Cooperative fault-tolerant distributed computing

U.S. Department of Energy Grant DE-FG02-02ER25537
Final Report

Vaidy Sunderam
Department of Mathematics and Computer Science

Emory University, Atlanta, GA 30322, USA
vss@mathcs.emory.edu

1 Overview

The primary goals of the Harness project were to devise effective solutions to two of the
most pressing issues in large scale high performance computing: aggregating collections of
widely distributed resources and dealing with failures that are inevitable in such environ-
ments. Our work aims to realize the first objective through cooperative resource sharing
software that spans multiple administrative and geographic domains, emphasizing secure
and controlled resource management while being resilient to failures at the infrastructure
level. To complement this software infrastructure, a programming model and framework
that offers a fault-tolerant enhancement to the standard message passing model is proposed.
Our efforts are a natural continuation of prior metacomputing research at Emory Univer-
sity, Oak Ridge National Laboratory, and the University of Tennessee, and is a follow-on
to the PVM system for heterogeneous computing, and subsequently, the Harness system
that investigated dynamically reconfigurable software frameworks. The three institutions
involved in this project have worked closely together; our project methodology has been
driven by regular meetings of all personnel, where technical design, operational modes, com-
patibility aspects, and integration issues are discussed in depth, for completed and ongoing
work as well as for planned efforts at each individual site. The subprojects undertaken
at each location are closely linked and address complementary aspects of the project; this
report describes work done during the project at Emory University and summarizes our
accomplishments.



2 Overall Progress

The Emory focus within the overall project has been on distributed computing software
substrates that permit flexible but robust aggregation of resources from multiple domains,
and at the same time, support customizable parallel programming models. During the
project, we designed the metacomputing architecture for such a framework, drawing upon
a component-oriented approach that was successfully demonstrated as viable in the previous
Harness I project. We also developed implementations of some of the low level software sub-
strate and communication mechanisms. In the later stages of the project, we concentrated
on (1) scalable and stateless provider-centric designs for resource sharing, with a view to
large-scale aggregation with resilience to failures; (2) attaining high efficiency in terms of
minimizing CPU overheads due to the system software, and delivering high communica-
tion performance through protocol dynamic selection; and (3) designs for integrating the
distributed computing software layer with programming environments, including a service-
oriented paradigm and the FT-MPI model.

2.1 Provider-centric resource sharing

Recent experiences with large scale distributed systems and grids have highlighted the
complexity and cumbersome nature of monolithic software systems for resource sharing. Our
challenge was therefore to evolve a distributed computing architecture that is simultaneously
lightweight, scalable, and resilient to failures — but yet permits controlled resource sharing
across multiple administrative domains. The result of our efforts in this respect is the
H20 substrate that forms the low level underpinning of the Harness II environment. In
the H20 system, a software backplane architecture supporting component-based services
hosts pluggable components that provide composable services. Such components may be
uploaded by resource providers but also by clients or third-parties who have appropriate
permissions. This aspect allows for virtualizing resources in a shape and form that is most
suitable to the targeted application. It also permits the deployment of different parallel
programming platforms or runtime support systems that may be needed — in fact, this
facility is exploited when running FT-MPI and MPICH programs under Harness.

In terms of sharing, resource owners retain complete and fine-grained control over poli-
cies; yet, authorized clients have substantial flexibility in configuring and securely using
compute, data, and application services. By utilizing a model in which service providers
are central and independent entities, global distributed state is significantly reduced at the
lower levels of the system, thereby resulting in increased failure resilience and dynamic
adaptability. Further, since providers themselves can be clients, a distributed computing
environment can be created that operates in true peer-to-peer mode (without the need for
centralized control or administration), but offers an arbitrary network of resource sharing
relationships.



Harness II essentially constructs a concurrent computing layer on a collection of H20
“kernels”, which, in the interest of statelessness and scalability, do not maintain any state
concerning aggregation. Harness II uses the well-established Distributed Virtual Machine
model that was first introduced in PVM but does so by deploying a collection of pluglets
(pluggable components) on a client-selected set of H20 kernels. Thus, in Harness II, DVM’s
may include resources belonging to independent administrative domains and provided by
collaborating contributors. This of course raises important issues of trust management and
appropriate security mechanisms. However, once again, by isolating resource sharing rela-
tionships to one client and one provider at a time, such arrangements are greatly simplified
and also suitable to the situation at hand. For example, H20 provides simple sub-domain
based authentication and authorization for sharing clusters between different departments
within one university, but also supports certificate based authentication and detailed policy
management for sharing resources in less informal settings.

2.2 Efficient Resource Delivery and Communications Performance

The H20 architecture is service-oriented; its fundamental abstractions are the kernel, being
the service container, and the pluglet, being a service instantiated within the container.
H20 enables resource owners to define access policies for using and deploying services on
their kernels. For high-performance computing, a common resource type is raw CPU access.
(Other raw resources such as data stores, as well as “value-added” resources in the form of
libraries, solvers, or entire applications may also be wrapped within a pluglet abstraction and
offered as a service). The major research issues that we addressed in this regard concerned:
(1) delivery of the underlying resource represented by the pluglet service abstraction to the
user of the resource with as little overhead as possible; (2) while simultaneously adhering
to the resource provider’s sharing policy and ensuring protection. We approached this task
by defining a set of provider policy specifications, corresponding to authorization to access
provider resources on a per-client basis. Some policy targets are specified in boolean terms,
while others (such as storage) are quantified, and a few are enumerated. Due to the high
degree of complexity of implementing fine-grained access to OS scheduled resources (e.g.
CPU), we decided to implement only temporal policies for such parameters, augmented
by higher level controls. Thus, to dedicate a CPU resource to a certain client, the policy
statement would issue a complementary edict, i.e. to prohibit all other clients during that
period. We determined through a number of experiments and analyses that attempting
to exercise more control over such resources leads to unnecessarily large overheads and
perturbation, and in any case, is rarely useful for high performance applications. We have
thus implemented an effective policy and resource management mechanism in H20 that
gives providers strong control over their resources, but imposes little overhead when clients
actually use them. In experiments with pluglet interfaces to various services, between zero
and six percent overhead was observed.

The second issue relating to efficiency that we addressed was one that occurs in all



service-based environments. Since clients and providers have no a-priori knowledge of each
other’s interaction capabilities, it is often necessary to utilize the most generic communi-
cation protocol for service access — but this is almost always very inefficient. Our solution
to this situation is embedded in the RMIX framework for access to pluglet services. This
framework offers the well established and well-understood RMI paradigm for access to re-
mote services, but augments these basic facilities with significant extensions suitable for
use in high performance distributed computing. During the second project period, we com-
pleted the detailed design of this layer, and implemented efficient protocol switching. Using
this technique, a service is initially accessed using (X)SOAP as the first contact protocol,
but immediately followed by negotiation to dynamically switch to the most efficient pro-
tocol supported by both ends of the communication. Furthermore, these transports are
themselves pluggable, thereby enabling new modules to be developed and deployed, as ap-
propriate to a given circumstance. We have implemented JRMP and RPCX (extended
RPC) as example transports; using the latter, data transfer speeds within ten percent of
that attainable for strongly-typed data across heterogeneous platforms have been demon-
strated. We have also begun to design pluggable transport modules for high-speed cluster
networks such as GigE and Myrinet to support efficient pluglet interaction in such envi-
ronments. It should be noted, however, that pluglets implementing parallel programming
environments (e.g. FT-MPI or MPICH) may continue to use their native communication
mechanisms and may bypass H20 communication channels if so desired. In the context
of RMIX, we have also developed a semantically strong asynchronous invocation model.
This feature enables traditional message passing applications to map naturally and in a
one-to-one manner to a service-oriented infrastructure, and avail of several benefits without
incurring the performance penalty of the request-response paradigm.

2.3 Integration with Programming Environments

Like its predecessor Harness I, the Harness II/H20 framework is a component-based infras-
tructure where different programming models may be deployed (and co-exist) on a common
runtime substrate. In H2O, a concurrent environment (e.g. PVM, MPICH, DSM etc)
may be constructed by writing appropriate pluglets that emulate or provide runtime fa-
cilities needed by those platforms. However, pluglets may themselves be used to program
applications following a style similar to that of RMI, and may also be used to offer stan-
dardized services, such as those based on OGSA. Both these models were designed and
implemented and have been published in both tutorial and research paper form, for the
benefit of users wishing to use these paradigms. To support OGSA compliance, the H20
system was augmented with a set of specially designed pluglets. Given a remotely accessi-
ble service written in pluglet-form, this auxiliary system, in conjunction with existing tools,
generates WSDSL/GSDL descriptions of pluglet services, publishes these descriptions, and
provides facilities for client lookup followed by handle generation, reference creation, and
eventually, access to service methods.



Supporting traditional high-performance message-passing distributed computing has al-
ways been one of the main goals of this project. In the past project period, we focused
considerable effort on coupling the underlying resource sharing and resource management
infrastructure with MPI-based programming environments. In particular, an important
objective is to support the FT-MPI model, whose API and runtime libraries are being
developed by our partners at UT. Two approaches to integrate FT-MPI with H20 were
explored. One involves loading FT-MPI daemons (name service, notifier, startup daemons,
and watchdog) into the H20 kernel process space via JNI. The other approach is to use H20
as a startup and lifetime management subsystem for FT-MPI. H20 pluglets would launch
FT-MPI daemons as separate processes (rather than loading shared objects into the H20
address space). FT-MPI daemons would continue to be responsible for communication and
some aspects of security. This approach is attractive because it reduces duplication of func-
tion while leveraging authentication and authorization facilities in H20. Using wrappers to
cast FT-MPI name service and startup daemons as pluglets, this scheme was prototyped
and tested successfully, demonstrating that the two subsystems could indeed be naturally
combined into a framework that supports fault tolerant MPI on resources aggregated across
multiple domains. In an independent subproject, we also implemented a H20 pluglet suite
that enhances the standard MPICH2 distribution (a beta version was used) to permit oper-
ation across firewalls and non-routable networks. When stable, we will offer this solution as
an alternative to other approaches for executing MPICH2 programs in such environments.
These two efforts also successfully demonstrated the Harness II model of constructing dis-
tributed virtual machines (DVMs) by layering special pluglets on a collection of independent
H20 kernels (H20 is a short acronym for Harness II operating environment). We believe
that these exercises also demonstrate that such a clear separation between the resource
sharing aspect on the one hand, and the concurrent programming environment on the other
hand, is the key to creating scalable, failure resilient distributed computing platforms.

3 Research Output

Our work on the Harness II system has resulted in several novel contributions to distributed
computing that we believe propose effective solutions to long standing problems. One of
these is the H20 pluglet model that offers a user-customizable but secure and controlled
way to share resources across multiple domains. Another is the RMIX approach to com-
munication, that uses dynamic selection and protocol switching to avoid tradeoffs between
generality and performance. These and other research artifacts are described in a number
of refereed papers and presentations (listed below). In addition, the software itself has
also been released to the community for potential use as a distributed high-performance
computing platform.



3.1

1.

10.

11.

12.

13.

Talks and Professional Activities

“Resource and Application Adaptivity in Message Passing Systems”, invited talk,
13th EuroPVM/MPI Conference, Bonn, Germany, September 2006.

. “New Approaches to Distributed Middleware for Resource Sharing”, invited talk, 6th

International Workshop on Innovative Internet Community Systems (I2CS 2006),
Neuchatel, Switzerland, June 2006.

“Metacomputing Revisited: Alternative Paradigms for Distributed Resource Shar-
ing”, invited keynote address, International Conference on Computational Science
(ICCS) 2006, Reading, England, May 2006.

“Integrating heterogeneous information services using JNDI”, contributed talk, Inter-
national Parallel and Distributed Processing Symposium (IPDPS-HCW) 2006, Rhodes,
Greece, April 2006.

“Virtualization Issues in MetaSystems”, invited lecture, University of Genoa Seminar
Series, Genoa, Italy, March 2006.

“Virtualization Issues in MetaSystems”, invited keynote lecture, 2005 Cracow Grid
Workshop, Krakow, Poland, November 2005.

“Alternative Approaches to Metacomputing: Harness and H20”, invited keynote lec-
ture, 2005 High Performance Computing and Communications Conference (HPCC
2005), Sorrento, Italy, September 2005.

“Virtualization in Parallel Distributed Computing”, invited keynote lecture, 12th Fu-
roPVM/MPI Conference, Sorrento, Italy, September 2005.

“Performance and Client Heterogeneity in Service-based Metacomputing”, contributed
paper, International Parallel and Distributed Processing Symposium (IPDPS-HCW)
2004, Santa Fe, NM, April 2004.

“Semantic Aspects of Asynchronous RMI: the RMIX Approach”, contributed paper,
International Parallel and Distributed Processing Symposium (IPDPS-JPDC) 2004,
Santa Fe, NM, April 2004.

“Efficient Monitoring to Detect Channel Failures for MPI Programs”, contributed
paper, Proceedings of the 12th Euromicro Conference on Parallel, Distributed and
Network based Processing, A Coruna, Spain, pp. 85-92, February 2004.

“Programming Environments for Grids and Metacomputing Systems”, invited tuto-
rial, 10th EuroPVM/MPI Conference, October 2003.

“Parallel Programming in Grids and Metacomputing Systems”, invited talk, Fifth In-
ternational Conference on Parallel Processing and Applied Mathematics, Czestochowa,
Poland, September 2003.



14.

3.2

“Current Trends in Parallel Distributed High Performance Computing”, invited keynote
lecture, Workshop on Parallel and Distributed Scientific and Engineering Computing
and Applications 2003, Nice, France, April 2003.

Publications

. D. Kurzyniec, V. Sunderam, “Failure Resilient Heterogeneous Computing Across Mul-

tidomain Clusters”, International Journal of High Performance Computing Applica-
tions, Vol. 19, No. 2, pp. 143-156, Summer 2005.

. Magdalena Slawinska, Dawid Kurzyniec, Jaroslaw Slawinski, Vaidy Sunderam, “Zero-

Force MPI: Towards Tractable Toolkits for High Performance Computing”, Poster
presentation, Supercomputing 2006 (SC06), Tampa, FL, November 2006.

. D. Dewolfs, J. Broeckhove, V. Sunderam, and G.E. Fagg, “FT-MPI, Fault-Tolerant

Metacomputing and Generic Name Services: A Case Study”, Proceedings 2006 Eu-
roPVM/MPI Conference, Bonn, Germany, pp. 133-140, September 2006.

. M. Malawski, M. Bubak, M. Placek, D. Kurzyniec, V. Sunderam “Experiments with

Distributed Component Computing Across Grid Boundaries”, Proceedings 15th IEEE
Intl. Symposium on High Performance Distributed Computing — HPDC 2006 (HPC-
GECO Workshop), Paris, France, June 2006.

. Dirk Gorissen, Piotr Wendykier, Dawid Kurzyniec, Vaidy Sunderam, “Integrating het-

erogeneous information services using JNDI”, International Parallel and Distributed
Processing Symposium (IPDPS-HCW) 2006, Rhodes, Greece, April 2006.

. P. Jurczyk, M. Golenia, M. Malawski, D. Kurzyniec, Marian Bubak, V. Sunderam,

“Enabling Remote Method Invocations in Peer-to-Peer Environments: RMIX over
JXTA” | Sixzth International Conference on Parallel Processing and Applied Mathe-
matics (PPAM 2005), Poznan, Poland, September 2005.

D. Dewolfs, D. Kurzyniec, V. Sunderam, J. Broeckhove, T. Dhaene, and G.E. Fagg,
“Applicability of Generic Naming Services and Fault-Tolerant Metacomputing With
FT-MPI”, Proceedings 2005 EuroPVM/MPI Conference, Sorrento, Italy, September
2005.

. Maciej Malawski, Dawid Kurzyniec, Vaidy Sunderam, “MOCCA — Towards a Dis-

tributed CCA Framework for Metacomputing”, International Parallel and Distributed
Processing Symposium (IPDPS-HIPS) 2005, Denver, CO, April 2005.

. G. Stuer, J. Broeckhove, V. Sunderam, “Towards OGSA Compatibility in Alternative

Metacomputing Environments”, Journal of Future Generation Computer Systems,
Vol. 21, No. 1, pp. 221-226, January 2005.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Dawid Kurzyniec, Vaidy Sunderam, “Combining FT-MPI with H20: Fault-Tolerant
MPI Across Administrative Boundaries”, International Parallel and Distributed Pro-
cessing Symposium (IPDPS-HCW) 2005, Denver, CO, April 2005.

Peter Hwang, Dawid Kurzyniec, Vaidy Sunderam, “Heterogeneous Parallel Comput-
ing Across Multidomain Clusters”, Proceedings 2004 EuroPVM/MPI Conference, Bu-
dapest, Hungary, September 2004.

Tomasz Wrzosek, Dawid Kurzyniec, and Vaidy Sunderam, “Performance and Client
Heterogeneity in Service-based Metacomputing”, International Parallel and Distributed
Processing Symposium (IPDPS-HCW) 2004, Santa Fe, NM, April 2004.

Dawid Kurzyniec and Vaidy Sunderam “Semantic Aspects of Asynchronous RMI:
the RMIX Approach”, International Parallel and Distributed Processing Symposium
(IPDPS-JPDC) 2004, Santa Fe, NM, April 2004.

Z. Nemeth, V. Sunderam, “Characterizing Grids: Attributes and Formalisms”, Jour-
nal of Grid Computing, Vol. 1, No. 1, pp. 9-23, 2003.

G. Stuer, J. Broeckhove, V. Sunderam, “Publishing H20 Pluglets in UDDI Reg-
istries”, Journal of Computing and Informatics, Vol. 23, No. 4, 2004.

Tomasz Ampula, Dawid Kurzyniec, Vaidy Sunderam, Henryk Witek, “The Genetic
Algorithms Population Pluglet for the H20 Metacomputing System”, International
Conference on Computational Science (ICCS 2004), Krakow, Poland, June 2004.

Tomasz Wrosek, Dawid Kurzyniec, and Vaidy Sunderam, “Performance and Client
Heterogeneity in Service-based Metacomputing”, International Parallel and Distributed
Processing Symposium (IPDPS-HCW) 2004, Santa Fe, NM, April 2004.

Dawid Kurzyniec and Vaidy Sunderam “Semantic Aspects of Asynchronous RMI:
the RMIX Approach”, International Parallel and Distributed Processing Symposium
(IPDPS-JPDC) 2004, Santa Fe, NM, April 2004.

Elsa Macias, Alvaro Suarez, and Vaidy Sunderam, “Efficient Monitoring to Detect
Channel Failures for MPI Programs”, Proceedings of the 12th Euromicro Conference
on Parallel, Distributed and Network based Processing, A Coruna, Spain, pp. 85-92,
February 2004.

V. Sunderam, D. Kurzyniec, T. Wrzosek, “Towards Self-Organizing Distributed Com-
puting Frameworks”, Journal of Parallel Processing Letters, Vol. 13, No. 2, June
2003.

Gunther Stuer, Vaidy Sunderam, Jan Broeckhove, “Towards OGSA Compatibility
in Alternative Metacomputing Frameworks”, International Conference on Computa-
tional Science (ICCS 2004), Krakow, Poland, June 2004.



22. Tomasz Wrzosek, Dawid Kurzyniec, Dominik Drzewiecki, and Vaidy Sunderam, “Re-
source Monitoring and Management in Metacomputing Environments”, Proceedings
10th European PVM/MPI User’s Group Meeting, Venice, Italy, pp. 629-635, Septem-
ber 2003.

23. Vaidy Sunderam, James Pascoe and Roger Loader, “Towards a Framework for Collab-
orative Peer Groups”, Third IEEE International Symposium on Cluster Computing
and the Grid (CCGRID-GP2PC) 2003, pp. 428-433, May 2003.

4 Summary

This report has outlined the Harness 11 project accomplishments at Emory University. Addi-
tional information or copies of publications may be obtained from the principal investigator.
U.S. Department of Energy support of our research efforts is greatly appreciated.



