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Abstract
Semiclassical Methods in Chemical Reaction Dynamics
by
Srihari Keshavamurthy
Doctor of Philosophy in Chemistry
Universﬁ:y of California at Berkeley
Professor William H. Miller, Chair

Semiclassical approximations, 'simple as well as rigorous, are formulated in
order to be able to describe gas phase chemical reactions in large systems.

We formulate a simple but accurate semiclassical model for incorporating
multidimensional tunneling in classical trajectory simulations. This model is based
on the existence of locally conserved actions around the saddle point region on a
multidimensional potential energy surface. Using classical perturbation theory and
monitoriﬁg the imaginary action as a function of time along a classical trajectory we
calculate state-specific unimolecular decay rates for a model two dimensional potential
with coupling. The results are in good comparison with exact quantum results for
the potential over a wide range of coupling constants.

We propose a new semiclassical hybrid method to calculate state-to-state S-
matrix elements for bimolecular reactive scattering. The accuracy of the Van Vleck-
Gutzwiller propagator and the short time dynamics of the system make this method
self-consistent and accurate. We also go beyond the stationary phase a,pproximatio‘n
by doing the resulting integrals exactly (numerically). As a result, clé,ssica.]ly for-
bidden probabilties are calculated with purely real time classical trajectories within
this approach. Application to the one dimensional Eckart barrier demonstrates the
accuracy of this approach.

Successful application of the semiclassical hybrid approach to collinear reac-

tive scattering is prevented by the phenomenon of chaotic scattering. The modified




Filinov approach to evaluating the integrals is discussed, but application to collinear
systems requires a more careful analysis. In three and higher dimensional scattering
systems, chaotic scattering is supressed and hence the accuracy and usefulness of the

semiclassical method should be tested for such systems.
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Chapter 1
General Introduction

Chemical reaction dynamics is a fascinating field, full of complexities and
surprises. As chemists we are interested in understanding chemical reactivity from
first principles. There are various different levels of detail to understanding chemical
reactivity, ranging from broad empirical guidelines to the description based on funda-
mental interactions at the atomic level. On the experimental side, we now have the
capability to probe and study chemical reactions in a very detailed fashion. Recent
progress in experimental techniques like molecular beam methods[38] and high reso-
lution spectroscopies[39] have led reseachers to measure lifetimes, reaction rates and
other interesting quantum state-specific properties of fairly complicated molecules.
With the advent of ultrashort laser pulses[84] it is also possible to study the real-
time evolution of specific initial states. These experimental advances have provided
a challenge and motivation for the theoreticians to understand chemical reactions at
the microscopic level. The task for a theoretical chemist, in my opinion, is to formu-
late models for chemical reactions which lead to valuable insights into the nature of
chemical reactivity and provide a clear explanation for the experimental results.

In contrast to the experimental advances, theoretical description of chemical
reaction dynamics at similar levels of detail is not yet well developed. In principle, at
the fundamental level, we can certainly write down the Hamiltonian for a complicated

system and thus the Schrodinger or Hamilton’s equation describing the dynamics.

However, it 1s an entirely different issue to solve these equations in a rigorous fashion
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due to the fact that in any chemical system we have a large number of strongly
coupled degrees of freedom. Solving the Schrodinger equation rigorously for several
strongly coupled degrees of freedom is still out of reach of our current computational
capabilities. In fact the best we can do is a four atom (six degrees of freedom)
reaction[44]. In addition, we need accurate ab initio potential surfaces in order to
perform dynamics in a reliable way. Present levels of sophistication in electromic
structure theory cannot provide accurate potential surfaces for more than a few atom
systems. Thus, it becomes very important to consider approximate approaches to
develop potential surfaces and solving for the dynamics of a complicated chemical
system.

There has been a flurry of activities in the recent years in developing effi-
cient approximate methods to solve the Schrédinger equation for both gas phase and
condensed phase reactions. Considerable progreés has been made in the theory of
reactifre scattering[41] in order to compute state-specific transition probabilities. The
S-matrix Kohn variational principle[42] forinula.tion of reactive scattering represents
a significant advance in our capabilities to calculate state-specific observables for gas
phase reactions. For the calculation of averaged observables like the thermal rate
constants and cummulative reaction probabilities, there are many direct approaches
including the path integral method[5, 74] and methods based on time dependent[47]
and time independent[44, 46] scattering theory. Path integral methods, based on the
influence functional idea[62, 85, 12], also have been useful in describing reactions in
condensed phases. Despite these numerically attractive and ingenious approaches to
solving the Schrodinger equation, we still cannot go beyond a few atom systems. One
of the main bottlenecks has to do with the speed and memory limitations of our cur-
rent computing capabilities. It is clear that computers will continue to grow in speed
and memory size making it possible to provide a realistic description of larger molecu-
lar systems, but we are always interested in carrying out reliable calculations that are
beyond the capabilities of a fully rigorous quantum treatment. The question is then,
‘are there ways to gain insights into the dynamics of a chemical reaction which are
computationally straightforward, qualitative and guantitative. From a numerical and

intutive standpoint, classical mechanics offers such a framework to study reactions of
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complicated chemical systems.

1.1 Classical dynamics

It is well known that classical trajectory calculations are feasible for truly
complex molecular systems. For example, in the description of reactions in condensed
phases molecular dynamics simulations play a very important role[86] due to the fact
that the numerical effort in solving the coupled first order Hamilton’s equations of mo-
tion scales linearly with the number of degrees of freedom. Moreover, recent advances
in our understanding of the foundations of classical mechanics[19, 87, 88, 89, 8] has
provided a variety of methods to analyze and gain insights into the classical dynamics
of complicated systems. Considerable amount of work has been done in understand-
ing the structure of phase space of complicated dynamical systems leading to insights
on bimolecular and unimolecular reactions|[79, 80]. Researchers are realizing that
clarifying the rich phase space structure of a complicated system can yield valuable
-information about the corresponding underlying dynamics[90, 94]. This is still a
very active area of research. Nevertheless, a naive use of classical mechanics cannot
describe processes which are of importance in chemical reactions. An important ex-
ample is tunneling, which dominates the rates at low temperatures when the reaction
involves light atoms such as hydrogen|1, 4].

Let me expand a little on the use of the words naive classical mechanics.
Ordinarily, we deal with classical trajectories in real time defined via the Hamilton’s

variational principle[19]

sla() = 6 [ dt Lla(),a(¥).¢] = 0, (11)

where S and L represent the action functional and the Lagrangian of the system
.respectively. In real time ¢ classical trajectories cannot evolve from one phase space
region to another equivalent but disconnected phase space region. For example, con-
sider the simple symmetric double well potential. It is easy to see in this case that
for energies below the barrier height, the phase space is made up of energy manifolds

which are topologically disconnected. Thus, a real time classical trajectory evolving
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on one of the energy manifolds cannot continously evolve into the other equivalent
energy manifold. Hence, tunneling cannot be accounted for in this version of classical
mechanics. However, notice that in Eq. (1.1) there is no requirement that ¢ be real. In
fact, interestingly, the consequences of relaxing the constraint of real ¢ leads to tunnel-
ing in this analytically continued version of classical mechanics[91]. Incidentally, the
analysis of classical trajectories in complex time is linked to certain interesting con-
jectures about the integrability of the corresponding classical Hamiltonian[92, 88]. In
this thesis, we will be concerned not with analytically continued classical mechanics,
but with semiclassical extensions of the naive classical mechanics in order to properly
account for classically forbidden processes in chemical reactions.

There are other effects like quantum interference, zero point energies which
are again not explicitly present in the naive classical mechanics. An elegant ap-
proach to build in these effects, keeping intact all of the usual adavntages of classical
mechanics, is to consider famalies of classical trajectories as opposed to a single clas-
sical trajectory[9, 93]. Each one of the classical trajectories has assosciated with it
an amplitude and a phase which are classical quantities and the idea of quantum
superposition is introduced. Thus, observables are calculated by summing up the
contributions from each individual trajectory at the amplitude level. By explcitly
including superposition, we are guaranteed to treat essentially all quantum effects like
tunneling, interference, quantization and selection rules[9]. We are thus naturally lead
to semiclassical dynamics in order to construct the precise form of these amplitudes

and phases.

1.2 Semiclassical dynamics

Semiclassical methods are very general and powerful techniques to study
the asymptotic properties of the solutions to differential or integral equations[93, 60,
24, 89, 94]. In fact, for any system which can support solutions in the form of a
rapidly varying phase with a slowly modulated amplitude we can use semiclassical
approximations in order to gain insights about the system. For example, semiclassical

methods are used in such diverse fields like wave propagation in atmosphere and
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interacting seismic waves.

As far as this thesis is concerned we will be interested in semiclassical approx-
imations to the non-relativisitc Schrodinger equation. For this case, the semiclassical
methods yield asymptotic solutions to the wavefunction in the Limit that the relevant
classical actions are much larger than compared to the fundamental unit of action
fi. Semiclassical application to bound state problems has a very long and illustri-
ous history. For example, semiclassical anaysis of the energy eigenfunctions leads to
the celebrated Bohr-Sommerfeld or Einstein-Brillouin-Keller[23] quantization of the
energy levels for an integrable system via

}gp-dq = 2rh (nj + %) , (1.2)

where C; is a closed contour on an invariant torus, n; is the quantum number and y;
is the Maslov index[60]. Quantization of integrable systems is a very well established
field. The quantization of non-integrable systems is a very different story. Here
there are no invariant tori in phase space and the relevant objects are periodic orbits
in phase space as shown in the seminal work by Gutzwiller[89, 95]. However, the
i)roblem of quantization of non-integrable systems is not a solved problem due to the
fact that the Gutzwiller approach is not well behaved. Recent progress in this area
has been pioneered by many people including Artuso[96], Littlejohn[97], Wintgen[98]
and Berry[99]. The probleﬁl also has to do with understanding the consequences of
non-integrability in the corresponding quantum system. This is still a very interesting
and active field of research.

On the other hand, an important contribution to semiclassical analysis to
molecular collisions was made by Ford and Wheeler[100] who showed how elastic
scattering of atoms could be described semiclassically. Later Miller[9] generalized the
ideas and provided a very elegant and practical approach to applying semiclassical
methods to more complicated systems which could undergo inelastic and reactive
collisions. This classical S-matriz theory shows how to calculate the state-to-state
S-matrix elements for reactive collisions. The only difficult feature of this theory
is that taking into account classically forbidden processes like tunmneling involved

complex valued classical trajectories. Nevetheless, in a series of seminal papers, Miller
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and George[ll] demonstrated the accuracy of the theory by analytically continuing
classical mechanics. Despite the success, it was realized that application to truly large
systems was prohibitively difficult.

Thus far we have concentrated on semiclassical approximations in the energy
representation. It is also equally possible to perform the analysis in the time domain.
The main contribution in this area was by Van Vleck who derived the semiclassical
approximation to the propagator and Gutzwiller who later derived a more accurate
version of Van Vleck’s results which was valid for longer times[64]. The resulting
expression is the Van Vleck-Gutzwiller approximation{64]

- 7 FJ2 2 . 1/2
(x2| exp ("%) | x1) ~ (27r1zh) ; Det (8 Sgg:g’:ll’t))
« exp (z’Sk(x2,x1;t) B iwyk)
R 2 ’
(1.3)

where Sy is the classical action for the k™ classical trajectory, F is the number of
degrees of freedom and pj is the Maslov index (different from the one in Eq. (1.2)).
However, the work of Berry et ¢l.[68] raised doubts about the accuracies of semiclas-
sical approximations for long times when the classical dynamics was irregular. They
linked the failure of semiclassical approximations to the development of complicated
phase space structures and demonstrated it by applying to the quartic oscillator prob-
lem. They also provided some estimates of the time scales for which the semiclassical
propagation could be usefully accurate. This feature of the semiclassical propagator
seemed to limit its applicability until recently when Heller and Tomsovic[58] demon-
strated accuracy of the approximation to much longer times then that implied by
Berry et al. It was shown that the semiclassical propagator provided very accurate
results for strongly chaotic systems even when the corresponding phase space had
developed incredibily complicated structures. Later, application[58, 59] to mixed sys-
tems showed similar accuracies and once again the Van Vleck-Gutzwiller approxima-
tion was rejuvenated. In a series of papers, Heller and coworkers have demonstrated
the accuracy and usefulness of the semiclassical propagator. In retrospect, the anal-

ysis of Berry et al. was not quite general as the quartic oscillator example i1s not the
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typical case due to some of the special properties of this system.

To summarize, the semiclassical analysis for bound or unbound systems
allows us to construct the amplitude and phase assosciated with each classical trajec-
toiy. From Eq (1.3), the phase is simply given by the classical action which satisfies
the Hamilton-Jacobi equation[19, 88] and the amplitude is related to the stability of
nearby classical trajectories and satisfies the amplitude transport equation. The am-
plitude also plays the role of a classical probability. In addition to providing physical
insights into the system, the semiclassical approximations can be usefully accurate
over a wide variety of situations ranging from completely integrable to strongly chaotic
systems. The next few chapters in this thesis will demonstrate the usefulness of the

semiclassical approximations for molecular systems.

1.3 Outline of the thesis

The main theme of this thesis is concerned with semiclassical analysis of
~ general multidimensional systems. It is precisely these systems which are of interest
to us in reaction dynamics due both to their richness and complexity. The problem |
of finding good conserved actions is intimately linked to the problem of integrability
or non-integrability of these strongly coupled multidimensional systems. Even for a
non-integrable system it is possible to find locally conserved actions around stationary
points on the correspondingﬁ potential surface. It is shown in chapter 2 that these
locally conserved actions can provide us with a simple but accurate semiclassical
model for multidimensional tunneling. »

In chapter 3 we make use of the recent ideas put forward by Heller et al
to formulate a semiclassical hybrid model for reactive scattering. Again, a better
understanding of the underlying phase space allows us to go beyond stationary phase
approximation and obtain the state-to-state S-matrix elements. It is shown that
within this approach classically forbidden processes are accounted for via purely real
time classical trajectories.

Finally, in chapter 4 we apply the hybrid approach to collinear reactive

scattering and discover a significant bottleneck due to chaotic scattering. Some sug-
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gestions are offered to alleviate the problem.




Chapter 2

A Semiclassical Model for

Tunneling

2.1 Introduction

Tunneling plays a very dominant role in chemical reactions at low tem-
peratures, especially reactions which involve significant motion of light atoms[1] .
Isomerization and unimolecular decay are two of the important types of phenomena
which are quite common in chemistry. In the case of isomerization reactions tunnel-
ing leads to energy splittings of the degenerate states. As far as unimolecular decay
reactions are concerned, tunneling gives rise to finite lifetimes for the metastable
states through coupling to the continuum[2]. Both the energy splittings and the life-
times are experimentally measurable quantities and indeed experiments have been
performed on molecules like malonaldehyde and formaldehyde in order to obtain de-
tailed information about the tunneling dynamics of these molecules[3]. Tunneling also
contributes significantly near and below the threshold region of bimolecular reactions

involving light atoms, for example
Hy+X —- H+ HX. (2.1)

There are many such examples, spanning diverse fields, where tunneling plays an im-

portant role in determining the low temperature behaviour of the system of interest[4].
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It is thus important for theoreticians to accurately predict the effect of tunneling on
rates of chemical reactions.

Most of the reactions of interest in chemistry involve large molecules. This
leads to the fact that the tunneling degree of freedom is coupled to the rest of the
degrees of freedom of the molecule. For example, intramolecular hydrogen atom
transfer reaction in malonaldehyde, which is a nine atom system, would involve all
of the 3N — 6(= 21) degrees of freedom of the molecule. An exact quantum cal-
culation on such a large system is out of reach of the current theoretical methods.
At this stage one makes an approximation, albeit a good ome, by considering only
a few modes strongly coupled to the large amplitude tunneling degree of freedom.
However, all of the recent progress in exact quantum methods still cannot account
for more than six degrees of freedom. Feynman path integral approaches certainly
seem promising in extending the capabilities of exact quantum methods due to the
recent advances in the Monte Carlo methods for evaluation of the path integrals[5].
There are a host of approximate quantum approaches like the Multiconfiguration-
Time Dependent-Selfconsistent Field (MC-TDSCF) method[6] which can be applied
to larger systems than fully quantum approaches but they are still limited. There
have been considerable efforts to incorporate tunneling corrections to transition state
theory expressions for thermal rate constants[7]. However, they are not applicable
to more general dynamical phenomena. On the other hand, classical trajectories are
easily computed for systems with a very large number of degrees of freedom[8]; but
naive classical mechanics does not allow tunneling from one classically allowed re-
gion of phase space to another. In order to exploit the attractive features of classical
mechanics in situations involving classically forbidden dynamics one has to consider
semiclassical extensions to classical mechanics.

There already exist semiclassically rigorous theories for multidimensional
tunneling, for example, the classical S-matrix theory[9] and the instanton (periodic
orbit in imaginary time) model[10]. However, in both cases one needs to calculate
classical trajectories in complex time. Miller and George[ll] have analytically con-
tinued classical mechanics and demonstrated its accuracy in the case of the collinear

H + H, reactions. Analytic continuation of classical mechanics to complex times is
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a very rigorous way of approaching classically forbidden dynamics, but it is numer-
ically very challenging. In particular, application to higher dimensional systems is
not at all straightforward. The instanton model has gained considerable popularity
for describing tunneling in both gas phase and condensed phase systems[12]. But
the instanton corresponds, dynamically, to a zero kinetic energy trajectory on the
upsidedown potential - which makes it effective to describe only the ground state
tunneling dynamics. For higher energy states, the instanton model does not perform
as well. Again, one needs to calculate periodic orbits in imaginary time which be-
comes difficult in situations where the number of degrees of freedom is very large. In
addition, if the potential has a non-quadratic minimum then the instanton method is
inapplicable[37]. One should also note that in case of one degree of freedom, the stan-
dard Wentzel-Kramers-Brillouin (WKB) approximation [13] works quite well, however
a satisfactory generalization of WKB theory for multidimensional tunneling is still
lacking[37]. Hence, it is of paramount importance to consider simple semiclassical
models to incorporate tunneling in classical trajectory simulations. It is important
to realize that, in coming up with simple models at the price of sacrificing a certain

amount of rigour inherently leads to ad hoc models.

2.1.1 Earlier models

There has been a lot of work in the literature dealing with simple models for
multidimensional tunneling[14]. Most of these simple models involve running classical
trajectories in the allowed region of phase space and at certain times (tunneling times,
t,) computing the probabi]ity of tunneling, instantaneously in real time, to another
allowed region of phase space. They are similar in spirit to the Tully-Preston surface
hopping model[15] for electromically non-adiabatic processes.

Central to all these models is the determination of
e Tunneling times, ¢,

e Tunneling path, T,
e Action, 6, along T, to determine the tunneling amplitude, e~%.

It has to be emphasized that the path, T';, is a nondynamical path. In other words, I's
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is not a classical trajectory obtained by solving for the Hamilton’s equations of motion
in the classically forbidden region, but some a prior: path picked in the coordinate
space. For example, it could be a straight line path connecting one point in the
classically allowed region to another classically allowed region. Assosciated with T,
is also a tunneling direction e,. The trajectory is then allowed to tunnel along T',
in the direction e, every time the component of the trajectory momentum p along
€, P-€n, experiences a classical turning point (¢.e., goes through zero). Thus, as the
classical trajectory evolves, at times ¢, an amplitude for tunneling is calculated and
a certain amount of probability “leaks out” of the classically allowed region. The net

tunneling amplitude
Anet(t) = 3 At —tn) e, (2.2)

where
1
6, = %Im /Fn p(q).dq, (2.3)

is calculated as a function of time. h(n) is the usual step function (= 1if > 0
and = 0 if n < 0). A,(%) is then averaged over appropriate initial conditions to
obtain the average net tunneling amplitude ( A,(¢)). The unimolecular decay rate
or energy splittings are related to the time derivative of { A,(t)). These models have
been used to calculate tunneling splittings and decay rates with a simple straight line
approximation for I',[16]. The results are quite impressive even when the coupling
between the large amplitude tunneling mode and the rest is so large as to change the
results by 2 orders of magnitude.

The choice of T',, 1s very critical to the model. A straight line approximation
is the simplest possible and motivated by the fact that rigorous theories show that
the optimum tunneling path is relatively straight in the tunneling region. However,
one is left wondering if there are ways to allow for more general paths that would lead
to better results at higher coupling constants. Unfortunately, attempts to generalize
the straight line path to more general paths do not lead to better results. Worse
yet, the results seem to deviate significantly from the exact results at even lower
couplings than the straight line approximation[17]. The results are very sensitive to

the particular path being chosen[18]. The expalnation for this is as follows: Suppose
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T, were a dynamical path (i.e., projection of the exact classical trajectory in phase
space on to the cofiguration space). Then, from well known results from classical
mechanics[19], one can prove that

f p(q)-dq (2.4)

is only a function of the end points and does not depend on the path. If ', is a
nondynamical path in configuration space, as is indeed the case with the path in
the model, then the action will, in general, depend on the path. In addition, the
straight line path is a one dimensional path which is relatively easy to specify in two
dimensional cases. In N > 2 dimensions the specification of the direction might not
be easy let alone unique. Thus, one asks the question - Is it possible to come up with a
semiclassical model, in the same spirit as the above model, where the tunneling times
and actions are computed in a dynamically consistent fashion 7.e., with no necessity
of explicitly postulating a nondynamical path in order to calculate the action.

The next section describes such a model[20] which is simple and satisfies
all the requirements. Application to a model two dimensional unimolecular decay
potential and conclusions are described in subsequent sections. In particular, it is
seen that the model has the capability of accurately predicting tunneling decay rates

from specific initial reactant states over a wide range of system parameters.

»2.2 The Semiclassical model

The starting point for this model is the same as that of the model described
above in that we adopt a Tully-Preston like approach. The significant difference from
the previous model[16] is that we adopt a different strategy to determine 6, and ¢,,. In
particular, our choice for 8,, and ¢, is dynamically consistent ¢.e., there is no need to
specify, a priori, a tunneling direction, path or time. The motivation for this choice
comes from earlier work[21] which showed that good i.e., locally conserved actions

exist not only around potential minima but also around transition states. This allows

us to write down a perturbative expression for the tunneling action as a function
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of the total energy and F' — 1 real actions determined in a dynamically consistent

manner.

2.2.1 Determination of the tunneling action

Consider a cartesian, non-separable classical Hamiltonian in F' degrees of

freedom
H(p,q) = 22 4 v(q). (2.5)

2m

The Hamiltonian is said to be completely integrable[19] if F' time independent con-
stants of motion, {fx(p,q),% = 1,..., F}, exist which are mutually commuting in a

Poisson bracket sense i.e.,

U fi} = 200 0000 _ (2.6)

Where k,l = 1,...,F. In this case one can perform a canonical transformation to ob-
tain the Hamiltonian purely as functions of fi, K(f1, ..., fr). The classical Hamilton’s

equations of motion take a very simple form

dgk _ 0K

dt Ofk (27)
i _ 9K _

dat . Ogk o

where {gx(P,q),k = 1,...,F} are the variables conjugate to f;. As an example,

consider the one dimensional harmonic oscillator Hamiltonian

2 2

P mw
H(p,q) = o— + — ¢, (2.8)

where m and w are the mass and frequency respectively. Performing the canonical

transformation (p,q) — (J,¥), where

g = -:Z—isimb (2.9)

p = V2mwdcosy,

one obtains the new Hamiltonian

K(J,0) = wJ. (2.10)
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The variables (J, 1) are referred to as action-angle variables. The equations of motion

in the (J, %) variables are very simple and immediately integrated to give

p(t) = $(0) + wt, (2.11)
Jt) = J(0).

However, a generic multidimensional Hamiltonian is nonintegrable and there are no
global constants of motion. Even if the Hamiltonian is integrable, analytically find-
ing all the constants of motion is a non-trivial task. In addition, disenfang].ing the
canonical transformation to obtain the conserved quantities as functions of (p,q) is
not an easy problem either. Thus, in order to keep the model practical we take a
perturbative approach to calculate the conserved quantities. If we are dealing with
an integrable system then the perturbation expansions have a fimite radius of conver-
gence. In the case of nonintegrable systems there are no global constants of motion
and a perturbation calculation only gives locally conserved quantities’. Nevertheless,
progress can be made by considering stationary points on the potential energy sui-
face. Around these points it is possible, in a perturbative sense, to find action-angle
-Va.ria,bles in terms of which the Hamiltonian involves only the actions. For example,

around a potential minimum one obtains the following well known result[22]

H(p,q) — HJ,v) (2.12)

F F
= o+ > W+ >, zudid+ ..,
I=1

k=1 k

where {Q} are the normal mode vibrational frequencies, and {z} are the anhar-
monic constants. In this case one quantizes the actions semiclassically

Jk - (nk + %) h, (2.13)

where {n}, the vibrational frequencies, are non-negative integers. This leads to the
semiclassical Einstein-Brillouin-Keller (EBK) [23] vibrational energy levels[24]. The
important point here is that a similar analysis holds around a saddle point on the

potential surface as shown in an early work by Miller[21].

1Using the Kolmogoroff-Arnold-Moser (KAM) theorem we can make these statements more
precise[19].
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Around a saddle point it is still possible to find local action-angle variables
in terms of which the Hamiltonian is purely a function of the action variables. The
difference from the analyis around a minimum is that one of the frequencies, (1r say,
is pure imaginary. This corresponds to the reaction coordinate mode. It is easy to see
that the corresponding action, Jr, is also pure imaginary and so are the anharmonic

constants zxr ,k # F. Substituting

QO = iQp, (2.14)
Jr = iJr,
Tip = —iIkF,

where, 0, Jr and Z;r are real, we obtain the equation corresponding to Eq. (2.12)

for points around the saddle point as

E(J,,jp) = H(J,,jp,'lb); J = (.]1,...,.]}:'_1)

= a(]') - ﬂ(J,) jF — TFF jlz;v + ..y (2.15)
where
F-1 F-1
OZ(JI) = VB + Z Qr Je + Z zr Ji Jp (2.16)
k=1 k<Ii=1

F-1
,B(J') = QF - Z Trr Jk -
k=1

Using the expansion (2.15) we can determine Jp as a function of the conserved total
energy E and F — 1 real actions J’. At this juncture we assosciate Jp with the

tunneling action as follows
8(3,E) = %jF(J';E). - (2.17)

The tunneling or transmission probability through the transition state region is given
by
1
LY =
PUE) = s——gy (2.18)
Here we are interpreting 6(J’; E) as a multidimensional generalization of the one

dimensional WKB barrier penetration integral[24]

[ vayda = [ dayf2m(v(e) - EI. (2.19)
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With this interpretation, the tunneling probability in Eq. (2.18) is a uniformly
valid[24] semiclassical result i.e, it is valid for energies above and below the bar-
rier height. The inversion of the expansion (2.15) is simplified by keeping terms upto
second order in Jr. A quadratic equation is obtained which can be solved for Jr as

a function of J' and F

o _ 2(e(J) — E)
where
n o dzprp (a(J’) - E) ‘

Hence, we have determined the tunneling action where the path is a dynamical path,
in a perturbative sense, in the full phase space of the system. Note that the actions
are not globally conserved anymore but conserved only in a local sense.

It is worthwhile pointing out that in this model we can exploit the recent
advances in ab initio quantum chemistry to determine normal mode frequencies and
anharmonic constants. Handy and coworkers have shown how the analytic second
derivative methods of ab initio quantum chemistry (including the effects of electron
correlation) can be used to accurately determine the ’s and zx’s[25]. Given a set
of frequencies and anharmonicities for a molecule about the transition state, it is
possible to calculate the tunneling probabilites through the transition state in order
to determine microcanonical and canonical transition state theory rate constants.
This particular model is then a transition state based theory. Application to several
systems of interests like unimolecular decay reaction of deuterated formaldehyde and
collinear H + H, reaction has yielded accurate results[26]. In our present model we are
running classical trajectories combined with perturbation theory in order to calculate
tunneling probabilities. Thus in additon to the frequencies and anharmonicities we
also need a potential surface to run the classical trajectories?. In this fashion we are

explicitly including the underlying complicated dynamics of the system.

20btaining a global potential energy surface for a multidimensional system is very difficult if not
impossible. It can be argued that for this model based on locally conserved actions, only part of
the potential, regions around transition states, would be necessary. There is a lot of interest in the
chemical community to build up potentials based solely on force constant data. Perhaps for a large
molecule this model can be applied without the need for a global potential surface.
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The results in this section have been derived by performing classical Lie
transform[27] perturbation theory on our . original Hamiltonian. We can quantize
the actions J' semiclassically as in Eq. (2.13) and interpret them as the quantum
numbers for the states of the activated complex. Similar results can be obtained by
taking the corresponding quantum Hamiltonian and performing canonical Van-Vleck
perturbation theory([28] on the Hamiltonian. The details of the perturbation method
are presented in the appendix to this chapter. However, in this model we want to be
consistent by calculating everything as a function of the trajectory evolving in the

classically allowed region of phase space.

2.2.2 Determination of the tunneling time

We make use of our locally conserved actions to determine the tunneling
time. We run a classical trajectory in the allowed region of phase space under the
exact multidimensional potential. The barrier action Jr is a function of the classical
trajectory (p(¢),q(t)) through the canonical transformation (p,q) — (J,%). The
time dependence of Jr is monitored along the exact classical trajectory. If Jr were
globally conserved then we would see a trivial dependence on time i.c., Jr(t) = Jg(0).
However Jr is only locally conserved which results in the fact that it is approximately
conserved in the vicinity of the saddle point and far from being conserved away from
the saddle point. Figure 1.1 shows such a plot of Jr being conserved at certain times
along the trajectory. The tunneling times are chosen to be that when Jr is locally
conserved (stationary) in time.

This completes the description of the model. To summarize, one first per-
turbatively works out the locally conserved transition state action, Jr, as a function
of cartesian variables (p,q). Along the classical trajectory we monitor the values
of Jr(t) = Jr(p(t),q(t)), and a tunneling time is signaled by the stationarity with
respect to time of Jp(t). At these times the trajectory is allowed to hop or tunnel
with a probability given by Eq. (2.18) and the net tunneling probability P,..(J’; E, t),
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Figure 2.1: Shown here is a typical behaviour of Jr as a function of time and a
tunneling time is indicated corresponding to the conserved value of Jr. The inset
shows a typical plot of the averaged net tunneling probability, ( Pn(J’; E,t)), as a
function of time.
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neglecting back reaction,
Pot(J5E,t) = Y h(t—t,) P(YE), (2.22)

is calculated along the trajectory. Averaging P,.:(J'; E,t) over appropriate inital
conditions yields the average net tunneling probability, ( Pne(J’; E,t)). The rate

constant for a unimolecular decay reaction is given by

d

kum' = =0
dt

( Poet (3" E, 1)) (2.23)

In the next section we apply this model to a two dimensional coupled uni-
molecular decay potential to demonstrate the accuracy of the model for predicting

state-specific decay rates.

2.3 ky,; for a model potential

Our model potential is of the form

1 1

v _ 2 bl 1 2 cq1 \?
(@1,02) = 5aq7 — 307 + gmw’ (@2 — — ) (2.24)

where the parameters ¢ and b were chosen to correspond to a barrier height of
7.4 keal mol™', the mass m taken to be that of a hydrogen atom, the harmonic fre-
quency, w, was chosen to be 300 cm ™!, and c is the coupling constant. These values are
typical of hydrogen atom transfer reactions. The perturbation calculation determin-
ing the locally conserved transition state actions as a function of cartesian variables

was carried to second order using Lie transform perturbation theory®.

2.3.1 Choice of initial conditions

, We want to calculate unimolecular decay rates from metastable (quasi-
bound) initial states. We thus need to choose initial conditions for the classical

trajectories that lie on a quantizing torus (Z;,7;), corresponding to our Hamiltonian,

3See appendix.
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and average over all initial angles (®;, ®2). In other words, a given specific metastable
state corresponds semiclassically to a KAM torus*[19)].

A rigorous way of doing this is to use the method of adiabatic switching [29].
In this method, initial conditions are chosen from an appropriate KAM torus of some
zeroth order Hamiltonian Hy, with the corresponding angles unformly distributed
over the interval [0,27). The remaining part of the Hamiltonian, H — Hy, is treated
as a perturbation. Now the trajectories are allowed to evolve under the following time

dependent Hamiltonian
H(t) = Ho + \t)(H — Hp), (2.25)

where A(%), the switching function, starts out at zero and reaches unity at some later
time T', the switching time. The principle of adiabatic invariance[30] guarantees that
the actions remain approximately constant during the switching process whereas the
energy changes to the correct value. At time T we have the correct KAM torus
from which the initial conditions for our calculations are chosen. Our choice for
H, included the kinetic energy terms and an harmonic approximation for V(g1, ¢2)
about the minimum. The anharmonicities constitute the perturbation term which is

switched on by using

At) = % - ;;—rsin [—T—] . (2.26)

‘At the end of the switching process the time ¢ is set equal to zero and the equations
of motion are integrated with the full potential.

We have used another simpler procedure to choose initial conditions from
the appropriate KAM torus. In this scaling method [31] initial conditions are chosen
from an appropriate KAM torus corresponding to a zeroth order Hp, with the initial
angles uniformly distributed over the interval [0,27). We then rescale the harmonic
initial momenta accordingly to achieve the necessary energy corresponding to the
specific inital metastable state. This scaling procedure, though less rigorous as com-
pared to the adiabatic switching method, is much more easily implemented in a truly
large system. Adiabatic switching techniques are difficult to routinely apply to large

systems.

*The assumption here is that the dynamics is regular.
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We performed the calculations described in this section with both methods

and the differences were negligible.

2.3.2 Results and Discussion

The unimolecular decay rates for specific initial states were calculated using
Eq. (2.23) where the averaging is done over the angle variables corresponding to
the appropriate KAM torus. In order to compare our results to the exact quantum
results, we computed the width of the metastable states using the method of complez
scaling[32]. The g; coordinate was rotated as ¢; — gq; €', while the ¢, coordinate
remained real. The resulting complex scaled Hamiltonian was diagonalized in a real

basis set and the complex eigenvalues

£=¢ - &, (2.27)

which were stable under change of the scaling angle o were identified as resonances.
The decay rate is then given by
&

kuni = = (2.28)

Shown 1n figures 2.2, 2.3, 2.4 are the semiclassical k,,; along with the ac-
curate quantum results for various inifcia.l states as a function of the energy of the
state. For the specific parameters chosen for our model potential there are about
seven bound metastable states. As the perturbation calculations were done about
the saddle point the model is not expected to perform as well for states lying far
below the barrier. However, as a test we calculated the rates for all the metastable
states. In the figures (n1,n,) denotes the specific initial reactant state for which the
calculations were done where n; corresponds to the reactive, ¢;, mode. Each point
was averaged over 1000 trajectories, but the results are reasonably converged with as
few as a couple of hundred trajectories. |

In the case of figure (2.2) with zero coupling constant the semiclassical results
'Compare very well with the exact quantum results. This is to be expected since for
¢ = 0 the system is integrable and effectively an one dimensional problem. The

perturbation calculation combined with the uniformly valid tunneling probability
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Figure 2.2: Unimolecular deacy rates for specific reactant quantum states (n;,nz) as
a function of the energy of the state. The coupling constant c is equal to zero. Each

point is averaged over 1000 trajectories. Notice the strong mode specificity between
the states (0,4) and (1,0).
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Figure 2.3: Unimolecular decay rates for coupling constant ¢ = 0.001 au. Each point
is averaged over 1000 trajectories. Strong mode specificity still persists at this value
of c.
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Figure 2.4: Unimolecular decay rates for coupling constant ¢ = 0.005 au. Each point
is averaged over 1000 trajectories. The mode specificity has almost vanished and the
rates are purely a function of the total energy. Also note the nontrivial dependence
of rate at high energies i.e., (0,5) state has a lower rate than the (1,0) state. This
feature is also predicted by the semiclassical model.




CHAPTER 2. A SEMICLASSICAL MODEL FOR TUNNELING 26

of Eq. (2.18) is as good as the WKB result. For the case of moderate coupling,
¢ = 0.001au, in figure (2.3) the semiclassical model again performs well for all low
lying states. For both ¢ = Oau and ¢ = 0.001 au we see a strong mode specificity
in the decay rates. As an example, for the moderate coupling case the states (0,4)
and (1,0) differ in energy by less than 0.1 kcal mol~! but the corresponding rates
differ by almost two orders of magnitude. Our model is successful in describing this
mode specific effect. There is a lot of interest in mode specific chemistry[36] and it is
significant that our simple model can account for this effect. Figure (2.4) shows the
results for the highest coupling constant, ¢ = 0.005au. There is no mode specificity
and the rates are almost a function only of the total energy of the system. The
semiclassical rates agree very well with the exact rates for states close to the barrier.
For states far below the barrier the agreement with exact values of the rate are not
as good since the second order perturbation results at this high coupling are not as
reliable. Note the slight decrease in the decay rate of the state (0,5) relative to the
state (1,0). This nontrivial feature is also successfully captured by the semiclassical
model. It is impressive to note that the semiclassical results in the worst case are off

from the exact quantum rates by a factor of two.

2.4 Concluding remarks

In this chapter we have outhined a semiclassical model for multidimensional
tunneling which is based on locally conserved actions. The model performs very well
in predicting unimolecular decay rates from specific initial reactant states. More sig-
nificantly, it is dynamically self-consistent and requires fewer ad hoc assumptions in
order to define it as compared to earlier models for tunneling. As the tunneling ac-
tions and times are determined in a dynamically consistent fashion, this model has
the ability to directly incorporate the underlying, presumably complicated, dynamics
of the system of interest. In the present version it is possible to exploit the informa-
tion around stationary states on the potential surface provided by ab initio quantum
chemistry calculations. This model certainly seems to show promises of applicabil-

ity to real chemical systems where the tunneling motion of hydrogen atoms is an
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important aspect of the reaction dynamics.

2.4.1 Comments on the choice of ¢,

It 1s satisfying to note that the semiclassical model described above is capable
of obtaining reliable tunneling decay rates for specific reactant states. However we
have not addressed the question as to why does this perturbative model give such
encouraging results even though the dynamics is nonintegrable. In this section we will
attempt to answer the question which, in turn possibly leads to a clearer mathematical
and physical basis for our choice of the tunneling action and times.

Realizing the hopelesness of finding a canonical transformation, or a series
of canonical transformations which would reduce our Hamiltonian to a function of
actions alone, we put forward a perturbative model. In order to be of practical utility
the perturbation series is truncated at a certain order. Note that the formal pertur-
bation series almose always diverges. The resulting truncated Hamiltonian allows us
to study the behaviour of the system of interest over an appreciable period of time
for inital conditions close to the point in phase space z; about which the pertur-
bation is done[19]. In other words, by truncating the perturbation series we have
replaced our original nonintegrable Hamiltonian with an integrable one®. This makes
sense as locally every Hamiltonian is integrable®. However, it would be erroneous to
calculate observables corresponding to our original Hamiltonian by doing dynamics
on the truncated, integrable Hamiltonian. This is because trajectories which lead to
important contribution could have initial conditions which are nowhere close to the
‘region around which the perturbation analysis was performed. This error would be
especially serious for tunneling which is inherently an observable corresponding to
long time dynamics. Thus, the classical dynamics must correspond to the original
Hamiltonian and when the exact trajectory is in the neighbourhood of z, the corre-
sponding actions and energies are approximated well by the perturbation analysis. In

fact in the time interval when the imaginary action is approximately conserved, the

SWe are assuming for the argument that there are no resonances. In presence of resonances the
argument can be suitably modified.
6This is the celebrated Darbouz’s theorem in classical mechanics[19].




.CHAPTER 2. A SEMICLASSICAL MODEL FOR TUNNELING 28

15.0

0.00 b % S

10.0 |

500.0 1000.0 1500.0
t, au

Im J(t)

50 }

0.0 : ‘
0.0 500.0 1000.0 1500.0

t, au

Figure 2.5: In the main figure Jr(t) is shown as a function of time. The inset shows
the exact trajectory energy E (dashed line) and the perturbative energy Ep,; (dotted
line) as a function of time along the same trajectory. Notice that Epe,: and Jp(t) are
locally conserved in the same time interval. In that interval the system is locally
integrable.

value of the truncated Hamiltonian is very close to the exact energy of the trajectory.
In that particular time interval it is plausible that there exist F' locally conserved
quantities which render the dynamics locally integrable. For example, as shown in
figure 2.5, in our two dimensional model case presented earlier the two conserved
quantities happen to be Jr and the value of the truncated Hamiltonian Epe.;. The
real action is not conserved except at very low coupling constants.

At this stage we will briefly consider the rigorous approach to tunmneling
based on analytically continued classical mechanics[11]. In a conservative one dimen-
sional system, which is always integrable, it is relatively simple to calculate tunneling

actions by considering complex time trajectories. In fact one can choose a proper

o
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contour in complex time plane to keep the coordinate real. However, for a general
multidimensional nonintegrable system it is not possible to keep all of the coordinates
real but one. Thus there is no way to avoid dealing with complex valued trajectories.
Suppose the multidimensional F' degree of freedom system is indeed integrable and
all of the constants of motion are known. In this case it is still possible to keep all of
the coordinates real because one has F' independent time like parameters which can
be chosen appropriately to keep the trajectory real’. What happens in the situation
when we do not have global contants of motion but only local constants of motion?
This is exactly where the connection lies to our semiclassical model described in this
chapter. In our model we do have, over a certain time interval, a locally integrable
system and we know the corresponding locally conserved quantities. We then use
the values of various dynamical quantities along the numerically exact trajectory in
that time interval to determine, perturbatively, the tunneling action. Our model has
implicitly chosen the right branches and the correct tunneling action to that order in
perturbation theory. This is perhaps some justification for our choice of the tunneling

time and the action.

2.5 Appendix I: Classical perturbation theory

Classical perturbation theory has a long illustrious history going back to
Poincaré and Von Zeipel. Reports on progress in perturbation theory applied to
systems where they fail and do not fail can be found in the articles by Chirikov[33]
and Cary[27]. In this appendix we will give a brief introduction to Lie transform
perturbation theory ® which is a more efficient method utilizing the natural structure
assosciated with infinitesimal canonical transformations. In particular, the detailed
differences between previous methods and Lie transform methods will not be pre-

sented.

"For example, these could be the angle variables on the KAM torus in phase space. Remember,
for a harmonic oscillator ¥(t) = %(0) + wt.
8Most of this appendix relies heavily on the unpublished notes of Prof. Littlejohn.
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2.5.1 Notations.

In order to keep the presentation clear we will adopt the following nota-
tions. Any point in phase space is denoted by z = (p,q). We introduce a 2F x2F

antisymmetric matrix I" given by its partition into four F' x F' matrices

0 I
r = (_I 0)_ (2.29)

With this notation we can write down Hamilton’s equation of motion as

dz O0H
=T (2.30)

We will also use a notation for Poisson brackets given by

dA . OB
L+B = {AB}=-—.T -—
A { ? } az F az ?
X 9A_ 8B _ XE
= —"Flcl -— = A’k Fkl B,[, (2.31)
R )

where A and B are some functions on phase space. Notice the notation we are
using for derivatives of functions on phase space with respect to the coordinates. In
particular, the Poisson brackets of the coordinates among themselves are just the

components of the matrix T,

{zk,zl} = T'u. | (2.32)

2.5.2 Transformation operators

In this section we will obtain an operator representation of a canonical trans-

formation. We will assosciate a canonical transformation z’ = Z(z) with an operator

T, defined by
(T f)z) = F(2(2)). (2:33)

which is written as

Tf=foZ, (2.34)
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where o is the operation of composition. T is an operator which maps old functions
into new functions, in terms of which we can write the transformation of Hamiltonians

in the form,

H(z) = K(z') = (K o Z)(z), (2.35)

or,

H=TK. (2.36)

Note that T transforms the new Hamiltonian K into the old one H and not the other

way. The inverse transformation of z’ = Z(z) is written down as
z = Y(z'). (2.37)

It is easy to check that
YoZ =Zo0oY =1, (2.38)

where I is the identity function i.e.,Ix(2z) = 2z for all z.

Using Y we can define the inverse transformation operator as

(T f)(z) = £(¥(z). (2.39)

If we now compute the action of 77! on a function f by evaluating at a point z
then we get the function back. Hence, TT~! = T is the identity transformation.

Now let us consider a canonical transformation Z(z,¢€) which is a solution
of the following Hamilton’s equation

BZk(z, E)

De = Fkl w’l(Z(Z, 6)) 5 (2.40)

where w is the “Hamiltonian” and € is the variable of evolution. The function w
is not the real Hamiltonian, but a function used in Hamilton’s equations to gener-
ate a canonical transformation. This is in direct analogy with the usual situation
when the real Hamiltonian is used to generate time evolution which is a canonical

transformation{[19]. Just as the Hamiltonian is called as the generator of time evolu-

tion, we will call w as the Lie generator of the canonical transformation z = Z(z,¢€).
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The initial conditions for Eq. (2.40) is Z(z,0) = z for all z. Given this ¢ dependent

canonical transformation, we associate an ¢ dependent operator,
(T(e) )(z) = f(Z(z,¢))- (2.41)

Differentiating both sides of Eq. (2.41) with respect to ¢ we have

(%6_) f) (z) = fi(Z(z¢) Q%ﬂ

Fi(Z(2,€)) To wi(Z(z,€)) = {f,w}(Z(z,¢))

= (T(e{f,wh(z) = —(T(e) Luf)(z). (2.42)
This holds for all z and f and hence we have
dz;ie.) = —T(e) Ly, (2.43)

which is an operator equation. Assuming that L, is independent of ¢, i.e., w has no

explicit dependence on € we can integrate Eq. (2.43) easily to obtain

T(e) = e~fv, (2.44)

A canonical transformation expressed in this form is called a Lie transform. Equation

(2.44) is an operator representation of a canonical transformation.

2.5.3 Perturbation series

To get explicit formulae connecting old and new variables we use the fact
that
(T(e)D(z) = Z(z,¢), (2.45)

and use Eq. (2.44) by expanding the exponential to obtain
2
Z(z,e) = z — e{w,z} + t%{w, {w,z}} — ... (2.46)

Similar equation is obtained for the inverse transformation. The transformed Hamil-
tonian K = T~! H is obtained to required order in € by expanding both H and K

in powers of ¢

2
(Ko + €Ky + @Ky +...) = (T + eLy + %Li + ) (2.47)
x (Ho+ eH + EH, + ..).
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Equating powers of € on both sides of Eq. (2.47) we get

0(60) . Ko = Ho
0(61) . Kl = Hl + Lw Ho
Oe): K, = Hy+ L,H + %Lg Hy. (2.48)

For example, Hy would correspond to a solvable Hamiltonian.

Suppose now that our original Hamiltonian H was expresses in terms of the
action-angle variables. These action-angle variables correspond to the solvable Hj.
The aim here is to choose the generating function w such that our new Hamiltonian at
O(e) is independent of the angle variables and w itself is independent of secular terms
in the angles. Secular terms are terms which are unbounded in time. For example, 1
is a secular term and sin(¢) is not secular. Thus the presence of secular terms causes
the perturbation solution to diverge from the true solution at long times. In order to

satisfy these requirements, say at O(e'), the following choice of K; and w is made

L,Hy, = -H,

where H; and H; denote the average and oscillatory parts of H; respectively. They
are defined as '

1 2w

H(1,¢) = HJ,4) - H:(J).

H\(J)

A more efficient way is to slightly generalize our transformation operator to

T(e) = e~lre Lz~ Ls (2.51)

?

where we are now doing a sequence of transformations and each one comes with its

own Lie generator w; < L;. We can write down the new Hamiltonian as

K=..clelig, (2.52)
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This version of Lie transform perturbation theory is very similar to canonical Van-
Vleck perturbation theory[28] for the quantum analog of our classical Hamiltonian.

In particular, if we make the formal Dirac quantization[34] of the Poisson bracket

L, — ,L,Cw, (2.53)
‘ 1A
where
L,A=[7,A], (2.54)

is the usual quantum commutator, then we can write the quantum analog of Eq.
(2.52) as

K=..%eh |, (2.55)
Continuing the analysis along similar lines as described above we can get the new
Hamiltonian to the desired order in e. Again, at each order the generating function
is chosen such that the new Hamiltonian at that order does not depend on the angles

and there are no secular terms in the generating function.

2.5.4 Simple example

In this section we will apply Lie transfrom perturbation theory to a simple

one dimensional example. The Hamiltonian is

1 1 1
H =-p" + ¢ - ¢ 2.56
(rg) = 50" + 54 — 3¢ (2.56)
This is just the uncoupled case of our two dimensional model Hamiltonian considered
in this chapter. For clarity the parameters have been scaled to unity. The maximum

for this potential is at g' = 1. Around this maximum we can write our Hamiltonian

as
1
k(g,p) = H(q,p)-g
N S SRS v R PSR T
= 5P +2(q q") 3(q q'). (2.57)

Now we make the following action-angle transformations

p = V2Jcosy (2.58)
g = V2Jsiny + ¢'.
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Hence we can formally write our Hamiltonian in terms of these action-angle variables

as

W(J,$) = J + ehy, (2.59)

where ¢ is a formal perturbation parameter and |

ha(d,0) = —=(2J)7 sin®. (2.60)

Wi

It is clear that at O(e®)
I{O = Ho = JI. (261)

J' is the corrected action. To zeroth order it can be replaced by J. Similarly for the
corrected angle ¢'. (J',9') can be obtained from Eq. (2.46). At O(e') we obtain

1{1 =

w = (2J')% (cos3y’ — 9cost’).

=0 | (2.62)

REs

w

Hence we have to go to O(€?) in order to get the first correction to our Hamiltonian.

At this order the relevant equation is
2L2 ho = 2(.[(2 - hg) - L1 (h1 + Kl)' (263)

In our example, h, = O for all n > 1 and K; = 0. We get the {ollowing results at
O(¢€?)

1+ 5
Kg = E{wl,hl} = —Ejlz
1
w = - J? (8sin2¢’ + sindy)’). (2.64)

We can easily continue this analysis and at O(e?) obtain the new Hamiltonian as

K=J-2g_22

- D J?, (2.65)

where we have set the formal perturbation parameter ¢ = 1. Now the action J' is

pure imaginary as we are doing perturbation around the barrier. By substituting

g="Py | (2.66)
T
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and inverting Eq. (2.65) we obtain the barrier penetration integral 8 for our example

problem as

x 5, 38 3]
0~ [ K+ 2K - K. (2.67)

By identifying K = (E — %) we can prove that the resulting 8 is the same as that
obtained from approximations on the usual definition of the one dimensional barrier

penetration integral[35].




37

Chapter 3

Semiclassical Scattering Theory

3.1 Introduction

Chemical reactions at the most fundamental level are scattering processes
t.e., collision between two chemical species leading to products. For example, the

bimolecular reaction
H + H,O —- H, + OH, (3.1)

involves a hydrogen atom colliding with a water molecule to give hydrogen molecule
and hydroxy radical as products. As chemists we are interested in obtaining the
rate of a chemical reaction and the effect of various vibrational-rotational couplings
of the reactants on the rate. The advent of modern experimental techniques which
include molecular beam methods[38] and high resolution spectroscopies[39] has made
it possible to measure the rates of chemical reactions in a very detailed fashion. These
experimental advances have provided a great impetus for theoreticians to calculate
rates of chemical reactions from the fundamental viewpoint of scattering theory. |
The most detailed characterization of a bimolecular reaction is obtained by
computing the scattering matrix (S-matrix) for the chemical reaction. The S-matrix,
Sn,n,(E), gives the amplitude for reaction at a total energy E. The quantum numbers
n, and n, characterize the internal asymptotic states of the products and reactants
respectively. For instance, in Eq. (3.1), n, describes the initial vibrational states of

the water molecule. Once the S-matrix for a reaction has been calculated, the thermal
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rate constant is given by{40]

KT) = m /_ °:° dE ¢°F N(E), (3.2)

where 3 = (kgT)™', kp is the Boltzmann’s constant, and Q,(T) is the reactant
partition function including relative translational motion, per unit volume. The mi-
crocanonical cummulative reaction probability N(FE) is defined as[40]

N(E) = Z Z lSnp,nr(E)|2 . (3-3)

Ny -

In recent years, comsiderable amount of progress has been made in the
methodologies for calculating the S-matrix via exact quantum reactive scattering
(QRS) theory[41]. The S-matrix Kohn variational principle (KVP) formulation of
QRS[42] represents an important milestone as far as exact quantum approaches to
reactive scattering are concerned. However, the computational effort required in these
exact approaches in order to calculate the entire S-matrix is considerable. This nu-
merical bottleneck, despite ingenious numerical strategies, has prevented applications
to more than three atom systems. On the other hand, the fact that £(T) and N(E)
are average quantities leads one to believe that it must be possible to calculate them
directly without obtaining the full S-matrix for the system of interest. This impor-
tant observation has led to dramatic advances in the theory of reaction dynamics for
calculating the rates for much larger systems. Miller, Schwartz and Tromp proposed
a method based on flux-flux correlation functions[43] in order to directly calculate
k(T). More recently, a whole range of direct methods[44] have been put forward to
directly compute N(E). In all of the direct methods to calculate IN(E) the central
object of interest is the outgoing wave energy Green’s function Gt(E). The aim is
to obtain a convienient, well-behaved representation of G*(FE) which has numerically
attractive features. In the recent methods this is achieved by using a discrete variable
representation[45] for the Hamiltonian with absorbing boundary conditions (DVR-
ABC){44, 46]. This makes the resulting Hamiltonian matrix sparse which can now be
dealt with by using iterative techniques[48]. Investigations in these directions have

led to a very promising approach for calculating k(T) for large systems[49].
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It is important to realize that the significant advances in rigorous quantum
mechanical calculations are not only due to these new developements in theoretical
methodologies but also due to continued increase in computational power. It is now
possible to calculate k(T") and N(E) for four atom systems. In fact the most complex
reaction that has been described rigorously (i.e. in its full dimensionality, six degrees
of freedom) is H, + OH — H + H,0[50]. Even for these direct calculations, going
beyond four atom systems warrants new numerical techniques and better computing
machines. It is important to note that in order to perform reaction dynamics, classical
or quantum, we require global ab initio potential energy surfaces which, with current
ab initio technologies, are limited to a few atom systems. Nevertheless, from a purely
numerical standpoint the memory requirements for an exact calculation on a system
with greater than four atoms is very large. However, it is well known that performing
classical trajectory calculations on large systems is not memory intensive. This has
led to a considerable amount of work in the area of quasiclassical trajectories based
scattering calculations[51]. In most cases quasiclassical trajectory calculations have
preceded exact calculations in order to obtain rates and cross-sections for reactions[51,
52]. These calculations, despite their importance as far as to provide a qualitative
and semi-quantitative description of the reaction, have some significant drawbacks.
One of the drawbacks is that they cannot account for classically forbidden processes.
This implies that close to the reactive threshold the calculations are not very reliable.
The other significant, long standing problem in classical trajectory calculations is the
zero pbint energy problem[533]. In quasiclassical trajectory calculations this is taken
care of by rejecting those trajectories which lead to products with the wrong zero
point energies. This is the best that can be done as to date there is no consistent
and practical way of including zero point energy effects in quasiclassical trajectory
simulations[54].

One way to overcome the drawbacks mentioned above is to use semiclassical
methods. Semiclassical dynamics can account for classically forbidden processes and
incorporate the correct zero point energies. At the same time the rest of the attractive
features of classical trajectory simulations are kept intact. Qf course there is a price to

be paid i.e., now the amplitudes and phases assosciated with each classical trajectory
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have to be calculated. There already exist semiclassical theories which have had
considerable success in calculating reaction rates. Of these theories, classical S-matriz
theory[9] developed by Miller has a special place in semiclassical dynamics due both
to its elegant formulation and applicability. In traditional S-matrix theory classically
forbidden processes are handled by complex valued trajectories[11]. This feature is
perhaps the only one that limits its applicability to large systems wherein tunneling
plays a significant role. However, as it will be demonstrated in this chapter, it is
possible to alleviate the problem if the stationary phase approzimation is not imposed
on the classical S-matrix theory. For a complex system consisiting of many strongly
coupled degrees of freedom it is plausible that an entirely semiclassical theory would
not perform very well. An attractive possibility is to come up with a Aybrid method
which would combine an accurate quantum treatment of the few strongly coupled
degrees of freedom with a semiclassical treatment of the rest. In this fashion we
would be using the information from a reduced dimensionality quantum calculation
and semiclassically correcting for the weakly coupled degrees of freedom that were
ignored in the quantum calculation. In addition, if the weakly coupled modes are
approximately harmonic then semiclassical approaches are essentially exact. Feynman
path integral methods[5] offer one approach for devising methods of this type, as does
the time-dependent self-consistent field (TDSCF) method|6, 56].

In this chapter another approach for combining an approximate quantum de-
scription with a semiclassical approximation is described[55]. This approach is based
on time-independent scattering theory. The motivation for this method is due to the
recent work of Heller and coworkers[58]. They showed that primitive semiclassical
approximations can be surprisingly accurate, even for long times and in situations
where the classical dynamics is chaotic. The results for a nontrivial test problem
indicate that it is indeed possible to accurately correct an approximate quantum cal-
culation within this semiclassical approach. Interestingly enough, contributions due
to tunneling are accounted for rather well with purely real time classical trajectories.

A brief description of S-matrix KVP is given in the next section. The semi-
classical hybrid approach and results are discussed in the following sections. Finally,

conclusions and important observations are discussed.
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3.2 S-Matrix Kohn variational principle

In this section we introduce the S-matrix version of the Kohn variational
principle for reactive scattering[61]. In order to be general we will explicitly denote
the various chemical arangements (channels) by a. For a given arrangement we denote
the radial scattering coordinate by R, and the internal coordinates by r,. A formally

exact expression for the S-matrix elements in the distorted Born representation is

Sn‘a’,na(E) = Sgl’a’,na(E)
+ 3 (@l — El®u)
1 (el (E)lona), 5.4
where Gt(E) = lim._ o+ (E + t¢ — H)™! is the scattering Green’s function with

outgoing wave boundary conditions and

I

(H — E) ®pq

Pno
«

Pnla! = (H - E) Qn'a' . (35)

In Eq. (3.4), na and n’e’ denote reactant and product channels respectively and
SD

n'a’ nalE£) is the unitary reference S-matrix assosciated with the trial wavefunction

®no(RyasTo). In addition we are using the convention that wavefunction in the bra
symbol { | are not complex conjugated. This and the specific form and normalization
used for the ®’s are standard conventions in quantum scattering calculations via the
S-matrix KVP[42]. It is useful to adopt this particular convention because it more
explicitly reveals the symmetry of the S-matrix. H is the total Hamiltonian and ®p,
i1s any regular reactive scaitering wavefunction with the following asymptotic form:

Im ®pe(Ra,re) = 0

Ro—07t
) e—iknaRo:
REEOO @na(Raj ra) = _,(/)na(ra) ‘\/QE

e’:kn’cx'ch’

+ 1ot (X)) —— SO,a’ 3.6
n/a%pen 1/)11 ( a ) m n‘a’ na ( )




CHAPTER 3. SEMICLASSICAL SCATTERING THEORY 42

where ¢¥no(ro) and vy, are the internal eigenfunction and asymptotic translational
velocity in channel na respectively. In Eq. (3.6), the sum is over all open channels
available at energy E. The asymptotic form for the scattering wavefunction, physi-
cally, corresponds to a unit incoming wave in channel na and outgoing waves in all
other open channels n’e/. Note that if ®y,(Rq4,r,) is ezact then the exact S-matrix
is given by 53.o/ na-
In the Kohn variational method all of the effort is concentrated on finding
a good trial wavefunction. The better the trial wavefunction the smallér is the third
term ASprane(E) in Eq. (3.4) involving the full Green’s function. Usually the @’s
are chosen as a linear combination of a given basis set. The exapansion coefficients
are calculated by variationally optimizing the trial wavefunction based on making the
first two terms in Eq. (3.4) stationary i.e.,
?

= (@ B - Egcpna)] = 6SKVE (E) =0.  (3.7)

n‘a’ no

6 [Sfl‘a’,na (E) +

If the basis is large enough the correction term involving G*(E) will be negligible
because pp, = (I:I — E)®no =~ 0. However, for sufficiently large molecular systems
this will not be possible and it becomes important to consider techniques to evaluate
the full Green’s function.

There are many possible ways of choosing approximate scattering wavefunc-
tions for the ®’s. For example, we could choose partially distorted waves but we are
more intérested in this chapter to choose the reduced dimensionality wavefunction.
This reduced dimensionality wavefunction is obtained by carrying out a quantum
scattering calculation for the few most important degrees of freedom, assuming the
rest to be uncoupled from them (or perhaps treating them within a vibrationally adi-
abatic approximation). The reduced exact calculation provides us with SE¥7 (E)
which is then corrected by calculating ASpios ne(E) which contains all higher order
corrections beyond the Kohn variational treatment. There has been a considerable
amount of work on calculating ASyio na(F) by quantum methods[44]. As indicated
in the introduction to this chapter, the numerical bottleneck to exact quantum meth-
ods is the calculation of the full Green’s function. This feature, in accordance with

the comnservation of difficulty principle, has limited the applications to atmost four
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atom systems. In the next section we will present a semiclassical approximation to

ASniatne(E) which has the potential to be applicable to larger systems.

3.3 Semiclassical approximation to ASyy o(F)

The starting point for the semiclassical approximation is to note the follow-

ing exact operator relation:
- 1 foo iEt iHt
+ = = -
GT(E) = ih/o dtexp( = ) exp_( > ) . (3.8)

There i1s a crucial reason for changing over to the time representation as opposed
to directly performing the semiclassical approximation in the energy representation.
The reason being that time domain and energy domain are not exactly equivalent in
semiclassical dynamics. In order to see this clearly let us denote the position space
representation of G*(E) and e iHt/R by G and K respectively. The following diagram

summarizes the reasoning:

6.L¢ & kb,
Ge 5 K (3.9)

Gsc and K. are semiclassical counterparts of G and K obtained via stationary phase
(SP) approximation. While G and K are equivalent through the Fourier transform
(FT) defined in Eq. (3.8), the semiclassical counterparts are not. Instead G, and
K. are equivalent under stationary phase fourier transform (SPFT). In particular
semiclassical approximations in energy representation can have very different accura-
cies when compared to approximations in the time representation. Thus, depending
on the dynamics of the system of interest, it is better to perform the semiclassical
approximation in a particular representation. For example, in the case of a simple
harmonic oscillator it is well known that K. is exact whereas G, is not[57]. This is
the essence of the important idea put forward by Heller and coworkers[58]. Antici-

pating short time dynamics in our case we perform the semiclassical approximation

in the time domain.




CHAPTER 3. SEMICLASSICAL SCATTERING THEORY 44

Using relation (3.8) and inserting complete sets of position states into the

correction term ASniorna(E) we obtain

1 : 4 ' o
ASwarnalE) = 7 fxa, ., € o (x5) K (x5, x7,0) pma(x) , - (3.10)
2 X[,
where we have explicitly labeled the arrangement index on the position states collec-

tively denoted by x and for compactness adopted the following notation:

/ = / dxs’ / dxs / dt (3.11)
xg x{,t —00 —o0 0

The exact propagator K(xg',t;x%,0) is defined as

, : i Ht
(s t536,0) = 0 exp (<51 0. (3.12)

The exact propagator can be formally defined via Feynman path integrals[62]. A
path integral analysis of the correction term can be performed leading us to the
standard theory of reactive scattering based on path integrals{9, 11, 63]. However,
we are interested in a semiclassical approximation for the propagator. This can be
achieved by doing a stationary phase analysis on the path integral or through the
traditional WKB approach. Both approaches result in the celebrated Van Vleck-
.Gutzwi]ler approximation[64] for the exact propagator?

K(x§,:x5,0) & Ke(x3,tx5,0)

' 1/2
_ ( 1. >F/2Z Det 828k(x‘?’,x§’;t)
2mih z 9x§ ox$
'S ol La. N
X exp (z k(xzh,xl,t) _ m;k) .

(3.13)

In Eq. (3.13) the Jacobian determinant plays the role of a classical probability and
the phase is determined by the classical action Sp(x5',x%;t). F is the number of

degrees of freedom. The classical action for the kth trajectory that goes from x{

1We are assuming that the Hamiltonian is of cartesian form. This is true for one degree of freedom
system and collinear atom-diatom collisions. For non-cartesian systems it is straightforward to work
out the relevant expression through point coordinate canonical transformations.
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at time ¢ = 0 to xJ at time ¢ is given by the time integral of the corresponding

Lagrangian £,
! ¢ .
Sk(x5 ,x75t) = / dt' L(x,x;t")
0 .

rt
= [ d#p@)-x(t) - HEE).xE)],  (314)

0
where H is the classical Hamiltonian and the sum over k in Eq. (3.13) is over all
possible classical trajectories that satisfy this double ended boundary condition. The
Maslov inder® . is given by the number of zeros experienced by the inverse of the
Jacobian determinant in the time interval (0,t)[60]. Sustituting the semiclassical

propagator into Eq. (3.10) we obtain the semiclassical approximation for ASn:q/ na(E)

. (2rit)F:
n’a’,na(E) - _—52——_

iPE(x5" x¢; 1)

E (k) o’ .
1! t ,
* A /xg',fo Apiw na(X3 5 X75) exp < : )

(3.15)
where
ALl x) = |pet (2 20D) 7 a5 onal)
PO xt) = Su(x%,x%t) + Et — “7‘2“". (3.16)

In Eq. (3.15) we still have to sum over all trajectories that go from x¢ to x§' in time t.
For a given system there are, in general, many such trajectories and we have to search
for them all in the full phase space of the problem. This root search problem for the
double ended boundary conditions can become prohibitive for large systems. A way
to avoid the root search problem is to transform to an initial value representation.
It is well known in classical mechanics that a classical trajectory with a given initial

condition is unique[19]. Thus for fixed x¢ and ¢ we change the integration variable

Det ( Oxg (x{, pf; t))

o’ o
from x§ to pg,

o 3.17

> dxs —
k

2Van Vleck originally wrote down the semiclassical approximation in 1928 without the sum over
k or the Maslov index. This limited the approximation to very short times. The more accurate
form, as presented in this section, was worked out by Gutzwiller.
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where the sum over root trajectories is subsumed in the integration over py. N.otice
that we have not solved the root search problem but only circumvented it by going
to an initial value representation. We have to run classical trajectories in the full
phase space in order to perform the root search and sum over the root trajectories.
In the initial value representation we are making use of all the trajectories and thus
implementing the root search in a straightforward fashion. There is a price to be
paid i.e., now we are running more trajectories then the number of root trajectories.
Nevertheless, it can be argued that this extra cost is offset by the efforts required to
~determine the root trajectories. This is especially true for large systems for which we
are interested in applying this model. Using the relation

a8 (x3',x%; 1)

ox§

and substituting into Eq. (3.15) we obtain the semiclassical correction term in the

= '—p? ? (318)
initial value representation as
(2mih)~F/?

hZ
, 1P x"',xa;t
X / Aniarna(X3 , X35 t) exp (—————-—( 2h 1 )>, (3.19)
x¢,py.t

Det (axi)
Ip3
P(xg,x85t) = S(x,x%;t) + Et — Zr% (3.20)

ASse (E) =

n‘a’ no

where
1/2

Priar (XS ) Pna(x5)

An'o:',na (xg’) XT; t)

o

x5 = x‘z’"(x‘f, Ps;t).

The Maslov index ¢ is now given by the number of zeros experienced by the deter-
minant in the time interval (0,%). The matrix occuring in Eq. (3.20) is part of a
2F x 2F matrix called as the monodormy matriz® which provides information about
the stability of nearby classical trajectories in phase space. The time evolution of the

monodormy matrix M is given by:

%M(t) + F(t)- M(t) = 0, (3.21)

3This also goes by various other names in the literature. For example, stability matriz, Whittaker’s
matriz etc. M is Iinvariant under canonical transformations.
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where we have denoted

(x5’ p5)
M(t) = =2212210(3) 3.22
Y = Bt (522
and F is a generalized force constant matrix
—O0pxH —OppH
F(t) = X PP (3.23)

The coupled equations of motion in Eq. (3.21) are integrated along with the usual

Hamilton’s equations of motion with the initial conditions

M(0) = (1 0) . (3.24)

01

Thus the Maslov index is kept track of along the classical trajectory.

Eq. (3.19) is the fundamental result of this chapter. There are a few sig-
nificant features of this result that we wish to emphasize. Firstly, classical S-matrix
theory is obatined from Eq. (3.19) if the integral over initial phase space variables is
performed via stationary phase approximation. Here, however, we are interested in
evaluating them exactly (numerically) as discussed in the beginning of the section.
The functions @i (X3 ) and @na(x$) are decaying rapidly (as £? functions) for large
x¢ and xg'. This implies that only relatively short time dynamics is required and
hence the reason for performing the semiclassical approximation in the time domain.
Thus we expect the approximation to have an even better chance of being usefully
accurate then the generic long time accuracy indicated by Heller’s recent work.

Secondly, tunneling contributions are calculated via real time classical tra-
jectories only. In order to see this, concentrate on the time integral. The trajectory
that corresponds to zero time is the one with an infinite amount of energy*-a trajectory
far above the barrier. On the other hand, the classical trajectory that corresponds
to infinite time is the separatriz trajectory i.e., one which just skims the top of the

barrier. Hence if we do all the integrals numerically exactly then all of the tunneling

4This trajectory energy £ is different from the energy E at which we are calculating the S-
matrix. Since we are in the time representation, we are summing over all trajectories with different
energies. Stationary phase result would only sum up contributions from trajectories which satisfy
£(xg,pf) = E.
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contributions are included in the real time trajectories with energies above the bar-
rier. The tunneling contributions are small and it will be demonstarted in the next
section that it is indeed possible to calculate these small numbers relatively well with
real valued classical trajectories.

Finally, in performing the integrals in Eq. (3.19) exactly, we are not consis-
tent to O(%) anymore. This implies that we lose canonical invariance to O(h) with
respect to certain parameters in our system which we would have if stationary phase
was the method of choice for integration. In other words, our results would have sub-
tle dependencies on some parameters which, otherwise, would not be expected. For
.exa.mple, in the next section it will be seen that the amplitudes and hence probabili-
ties vary with a parameter assosciated with the trial wavefunction although the exact
results do not depend on this parameter. In some sense, the stability of the results
under the variation of the parameter would be an indication of the robustness of the
semiclassical approximation. For harmonic systems we still have canonical invariance

as stationary phase result is exact in this case.

3.4 Application to a model potential

In this section we will use the following notation:

=
8

T
fl

h(—z — z0) k(z) = h(z — o)
8(—z — zo) §(z) = é(z — zo), (3.25)

O
o~
8
~—

Il

where h(z) is a smooth step function (= 1 for z > 0, and 0 for z < 0) and 6(z) is
the corresponding smooth pre-limit version of a Dirac delta function. z, denotes the

position of the smooth stép function. For the applications below we used

§(z) = = sech? (55) (3.26)

We apply the ideas of the previous section on a one dimensional model of a




CHAPTER 3. SEMICLASSICAL SCATTERING THEORY 49

chemical reaction, namely transmission through an Eckart barrier[65],
V(z) = Vpsech*(az). (3.27)

The barrier height V; and mass m were chosen to be 0.01562 au (=~ 0.425¢V) and
1060 au respectively. The parameter a, related to the anharmonicity of the barrier, is
set equal to 1.3624 au. With this choice of parameters, the potential approximately
corresponds to the collinear H + H; reaction.

The Eckart barrier is the simplest model of chemical reaction but not com-
pletely trivial. Furthermore, in order to provide the most stringent test of the semi-
classical approximation, we make the simplest possible choice for the trial wavefunc-

tions as smoothly cutoff plane waves,

e—ika: _
®:(z) = h(z), (3.28)

VU
where n represents reactants to the left and 7 represents products to the right of the

barrier. v and k are the asymptotic velocity and wavevector respectively, given by
the usual relation v = Ak/m = (/2E/m. Thus ®,(z) is cutoff smoothly on the left

side of the barrier at £ = —uzxo, so that

?,.(z)
®n(z)

Q

K —Zg
0, T > —xo (3.29)

Q

and similarly for ®;(z) at z = . Note that in our choice of the trial wavefunctions
there is no distortion and thus corresponds to the simplest Kohn calculation for our
system. As a result, the semiclassical correction term is rather large. With this choice
for the trial wavefunctions the zeroth order term in Eq. (34) is zero and the Kohn

part of the S-matrix is given by

SKUP(E) = -

g

’ﬁ.(q’ﬁl-ﬁf—El@ny

= = /x [V(x)fz(:c)h(a:) + ihv h(z)é(z) — %S(x)cs(x)] , (3.30)
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where we have used the result

eikz _ -
on(z) = NG [V(m)h(w) + thoé(z) +

and similarly for pz(z). In this case we can write down the explicit form of the

(3.31)

2m dz

A dS(x)] |

semiclassical correction term as

w pm _ (27R)7Y2 , iP(z1,p1;t)
ASE(B) = T [ Alupt)ex (03 , (3.32)
where
Bz, |V %
Alzr,pit) = ;9% [V(xl)h(xl) + 2 (v + %) 6(:1:1)}
- i -
X [V(x2)h(x2) + % (v n %"’) 5(3:2)] ,
7h 1
T2 = z(z1,p13t), P2 = pazy,pr;t).

The integral over time in Eq. (3.32) is evaluated simultaneously with computing
the trajectory with initial conditions (p;,z1). The behaviour of the integrand with
respect to the initial phase space variables is not completely smooth. As expected,
the integrand as a function of p; for fixed z; is oscillatory. Figure (3.1) shows a typical
plot of the integrand as a function of p;.
For F > V, there is a stationary phase region in the integrand which corre-
sponds to the classical trajectory with energy €(p1,z;) = E. In the case of E < V}
there is no real (p;, z1) such that £(p;,z1) = F and, not surprisingly, we do not see a
stationary phase region. On studying the integrand in Eq. (3.32) as a function of p;
for a given z; we observe a singularity at some sharp value p; = pi*. Analyzing the
integrand more carefully revealed that the singular point corresponded to the sepa-
ratrix trajectory ti.e., £(p;’,z1) = Vo and more importantly that it is a removable
singularity’. In order for the numerical integration to be smooth, we transformed
from p; to a variable p;
p = pi + pf¥, (3.34)

SPlease see appendix for a theoretical analysis of the singularity assosciated with the separatrix
trajectory,
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Figure 3.1: A typical integrand in Eq. (3.32) is shown here as a function of p; for
a fixed value of z; and the parameters zo, A. Barrier height V5 = 0.425 eV. Notice
the stationary phase region for £ > V4, indicated in the plot by an arrow. The inset
shows the singularity in the integrand corresponding to the separatrix trajectory.
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where p}” is the separatrix momentum, determined for a given z; as

P = yJ2m(Vo - V(z)]
= 4/2mV; tanh(az,). (3.35)

3.4.1 Resulté and discussion

Figure (3.2) shows the transmission probability P(E) = |Sa.(E)|* as a
function of energy for the cutoff parameter zy = 5 au. For comparison we have also

shown the exact[66] and WKB[13] results for the probability

Pe(E) = {1 + [cosh(c)/sinh(b)]*}™

Pyw(E) = (14 B, (3.36)
with
2
9(E) = —b+ c2+’rz

2mE _ o [8Vgm

Our choice for 7o implies that we have cutoff the ®’s well into their respective
asymptotic regions. Thus in the interaction region (where the potential is significantly
larger than its asymptotic value of zero) the trial wavefunctions ®;(z) and ®,(z)
have essentially zero overlap. As a result of this the Kohn variational term in Eq.
(3.30) vanishes. Thus the entire contribution to the transmission probability is from
the semiclassical correction term ASS (E). It is impressive to see how well the
semiclassical approximation does even in the deep tunneling region. For the values
of P(E) below 10~° the results become progressively worse, being about an order of
magnitude too large when P ~ 10~7. In this one dimensional example, the WKB
results do better than the present semiclassical model. However, this is to be expected
as WKB is quite accurate for one dimensional systems. The important point to be
made here i1s that the present semiclassical model is applicable to systems with many
degrees of freedom whereas, there is at present no consistent WKB theory for such

systems. Note that all the trajectories that contribute in Eq. (3.32) go from z; < —zo
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Figure 3.2: Transmission probability, P(E), is shown as a function of the total energy
E. The cutoff parameters are A = 2.5 au and 2o = 5.0 au. Also shown are the
exact results and the results from a one dimensional WKB analysis. For this potential
E = 0.2 eV already corresponds to deep tunneling regime.
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Figure 3.3: Shown here is the variation of P(E) with the cutoff parameter zo for
several representative values of the energy E. The parameter X is fixed at 2.5 au.
The barrier height is about 0.425 eV. Notice the stability of the results with respect
to zp.

to 2 > o in real time t. Thus we are getting tunneling probabilities from purely real
time trajectories.

As indicated in the previous section, it is important to verify the stability
of these results with respect to the parameters in order to make sure that we did not
have a special set of parameters. Figure (3.3) shows how the probabilities vary with
respect to the cutoff parameter zo. If the semiclassical approximation were exact,
P(E) would be independent of zo and of the particular choice of ®’s in general. The
results vary only modestly for energies above and below the barrier height over a
wide range of zo. This stability of the results with respect to variations in zo is an
indication of the robustness of the semiclassical approximation. In these calculations,

for small zo the Kohn variational term becomes non-negligible and has to be taken into
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account. Similar stability is also seen with respect to variations in the parameter A. It
is relatively easy to verify that the small numbers obtained for tunneling probabilities
are indeed correct. This can be achieved by performing #-scaling caculations on the

system and demonstrating that the small numbers scale exponentially with % as
P ~ e—const/fi7 (338)

which is a familiar result for tunneling probabilites[37, 67]. Performing such a calcu-

lation on our system we see scaling of the form in Eq. (3.38).

3.5 Concluding remarks

The semiclassical hybrid approach described in this chapter shows promise of
. applicability to large systems. The test case of a simple but nontrivial one-dimensional
potential demonstrates the quantitative and qualitative abilities of this approach.
For the application described in the previous section, the semiclassical method was
pushed to its limits by our choice of the parameters and trial wavefunctions. The
results even in these extreme limits were quite good. Clearly, the results can be
significantly improved by using better trial wavefunctions 7.e., distorted waves which
would be desirable when dealing with multidimensional systems. It is important to
emphasize that this approach is much more theoretically self-consisitent than many
other approaches considered before.

This chapter was concerned mainly with calculating the state-to-state S-
matrix elements which is a very detailed quantity. It is natural to enquire if there
are similar semiclassical approaches within which we can directly calculate N(E) and
k(T). There is already a way to calculate N(E) directly using absorbing boundary
conditions[69]. There is also a half-state-selected version of the theory presented in
this chapter. However, unlike in the exact quantum calculations, there does not seem
to be any significant savings in performing a direct calculation as opposed to a state-
to-state calculation. Further studies are required in order to see if it is possible to
obtain accurate results with a much smaller number of trajectories than that needed

for a full S-matrix calculation. The case of £(T") is much more difficult and challenging.
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For some of the difficulties and a new transition state result, see appendix II of this
chapter.

Some of the features resulting from this approach are worth mentioning.

Historically, stationary phase approximations have always been the method of choice
for highly oscillatory integrals. Indeed the stationary phase method is the main tool
of analysis in most of the classic studies in semiclassical methods. There has been
some work in the area of going beyond stationary phase approximation i.e., beyond
O(#) but the asymptotic nature of the expansions limit their practical utility[13)].
Tt was realised that the stationary phase approach to classically forbidden processes
necessiates the use and understanding of complex valued classical trajectories. This
work, in stark contrast from earlier studies, shows that it is possible to go beyond
stationary phase and to deal with the highly oscillatory integrals numerically. This
1s made possible by gaining a deeper understanding of the wide variety of classical
trajectories which constitute the phase space of the system. For example, one of
the key feature in the integrals, manifesting itself in the form of a singularity, was
attributed to the separatrix trajectory. Once we had isolated the family of trajec-
tories leading to this behaviour it was realtively simple to alleviate the problem. A
similar analysis by Tomsovic and Heller enabled them to go beyond stationary phase
in a system whose classical dynamics exhibits hard chaos and to establish semiclas-
sical accuracies for much longer times than previously considered possible[68]. Thus,
within our approach, we were able to calculate tunneling probabilities with purely
real-time classical trajectories. This is an important step forward as far as applica-
bility to larger systems is concerned due to the fact that computing complex valued
classical trajectories for such systems is extremely difficult. More importantly, our
approach also provides a consistent way to take into account both classically allowed
and forbidden processes in multidimensions. There is no clear generalization of WKB
to multidimensional problems which can do this in a practical way.

On the numerical side it becomes important to consider the total number of
trajectories needed in order to obtain the results provided in the previous section. In
any numerical approach, quantum or semiclassical, in addition to the scaling with the

system size there is also a prefactor. Although the scaling for classical trajectories
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only increases linearly with the number of degrees of freedom, the prefactor might
become uncomfortably large. In order to study this more carefully, we optimized the
problem and found that the prefactor in the one dimensional case is very reasonable.
Another attractive numerical feature is that for all the energies of interest, a single set
of trajectories is all that is needed. Thus it is possible to parallelize the computation
and a single run gives us the entire S-matrix over the required energy range. This is
a highly desirable feature for multidimensional systems and we are thus guaranteed
of a reasonable prefactor for our numerical calculations.

In light of the above remarks, it is clear that this is an approach worthy of

further studies and applications to truly complex chemical systems.

3.6 Appendix I: Analysis of the singularity in the
integrand of Eq. (3.28)

In this appendix we will show that the singularity in the integrand of Eq.
(3.32) is assosciated with the separatrix trajectory. The form of the singularity,
generic to all one dimensional barrier potentials, demonstrates that it is removable
via the transformation given by Eq. (3.34).

To begin with, we will cast Eq. (3.32) into a simpler but equivalent form.
Trajectories are evolved from a fixed initial position (z; = —Z) to a fixed final
position (z2(z1,p1;t) = Z). The value of Z is chosen such that it corresponds to the
asymptotic region of the potential i.e., V(Z) = 0. As a result, the time integral can
be trivially done due to the fact that for a given Z and p; the time 7 is fixed by the
relation z,(—Z,p1;%) = Z. Thus we are left with an integral over initial momenta

only. The final expression for the S-matrix in this sharp cutoff limit is

S(E) = U/ A(—Z,p1;t) exp (?—’P(——%’-&@—) , (3.39)
. y 24N
where
m ]. 83')2 1/2'
A(=Z,p3f) = — | — |[—
(~2pil) = (m 2 )

P(—z,p1;f) = -—2kkzZ + Et + S(~Z,p151), (3.40)
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and now ¢ = #(Z, p;) with the final momentum p, determined as a function of (Z, p;).
It is easy to check that for a free particle, Eq. (3.39) gives unity for the

S-matrix. In order to see the singularity, let us consider a parabolic barrier
1
Viz) = —§mwx2. (3.41)

The Eckart barrier, treated in the previous section, can be closely approximated by the
parabolic barrier near the maximum by appropriately choosing w. For the discussion
in this section the parabolic barrier example will suffice since the structure of the
singularity depends on the form of the barrier. Thus any one dimensional potential
with a quadratic (parabolic) barrier will give rise to the singularity. The relevant
quantities for Eq. (3.39) can be worked out analytically in this case and we find

S(i7p1; ﬂ = ;M
- 1. [+ pi”)
( 1) « Y% S Plp
pAZ,p13t) = p;
Oz, _ sinh(wf) 2mz (3.42)
Om mw (o1 +27°) (0 — p7")

The separatrix momentum is denoted by pi¥ = mwzZ and for the parabolic barrier
corresponds to an energy equal to zero. Using the above relations, it is seen that both

the amplitude and phase in Eq. (3.39) exhibit singularities as p; — pi,

A ~ (Pl*‘Pip)—I/Z
P ~ In(pr—p). (3.43)

The other momenta which lead to singularity in the amplitude do not matter as we
are only running trajectories with positive momenta and above the barrier height.
Notice that the singularity assosciated with the phase is very weak (logarithamic) as
compared to the square-root singularity of the amplitude. It is clear that the nonlinear
transformation of Eq. (3.34) will remove the singularity in the amplitude. With this

transformation the integral can be done via stationary phase approximation which is
exact for the parabolic barrier. A little bit of algebra leads to the exact result for the
probability

P(E) = (1 + &*E/mhyt, (3.44)
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In one dimension we were successful in dealing with the singularity as it is
possible, a priori, to locate the singularity. The reason being that we are given an
invariant function in phase space assosciated with the trajectories which characterizes
the separatrix. In one dimensional cases the Hamiltonian (total energy) provides us
with such an invariant function. In addition, the singularity was removable as demon-
strated in this section. Thus, the numerical integration of the oscillatory integrals
presented no particular problem. However, a different kind of problem presents it-
self in two dimensional collinear scattering systems. Preliminary studies suggest that
there are certain singularities which are not removable. These singularities correspond
to chaotic scattering[70] in the system. It will be shown in the next chapter that peri-
odic orbit dividing surfaces (PODS)|[8] result in these non-removable singularities and

some suggestions are offered to efficiently deal with them.

3.7 Appendix II: Direct semiclassical approach to
thermal rate constant k(T)-challenges and a

new transition state result

The main focus of this chapter was to formulate a hybrid approach to cal-
culate state-to-state S-matrix elements. Once the S-matrix elements have been cal-
culated, the thermal rate constant £(T") can be obatined via Eq. (3.2). In order to be
accurate we would calculate the cummulative reaction probability N(E) over a wide
energy range with a fine enough grid in E and then perform a Boltzmann average.
However, it would be more efficient if we could directly calculate k(T") without re-
course to calculating N(E) first. In recent years remarkable progress has been made
towards directly calculating 4(T") by exact quantum methods{49, 74]. Again, we are
interested in semiclassical methods to compute k(T) for applications to larger sys-
tems. Perhaps it is feasible to make use of a reduced dimensionality exact calculation

and correct for the neglected, weakly coupled degrees of freedom within a semiclassi-

cal approach. At present, we will not go into the details as to how it could be done
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Figure 3.4: This sketch summarizes the difficulty in calculating k(T') semiclassically. T
denotes complex time and o denotes some Stokes’surface. It is possible to analytically
continue the semiclassical propagator from either the real or imaginary time axis as

long as the Stokes’ surface is not crossed.



CHAPTER 3. SEMICLASSICAL SCATTERING THEORY 61

but indicate some problems that prohibit a direct semiclassical approach.
A formally exact expression for the thermal rate constant can be written

down as
K(T) = QiTr{e-ﬂffﬁ’ﬁ], (3.45)

T

where P is a projection operator onto reactive space, @, is the reactant partition
function and F is a symmetrized flux operator. With the following choice of the

projection operator

P = tlim e'iﬁt/hh(ﬁ)eiﬁt/h, (3.46)
we can write down the thermal rate constant as
1 e a n
k(T = o Lim Tr[h(p)e™ ™ /" Fe~ /" h(p)], (3.47)

where h(p) is a momentum step function and 7 denotes complex time, 7 =t —:5%/2
with 8 = (kgT)~'. A direct calculation of k(7T') thus involves the propagator in
complex time 7. In order to implement Eq. (3.45) semiclassically, we need to know
the analog of the Van Vleck-Gutzwiller approximation for complex time. A first guess
is to simply analytically continue the real time result in Eq. (3.13). Unfortunately,
this is completely wrong due to the fact that the semiclassical approximation in Eq.
(3.13) is an asymptotic result. It is importaﬁt to realize that asymptotic expressions
cannot be analytically continued in a naive fashion since the asymptotic series is valid
ﬁthn a certain region only. In another region, the asymptotic approximation to a
function can be of a completely different form. The boundary between these different
regions is known as the Stokes’ lines or surfaces. On the other hand, if we had an
analytic series representing a function then it is possible to analytically continue the

series. As a simple example, consider the integral representation of the Airy function

Ai(z) = L /oo dk exp (z'kz + Z—Ii) . (3.48)
27 -0 3
Stationary phase approximation leads to the following asymptotic forms for the Airy
function[72]

. 1 2 :

Al(Z) ~ Wexp (-—§23/2) real z > 0

Allz) N — [z 3/2 W] al 2<0 3.49
i(2) =~ Py TRtz cos 3(—-—2) 3 real z < 0. (3.49)
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Tt 1s obvious that the asymptotic form for the Airy function for negative real z cannot
be obtained by simply substituting —z in the asymptotic form of Ai(z) for positive
real z. This is due to the fact that in case of the Airy function there are three stokes
lines in the complex z plane and we cross one of them in going from 2z to —z. It is also
clear that on crossing a stokes line, the asymptotic form does not merely change by an
overall phase. Asymptotic series actually have a discontinuity at the stokes boundary.
There are stokes rules which tell us as to how to continue an asymptotic series across
the stokes boundaries. However, the statement of these rules and the mapping of the
stokes boundary themselves are extremely difficult for multidimensional systems. In
fact a proper generalization of the Van Vieck-Gutzwiller propagator to complez time s
a long-standing open problem in semiclassical dynamics. Note that the semiclassical
propagator in purely imaginary time is relatively straightforward. This is due to the
fact that in classical mechanics purely imaginary time dynamics on a potential V'
can be mapped over to purely real time dynamics on the upside-down potential —V.
Figure (3.4) schematically summarizes the difficulty. In the complex time plane, it
might be possible to move off the real axis and calculate rates for large temperatures.
It is also possible to move off the purely imaginary time axis (TST calculation, real
time t = 0) to correct for short time dynamics. But the presence of stokes boundaries
o prevents us from rotating too far out of the real or imaginary time axis. Even if
we did have the semiclassical propagator for complex times we would have to deal
with the issue of complex valued classical trajectories. In one dimension it is possible
to keep the trajectory real by appropriate choice of the time contour but it is not
possible to do so in a general multidimensional system|[76]. These are some of the
main difficulties involved in a direct semiclassical calculation for the thermal rate
constant. Nevertheless, from a practical viewpoint, it is perhaps better to calculate
k(T) in the TST approximation first and then move off the imaginary time axis to

correct for real time dynamics.
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3.7.1 A new semiclassical TST result for £(T)

The starting point is Eq. (3.45) with the real time set to zero. This is an
approximation as the projection operator commutes with the Hamiltonian only in the

t — oo limit. Subtleties aside, we can write the transition state approximation as
KT)Q, ~ Trle P Fh(p)] = krsr(T)Q-. (3.50)

The result is stated in one dimension and is relatively easy to generalize to many

degrees of freedom. Inserting a complete set of position states we get
brst(T)Qr = [ (s1le ™ |ag) (@l FPlay). (3.51)
x1,T2

For the imaginary time propagator we perform a semiclassical approximation and use
Weyl rules[73] to calculate the flux-projection operator matrix elements. The final

result in an initial value representation is

—h —S(zq, 2957,
L ) I L
where z; = z3(z1,p1;78), 78 = A3 and
1 8z, 1/2 6(zy + z2)
) = (L 97 Azt ) 53
Al#1,22;75) (27:‘7i 3p1) (z1 — z2)?’ (3.53)

and S is the classical action on the upside-down potential

S(z1,z2;78) = /0 " dr [p(r)z(r) — H(p(r), 2(7))]. (3.54)

Thus trajectories are evolved on the upside-down potential from time 0 to 75 and the
thermal rate constant in the TST approximation is calculated from Eq. (352) It
is easily checked that Eq. (3.52) gives the ezact results for the free particle and the
parabolic barrier cases.

Note that the resulting integrals are not oscillatory anymore. In fact only
a finite (perhaps small) number of trajectories contribute to the integral due to the
delta function restriciton. It would be interesting to see as to how Eq. (3.52) can now

be corrected for real time dynamics i.e., take into account the fact that there can be

barrier recrossings.
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Chapter 4

Application to collinear A + BC

reactions

4.1 Introduction

In the previous chapter we described a semiclassical approach to scattering
theory in order to calculate state-to-state S-matrix elements. The impressive success
and numerical advantages of the method were self-evident from the example of the
Eckart barrier. In order for the method to be useful for general multidimensional
problems we need to demonstrate similar qua,htitative and qualitative results for two
and three dimensional systems. Collinear i.e., two degrees of freedom reactions have
been a fertile test ground for exact quantum as well as approximate methodologies[41,
42, 44]. From a fundamental viewpoint, the classical dynamics of such systems is also
considerably rich and interesting[19].

Collinear atom-diatom collisions also offer a representative case to study the
effectiveness of the hybrid semiclassical approach. It is now possible, in contrast to one
dimensional cases, to systematically study the effect of choosing various approximate
trial wavefunctions on the resulting S-matrix. In the previous chapter we applied the
method to a one dimensional test case with very stringent choice of parameters and
trial wavefunctions. However, a very significant aspect of chemical reaction dynamics

i.e., resonances do not manifest themselves in one dimensional barrier problems. It is
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well known that resonances give rise to sharp features for the transition probabilities
in collinear systems[41]. Systems with larger than two degrees of freedom also have
resonance features, but are typically of less importance. Thus, it becomes important
to apply the semiclassical method to collinear reactions in order to completely assess
the reliability and accuracy of the approach.

In this chapter we will apply the theoretical ideas developed in the previous
section to the collinear H + H, reaction. This reaction, apart from being a very good
test problem, has been thoroughly studied both classically and via exact quantum
- methods[8, 44]. In addition, we have a very reliable ab initio potential energy surface
for this system in order to perform classical dynamics. An analysis of the phasé
space integrals for this reaction reveals a significant bottleneck to the calculations
arising from chaotic scattering trajectories[70]. In the next few sections we describe
the choice of parameters and trial wavefunctions for the system and offer suggestions

to handle the numerical problems due to chaotic scattering.

4.2 The Jacobi Harhiltonian

For a general collinear reaction A + BC it is convenient to use Jacobi co-
ordinates (r, R). Here r is the vibrational coordinate of the diatom BC and R is the
translational coordinate describing the relative motion of the atom and the diatom.
These coordinates are Cartesian for a collinear system. The classical Hamiltonian is

given by
1

2m,

H(P,,Pr,r,R) = —— P + —— P2 + V(r, R), (4.1)
2mR

where P, and Pg are the momenta conjugate to the coordinates r and R respectively.

The corresponding reduced masses are

mpmc
m, = —
mp + mg
mp = ma(mp + mc) (4.2)

my + mp + mg

Classical trajectories are evolved with this Jacobi Hamiltonian and the potential
V(r,R) is the Liu-Siegbahn-Horowitz-Truhlar (LSTH) ab initio potential[75]. Note
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that we have two sets of Jacobi coordinates, one for describing the reactants A + BC
and another set for describing the products AB + C. Throughout this chapter super-
scripts 8 and a will be used to indicate the product and reactant Jacobi coordinates
respectively. It is important to distinguish the two sets of ccordinates as we are con-
cerned with reactive scattering. The transformation between product and reactant
Jacobi coordinates is

’r'ﬁ = R* — [_mc;.__.} rE
mp + mg¢

R? = [__"_lé__] R® + TamB re, (4.3)
m4 + mp mg(ma + mp)

with the corresponding transformation for the conjugate momenta (P2, Pg).

4.3 The semiclassical S-matrix

As shown in the previous chapter, the semiclassical correction term to the

KVP S-matrix can be written down as the four dimensional phase space integral

1
ASn Na E = ..
ana( E) 2mwik>
D B o4
L Aoy (EED) g
X¥pet h
where we have explicitly indicated the reactant and product channels and
/2
. ox3\ | .
'A‘nﬁ;na (xé’,xl 3 t) = ’Det (ap;") Sonp(xg) Prg (Xl)
7h
PG, x5it) = S(xiit) + Bt — —-
x; = X(x§,p531)- (4.5)

In the above expression we have denoted x = (r, R) and p = (P,, Pr) for compactness.
However, we want to work with an equivalent expression which does not involve the
time integral and the integral over translational coordinate R. In order to go to such
an expression, we run classical trajectories from a fixed asymptotic value of the initial

translational Jacobi coordinate to a fixed asymptotic value of the final translational
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Jacobi coordinate. In other words, classical trajectories evolve from R§ = R to
RS = R. The time integral is trivially done as for a given set of initial conditions
(re, R, P, Pg,) the time 7 is fixed by the relation Ro(r®, R, P2, P3;;T) = R. As a
result, the full S-matrix is given by[76]

1
S’"ﬁana(E) - —ﬁ
R iP(rs, r® T, R)
* /r‘f‘,Pﬁi,Pﬁl Angne (5851, R)exP< 5 )  (49)
where
m ax” 12
Anpna(T5,7555,R) = —F |Det (—-—3) Pns (135 R) Pna (r§; R
8 (2 1 ) [Pl'gzl ap? 7 Bs\"2 1 )
- = - - h
P(5risER) = S(i,phELR) + B — —F (47)
s = 0%, PSR,

and we have explicitly denoted the parametric dependence of the relevant functions
on R and . Note that even though the Jacobian determinant is needed only at a
time £, we still require it along the trajectory in order to keep track of the Maslov

index[60] p.

4.3.1 Choice of the trial wavefunctions

In Eq. (4.7) we have to specify the form of the trial wavefunctions ¢. For
the present case of collinear H + H, we take the vibrational part to be eigenfunctions

of an appropriate Morse oscillator[77] potential V(r)
V(r) = D[1 — exp(—a(r —r0))}?, (4.8)

and plane waves for the translational degree of freedom. The parameters for the

Morse potential D, a,r¢ are chosen to agree with the LSTH potential. Thus we have
en(r; R) = v}2e ™Ry (r), (4.9)

where v, is the asymptotic velocity in channel n and 1, are Morse oscillator eigen-

functions which can be analytically obtained by solving the corresponding Schrédinger
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equation[77]. The resulting expression is

K n! 1/2

where k = { — 2n — 1, I'(b) is the Gamma function[78] and L%(z) are the assosciated

Laguerre functions|[78] evaluated using the following series

L) = 3

m! m)! (k + m)!

z = {(exp(—a(r—ry)) ; (= %\/2m,D. (4.11)

a

m=0

For collinear H + H, the parameters were chosen as D = 0.17447 au, r¢ = 1.402 au
and a = 1.026 gu. The parameters D and r¢ correspond to the depth of the potential
and equilibrium bond length of the diatom respectively[75]. The factorials in Eq.
(4.11) are evaluated using the Gamma function definition I'(d) = (b — 1)! since « is

not an integer. The asymptotic velocity in channel n is given by

2(E7— En)

mp

o)) e

where ¢, are the eigenenergies of the Morse oscillator. Note that we have again chosen

Un =

€n = —D

a very simple form for our trial wavefunctions in order to test the semiclassical model

in the extreme limits.

4.3.2 Evaluating the Jacobian determinant

The Jacobian determinant in Eq. (4.7) is part of the full monodromy matrix
and we require the determinant along each classical trajectory in order to properly
account for the Maslov index. As discussed in the previous chapter, the time evo-
lution of the Jacobian requires the knowledge of second derivatives of the potential
with respect to the Jacobi coordinates. Unfortunately, the LSTH ab initio potential
provides us with only the first derivatives of the potential. It is possible to use the
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Figure 4.1: This figure summarizes the startegy outlined in this chapter in order to
determine the Jacobian determinant along a classical trajectory. For each trajectory,
sketched by the heavy dotted line, a set of four auxillary trajectories are evolved with
the same initial positions (r§, R) but different momenta. These auwxllary trajectories
are schematically shown as thin solid lines. This trajectory bundle is then used to
determine the Jacobian at time £.

first derivative information to obtain the necessary second derivatives by finite dif-
ference methods but, we adopt a different strategy to evaluate the Jacobian which
is very easy to implement in problems with very high degrees of freedom. The finite
difference approach using first derivatives of the potential can be very expensive and
generally unreliable for larger systems.

Figure (4.1) summarizes the startegy. We evolve four awxllary trajectories

simultaneously with our original trajectory which differ in their inital momenta but
with the same initial positions (r, R). The initial momenta for the four audllary
trajectories are (P £ §P7/2,P§ + §Pg/2) with the original trajectory (P%,Pg)-

This trajectory bundle will give us the Jacobian determinant at any time ¢ along the




CHAPTER 4. APPLICATION TO COLLINEAR A + BC REACTIONS 70

trajectory. For example, one of the elements of the Jacobian is obtained as[78]

ars 1 .  OP%g . OPg
T~ e [ (67 + 2B o (s - 2R )

and similarly for the other three elements. In the above expression we have supressed

the dependence of rf on the other initial conditions for sake of clarity. For our case
we found that a spacing of about 107® for the trajectory bundle is optimal. If the
spacing is too small it leads to numerical errors due to the limits on the precision
with which we are integrating the trajectories. Applying this method to the one
dimensional Eckart barrier yielded results which were in very good agreement with

the results obtained in the previous chapter.

4.4 Behaviour of the integrand

We are now ready to perform the integrals in Eq. (4.6). However, this is
not an easy task at all due to the complicated nature of the integrand. Figure (4.2)
shows a typical plot of the imaginary part of the integrand as a function of the initial
fra.nslational momentum with the other variables fixed. The nonreactive trajectories
for the system are identified and assigned zero amplitudes. It is clear from the figure
that there are regions of reactive trajectories and nonreactive trajectories, both having
a very smooth behaviour as a function of P§. More crucially, it is seen that the region
seperating the reactive and nonreactive trajectories are extremely complicated. In
particular, these boundaries between reactive and nonreactive trajectories manifest
themselves as singularities in the integrand. These singularities occur at energies
much higher than the barrier height energy of 0.425 eV. It is important to note that
the results in figure (4.2) do not change when we do the trajectory calculations in an
more accurate fashion.

In fact the situation is much more complex than that suggested by figure

-(4.2). Looking at the integrand more closely around one of these boundaries shows

that these singularities arise due to irregular or chaotic scattering trajectories. Figure
(4.3) shows the integrand in greater detail around one of the boundaries. Interspersed

in that random smatter of points are both reactive and nonreactive trajectories. This



CHAPTER 4. APPLICATION TO COLLINEAR A + BC REACTIONS 71

| - oTy 0.605 eV
0835e¢V | o074ev 0625¢€V l
o~~~
O
-
© 0.2+
* S
)]
[}
.H t
E -mo\'m-c"“
e :l
@)
£
£ -03+
-0.8 - . , | | ' |
-8.0 -7.0 6.0 50 0

Pa

Figure 4.2: Shown here is a typical plot of the imaginary part of the integrand as a
function of Pg with the other variables being held fixed. The labels R and NR denote
reactive and nonreactive trajectories respectively. The solid points are calculations
done with a P§ grid much coarser than the results shown by the dotted line. Notice
the singularities at the boundaries between R and NR trajectories. The contribution
from R trajectories are very smooth. Some of the total energies of the trajectories are
also indicated in the figure. For comparison, the barrier height for collinear H + H,
reaction is about 0.425 eV.
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Figure 4.3: This plot shows the imaginary part of the integrand as a function of P§
near a R-NR boundary. It is clear that the singularity is due to chaotic scattering
and hence not integrable.

shows the sensitivity of the trajectories to initial conditions. It is obvious for well
known reasons that these singularities are nonintegrable[70]. Thus, any naive numer-
ical integration scheme has negligible chances of converging.

The phenomenon of chaotic scattering is well known in two dimensional dy-
namical systems[70, 81]. Considerable work has been done to understand chaotic
scattering in collinear atom-diatom collisons. It was demonstrated by Pechukas, Pol-
lak, Davis and many others[8, 80] that these boundaries are actually periodic orbit
dividing surfaces (PODS). Davis[8, 79] has done a thorough analysis of classical dy-
namics around these PODS by explicitly mapping them out. It is now well known
that there can be a total of nine such PODS for the collinear H + H, reaction[79].
Furthermore, the existence of more than one PODS was linked to the failure of vari-

ational transition state theory[80]. In figure (4.4) we show three different kinds of
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reactive trajectories-a simple reactive trajectory which crosses the transition state
once, a reactive trajectory which spends a lot of time near the asymmetric stretch
periodic orbit and the most complicated one at an energy of about 0.75 eV which re-
crosses the transition state. The latter kind of trajectory are the ones which exist near
the boundaries. For the moment, let us think of the PODS as some kind of adiabatic
barriers. Then the separatrix assosciated with them have an extremely complicated
structure as compared to an one dimensional barrier like the Eckart barrier. Thus, it
is not possible to transform away these singularities in a manner analogous to what
we did for the Eckart barrier®.

Given this complicated situation, it is natural to ask as to how is it possible
to make any progress with integrating Eq. (4.7). An obvious approach is to explicitly
map out all the periodic orbits and use a customized integration scheme in order to
perform the integrals. This is certainly feasible in two dimensions but impractical
in higher dimensions. The mapping of periodic orbits in three or higher degrees
of freedom can become prohibitively difficult. Since we are interested in applying
the semiclassical hybrid approach to multidimensional systems we have to develop a
- method which does not rely upon a prior: knowledge of the PODS. This, however,
is a very difficult task and still an open question in numerical analysis. Nevetheless,
as a beginning effort, the modified Filinov method[82] may have some advantages in

dealing with this problem.

4.4.1 The modified Filinov method

Consider a generic multidimensional integral

T = /p A(p) P®) (4.14)

Following Filinov, we insert unity in the form

1= [ [Det (-2%)} - (-p-p)-B-(-po), (419

1Please refer to appendix I of chapter 2.
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Figure 4.4: Three different kinds of reactive trajectories are shown in this figure. The
inset shows a trajectory with E = 0.6 eV which crosses the transition state only once.
In the main figure, the trajectory with E = 0.6 eV also crosses the transition state
only once but spends considerable time trapped near the asymmetric stretch periodic
orbit. Finally, the trajectory with E = 0.75 eV violates transition state assumption
as it recrosses the transition state and spends some time trapped near two of the

PODS.
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where B is a positive definite matrix, into the integrand of Eq. (4.14). Interchanging
the order of integration, the integral becomes

7= [, [pe (;)]/ [, 4@ exo (P0) - 36— po) B-(p—po) . (419

Note that in the above expression the gaussian factor insures that the integral is
dominated by values of p & po. Thus, we expand P(p) in a Taylor series about po

through quadratic terms:

P(p) ~ P(po) +Pa(Po) - (b — Po) + (P — Po) - Pa(po) - (P —Po),  (4.17)

where P;(po) = 9P/9p and Py(po) = 8*P/0pdp. With this quadratic expansion we

can analytically integrate over p, obtaining

I ~ I(B)
= /Po [Det (1 — 1P2(po) - B'l)]—l/2 A(po)
x exp (iP(po) = 5 Pr(Po) (B — iPalpo)] ™ Palo)) . (418)

The above equation results from the standard Filinov procedure. Note that we have
replaced the amplitude A(p) by the zeroth order term A(po). It is possible to make
a better approximation by including higher order terms but for now we make the
simplest possible choice for the amplitude. At this juncture we make a small mod-
ification as suggested by Makri and Miller[82] in order to make the approximation
more useful. Notice that Eq. (4.15) is true even if B is complex and approximately

true if B is a function of pg. Accordingly, we modify B as
B = B(po) = iPz(po) + b, (4.19)

as a result of which Eq. (4.18) becomes

Z = I(b)
/p  [Det (14 iPa(po) - b=1)]""* A(po)

x exp (iP(po) = 5 Pa(po) - b7 Pu(pa) ) (4.20)
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where the matrix b is a constant positive definite matrix. Eq. (4.20) is the modified
Filinov result. As a simple choice for the matrix b we take b = b1 with b > 0. One
of the main attractive features of Eq. (4.20) is that it has the stationary phase result

as its worst limit. It can be shown that

lim I(b) = Iea:act

b0

gin% I(b) = I, (4.21)
where ;4. is the exact integral and Z,,, is the stationary phase approximation to the
exact integral. Thus, it 1s possible to systematically go beyond stationary phase by
increasing the value of b. In additon, if P(p) is a quadratic function then Z(b) =7
for all values of b. There are other numerically attractive features of this method[83]

but for the purposes of this chapter we will take Eq. (4.20) as the basic result.

4.4.2 Eckart barrier revisited

Before applying the modified Filinov trick to the collinear reaction we test
it on the one dimensional Eckart barrier problem. Specifically, we want to see the

accuracy of the results as compared to the results obtained in the previous chapter.

* Since in the collinear problem we do not have a priori knowledge of the PODS, we will

analogously perform the modified Filinov trick on the Eckart case without integrating
out the singularity?.

The full S-matrix can be written down in analogy with Eq. (4.6) as®

S (E) = — A(p1; %, %) exp (iP(p1; £, 7)) , (4.22)

7 ),
(2miR)12 Jp,
where we have used a slightly different notation for .4 and P as compared to the ones

used in the previous chapter with

_ m |0z 1/2
A = 3,
_ 1. _
Pp;t,z) = -—2kz + ?{[Et + S(p1;%,2)]- (4.23)

2In the previous chapter we had explicitly changed variables in order to transform away the
singularity in the integrand assosciated with the seperatrix trajectory. Please refer to chapter 2 of
this thesis.

3See appendix I of the previous chapter.
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In order to calculate the Filinov derivatives of the phase P we have to be careful as the
derivatives have to be taken with the condition that z; = 7 is fixed and £ = #(Z, p1).

Thus, for example the first derivative of the phase with respect to p; is calculated as

follows:
- P oP oP ot
Pupuiz) = | = 22 L A 4.24
W55 = ), = ol T o om S
where a subscript denotes the quantity being held fixed. Using the relations
95 _ 0
Op1 b2 dp
oS
> = H (4.25)
__a_f_ _ m 5':52
Op1 p2 Opi|;
with H being the classical Hamiltonian, we obtain
- 81132 m aiL‘z
EP1(p1;t,2) = po —| — —(E+H) — 4.26
pit8) = ;e 52| - TE4) 5| (4.26)
Similar analysis can be done for the second derivative of the phase obtaining
- _ 2m Op: Pl) Oz,
it = {(FEeme-n) o
m OV [ Oz, 2 [ ™m ]
—— | = 1+ =(E+H 4.27
p2 Oz (3191) A ) ; (427
Thus, the modified Filinov approximation to Eq. (4.22) is given by
SanlE) ~ SE.(E;b) |
v MF( .7 = SMF( T -
= — : ; .28
-Gy AR ea( P E2),  (429)
where
. oo 1/2
AF(pE7) = Apiz) (1 + -—-—z%(%’t’m)>
PMF(piE7) = P(fE) + o PimiLa). (4.29)

Trajectories are now propagated with initial conditions (p, —Z) until a fixed final

position Z is reached and the integral in Eq. (4.28) is calculated. Note that all
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Figure 4.5: This figure shows the imaginary part of the integrand in Eq. (4.28) for
various values of the Filinov parameter b for E = 0.55 eV. Notice the smooth form
of the integrand for very small values of b (stationary phase limit) and the separatrix
singularity emerging for larger values of b (exact limit). The stationary phase (SP)
and singularity momenta are also indicated on the plot.
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the relevant quantities required for the modified Filinov method are already being
computed along the trajectory.

Figure (4.5) shows the imaginary part of the integrand in Eq. (4.28) for
various values of the Filinov parameter . The energy E is set equal to 0.55 ¢V. For
very small values of b we see that the gaussian factor in the integrand of Eq. (4.28)
samples a very narrow region around the stationary phase region and damps out the
rest leading to a very smooth behaviour of the integrand. The separatrix singularity
i1s damped out at this value of b and a slightly larger value of b as well. For very
large values of b we see the singularity manifest itself in the integrand since we are
approaching the exact integral in this limit. It is clear that for E less than or close
to the barrier height, the results with a very small value of b will be essentially zero.
This is due to the fact that there are no real stationary phase points at these energies
for the integrand. It is thus necessary to consider larger values of b in order to obtain
the probabilities at these energies. Thus it is seen that a calculation with very small
b yields fairly good results for the transmission probabilities at energies above the
barrier height. As the value of b increases the tunneling contribution become finite
and begin to move towards the correct results. The results are very encouraging and
provide some hope that the collinear problem can be dealt with more efficiently in

the future.

4.4.3 Modified Filinov approach to collinear systems

The modified Filinov method is applied to Eq. (4.6) only to the translational
momentum part of the integrand. In general, we could apply it to both the transla-
tional and vibrational momentum part of the integra,ﬁd but we consider the simpler
case in this section. The first and second derivatives of the phase are calculated as
outlined in the previous section. Again, the derivatives are calculated for fixed value

of the translational Jacobi coordinate R. We will just state the results:

t

APilp = {[sz—%;(E-I-H)] Mr + PfZMV}
R2
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EPilp = PO+ PP, (4.30)
where
PG
PY [1 + R (E+H)} MrpMz — 2B Mz + MypMy
R2+ R2 PR2

m . .
PP EER—MT [V&aMr — PRoMr + VEMy — PEMy]

R2
2 1 .
+ —ﬂﬂ’f—— (E+H) [—ﬁ V,%M?p + MTMT} , (4.31)
ProPrs Pg,
and we have denoted
OR? are
Mr = —2% = —2
T = g MY = apg
dPs, aPs
= = 4.3
Mrp 3Pg, Myp 3Ps, (4.32)
ve = 9V s - 9V
R2 - aRg 9 r2 — arg .

The dots on the M’s indicate time derivative and it 1s easy to show, using the Jacobi

Hamiltonian, that the time evolution is given by

. 1
Mr = —Mgp
MR
. 1
My = — Myp. (4.33)

r

The derivatives are approximate since we have neglected certain terms involving the
Jacobian elements. Note that the first derivative of the phase does not vanish at
stationary phase points because we are applying the method only to the translational
momentum part of the integrand. This is in contrast to the one dimensional case
where the first derivative does vanish at the stationary phase points. Nevertheless,
it is interesting to analyze the integrand in Eq. (4.6) as a function of the Filinov
parameter b.

In the figure (4.6) we show the imaginary part of the integrand for tWo
different representative values of the Filinov parameter b. It is clear that with a small

value of b it is possible to damp out the PODS singularity around 0.48 eV. The main
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Figure 4.6: This figure shows the imaginary part of the integrand in Eq. (4.6) for two
representative values of the Filinov parameter b for £ = 0.6 ¢V. Notice the smooth
form of the integrand for very small values of b (stationary phase limit) and the PODS
singularity structure at E = 0.48 eV emerging for larger values of b (exact limit). The
reactive contribution for small values of b is concentrated around the 0.6 ¢V region.
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contribution for small b is definitely concentrated in the stationary phase region at
E = 0.6 eV. Even though the integrand looks reasonably smooth as a function of
the initial translational momentum, the results still do not compare well with the
exact results for collinear H + H;. One of the reasons might be that we have not
applied the method to the vibrational momentum part of the integrand. It is well
known from previous studies that chaotic scattering arises due to the sensitivity of the
scattering trajectories to the initial vibrational phase of the diatom. Perhaps treating
both the translational and vibrational part of the integrand with the modified Filinov
trick would be the correct approach. Another, more pessimistic, reason could be that
the complicated nature of these PODS singularities and close proximity of many
PODS in a small energy region lead to the failure of this method. It is important
to remember that the semiclassical hybrid approach has the best chances of being
accurate when the dynamics of interest is inherently of a short time nature. However,
reactive trajectories in the neighbourhood of the PODS are relatively long lived and
might be a significant factor in the accuracy of the results obtained for this collinear

system.

4.5 Conclusions

_ The semiclassical hybrid approach as applied to collinear reactive scattering
has a significant numerical bottleneck due to the complicated nature of the integrand.
The complications arise due chaotic scattering as a result of which reactive and non-
reactive regions are seperated by PODS. We were interested in developing a method
which did not rely upon explicitly mapping out the PODS since mapping periodic
orbits in greater than two dimensions is prohibitively difficult. The modified Filinov
method demonstrated some promise of being successful but application to collinear
systems requires a much more careful analysis than presented in this chapter. On
the other hand, it is well known from recent work in dynamical systems that chaotic
scattering is supressed in greater than two dimensions[81]. The reason being that
periodic orbits are one dimensional objects in phase space and clearly in greater than

two dimensions will be of less importance for reactive scattering. Thus, 1t seems
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reasonable to apply the semiclassical hybrid approach to three dimensional systems
and test the accuracy of the method. From a numerical standpoint the PODS sin-
gularity are the largest bottleneck in implementing the semiclassical approach for
collinear reactive scattering. Perhaps it would be useful to explicitly map the PODS
for collinear systems and develop a customized integration routine to handle the
singularities. Finally, if we have a reactive system which exhibits an interesting and

important resonance structure then it becomes necessary to develop efficient methods

to handle them within our semiclassical hybrid approach.
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