively ionized ac-
ceptors.

Species continuity equations

The continuity equations relate the convective derivative of the species concentrations to
the creation and destruction of particles (“recombination/generation”).

a";gm)+v-rn — _R(z) (11.3)
aigf)Jrv-rp = _R(z) (11.4)

Here n is the electron concentration and p is the hole concentration. R is the recombination
rate for both species. I',, and I';, are particle fluxes for electrons and holes, respectively.
The sign of R is chosen because R is usually expressed as a recombination rate, and
is positive if particles are annihilating. The right hand sides are equal since creation and
destruction of carriers occurs in pairs.

One way in which the drift-diffusion model differs from other common formulations is the

89

Xyce™ Users’ Guide ' PDE Device Simulation with Xyce

manner in which the quantities I',, and I, are determined. The expressions used are:

I = n(z)uE(zx)+ DpVn(zx) (11.5)
Ly p(z)ppE(z) + DpVp(z) (11.6)

Here (., 1, are mobilities for electrons and holes, and D,,, D, are diffusion constants.
E(x) is the electric field, which is given by the gradient of the potential, or —9¢/dx.

Discretization

Xyce uses a box-integration discretization, with the Scharfetter-Gummel method for model-
ing the flux of charged species. This method has been described in detail elsewhere [12] [13][14],
so it will not be described here.

90

11.2 One Dimensional Example Xyce™ Users’ Guide

11.2 One Dimensional Example

The one-dimensional device was the first PDE-based device to be implemented in Xyce.
The single dimension limits its usefulness, but its simplicity makes it a good device to
use for a preliminary example. One dimensional devices are almost always two-terminal
diodes, and this fact allows for assumptions which simplify the specification and shorten
the parameter list of the device.

An example netlist, for a PDE simulation of a one-dimensional diode, is shown in Fig-
ure 11.2. The corresponding schematic is in Figure 11.3. The circuit is a regulator circuit,
and is based on the principle that connecting one or more diodes in series with a resistor
and a power supply will produce a relatively constant voltage. The input voltage (node 2) is
a sinewave, with a frequency of 50 Hz and an amplitude of 1 V. The expected output (node
3) should be a (mostly) flat signal.

PDE Diode Regulator Circuit

VP 1 0 PULSE(0 5 0.0 2.0e-2 0.0 1.0e+20 1.2e+20)
VF 2 1 SIN(O 1 50 2.0e-2)

VIl 4 0 0V

R1 2 3 1k

* PDE Device
Z1 3 4 DIODE na=1.0el9 nd=1.0el9 graded=0
+ 1=5.0e-4 nx=101

.MODEL DIGDE Z0OD
.TRAN 1.0e-3 12.0e-2
.print TRAN format=tecplot

+ v(1) v(2) v(3) v(4) I(VF) I(VT1)

.options NONLIN maxstep=100 maxsearchstep=3
+ searchmethod=2 nox=0

.options TIMEINT reltol=1.0e-3 abstol=1.0e-6
+ resettrannls=0

.END

Figure 11.2. One dimensional diode netlist. This circuit is a
voltage regulator. The input signal should be a sinewave, while
the output signal should be nearly flat. For the result of this netlist,
see Figure 11.4

N

Xyce™ Users’ Guide PDE Device Simulation with Xyce

2
R1=1K
3
VF
Z1
1 4
VP=5 VT1=0

Figure 11.3. Voltage regulator schematic. The diode, Z1, is the
PDE device in this example.

Netlist Explanation

In Figure 11.2, the PDE device instance line is in red, while the PDE device model line is
in blue. Currently, there are almost no model parameters for PDE devices. The model line
serves only to set the level. The default level is 1, for a one-dimensional PDE device. Two
dimensional devices are invoked by setting 1evel=2. Note that in this example, the level is
not explicitly set, and so the default (1) is used.

The instance line is where most of the specific parameters are set for a PDE device. In this
example, the line appears as:

Z1 3 4 DIODE na=1.0el19 nd=1.0el19 graded=0 1=5.0e-4 nx=101

na and nd are doping parameters, and represent the majority carrier doping levels on the N-
side and the P-side of the junction, respectively. graded=0 is also a doping parameter, and
specifies that the junction is not a graded junction, but is an abrupt step-function junction
instead. 1=5.0e-4 specifies the length of the device, in cm. nx=101 specifes that there are
101 mesh points, including the two endpoints. For the one-dimensional PDE device, the
mesh is always uniform, so the size of each mesh cell, Az will be:

! 5.0e-4cm
nr—1 100
The mesh points i = 0 — 101 will have the following locations, z;:

Axi=

= 5.0e-6 cm (11.7)

zo, = 0.0cm
z1 = 5.0e-6cm

92

11.2 One Dimensional Example Xyce™ Users’ Guide

101 = 5.0e-4cm

Boundary Conditions and Doping Profile

Note that nothing has been specified in the example netlist about electrodes, or boundary
conditions, and that the doping specification is minimal. This is because the example
relies a lot on default parameters. A one dimensional PDE device can only have exactly
2 electrodes connected to the circuit. These two electrodes are at opposite ends of the
domain, one at the first mesh point (x=0.0 cm, i=0) and the other at the opposite end of
the domain, at the last mesh point (x=5.0e-4 cm, i=101).

The electrode associated with the first mesh point (x=0.0 cm) is connected to the second
circuit node on the instance line, while the electrode associated with the last mesh point
(x=1) is connected to the first circuit node on the instance line. For the doping used in
this example, the junction is in the exact center of the device (x=1/2), and the n-side is the
region defined by x<1/2, and the p-side is the region defined by x>1/2. This default doping,
along with the electrode-circuit connectivity, result in the one-dimensional PDE device to
behave like a traditional SPICE-style diode. For a complete discussion of how to specify a
doping profile see section 11.4. For a complete discussion of how to specify electrodes in
detail (including boundary conditions), see section 11.5.

Results

The transient result of this circuit is shown in Figure 11.4. The input signal (node 2) is
represented by the blue line, and the output signal (node 3) is represented by the red line.
The voltage drop across the diode is nearly the same for a wide range of currents, and is
approximately 0.67 V. The voltage drop across the series resistor, R1, is much more sensi-
tive to the current magnitude, and so most of the voltage variation of the input sinewave is
accounted for by R1.

93

Xyce Users’ Guide PDE Device Simulation with Xyce

V(2), V(3)

Ill#flll\ll\|1\|I’I\!IIIIiI

| 1 | I l | I I 1
00 0.05 0.1

TIME (seconds)

Figure 11.4. Transient result for the voltage regulator circuit in
Figure 11.2. The input voltage is represented by the blue line,
while the output voltage is given by the red line.

94

11.3 Two Dimensional Example Xyce™" Users’' Guide

11.3 Two Dimensional Example

An example netlist, for a PDE simulation of a two-dimensional bipolar transiistor, is shown
in Figure 11.5. As before, the PDE device instance line is in red, while the PDE device
model line is in blue. In this case, note that the level has been specified on the model line,
and it has been set to 2. This is required for the two-dimensional device. This particular
example is a DC sweep of a bipolar transistor device. A schematic, illustrating this circuit
is shown in Figure 11.6.

Netlist Explanation

The two-dimensional device can have 2-4 electrodes. (this limitation will be relaxed in
future versions of Xyce) In this example there are three; node 5, node 3 and node 7.
These correspond to the three names on the "node” line, which appears as:

+ node = [name = collector, base, emitter]

This line specifies that node 5 is connected to an electrode named "collector”, node 3 is
connected to an electrode named "base”, and node 7 is connected to an electrode named
"emitter”. Although this example only contains the electrode names, the "node” specifcation
can contains a lot of information. For a full explanation of all the electrode parameters, see
section 11.5.

The next line contains parameters concerned with plotting the results, and appears as
follows:

+ tecplotlevel=2 txtdatalevel=1

Note that these are not related to the output specified by . PRINT, which outputs circuit data.
The tecplotlevel command enables files to be output which are readable by tecplot.
Tecplot can then be used to create contour plots of quantities such as the electron density,
electrostatic potential and the doping profile. Figures 11.7 and 11.8 contain examples of
tecplot-generated contour plots, which were generated from the results of this example.

The txtdatalevel command enables a text file with volume averaged information to be
output to a file. Currently, both of these output files will be updated at each time step or DC
sweep step.

The next line, mobmodel=arora, specifies which mobility model to use. For more detail on
available mobility models, see section 11.7.

The last two lines, specify the mesh of the device, and are given by:

+ 1=2.0e-3 w=1.0e-3
+ nx=30 ny=15

95

Xyce™ Users’ Guide PDE Device Simulation with Xyce

Two Dimensional Example
VPOS 1 0 DC 5V

VBB 6 0 DC -2V

RE 12 2K

RB 3 4 190K

Z1BJT 5 3 7 PDEBJT meshfile=internal.msh
node = [name = collector, base, emitter]
tecplotlevel=2 txtdatalevel=1
mobmodel=arora
1=2.0e-3 w=1.0e-3
nx=30 ny=15

+ + + + +

* Zero volt sources acting as an ammeter to measure the
* base, collector, and emmitter currents, respectively
VMON1 4 6 O
VMON2 5 0 O
VMON3 2 7 O

.MODEL PDEBJT ZOD 1level=2

.DC VPOS 0.0 12.0 0.5 VBB -2.0 -2.0 1.0
.options LINSOL ksparse=1

.options NONLIN maxstep=70 maxsearchstep=1
+ searchmethod=2 in_forcing=0 nlstrategy=0

+ directlinsolv=1

.options TIMEINT reltol=1.0e-3 abstol=1.0e-6
+ firstdcopstep=0 lastdcopstep=1

.PRINT DC V(1) I(VMON1) I(VMON2) I(VMON3)

.END

Figure 11.5. Two-dimensional BJT netlist. Some results of this
netlist can be found in Figures 11.7 and 11.8.

96

11.3 Two Dimensional Example xyce™ Users’ Guide

This numbers are used in nearly the same way as the 1 and nx parameters were used in
the one-dimensional case. The mesh is cartesian, and the spacing is uniform.

Doping Profile

As in the one-dimensional example, the two-dimensional example in figure 11.5 does not
specify anything about the doping profile, and thus relies upon defaults. In this case there
are three specified electrodes, which by default results in the doping profile of the bipolar
junction transistor (BJT). For a complete description of how to specify a doping profile in
detail, see section 11.4. This section also describes the various default impurity profiles.

Boundary Conditions and Electrode Configuration

As in the one-dimensional example, the two-dimensional example in figure 11.5 does not
specify anything about the electrode configuration or the boundary conditions, and relies
on default settings. To be consistent with the default 3-terminal doping, the device has
terminals that correspond to that of a BJT. All three electrodes (collector, base, emitter) are
along the top of the device.

By default all electrodes are considered to be neutral contacts. The boundary conditions
applied to the electron density, hole density and electrostatic potential are all Dirichlet
conditions.

For a complete discussion of how to specify electrodes in detail (including boundary con-
ditions), see section 11.5.

Results

Results for the two-dimensional example can be found in Figures 11.7, 11.8and 11.9. The
first two figures are contour plots of the electrostatic potential. The first one corresponds
to the first DC sweep step, where VPOS is set to 0.0 Volts. The second one corresponds
to the final DC sweep step, in which VPOS has a value of 12.0 volts. The voltage source
VPOS applies a voltage to the emitter load resistor, RE, so some of the 12.0V is dropped
accross RE, an the rest is applied to the BJT.

The third figure is an |-V curve of the dependence of the three terminal currents on applied
emitter voltage. For the entire sweep, a negative voltage of 2.0 V has been applied to the
base load resistor, and as this transistor is a PNP transistor, this results in the transistor
being in an “on” state. The emitter-collector current varries nearly linearly with the applied
emitter voltage. Also, the three currents sum to nearly zero, which one would expect
because of current conservation.

Note that the mesh is visible in Figure 11.7, and was generated using the internal “uniform
mesh” option. Generally using this sort of mesh will work numerically, in that Xyce will

97

Xyce™ Users' Guide PDE Device Simulation with Xyce

converge to an answer. However, this mesh will probably not produce a very accurate
result, as it does not resolve the depletion regions very well. In order to obtain better
accuracy, either a finer uniform mesh would need to be used, or a nonuniform mesh,
refined in around the depletion regions should be used. As described in section 11.6,
refined, nonuniform meshes must be read in from an external mesh generator, such as the
SGFramework [12].

98

11.3 Two Dimensional Example Xyce" Users’ Guide

(%))

VMON?2
(0V)

RB=190K

Figure 11.6. Two-Dimensional BJT Circuit Schematic. This
schematic is for the circuit described by the netlist in Figure 11.5.
The mesh in the large circle is the mesh used in the example. The
other mesh, which contains some mesh refinement, is included in
the figure as an example of what is possible with an external mesh
generator.

99

Xyce™ Users’ Guide PDE Device Simulation with Xyce

Initial Potential

0.84 Volt

]
i e e) e o T £ R

Depth (cm)

0.07 Volt

i

Width (cm) 2.0e-3

-1.0e-3
0.0e-3

Figure 11.7. Initial Two-Dimensional BJT Result. Contour plot of
the electrostatic potential at the first DC sweep step of the netlist in
Figure 11.5. Note the mesh, which was generated using the inter-
nal “uniform mesh” option. This plot was generated using Tecplot.

Final Potential

0.0e-3

7.56 Volt

Depth (cm)

0.96 Volt

oarra Gl 5 B i Bt %

Width (cm) 2.0e3

Figure 11.8. Final Two-Dimensional BJT Result. Contour plot of
the electrostatic potential at the last DC sweep step of the netlist
in Figure 11.5. This plot was generated using Tecplot.

100

11.3 Two Dimensional Example Xyce™ Users’ Guide

0.002 i~

I(VMONT1)

———— |(VMON2)
- i+ |(VMON3)

0.0015

0.001

Current (Amps)

0.0005

s B e O e PO

s S e o e m e N B e SRS
2 4 6
v(1)

Figure 11.9. |-V Two-Dimensional BJT Result, for the netlist in
Figure 11.5. The x-axis is in Volts. The three plotted currents are
through the three BJT electrodes, and as expected they add (if cor-
rected for sign) to zero. I{VMON1) is the base current, (VMON2)
the collector current, and I(VMON3) the emitter current. V(1) is
the voltage applied to the emitter load resistor, RE. This plot was
generated using Tecplot.

101

Xyce™ Users’ Guide PDE Device Simulation with Xyce

11.4 Doping Profile

In the two examples, no doping parameters were specified, and Xyce used the defaults.
Default profiles are uniquely specified by the number of electrodes. In practice, especially
for two-dimensional simulations, the user will generally need to specify the doping profile
manually.

NOTE: If an external mesh (from the SGFramework) is used, the doping profile will be read
in from the mesh file, and it is not necessary (or appropriate) to specify any doping in the
netlist.

Manually Specifying the Doping

A circuit netlist, which includes a one-dimensional PDE device with a detailed, manual
specification of the doping profile, is given in figure 11.10. A similar, two-dimensional,
version of this problem is given in figure 11.12. For the purposes of this discussion, the
one-dimensional example will be referred to, but information conveyed is equally applicable
to the two-dimensional case.

In both examples, the parameters associated with doping are in red font. The doping is
specified with one or more regions, which are summed together to get the total profile.
Doping regions are specified in a tablular format, with each column representing a different
region.

In the one-dimensional example, there are three regions, which are illustrated in figure 11.11.
Region 1 is a uniform n-type doping, with a constant magnitude of 4.0e+12 donors per cu-
bic cm. This magnitude is set by the parameter nmax. As the doping in this region is
spatially uniform, the only meaningful parameters are function (which in this case spec-
ifies a spatially uniform distribution), type (ntype or ptype) and nmax. The others (nmin
through flaty) are ignored for a spatially uniform region.

Region 2 is a more complicated region, in that the profile varies with space. This region
is doped with p-type impurities, and has a Gaussian shape. Semiconductor processing
often consists of an implant followed by an anneal, which results in a diffusive profile.
The Gaussian function is a solution to the diffusion problem, when it is assumed that the
impurity exists in a fixed quantity. Thus, the Gaussian shape is an appropriate choice for
the doping regions of a lot of devices.

The peak of the Region 2 doping profile is given by the parameter nmin, and is 1.0e+19
acceptors per cubic cm. This peak has a location in the device which is specified by
xloc=24.5e-4 cm. The parmeters nmin and xwidth are fitting parameters.

Region 3 is also based on a Gaussian function, but unlike Region 2, it is flat on one side of
the peak. This is set by the f1atx parameter. The "flat” parameters follow the convention
given by Table 11.1.

102

11.4 Doping Profile Xyce™ Users’ Guide

Doping and Electrode specification example

TITLE Xyce PN Junction Simulation

vscope 0 1 0.0

rscope 2 1 50.0

cid 3 0 1.0u

rl 4 3 1615.0

vid 4 0 5.00

Z1DIODE 2 3 PDEDIODE nx=301 1=26.0e-4

* DOPING REGIONS: region 1, region 2, region 3
+ region= [function = uniform, gaussian, gaussian
+ type = ntype, ptype, ntype
+ nmax = 4. 0e+12, 1.0e+19, 1.0e+18
+ nmin = 0.0e+00, 4.0e+12, 4.0e+12
+ xloc = 0.0 , 24.5e-04, 9.0e-04
+ xwidth - 0.0 , 4 .5e-04, 8.0e-04
+ flatx = 0) 0, -1 1]
*o——m end of Diode PDE device -----—--———————-
.MODEL PDEDIODE Z0OD level=}

.options LINSOL ksparse=0

.options NONLIN maxsearchstep=1 searchmethod=2
.options TIMEINT reltol=1.0e-3 abstol=1.0e-6

.DC wvscope 0 0 1

.print DC v(1) v(2) v(3) v(4) I(vscope) I(vid)

.END

Figure 11.10. One-dimensional example, with detailed doping.

103

Xyce™ Users’ Guide ' PDE Device Simulation with Xyce

region 2 region 1 region 3

e b —rh
o = (=]

> 3 »
T |H||IT|

nsity (abs) (cmA-3)

pi

Do
Q

e

(=]
-
N

| I T R B R R |
0.0005 0.001 0.0015 0.002 0.0025
Depth (cm)

na De
=
o lEII 1 IIIII|T| 1 |IUI|1|&_|_|IH=|TI I IIIIIHl LI |

Figure 11.11. Doping Profile, Absolute Value. This corresponds
to the doping specified by the netlist in figure 11.10

104

11.4 Doping Profile Xyce" Users’ Guide

flatx or flaty Al 1D Cross
Description

value Section

0 Gaussian on both sides of the peak (x1oc) location. /\

+1 Gaussian if x>x1oc, flat (constant at the peak value) if | /

x<xloc.

Gaussian if x<xloc, flat (constant at the peak value) if \

x>xloc.
Table 11.1: Description of the flatx, flaty doping parameters

Default Doping Profiles

Xyce has a few default doping profiles which are invoked if the user doesn’t bother to
specify detailed doping information. The default doping profiles are an artifact of early
PDE device development in Xyce, but are sometimes still useful. In particular, the simple
step-junction diode is often a useful cannonical problem. It is convenient to invoke a step
junction doping without having to use the more complex region tabular specification.

Most real devices will have doping profiles that do not exactly match the default profiles.
When attempting to simulate a realistic device, it will be neccessary to skip the defaults
and use the region tables described in the previous section.

One Dimensional Case

For the one-dimensional case, it is assumed that the doping profile is that of a simple
junction diode, with the junction location exactly in the middle. The acceptor and donor
concentrations are given by the parameters Na and Nd, respectively.

Note that the usage of Na and Nd, implicitly specifies a step junction doping profile, and is
mutually exclusive with the more complex “doping region” table specification, described in
section 11.4. If a netlist is input to Xyce which includes both a region table and Na (or Nd),
the code will immediately exit with an error.

Two Dimensional Case

Doping level defaults in the two dimensional case are somewhat more complicated than in
the one-dimensional case, because having two-dimensions allows for more configurations,
and an arbitrary number (2-4) of electrodes. In Xyce, it was decided that the default doping
profiles would be determined uniquely by the number of electrodes. The three available

105

Xyce™ Users’ Guide PDE Device Simulation with Xyce

default dopings are given in Table 11.2. In the case of the BJT and MOSFET dopings,
it is possible to specify either n-type or p-type using the type instance parameter. If the
detailed, manual doping is used, then the type parameter is ignored.

For a two-electrode device, the default doping is that of a simple diode. The acceptor
and donor doping parameters, Na and Nd are used in the same manner as in the one-
dimensional device. As in the one-dimsensional device, the junction is assumed to be
exactly in the middle of the domain.

For a three-electrode device (like the example), the default doping is that of a bipolar junc-
tion transistor (BJT). By default the transistor is a PNP, but by setting the instance param-
eter type=NPN, an NPN transistor can be specified instead. The two-dimensional example
in section 11.3 relies on this default.

For a four-terminal device, the default doping is that of a metal-oxide-semiconductor (MOS-
FET). Currently, the maximum number of electrodes is four, and no default profiles are
available for more than four electrodes. By default this transistor is assumed to be NMOS,
rather than PMOS.

Number of

Doping Profile

Electrodes

2 Step Function Diode
3 Bipolar Junction Transistor (BJT)
4 Metal-Oxide Semiconductor

Field-Effect Transistor(MOSFET)
Table 11.2: Default Doping profiles for different numbers of elec-
trodes

106 -

11.5 Electrodes Xyce™ Users’' Guide

11.5 Electrodes

In the two examples, minimal electrode were specified, and Xyce used the defaults. In
practice, especially for two-dimensional simulations, the user will need to specify the elec-
trodes in more detail.

NOTE: If an external mesh (from the SGFramework) is used, some of the electrode infor-
mation (the locations, and lengths) will be specified in the mesh file, so they should not be
specified in the netlist.

Manually Specifying the Electrodes

A detailed electrode specification is specifed in blue font in Figure 11.12. As with the
doping parameters, the electrode parameters are specified in a tabular format, in which
each columns of the table specifies the parameters for a different electrode. The most
important parameter (for getting the code to run without immediately exiting with an error)
is the name parameter. It is the only required parameter.

The number of specified electrodes must match the number of connected circuit nodes,
and the order of the electrode columns, from left to right, is in the same order as the circuit
nodes, also from left to right. In the example of Figure 11.12, the first electrode column,
which specifies an electrode named “anode”, is connected to the circuit through circuit
node 2. Respectively, the second column, for the “cathode” electrode, is connected to the
circuit by circuit node 3.

If using an external mesh (see section 11.6), the external mesh file must have this same
number of electrodes as well. Also, if using the external mesh, the electrode names
specifed in the electrode table must match (case insensitive) with the electrode names
used by the external mesh.

Boundary Conditions

In the example, the bc parameter has been set to “Dirichlet” on all the electrodes, which
is the default. The bc parameter sets the type of boundary condition that is applied to the
density variables, the electron density and the hole density. There are two possible settings
for the bc parameter, Dirichlet and Neumann. If Dirichlet is specified, the electron and hole
densities are set to a specific value at the contact, and the applied values enforce charge
neutrality. See the Xyce Reference Guide for the charge-neutral equation [2]. If Neumann
is specified, a zero-flux condition is applied, which enforces that the current through the
electrode will be zero.

This parameter does not affect the electrostatic potential boundary condition. The bound-
ary condition applied to the potential is always Dirichlet, and is (in part) determined from

107

Xyce™ Users’ Guide PDE Device Simulation with Xyce

Doping and Electrode specification example
vscope 1 0 0.0

rscope 2 1 50.0

cid 3 0 1.0u

rl 4 3 1515.0

vid 4 0 1.00

e Diode PDE device ———————————=—-——---

Z1DIODE 2 3 PDEDIODE

+ tecplotlevel=1 txtdatalevel=1 cyl=1
+ meshfile=internal .msh

+ nx=25 1=70.0e-4 ny=40 w=26.0e-4

* ELECTRODES: ckt node 2, ckt node 3
+ node = [name = anode, cathode
+ bc = dirichlet, dirichlet
+ start = 0.0, 0.0
+ end = 70.0e-4, 70.0e-4
+ side = top, bottom
+ material = neutral, neutral
+ oxideBndryFlag = 0, 01
* DOPING REGIONS: region 1, region 2, region 3
+ region= [function = uniform, gaussian, gaussian
+ type = ntype, ptype, ntype
+ nmax = 4.0e+12, 1.0e+19, 1.0e+18
+ nmin = 0.0e+00, 4.0e+12, 4.0e+12
+ xloc = 0.0 , 60.0e-04, 100.0
+ xwidth = 0.0, 4.0e-04, 1.0
e yloc - 0.0 , 24.5e-04, 9.0e-04
+ ywidth = 0.0 , 4.5e-04, 8.0e-04
+ flatx = 0 s = il
+ flaty = o, 0, -1]
Hom end of Diode PDE device ————-——————————-

.MODEL PDEDIODE Z0OD level=2

.options LINSOL ksparse=0

.options NONLIN maxsearchstep=1 searchmethod=2
.options TIMEINT reltol=1.0e-3 abstol=1.0e-6
.DC vscope 0 0 1

.print DC v(1) v(2) v(3) v(4) I(vscope) I(vid)
.END

Figure 11.12. Two-dimensional example, with detailed doping
and detailed electrodes.

108

11.5 Electrodes Xyce™ Users’ Guide

the connected nodal voltage. To apply a specific voltage to an electrode contact, a voltage
source should be attached to it, such as VBB in the schematic Figure 11.6.

Electrode Material

Several different electrode materials can be specified. A list is given in Table 11.3. The
main effect of any metal (non-neutral) material is the impose a Schottky barrier at the
contact. This generally makes numerical solution more difficult, so any materials should
be applied with caution.

The Xyce Reference Guide [2] has a detailed description of Schottky barriers and how
they are imposed on contacts in Xyce. Also, values for electron affinities of various bulk
materials and workfunction values for the various metal contacts are given in the Reference
Guide.

Material Symbol Comments
neutral neutral Default
aluminum al

p+-polysilicon ppoly

n+-polysilicon npoly

molybdenum mo

tungsten w

molybdenum disilicide modi

tungsten disilicide wdi

copper cu

platinum pt

gold au

Table 11.3: Electrode Material Options. Neutral contacts are the
default, and pose the least prob_iem to the solvers.

There is also an oxideBndryFlag parameter, which if set to true (1), will model the contact
as having an oxide layer in between the metal contact and the bulk semiconductor. Note
that this oxide layer model does not currently include displacement current, so transient
capacitive effects will not be seen in the results.

Location Parameters

Each electrode has three location parameters: start, end, and side. These are only
necessary if using the internal mesh and should not be specified if using an external,
SGFramework mesh.

109

Xyce™ Users’ Guide PDE Device Simulation with Xyce

For the internal mesh, the mesh is assumed to be rectangular, and any electrode is as-
sumed to be on one of the four sides. The four side possibilities are: top, bottom, right
and left. These four sides are parallel to mesh directions. The start and end parameters
are floating point numbers which specify the starting and ending location of an electrode,
in units of cm.

The lower left hand corner of the mesh rectangle is located at the origin. A side=bottom
electrode with start=0.0 and end=1.0e-4 will originate at the lower left hand corner of the
mesh (x=0.0, y=0.0) and end at (x=1.0e-4, y=0.0).

NOTE: Xyce will attempt to match the specified electrode to the specified mesh. However,
if the user specifies a mesh that is not consistent with the electrode locations, the elec-
trodes will not be able to have the exact length specified. For example, if the mesh spacing
is Az = 1.0e-5, then the electrodes can only have a length that is a multiple of 1.0e-5.

Electrode Defaults

There are defaults for all the electrode parameters except the names. In practice, the
locations of the electrodes will usually be explicitly specified (either using the electrode
table, or as part of an external mesh file). Default electrode locations have been created to
correspond with the default dopings, and they should only be used in that context.

Location Parameters

In practice, the locations of the electrodes will usually be explicitly specified, but they have
defaults to correspond with the default dopings. The default electrode locations in one-
dimensional devices are for that of a diode. One electrode is located at x=xmin, while the
other is located at x=xmax.

The default electrode locations in two-dimensional devices are dependent on the number
of electrodes, similar to the default dopings. Table 11.2 can be used to determine the
configurations. For the two-terminal diode, the two electrodes are along the y-axis, at the
x=xmin and x=xmax extrema. For the three-terminal BJT , all three electrodes are parallel
to the x-axis, along the top, at y=ymax. For the four-terminal MOSFET, the drain, gate, and
source electrodes are also along the top, but the bulk electrode spans the entire length of
the bottom of the mesh, at y=ymin.

Other Parameters

The default contact material is neutral. The default oxideBndryFlag is false (0). The
default boundary condition (bc) is Dirichlet.

110

11.6 Meshes Xyce™ Users’ Guide

11.6 Meshes

Meshes from the SG Framework (External, 2D)

It is possible to have Xyce read in a two-dimensional mesh which was generated exter-
nally, by the SGFramework [12]. The mesh pictured in Figure 11.1 is such a mesh, and
so is the refined mesh (not inside the circle) in Figure 11.6. To use an SGF-generated
mesh, the instance parameter, "meshfile” must be used, and set to be the name of the
SGFramework-generated file. Xyce will assume that the mesh file is located in the lo-
cal execution directory. One advantage of using an externally generated mesh (over an
internally generated mesh - see next section) is that external meshing tools are more so-
phisticated, and in particular have mesh refinement capabilities.

Instructions for the usage of the SGFramework is outside the scope of this document. If the
user wishes to generate meshes in this manner, it is best to consult Kramer [12]. Future
versions of Xyce may accept mesh files generated by other mesh generators, such as
Cubit [15].

Cartesian Meshes (Internal, 1D and 2D)

One dimensional and two-dimensional devices can both create cartesian meshes, without
requiring an external mesh generator. For the two-dimensional devices, it is necessary
to specify meshfile=internal.msh to invoke the cartesian meshing capability. For one-
dimensional devices, this isn't needed, as there is no other option.

Meshes generated in this manner are very simple, in that there are only two parameters
per dimension, and the resulting mesh is uniform. An example of such a mesh can be seen
in Figure 11.7. The mesh spacing is determined from the following expressions:

1 (11.8)
w

Ay = (11.9)
ny — 1

This mesh specification assumes that the domain is a rectangle. Non-rectangular domains
can only be described using an external mesh program.

Cylindrical meshes, 2D

For two-dimensional devices, the simulation area may be a cylinder slice. This capability
is turned on by the instance parameter, cyl=1. For an example, see Figure 11.13. It is

111

Xyce™ Users’ Guide PDE Device Simulation with Xyce

assumed that the axis of the cylinder corresponds to the minium radius (or x-axis value)
of the mesh, while the circumference corresponds to the maximum radius (or maximum
x-axis value). This feature can be applied to either external or internal two-dimensional
meshes.

Anode Ring

:

Figure 11.13. Cylindrical Mesh Example. This mesh has been
designed to match the electron microsope image, which is of a
stockpile device.

112

11.7 Mobility Models Xyce™ Users’ Guide

11.7 Mobility Models

There are several mobility models available to both the one and two dimensional devices,
and they are listed in Table 11.4. These models are fairly common, and can be found in
most device simulators. [10] [11] These models are described in more detail in the Xyce
Reference Guide [2].

Mobility Name Description Reference

arora Basic mobility model Arora, et al. [16]

analytic Basic mobility model Caughy and Thomas [17]

ST Includes carrier-carrier Dorkel and Leturq [18]
interactions

Table 11.4; Mobility models available for PDE devices

Specifying the mobility model from the netlist is done by setting the mobmodel parameter
to the name of the model. Model names are given in the first column of Table 11.4. The
mobility model is specified as an instance parameter on the PDE device instance line, as
(typically) mobmodel=arora. See the usage in Figure 11.5 for a more detailed example.

The default mobility is the "carr” mobility, which includes carrier-carrier interactions. This
model has a stronger dependence on carrier density than the other two models, and intro-
duces some nonlinearity into the problem. If having convergence problems, consider using
either the "arora” or "analytic” model, as both of these models are a little bit simpler.

113

xyce™ Users’ Guide PDE Device Simulation with Xyce

11.8 Bulk Materials

The bulk material is specifed using the bulkmaterial instance parameter. Xyce currently
supports Silicon (si) as a bulk material and this is the default. It can also simulate Gal-
ium Arsenide (gaas) and Germanium (ge), but these materials have not been extensively
tested.

The mobility models described in the previous section each support all three materials,
and the dielectric permittivity is correct for all three, but the carrier lifetime models may not
be. These issues will be resolved in a future Xyce release.

114

11.9 Solver Options Xyce™ Users' Guide

11.9 Solver Options

Problems that are based on PDE devices have different optimal solver settings than do
analog circuit problems. Generally, as PDE devices are mesh-based, and have a more
predictable topology, iterative linear solvers have a better chance of being successful than
they do for analog circuit simulation. On the nonlinear solver level, voltage limiting doesn’t
have an obvious application to PDE devices, and quadratic line search appears to be
the best algorithm. The solver options specified in the example netlist Figure 11.5 are
adequate for simulations that have a simple (linear) circuit attached.

For problems which involve a complicated external circuit, it is best to apply the two-level
Newton algorithm to the nonlinear solve. This algorithm is described in detail in Keiter [19]
and Mayaram [20]. While this algorithm has been implemented and exercised within Xyce,
it is not part of the Release 2.0 version. To use this algorithm, the user will need to obtain
a development branch build of Xyce, or wait until Release 2.1.

115

Xyce™ Users’ Guide PDE Device Simulation with Xyce

11.10 Output and Visualization

Using the .PRINT Command

For simple plots (such as |-V curves), output results for Xyce can be generated with the
.PRINT statement, which is described in detail in section 9.1. Figures 11.4 and 11.9 are
examples of the kind of data that is produced with .PRINT statement netlist commands.
These particular figures were plotted in Tecplot, but many other plotting programs would
also have worked, including XDAMP [21].

Multi-dimensional Plots

Device simulation has visualization needs which go beyond that of conventional circuit
simulation. Multi-dimensional perspective and/or contour plots are often desirable. Xyce
is capabable of outputting multi-dimensional plot data in several formats, including Tecplot,
GnuPlot, and sgplot. Currently, the options for each of these formats can only enable or
disable the output of files, and when enabled, a new file (or a new append to an existing
file) will happen at every time step or DC sweep step. For long simulations, this may
produce a prohibitive number of files. Currently, there is no equivalent to the .0PTIONS
OUTPUT INITIAL_INTERVAL command, nor does the output of plot data currently use this
command. Plot files are either output at every step or not at all.

For each type of plot file, the file is placed in the execution directory. Each individual device
instance is given a unique file, or files, and the file names are derived from the name of the
PDE device instance. The instance names provides the prefix, and the file type (tecplot,
gnuplot, sgplot) determines the suffix.

Tecplot Data

Tecplot is a commercial plotting program from Amtec Engineering, Inc., and is the best
choice for creating contour plots of spatially dependent data. All of the graphical examples
in this chapter were created with Tecplot. (see Figures 11.7 and 11.8 for examples) The
output of Tecplot files is enabled using the instance parameter, tecplotlevel=1. If set to
zero, no tecplot files are output. If set to one, a separate tecplot file is output for each
nonlinear solve. If set to two, a single tecplot file, which contains data for every nonlinear
solve is created and is appended at the end of each solve.

By default tecplotlevel is set to one, meaning the code will, by default produce a separate
Tecplot file for each nonlinear solve. The suffix for Tecplot data files is *.dat. Internally, the
file is an ASCII text file. Tecplot does have a binary format, but Xyce has not yet been set
up to use it.

Note that it is also possible to set tecplotlevel=2. Doing this will force Xyce to create one

- 116

11.10 Output and Visualization Xyce™ Users’ Guide

single tecplot file, and the data from each solve will be appended to this file as a separate
zone. This makes it possible to use Tecplot to create annimations.

Gnuplot Data

Gnuplot is an open source plotting program, which is available on most Linux/Unix plat-
forms. The parameter for this type of output is gnuplotlevel=1. This type of output file is
off (zero) by default, meaning no gnuplot files will be output. The suffix for Gnuplot files is
*Gnu.dat. Like tecplot files, Gnuplot files are also in ASCII text format.

NOTE: Gnuplot will only work with structured Cartesian meshes. Externally created, un-
structured meshes (even ones that appear Cartesian) cannot be plotted with Gnuplot.

Sgplot Data

Sgplot is the plotting program for the SGFramework [12]. The parameter for this type of
output is sgplotlevel=1. This type of output file is off (zero) by default. The suffix for
Sgplot data files is *.res. Interally this file is in binary format. Note that it is not a machine-
independent file format.

Volume Averaged Data

Xyce can also output volume-averaged information for each PDE device. This is enabled
by setting the instance parameter, txtdatalevel=1. It is off (zero) by default, meaning no
text files with volume averaged data will be output.

117

Xyce™ Users’ Guide

This page is left intentionally blank

118

Bibliography

[1] M. S. Eldred, A. A. Giunta, B. G. van Bloemen Waanders, S. F. Wojtkiewicz Jr., W. E.
Hart, and M. P. Alleva. DAKOTA, A multilevel parallel object-oriented framework for
design optimization, parameter estimation, uncertainty quantification, and sensitivity
analysis. Version 3.0 Reference Manual. Technical Report SAND2001-3796, Sandia
National Laboratories, Albuquerque, NM, April 2002.

[2] Scott A. Hutchinson, Eric R. Keiter, Robert J. Hoekstra, Lon J. Waters, Thomas V.
Russo, Eric L. Rankin, Roger P. Pawlowski, and Steven D. Wix. Xyce parallel elec-
tronic simulator: Reference guide, version 2.0. Technical Report SAND2004-xxxx,
Sandia National Laboratories, Albuguerque, NM, June 2004.

[3] Orcad PSpice User’s Guide. Technical report, Orcad, Inc., 1998.

[4] ChileCAD Schematic Capture Tool. http://www.sandia.gov/mstc/products/elect-comp/chile

[5] A. S. Grove. Physics and Technology of Semiconductor Devices. John Wiley and
Sons, Inc., 1967.

[6] H. A. Watts, E. R. Keiter, S. A. Hutchinson, and R. J. Hoekstra. Time integration for
the Xyce parallel electronic simulator. In ISCAS 01, October 2000.

[7] J. Roychowdhury. Private Communication, 2003.

[8] Bruce Hendrickson and Robert Leland. The Chaco User's Guide: Version 2.0. Techni-
cal Report SAND94-2692, Sandia National Laboratories, Albuguerque, NM, Decem-
ber 1994,

[9] Erik Boman, Karen Device, Robert Heaphy, Bruce Hendrickson,
William F. Mitchell, Matthew St. John, and Courtenay Vaughan. Zoltan:
Data-Management Services for Parallel Applications:User’s Guide.
http://www.cs.sandia.gov/Zoltan/Zoltan.html, 2004.

[10] Z. Yu, D. CHen, L. So, , and R. W. Dutton. Pisces-2et—two dimensional device simu-
lation for silicon and heterostructures. Technical report, Stanford University, 1994.

[11] Davinci User's Manual. Technical report, TCAD Business Unit, Avanti! Corporation,
1998.

119

Xyce™ Users’ Guide ' BIBLIOGRAPHY

[12] Kevin M. Kramer and W. Nicholas G. Hitchon. Semiconductor Devices: A Simulation
Approach. Prentice-Hall, Upper Saddle River, New Jersey, 1997.

[13] S. Selberherr. Analysis and Simulation of Semiconductor Devices. Springer-Verlag,
New York, 1984.

[14] Eric R. Keiter, Scott A. Hutchinson, Robert J. Hoekstra, Eric L. Rankin, Thomas V.
Russo, and Lon J. Waters. Computational algorithms for device-circuit coupling. Tech-
nical Report SAND2003-0080, Sandia National Laboratories, Albugquerque, NM, Jan-
uary 2003.

[15] CUBIT Mesh Generation Toolsuite. http://sass1693.sandia.gov/cubit/.

[16] N.D. Arora, J.R..Hauser, and D.J. Roulston. Electron and hole mobilities in silicon as
a function of concentration and temperature. [EEE Transactions on Electron Devices,
ED-29:292-295, 1982.

[17] D.M. Caughey and R.E. Thomas. Carrier mobilities in silicon empirically related to
doping and field. Proc. IEEE, 55:2192-2193, 1967.

[18] J.M. Dorkel and Ph. Leturg. Carrier mobilities in silicon semi-empirically related to
temperature, doping, and injection level. Solid-State Electronics, 24(9):821-825,
1981.

[19] Eric R. Keiter, Scott A. Hutchinson, Robert J. Hoekstra, Eric L. Rankin, Thomas V.
Russo, and Lon J. Waters. Computational algorithms for device-circuit coupling. Tech-
nical Report SAND2003-0080, Sandia National Laboratories, Albuquerque, NM, Jan-
uary 2003.

[20] Kartikeya Mayaram and Donald O. Pederson. Coupling algorithms for mixed-level cir-
cuit and device simulation. IEEE Transactions on Computer Aided Design, 11(8):1003—
1012, 1992.

[21] XDAMP Graphical User Interface. http://wuw.cs.sandia.gov/xyce/xdamp.html .

120

http://sass1693.sandia.gov/cubit
http://www

Index

Xyce
running, 23
running in parallel, 25, 81

.DC, 31

. INCLUDE, 51

.MODEL, 40

.0P, 58

.OPTIONS
LINSOL, 84, 85
DUTPUT, 63, 78
PARALLEL, 84, 85
RESTART, 62, 63

.PRINT, 78, 79
DC, 31
FORMAT, 80
TRAN, 34, 78

.STEP, 65

.SUBCKT, 40

.TRAN, 34, 61

runxyce, 22, 23

runxyce.bat, 22, 23

xmpirun, 22, 23

analog behavioral modeling (ABM), 44, 53
analysis

DC, 17, 58

DC sweep, 31

DC sweep, 58

STEP, 65

transient, 17, 33, 61

behavioral model, 4, 41, 44
analog behavioral modeling (ABM), 44,
53, 54
lookup table, 55
bias point, 58, 61
bifurcation, 71

121

Chaco, 83, 84
checkpoint, 62
format, 63
ChileSPICE, 19
circuit
elements, 38
simulation, 38
topology, 38, 39
command line, 23, 25
arguments, 24
output, 24
continuation, 71

DAKOTA, 17
DC analysis, 58
DC Sweep, 58
DC sweep, 31
OP Analysis, 58
running, 58
device
B (nonlinear dependent) source, 54
analog, 40, 41
analog device summary, 42
B source, 41
behavioral, 54
behavioral model, 16, 17, 41
bipolar junction transistor (BJT, 41
capacitor, 41
device types, 41
diode, 41
independent current source, 41
independent voltage source, 41
inductor, 41
instance, 41
MOSFET, 42
mutual inductor, 41

Xyce™ Users’ Guide INDEX

nonlinear dependent source, 41 analog devices, 40
package, 17 arithmetic expressions, 46
PDE Devices, 42 command elements, 40
resistor, 41 comments, 29, 39
specifying ABM devices, 54 device description, 40
subcircuit, 42 element, 38
transmission line, 42 end line, 39
voltage controlled current source, 41 expression operators, 45
voltage controlled switch, 42 expressions, 43
voltage controlled voltage source, 41 first line special, 39
in-line comments, 39
Example model definition, 40
checkpointing, 63 node names, 39
circuit construction, 28 parameters, 42
DC sweep, 31 restart, 62
declaring parameters, 43 scaling factors, 38
restarting, 63 sources, 61
subcircuit model definition, 49, 50 subcircuit, 40
transient analysis, 33 title, 29
using expressions, 44 title line, 38, 39
using parameters, 43 using expressions, 44
expressions, 43 node names, 39
additional constructs for ABM model-
ing, 55 OP analysis, 58
arithmetic, 46 output
example, 44 comma separated value, 23
lookup table, 55 log file, 23
operators, 45 specifying file name, 23
time-dependent, 55 time values, 62
using, 44
valid constructs, 44 parallel
communication, 83
graph partitioning, 83 computing, 15, 16
ground nodes, 39 distributed-memory, 16
GUI, 23 efficiency, 16, 17

graph partitioning, 83

homotopy, 71, 72 large scale, 16

Microsoft Windows, 23 load balance, 83
model message passing, 16
definition, 48 MPI, 23
model organization, 51 number of processors, 24
MPI, 23 shared-memory, 16
parallelGuidance, 26
netlist, 28, 38 parameter
.END, 38 declaring, 43
.END statement, 29 using in expressions, 43

122

INDEX Xyce™ Users’ Guide

PDE Device Modeling, 87 Medici, 18
PDE Devices, 42 .
platforms time step
Apple/OSX, 24 maximum size, 62
HP/Compag/Trué4, 24 size, 62
Intel X86/FreeBSD, 24 topology, 39
Intel X86/Linux, 24 transient analysis, 33, 61
Intel X86/Microsoft Windows 2000, 24 Unix, 19
SGUIRIX, 24 Users of other circuit codes, 19
PSpice, 19, 28 ’
Probe, 80 Windows, 23

: Command Prompt, 23
Reference Guide, 19

restart, 62, 63 Xmpirun, 23
format, 63
limitations in parallel, 84 ZOLTAN, 83, 84
results

evaluating, 80

output control, 78

output frequency, 78

output options, 77

print commands, 79
running Xyce, 23
runxyce, 23

Sandia National Laboratories, 15.
schematic capture, 28
simulation
analog, 17
device, 17
digital, 17
mixed signal, 17
solvers
iterative linear, 84
transient, 62
sources, 61
defining time-dependent, 61
time-dependent, 61
waveforms, 62
SPICE, 28, 38
STEP parametric analysis, 65
subcircuit
hierarchy, 49
scope, 50
Synopsys
DaVinci, 18

123

Xyce™ Users’ Guide

INDEX

DISTRIBUTION:

1

Steven P. Castillo

Klipsch School of Electrical and
Computer Engineering

New Mexico State University
Box 3-0

Las Cruces, NM 88003

Kwong T. Ng

Klipsch School of Electrical and
Computer Engineering

New Mexico State University
Box 3-0

Las Cruces, NM 88003

Nick Hitchon

Electrical and Computer Engi-
neering

University of Wisconsin

1415 Engineering Drive
Madison, WI 53706

Mark Kushner

Department of Electrical and
Computer Engineering
University of lllinois

1406 W. Green Street

Urbana, IL 61801

Ron Kielkowski

RCG Research, Inc

8605 Allisonville Rd, Suite 370
Indianapolis, In 46250

Mike Davis

Software Federation, Inc.
211 Highview Drive
Boulder, Co 80304

Wendland Beezhold
Idaho Accelerator Center
1500 Alvin Ricken Drive
Pocatello, Idaho 83201

Kartikeya Mayaram
Department of Electrical and
Computer Engineering

Oregon State University
Corvallis, OR 97331-3211

- 124

Linda Petzold

Department of Computer Sci-
ence

University of California, Santa
Barbara

Santa Barbara, CA 93106-5070

Jaijeet Roychowdhury
4-174 EE/CSci Building
200 Union Street S.E.
University of Minnesota
Minneapolis, MN 55455

C.-J. Richard Shi

VLSI and Electronic Design Au-
tomation

210 EE/CSE Bldg.

Box 352500

University of Washington
Seattle, WA 98195

Homer F. Walker

WPI Mathematical Sciences
100 Institute Road
Worcester, MA 01609

Dan Yergeau

CISX 334

Via Ortega

Stanford, CA 94305-4075

Masha Sosonkina
319 Heller Hall

10 University Dr.
Duluth, MN 55812

Misha Elena Kilmer

113 Bromfield-Pearson Bldg.
Tufts University

Medford, MA 02155

Tim Davis

P.O. Box 116120

University of Florida
Gainesville, FL 32611-6120

INDEX

Xyce™ Users’ Guide

Achim Basermann

C&C Research Laboratories,
NEC Europe Ltd.

Rathausallee 10

D-53757 Sankt Augustin
Germany

Philip A. Wilsey

Clifton Labs

7450 Montgomery Road
Suite 300

Cincinnati, Ohio 45236

Dale E. Martin

Clifton Labs

7450 Montgomery Road
Suite 300

Cincinnati, Ohio 45236

Lon Waters

CoMet Solutions, Inc.
11811 Menaul Blvd NE
Suite No. 1
Albuquerque, NM 87112

MS 0151
Tom Hunter, 09000

MS 0513
Al Romig, 01000

MS 0457
John Stichman, 02000

MS 0321
Bill Camp, 09200

MS 0841
Thomas C. Bickel, 09100

MS 1079
Marion Scott, 01700

MS 9003
Kenneth E.
08900

MS 0318
Paul Yarrington, 09230

Washington,

125

MS 1071
Mike Knoll, 01730

MS 0310
Robert Leland, 09220

MS 0316
Sudip Dosanjh, 09233

MS 0525
Paul V. Plunkett, 01734

MS 0835
Steven N. Kempka, 09141

MS 0826
John D. Zepper, 09143

MS 0824
Jaime L. Moya, 09130

MS 0828
Martin Pilch, 09133

MS 0828
Anthony A. Giunta, 09133

MS 0139
Stephen E. Lott, 09905

MS 0310
Mark D. Rintoul, 09212

MS 1110
David Womble, 09214

MS 1111
Bruce Hendrickson, 09215

MS 1110
Neil Pundit, 09223

MS 1110
Doug Doerfler, 09224

MS 0822
Philip Heermann, 09227

MS 0819
Edward Boucheron, 09231

Xyce™ Users’ Guide

INDEX

1

10

MS 0820
Patrick Chavez, 09232

MS 0316
John Aidun, 09235

MS 0316
Scott A. Hutchinson, 09233

MS 0316
Eric R. Keiter, 09233

MS 0316
Deborah Fixel, 09233

MS 0316
Robert J. Hoekstra, 09233

MS 0316
Joseph P. Castro, 09233

MS 0316
David R. Gardner, 09233

MS 0316
Gary Hennigan, 09233

MS 0316
Roger Pawlowski, 09233

MS 0316
Richard Schiek, 09233

MS 1111
John N. Shadid, 09233

MS 1111
Andrew Salinger, 09233

MS 0316
Paul Lin, 09233

MS 0316
Siriphone C. Kuthakun, 09233

MS 0807
David N. Shirley, 9328

MS 0807
Philip M. Campbell, 9328

126

MS 0847
Scott Mitchell, 09211

MS 0847
Mike Eldred, 09211

MS 0847
Tim Trucano, 09211

MS 0847
Bart van Bloemen Waanders,
09211

MS 0196
Elebeoba May, 09212

MS 1110
Todd Coffey, 09214

MS 1110
David Day, 09214

MS 1110
Mike Heroux, 09214

MS 1110
James Willenbring, 09214

MS 1111
Karen Devine, 09215

MS 0310
Jim Ang, 09220

MS 1109
Robert Benner, 09224

MS 0822
Pat Crossno, 09227

MS 0822
David Rogers, 09227

MS 0316
Harry Hjalmarson, 09235

MS 0525
Steven D. Wix, 01734

MS 0525
Thomas V. Russo, 01734

INDEX Xyce™ Users' Guide
1 MS 0525 MS 0537
Regina Schells, 01734 Barbara Wampler, 02331
1 MS 0525 MS 053?
Carolyn Bogdan, 01734 Doug Weiss, 02333
1 MS 0525 MS 0537
Mike Deveney, 01734 Scott Holswade, 02333
MS 0537
1 MS 0525
Raymond B. Heath, 01734 SRS A L (el
MS 0405
1 MS 0525 Todd R. Jones, 12333
Ronald Sikorksi, 01734
MS 0405
1 MS 0525 Thomas D. Brown, 12333
Albert Nunez, 01734
MS 0405
1 MS 1081 Donald C. Evans, 12333
Paul E. Dodd, 01762
auE. Ho MS 0405
1 MS 0660 Matthew T. Kerschen, 12333
Roger F. Billau, 09519 MS 9101
1 MS 0874 Rex Eastin, 08232
Robert Brocato, 01751 MS 9101
1 MS 1081 Seung Choi, 08235
Charles E. Hembree, 01739 MS 9409
William P. Ballard, 08730
1 MS 0889
Neil R. Sorenson, 01832 MS 9202
Kathryn R. Hughes, 08205
1 MS 0311
Greg Lyons, 02616 MS 9202
Rene L. Bierbaum, 08205
1 MS 0311
Martin Stevenson, 02616 MS 9202
Kenneth D. Marx, 08205
1 MS 0328
MS 9202
AT, i Stephen L. Brandon, 08205
1 MS 0537 MS 9202
Perry Molley, 02331 Jason Dimkoff, 08205
1 MS 0537 MS 9202
Siviengxay Limary, 02331 Brian E. Owens, 08205
1 MS 0537 MS 9401

John Dye, 02331

127

Donna J. O’Connell, 08751

Xyce™ Users’ Guide

INDEX

MS 9217
Stephen W. Thomas, 08950

MS 9217
Tamara G. Kolda, 08950

MS 9217
Kevin R. Long, 08950

MS 9915
Mitchel W. Sukalski, 08961

MS 1153
Larry D. Bacon, 15333

MS 1179
Leonard Lorence, 15341

MS 1179
David E. Beutler, 15341

MS 1179
Brian Franke, 15341

MS 0835
Randy Lorber, 09141

128

MS 1152
Mark L. Kiefer, 01642

MS 1137
Greg D. Valdez, 06224

MS 1137
Mark A. Gonzales, 06224

MS 1138
Rebecca Arnold, 06223

MS 1138
Charles Michael Williamson,
06223

MS 1138
Harvey C. Ogden, 06223

MS 9018
Central
8945-1

MS 0899
Technical Library, 9616

Technical Files,

	Xyce Parallel Electronic Simulator Users' Guide, Version 2.0
	Abstract
	Acknowledgements
	Trademarks
	Contents

	1 Introduction
	1.1 Xyce Overview
	1.2 Xyce Capabilities
	Improved performance for all numerical kernels
	Flexible Device Package Design
	Modeling Fidelity
	Analysis capability
	Object-oriented code design and implementation
	1.3 Description of Document
	1.4 Reference Guide
	1.5 How to Use this Guide

	2 Installing and Running Xyce
	2.1 Xyce Installation
	2.2 Running Xyce
	Command Line Simulation
	Command Line Arguments
	Running Xyce in Parallel

	3 Simulation Examples with Xyce
	3.1 Example Circuit Construction
	3.2 DC Sweep Analysis
	3.3 Transient Analysis

	4 Netlist Basics
	4.1 General Overview
	Introduction
	Netlist Elements
	Analog Devices
	3 Parameters and Expressions
	Parameters
	How to Declare and Use Parameters
	Expressions

	5 Working with MODEL Statements
	5.1 Definition of a Model
	Defining models using model parameters
	Defining models using subcircuit netlists
	5.2 Model Organization
	Model library configuration

	6 Analog Behavioral Modeling
	6.1 Overview of Analog Behavioral Modeling
	6.2 Specifying ABM Devices
	Additional constructs for use in ABM expressions
	Alternate behavioral modeling sources

	7 Analysis Types
	7.1 Introduction
	7.2 DC Analysis
	Setting Up and Running a DC Sweep
	OPAnalysis
	7.3 Transient Analysis
	Defining a Time-Dependent (transient) Source
	Transient Calculation Time Steps
	Checkpointing and Restarting
	7.4 STEP Parametric Analysis
	Sweeping over a Device Instance Parameter
	Sweeping over a Device Model Parameter
	Sweeping over Temperature
	Special cases: Sweeping Independent Sources Resistors Capacitors

	8 Using Homotopy Algorithms to Obtain Operating Points
	8.1 Homotopy Algorithms Overview
	HOMOTOPY Algorithms Available in Xyce
	8.2 Examples
	MOSFET Homotopy
	Natural Parameter Homotopy

	9 Results Output and Evaluation Options
	9.1 Control of Results Output
	PRINT Command

	9.2 Additional Output Options
	OPTIONS OUTPUT Command

	9.3 Evaluating Solution Results

	10.Guidance for Running Xyce in Parallel
	10.1 Introduction
	10.2 Mechanics
	10.3 Problem Size
	Smallest Possible Problem Size
	Ideal Problem Size

	10.4 Linear Solver Options
	10.5 Partitioning Options
	Chaco Static Partitioning of Circuit
	Zoltan Partitioning of the Linear System
	Singleton Filtering of the Linear System

	10.6 Recommended Partitioning and Solver Options

	11.PDE Device Simulation with Xyce
	11.1 Introduction
	Equations
	Discretization

	11.2 One Dimensional Example
	Netlist Explanation
	Boundary Conditions and Doping Profile
	Results

	11.3 Two Dimensional Example
	Netlist Explanation
	Doping Profile
	Boundary Conditions and Electrode Configuration
	Results

	11.4 Doping Profile
	Manually Specifying the Doping
	Default Doping Profiles

	11.5 Electrodes
	Manually Specifying the Electrodes
	Electrode Defaults

	11.6 Meshes
	Meshes from the SG Framework External,
	Cartesian Meshes Internal, 1 D and 2D)
	Cylindrical meshes 2D

	11.7 Mobility Models
	11.8 Bulk Materials
	11.9 Solver Options
	11.10 0utput and Visualization
	Using the PRINT Command
	Multi-dimensional Plots
	Volume Averaged Data

	Bibliography
	Index
	Distribution

