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ABSTRACT 

 

Purpose. This study was designed to elucidate the role of amplification at 8q24 in the pathophysiology of 

ovarian and breast cancer since increased copy number at this locus is one of the most frequent genomic 

abnormalities in these cancers. Experimental Design.  To accomplish this, we assessed the association of 

amplificaiton at 8q24 with outcome in ovarian cancers using FISH to tissue microarrays and measured 

responses of ovarian and breast cancer cell lines to specific small interfering RNAs (siRNA) against the 

oncogene, MYC, and a putative noncoding RNA, PVT1, both of which map to 8q24.  Results.  

Amplification of 8q24 was associated with significantly reduced survival duration.  In addition, siRNA-

mediated reduction in either PVT1 or MYC expression inhibited proliferation in breast and ovarian cancer 

cell lines in which they were both amplified and over expressed but not in lines in which they were not 

amplified/over expressed.  Inhibition of PVT1 expression also induced a strong apoptotic response in cell 

lines in which it was over expressed but not in lines in which it was not amplified/over expressed.  

Inhibition of MYC, on the other hand, did not induce an apoptotic response in cell lines in which MYC 

was amplified and over expressed.  Conclusions.  These results suggest that MYC and PVT1 contribute 

independently to ovarian and breast pathogenesis when over expressed because of genomic abnormalities.  

They also suggest that PVT1 mediated inhibition of apoptosis may explain why amplification of 8q24 is 

associated with reduced survival duration in patients treated with agents that act through apoptotic 

mechanisms. 
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INTRODUCTION 

 

Amplification of a region on chromosome 8q24 is one of the most frequent events in carcinomas 

including serous ovarian and breast cancers and has been associated with reduced survival duration in 

some studies (1, 2). The well-established oncogene, MYC, maps to this locus and likely contributes to the 

pathophysiology of cancers in which it is amplified.  However, the PVT1 transcript also maps to this 

region and has been implicated in cancer pathophysiology as well (3).  In mouse, for example, the pvt-1 

locus is a site of recurrent translocation in plasmacytomas (4, 5) and is a common site of tumorigenic 

retroviral insertion in lymphomas (6).  In humans, the region homologous to pvt-1 is a site of recurrent 

translocation between chromosomes 2 and 8 (7, 8) and its first exon is co-amplified with MYC in colon 

carcinoma cell lines (9). PVT1 has been suggested as a MYC  activator (10), however, little evidence 

exists to support that role.  Moreover, evidence is now emerging that PVT1 may act as a noncoding RNA 

(Huppi et al., private communication) that is strongly conserved between mouse and human. 

 

We now present evidence that both PVT1 and MYC contribute to ovarian and breast cancer 

pathophysiology when over expressed by amplification at 8q24.  First, we show that amplification at this 

locus is associated with reduced survival duration in ovarian cancer.  We also show that down-regulation 

of either PVT1 or MYC expression using small interfering RNA (siRNA) technology inhibits proliferation 

in ovarian and breast cancer cell lines in which they are amplified and over expressed but not in cell lines 

in which they are not over expressed.  In addition, we show that inhibition of PVT1 but not MYC induces 

an amplification/over expression-specific apoptotic response.  Our analyses of PVT1 transcripts are 

consistent with the interpretation that PVT1 exerts its pathophysiological influence as a noncoding RNA 

(Private communication with Dr. Konrad Huppi).   
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MATERIALS AND METHODS 

 

Cancer cell lines.  Ovarian cancer cell lines with and without amplification at 8q24 were selected from a 

collection of 30 cell lines that were either purchased from ATCC, European Collection of Cell Culture 

(ECCC), DSMZ-the German Resource Centre for Biological Material (DSMZ) and Interlab Cell Line 

Collection (ICLC) or generously provided by Dr. Gordon Mills and Dr. Robert Bast, MD Anderson 

Cancer Center (MDA), Dr. Tom Hamilton in Fox Chase Cancer Center (FCCC), Dr. Nelly Auersperg in 

University of British Columbia (UBC) and National Cancer Institute (NCI) Drug Panel (listed in Table 

S1).  The known biological properties of the cell lines are summarized in Table S1.  Breast cancer cell 

lines with and without amplification at 8q24 were selected from a collection of 51 well-characterized lines 

described by Neve et al. (11).  

 

Nucleic acid extraction.  Genome DNA and total RNA were purified from cultured cells as described 

previously (11). Total RNA from a panel of normal human tissues was purchased from Clontech 

(catalogue number: 636643) and used to measure relative expression levels of PVT1. 

 

Genome copy number and expression analysis.  Relative genome number was assessed in the 30 ovarian 

cell lines using array CGH with three BAC arrays as described previously (12, 13).  These included: (a)  

Hum2.0 arrays comprised of 2465 BACs selected at approximately megabase intervals along the genome 

(12, 14).  (b) Arrays comprised of 1860 BACs selected to include genes known to be involved in cancer 

pathogenesis (15).  (c)  Arrays carrying 400 BACs selected to tile across 13 Mbp at 3q26, 15 Mbp at 

8q24, and 30 Mbp at 20q centered on regions of recurrent amplification associated with reduced survival 
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duration in earlier studies (15).  Global gene expression was assessed by hybridization to Affymetrix 

U133A arrays in the J David Gladstone Institutes in University of California, San Francisco as described 

(www.affymetrix.com).  Hybridized arrays were visualized with Affymetrix Microarray Suite 5.0® 

(MS5.0). The image files of all the arrays were then analyzed together with the robust multiarray average 

(RMA) algorithms (16). Genome copy number and expression analyses of the breast cancer cell lines used 

in this study are described by Neve et al.(11). 

 

Real-time Quantitative-PCR (QPCR) Analysis.  QPCR was performed essentially as described previously 

(17). Quantitative detection of specific nucleotide sequences was based on the fluorogenic 5’ nuclease 

assay and relative expression was calculated as described (17). Assays were purchased as Assays–on-

Demand from Applied Biosystems. The catalogue numbers of these assays are listed in Table S2. The 

sequences of PCR primers and Taqman probe specific for PVT1 transcription unit were designed with 

ABI Primer Express 2.0 software based on the sequence of a published expressed sequence tag (EST) 

clone for human PVT1 (NCBI accession number: M34428). The primer sequences for PVT1 were: sense- 

CATCCGGCGCTCAGCT, antisense-TCATGATGGCTGTATGTGCCA. The Taqman probe was 5’-

FAM-CTGACCATACTCCCTGGAGCCTTCTCC-BHQ1-3’. Primer and probe concentrations of 500 

nM and 200 nM, were used respectively. “No reverse transcriptase” analyses were performed on all 

samples to confirm that genomic DNA was not present. For normalization, cDNA equivalent to the 

amount of RNA used in target gene measurements was measured for ribosomal 18S, glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) and cyclophilin A.  

 

Transfection of siRNA.  siRNAs against PVT1 and MYC were either designed using the ‘Biotool’ 

function available at www.idtdna.com and purchased from Integrated DNA Technologies (IDT, 
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Coralville, IA) or ordered from Dharmacon (Lafayette, CO) pre-designed siGENOME™ Collection.  Two 

siRNAs cognate to different parts of mRNA sequence of PVT1 (siPVT1a and siPVT1b) and two siRNAs 

cognate to different parts of MYC (siMYCa and siMYCb) were used in this study. The target sequence of 

siPVT1a was 5’-CAGCCATCATGATGGTACT-3’ and that of siPVT1b was 5’-

GGCACATTTCAGGATACTA-3’. The target sequence of siMYCa was 5’-

GAGGCGAACACACAACGUC-3’. siMYCb was predesigned by Dharmacon (siGENOME ON-

TARGET™ duplex 17, MYC, catalogue # D-003282-17) and its target sequence was 5’-

GGACTATCCTGCTGCCAAG-3’.  CY3 conjugated siRNA against Aequorea green fluorescent protein 

(siGFP) was designed and synthesized by IDT and used as a control for both transfection efficiency and 

non-sequence-specific siRNA effects. A pre-designed control siRNA (siControl) from Dharmacon 

(catalogue # D-001206-02-05) was also used as a second non-sequence-specific effect control.  

Approximately 5x104 cells were plated to each well of a 24-well plate at least 24 hours (h) before 

transfection in order to achieve 50-70% confluency. siRNA transfection was performed with 

Lipofectamine 2000® (Invitrogen, Carlsbad, CA)  following manufacture’s instructions. Cells were 

harvested or fixed 8, 24 and/or 48 h after transfection for RNA, protein, cell cycle distribution, cell 

viability and apoptosis analyses.  

 

MYC Western Blotting.  10 µg of total protein sample was resolved in a pre-cast NuPage™ 4-12% Bis-

Tris Gel (Invitrogen), electrophoresed at 200 volts for 45 minutes (min) and transferred to a piece of 

Immobilon™ transfer membrane at 250 mÃ for 50 min. Each membrane was then blocked and incubated 

with a monoclonal anti-MYC antibody (clone 9E10, sc-40, Santa Cruz Biotechnologies, Inc., Santa Cruz, 

CA) at room temperature for 1 h or at 4 ºC for overnight. Each blot was washed and incubated in buffer 

containing an anti-mouse IgG antibody (1:20,000) at room temperature for 1 h.  Finally, each blot was 
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soaked in ECL chemiluminescent reagents (GE global research, Niskayuna, NY) for 1 min and exposed to 

an X-ray autoradiography film for 1 min-1 h.   

 

BrdUrd DNA Analysis.  The effects of siRNAs on cell cycle were assessed by measuring BrdUrd 

incorporation during a 30 min pulse two days after siRNA transfection.  Cells were pulsed with 10µl of 

1mM stock BrdUrd added to 1ml culture media in each well of a 24-well plate. Cells were subsequently 

trypsinized, fixed in 70% ethanol (EtOH) and stored in 4 ºC for at least 1 h. The cells were pelleted, 

resuspended in 0.08% pepsin (in 0.1 N HCl) and incubated at 37 ºC for 20 min to free nuclei. 2N HCl was 

then applied to nuclei to denature double stranded DNA and neutralized with 2 volumes of 0.1M sodium 

borate. The nuclei were then incubated on ice with 1:5 dilution of an FITC labeled anti-BrdUrd antibody 

(Becton Dickinson Immunocytometry Systems, San Jose, CA) for at least 30 min and stained with 50 

µg/ml of PI at 37 ºC for at least 15 min. BrdUrd/DNA distributions were measured in a Becton Dickinson 

FACaliber flow cytometer (FACS).  Alternately, cells were fixed with 70% EtOH after 30 min of BrdUrd 

labeling for at least 2 h in room temperature, stained with mouse anti-BrdUrd antibody (BD Biosciences, 

catalogue# 555627) and Alexa Fluor® 488 goat anti-mouse (Invitrogen, #A110001) antibody and 

counterstained with Hoechst 33342 (Sigma-Aldrich, St. Louis, MO). Cells were scanned and recorded 

using a Cellomics High Content Imaging system (Cellomics, KineticScan) (18). Both flow and image data 

were analyzed to determine the fractions of G1, BrdUrd incorporating S-phase and G2M cells as described 

(11, 18).  

 

Apoptosis.  The apoptotic effect of siRNA silencing was assessed using high content image analysis.  At 

each time point, cells were either directly stained with 1µM YO-PRO®-1 stain (Invitrogen) and 10µg/ml 

Hoechst 33342 for 30 min at 37ºC or fixed in 4% formaldehyde at room temperature and stained with 
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Alexa Fluor 488-phalloidin (Invitrogen) for F-actin and10µg/ml Hoechst 33342 for nuclei.  Apoptotic 

cells were detected and analyzed using Cellomics’ Multiparameter Apoptosis and Multiparameter 

Cytotoxicity Bioapplications (Cellomics, Pittsburgh, PA) for F-actin content and Yo-Pro®-1 DNA 

staining, respectively.  Intensities of YO-PRO®-1 and F-actin in cells treated with siRNA were analyzed 

and compared with those of cells treated with Lipofectamine only or siGFP and siControl with 

appropriate Cellomics applications.  Significance was determined using a Student t-test.   

 

Viable cell count analysis.  Cell number was measured at 8 h, 24 h and/or 48 h after treatments using the  

CellTiter-Glo® Luminescent assay (Promega, Madison, WI) (CTG) according to manufacturer’s 

instructions and luminescence was recorded with a luminometer (BioTek FLx800, BioTek Instruments, 

Inc., Winooski, VT). 

 

5’ Rapid amplification of cDNA ends (5’RACE) for determination of PVT1 transcript structure  The 5’ N-

terminal sequences of PVT1 transcripts were determined using 5’RACE with total RNA from epithelial 

cells surgically scraped from normal ovary surface epithelium (OSE1157), an OSE cell line with extended 

life span in culture due to the transfection of SV40 large T antigen (IOSE29) and two immortalized 

ovarian cancer cell lines, CAOV4 and HEY.  The reactions were carried out using a FirstChoice® RLM-

RACE Kit (Ambion, Austin, TX) following the manufacturer’s instructions. Single band PCR products 

from 5’RACE were gel purified and cloned using a TOPO TA cloning kit (Invitrogen: K4500-01). 

Plasmids containing the desired 5’RACE PCR product were isolated and purified from single bacterial 

colonies. They were then sequenced with M13 forward and reverse sequence primers. The sequences of 

individual PVT1 exons were queried on http://microrna.sanger.ac.uk/sequences/search.shtml for potential 

stem-loop’ structures commonly observed in micro RNAs (miRNA) (19, 20).  
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RESULTS 

 

Genome copy number and transcriptional analyses. We applied fluorescence in situ hybridization 

(FISH; Figure 1a) for analysis of 380 ovarian tumors arranged in tissue microarrays with probes to the 

MYC locus (8q24) and the chromosome 8 centromere.  This analysis showed that a MYC locus copy 

number to centromere copy number ratio  > 1.5 (amplification) was significantly higher in serous tumors 

(p<0.0001) and was associated with reduced survival duration (p=0.0170; Figure 1b).   

 

We assessed the mechanisms by which amplification at 8q24 contribute to ovarian and breast 

pathophysiology by analyzing the effects of reducing expression levels of transcripts encoded in the 

region of recurrent amplification in cell lines with and without amplification at this locus.  We identified 

ovarian cell lines amplified at this locus by applying array CGH (aCGH) to 30 ovarian cancer cell lines.  

Most regions of recurrent genome copy number abnormality including amplification at 8q24 in the cell 

lines were similar to those in primary serous ovarian tumors (Figure 1c and 1d) (21). The raw aCGH data 

has been deposited to http://www.ebi.ac.uk/cgi-bin/microarray/tab2mage.cgi, accession # E-TABM-246.   

Table S3 describes similarities in recurrent genome copy number abnormalities between the cell lines and 

primary tumors. Figures 1e and 1f show that the genome copy number profiles at 8q24 for several ovarian 

tumors and cell lines are similar and suggest a concensus region of amplification spanning ~1 Mbp 

encoding MYC and PVT1.   

 

We also analyzed mRNA expression of ~17,000 transcripts using Affymetrix Hu_U133A GeneChip 

microarrays in the 30 ovarian cancer cell lines (Raw image .cel files and analyzed RMA data have been 
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deposited to http://www.ebi.ac.uk/cgi-bin/microarray/tab2mage.cgi, accession #E-TABM-254) and 

calculated Pearson’s correlations between transcription levels and genome copy number changes in order 

to identify transcripts that were significantly deregulated by the genome copy number aberrations in the 

collection of cell lines. Each transcript was paired with a BAC clone that was nearest to the gene in the 

genome. These analyses revealed 417 transcripts with Pearson’s correlations of >0.5 in both cell lines and 

in primary ovarian tumors (21) suggesting that the cell lines mirror much of the genome copy number 

driven transcriptional deregulation found in primary tumors.  The genes are listed in supplementary Table 

S4. We used QPCR to analyze the expression levels of 57 transcripts (listed in Table S2) encoded in 

regions of recurrent copy number abnormality previously implicated in the pathophysiology of ovarian 

cancer.  We analyzed these transcript levels in 21 cell lines (bold highlighted in Table S1) to determine 

the accuracy with which the microarray analyses estimated expression levels. Figure S1 shows correlation 

coefficients between QPCR and microarray results calculated for each gene in the 21 ovarian cancer cell 

lines.  The correlation coefficients between expression levels measured using QPCR and Affymetrix array 

analysis were mostly high (average correlation coefficient 0.75) except for 5 genes including PVT1 for 

which the correlation coefficients were very low to negative.    

 

Since we observed some discordances between transcript levels measured using QPCR and Affymetrix 

expression array analysis, we measured transcript levels of the transcripts for PVT1 and MYC using 

QPCR in 20 ovarian cancer cell lines.  The Affymetrixc U133A arrays used in this study carried probe 

sets 216240_at and 216249_at that were designed from EST clone M34428.  The array signals for both 

probe sets were either undetectable or very low across all the lines whereas the Taqman analyses designed 

from the same source EST sequence detected significant and variable expression levels in the same cell 

lines (Table1). The Pearson’s correlation between PVT1 expression levels measured by microarray and by 



Printed: 05/04/07  PVT1 amplification in cancer 

 11 

QPCR was only -0.02 and -0.01 for 216240_at and 216249_at, respectively, while the correlation between 

PVT1 transcript levels measured using QPCR and genome copy number at 8q24 was high (Table 1).  We 

attribute these discordances to the poor performance of the probe sets for PVT1 on the microarrays.  Table 

1 compares aCGH measurements of genome copy number at 8q24 and QPCR analyses of expression 

levels for PVT1 and MYC in 20 of the ovarian cancer cell lines.  Genome copy number was assessed at the 

BAC array probe closest to PVT1 and MYC (clone VYS08A2679).  The starting site of this BAC clone 

overlaps with 5’ end of the MYC locus and 3’ end of the clone is ~50kbp downstream of 5’ end of the 

PVT1 transcription unit.  Both PVT1 and MYC transcript levels were strongly correlated with genome 

copy number in the 20 ovarian cancer cell lines tested. Interestingly, the correlation between copy number 

and expression level was higher for PVT1 than for MYC; 0.89 and 0.64, respectively.  This is due to the 

fact that some cell lines (e.g. OVCA432 and OVCAR8) with amplification at 8q24 did not over express 

MYC while transcription levels of PVT1 were high in all lines (e.g. CAOV4, HEY, OVCA432 and 

OVCAR8) showing amplification at 8q24.  In most cell lines, transcription levels of MYC and PVT1 were 

significantly higher where they were amplified than in cell lines in which they were not. However, PVT1 

was highly expressed in cell line TOV21G, even though it was not amplified suggesting another 

mechanism of over expression.  We also compared transcription levels of PVT1 in 18 different normal 

tissues, 3 breast cancer lines (SKBR3, HBL100 and SUM159T), and 2 normal ovarian cell lines 

(OSE1157 and IOSE29) to those in two 8q24 amplified ovarian cancer lines (CAOV4 and HEY) using 

QPCR.  PVT1 was expressed in several of the tissues tested with highest expression in trachea but not at 

levels found in the two ovarian cancer cell lines.  Breast cell lines generally expressed PVT1 at much 

lower levels than ovarian cells.  
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We preformed 5’RACE with cDNA from OSE1157, IOSE29, CAOV4 and HEY cells. Analyses of the 

intensities of bands generated by 5’RACE PCR products along with QPCR analyses showed that 

expression of PVT1 in OSE1157 cells was significantly lower than that in IOSE29 cells and more than 20-

fold lower than that in HEY and CAOV4 cells.   Single bands of ~350 base pairs (bp) were only observed 

in 5’RACE PCR products from OSE1157 and HEY cells. The 5’RACE of IOSE29 and CAOV4 cells 

produced multiple bands. The single bands from OSE1157 and HEY cells were cut, gel purified, cloned 

into TOPO TA cloning vectors and sequenced with M13 primers flanking the inserted PCR products.  

Two different sequences (#1 and #2 in Figure S2) were obtained from OSE1157 5’RACE. Only one 

sequence was detected in plasmids isolated from 6 bacterial colonies that were transformed with 5’RACE 

PCR products from HEY cells. The HEY sequence was identical to the 5’RACE sequence #2 from 

OSE1157. We then searched human expressed sequence tag (EST) databases using NCBI Nucleotide-

nucleotide BLAST (blastn) based on our 5'RACE sequences and the sequence of a cDNA clone (NCBI 

accession #: BC033263) that was previously considered to be a full-length clone for PVT1. The 125bp at 

the 3’ ends of both 5’RACE sequences overlapped with the 5’ end of the BC033263 sequence. ESTs that 

had over 95% sequence homology with the query sequences were assembled to predict full length 

transcripts. The web tool, NIX (Nucleotide Identify X software, http://www.hgmp.mrc.ac.uk/NIX), was 

used to identify exons from these EST alignments. Nine exons were predicted for each of the two PVT1 

full-length transcripts (Figure 2) assembled from sequences of 5’RACE #1 and #2 and BC033263. The 

two transcripts shared exons 2-9 but had different first exons. We termed the first exon that corresponds to 

5’RACE sequence #1 as exon 1a and the exon that corresponds to 5’RACE sequence #2 as exon 1b. Exon 

1a is upstream of exon 1b in the genome (Figure 2). In order to determine whether or not the predicted 

full-length transcripts exist in the transcriptome, primers against exon 1a or 1b and exon 9 were used to 
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amplify PVT1 cDNAs from the HEY cells and normal testis. PCR products were then cloned and 

sequenced.  As shown in Figure 2, multiple alternatively spliced variants were identified from these PCR 

products. Predicted exons 4 and 8 were missing in all of the 22 PCR products that we have cloned. We 

also assessed the sequences of individual PVT1 exons detected by PCR for possible stem-loop structures 

that could signify the presence of transcripts that will be bound and cleaved by Drosha to liberate ~70nt 

miRNA precursors (22). Sequences homologous to known stem-loop structures in different species were 

found in predicted exons 5, 6, 7, and 9; however, the significance indices of these predictions were low in 

all cases.   

 

Biological responses to inhibition of PVT1 and MYC expression.  Since our main goal in this study was 

to determine how PVT1 and MYC contribute to ovarian cancer pathophysiology when over expressed by 

amplification or other genomic mechanisms, we compared biological responses to inhibition of PVT1 and 

MYC in ovarian and breast cancer cell lines with and without amplification and over expression of these 

two genes.  

 

We assessed the biological effects of inhibiting mRNA levels of PVT1 using siRNAs in the ovarian 

cancer cell lines CAOV4, HEY, OVCA432 and OVCAR8 where 8q24 is amplified and PVT1 is over 

expressed and in cell lines A2780, CAOV3, OV90 and SKOV3 where PVT1 is not amplified or over 

expressed.  We compared these responses to responses to siRNA inhibition of MYC expression in a subset 

of these lines. After 48 h, more than 50% knock-down in PVT1 mRNA level was achieved in all ovarian 

cancer lines treated with 120nM siPVT1a and at least 80% knock-down was achieved in HEY cells 

treated with either 120nM siPVT1a or siPVT1b. Representative semi-quantitative RT-PCR agarose gel 

electrophoresis and Taqman® QPCR analyses of PVT1 are shown in Figures 3a and 3b, respectively.  
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Figure 3a also shows similar PVT1 knock-down levels in three breast cancer cell lines (SUM159PT, 

HBL100 and SKBR3).  Notably, siRNA knockdown of PVT1 expression was accompanied by a slight 

decrease in MYC protein expression in CAOV4 but not in any of the other cell lines (Figure 3c).   Figure 

3c shows that 200nM siMYCa also reduced the level of MYC protein expression to >50% at 48h.  In order 

to minimize off-target effects of high concentration of siRNA, we also assessed responses to a different 

siRNA against MYC (siMYCb) that reduced the MYC mRNA level in HEY cells to less than 12% of that 

in siControl transfected cells (Figure 3d) at 120nM.  Eight other siRNAs targeting different parts of PVT1 

transcript (see Figure 2) were also tested for knock-down in HEY cells but none of these reduced PVT1 

mRNA levels significantly.  

 

Knock-down of PVT1 and MYC  inhibits proliferation.  We determined the effects of PVT1 and/or MYC 

knock-down on cell proliferation by measuring changes in fractions of cells in the G1-, S- and G2M-

phases of the cell cycle estimated from BrdUrd/DNA distributions measured for cells pulse labeled with 

BrdUrd at 8, 24 and/or 48 h after siRNA transfection and by counting viable cells using the CTG assay 

that measures ATP levels in metabolically active cells.  Table 2 shows that siPVT1a strongly inhibited 

BrdUrd incorporation in four PVT1-amplified/over expressed cell lines but not in any of the non-

amplified lines at 48 h. In HEY and OVCAR8, the reduction in the fraction of cells in S-phase was 

accompanied by a significant accumulation of cells in G1-phase of the cell cycle.  Treatment with 120nM 

siPVT1a and 200nM siMYCa produced similar levels of inhibition of BrdUrd incorporation in CAOV4 

and HEY cells in which both PVT1 and MYC are amplified and over expressed (Table 2). Neither G1 cell 

cycle arrest nor reduction in S-phase was seen in any of the four PVT1/MYC non-amplified/over 

expressed cell lines. siPVT1b had even stronger anti-proliferation effects in CAOV4 and HEY cells than 

siPVT1a (Table 2). We also evaluated the effect of siRNA knock-down with siPVT1a on cell growth 
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using CTG assays. Table 2 shows that the number of viable cells in siPVT1a transfected HEY cells 

started to decrease relative to that of cells treated with Lipofectamine alone or siControl at 8 h. By 24 h, 

the viable cell count was only 40% of that of control cultures.  In contrast, siPVT1a had no effect on cell 

viability in two ovarian cell lines in which PVT1 was not amplified or over expressed.   

In order to determine the generality of the phenotype resulting from PVT1 knock-down, we also compared 

the effect of siPVT1a transfection in two breast cancer cell lines (SUM159PT and HBL100) in which  

PVT1 is both amplified and over expressed with that in a breast line (SKBR3) where PVT1 is only 

amplified but not over expressed. As shown in Table 2, transfection of siPVT1a decreased the proportion 

of BrdUrd incorporating cells in SUM159PT and HBL100 but not in SKBR3.   

 

Knock-down of PVT1 but not MYC increases apoptosis.  We assessed the effects of inhibiting PVT1 

expression on programmed cell death in cells with and without PVT1 amplification/over expression by 

measuring membrane permeability (23), cell morphology and F-actin reorganization (24, 25) using high 

content image analyses.  Yo-Pro®-1 dye uptake increases when cells lose membrane integrity during cell 

death while F-actin reorganization resulting in increased Alexa Fluor® 488 Phalloidin binding that has 

been associated with earlier stages of apoptosis (25).  Beginning at 8 h after transfection, siPVT1a 

significantly increased Yo-Pro®-1 dye uptake and F-actin staining relative to Lipofectamine controls in 

HEY and CAOV4 cell lines in which PVT1 is amplified and over expressed (Figure 4a and 4b).  Increased 

apoptosis in siPVT1a transfected cells was further confirmed with Annexin V staining in CAOV4 cells 

(data not shown).  In contrast, transfection of siPVT1a in 3 of the 4 non-amplified/over expressed lines 

produced no significant changes except in SKOV3 cells where F-actin staining increased significantly 

after siPVT1a transfection (p=0.001). Apoptosis induced by siRNA knock-down of PVT1 expression was 

more pronounced in CAOV4 and HEY cells transfected with siPVT1b as compared to cells transfected 
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with siPVT1a. No effect on apoptosis was seen in the non-amplified cell line, OV90, transfected with 

either siPVT1a or siPVT1b (Figure 4c). Transfection with 120nM siMYCb did not significantly affect 

apoptosis in any of the cell lines tested (Figure 4b and 4c).  Increased apoptosis was also seen in the breast 

cancer cell lines in which PVT1 was amplified and over expressed following transfection of siPVT1a, but 

not in SKBR3 where PVT1 was not over expressed (data not shown).  We also treated the 8 ovarian cell 

lines with Paclitaxel as a positive control for apoptosis induction.  100nM Paclitaxel induced massive 

apoptosis in 6 of the 8 cell lines as expected with the exception of two PVT1 amplified/over expressed 

cell lines (HEY and OVCA432) (Figure 4a).  

 

DISCUSSION 

 

Several published findings implicate PVT1 in aspects of cancer pathophysiology.  Examples include 

observations that rearrangement of the region at 8q24 encoding MYC and PVT1 is frequently involved in  

human leukemias and lymphomas (4, 5), the regions is frequently amplified in solid tumors (2) and a site 

of recurrent tumorigenic viral integration in mice (26).  MYC is well established as an oncogene in this 

region. We now provide functional evidence for the importance of increased expression of PVT1 in cancer 

through analysis of cell lines with and without amplification at 8q24. These cell lines were selected from 

a collection of 30 ovarian cell lines described in this paper and 51 breast cancer cell lines described 

elsewhere (11).  Our analyses of both collections show that the recurrent genome aberrations and the 

resulting deregulation of gene expression are highly concordant between primary tumors and the cell 

lines.  Thus, the aspects of amplification dependent cancer pathophysiology discovered in the cell lines 

are likely to be obtained in primary tumors as well. 
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The strongest evidence for the importance of PVT1 in cancer pathophysiology is our observation that 

siRNA silencing of PVT1 expression decreases cell proliferation and increases apoptosis in breast and 

ovarian cancer cell lines in which it was amplified and over expressed but not in cell lines where it is not 

amplified/over expressed.  The amplification/over expression-specific response phenotypes argue that the 

observed effects are due to down regulation of PVT1 rather than to off-target effects of siRNA.  The PVT1 

specificity of the response is further supported by our observation that the same amplification/over 

expression-specific response phenotype was seen using two different siRNAs against PVT1.   

 

PVT1 has been suggested to function as a MYC activator. However, our demonstration that PVT1 

inhibition does not alter MYC levels in most of the cell lines where it influences both apoptosis and 

proliferation argues against this.  Moreover, inhibition of PVT1 but not MYC induces apoptosis in cell 

lines where they are both amplified and over expressed.  If PVT1 were acting through MYC, the apoptotic 

response should have been observed after inhibition of MYC.   Therefore, we conclude that PVT1 acts 

independently of MYC in generation of the apoptotic phenotype.   

 

The strong induction of apoptosis resulting from siRNA inhibition of PVT1 suggests that PVT1 

amplification contributes to the oncogenic phenotype, at least in part by suppressing apoptosis.  This 

suggests the interesting possibility that amplification at 8q24 might have two simultaneous oncogenic 

functions: over expression of MYC, which stimulates proliferation, and over expression of PVT1, which 

not only stimulates proliferation but also inhibits the apoptotic response normally associated with over 

expression of MYC. The apoptosis suppression function of PVT1 may also explain why its over 

expression is associated with reduced survival duration in patients treated with platinum plus taxane-

based therapies.  Platinum compounds produce apoptotic responses through production of DNA cross-
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links (27) while taxanes, trigger apoptotic responses by stabilizing otherwise dynamic microtubules that 

are important for centrosome and mitotic spindle function (28).  Over expression of PVT1 may contribute 

to resistance to these agents by suppressing the apoptotic mechanisms through which they work.  This 

possibility is partially supported by our finding that two ovarian cancer cell lines with high level PVT1 

expression do not exhibit significant apoptotic responses to treatment with paclitaxel at concentrations 

that induced apoptosis in the other cell lines. However, PVT1 is not the only determinant of response 

since two other PVT1 amplified/over expressed cell lines exhibit a significant apoptotic response to 

paclitaxel. 

 

Elucidation of the mechanism(s) by which PVT1 over expression contributes to suppression of apoptosis 

and proliferation is complicated by the fact that PVT1 is transcribed into multiple splice forms that vary in 

form and abundance between cell lines (data not shown and (9)).  However, our observation that siRNAs 

complementary to sequences in exons 2 and 3 both produced phenotypes that were specific to cell lines 

with amplification and over expression of PVT1 suggested that transcripts containing these two exons are 

functionally important. 

 

Mechanistic interpretation is further complicated by the observation that PVT1 appears to be a ncRNA 

since the longest open reading-frame predicted from our assessment of PVT1 sequences is 150 amino 

acids encoded in the first two exons. The ncRNAs most strongly implicated in cancer so far are miRNAs 

(29). These 20-22 nucleotide RNAs are the result of enzymatic processing of larger transcripts and may 

operate in cancer by blocking translation of target genes to which they are complementary.  Deregulated 

expression of several miRNAs has been associated with poor disease outcome in chronic lymphocytic 

leukemia, colorectal neoplasia, lung cancer and Burkitt lymphoma (29). miRNAs are also frequently 
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located at fragile sites and genomic regions that are involved cancers (30). Thus, we investigated the 

possibility of PVT1 as a miRNA. Our computational analyses show that the predicted sequences of PVT1 

transcripts do not seem to have the ‘stem-loop’ structures normally associated with miRNAs (20, 31, 32).  

A recent study by Dr. Huppi has identified 7 putative miRNAs within the ~400kb PVT1 genomic locus 

(Private communication). The precursor sequence of one of these overlaps with exon 1b in our current 

study, but it also extends beyond the consensus splice site of the exon. The precursor sequences of the 

other 6 miRNAs have no association with any of the annotated PVT1 exons and might be results of 

extensive alternative splicing found in this locus (Figure 2 and communications with Dr. Konrad Huppi).  

This may explain our failure to identify potential miRNAs precursor sequences in our predicted PVT1 

transcripts, which contain mostly known exons.  Thus, the mechanism by which PVT1 exerts its 

pathological function remains unclear.   

 

In conclusion, we have used our well-characterized cell line collection to demonstrate that amplification 

at 8q24 increases expression of both MYC and PVT1 and that both of these deregulated transcripts appear 

to contribute to ovarian and breast cancer pathophysiology.  We have demonstrated that PVT1 is most 

likely an ncRNA that acts independently of MYC and when amplified and over expressed, acts to increase 

proliferation and inhibit apoptosis.    
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FIGURE AND TABLE LEGENDS  

Figure 1. Recurrent copy number aberrations in ovarian tumors and cell lines. (a) Relative amplification of 

the chr8q24 locus determined using FISH with a spectrum orange labeled probes for MYC (red) and a 

spectrum green labeled probe for centromere of chromosome 8 (green) in a mucinous tumor case (probes 

from Vysis, Downers Grove Ill). The ratio of the number of copies of the MYC probe relative to the 

number of copies of centromere 8 was 6.8 in this case indicating high level of amplification.  (b) Kaplan-

Meyer plot showing survival rates in 380 stage I-III ovarian tumors with and without amplification of 

chr8q24 detected by FISH. (c) and (d) Frequencies of significant increases or decreases in genome copy 

numbers are plotted as a function of genome distances of UCSC July, 2003 freeze (NCBI Build 34) for 30 

cell lines (c)  and primary tumors from Study B of Kuo et al(21) (d) Positive values indicate frequencies 

of samples showing copy number increases and negative values indicate frequencies of samples showing 

copy number decreases. The gray bars show the frequencies of log2 copy numbers >0.3 or <-0.3 and the 

black bars show the frequencies of log2 copy numbers >0.9 or <-0.9. The solid vertical gray lines indicate 

chromosome boundaries and dotted vertical lines indicate centromere locations.  The numbers of the 

even-numbered chromosomes are marked at the bottom of each graph.  Data are arranged with 

chromosome 1pter to the left and chromosomes Xqter to the right.  (e) Log2 copy number changes in 7 

ovarian cell lines that had amplification on chromosome 8q24. (f) Log2 copy numbers in ovarian tumors 

(21) showing copy number increases at 8q24. The MYC/ PVT1 amplicon was defined by the minimal 

overlapping regions from tumors as shown.    

Figure 2 Genomic mapping of PVT1 transcripts identified from HEY cells and normal testis and 

alignment of siRNAs against PVT1.   The chromosome distance coordinates in kbp from NCBI Build 

36.2 of the PVT1 locus were marked at the bottom of the graph. Each box represents a segment of cDNA 

sequence from a transcript, and the lines in between represent genomic sequence. The arrow at the end of 
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each transcript points to the direction of transcription, which in all cases are in the sense direction. 

Transcripts A1-A11 are PCR products amplified with primers against predicted exon 1a and exon 9. 

Transcripts B1-B11 are PCR products amplified with primers against predicted exon 1b and exon 9. The 

positions of the 5’RACE sequences #1 and #2 and the EST clone BC033263 are also mapped for 

reference. The position of 9 predicted exons from full-length transcript A and transcript B are marked on 

top of the map. The predicted exons 2, 3 and 7 are magnified to show alignments of PVT1 siRNAs. The 

block arrowheads represent the siPVT1a and siPVT1b used in this study that have shown significant 

knock-down of PVT1 mRNA levels in multiple cell lines. Light gray horizontal lines represent other 

siRNAs that did not show significant knock-down of PVT1 transcription.  

 

Figure 3 Expression of PVT1 and MYC in control and siRNA treated cells.  (a) Agarose gel 

electrophoresis images of semi-quantitative RT-PCR specific for PVT1 transcript in CAOV4, HEY, 

SUM159PT, HBL100 and SKBR3 cells treated with conditions as indicated. GUS expression was tested 

as the sample loading control.  (b)  % PVT1 mRNA level knock-down measured by Taqman® QPCR in 

HEY cells transfected with 3 concentrations (as indicated in the graph) of siPVT1a and siPVT1b as 

compared to cells transfected with siControl. (c)  Western blots with anti-MYC antibody in CAOV4 and 

HEY cells transfected with siPVT1a and siMYCa. In these experiments, the Null control was cells that 

were incubated with Opti-MEM only during transfection.  The Lipo control was cells that were mock-

transfected with Lipofectamine 2000 at a maximum concentration used in each experiment (5-7.5mg/ml). 

(d) % MYC mRNA level knock-down measured by Taqman® QPCR in HEY cells transfected with 

different concentrations (as indicated in the graph) of siMYCb as compared to cells treated with siControl. 
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Figure 4 Effects of PVT1 and MYC siRNAs on apoptosis in ovarian and/or breast cancer cell lines 

measured by the Cellomics HCS system.  (a) Cell permeability (Yo-Pro®-1 dye intake) and 

microfilament reorganization (F-actin staining) in PVT1 amplified/over expressed and non-amplified 

ovarian cell lines treated with siPVT1a and Paclitaxel for 48 h.   For the amplified lines, the white bars 

represent data from CAOV4, the bars with black stripes are for HEY, the dotted bars are for OVCA432 

and the solid black bars represent results from OVCAR8. For non-amplified cell lines, the gray bars 

represent data from A2780, the bars that have white hatched stripes against a black background represent 

CAOV3, the bars with checkered pattern are for OV90 and the bars with cross-hatched lines represent 

data from SKOV3.  (b)  Apoptosis induced by transfection of 120nM siPVT1a at 8, 24 and 48 h in PVT1 

amplified/over expressed and non-amplified ovarian cell lines. All the siRNAs was tranfected at 120nM 

concentration. The heights of the columns in bar graphs represent fold changes in apoptotic cell 

proportions from Lipofectamine (Lipo) treated cells.  * indicates experiments in which the difference in 

total fluorescent intensity was significant between siPVT1a transfected cells and Lipo treated control cells 

(p<0.05).  (c) Comparison of apoptotic effects (measured by Yo-Pro®-1 dye intake) induced by 120nM 

siPVT1a and siPVT1b transfection at 48 h in three ovarian cell lines.  

 

Table 1 Expression levels of PVT1 and MYC and genome copy number changes at 8q24 in ovarian 

cancer cell lines. 

 

Table 2 Effects of PVT1 and MYC siRNAs on cell proliferation in ovarian and/or breast cancer cell 

lines.  BrdUrd/PI cell cycle distributions were measured by FACS analyses or Cellomics® High Content 

imaging.  Viable cell counts were assessed using the CellTiter-Glo® Luminescent cell viability assay. 

Lipo: Lipofectamine 
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SUPPLEMENTARY MATERIALS 

 

Figure S1 Correlation of gene expression levels tested by Taqman® QPCR and Affymetrix 

oligonucleotide U133A arrays  

 

Figure S2 Nucleotide sequences of two PCR products from 5’RACE in OSE1157 cells 

 

Table S1 List of ovarian cancer cell lines used in the study 

 

Table S2 List of genes tested in Taqman® QPCR assays 

 

Table S3 Gene copy numbers in 30 ovarian cell lines in genomic regions that were amplified or 

deleted in more than 20% ovarian tumors from study A and B of Kuo et al (21).  All the aCGH BAC 

clones listed in this table had gained or lost at least one copy (log2 ratio>0.5 or <-0.5) in tumors from 

study A or B. Red boxes indicate gains of at least one copy and green boxes indicates losses of at least 

one copy. Dark red indicates high level amplification (log2 ratio >3) and dark green indicates homozygous 

deletions (log2 ratio < -2)   

 

Table S4 List of genes of which expression was regulated by gene copy numbers in both ovarian 

tumors and cell lines 
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