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1.0 INTRODUCTION

The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site 

Office (NNSA/NSO) initiated the Underground Test Area (UGTA) Project to assess and evaluate the 

effects of the underground nuclear tests on groundwater beneath the Nevada Test Site (NTS) and 

vicinity and to ensure the protection of the public and the environment.  Since 1996, the Nevada 

Division of Environmental Protection (NDEP) has regulated the NNSA/NSO corrective action 

program for the NTS through the Federal Facility Agreement and Consent Order (FFACO) that was 

agreed to by the State of Nevada; DOE, Environmental Management; U.S. Department of Defense; 

and DOE, Legacy Management (FFACO, 1996; as amended, August 2006).  

The objective of the corrective action strategy for UGTA, as described in Appendix VI, Revision 

No. 1 (December 7, 2000) of the FFACO (1996; as amended, August 2006), is to define contaminant 

boundaries for each UGTA corrective action unit (CAU) where groundwater may have become 

contaminated by underground nuclear weapons tests.  This strategy requires the development of a 

CAU-scale flow and transport model that uses CAU-specific hydrogeologic and transport parameter 

data to estimate movement of contaminants and to define boundaries that encompass the extent of 

contamination. 

1.1 Purpose, Objectives, and Scope

This report documents transport data and data analyses for Yucca Flat/Climax Mine CAU 97.  The 

purpose of the data compilation and related analyses is to provide the primary reference to support 

parameterization of the Yucca Flat/Climax Mine CAU transport model.  

Specific task objectives were as follows:

• Identify and compile currently available transport parameter data and supporting information 
that may be relevant to the Yucca Flat/Climax Mine CAU.
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• Assess the level of quality of the data and associated documentation. 

• Analyze the data to derive expected values and estimates of the associated uncertainty and 
variability.

The scope of this document includes the compilation and assessment of data and information relevant 

to transport parameters for the Yucca Flat/Climax Mine CAU subsurface within the context of 

unclassified source-term contamination.  Data types of interest include mineralogy, aqueous 

chemistry, matrix and effective porosity, dispersivity, matrix diffusion, matrix and fracture sorption, 

and colloid-facilitated transport parameters.  Data type descriptions are provided in Section 3.1.1.

Data analysis includes literature searches, data/information compilation, data documentation, data 

documentation qualification, data quality evaluation, and data assessment and interpretation 

activities.  Scientific software is used to assist in estimating and visualizing each of the hydrogeologic 

data types. 

The study area, as described in the Yucca Flat/Climax Mine Corrective Action Investigation Plan 

(CAIP) (DOE/NV, 2000a) and shown in Figure 1-1, was selected to encompass the Yucca 

Flat/Climax Mine corrective action sites (CASs) and downgradient areas that may be impacted by 

these CASs.  The focus of data compilation for this investigation was on the area within the 

boundaries of the Yucca Flat/Climax Mine Hydrostratigraphic Framework Model (HFM) 

(Figure 1-1), although information considered to be relevant to this task may be obtained from other 

sites.  These sites include other UGTA CAUs, the Yucca Mountain Site, other sites located within the 

NTS region, and similar sites from other locations when only limited data are available within the 

vicinity of the NTS.  Data transferred from other sites have been documented and justified using 

methodologies consistent with the Transferability of Data Related to Underground Test Area Project, 

Nevada Test Site, Nye County, Nevada (SNJV, 2004e).  A discussion of parameter-specific data 

transfer techniques is included in each data analysis section where data transfer was used. 

1.2 Yucca Flat/Climax Mine CAU Background

The Yucca Flat/Climax Mine CAU area is a large (approximately 19 kilometers [km] east-west by 

35 km north-south [11 by 21 miles]) structural valley located in the northeastern part of the NTS.  The 

Yucca Flat/Climax Mine CAU constitutes the largest of five CAUs within the NTS previously used 
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Figure 1-1
Nevada Test Site-Scale Boundaries
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for underground nuclear testing.  This CAU includes portions of NTS Areas 1 through 4, 6 through 

12, and 15 (Figure 1-1). 

A total of 747 underground nuclear detonations were conducted in shafts and tunnels in this CAU 

between 1957 and 1992.  These tests included 744 detonations in Yucca Flat proper and three in the 

Climax Mine tunnel complex (DOE/NV, 2000b).  Underground nuclear tests are designated (either 

individually or as groups) as CASs in the FFACO (1996; as amended, August 2006).  The tests 

comprise 720 CASs; the reduced number of CASs is the result of multiple (two or three) detonations 

for some CASs.  Appendix A contains a complete list of the underground nuclear tests and related 

information.  The location of the CASs and UGTA wells in the Yucca Flat/Climax Mine CAU, along 

with test-related surface effects, are shown in Plate 1. 

Announced test yields for the Yucca Flat/Climax Mine CAU range from 0 to 500 kilotons (kt), and 

the depth of burial ranges from 58 to 780 meters (m) below ground surface (bgs).  Nuclear devices 

were emplaced in one of four types of geologic media: alluvial deposits, Tertiary volcanics, 

carbonates, or intrusives (DOE/NV, 2000a).  Approximately 23 percent of these detonations were 

conducted near or below the water table, with potential for groundwater contamination in the vicinity 

and possibly downgradient of the underground test locations.  Transport in groundwater and gas 

phase transport are the primary long-term mechanisms for subsurface migration of contamination 

from underground testing.

1.3 Corrective Action Strategy

The focus of the UGTA corrective action strategy is to determine contaminant boundaries for each 

CAU in compliance with future monitoring requirements (FFACO, 1996; as amended, August 2006).  

The contaminant boundary is defined to encompass the predicted aggregate maximum extent of 

radionuclide contamination from underground testing exceeding the Safe Drinking Water Act 

(SDWA) standards.  As such, it will be composed of both a perimeter boundary and a lower 

hydrostratigraphic unit (HSU) boundary.  Groundwater flow and contaminant transport models will 

be used to predict the location of this boundary during a future period of 1,000 years at a 95 percent 

level of confidence.  Monitoring of the contaminant boundaries will determine long-term compliance.
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For the UGTA Project, the corrective action strategy includes two major phases: a regional evaluation 

addressing all CAUs and CAU-specific evaluations addressing each of the individual CAUs.  The 

first major phase was completed with the document Regional Groundwater Flow and Tritium 

Transport Modeling and Risk Assessment of the Underground Test Area, Nevada Test Site, Nevada 

(DOE/NV, 1997a).  The flow and transport model provided the initial basis for determining the 

magnitude of risk from the source areas on the NTS to potential receptors and a regional context for 

future individual CAU investigations.  The second major phase focuses on refining the results of the 

regional-scale modeling through acquisition and analysis of CAU-specific data, and development of 

CAU-scale flow and transport models. 

The process flow diagram for implementing the corrective action strategy for the UGTA CAUs, as 

required by the FFACO (1996; as amended, August 2006), is shown in Figure 1-2.  The CAU-specific 

corrective action process includes six major elements:    

1. Corrective Action Investigation Plan − This plan provides or references all specific 
information for planning investigation activities associated with CAUs or CASs.

2. Corrective Action Investigation (CAI) − This investigation includes the collection of new 
data, the evaluation of new and existing data, and the development and use of CAU-specific 
groundwater flow and transport model(s).  The CAI process may be iterative, resulting in 
several phases of data collection, analysis, and modeling, with assessment of confidence in 
the results at the completion of each phase (Figure 1-2).  If further data collection, analysis, 
and modeling are required, an addendum to the CAIP will be issued to direct the new phase 
of activities.

3. Corrective Action Decision Document (CADD) − This document describes the results of the 
CAI, the selected corrective action, and the selection rationale.  The selection rationale will 
consist of an analysis of possible corrective action alternatives. 

4. Corrective Action Plan (CAP) − This plan describes how the selected remedial alternative is 
to be implemented.  The CAP will contain the engineering design and necessary 
specifications to implement the selected remedial alternative.

5. Closure Report (CR) −  This report details closure activities, including the preparation of a 
CR, NDEP review of the CR, and long-term closure monitoring by DOE.

6. Long-term monitoring − Long-term, post-closure monitoring is designed to ensure the 
compliance boundary is not violated. 
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Figure 1-2
Underground Test Area Corrective Action Units Process Flow Diagram
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The uppermost Yucca Flat/Climax Mine CAIP-level components (DOE/NV, 2000a) in Figure 1-2 

(shaded) denote the steps completed in the regulatory framework for the Yucca Flat/Climax Mine 

CAU.  The CAI-level “Collect New Data” component has been accomplished for Phase I 

(Appendix B).  This report documents the completion of the next component, “Evaluate 

Existing/New Data,” which consists of surveying available data, presenting a compilation and 

summarization of relevant data, and providing data analyses in support of groundwater transport 

model development. 

1.4 Planning Documents

The Yucca Flat/Climax Mine CAI planning documents and descriptions are listed in Table 1-1.  The 

Yucca Flat/Climax Mine Value of Information Analysis (VOIA) report (IT, 1999) assessed the value 

of different possible data collection activities with respect to reduction in uncertainty of the 

contaminant boundary, and provided the basis for identifying the data collection activities specified in 

the Yucca Flat/Climax Mine CAIP (DOE/NV, 2000a).  The strategy for development of the 

groundwater flow and transport model was documented in the Yucca Flat/Climax Mine modeling 

strategy report (Shaw, 2003b), which specifies the modeling data requirements.  

Table 1-1
Yucca Flat/Climax Mine CAU Corrective Action Investigation Planning Documents

Title Description

Value of Information Analysis for 
Corrective Action Unit 97: Yucca Flat, 
Nevada Test Site, Nevada (IT, 1999) 

Describes the evaluation of the sufficiency of existing information to support 
the CAI and identifies the major problems anticipated in developing the 
geologic, flow, and transport models.  Potential data collection activities to 
improve characterization data are evaluated for potential benefit and 
prioritization.  

Corrective Action Investigation Plan for 
Corrective Action Unit 97:  Yucca 

Flat/Climax Mine, Nevada Test Site, 
Nevada  (DOE/NV, 2000a)

An FFACO (1996; as amended, August 2006) requirement that summarizes 
the historical data for the Yucca Flat/Climax Mine CAU.  Describes the 
characterization activities that will be implemented to evaluate the extent of 
contamination in groundwater due to underground nuclear testing and support 
the development of groundwater flow and transport models to predict the 
contaminant boundary.

Modeling Approach/Strategy for 
Corrective Action Unit 97, Yucca Flat and 

Climax Mine (Shaw, 2003b)

Describes approaches to modeling flow and transport through the 
hydrogeologic system over time.  One approach is the development of 
numerical process models to represent the processes that control flow and 
transport.  The other approach uses simplified representations of the process 
models to assess the interactions between model and parameter uncertainty.

Source: Modified from SNJV, 2006c
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1.5 Data Collection Activities 

A variety of data collection activities have been conducted to supply information for Phase I data 

analysis and modeling, including those activities specifically directed in the Yucca Flat/Climax Mine 

CAIP (DOE/NV, 2000a).  Appendix B contains an overview of the major Yucca Flat/Climax 

Mine-specific data collection activities and studies, and lists the major reports produced.

1.6 Project Participants

The UGTA Project is a component of the NNSA/NSO Environmental Restoration Project (ERP) and 

is managed by the NNSA/NSO UGTA Federal Sub-Project Director.  The following organizations 

participate in the UGTA Project:  Desert Research Institute (DRI), Lawrence Livermore National 

Laboratory (LLNL), Los Alamos National Laboratory (LANL), National Security Technologies, LLC 

(NSTec), Stoller-Navarro Joint Venture (SNJV), and the U.S. Geological Survey (USGS).  A 

Technical Working Group (TWG) has been established to assist the NNSA/NSO UGTA Federal 

Sub-Project Director with technical management issues.  Assigned TWG tasks include providing 

expert technical support to plan, guide, and monitor UGTA technical work; and serving as internal 

peer reviewers of UGTA products.  The TWG consists of representatives from the above-named 

agencies.

1.7 Document Organization

Content summaries of each section and appendix are as follows:

• Section 1.0 introduces the document, defines the scope and objectives, provides background 
information on the FFACO (1996; as amended, August 2006) corrective action strategy and 
the Yucca Flat/Climax Mine CAIP, and explains the document structure. 

• Section 2.0 provides a brief overview of the modeling strategy proposed for the Yucca 
Flat/Climax Mine CAU and the associated data requirements.

• Section 3.0 presents the general data compilation and analysis approach used to assess the 
available transport data.

• Section 4.0 describes the HFM and detailed descriptions of HSU mineralogy.  These 
descriptions are presented to support the analysis of the contaminant transport data presented 
in this document. 
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• Section 5.0 summarizes the results of a comprehensive geochemical flow-path analysis that 
was performed in collaboration between multiple UGTA organizations.  In addition, an 
evaluation of the aqueous chemistry data used to support matrix sorption is presented. 

• Section 6.0 provides source term information and describes contaminant data from near-field 
groundwater sampling events. 

• Section 7.0 defines a stationary probability distribution of matrix porosity per HSU and 
hydrogeologic unit (HGU).

• Section 8.0 presents a brief explanation of the role of effective porosity in contaminant 
transport, outlines available sources of effective porosity, and recommends ranges for 
effective porosity estimates.

• Section 9.0 provides a description of dispersivity data collected at the NTS and sites around 
the world.  Two methods are presented that characterize the uncertainty associated with 
longitudinal dispersivity values.

• Section 10.0 presents a description of matrix diffusion data applicable to Yucca Flat/Climax 
Mine HSUs. 

• Section 11.0 provides an extensive review and analysis of matrix sorption data that are 
applicable to rocks within the Yucca Flat/Climax Mine CAU.

• Section 12.0 provides a basic overview of fracture sorption parameters that are applicable to 
fractured rocks within the Yucca Flat/Climax Mine CAU.

• Section 13.0 defines the colloid-facilitated transport parameters necessary for incorporation of 
colloid transport in the CAU model.

• Section 14.0 contains the reference list.

• Appendix A contains a listing of underground nuclear tests in the Yucca Flat/Climax Mine 
CAU with general information on each test — including name, location, depth, and yield — 
as well as a test location map. 

• Appendix B presents an overview of Yucca Flat/Climax Mine CAIP data collection activities 
that were accomplished for the Yucca Flat/Climax Mine CAU during Phase I and lists the 
major reports produced to document the data collection activities.

• Appendix C contains information in support of the HFM described in Section 4.0.

• Appendices D through J contain dataset descriptions and supporting information for various 
analyses.

• Appendix K contains NDEP comments on the draft version of this document.
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2.0 CORRECTIVE ACTION UNIT MODELING APPROACH

The process for achieving the UGTA corrective action strategy includes modeling to define the extent 

of contaminant transport within a 1,000-year time frame.  The use of groundwater flow and transport 

models used to achieve the objectives of the corrective action strategy is specified in Appendix VI, 

Revision No. 1 (December 7, 2000) of the FFACO (1996; as amended, August 2006).  This section 

presents an overview of the CAU groundwater flow and transport modeling approach, and a 

discussion of the transport modeling approach and data requirements for the Yucca Flat/Climax Mine 

CAU.  Additional discussion of the modeling approach for the Yucca Flat/Climax Mine CAU is 

included in Shaw (2003b).

2.1 Overview of the CAU Modeling Approach

In areas of NTS underground nuclear testing, groundwater flow occurs through diverse and 

structurally complex rocks (Laczniak et al., 1996).  Given the complexity of the hydrogeologic 

system, contaminant sources, and processes controlling transport, computer models are required to 

meet the objectives of the FFACO (1996; as amended, August 2006) corrective action strategy.  The 

modeling approach used to develop an integrated three-dimensional (3-D) model for flow and 

transport begins with system characterization and is followed by the conceptual model development 

based on evaluations and assumptions of system processes, and mathematical representation of these 

processes.  Mathematical models representing the system are then developed and implemented.

2.1.1 Integrated Three-Dimensional Model Development

The CAU flow and transport models consist of an integrated set of models.  Some of these models 

focus on a small-scale process (relative to the CAU) such as radionuclide release from source regions.  

Others simplify CAU-scale processes such as reactive transport in fractures to an abstraction for 

system sensitivity analysis.  Combined, the models (referred to as component models) constitute the 

CAU predictive model.  Essential aspects of the processes described by the detailed mechanistic 

models must be represented accurately in the CAU model.  This representation must include the 

uncertainty associated with the process or parameters.
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The integrating numerical model will be a 3-D, finite-element flow and transport simulator that 

captures the complex geologic structure — including units of variable thickness, faults, and offsets — 

as well as complex transport processes associated with reactive solutes and fractured rock.  The CAU 

groundwater flow model component requires two other component models:  the Death Valley 

Regional Ground-Water Flow System (DVRFS) groundwater flow model (Belcher et al., 2004) and 

the precipitation recharge model(s) (SNJV, 2006c).  The CAU contaminant transport model 

component requires the CAU groundwater flow model and the hydrologic source term (HST) 

model(s).

2.2 Transport Modeling Approach and Data Requirements

The approach and data requirements for the Yucca Flat/Climax Mine flow model are described in 

Shaw (2003b) and summarized in SNJV (2006c).  The focus of this report is data compilation, 

analysis, and documentation for the Yucca Flat/Climax Mine transport model; therefore, the approach 

used for modeling transport of contaminants, along with the associated data requirements for the 

Yucca Flat/Climax Mine area, are described briefly.

2.2.1 Transport Modeling Approach

The CAU transport model will be built upon the groundwater flow model using the contaminant 

transport capabilities of the finite element heat and mass transfer code (FEHM) (Zyvoloski et al., 

1997a and b).  The CAU transport model will be used to simulate the transport of radionuclides in the 

hydrogeologic system of the Yucca Flat/Climax Mine area for the 1,000-year regulatory time frame. 

Using the CAU transport model, concentrations of radionuclides will be calculated for specified 

points downgradient from the underground nuclear tests of the Yucca Flat/Climax Mine CAU.  

Simulated concentrations will then be used to estimate the location of the contaminant boundary as 

defined in Appendix VI, Revision No. 1 (December 7, 2000) of the FFACO (1996; as amended, 

August 2006).

The Climax Stock model developed by DRI will be used to estimate radionuclide fluxes resulting 

from the three tests in Climax Mine.  Simulated flow across the southern boundary of the Climax 

Stock model can be used to define boundary conditions for the Yucca Flat flow and transport model. 
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2.2.2 Data Requirements

A variety of data types are required to simulate radionuclide transport in the groundwater system 

(Figure 2-1).  The data types needed for the contaminant transport model include the HST, transport 

parameters, radionuclide concentration data, and groundwater chemistry data.

2.2.2.1 Hydrologic Source Term

The HST of an underground nuclear test is the portion of the total inventory of radionuclides that is 

released over time into the groundwater following the test.  The total residual inventory of 

radionuclides associated with one or more tests is known as the radiologic source term (RST).  The 

RST is comprised of radionuclides that are distributed within water, glass, or other phases within the 

test cavity and vicinity.  The total unclassified radionuclide inventory (i.e., the RST) for all tests 

within the Yucca Flat/Climax Mine CAU is published in Bowen et al. (2001).  The inventory is 

subdivided for the Yucca Flat/Climax Mine CAU by tests where the working point depth is more than 

100 m above the water table and tests that were detonated below that level (Bowen et al., 2001).

Two HST datasets will be defined for the Yucca Flat/Climax Mine CAU.  One source term will be 

based on unclassified data and extrapolated to all underground tests within the CAU.  Later, a 

classified dataset (based on information from individual tests) will be used to calculate the final 

contaminant boundary location.    

The unclassified HST for the CAU transport model will be comprised of abstracted release functions 

from the underground nuclear tests, or groups of underground nuclear tests, based on the RST 

published in Bowen et al. (2001).  The release functions will capture the important hydrological and 

chemical processes that govern the migration of radionuclides in groundwater away from 

underground test cavities.  The release functions associated with the three tests in Climax Mine will 

be provided by the DRI sub-CAU model for the Climax Stock.  The unclassified HST for the Yucca 

Flat/Climax Mine CAU will be the subject of a future report: Unclassified Source Term and 

Radionuclide Data for Corrective Action Unit 97: Yucca Flat/Climax Mine. 
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2.2.2.2 Transport Parameters

Parameters needed to simulate the radionuclide transport processes at work in the Yucca Flat/Climax 

Mine flow system include effective porosity, dispersivity, radioactive decay constants, distribution 

coefficients, matrix diffusion coefficients, matrix porosity, description of the fracture geometry, and 

colloid-facilitated transport parameters.  A general description of the various transport parameters and 

the approach to developing parameter distributions is presented in Section 3.0.  Compilation and 

analysis of these parameters for the Yucca Flat/Climax Mine CAU are described within subsequent 

sections of this report.

2.2.2.3 Radionuclide Concentration Data

Measurements of radionuclide concentrations in groundwater samples are useful in evaluating the 

CAU-model predictions.  These data may be used to calibrate the transport model and/or provide 

further confidence in the simulations.  Evidence of radionuclide migration away from underground 

nuclear test locations, such as that observed during the long-term pumping near the NASH location 

(see Section 6.0), could be compared with simulated results of the HST models. 

Available data for the near-field environment of the underground nuclear tests are presented in 

Section 6.0.  Further evaluation of the concentration of radionuclides within the Yucca Flat/Climax 

Mine CAU are the subject of a future report.

2.2.2.4 Groundwater Chemistry Data 

Groundwater chemistry data are not directly used as input in the transport model; rather, 

representative groundwater chemistries are determined from the data and are used for a variety of 

analyses.  Interpretations of groundwater flow paths and consequent geochemical mixing of 

characteristic groundwater chemistries are used to evaluate and verify groundwater flow and transport 

models.  These interpretations provide independent information on potential groundwater flow paths 

and travel times that may be used in developing and calibrating the groundwater flow model for the 

Yucca Flat/Climax Mine CAU.
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3.0 DATA ANALYSIS

Data analysis is the process of compiling, assessing, and interpreting available data in preparation for 

CAU groundwater flow and transport modeling.  The data needed for CAU modeling include a broad 

variety of types, from numerous sources, that represent a wide variety of measurements and scales of 

measurement.  The process of analyzing the data includes the following seven steps:  (1) compilation 

of existing data for the Yucca Flat/Climax Mine investigation area, (2) transfer of applicable data 

from outside the Yucca Flat/Climax Mine area, (3) assignment of data quality indicators, 

(4) assessment of data representativeness and appropriateness for use in CAU modeling, (5) data  

reduction and analysis, (6) graphical and tabular presentation of results, and (7) discussion of data 

limitations and the possible impacts to the CAU groundwater flow and transport model.  This 

document presents data analysis and results used to support the development of the Yucca 

Flat/Climax Mine transport model.

3.1 Data Compilation

The compilation of existing data is a multiple-step process of determining necessary data, identifying 

and acquiring available data, and compiling the data into structured databases.  As discussed in later 

sections of this document, certain data types required for CAU modeling are derivative; these are 

determined by processing more basic data using models specifically developed for the purpose 

(e.g., sorption models used to develop sorption coefficients).  Data types of interest and data sources 

are discussed in the following sections.

3.1.1 Transport Data Types

General descriptions of the various types of information needed for modeling are provided in the 

following sections.  The descriptions are followed by explanations pertinent to the different transport 

parameters of interest to the Yucca Flat/Climax Mine CAU model.  Information needed to support 

CAU contaminant transport modeling include porosity (matrix and effective), dispersivity, matrix 
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diffusion parameters, contaminant-rock sorption parameters, and colloid-facilitated transport 

parameters.

3.1.1.1 Porosity

As stated previously, effective porosity and matrix porosity are required parameters in the CAU 

models.  Porosity, however, can be defined in several ways depending on the application (Freeze and 

Cherry, 1979; de Marsily, 1986).  These include:

• Total Porosity - The total volume of void space divided by the total volume of rock.  No other 
porosity measure can exceed the total porosity.  

• Bulk Porosity - The bulk porosity is a total porosity measurement and for the purposes of the 
CAU model can be treated as total porosity.  In fractured units, for example, bulk porosity is a 
sum of matrix and fracture porosity.  

• Effective Porosity - Also called kinematic porosity by de Marsily (1986), effective porosity is 
defined as the volume of voids transmitting water (interconnected voids) per total volume of 
rock.  From the perspective of transport, adhesive water, dead-end pores, isolated pores, or 
any other water that does not actively move should be excluded from the effective porosity.  
As a result, the effective porosity is always smaller than the total porosity.  Effective porosity 
is a modeling parameter that is used to calculate particle velocity from Darcy velocity.

• Fracture Porosity (Secondary Porosity) - In fractured geologic units, the faults, fissures, 
cracks, joints, and bedding planes form a complicated network of interconnected planar 
features through which groundwater flows.  Often, the majority of groundwater flow is 
through the fracture network and not through the matrix material separating the fractures. 

• Matrix Porosity (Primary Porosity) - The matrix material between fractures is porous.  In 
many cases, the porosity of the matrix is several orders of magnitude larger than the fracture 
porosity.  Although the flow through the matrix is often much smaller than through the 
fractures, the vast majority of the water volume is in the matrix.  In unfractured media, matrix 
porosity is comprised of effective flow porosity, transport storage porosity, and disconnected 
storage porosity.  In many instances, the total porosity is a good approximation of the matrix 
porosity.

3.1.1.2 Dispersivity

The hydrodynamic dispersion of solutes (or particles) in groundwater describes the spreading 

phenomenon at a macroscopic level through the combined action of mechanical dispersion and 

molecular diffusion.  With modeling approaches that do not account for heterogeneity, dispersion is 
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used to account for the variability in velocity and results in greater simulated transport distances than 

would be calculated using average velocity only. 

3.1.1.3 Matrix Diffusion Coefficient 

In fractured rock systems, where the primary pathway for groundwater flow is through the fractures, 

the matrix material is saturated with groundwater that is considered immobile for the purposes of 

modeling.  A double-porosity conceptual model is typically assumed, with matrix diffusion between 

the fractures and the adjacent matrix attenuating both the concentration and travel velocity of 

aqueous-phase contaminants moving through fractures.  The amount of immobile water in the matrix 

is governed primarily by the matrix porosity.  In many fractured aquifers, the matrix porosity may be 

10 or more times larger than the fracture porosity.  Thus, although the bulk of the water travels 

through the fractures, a large reservoir of water in the matrix can act to store contaminants 

temporarily via the matrix diffusion process.  If a contaminant diffuses into the matrix for a period of 

time, it effectively stops moving relative to the water in the fracture.  Therefore, matrix porosity and 

the matrix diffusion process are necessary for successful modeling of contaminant transport in 

fractured aquifers of the CAU model.

Matrix diffusion is one of the processes that governs the transport of contaminants in fractured aquifer 

systems.  It represents the rate of diffusion of solutes from flowing water (generally in fractures) into 

stagnant or nearly stagnant water contained in the pores of consolidated rock matrices (Neretnieks, 

1980).  Matrix diffusion coefficients for solutes in a porous medium are smaller in magnitude than 

free water diffusion coefficients because of the tortuous nature of the pathways that solutes must 

follow when they diffuse through the media; thus, matrix diffusion coefficients can be directly related 

to the solute free water diffusion coefficient by the tortuosity of the porous media.  In natural systems, 

the matrix diffusion process may be further complicated by the presence of fracture coatings, which 

may have different physical (e.g., porosity and tortuosity) and sorptive properties than those for the 

matrix. 

3.1.1.4 Matrix and Fracture Sorption Parameters 

Contaminant sorption is a general term to describe a variety of chemical processes that bind 

(temporarily or permanently) contaminants to solids, either matrix or fracture minerals.  Sorption 
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along the fracture surface and in the matrix acts to temporarily store contaminants and slow 

contaminant migration with respect to the flowing groundwater.  Sorption is treated mathematically in 

the contaminant transport model through an equilibrium distribution coefficient (Kd) approach where 

the amount of contaminant stored on or in the rock is a function of its concentration in the 

groundwater.  The transfer of the radionuclide from the water to the rock is assumed to occur 

instantaneously and be completely reversible.  Sorption is represented by the Kd, or the retardation 

factor (Rf parameter) in the solute transport equation.  The Kd is based upon a volumetric sample of 

material and is used to represent sorption to the matrix material.  The retardation factor represents 

solute retardation per unit length, rather than per unit volume of rock, and thus better reflects sorption 

along a fracture.  These two terms are related to each other by the bulk density (pb) and porosity (φ) of 

the solid as .

3.1.1.5 Colloid-Facilitated Transport Parameters

Colloids are defined as small particles (less than 1 micrometer [μm]) comprised of organic material or 

inorganic minerals that are suspended in solution.  Oxides and hydroxides of actinide elements 

(e.g., plutonium [Pu]) can also form colloids (Kersting et al., 1998).  Migration of a given 

radionuclide sorbed onto colloids in flowing groundwater is often more rapid than that of the same 

radionuclide in solution.  This is primarily the case when the radionuclide is transported due to 

sorption onto the colloid but would otherwise be retarded by sorption onto the immobile rock.  

Radionuclide transport on colloids could also be slower if there is low sorption to the immobile rock 

when compared to sorption onto the colloid.  Parameters needed to represent colloid-facilitated 

transport include colloid types, concentrations, and size distribution; radionuclide sorption/desorption 

rates onto colloids; and colloid filtration rate constants.

3.1.2 Supporting Information

The following types of supporting information for each data type and/or data entry are recorded in the 

documentation, where applicable and available:

• Identification and location information
• Physical information on the location
• Sample information
• Chemical constituents

Rf 1
pb
φ
------Kd+=
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• Method of data collection or type of test
• Scale of measurement
• Date of data collection
• Stratigraphic unit
• Lithology
• Alteration
• Hydrostratigraphic unit
• Method of data analysis
• Observed parameter value
• Parameter spatial distribution
• Uncertainties
• References relating to the data records  
• Noted deficiencies

References to the specific sources of information are provided along with the data.  A general 

description of the data sources is provided in Section 3.1.3.

3.1.3 Data Sources

In general, data have been gathered by several organizations that include NSTec, LLNL, LANL, DRI, 

USGS, and the SNJV.  A large amount of historic data had also been gathered under the auspices of 

previous NTS management and operating (M&O) contractors (Bechtel Nevada [BN] and Reynolds 

Electrical & Engineering Co., Inc. [REECo]), architect and engineer (A&E) contractors (Fenix & 

Scisson and Raytheon Services Nevada), and Environmental Restoration contractors (IT Corporation 

and Shaw Environmental, Inc.).  Many data sources for the Yucca Flat/Climax Mine CAU exist from 

various scientific and engineering studies conducted by these organizations and, where applicable, are 

referenced in this document.  Additional, unpublished data have also been obtained from project files 

of some of these organizations. 

Data collected from within the Yucca Flat/Climax Mine HFM area (see Figure 1-1) are classified as 

Yucca Flat/Climax Mine-specific data.  These data are directly applicable to the Yucca Flat/Climax 

Mine CAU.  Data from within the larger Yucca Flat/Climax Mine CAIP investigation area 

(DOE/NV, 2000a) are also compiled for use in the Yucca Flat/Climax Mine CAU to support modeling 

that may extend further downgradient from this CAU.  Use of data from sites outside the Yucca 

Flat/Climax Mine CAU may be appropriate to reduce parameter uncertainty when particular data 

types are sparse (Freeze et al., 1990).  Parameter data for similar environments may therefore be used 

to establish parameter distributions to be used in modeling the study area.  Sites considered as 
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additional data sources for the Yucca Flat/Climax Mine CAU are adjacent CAUs, sites associated 

with the YMP, and, in some cases, similar sites from distant locations. 

3.1.3.1 Nevada Test Site Data

Data have been compiled from other CAUs and adjacent areas in the vicinity of the NTS, where 

applicable, to provide additional input to reduce parameter uncertainty.  

3.1.3.2 Yucca Mountain Project Data

The Yucca Mountain Project (YMP) is the proposed geologic storage location for commercial 

high-level radioactive waste in the United States.  High-quality data have been collected and analyzed 

during investigations of the Yucca Mountain site, including several parameters relevant to Yucca 

Flat/Climax Mine CAU modeling.  Yucca Mountain is located adjacent to the southeastern part of the 

NTS.  The proximity and similar hydrogeologic environment of the Yucca Mountain Site to Yucca 

Flat make it particularly relevant as a source of data for hydraulic and transport properties for similar 

HSUs and HGUs.  

3.1.3.3 Other Data

Data from other distant locations may be incorporated in the analysis for select purposes.  The use of 

such data is explained and justified in the data analysis discussion for the particular data type.

3.2 Data Transfer Methodology

A process was developed specifically to assess the transferability of data (SNJV, 2004e).  The 

technical basis document for data transferability provides a comprehensive discussion of 

requirements and methodology for data transfer, which were considered for the analyses described in 

this document.  

3.2.1 General Transferability Approach

The use of data from other study areas to develop parameter distributions for flow and transport 

modeling of UGTA CAUs can be justified by examining specific similarities that may exist between 

various investigation areas.  It must be shown that there is a sufficient similarity that exists between 
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the two areas.  The general approach for the transfer of data from one area to another is based on the 

following strategy:

• For each parameter of interest, sites are identified that contain data of the same type.  In an 
ideal situation, sites could be found in the same general area that have roughly the same 
geologic setting.  More likely, sites will be identified that are located farther away but have 
similar rock types.  In the least desirable situation, data may be transferred from locations that 
are less similar to the original study area but otherwise can be justified as appropriate.

• Once the source of the flow and transport parameter data are identified, the factors affecting 
the specific parameter need to be clarified.  If it can be shown that only one factor influences a 
given parameter, it may make the transfer of data easier to justify.  For example, if it can be 
shown that a parameter is only influenced by lithology, then a comparison of the lithologies 
between the two investigation areas would suffice to make a decision. 

• Finally, if sufficient data are present in the original study area, a statistical data comparison 
can be made from the other area to determine whether the two datasets are comparable. 

• The relative emphasis assigned to the transferred data is established using a weight and 
multiplier system.  Weights are assigned based on the similarity between the investigation 
areas, and multipliers are assigned based on the measurement method, the quality of data 
reduction and analyses, and documentation quality.  The overall score for a given dataset is 
the sum of the weights multiplied by the product of the multipliers.  Datasets from 
investigation areas that are less similar may be transferred but are assigned lower weights, so 
they ultimately “count less” in determining the final parameter distribution used in CAU-scale 
modeling.  Likewise, datasets associated with measurement methods having large 
uncertainties or inappropriate scales, or datasets of low-quality or having poor documentation, 
are assigned lower multipliers, so they count less in the final CAU-scale application.

3.2.2 Similarity Criteria 

Similarity criteria focus on rock genesis and evolution factors that influence rock characteristics and, 

therefore, flow and transport parameters.  These factors include the geologic history of the area, 

lithology, alteration, and groundwater chemistry.   

3.2.2.1 Geologic History

The geologic history of an area has a significant impact on the flow and transport of groundwater.  For 

example, the depositional environment of a rock can influence things such as the porosity of 

sedimentary rocks or the texture of volcanic rocks.  In addition, subsequent structural episodes may 

increase faulting in a given area, which could lead to increased groundwater flow.
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3.2.2.2 Lithology

The specific rock type of a study area has an important impact on the flow and transport of 

groundwater.  For instance, the type of rock (metamorphic, igneous, sedimentary, alluvium/valley fill 

deposits) is an important factor to be considered in the transferability of porosity data (SNJV, 2004e) 

and is also important to sorption processes.  Fracture density varies depending on the lithology. 

3.2.2.3 Alteration

Alteration (e.g., devitrification, zeolitization, and argillization) can significantly impact not only 

hydraulic properties but also the reactivity of the rocks with respect to radionuclide transport.  For 

example, the formation of zeolitic material in volcanic tuffs can greatly increase sorption of certain 

radionuclides.  Argillic alteration commonly is characterized by the presence of the clays smectite 

and kaolinite; these secondary alteration minerals are reactive with respect to sorption of some 

radionuclides.  Devitrification results in the conversion of glass to microcrystalline quartz and 

feldspar, and thus yields a rock that is composed almost entirely of quartz and feldspar and is 

unreactive with respect to contaminant sorption reactions.

3.2.2.4 Groundwater Chemistry

Groundwater chemistry can play an important role in the flow and transport characteristics of a 

groundwater flow system.  It can have a large impact on everything from mineral dissolution and 

precipitation reactions to fracture geometry.  Groundwater chemistry controls radionuclide 

complexation reactions, which can affect the rate and extent of radionuclide sorption.

3.3 Quality Assurance of Data and Data Documentation

Quality assurance (QA) measures consistent with the UGTA Project Quality Assurance Project Plan 

(QAPP) (NNSA/NSO, 2003) have been used to control quality during the performance of all UGTA 

data analysis tasks.  These measures include data documentation qualification, data quality 

assessment, checking procedures, software QA, use of standard methodologies, technical and peer 

reviews, and corroboration through models.
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3.3.1 Data Documentation Evaluation

Data documentation flags provide information on the traceability (or pedigree) of the data.  Typically, 

data collected in the recent past has much better documentation than data collected and reported many 

years ago.  Qualification of the documentation of the data makes it easier to investigate and evaluate 

the quality of the data used in modeling.

Each data record for a given dataset is assigned a data documentation evaluation flag (DDE_F) value 

to indicate the level of documentation available for that data record.  The process of data qualification 

ensures that the pedigree of the data is retained for database users.  However, it is important to note 

that the data documentation quality does not neccessarily indicate the quality or the usefulness of the 

data for Yucca Flat/Climax Mine CAU modeling.  Historic data may not meet current standards for 

documentation but are often of high quality and can be extremely useful in the CAU investigations.  

In some cases, historic data are invaluable, and new data cannot be acquired to serve the purpose.

The five levels of DDE_Fs are as follows:

Level 1 - Data are collected in accordance with the NNSA/NSO ERP QAPP, approved State of 

Nevada procedures, and/or participant-specific procedures.  This ranking indicates that all supporting 

data documentation is on file and available to data users for review.

Level 2 - Data are collected in accordance with approved plans and procedures as required for 

Level 1, with the exception that one or more documentation requirements may be deficient in some 

way.  Examples of data documentation deficiencies may include lost or destroyed field data collection 

forms or data acquired using interim or draft procedures.

Level 3 - Data are collected using accepted scientific methodology (e.g., American Society for 

Testing and Materials [ASTM], U.S. Environmental Protection Agency [EPA] methods, USGS 

procedures) and accompanied by supporting and corroborative documentation such as testing 

apparatus diagrams, field or laboratory notes, and procedures. 

Level 4 - Data are collected by a participating NNSA/NSO ERP organization, or another organization 

not associated with the NNSA/NSO ERP, before the issuance and implementation of 

project-approved standard policies, procedures, or practices governing data acquisition and 
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qualification.  The methods of data collection are documented and traceable; however, the validity of 

data use or compliance with reference procedures is indeterminate.  Supporting documentation may 

or may not exist.

Level 5 - Data are obtained under unknown, undesirable, or uncertain conditions.  When data 

documentation is unknown, any available supporting or helpful descriptions of the intended use and 

conditions of data capture should be described.

3.3.2 Data Quality Evaluation

The data qualification process varies depending on the type of parameter.  The criteria used to 

evaluate the quality of different types of data are dependent on the data type and the intended use.  

Thus, various criteria are used to assess data quality.  The general procedure includes assigning one or 

more data quality evaluation flags (DQE_F) to each record, or group of records compiled in the 

dataset, indicating the data quality or suitability of the individual data record for the intended usage.  

The DQE_F and their definitions depend on the data type.  Specific quality evaluation procedures are 

described in the different sections of this document for each data type. 

3.3.3 Checking Procedures

Various checking procedures were designed for quality control purposes.  Checking procedures 

applicable to the UGTA data analysis include those developed for transcription of data and generation 

of figures, tables, logs, and calculations.  Data compiled by project personnel are subjected to the 

checking procedures before inclusion in the appropriate dataset.  However, the bulk of the available 

data are comprised of data gathered and compiled by agencies external to the UGTA Project.  Internal 

procedures do not govern other UGTA participants; therefore, their data were subject only to the data 

transcription checking procedure described.

3.3.4 Standard Methodologies

Only standard and widely accepted methodologies are used in the development of the interpretive 

products.  The various methodologies used are too numerous to list; however, they are described and 

referenced in this document where their use in the data analysis process is discussed.
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3.3.5 Technical and Peer Reviews

The review process constitutes an important measure of product quality and is used throughout the 

performance of the data analysis activities.  The review process may include internal and external 

technical reviews.  The internal reviews are performed by individuals from organizations involved in 

performing UGTA Project work (see Section 1.6).  External reviews may be conducted as directed by 

NNSA/NSO. 

3.3.6 Corroboration of Data Through Models

This step is completed during the development of the groundwater flow and transport model.  For 

example, during the contaminant transport modeling, observations of contaminant movement will be 

used to help assist and refine the contaminant transport model results.  This may be accomplished by 

modifying the sorption coefficient or porosity in areas where no data are available.

3.3.7 Data Analysis Limitations

Data limitations need to be identified.  These limitations may be related to the level of data 

documentation, data collection method, data analysis method, or other factors that may limit the 

confidence in the values.  Within the discussion of each dataset, data limitations will be noted.
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4.0 YUCCA FLAT/CLIMAX MINE HYDROSTRATIGRAPHIC 
FRAMEWORK

A 3-D HFM (base model and alternative models) for the Yucca Flat/Climax Mine CAU is fully 

documented in the report A Hydrostratigraphic Framework Model and Alternatives for the 

Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca 

Flat/Climax Mine, Lincoln and Nye Counties, Nevada (BN, 2006).  An overview of the Yucca 

Flat/Climax Mine HFM is provided in this section as background for the analyses presented in the 

later sections of this report.  This overview also includes a summary of the available mineralogy data 

and introduces a new classification scheme for the rocks of the Yucca Flat/Climax Mine CAU based 

on these data, referred to as reactive mineral categories (RMCs).  

4.1 Yucca Flat/Climax Mine Hydrostratigraphic Framework Model

The general hydrogeologic framework for the NTS and vicinity, established by USGS geoscientists in 

the 1970s (e.g., Winograd and Thordarson, 1975), provided the foundation for most subsequent 

hydrogeologic studies at the NTS, including the Yucca Flat/Climax Mine HFM.  The HFM for the 

Yucca Flat/Climax Mine area documented in BN (2006) was further enhanced by many field and 

analytical studies supported by the UGTA Project and conducted over several years.  As a result of 

these studies and the contributions of many experts and organizations associated with the NTS, the 

hydrogeologic understanding of the model area has become increasingly detailed and refined.

A generalized geologic map identifying the Yucca Flat/Climax Mine HFM boundaries and important 

geologic features present in the vicinity is presented in Figure 4-1. 

4.1.1 Model Development 

Construction of the digital Yucca Flat/Climax Mine HFM involved developing a structural model of 

the area that included the locations and orientations of all the relevant faults in the model area.  The 

structural model of the base HFM incorporates many aspects of structural models of Yucca Flat 
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Figure 4-1
Generalized Geologic Map of the Yucca Flat/Climax Mine Region 
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developed over the years for the weapons testing program at the NTS.  These models integrated 

various two-dimensional (2-D) datasets, including reflection seismic, gravity, aerial and surface 

magnetic, magnetotelluric (MT) survey, post-test surface effects, surface geology, and drill hole data 

(refer to Section 2.0 in BN, 2006 for more information and specific references).  The structural model 

for the Yucca Flat base HFM is a refinement of these earlier models and incorporates new data 

collected by the UGTA Project including MT (Appendix D in BN, 2006), drill hole (NNSA/NSO, 

2004b, c, d, e, and f; DOE/NV 1995a and b; BN, 1997b), and reprocessed gravity data (Phelps et al., 

1999 and 2000).  In addition, Phelps et al. (2000 and 2005) augmented the reprocessed gravity data 

with Paleozoic contact depth information from new drill holes.

The base HFM includes 180 structural elements, most of which are basin-and-range normal faults.  

Several older thrust faults, such as the CP and Belted Range thrust faults and associated imbricate 

thrust faults and folds, are also included.  However, because the thrust faults are low angle, they are 

represented as an HSU contact in the model.  Fault information was imported into the EarthVision® 

(EV®) modeling software (Dynamic Graphics, 2002) to form a fault-tree model that depicts all the 

model faults in 3-D space.  The fault-tree model formed the framework on which the HFM was built.  

Only known faults that were considered to be hydrogeologically significant were included in the 

model.  These include faults with apparent displacement typically greater than about 60 m (200 feet 

[ft]) and those that are thought to form significant structural boundaries.  Based on observational data, 

the main surface faults controlling structural fabric typically have greater than 60 m of offset.

Although the structural framework of the Yucca Flat/Climax Mine HFM is the fault-tree, the 

foundation of the model is the HSU classification system, which is discussed in Section 4.1.2.2.   

To address non-unique aspects of some interpretations within the base model, five alternative 

interpretations were considered in addition to the base HFM:  

• Alternative #1 - CP thrust
• Alternative #2 - Hydrologic barrier in northern Yucca Flat
• Alternative #3 - Contiguous upper clastic confining unit (UCCU) in southwestern Yucca Flat
• Alternative #4 - Fault juxtaposition
• Alternative #5 - Partial zeolitization

These alternatives are summarized in Appendix C and described in detail in BN (2006).  
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4.1.2 Hydrogeologic and Hydrostratigraphic Units of the Yucca Flat/Climax Mine 
HFM

The rocks of the NTS have been classified hydrologically using a two-level classification scheme:   

HGUs and HSUs (IT, 1996b; BN, 2002, 2005, and 2006; NSTec, 2007).  The HGUs categorize rocks 

according to their ability to transmit groundwater (i.e., aquifers or confining units), which is mainly a 

function of the primary lithologic properties of the rock, degree of fracturing, and secondary mineral 

alteration.  The HSUs are larger, more regional mapping units that group contiguous stratigraphic 

intervals that have similar hydrogeologic characteristics (i.e., composed of similar HGUs). 

4.1.2.1 Hydrogeologic Units of the Yucca Flat/Climax Mine HFM

The rocks of the Yucca Flat/Climax Mine HFM area are classified as one of the following nine 

HGUs:  playa confining unit (PCU), alluvial aquifer (AA), welded-tuff aquifer (WTA), vitric-tuff 

aquifer (VTA), lava-flow aquifer (LFA), tuff confining unit (TCU), granite confining unit (GCU), 

clastic confining unit (CCU), and carbonate aquifer (CA) (Table 4-1).  These HGUs are described in 

more detail below.  

Alluvial Hydrogeologic Units

Two alluvial HGUs are present in the Yucca Flat/Climax Mine model area:  the AA, which is also an 

HSU, and the PCU.  The AA consists mainly of gravelly sand and sandy gravel eroded from the 

surrounding mountains during basin development and deposited on alluvial fans by debris flow and 

sheetflood processes.  Deposits of finer-grained eolian sand are intercalated within the coarser 

alluvial deposits.  The PCU consists of fine-grained sand, silt, and clay deposited as playa lake 

sediments in the topographic low point of the basin at the southern end of Yucca Flat.  

Volcanic Hydrogeologic Units

The volcanic rocks within the model area are categorized into four HGUs (LFA, TCU, VTA, and 

WTA) based on primary lithologic properties, degree of fracturing, and secondary mineral alteration.  

In general, the altered volcanic rocks, which are typically zeolitized and support few fractures 

(Prothro, 1998), act as confining units, and the unaltered rocks form aquifers.  The aquifer units are 

further divided into WTAs and VTAs, depending on degree of welding, and LFAs.  Denser rocks, 
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Table 4-1
Hydrogeologic Units of the Yucca Flat/Climax Mine HFM Area 

Hydrogeologic Unit Typical Lithologies Hydrologic Significance

Playa confining unit 
(PCU) Argillic-silt, sandy-silt

Surface and near-surface confining unit at Yucca 
Lake.  May also limit, or redirect, recharge where 

present at surface.

Alluvial aquifer 
(AA) a

Unconsolidated to partially 
consolidated gravelly sand, 
eolian sand, and colluvium

Has characteristics of a highly conductive aquifer, 
but less so where lenses of clay-rich paleocolluvium, 

zeolitic alteration, or playa deposits are present. 

Welded-tuff aquifer
(WTA)

Welded ash-flow tuff; vitric to 
devitrified

Degree of welding greatly affects interstitial porosity 
(i.e., less porosity as degree of welding increases) 
and permeability (i.e., greater fracture permeability 

as degree of welding increases).

Vitric-tuff aquifer
(VTA)

Bedded tuff; ash-fall and 
reworked tuff; vitric

Constitutes a volumetrically minor HGU.  Generally 
does not extend far below the static water level due 

to tendency of tuffs to become zeolitic under 
saturated conditions, which drastically reduces 

permeability.  Significant interstitial porosity (i.e., 20 
to 40 percent).  Generally insignificant fracture 

permeability.

Lava-flow aquifer
(LFA)

Rhyolite, basalt and dacite 
lava flows; includes flow 

breccia (commonly at base)

Generally occurs as small, moderately thick 
(rhyolite) to thin (basalt) local flows.  Hydrologically 
complex, showing a wide range of transmissivity 

values; fracture density and interstitial porosity differ 
with lithologic variations.

Tuff confining unit
(TCU)

Zeolitic bedded tuff with 
interbedded, but less 

significant, zeolitic, nonwelded 
to partially welded ash-flow tuff

May be saturated, but measured transmissivities are 
very low.  May cause semi-perched conditions.

Granite confining unit
(GCU)

Granodiorite and quartz 
monzonite

Saturated at depth but because of low intergranular 
porosity and permeability, plus the lack of 

interconnecting fractures, is considered a confining 
unit.  

Clastic confining unit
(CCU) Argillite, siltstone, quartzite

Siliciclastic rocks are relatively impermeable; 
coarser-grained siliciclastic rocks are fractured, but 

with fracture porosity generally sealed due to 
secondary mineralization.

Carbonate aquifer
(CA) Dolomite, limestone Transmissivity values differ greatly and are directly 

dependent on fracture frequency.

Source:  BN, 2006 (Adapted from Winograd and Thordarson, 1975; IT, 1996b; and Laczniak et al., 1996)

a The AA is also an HSU in the Yucca Flat/Climax Mine HFM.
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such as welded ash-flow tuff and lava flows, tend to fracture more readily, and therefore have 

relatively high fracture permeability (Blankennagel and Weir, 1973; Winograd and Thordarson, 1975; 

Laczniak et al., 1996; IT, 1996b; Prothro and Drellack, 1997a and b).

Pre-Tertiary Hydrogeologic Units

The hydrogeology of the pre-Tertiary sedimentary rocks at the NTS follows the framework developed 

by Winograd and Thordarson (1975), and used in the UGTA Phase I regional modeling effort 

(IT, 1996a and b) and subsequent CAU-scale HFMs (BN, 2002, 2005, and 2006; NSTec, 2007).  

Within the model area, pre-Tertiary rocks are categorized as aquifer or confining unit HGUs based on 

lithology.  Siliciclastic rocks, such as quartzite, siltstone, and shale, are classified as CCUs.  

Carbonate rocks, such as limestone and dolomite, are classified as CAs (Winograd and Thordarson, 

1975; Laczniak et al., 1996).  The granitic intrusive rocks are classified as confining units (BN, 2002). 

4.1.2.2 Hydrostratigraphic Units of the Yucca Flat/Climax Mine HFM

The hydrostratigraphic classification system is the foundation of the Yucca Flat/Climax Mine HFM 

(Table 4-2).  This system was developed by first grouping the rocks within the model area into HGUs 

based on lithologic character, propensity to fracture, and the degree of secondary alteration.  The 

HGUs of similar character were then grouped into larger HSUs to facilitate mapping and 3-D model 

construction.  A critical component of this step was the careful integration of Yucca Flat stratigraphy.  

The integration of stratigraphic concepts is important to assure that individual HGUs grouped within 

HSUs, and the HSUs themselves, properly correlate within the model.  The correlation of 

stratigraphic units and HSUs of the Yucca Flat/Climax Mine HFM area is depicted graphically in 

Figure 4-2.    

Hydrostratigraphic units can be thought of as groupings of contiguous stratigraphic units that have a 

particular hydrogeologic character, such as aquifer or confining unit.  For the Yucca Flat/Climax 

Mine model, most HSUs consist of a single HGU (e.g., the TM-LVTA essentially is 100 percent 

VTA).  There are four exceptions (the TM-UVTA, TM-WTA, TSA, and VCU) that may consist of 

several HGUs but are defined so that a single general type of HGU dominates (e.g., mostly WTA).  

These exceptions are noted in the “Dominant Hydrogeologic Units” column of Table 4-2. 
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Table 4-2
Hydrostratigraphic Units of the Yucca Flat/Climax Mine HFM

 (Page 1 of 4)

Hydrostratigraphic 
Unit

Dominant 
Hydrogeologic 

Units a
Typical Lithologies

Stratigraphic 
Unit Map 

Symbol(s) b
Hydrologic Significance

Alluvial aquifer
(AA1, AA2, AA3) AA

Alluvium: Gravelly sand; 
also includes one or more 

thin basalt flows, playa 
deposits (differentiated as 

separate HSUs) 
 and eolian sands

Qay, QTc,
Qai, QTa Generally unsaturated except in deepest basins. 

Playa confining unit 
(PCUT) PCU Argillic silt and sandy silt. Qp

Playa units occur well above local water table, but could impede 
downward recharge, or could intermittently concentrate local 
recharge through large surface cracks.  Forms surface and 

near-surface playas at Yucca Lake and Papoose Lake and southern 
West Emigrant Valley.

Basalt lava-flow 
aquifer (BLFA) LFA Basalt lava flows Tyby, Ttb

Several (possibly dissected) basalt flows recognized in the middle of 
the alluvial section of southwestern Yucca Flat, at the surface as 

dikes and sills in the Half Pint Range, and as a dike in the subsurface 
of eastern Yucca Flat.  Generally unsaturated, but deep feeder dikes 

could possibly affect groundwater flow.

Timber Mountain 
upper vitric-tuff aquifer 

(TM-UVTA)

VTA, minor
(< 15%) WTA

Includes vitric nonwelded 
to partially welded ash-flow 

and bedded tuff
Tma, Tmab

Typically saturated only in the deepest structural basins.  This HSU 
comprises only the Ammonia Tanks Tuff, which stratigraphically 

overlies the TM-WTA.

Timber Mountain 
welded-tuff aquifer

(TM-WTA)

WTA, minor
(< 20%) VTA

Partially to densely welded 
ash-flow tuff; vitric to 

devitrified
Tma, Tmab, Tmr Typically saturated only in deep structural basins.  Welded zones 

typically sandwiched between nonwelded zones. 

Timber Mountain 
lower vitric-tuff aquifer

(TM-LVTA)
VTA Nonwelded ash-flow

 and bedded tuff; vitric

Tma, Tmab, 
Tmr, Tmrh, 

Tp, Th, 
Tw, Tc 

(in N. Yucca Flat 
may also include 

Tbgb, and Tn)

Typically includes the unaltered (i.e., vitric), nonwelded welded lower 
portion of the Rainier Mesa Tuff.  However, this HSU can encompass 
all unaltered, nonwelded and bedded units below the welded Rainier 
Mesa Tuff and above the level of pervasive zeolitization.  Unaltered 

nonwelded and ash-fall tuffs generally not found at depths much 
below the static water level due to tendency to become zeolitized 

(which drastically reduces permeability) under saturated conditions.



Phase I C
ontam

inant Transport Param
eters for C

A
U

 97: Yucca Flat/C
lim

ax M
ine, N

ye C
ounty, N

evada

S
ection 4.0

4-8

Upper tuff confining 
unit (UTCU) TCU Zeolitized bedded tuff

Tmr 
(lower most), 

Tmrh, Tp

Defined to encompass the zeolitized bedded tuffs which 
stratigraphically overlie the Topopah Spring aquifer (TSA).  Although 
some geologic units of the UTCU are laterally continuous with those 
of the LTCU, the UTCU is limited areally to extreme southern Yucca 
Flat where the welded Topopah Spring Tuff is an important aquifer 

present between the two tuff confining units (UTCU and LTCU).

Topopah Spring 
aquifer (TSA)

WTA, minor 
(< 15%) VTA Welded ash-flow tuff Tpt

Distribution in Yucca Flat is limited to extreme southern portion, south 
of the N 828,000 (NTS) grid line.  Hydrogeologic properties similar to 

those of the TM-WTA.

Lower vitric-tuff aquifer
(LVTA) VTA Nonwelded and bedded 

ash-flow tuff; vitric Th Relatively thin VTA unit below the TSA.  Grouped with the TM-LVTA 
where TSA is not present.

Belted Range aquifer 
(BRA) WTA Welded ash-flow tuff Tbg

Typically saturated (perched water) only in the Rainier Mesa area.  
This HSU comprises only welded Grouse Canyon Tuff and is limited 
to the northern portion of the Yucca Flat/Climax Mine model area.

Belted Range 
confining unit

(BRCU)
TCU Zeolitized bedded tuffs Tn, Tn4, Tn3

Generally includes all zeolitized tuffs between the (welded) Grouse 
Canyon Tuff and the (welded) Tub Spring Tuff.  Limited to the 
northern portion of the Yucca Flat/Climax Mine model area.

Pre-Grouse Canyon 
Tuff lava-flow aquifer

(PRETBG)
LFA Lava flow Tbq, Tuo

Defined to include all the comendite lava-flows emplaced before the 
Grouse Canyon Tuff but after the Tub Spring Tuff.  Limited to the 

northern portion of the Yucca Flat/Climax Mine model area.

Tub Spring aquifer
(TUBA) WTA Welded ash-flow tuff Tub Comprises only the welded Tub Spring Tuff and is thus limited to the 

northern portion of the Yucca Flat/Climax Mine model area.

Pre-Grouse Canyon 
Tuff lava-flow aquifer 1

(PRETBG1)
LFA Lava flow Tue

Defined to include all the comendite lava-flows emplaced before the 
Tub Spring Tuff but after the older Tunnel beds.  Limited to the 

northern portion of the Yucca Flat/Climax Mine model area. .  
Hydrogeologically equivalent to the PRETBG.

Table 4-2
Hydrostratigraphic Units of the Yucca Flat/Climax Mine HFM

 (Page 2 of 4)

Hydrostratigraphic 
Unit

Dominant 
Hydrogeologic 

Units a
Typical Lithologies

Stratigraphic 
Unit Map 

Symbol(s) b
Hydrologic Significance
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Lower tuff 
confining unit

(LTCU)
TCU

Zeolitized bedded tuffs 
with interbedded but less 

significant zeolitized, 
nonwelded to partially 
welded ash-flow tuffs

Tmrh, Tp, Th, Tw, 
Tc, Tn, Tub, Ton2, 

To, Tlt

Generally includes all zeolitized tuffs in the Yucca Flat area.  
Stratigraphically the LTCU may include all units from the base of the 

welded Rainier Mesa Tuff to the top of the Paleozoic rocks.  The 
strongly argillized older tuffs and paleocolluvium that immediately 

overlie the pre-Tertiary rocks may also be included in areas with poor 
drill hole control.  The uppermost zeolitized bedded tuffs overlying the 

TSA in southern Yucca Flat form a separate HSU, the UTCU.

Oak Spring Butte 
confining unit 

(OSBCU)
TCU

Devitrified to zeolitic 
nonwelded to partially 

welded tuffs and 
intervening bedded tuffs

Ton, To, Toy, 
Tor, Tot

Includes altered, older ash-flow tuff units and Tunnel beds 1 and 2.  
Welding in the older ash-flow units may increase hydraulic 

conductivity.  Devitrification of the ash-flow units may have limited 
zeolitization.  Differentiated only in the main Yucca Flat basin.

Argillic tuff 
confining unit 

(ATCU)
TCU Argillic bedded tuffs, minor 

paleocolluvium To, Tlt
Includes the argillic, lowermost Tertiary volcanic units and 

paleocolluvium that immediately overlie the pre-Tertiary rocks.  
Differentiated in the Yucca Flat basin.

Volcaniclastic
 confining unit 

(VCU)

In Yucca 
Flat/Climax Mine 
model:  80% AA, 

20% TCU

Sandy gravels, siltstones, 
and tuffaceous sandstones Tgp, Tgw

Older Tertiary-age sedimentary rocks of variable lithologies.  Present 
in the southeastern corner of the model area.  A significant HSU in 
the Frenchman Flat model (BN, 2005), but less so in Yucca Flat.

Mesozoic granite
confining unit

(MGCU)
GCU Granodiorite and 

quartz monzonite Kgc, Kgg

Includes two intrusives:  Climax at the north end of Yucca Flat and 
Gold Meadows located west of the model area.  The granite has very 
low permeability and is considered to be a confining unit.  Locally may 
have perched water contained within fractures.  The two stocks may 

be connected at depth and are believed to be part of the 
hydrogeologic barrier at the north end of Yucca Flat.

Lower carbonate 
aquifer - Yucca Flat 

upper plate
(LCA3)

CA Limestone and dolomite Dg through upper 
Cc

Includes the Cambrian through Ordovician units that have been thrust 
over the Eleana Formation and the Chainman Shale.

Table 4-2
Hydrostratigraphic Units of the Yucca Flat/Climax Mine HFM

 (Page 3 of 4)

Hydrostratigraphic 
Unit

Dominant 
Hydrogeologic 

Units a
Typical Lithologies

Stratigraphic 
Unit Map 

Symbol(s) b
Hydrologic Significance
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Lower clastic 
confining unit - Yucca 

Flat upper plate 
(LCCU1 and 2)

CCU Quartzite and siltstone Lower Cc, Cz, 
Czw, Zs, Zj

Includes upper Proterozoic through lower Cambrian units that have 
been thrust over younger units.

Upper carbonate 
aquifer (UCA) CA Limestone PPt

Includes the Tippipah Limestone, which stratigraphically overlies the 
Chainman Shale at Syncline Ridge and thus may contain perched 

water.

Upper clastic 
confining unit

(UCCU)
CCU Argillite and quartzite Mc, MDe

As much as 2,745 m (9,000 ft) thick.  Typically forms the footwall of 
Mesozoic thrust faults in NTS region.  Areal extent limited to western 

Yucca Flat and portions of CP basin.  

Lower carbonate 
aquifer (LCA) CA Dolomite and limestone Dg through upper 

Cc

Important regional aquifer underlying most of southern Nevada.  
Composite thickness up to 4,430 m (14,500 ft).  Transmissivity values 

differ greatly and are directly dependent on fracture and fault 
frequency.

Lower clastic
confining unit

(LCCU)
CCU Quartzite and siltstone Lower Cc, Cz, 

Czw, Zs, Zj

Significant regional confining unit.  Composite thickness about 
2,870 m (9,400 ft).  May present barrier to deep regional groundwater 

flow where structurally high.  
(e.g., northeastern Yucca Flat).

Source: Table 4-4 in BN, 2006

a See Table 4-1 for definition of hydrogeologic units.
b See Appendix D for definition of stratigraphic unit map symbols.

Table 4-2
Hydrostratigraphic Units of the Yucca Flat/Climax Mine HFM

 (Page 4 of 4)
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Figure 4-2
Correlation of Stratigraphic and Hydrostratigraphic Units of the Yucca Flat/Climax Mine HFM Area 
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Brief descriptions of all HSUs in the Yucca Flat/Climax Mine HFM are provided in Table 4-2.  They 

are generally listed in descending order from the top of the model to the bottom, although some are 

laterally rather than vertically contiguous, and not all units are present in all parts of the model area.  

A more detailed description of each HSU can be found in BN (2006).

The distribution of HSUs at the surface within the Yucca Flat/Climax Mine HFM area is shown in a 

block model view in Figure 4-3.  The distribution of HSUs at the water table is presented in 

Figure 4-4.  Figure 4-5 is a block model view with the upper alluvial HSU, AA3, removed.  The 

figure shows the extent of the PCUT (the term used in the EV® model to represent the PCU), the 

BLFA, and intermediate alluvium (AA2 and AA1) within the Yucca Flat/Climax Mine HFM area.  

Figure 4-6 is a block model view with all the alluvial HSUs removed and thus shows the distribution 

of HSUs that directly underlie the alluvium in Yucca Flat.  The distribution of volcanic confining 

HSUs (alluvial and upper volcanic aquifer units removed) within the Yucca Flat/Climax Mine HFM 

area is shown in Figure 4-7.  The distribution of pre-Tertiary HSUs (alluvium and volcanic HSUs 

removed) is shown in Figure 4-8.                              

A north-south hydrostratigraphic profile along the general direction of groundwater flow is provided 

in Profile A-A’ along with west-east hydrostratigraphic profiles B-B’ and C-C’ through central Yucca 

Flat that are normal to basin structure (see Plate 2).  The profiles illustrate the relationships of the 

HSUs and structures in various vertical planes.  The locations of these profile lines are shown on 

Figure 4-4.  These model profiles are from the Yucca Flat 3-D framework documentation package 

(BN, 2006), where additional cross sections and detailed information regarding this CAU-scale 

model can be found.

Table 4-3 shows the correlation of Yucca Flat/Climax Mine HSUs with HSUs of earlier and nearby 

hydrostratigraphic models for the NTS area.  As can be seen from the information presented in this 

section, the Yucca Flat/Climax Mine HFM includes considerable structural detail and stratigraphic 

enhancement over both of the preceding regional HFM models included in the UGTA regional model 

(IT, 1996b) and the DVRFS model (Belcher et al., 2004).  Except for geometric details, the 

pre-Tertiary HSUs remain as initially defined, with the addition of the UCA and the LCCU2 thrust 

sheet.
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Figure 4-3
Block Model View Showing Hydrostratigraphic Units at the Surface Within the Yucca Flat/Climax Mine Model Area 
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Figure 4-4
Hydrostratigraphic Units at the Water Table in the Yucca Flat/Climax Mine Model Area
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Figure 4-5
Block Model View Showing Extent of the Playa Confining Unit and the Basalt Lava-Flow Aquifer 

Within the Yucca Flat/Climax Mine Model Area with the Upper Alluvial HSU (AA3) Removed
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Figure 4-6
Block Model View Showing the Distribution of Hydrostratigraphic Units Within 

the Yucca Flat/Climax Mine HFM Area with Alluvium Removed
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Figure 4-7
Block Model View Showing the Distribution of the Volcanic Confining Units in the Yucca Flat/Climax Mine 

HFM Area with Alluvium and Upper Volcanic Aquifers Removed
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Figure 4-8
Block Model View Showing the Distribution of the Pre-Tertiary Hydrostratigraphic Units in the Yucca Flat/Climax 

Mine HFM Area with Alluvium and Volcanic Aquifers Removed
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Table 4-3
Correlation of Hydrostratigraphic Units of the Yucca Flat/Climax Mine CAU Model and Earlier Models

 (Page 1 of 2)

Hydrostratigraphic Unit
Symbol 

This 
Report

Correlation with 
Phase II Frenchman 

Flat Model a, b

Correlation with 
Pahute Mesa Model c

Correlation 
with UGTA 
Phase 1 d

Correlation 
with DVRFS 

Model e

Alluvial aquifer AA3, AA2, 
AA1 f AA3, AA2, AA1 f AA

AA g

YAA

Playa confining unit PCUT PCU2T, PCU1U, PCU1L NP YACU

Basalt lava-flow aquifer BLFA BLFA YVCM LFU

Timber Mountain upper vitric-tuff aquifer TM-UVTA NP
TMA g

TMA, VA g, TC g
TBA h

TMVA g
Timber Mountain welded-tuff aquifer TM-WTA TM-WTA

Timber Mountain lower vitric-tuff aquifer TM-LVTA TM-LVTA PVTA TMVA, PVA

Upper tuff confining unit UTCU UTCU UPCU, LPCU
PVA g

Topopah Spring aquifer TSA TSA TSA

Lower vitric-tuff aquifer LVTA LVTA PVTA CHVU

Belted Range aquifer BRA NP BRA

BRU gBelted Range confining unit BRCU NP (LTCU) NP (PBRCM g)

Pre-Grouse Canyon Tuff lava-flow aquifer PRETBG NP NP (PBRCM g)

Tub Spring aquifer TUBA NP NP
OVU g

Pre-Grouse Canyon Tuff lava-flow aquifer 1 PRETBG1 f NP NP (PBRCM g)

Lower tuff confining unit LTCU

LTCU g, LTCU1 f

CFCU, BFCU, 
PBRCM i

VCU g, BCU g OVU gOak Spring Butte confining unit OSBCU
PBRCM f, i

Argillic tuff confining unit ATCU

Volcaniclastic confining unit VCU VCU NP BCU g Lower VSU
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Mesozoic granite confining unit MGCU NP MGCU I ICU

Lower clastic confining unit 1 - thrust plate LCCU1 NP LCCU1 LCCU1 LCCU_T1

Lower carbonate aquifer - thrust plate LCA3 LCA3 LCA3 LCA3 LCA_T1

Lower clastic confining unit 2 - thrust plate LCCU2 NP NP NP LCCU_T1

Upper carbonate aquifer UCA NP NP LCA3 UCA

Upper clastic confining unit UCCU UCCU UCCU UCCU UCCU

Lower carbonate aquifer LCA LCA LCA LCA LCA

Lower clastic confining unit LCCU LCCU LCCU LCCU LCCU

Source: Table 4-5 in BN, 2006

a If correlative to more than one HSU, all HSUs are listed.
b See BN (2005) for explanation of Frenchman Flat HSU nomenclature. 
c See BN (2002) for explanation of Pahute Mesa HSU nomenclature.
d See IT (1996b) for explanation of the UGTA Phase I HSU nomenclature.
e See Belcher et al. (2004) for explanation of the Death Valley Regional Ground-Water Flow System (DVRFS) nomenclature.
f Subdivisions, although hydrogeologically equivalent, are necessary to satisfy operational requirements of the EarthVision® modeling software (Dynamic Graphics, 2002).
g Not subdivided.
h TBA correlates best to the BRA and PRETBG(1) HSUs.
i Pre-Belted Range Composite Unit (PBRCM) may include minor embedded ash-flow tuffs.

NP - Not present

Table 4-3
Correlation of Hydrostratigraphic Units of the Yucca Flat/Climax Mine CAU Model and Earlier Models

 (Page 2 of 2)

Hydrostratigraphic Unit
Symbol 

This 
Report

Correlation with 
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Correlation with 
Pahute Mesa Model c
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with DVRFS 

Model e
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4.2 Mineralogy of Hydrostratigraphic Units in the Yucca Flat/Climax Mine HFM

The HSUs developed for the HFM tend to emphasize the physical hydrologic significance of a unit, 

as opposed to the mineralogy.  Because some transport parameters are closely related to the 

mineralogical environment in which transport occurs, distributions for these parameters will be 

associated with specific mineralogic units rather the HSUs.  For instance, the nature and distribution 

of mineral phases in groundwater systems can exert a significant influence on the mobility of 

contaminants of concern.  Distributions, representing matrix sorption as a function of the reactive 

minerals present within a given unit, are therefore established and used for contaminant transport 

modeling.  

Minerals described as reactive within this document include those that are known to impact 

radionuclide transport via sorption processes (e.g., those minerals included in the mechanistic model 

approach described by Zavarin et al., 2004).  Reactive minerals are expected to occur in four distinct 

settings within the Yucca Flat/Climax Mine CAU.  These are (1) minerals in alluvial deposits, 

volcanic rocks, and carbonate rocks; (2) minerals occurring as coatings on fracture surfaces in 

fractured volcanic and carbonate rocks; and (3) colloids (fine-grained mineral particles) mobile in 

groundwater.      

Most of the volcanic rocks in the vicinity of Yucca Flat are pyroclastic rocks composed of ash-flow 

tuffs and ash-fall deposits of generally rhyolitic composition.  These silica-rich rocks can be 

composed of more than 80 percent glass when originally deposited (the remainder is a mixture of 

original phenocrysts and lithic fragments).  Reactive minerals such as zeolite, clay, carbonate, mica, 

and hematite are rare in these vitric rocks.  However, post-depositional processes such as welding, 

devitrification, zeolitization, and argillization can significantly alter not only the hydraulic properties 

but also the mineralogy of volcanic rocks.  On average, volcanic units in the Southwestern Nevada 

Volcanic Field (SWNVF) show fairly consistent mineralogy that tends to vary only as a function of 

style and intensity of alteration (Warren et al., 2003).

Devitrification, which is typically associated with welded ash-flow tuffs and the interior portions of 

lava flows, occurs during cooling of ash-flow tuffs and lavas shortly after emplacement.  This 

post-depositional process results in the conversion of the original glass to microcrystalline quartz and 

feldspar, and thus yields a rock composed almost entirely of quartz and feldspar that is resistant to 
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other post-depositional processes, such as zeolitization and argillization.  Devitrified welded ash-flow 

tuffs form important aquifers beneath Yucca Flat (e.g., the TM-WTA).

Volcanic rocks that remain vitric after emplacement — such as nonwelded ash-flow tuffs, ash-fall 

deposits, and the outer portions of lavas — are susceptible to diagenetic alteration processes.  

Zeolitization is common in volcanic rocks in the Yucca Flat area and results in the original glass being 

converted to the zeolite mineral clinoptilolite, with lesser amounts of other zeolite minerals, such as 

mordenite and analcime, at the deeper levels.  Because of the high percentage of glass in the original 

rocks, zeolitization results in volcanic rocks composed predominantly of zeolite.  Other reactive 

minerals such as carbonate, mica, and hematite are typically rare in zeolitic rocks.  Clay in the form of 

mainly smectite is usually a minor constituent.  Large portions of the volcanic section beneath Yucca 

Flat are pervasively zeolitic, and form important confining units (e.g., the LTCU).

Unaltered volcanic rocks are also susceptible to argillization.  In this post-depositional process, the 

original glass is converted to clay minerals, such as smectite and lesser kaolinite.  In the Yucca Flat 

vicinity, the basal portion of the volcanic section is commonly pervasively argillic and forms a 

confining unit that directly overlies the regional CA (e.g., the ATCU).

Zeolitic and argillic alteration is commonly observed in the volcanic rocks at the NTS (Hoover, 1968; 

Prothro, 2005).  Argillic alteration commonly is characterized by the presence of the clays smectite 

and kaolinite.  In addition to decreasing the hydraulic conductivity of the rock, these secondary 

alteration minerals are reactive with respect to radionuclide transport (Tompson et al., 1999).  

Clinoptilolite and smectite, for example, have a strong sorptive affinity for certain radionuclides 

(Zavarin et al., 2004).  The confining unit HSUs in the Yucca Flat model (e.g., the upper and lower 

tuff confining units) contain a significant amount of zeolite minerals, typically more than 30 percent 

(Prothro, 2005).  The ATCU contains a significant percentage of clays, generally more than 

30 percent.  In addition to the zeolite and clay minerals mentioned above, reactive minerals of interest 

with respect to radionuclide transport modeling include iron oxides (hematite); certain mafic 

minerals, such as biotite; and calcite.  These reactive minerals are found in the rock matrix, in lithic 

fragments, as phenocrysts, or in the fracture fillings and coatings.  

After evaluating the occurrence of these reactive minerals, with respect to geologic processes relevant 

to the rocks at the NTS, several natural categories emerge.  The RMCs for NTS volcanic rocks are 



Section 4.0

Phase I Contaminant Transport Parameters for CAU 97: Yucca Flat/Climax Mine, Nye County, Nevada

4-23

vitric mafic-poor (VMP), vitric mafic-rich (VMR), devitrified mafic-poor (DMP), devitrified 

mafic-rich (DMR), mafic lava (ML), zeolitic (ZEOL), and argillic (ARG).  The RMCs for Paleozoic 

sedimentary rocks are calcic (CC) for the carbonate rocks, and silicic (SC) or ARG for the siliciclastic 

rocks.  In general, the volcanic confining units are classified as the ZEOL RMC, the welded-tuff 

aquifers are classified as the DMR or DMP, the vitric-tuff aquifers are classified as VMR or VMP, and 

the argillic tuff confining unit is classified as the ARG RMC.  Granite falls into the DMR RMC.  The 

carbonate aquifers are classified as the CC RMC and the siliciclastic confining units are classified as 

the SC RMC if mostly quartzite or the ARG RMC if mostly shale.  Mineralogical criteria used to 

establish RMCs for the Yucca Flat/Climax Mine HFM are provided in Table 4-4.  Table 4-5 provides 

the RMC assignments for each HSU in the Yucca Flat/Climax Mine HFM.  A large effort was placed 

on compiling the available x-ray diffraction (XRD) data for the Yucca Flat/Climax Mine CAU.  The 

XRD data and a description of the compilation process are presented in Appendix D.  A description 

of each HSU in the Yucca Flat/Climax Mine HFM is provided in the following sections.  Each 

description includes a discussion of the mineralogy of the HSU.      

Evaluation of mineralogy data must take into account sampling bias.  These include different 

sampling objectives; operational limitations, such as the difficulty in sampling hard units (i.e., WTAs 

and LFAs) using percussion or Hunt sidewall sampling tools, and incompetent zones susceptible to 

erosion and borehole enlargement; and opportunity to sample certain units, or lack thereof, based on 

the location and distribution of boreholes.  The majority of the data in Appendix D were collected for 

the specific objectives of the weapons testing program, with downhole sampling programs tending to 

sample and analyze anomalous zones.  For example, of particular concern to the weapons testing 

program in Yucca Flat were intervals of argillic alteration within zeolitic rocks that may indicate the 

presence of a fault in the vicinity of the testing depth.  Although these samples provide information on 

the heterogeneity within the zeolitic section, they will result in an overestimation of the amount of 

clay.  Other studies producing XRD data were performed following weapons testing that focused on 

determining the zeolite content, and also the characterization of the TCU (Prothro, 2005), thus 

providing more representative sampling of the Yucca Flat/Climax Mine HSUs.    
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Table 4-4
Reactive Mineral Categories for the Yucca Flat/Climax Mine HFM Area

 (Page 1 of 2)

Reactive Mineral 
Category (RMC) Typical Lithologies Major Alteration Reactive Minerals Present 

in Significant Quantities
Categorization  
Criteria a

Zeolitic (ZEOL)
Bedded tuffs, nonwelded 
tuffs, pumiceous lavas, 
alluvium

Zeolitic, lesser argillic
Clinoptilolite, lesser mordenite 
and analcine; if argillic includes 
smectite, kaolinite 

>30% zeolite and clay; 
zeolite > clay 
<10% glass

Vitric mafic-rich (VMR)

Ash-flow tuffs including 
nonwelded to partially 
welded tuffs and vitrophyres, 
bedded ash-fall tuffs 
(unaltered), vitrophyric and 
pumiceous lavas

None (vitric/glassy) Biotite, hematite/iron oxide, 
hornblende, glass

vitric 
>30% glass 
<10% clay 
<20% zeolite 
mafic-rich 
>1.0% biotite or 
>1.5% biotite and hornblende

Vitric mafic-poor (VMP)

Ash-flow tuffs including 
nonwelded to partially 
welded tuffs and vitrophyres, 
bedded/ash-fall tuffs 
(unaltered), vitrophyric and 
pumiceous lavas

None (vitric/glassy) Glass

vitric 
>30% glass 
<10% clay 
<20% zeolite 
mafic-poor 
<1.0% biotite or 
<1.5% biotite and hornblende

Devitrified mafic-rich (DMR)

Ash-flow tuffs including 
moderately to densely 
welded tuffs, dense/stony 
lavas

Devitrification,  
vapor-phase mineralization, 
quartzo-feldspathic, albitic

Biotite, hematite/iron oxide, 
hornblende

devitrified 
<20% glass 
>60% quartz and feldspars 
mafic-rich 
>1.0% biotite or 
>1.5% biotite and hornblende

Devitrified mafic-poor 
(DMP)

Ash-flow tuffs including 
moderately to densely 
welded tuffs, stony lavas

Devitrification,  
vapor-phase mineralization, 
quartzo-feldspathic,  
albitic

None

devitrified 
<20% glass  
>60% quartz and feldspars 
mafic-poor 
<1.0% biotite or 
<1.5% biotite and hornblende
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Mafic lava (ML) Lava flows; basalt, andesite, 
dacite None (vitric) to devitrified

Olivine, clinopyroxene, 
hematite/iron oxide, magnetite, 
pyroxene, hornblende

>1.5% mafic minerals 
<20% zeolite 
<25% clay

Argillic (ARG)
Bedded tuffs, colluvium, 
shale, argillite, playa 
deposits

Argillic Smectite, kaolinite, illite >30% clay 
Clay > zeolite

Carbonate rocks (CC) Limestone and dolomite None, recrystallization calcite, dolomite >50% carbonate

Silicic rocks (SC) Sandstone, siltstone, some 
argillite and conglomerate None, silica None >50% silica/quartz

a Modifiers may be appended to the RMC name to denote specific instances of elevated abundances of some minerals (e.g., DMP-Z or DMR-C).
A if > 5% (but < 20%) clay
Z if > 5% (but < 30%) zeolite
C if > 3% (but < 50%) calcite/dolomite

Table 4-4
Reactive Mineral Categories for the Yucca Flat/Climax Mine HFM Area

 (Page 2 of 2)

Reactive Mineral 
Category (RMC) Typical Lithologies Major Alteration Reactive Minerals Present 

in Significant Quantities
Categorization  
Criteria a
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Table 4-5
Reactive Mineral Category Assignments for the Hydrostratigraphic Units 

in the Yucca Flat/Climax Mine HFM
 (Page 1 of 2)

HSU Layer 
No a HSU b HSU 

Symbol 
Dominant 

HGUs c
Dominant 

RMCs d
Typical Stratigraphic 

Units e

28 Alluvial aquifer 3 AA3 AA VMP Qay, Qai, 

27 Playa confining unit PCUT PCU ARG, Lesser 
DMP-Z, A Qp

NA f Interbedded playa unit IDP PCU ARG, Lesser 
DMP-Z, A Qp, Qay

26 Alluvial aquifer 2 AA2 AA VMP Qay, Qai, QTc, QTa

25 Basalt lava-flow aquifer BLFA LFA ML Tyby

24 Alluvial aquifer 1 AA1
AA VMP, minor 

VMP-Z QTc, Qai, QTa

ZEOL, minor 
AA

ZEOL, minor 
VMP-Z QTc, Qai, QTa

23 Timber Mountain upper 
vitric-tuff aquifer TM-UVTA

VTA VMR,minor 
VMP-Z, ZEOL Tmar, Tmap

WTA, lesser 
VTA DMP Tma

VTA VMP, 
minor DMP Tmap, Tma

VTA VMP, lesser VMR 
& DMR Tmap, Tmab, Tmrb, Tmrr 

22 Timber Mountain welded-tuff 
aquifer TM-WTA

WTA, minor 
VTA DMR Tmrr, Tmr

WTA, minor 
VTA DMP Tmrp, Tmr

21 Timber Mountain lower vitric-tuff 
aquifer TM-LVTA VTA VMP, minor 

VMR, VMP-Z

Tma, Tmab, Tmr, Tmrh, Tp, Th, 
(in northern YF may also include 

Tw, Tc, Tbgb, and Tn)

20 Upper tuff confining unit UTCU TCU ZEOL Tmr (lower most), Tmrh, Tp 

NA Tiva Canyon aquifer TCA WTA, lesser 
VTA DMP Tpc

19 Topopah Spring aquifer TSA
WTA, minor 

VTA DMP Tpt

TCU ZEOL Tpt

18 Lower vitric-tuff aquifer LVTA VTA
VMP, minor 

VMP-Z, DMP, 
ZEOL

Th, Tw, Tc

NA Upper tuff confining unit 1 UTCU1 TCU ZEOL Tmr (lower most), Tmrh, Tp 

17 Belted Range aquifer BRA WTA, minor 
LFA DMP Tbg

NA Lower vitric-tuff 
aquifer 1 LVTA1 VTA

VMP, minor 
VMP-Z, DMP, 

ZEOL
Th, Tw, Tc

16 Belted Range confining unit BRCU TCU ZEOL Tb, Tn, Tn4, Tn3

15 Pre-Tbg lava-flow aquifer PRETBG LFA DMP Tbq, Tuo, Tue
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14 Tub Spring aquifer TUBA WTA DMP Tub

13 Lower tuff confining unit LTCU

TCU ZEOL Tmrh, Tp, Th, Tw, Tc, Tn, Tub, 
Ton2, Ton1, To, Tlt

TCU DMP Tcb

TCU ZEOL Tc,Tbg,Tn4,Tn3

12 Pre-Tbg lava-flow aquifer 1 PRETBG_1 LFA DMP Tue

11 Oak Spring Butte 
confining unit OSBCU

TCU ZEOL Ton2 

TCU DMR Toy

TCU ZEOL Ton1

TCU, lesser 
WTA DMP Tor

TCU ZEOL To 

TCU DMP minor 
ZEOL Tot

TCU ZEOL To, Tlt

10 Argillic tuff confining unit ATCU TCU ARG To, Tlt

4 Volcaniclastic confining unit VCU AA, minor TCU
DMP, minor 
ZEOL, SC, 

DMP-C
Tgp, Tgw

1 Mesozoic granite confining unit MGCU GCU DMR Kgc, Kgg

9 Lower clastic confining unit - 
thrust plate 1 LCCU1 CCU SC Cc, CZ, CZw, Zs

8 Lower carbonate aquifer - thrust 
plate LCA3 CA CC Dg through Cc

7 Lower clastic confining unit - 
thrust plate 2 LCCU2 CCU SC Cc, CZ, CZw, Zs

6 Upper carbonate aquifer UCA CA CC, lesser 
SC PPt

5 Upper clastic confining unit UCCU
CCU ARG, minor SC MDc

CCU SC MDe

3 Lower carbonate aquifer LCA CA CC Dg through Cc

2 Lower clastic confining unit LCCU CCU SC, lesserCC Cc, CZ, Czw, Zs, Zj

a Layer in the EV® HFM.  Refer to BN (2006) for description of the Yucca Flat 3-D HFM.
b See Table 4-2 for explanation of HSU nomenclature.
c Dominant HGU in bold.  See Table 4-3 in BN (2006) for explanation of HGU nomenclature.
d Dominant RMC in bold.  See Table 4-4 for explanation of RMC nomenclature.
e See Tables 4-1 and 4-2 in BN (2006) for explanation of stratigraphic nomenclature.

NA - Unit not differentiated as a separate HSU in the EV® HFM.  

Table 4-5
Reactive Mineral Category Assignments for the Hydrostratigraphic Units 

in the Yucca Flat/Climax Mine HFM
 (Page 2 of 2)

HSU Layer 
No a HSU b HSU 

Symbol 
Dominant 

HGUs c
Dominant 

RMCs d
Typical Stratigraphic 

Units e
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4.2.1 Data Compilation and Data Transfer

All data used in the quantitative analyses are from the Yucca Flat/Climax Mine HFM area; see 

Appendix D and the associated dataset referenced in Section D.4.0.

4.2.2 Playa Confining Unit

As shown in Figure 4-1, there are three playa deposits within the Yucca Flat model area: Yucca Lake, 

at the south end of Yucca Flat; Papoose Lake, on the east side of the Halfpint Range; and an unnamed 

playa located in the southern part of west Emigrant Valley (Slate et al., 1999).  The playa deposits are 

mainly argillic silt but also contain interbeds of sand and pumice.  The playa deposits behave as 

confining units because of the abundance of silt and clay (Winograd and Thordarson, 1975).  Because 

the playa deposits all have surficial exposures and are separated areally by typical alluvium, they have 

the same designation (PCUT in Table 4-2) in the HFM.  The spatial relationship of the PCUT and the 

AA is shown in Figure 4-9. 

Polygonal desiccation cracks are commonly found on dry surfaces of the playas, indicating 

significant amounts of clay are present.  This is consistent with mineralogic analyses from Yucca 

Lake playa deposits, which typically include more than 30 percent clay in the form of smectite and 

lesser kaolinite (PCUT in Table 4-6).  Other reactive mineral constituents include calcite, mica, and 

zeolite.  The bedded nature of playa deposits is reflected in the occurrence of intervals with only 

minor amounts of clay (Appendix D).  These intervals probably represent cleaner deposits of silt and 

fine-grained sand.   

A local occurrence of playa deposits is intercalated within alluvium in the subsurface of southern 

Yucca Flat just north of Yucca Lake (interbedded playa unit [IDP] in Table 4-6).  Although these 

deposits are included within the AA, they are probably related to Yucca Lake playa deposition.  They 

are generally less clay-rich, which may indicate more interbeds of cleaner silt and sand at this 

location.  Although the mineralogic data presented in Table 4-6 and Appendix D are from Yucca Flat, 

reactive mineral characteristics of all three PCUTs are assumed to be similar. 

Overall, the PCUT is categorized as an ARG RMC because of the high amounts of clay present.  

However, intervals of cleaner sands and silts are present within playa deposits.  Such deposits 

represent intercalated intervals of DMP with lesser amounts of ZEOL and ARG.             
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Figure 4-9
Schematic Cross Section Showing Relationships Among the Hydrostratigraphic Units and Reactive Mineral 

Categories for the Alluvium, Playa, and Basalt in Southern Yucca Flat
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Table 4-6
Summary of XRD Analyses of Whole Rocks for Hydrostratigraphic Units in the Yucca Flat/Climax Mine HFM Area

 (Page 1 of 6)

HSU Reactive Minerals Other Minerals
AA - Typical

Zeolite SM CC+DM MI HM GL OP CR TR QZ HN FS KA
Mean 9.9 7.3 7.1 6.2 0.3 15.6 7.3 4.0 0.1 23.2 1.0 26.2 1.1

SD 13.4 10.1 8.0 9.3 0.6 18.9 3.7 6.0 0.8 18.0 1.6 14.0 1.7
Minimum 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.0 1.7 0.0 0.0 0.0
Maximum 65.5 89.0 45.0 39.0 2.5 71.0 21.6 35.0 4.6 80.0 10.0 80.0 7.0

Count 164 160 154 157 16 142 57 102 32 160 111 160 101
AA - Altered

Zeolite SM CC+DM MI HM GL OP CR TR QZ HN FS KA
Mean 27.1 19.2 8.1 0.9 0.0 4.6 6.6 4.7 2.1 15.4 0.7 27.5 0.0

SD 26.0 24.4 14.1 1.2 0.0 10.5 6.0 3.7 2.9 11.3 1.2 13.9 0.0
Minimum 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.0 2.5 0.0 9.0 0.0
Maximum 92.5 87.5 60.0 3.0 0.0 45.0 25.0 16.0 4.1 46.0 5.0 58.0 0.0

Count 72 72 69 62 2 47 16 34 2 48 43 48 27
PCUT (Playa)

 Zeolite SM CC+DM MI HM GL OP CR TR QZ HN FS KA
Mean 2.8 20.6 12.6 6.9 NM 8.3 4.8 4.4 NM 20.5 NM 17.8 14.5

SD 5.5 20.4 13.8 4.6 N/A 8.8 3.2 9.8 N/A 11.8 N/A 11.9 6.9
Minimum 0.0 0.0 2.5 0.0 N/A 0.0 2.5 0.0 N/A 0.0 N/A 2.5 7.0
Maximum 19.0 60.0 46.0 15.0 N/A 25.0 7.0 22.0 N/A 35.0 N/A 40.0 25.0

Count 12 12 12 12 0 12 2 5 0 12 0 12 6
IDP (Interbedded playa)

Zeolite SM CC+DM MI HM GL OP CR TR QZ HN FS KA
Mean 7.3 17.6 6.0 5.8 2.5 22.5 8.5 NM 0.0 17.0 2.5 10.7 3.7

SD 3.2 4.6 2.1 3.3 N/A 7.2 5.1 N/A 0.0 5.5 0.0 4.0 2.4
Minimum 2.5 10.0 2.5 2.5 2.5 10.0 2.5 N/A 0.0 10.0 2.5 2.5 2.5
Maximum 15.0 25.0 9.5 15.0 2.5 40.0 15.0 N/A 0.0 30.0 2.5 15.0 10.0

Count 20 20 20 20 1 20 20 0 4 20 3 20 17
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TM-UVTA
Zeolite SM CC+DM MI HM GL OP CR TR QZ HN FS KA

Mean 8.9 10.9 11.5 2.2 0.2 26.8 0.6 3.4 1.6 13.0 0.2 32.8 0.4
SD 16.6 17.3 19.9 5.0 0.2 25.8 1.1 5.4 3.2 10.4 0.3 23.6 1.2

Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 3.0 0.0
Maximum 61.0 61.3 68.0 21.0 0.4 76.1 2.5 19.5 6.4 41.0 1.0 80.0 4.0

Count 18 18 13 17 4 14 7 13 4 16 9 16 11
TM-WTA - Typical

Zeolite SM CC+DM MI HM GL OP CR TR QZ HN FS KA
Mean 2.2 4.9 0.7 1.5 0.1 15.4 3.1 28.8 NM 12.2 0.2 38.6 0.0

SD 6.2 8.1 2.3 2.5 0.1 21.2 5.4 27.5 N/A 9.8 0.4 19.3 0.0
Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 N/A 0.0 0.0 14.0 0.0
Maximum 25.0 35.0 12.5 10.0 0.3 70.0 15.0 81.0 N/A 37.5 1.0 75.0 0.0

Count 40 38 33 38 5 36 8 35 0 39 19 39 19
TM-WTA - Altered

Zeolite SM CC+DM MI HM GL OP CR TR QZ HN FS KA
Mean 11.9 28.9 0.0 0.0 NM 44.2 3.0 5.9 0.0 6.0 0.0 11.9 0.0

SD 25.7 18.1 0.0 0.1 N/A 25.4 N/A 7.1 N/A 3.3 0.0 7.8 0.0
Minimum 0.0 0.0 0.0 0.0 N/A 0.0 3.0 1.0 0.0 0.0 0.0 5.5 0.0
Maximum 69.5 53.0 0.0 0.3 N/A 62.0 3.0 17.5 0.0 9.0 0.0 25.0 0.0

Count 7 7 5 7 0 5 1 5 1 6 4 6 4
TM-LVTA - Typical

Zeolite SM CC+DM MI HM GL OP CR TR QZ HN FS KA
Mean 3.7 6.8 0.7 1.6 0.1 50.0 5.5 3.5 0.0 11.4 0.9 25.4 0.1

SD 11.6 11.5 3.2 3.8 0.3 29.4 9.8 7.9 0.2 14.5 2.0 19.3 0.8
Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Maximum 75.0 90.0 39.1 30.0 1.0 100.0 57.0 52.0 1.7 100.0 12.5 90.0 5.0

Count 312 307 277 291 37 294 59 223 51 287 222 301 208

Table 4-6
Summary of XRD Analyses of Whole Rocks for Hydrostratigraphic Units in the Yucca Flat/Climax Mine HFM Area

 (Page 2 of 6)

HSU Reactive Minerals Other Minerals
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TM-LVTA - Argillic (Area 8)

Zeolite SM CC+DM MI HM GL OP CR TR QZ HN FS KA

Mean 1.0 62.2 4.7 1.3 0.0 12.0 1.3 1.3 0.0 4.7 0.9 18.1 3.2
SD 3.9 21.2 6.5 1.3 N/A 16.2 1.8 1.9 N/A 3.3 1.2 13.3 2.6

Minimum 0.0 25.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 2.5 0.0
Maximum 15.0 92.0 20.0 2.5 0.0 42.0 2.5 4.0 0.0 10.0 2.5 40.0 7.0

Count 15 15 9 10 1 8 2 4 1 7 4 7 5
UTCU

Zeolite SM CC+DM MI HM GL OP CR TR QZ HN FS KA
Mean 65.1 1.8 0.0 1.7 NM 1.4 7.4 0.4 0.0 11.4 0.0 18.5 0.0

SD 28.7 2.1 0.0 2.2 N/A 1.3 3.5 0.9 N/A 19.1 N/A 23.4 N/A
Minimum 9.0 0.0 0.0 0.0 N/A 0.0 2.5 0.0 0.0 2.0 0.0 2.5 0.0
Maximum 92.0 7.0 0.0 7.0 N/A 2.5 10.0 2.0 0.0 58.0 0.0 84.0 0.0

Count 11 11 5 10 0 11 4 5 1 8 1 11 1
TSA - Typical

Zeolite SM CC+DM MI HM GL OP CR TR QZ HN FS KA
Mean 7.3 0.0 0.0 1.9 NM 0.0 NM 26.7 0.0 34.3 0.0 29.3 2.0

SD 9.3 0.0 0.0 4.9 N/A 0.0 N/A 13.6 N/A 16.7 0.0 12.0 3.5
Minimum 0.0 0.0 0.0 0.0 N/A 0.0 N/A 9.0 0.0 15.0 0.0 10.0 0.0
Maximum 20.0 0.0 0.0 13.0 N/A 0.0 N/A 45.0 0.0 55.0 0.0 42.0 6.0

Count 7 7 7 7 0 6 0 7 1 7 3 7 3
TSA - Zeolitic

Zeolite SM CC+DM MI HM GL OP CR TR QZ HN FS KA
Mean 64.8 1.7 0.0 1.5 NM 1.9 9.0 11.0 0.0 20.0 0.0 17.8 0.0

SD 17.0 1.4 N/A 1.5 N/A 1.3 1.7 7.8 N/A N/A N/A 13.9 N/A
Minimum 39.0 0.0 0.0 0.0 N/A 0.0 7.0 2.0 0.0 20.0 0.0 2.5 0.0
Maximum 80.0 2.5 0.0 3.0 N/A 2.5 10.0 16.0 0.0 20.0 0.0 35.0 0.0

Count 6 3 1 4 0 4 3 3 1 1 1 6 1

Table 4-6
Summary of XRD Analyses of Whole Rocks for Hydrostratigraphic Units in the Yucca Flat/Climax Mine HFM Area

 (Page 3 of 6)
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TUBA
Zeolite SM CC+DM MI HM GL OP CR TR QZ HN FS KA

Mean 0.0 2.4 0.0 0.0 0.0 11.9 0.0 13.8 0.0 24.2 0.0 49.5 0.0
SD 0.0 3.4 N/A 0.0 N/A N/A N/A 5.3 N/A 18.9 N/A 17.0 0.0

Minimum 0.0 0.0 0.0 0.0 0.0 11.9 0.0 10.0 0.0 10.8 0.0 37.5 0.0
Maximum 0.0 4.8 0.0 0.0 0.0 11.9 0.0 17.5 0.0 37.5 0.0 61.5 0.0

Count 2 2 1 2 1 1 1 2 1 2 1 2 2
LTCU

Zeolite SM CC+DM MI HM GL OP CR TR QZ HN FS KA
Mean 55.1 6.5 0.8 2.3 0.3 7.6 8.4 1.8 1.0 6.8 0.7 21.0 0.0

SD 21.3 7.6 3.3 3.0 0.8 15.6 5.7 3.5 2.6 6.6 1.4 12.3 0.1
Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Maximum 95.0 67.0 43.0 30.0 2.5 95.0 42.3 30.0 11.2 60.0 11.0 76.0 0.7

Count 626 610 415 550 121 321 300 234 34 486 252 479 175
OSBCU

Zeolite SM CC+DM MI HM GL OP CR TR QZ HN FS KA
Mean 39.1 10.7 0.3 2.5 0.1 4.2 8.4 3.0 0.2 11.2 0.4 27.9 0.2

SD 26.1 14.7 1.0 3.8 0.5 10.4 5.5 6.0 1.4 12.1 1.2 16.3 1.6
Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Maximum 93.0 100.0 11.3 35.0 2.5 55.0 26.3 62.0 9.0 62.5 9.0 81.0 15.0

Count 373 371 283 351 74 238 143 268 40 347 215 348 203
OSBCU - Zeolitic tuffs

Zeolite SM CC+DM MI HM GL OP CR TR QZ HN FS KA
Mean 42.8 11.3 0.2 2.5 0.1 4.6 8.7 2.3 0.3 9.1 0.4 25.6 0.3

SD 24.8 15.3 0.8 3.9 0.5 10.9 5.4 4.0 1.5 10.1 1.1 14.7 1.7
Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Maximum 93.0 100.0 5.0 35.0 2.5 55.0 26.3 37.5 9.0 50.0 9.0 71.0 15.0

Count 333 331 246 311 69 209 137 231 36 307 186 308 180

Table 4-6
Summary of XRD Analyses of Whole Rocks for Hydrostratigraphic Units in the Yucca Flat/Climax Mine HFM Area

 (Page 4 of 6)
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OSBCU - Ash-flow tuffs
Zeolite SM CC+DM MI HM GL OP CR TR QZ HN FS KA

Mean 7.9 5.0 0.3 2.2 0.3 1.2 1.2 7.3 0.0 27.4 0.7 45.8 0.0
SD 12.0 5.4 1.9 3.0 0.3 4.1 2.9 11.9 0.0 14.0 1.8 16.9 0.0

Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 17.5 0.0
Maximum 43.0 17.5 11.3 13.0 0.7 17.0 7.0 62.0 0.0 62.5 7.0 81.0 0.0

Count 40 40 37 40 5 29 6 37 4 40 29 40 23
ATCU

Zeolite SM CC+DM MI HM GL OP CR TR QZ HN FS KA
Mean 5.0 40.4 3.6 1.3 0.9 2.7 0.6 0.6 2.0 27.0 0.1 19.2 4.1

SD 13.6 24.2 9.9 1.6 1.7 10.8 2.0 1.5 4.5 23.5 0.5 12.9 11.7
Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0
Maximum 80.0 91.4 62.5 6.0 7.0 49.0 7.0 8.0 12.0 98.0 2.0 68.0 60.0

Count 56 56 50 55 17 40 23 50 11 52 27 51 28
MGCU

Zeolite SM CC+DM MI HM GL OP CR TR QZ HN FS KA
Mean 0.3 9.8 1.0 11.7 0.1 0.0 0.0 0.1 0.0 19.6 0.8 54.3 0.0

SD 0.5 5.3 1.4 5.9 0.2 0.0 0.0 0.0 0.0 11.2 1.2 8.1 0.0
Minimum 0.0 2.5 0.0 5.9 0.0 0.0 0.0 0.1 0.0 2.9 0.0 49.6 0.0
Maximum 1.0 15.2 2.6 20.0 0.3 0.0 0.0 0.1 0.0 26.7 2.5 66.5 0.0

Count 4 4 3 4 3 3 3 3 3 4 4 4 3
UCCU

Zeolite SM CC+DM MI HM GL OP CR TR QZ HN FS KA
Mean 0.0 13.0 2.7 11.7 0.0 0.0 0.0 0.0 0.0 53.8 0.2 7.9 6.8

SD 0.0 20.2 2.3 13.5 0.0 0.0 0.0 0.0 0.0 19.2 0.7 5.3 6.7
Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 0.0 0.0 0.7
Maximum 0.0 48.2 7.3 35.0 0.0 0.0 0.0 0.0 0.0 79.0 2.5 17.4 21.0

Count 13 13 12 13 10 12 10 12 10 13 13 12 13

Table 4-6
Summary of XRD Analyses of Whole Rocks for Hydrostratigraphic Units in the Yucca Flat/Climax Mine HFM Area

 (Page 5 of 6)

HSU Reactive Minerals Other Minerals



Phase I C
ontam

inant Transport Param
eters for C

A
U

 97: Yucca Flat/C
lim

ax M
ine, N

ye C
ounty, N

evada

S
ection 4.0

4-35

UCCU - Eleana Fm.
Zeolite SM CC+DM MI HM GL OP CR TR QZ HN FS KA

Mean 0.0 3.7 3.7 16.6 0.0 0.0 0.0 0.0 0.0 59.7 0.0 11.1 1.7
SD 0.0 8.2 2.0 11.5 0.0 0.0 0.0 0.0 0.0 14.3 0.0 3.9 1.1

Minimum 0.0 0.0 1.5 4.3 0.0 0.0 0.0 0.0 0.0 42.8 0.0 7.2 0.7
Maximum 0.0 22.2 7.3 30.1 0.0 0.0 0.0 0.0 0.0 76.0 0.0 17.4 3.1

Count 7 7 7 7 7 7 7 7 7 7 7 7 7
UCCU - Chainman Shale

Zeolite SM CC+DM MI HM GL OP CR TR QZ HN FS KA
Mean 0.0 23.8 1.4 5.9 0.0 0.0 0.0 0.0 0.0 47.0 0.4 3.5 12.6

SD 0.0 25.2 2.1 14.3 0.0 0.0 0.0 0.0 0.0 23.2 1.0 3.4 5.6
Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 0.0 0.0 7.3
Maximum 0.0 48.2 5.0 35.0 0.0 0.0 0.0 0.0 0.0 79.0 2.5 9.0 21.0

Count 6 6 5 6 3 5 3 5 3 6 6 5 6
LCA

Zeolite SM CC+DM MI HM GL OP CR TR QZ HN FS KA
Mean 0.0 0.0 98.9 0.0 0.0 NM 0.0 0.0 0.0 1.6 0.0 0.0 0.0

SD 0.0 0.0 3.5 0.0 N/A N/A N/A 0.0 N/A 5.0 N/A 0.0 N/A
Minimum 0.0 0.0 88.8 0.0 0.0 N/A 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Maximum 0.0 0.0 100.0 0.0 0.0 N/A 0.0 0.0 0.0 15.8 0.0 0.0 0.0

Count 10 10 10 10 1 0 1 10 1 10 1 10 1

Notes
Refer to Table 4-2 for explanation of HSUs.
See Appendix D for entire XRD dataset and an explanation of the XRD measurement process.
No XRD data are available for the LVTA BRA, BRCU, PRETBG1, VCU, LCA3, LCCU, LCCU1, LCCU2 and UCA HSUs.
Only two samples that may not be representative are available for the BRCU HSU.

Abbreviations
CC+DM - Calcite and dolomite combined
CR - Cristobalite
FS - Feldspars (combined)
GL - Glass

HM - Hematite
HN - Hornblende
KA - Kaolinite
MI - Mica (includes biotite and illite)

N/A - Not applicable
NM - Not measured
OP - Opal
QZ - Quartz

SD - Standard deviation
SM - Smectite clay
TR - Tridymite

Table 4-6
Summary of XRD Analyses of Whole Rocks for Hydrostratigraphic Units in the Yucca Flat/Climax Mine HFM Area
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4.2.3 Alluvial Aquifer

The alluvium in Yucca Flat is a poorly consolidated mixture of debris eroded from the surrounding 

highlands of Tertiary-age silicic volcanic and Paleozoic-age sedimentary rocks, and ranging in 

particle size from clay to boulders.  Sediment deposition is largely in the form of alluvial fans formed 

from debris flows, sheetwash, and braided streams that coalesce to form discontinuous, gradational, 

and poorly sorted deposits.  Eolian sands, rare basalt flows, and playa deposits are also present within 

the alluvium section.  The playa and basalt flows are addressed as separate HSUs in the model.  The 

alluvium thickness in the Yucca Flat model area generally ranges from about 50 m (164 ft) to more 

than 800 m (2,625 ft) in south-central Yucca Flat (BN, 2006; Drellack and Thompson, 1990; Wagoner 

and Richardson, 1986).

Because the water table in the study area is typically greater than 500 m (1,640 ft) deep, the alluvium 

is generally unsaturated, except in the deep subbasins of central and southern Yucca Flat.  However, 

the water level in West Emigrant Valley is relatively shallow, at approximately 76 m (250 ft) below 

the ground surface; therefore, the alluvium in the northeastern corner of the HFM is mostly saturated.

The mineralogy of the alluvium mainly reflects the lithologic composition of the constituent clasts.  

Although typically tuffaceous, it may also contain a significant percentage of carbonate clasts 

(e.g., limestone and dolomite).  Volcanic clasts will contribute feldspars, quartz, and mafic minerals 

of biotite, hornblende, and magnetite, which may be oxidized to hematite.  The mafic minerals are 

generally present in very small amounts, approximately on the order of 1 percent.  The volcanic 

fragments may also contribute significantly, but usually less than 10 to 20 percent of zeolite and clay 

minerals are present, although some clay minerals may be of sedimentary origin.  Disseminated 

calcite from alluvial, eolian, and diagenic processes is also common.

Mineralogy of the alluvium varies laterally and vertically reflecting the lithologic composition of the 

source rocks and depositional processes.  In general, the older (i.e., deeper) alluvium in Yucca Flat 

tends to be more tuffaceous, while the upper portion of the alluvium may be relatively carbonate-rich 

with up to 25 percent limestone and/or dolomite.  Alluvium east of the Topgallant fault in southern 

Yucca Flat is also more carbonate rich.  Rayburn et al. (1989) mapped out these areas of more 

carbonate-rich alluvium for southern Yucca Flat, and Wagoner and McKague (1984) subdivided the 

alluvium in northern Yucca Flat into a lower tuffaceous alluvium and an upper mixed alluvium.  The 
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alluvium in Area 8 around the BANEBERRY underground test is more argillic than alluvium in other 

areas of Yucca Flat.  Also, in portions of Areas 2, 4, and 9, the lower portion of the alluvium is 

partially zeolitized (see the “Partial Zeolitization” alternative in Appendix C of this document, or 

Section 5.0 in BN, 2006).

Reactive minerals within typical Yucca Flat alluvium include zeolite, clay, carbonate, and mica in 

mean percentages ranging from 6 to 10 percent (AA in Table 4-6).  In Area 8, where the alluvium is 

more argillic, and in Areas 2, 4, and 9, where the base of the alluvium is partially zeolitized, zeolite 

and clay are considerably more abundant and mica is substantially less abundant than typical Yucca 

Flat alluvium (AA-Altered in Table 4-6).

Overall, the three AA HSUs (AA1, AA2, and AA3) can be classified as a VMP RMC reflecting 

relatively low mean percentages of the reactive minerals zeolite, clay and mica.  In portions of Areas 

2, 4, 8, and 9, where percentages of zeolite and clay are greater, the alluvium can be locally 

categorized as an ARG RMC (part of Area 8) or a ZEOL RMC (portions of Areas 2, 4, and 9).  

4.2.4 Basalt Lava-Flow Aquifer

At least two basalt flows have been identified within the alluvium section in southwestern Yucca Flat 

in drill holes UE-1h and UE-1j (Fernald et al., 1975).  The flows are apparently limited in areal 

extent.  The thickness of basalt ranges from 12.2 m (40 ft) at drill hole UE-1j to 76.2 m (250 ft) at 

UE-1h.  These basalt flows are above the water table.

Several basalt flows and dikes are mapped in the northern Halfpint Range on the east side of Yucca 

Flat (Byers and Barnes, 1967; Barnes et al., 1965).  These are generally above the water table as well.  

A mafic-rich intrusive rock in the form of a diabase dike was encountered within saturated 

pre-Tertiary carbonate rocks between the depths of 743.7 to 765.0 m (2,440 to 2,510 ft) in exploratory 

hole UE-7h on the east side of Yucca Flat (Drellack and Thompson, 1990; Gonzales et al., 1982).  

Consequently, some interaction between the groundwater and mafic-rich intrusive rocks in this area is 

presumed.  The basalt flow(s) are modeled as a separate HSU designated BLFA (Table 4-2).  The 

relationship of the BLFA to other alluvial HSUs is shown in Figure 4-9.
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Clinopyroxene and olivine can be relatively abundant, with lesser clinopyrene in basalts around 

Yucca Flat; while biotite, hematite, and orthopyroxene occur in lesser amounts (Warren et al., 2003).  

Smectite may be present in weathered portions of basalt, while calcite, opal, and zeolite may be 

present in vesicles (SNJV, 2005b).  There are no XRD data specific to the BLFA.  However, based on 

detailed lithologic descriptions and petrographic data, the RMC for the BLFA is ML (Tables 4-4 

and 4-5). 

4.2.5 Timber Mountain Upper Vitric-Tuff Aquifer

The upper portion of the volcanic section directly below the alluvium in much of Yucca Flat is 

composed of the Timber Mountain Group.  The TM-UVTA is defined to include the nonwelded to 

partially welded, nonzeolitized ash-flow and bedded tuff of the younger Ammonia Tanks Tuff (Tma), 

which lie above the TM-WTA  (see Section 4.2.6).  These rocks are included in the laterally more 

extensive TM-LVTA (see Section 4.2.7) where the TM-WTA is not present; that is, where the Rainier 

Mesa Tuff (Tmr) is less than 76 m (250 ft) thick, and thus no welded horizon has developed 

(see Figure 4-7 in BN, 2006, for an example of this configuration).  The TM-UVTA may locally 

include devitrified moderately welded Tma.  The spatial relationships of the three Timber Mountain 

HSUs and other volcanic HSUs are shown in Figure 4-10.  The TM-UVTA is of minor importance 

hydrogeologically because it is limited in lateral extent and generally unsaturated.  It is saturated only 

in the deepest subbasins of central and southern Yucca Flat.  The mineralogy of the TM-UVTA 

reflects the lithology of the Tma in Yucca Flat, which consists of nonwelded to moderately welded, 

rhyolitic ash-flow tuff.  These rocks contain abundant phenocrysts of sanidine, quartz, and sodic 

plagioclase, with much less abundant biotite and clinopyroxene, and accessory sphene, zircon, and 

apatite (Warren et al., 2003).  

The reactive minerals zeolite, clay, carbonate, and mica (i.e., biotite) typically occur in relatively low 

percentages in the TM-UVTA, reflecting the unaltered and mafic-poor character of these volcanic 

rocks (Table 4-6).  In many places at the NTS, the Tma can be divided into a mafic-rich (Tmar) upper 

part and a mafic-poor (Tmap) lower part based on the abundance of mafic minerals such as biotite 

and clinopyroxene.  Within most of Yucca Flat, however, Tmar is rare.  

Based on the low percentages of the reactive minerals zeolite, clay, carbonate, and mica, and the 

abundance of glass, the TM-UVTA is categorized as a VMP RMC.  But, as shown in Table 4-5, the 



Phase I C
ontam

inant Transport Param
eters for C

A
U

 97: Yucca Flat/C
lim

ax M
ine, N

ye C
ounty, N

evada

Section 4.0
4-39

Figure 4-10
Schematic North-South Cross Section Showing Relationships of Hydrostratigraphic Units and Reactive Mineral 

Categories for the Volcanic Rocks in the Yucca Flat/Climax Mine HFM
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welded Tmap would be classified as a DMP, and the less common Tmar would be classified as a 

VMR RMC.  

4.2.6 Timber Mountain Welded-Tuff Aquifer

The TM-WTA consists mostly of devitrified welded ash-flow tuff and lesser amounts of vitric 

(i.e., unaltered) nonwelded ash-flow tuff, bedded tuff, and vitrophyre.  Stratigraphically, this HSU 

typically includes only the Tmr, but may also include the Tma, where the Tma consists of a 

significant thickness of welded tuff.  In most places, the Tma is separated from the underlying Tmr by 

a 1.5- to 9.1-m (5- to 30-ft)-thick bedded tuff member, called the bedded Ammonia Tanks Tuff 

(Tmab).  The Tmab is typically vitric and slightly calcareous, although a couple of samples are 

argillic.  Like the Tma, the Tmr can usually be divided into a mafic-rich upper member (Tmrr) and a 

mafic-poor lower member (Tmrp).  

The TM-WTA is not an extensive HSU, being generally confined to the south-central portion of the 

basin east of the Topgallant fault, where Tmr is thickest.  In Yucca Flat, TM-WTA is saturated only in 

the deeper subbasins.  

Reactive minerals within the TM-WTA are typically rare, reflecting the devitrified welded tuff 

lithology that results in a rock composed mostly of microcrystalline quartz and feldspar (Table 4-6).  

Consequently, the TM-WTA is categorized as a DMR RMC where the Tmrr is present and a DMP 

RMC where the Tmrp occurs.

Fracture-filling minerals in the TM-WTA, as reported in various lithologic log, include silica, calcite, 

clay, and possibly zeolite (e.g., Davies et al., 1982; Prothro et al., 1999; Cavazos et al., 1987).  Whole 

rock mineralogy (XRD data) is summarized in Table 4-6.  The XRD dataset for the TM-WTA is not 

large because its welded character is too hard to be easily sampled using typical sidewall sampling 

tools.  Because of the small sample population, the averages may be skewed due to several anomalous 

samples.  The samples identified as anomalous are typically from altered zones (ZEOL or ARG) often 

related to faults or near formation contacts (TM WTA-Altered in Table 4-6) as determined from 

cuttings, boring and geophysical logs, and display mineralogic characteristics related to alteration not 

representative of welded tuffs in general.  Sampling bias in the database was discussed in Section 4.2.
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4.2.7 Timber Mountain Lower Vitric-Tuff Aquifer

The TM-LVTA includes all unaltered ash-fall tuff, reworked tuff, and nonwelded ash-flow tuff 

present above the level of pervasive zeolitization in Frenchman and Yucca Flats.  Where welded 

Topopah Spring Tuff (Tpt) is present (Tpt is a formation within the Tp and forms the TSA), unaltered 

nonwelded tuffs below the TSA are grouped within a separate HSU called the LVTA (see 

Section 4.2.10).  Stratigraphically, the TM-LVTA may include formations and members of the Timber 

Mountain Group (Tm), Paintbrush Group (Tp), Calico Hills Formation (Th), Wahmonie Formation 

(Tw), Crater Flat Group (Tc), Grouse Canyon Tuff (Tbg), and Tunnel Formation (Tn).  Older volcanic 

units are typically zeolitized or argillized, and are therefore categorized as confining units and placed 

within the LTCU, OBSCU, or ATCU (see Section 4.2.11).  Welded tuffs of the Tm are included in the 

TM-WTA, as described in Section 4.2.6.

The TM-LVTA has a much wider distribution than the TM-WTA.  Some TM-LVTA rocks are present 

beneath the alluvium throughout the eastern two-thirds of Yucca Flat, although this unit is absent in 

areas where it has been removed by erosion over major structural highs.  These include the area west 

of the Topgallant fault in southern Yucca Flat, the Buried Ridge in west-central Yucca Flat 

(Figure 4-4), and the margins of the valley in northern Yucca Flat.  The relationship of the TM-LVTA 

with other volcanic HSUs is shown in Figure 4-10.

In Yucca Flat, the TM-LVTA units are saturated in the deep central portion of the basin.  The 

TM-LVTA exhibits significant interstitial porosity, ranging from about 20 to 40 percent (Wagoner and 

McKague, 1984; Burkhard, 1989; App and Marusak, 1997).  However, because these lithologies tend 

to be poorly to moderately indurated, fractures are not common.  So, even though interstitial porosity 

may be high, transmissivities are not great.  

Reactive minerals are typically rare in the TM-LVTA owing to its unaltered character (Table 4-6).  

Therefore, the TM-LVTA is categorized as a VMP RMC (Table 4-5).  In the southern portion of 

Area 8, however, the TM-LVTA is argillic (Appendix D and TM-LVTA Argillic in Table 4-6).  At this 

location, the TM-LVTA is categorized as ARG.  The XRD dataset for the TM-LVTA is fairly 

representative of the natural variability in the mineralogy of this unit, but it also contains several 

anomalous samples.  These anomalous samples are typically altered horizons and are often related to 
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weathered zones, contacts, or faults.  Anomalous samples are identified in the XRD dataset 

(Appendix D) and were not included in the analysis.

4.2.8 Upper Tuff Confining Unit

The zeolitized nonwelded tuffs that overlie the Tpt in southern Yucca Flat are designated as the 

UTCU (Table 4-2).  Stratigraphically, the UTCU may include units from the top of the welded Tpt 

(i.e., TSA) to the base of the welded Tmr (i.e., TM-WTA).  The areal extent of the UTCU is limited in 

the Yucca Flat basin, occurring only beneath the southern portion of the basin (BN, 2006).  Where the 

TSA is not present but zeolitic rocks stratigraphically equivalent to the UTCU are present, the zeolitic 

rocks are assigned to the LTCU, (see Section 4.2.11.1).  The spatial relationships of the UTCU and 

other volcanic HSUs are shown in Figures 4-7 and 4-10.  The UTCU is mostly saturated in the Yucca 

Flat/Climax Mine HFM. 

The UTCU averages 65 percent zeolite (Table 4-6).  Other reactive minerals are relatively low in 

abundance.  Because of the dominance of zeolite minerals in the UTCU, the RMC is ZEOL.  The 

hydrogeologic and mineralogic properties of the two tuff confining units (UTCU and LTCU) are 

considered to be essentially identical.  

Prothro (1998) conducted an analysis of fractures in core from the tuff confining units in Yucca Flat.  

Prothro (1998) noted that almost all natural fractures observed were either coated or filled with some 

type of secondary mineral, and that zeolite and metallic oxides (e.g., iron and manganese oxides) 

were the two most common minerals.  Typical fracture-filling and fracture coating minerals for the 

UTCU and LTCU in Yucca Flat include zeolite, metallic oxides, crystalline quartz and chalcedony, 

calcite, and clay.

4.2.9 Topopah Spring Aquifer

The TSA consists of a single welded-tuff aquifer composed of welded ash-flow tuff of the 

Yucca/Frenchman Flat lobe of the Topopah Spring Tuff (Tpt in Table 4-2).  The Tpt in Yucca Flat is a 

devitrified densely to moderately welded ash-flow tuff.  There is a characteristic 5-m-thick black, 

glassy vitrophyre near the top.  A lithophysal zone below the vitrophyre is also common.  The 

lithophysal cavities are generally lined with euhedral cristobalite, tridymite, and feldspar crystals.
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The TSA is highly transmissive but is limited in areal extent.  The TSA can be more than 100 m 

(332 ft) thick in southern Yucca Flat, but the unit thins to the north, to the east in the Halfpint Range, 

and to the south in CP basin and northern Frenchman Flat.  The TSA is absent west of the Topgallant 

fault where the volcanic strata have been either eroded away or were never deposited (i.e., over the 

Buried Ridge).  The unit is saturated in the deeper south-central portion of Yucca Flat (BN, 2006).  

The relationship of the TSA to other volcanic HSUs is shown in Figure 4-10.

Reactive minerals are rare in the TSA (Table 4-6).  This reflects the high degree of devitrification 

characteristic of the Tpt in Yucca Flat, which yields a rock that is predominantly composed of felsic 

minerals.  Therefore, the TSA is categorized as a DMP RMC.  At some locations in southern Yucca 

Flat, however, the relatively thin nonwelded to partially welded basal portion of the TSA may be 

zeolitic.  For these minor occurrences, the basal zeolitic portion is categorized as a ZEOL RMC 

(TSA Zeolitic in Table 4-6).  The XRD dataset for the welded portion of the TSA is not large 

(Appendix D) because, like the TM-WTA, its highly welded character is not easily sampled using 

sidewall sampling tools.  Therefore, in order to obtain accurate mineralogy for the TSA, averages for 

minerals were calculated separately for the welded TSA (i.e., TSA-Typical) and the basal zeolitic 

portion (i.e., TSA Zeolitic).

Fracture-filling minerals in the TSA, as reported in various lithologic logs include quartz, calcite, clay 

and possibly zeolite (e.g., Cavazos et al., 1987).  Whole rock mineralogy (XRD data) for the TSA is 

given in Table 4-6.  

4.2.10 Lower Vitric-Tuff Aquifer

The LVTA includes all unaltered ash-fall, reworked, and nonwelded ash-flow tuffs below the TSA 

and above the level of pervasive zeolitization in Frenchman and Yucca Flats (Table 4-2; BN, 2004 

and 2006).  The LVTA is only differentiated where the TSA is present; these rocks would otherwise 

be included in the TM-LVTA (Figure 4-10).  Stratigraphically, the LVTA may include formations and 

members of the Calico Hills Formation (Th), Wahmonie Formation (Tw), and Crater Flat Group (Tc).  

Older volcanic units are generally zeolitized, and are therefore categorized as confining units and 

assigned to the LTCU.
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The LVTA has a distribution similar to the TSA.  However, the LVTA is not present beneath portions 

of south-central Yucca Flat because stratigraphically equivalent units are zeolitic, and thus assigned to 

confining unit HSUs.  The LVTA is unsaturated.

There are no XRD analyses specifically of the LVTA rocks in the Yucca Flat dataset.  However, a 

portion of the TM-LVTA contains similar unaltered stratigraphic units.  Given the known mineralogy 

for the stratigraphic ash-fall tuff units in this HSU, the dominant RMC is the VMP.  Chemistry and 

mineralogy attributes for the TM-LVTA (as presented in Appendix D and summarized in Table 4-6) 

may be used as a first approximation for the LVTA.

4.2.11 Lower Tuff Confining Units

Altered volcanic rocks that compose the lower portion of the volcanic section beneath Yucca Flat 

form an important hydrogeologic unit that separates the alluvial and volcanic aquifer units from the 

underlying regional LCA.  Stratigraphically, these altered volcanic rocks may include all the Tertiary 

volcanic strata from the top of the Paleozoic rocks to the base of the welded portions of the Tmr 

(i.e., TM-WTA).  In Yucca Flat, these altered tuff units are subdivided into three tuff confining unit 

HSUs based on the relative abundances of major mineral assemblages (Prothro, 2005).  These HSUs 

are: (1) an upper zone characterized by the abundance of the zeolite mineral clinoptilolite with lesser 

amounts of felsic minerals and clay, designated the LTCU; (2) a middle zone with felsic minerals 

greater than zeolites and much greater than clay, designated the OSBCU; and (3) a basal argillic zone 

where clay is dominant over felsic minerals and clinoptilolite, designated the ATCU.

These confining units are generally present in the eastern two-thirds of Yucca Flat, east of the 

Carpetbag and Topgallant faults.  They are absent over the major structural highs, where the volcanic 

rocks have been removed by erosion, or were never deposited.  Areas where the volcanic confining 

units are absent include the “Paleozoic bench” west of the Topgallant fault in southern Yucca Flat, 

and over the Buried Ridge in the west-central portion of the basin.  In northern Yucca Flat, the 

volcanic confining units tend to be confined to the deeper structural subbasins.  Outside the subbasins 

and around the edges of Yucca Flat the volcanic rocks are thinner and are not always zeolitized, and 

thus are grouped within the TM-LVTA.  Outside the Yucca Flat basin, where subsurface data are 

scarce to absent, the altered volcanic rocks are not subdivided but are simply designated as the LTCU.  
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The LTCU, OSBCU, and ATCU are typically saturated; however, measured transmissivities are very 

low (SNJV, 2006c). 

Prothro (1998) conducted an analysis of fractures in core from altered volcanic rocks beneath Yucca 

Flat, and noted that almost all natural fractures were coated or filled with some type of secondary 

mineral, with many fractures containing more than one type of secondary mineral.  Typical 

fracture-filling and coating minerals include zeolite, metallic oxides, crystalline quartz and 

chalcedony, calcite, and clay.  Prothro (1998) reported that zeolite was observed in 48 percent of the 

fractures examined, and metallic oxides were observed in 37 percent of the fractures.  Of the metallic 

oxides, iron oxides appeared to be the most common, with manganese oxide being less common.  

Additional mineralogical and isotopic details for altered tuffs beneath Yucca Flat are available in 

Dickerson et al. (2004).  These investigators used micrographic (SEM-EDS) and isotope ratio 

analytical methods to characterize secondary minerals occurring in both the rock matrix and fractures.  

The secondary minerals identified, in approximate order of decreasing abundance, are clinoptilolite, 

illite/smectite, erionite/mordenite, alkali feldspar, silica, calcite, analcime, and secondary manganese 

and iron oxides.

Whole rock mineralogy for the LTCU, OSBCU, and ATCU is summarized in Table 4-6.  It is useful to 

note that the sampling protocols in place during the weapons testing program preferentially sampled 

the more altered horizons.  Consequently, the dataset for these HSUs may be skewed toward higher 

clay values.  

4.2.11.1 Lower Tuff Confining Unit

The uppermost of the three tuff confining units in Yucca Flat is the LTCU.  Beneath Yucca Flat, the 

LTCU includes all zeolitic tuffs from the base of the Tub Spring Tuff (Tub) to the base of the welded 

Tmr (i.e., TM-WTA), outside the lateral extent of the welded Tpt (i.e., TSA).  As mentioned 

previously, all zeolitic volcanic rocks around the margins of Yucca Flat that are generally outside the 

area of drill-hole control and are typically unsaturated, are grouped within the LTCU.  The LTCU is 

thick and extensive beneath Yucca Flat east of the Carpetbag and Topgallant faults, where it is 

typically saturated.  The LTCU generally correlates to the ZC zone (dominated by the zeolite mineral 

clinoptilolite with lesser amounts of felsic minerals and clay minerals) of Prothro (2005).
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Zeolite is the major mineral component of the LTCU (Table 4-6).  Other reactive minerals are 

typically rare.  Because of the high zeolite content, the LTCU is categorized as a ZEOL RMC.

4.2.11.2 Oak Spring Butte Confining Unit

The OSBCU consists of all volcanic units from the base of the Tub (i.e., base of the LTCU) down to 

the top of pervasive argillization (i.e., top of the ATCU).  Most of the volcanic units within this 

section are assigned to the Volcanics of Oak Spring Butte and consist mostly of zeolitic nonwelded 

tuff, but also include several intercalated devitrified to weakly zeolitized, nonwelded to partially 

welded, ash-flow tuff deposits.  Stratigraphically, these older ash-flow tuffs are assigned to the Yucca 

Flat Tuff (Toy), Redrock Valley Tuff (Tor), and Tuff of Twin Peaks (Tot), all formations of the 

Volcanics of Oak Spring Butte.  Because these ash-flow tuff units were devitrified soon after 

deposition, there was little glass to be converted to zeolite.  The OSBCU was created to address the 

hydrogeologic and mineralogic variability these older, devitrified ash-flows impart to an otherwise 

zeolitic interval.  The OSBCU generally correlates to the FS zone (felsic minerals are dominant over 

clinoptilolite and clay minerals) of Prothro (2005).  The lateral extent of the OSBCU is similar to that 

of the LTCU.  The OSBCU is typically saturated.

The OSBCU has a relatively high zeolite content, with an average abundance of 39 percent 

(Table 4-6), and is therefore categorized, like the LTCU, as a ZEOL RMC.  However, the presence of 

several weakly zeolitized to devitrified ash-flow tuffs within the OSBCU, results in a zeolite content 

lower than the LTCU.  Other reactive minerals are generally rare, although clay is present with an 

average abundance of 11 percent and mica 2.5 percent.  The intercalated ash-flow tuffs consist 

predominately of felsic minerals (OSBCU Ash-flow tuffs in Table 4-6) and thus are categorized as 

DMP or DMR depending on the mafic content of each ash-flow tuff unit.  In summary, the diverse 

lithologies included in the OSBCU are manifested by the presence of several RMCs in the dataset; 

primarily ZEOL with lesser DMR, and DMP representing the older ash-flow tuffs, Toy, Tor, and Tot 

(Figure 4-10).

4.2.11.3 Argillic Tuff Confining Unit

The ATCU includes pervasively argillized volcanic and volcaniclastic deposits that typically occur at 

the base of the volcanic section in Yucca Flat.  The ATCU is characterized by an abundance of clay, 
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moderate amounts of felsic minerals, and a general absence of zeolites (Prothro, 2005).  The ATCU 

directly overlies pre-Tertiary sedimentary rocks, and includes the stratigraphically distinct 

paleocolluvium.  

The ATCU is present beneath Yucca Flat east of the Carpetbag and Topgallant faults and in the 

western subbasin of Areas 2 and 4.  The HSU is typically saturated.  The ATCU correlates to the 

AR zone (clay minerals are dominant over felsic minerals and clinoptilolite) of Prothro (2005).

The ATCU is characterized by high clay and low zeolite content (Table 4-6).  Thus, the ATCU is 

categorized as an ARG RMC.  In some areas, the paleocolluvium, typically included within the 

ATCU, contains abundant carbonate clasts.  Several analyses in Appendix D have high carbonate 

content and likely represent samples of paleocolluvium.  

4.2.12 Belted Range Aquifer

The BRA consists of a single WTA composed of peralkaline, welded ash-flow tuff of the Tbg.  

Beneath Yucca Flat, the Tbg is an ash-fall tuff.  In northern Yucca Flat, where the Tbg is vitric, it is 

included in the TM-LVTA.  In southern Yucca Flat, where the Tbg is zeolitized, it is included with the 

LTCU.  However, in the Belted Range just north of Yucca Flat, the Tbg is a highly welded ash-flow 

tuff (i.e., a WTA HGU).  The BRA HSU was established to address this mappable HGU.  The 

relationship of the BRA with other units is shown in Figure 4-11.  The unit is typically unsaturated.  

The BRA is a peralkaline ash-flow tuff and is mineralogically classified as a DMP RMC because of 

the characteristic high felsic mineral content of devitrified ash-flow tuffs and the absence of biotite in 

the Tbg.  The Yucca Flat XRD dataset does not contain any samples specifically from the BRA.  

However, the BRA in the Rainier Mesa and Pahute Mesa HFMs is the same extra-caldera ash-flow 

sheet; thus, XRD data from these CAUs would be applicable for the Yucca Flat/Climax HFM.  

Fracture-filling minerals in the BRA, as reported in various lithologic logs, include quartz, calcite, 

clay, and possibly zeolite (e.g., Maldonado et al., 1979).     
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Figure 4-11
Schematic West-East Cross Section Showing Relationships of Hydrostratigraphic Units and Reactive Mineral 

Categories for the Belted Range and Older Volcanic Rocks in Northern Yucca Flat
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4.2.13 Belted Range Confining Unit 

The BRCU generally consists of zeolitized bedded and nonwelded tuffs that occur between the 

welded ash-flow tuff lithofacies of the Tbg (i.e., BRA) and the underlying Tub (i.e., TUBA), or above 

the pre-Tbg LFA (PRETBG in Section 4.2.14) where the Tub is absent.  The upper part of this unit is 

locally vitric, but the unit is usually unsaturated.  Beyond the extents of the PRETBG, BRA, and 

TUBA, the rocks that compose the BRCU are grouped with the LTCU.  Hydrologically, this TCU 

would behave similarly to the UTCU and the LTCU.  The relationship of the BRCU with other HSUs 

in the northern portion of the model area is shown in Figure 4-11.

The mineralogic dataset for the Yucca Flat/Climax Mine HFM includes two BRCU samples, and both 

of these are of questionable quality (Appendix D).  Consequently, statistical analysis of BRCU 

reactive mineralogy is impossible.  The BRCU, however, is composed of zeolitic tuffs similar to the 

LTCU and thus is categorized as a ZEOL RMC.  Any mineralogic data for the BRCU from the 

Rainier Mesa/Shoshone Mountain HFM area would also be applicable to the Yucca Flat/Climax Mine 

area.  Mineralogic data from the approximate stratigraphic interval (i.e., Tn4 and Tn3) within the 

larger LTCU dataset from Yucca Flat could also be used to approximate the BRCU.  

4.2.14 Pre-Grouse Canyon Tuff Lava-Flow Aquifer (PRETBG and PRETBG1)

The PRETBG and PRETBG1 consist of peralkaline lava flows extruded in the area north of Yucca 

Flat before the eruption of the Tbg ash-flow tuff.  These HSUs consist of several separate local lava 

flows.  The PRETBG and PRETBG1 are not extensive HSUs, being generally confined to the 

northwestern portion of the model area (Figure 4-26 in BN, 2006).  Stratigraphically, the PRETBG is 

between the Tbg and the Tub (i.e., BRA and TUBA).  The PRETBG1 is below the Tub (i.e., TUBA in 

Figure 4-11).  Based on lithologic characteristics, these units are believed to be equivalent 

hydrogeologically except for position relative to the other HSUs.  These subdivisions are necessary to 

satisfy operational requirements of the EV® software (Dynamic Graphics, 2002).  Only a small 

portion of this HSU is saturated along the northern boundary of the Yucca Flat/Climax Mine model 

area (Figure 4-4).

The PRETBG is not represented in the Yucca Flat/Climax Mine XRD dataset.  Mineralogy from the 

Pahute Mesa or Rainier Mesa/Shoshone Mountain datasets would be applicable, however. 
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4.2.15 Tub Spring Aquifer

The TUBA consists only of the devitrified, welded portion of the Tub and is limited to the northern 

Yucca Flat area, where it can be up to 90 m (300 ft) thick.  The TUBA is a fairly extensive HSU in 

West Emigrant Valley and in the northwestern corner of the model area (Figure 4-27 and Profile B-B’ 

in BN, 2006), but it is saturated only in the deeper basins of the area.  Based on its welded tuff 

lithology, its hydraulic properties are similar to those of the BRA and the TM-WTA.  

The TUBA is a devitrified, welded ash-flow tuff, and thus is mineralogically categorized as a DMP 

RMC.  Although only two analyses of TUBA are available, they indicate a very high felsic mineral 

content characteristic of devitrified ash-flow tuffs (Table 4-6).  Reactive mineral abundances are low, 

reflecting the devitrification and absence of mafic minerals characteristic of welded Tub.  Any 

mineralogic data for the TUBA from the nearby Rainier Mesa/Shoshone Mountain HFM area would 

be applicable also to the Yucca Flat/Climax Mine area.  

4.2.16 Mesozoic Granite Confining Unit

The Climax granitic stock is located at the north end of Yucca Flat and just south of Oak Spring Butte 

(Slate et al., 1999).  This granitic body has intruded through Paleozoic-age carbonate rocks now 

exposed around the stock.  The granite intrusion constitutes the MGCU in the hydrostratigraphic 

model for the area (Table 4-2).  The Climax Stock is related in chemistry and age with the Gold 

Meadows Stock located further west and just north of Rainier Mesa.

This unit is an intrusive stock of quartz monzonite and granodiorite.  Primary phenocrysts include 

plagioclase, potassium feldspar, quartz, and biotite, with a trace of pyrite, sphene, zircon, apatite, and 

iron oxides (Maldonado, 1977).  Based on this mineralogy, the MGCU is classified as a DMR RMC 

(Table 4-5).  Whole rock mineralogy (XRD data) for the MGCU is given in Table 4-6.  

Fracture-filling minerals in the MGCU, as reported in various lithologic logs, include calcite, quartz, 

secondary feldspars, clay, chlorite, pyrite, epidote and iron oxides (Maldonado, 1977).  

In addition to the bulk granite mineralogy, a variety of secondary alteration minerals due to 

hydrothermal alteration and contact metamorphism have been reported (Houser and Poole, 1961; 

Maldonado, 1977; Orkild et al., 1983).  The intrusives have altered the surrounding carbonate rock to 
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form marble and tactite out to several hundred meters from the edge of the stock.  Tactite mineralogy 

includes garnet, quartz, epidote, chlorite, limonite, hematite, calcite, idocrase, and lesser amounts of 

the pyrite copper carbonate minerals, scheclite and powellite.  Historical mining at the Climax stock 

has yielded small amounts of tungsten, molybdenum, lead zinc, copper, and silver ore 

(Quade and Tingley, 1983).

Hydrothermal alteration within the stock is generally associated with deposition of veinlets and joint 

fillings (Orkild et al., 1983).  This group of secondary minerals includes clays, chlorite, secondary 

feldspar, sericite, quartz, epdiote, pyrite, chalcopyrite, limonite, and manganese (Houser and Poole, 

1959).

The location, mineralogy, and intensity of the secondary alteration is quite variable, although some of 

the complete characterization was not undertaken for this effort. 

4.2.17 Upper Carbonate Aquifer

The Tippipah Limestone in western Yucca Flat is designated the UCA.  This unit is found at the 

surface only at Syncline Ridge, although it is believed to underlie a slightly larger area in the 

subsurface of the western part of Yucca Flat (BN, 2006).  Surface exposures are highly deformed and 

fractured.  This unit consists of thick limestone layers interbedded with mudstone and siltstone beds 

(largely silica [SiO2]).  There are no XRD data for the UCA in the Yucca Flat/Climax Mine HFM 

area.  However, based on detailed lithologic descriptions, the UCA is predominately a CC RMC, and 

as noted here, there could be rare SC due to the presence of mudstone and siltstone interbeds.  

Fracture-filling minerals in the UCA, as reported in various lithologic logs include mostly calcite and 

iron-staining, and lesser clay (Hodson and Hoover, 1978; Metcalf et al., 1999).  

4.2.18 Upper Clastic Confining Unit

Upper Devonian and Mississippian siliciclastic rocks at the NTS and vicinity are assigned to the 

Eleana Formation and the Chainman Shale (Cashman and Trexler, 1991; Trexler et al., 1996).  The 

Eleana Formation as originally defined by Poole et al. (1961) was partitioned by Cashman and 

Trexler (1991) on the basis of lithofacies variations and sediment source.  The shaley lithofacies in 

western Yucca Flat have been assigned to the Chainman Shale, while the section bearing the 
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non-shaley quartzite, sandstone, and conglomeratic lithofacies retains the original formation name.  

Both formations are grouped into the UCCU.  The UCCU is present only in the western portion of the 

Yucca Flat model, generally west of the Carpetbag/Topgallant fault system (BN, 2006).

The mineralogy of the UCCU varies with lithology.  Rocks associated with the Eleana Formation are 

generally siltstone and sandstones of quartz and chert grains (SiO2).  The Eleana Formation also 

contains several bioclastic limestones.  The Chainman Shale contains significant quartz and 

smectite/illite, minor feldspar and mica, lesser chlorite, and trace amounts of hematite, limonite, 

calcite and manganese oxide (MnO2).  The XRD dataset for the UCCU is not large; however, it does 

show two distinct RMCs (Appendix D).  The dominant RMC for the Eleana Formation is SC.  The 

dominant RMC for the Chainman Shale is ARG, with minor SC representing the interbedded 

quartzite lithologies.  Whole rock mineralogy (XRD data) for the UCCU is given in Table 4-6.

Fracture-filling minerals in the UCCU, as reported in various lithologic logs (BN, 2004; Russell et al., 

1996; Fernald et al., 1975) include quartz, calcite, clay and rare pyrite, and trace MnO2.  

4.2.19 Lower Carbonate Aquifer

The LCA consists of thick sequences of Middle Cambrian-age through Upper Devonian-age 

carbonate rocks (Table 4-2; Winograd and Thordarson, 1975; BN, 2004 and 2006).  This HSU serves 

as the regional aquifer for most of southern Nevada, and locally may be as thick as 5,000 m 

(16,400 ft) (Winograd and Thordarson, 1975; Cole, 1992 and 1997).  

This thick carbonate section consists mostly of limestone and dolomite, with minor chert, quartzite, 

and shale.  Virtually all of the LCA is classified as a CC RMC, with only a few percent of the total 

thickness being an SC (e.g., Eureka Quartzite) and an ARG (e.g., Dunderberg Shale).  Whole rock 

mineralogy (XRD data) for the LCA is given in Table 4-6.

Detailed information about fracture geometry and fracture-filling minerals in LCA core samples from 

Wells ER-6-1 and ER-6-2 in southern Yucca Flat is presented in IT (1996c).  IT (1996c) found that 

the fractures in the LCA rocks were generally filled or lined with three types of minerals: iron oxides 

(limonite and hematite) including scarce MnO2, carbonaceous clays, and carbonate minerals 

generally consisting of calcite with rare occurrences of dolomite.  They also noted that silica cements 

are rare and restricted to fractures in quartzite lithologies.  Another observation was that most of the 
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fractures are lined or filled with a combination of two or more of these materials.  Many of the 

fractures within the upper 15 m (50 ft) of the LCA are typically filled with tuffaceous, argillic mud 

(e.g., BN, 2004; Davies et al., 1982).  

Deformation related to the west-vergent CP thrust fault has placed older LCA rocks over younger 

rocks of the UCCU and LCA west of the Carpetbag/Topgallant fault system and in the northwest 

corner of the HFM.  The position of these rocks above the UCCU requires that they be distinguishable 

(in the model) from the regional aquifer (LCA).  These thrusted carbonate rocks, designated LCA3 

(Table 4-2), are stratigraphically equivalent, and hydrogeologically and mineralogically similar to the 

LCA.

4.2.20 Lower Clastic Confining Unit

The Proterozoic to Middle-Cambrian rocks in the vicinity of the NTS are largely quartzite (SiO2) and 

silica-cemented siltstone.  Although these rocks are brittle and commonly fractured, secondary silica 

mineralization seems to have greatly reduced formation permeability (Winograd and Thordarson, 

1975).  These units make up the LCCU, which is considered to be the regional hydrogeologic 

basement (IT, 1996c).  Where it is in a structurally high position, the LCCU may act as a barrier to 

deep regional groundwater flow.  The present structural interpretation for Yucca Flat depicts the 

LCCU at great depth, except in the northeast corner of the study area.  The Zabriskie Quartzite and 

Wood Canyon Formation, which are both classified as clastic confining units, are exposed in the 

northern portion of the Halfpint Range.  The high structural position of the LCCU in the northern 

Halfpint Range may be at least partially responsible for the steep hydraulic gradient observed 

between western Emigrant Valley and Yucca Flat (BN, 2006).  

The upper plate of both the Belted Range and CP thrust faults include these same Precambrian clastic 

rocks.  Although these HSUs, designated LCCU1 and LCCU2, include some of the same units as the 

LCCU (Table 4-2; BN, 2006), their position above the younger LCA and LCA3 requires that they be 

distinguished from the LCCU.  

As reported from outcrop descriptions and a few lithologic logs, fracture-filling minerals in the 

LCCU, LCCU1, and LCCU2 include quartz, calcite, and rare clay.  Whole rock mineralogy 

(XRD data) for the LCCU is given in Table 4-6.  Nearly all of the LCCU is an SC RMC, with lesser 

CC representing carbonate interbeds and the Noonday Dolomite.
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5.0 YUCCA FLAT/CLIMAX MINE GEOCHEMISTRY

The dissolved constituents in groundwater may influence the rate and extent of molecular-level 

reactions between contaminants and aquifer materials.  Knowledge of the groundwater chemistry is 

therefore important to the prediction of contaminant sorption onto rock surfaces and thus to the 

prediction of contaminant transport.  Groundwater chemistry also provides a means for determining 

the origin, flow paths, and time scale of groundwater flow and transport that is independent of 

estimates based on hydraulic flow analysis.

This section provides a summary of a comprehensive geochemical evaluation of the groundwater 

flow system in the Yucca Flat/Climax Mine CAU that was performed in fiscal year (FY) 2005 and 

published in FY 2006 (SNJV, 2006b).  An evaluation of the major and minor solute chemistry of 

groundwaters in this CAU is also provided.  A dataset is presented that provides the supporting 

geochemistry data necessary for calculating Kds using the mechanistic model approach described in 

Section 11.6.1.  The goal is to provide data that are representative of the natural variability in water 

chemistry within the Yucca Flat/Climax Mine CAU.  Limitations to these geochemical analyses are 

presented at the end of this section.

5.1 Summary of the FY 2006 Geochemical Evaluation of the Yucca Flat/Climax Mine 
Groundwater Flow System 

The geochemical evaluation of the Yucca Flat/Climax Mine groundwater flow system described in 

SNJV (2006b) was a collaborative effort between LANL, LLNL, DRI, USGS, and the SNJV.  The 

data used for the evaluation, as well as a description of all groundwater chemistry data available for 

this CAU in the UGTA groundwater quality database, GEOCHEM06.mdb (SNJV, 2006a) are 

provided in SNJV (2006c).  The extent of the area included in the study is shown in Figure 5-1.  

The approach for the flow path and travel time evaluations included compilation and examination of 

all currently available geochemical and isotopic data, construction of mixing models using 

conservative tracers, evaluation of the mixing models with strontium (Sr) concentration and isotopic 
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Figure 5-1
Conceptual Flow Paths Evaluated in the Yucca Flat/Climax Mine Geochemistry Study

Source: SNJV, 2006b 



Section 5.0

Phase I Contaminant Transport Parameters for CAU 97: Yucca Flat/Climax Mine, Nye County, Nevada

5-3

data, and modeling of geochemical reactions using the geochemical modeling programs PHREEQC 

and NETPATH.  The geochemical modeling codes were also used for estimating groundwater travel 

times based on carbon isotope data.  The basis for the geochemical modeling approach is described in 

the UGTA Project Geochemistry Technical Basis Document (Benedict et al., 2003).

The main objectives of the evaluation were to identify probable pathways for groundwater flow 

within the LCA and develop constraints on groundwater transit times between selected data 

collection sites.  Although few underground tests were actually conducted in the LCA  

(see Section 6.5), it is considered the most important aquifer within the study area because of its 

hydraulic continuity with the larger regional flow system, and thus represents the most likely pathway 

for contaminant transport beyond the boundaries of the NTS.  

The investigation began with an evaluation of the geochemical characteristics of groundwater in 

northern Yucca Flat and specifically addressed the proportion of groundwater inflow to Yucca Flat 

from outlying areas versus local recharge from the surrounding highlands.  The study then 

investigated three conceptual groundwater flow paths within the LCA: flow from north to south along 

the eastern side of the Yucca Flat basin, flow from north to south along the western side of the basin, 

and flow entering Yucca Flat along the southeastern basin margin and moving through southern 

Yucca Flat to Frenchman Flat.  Conceptual flow-path development was guided by previous 

hydrogeologic studies of the groundwater flow system together with observed trends in geochemical 

parameters.  The separation of flow paths in the eastern and western parts of the basin is strongly 

inferred on the basis of observed hydraulic head relationships, the presence of major geologic 

structures near the center of the basin, and differences in geochemical parameters in these two areas.  

The isotopic and geochemical characteristics of the LCA groundwater in the west-central part of the 

basin were also identified as unique relative to all other LCA groundwaters within the basin.  These 

groundwaters were therefore evaluated as a separate west-central flow path.  The conceptual flow 

paths evaluated and the specific wells modeled for each flow path are presented in Figure 5-1.

Geochemical modeling results indicated that groundwater originating from recharge within the Yucca 

Flat basin is a prominent feature of the groundwater system, particularly in western Yucca Flat, where 

high-elevation recharge areas at Rainier Mesa, the Eleana Range, and Shoshone Mountain lie 

adjacent to the basin (see Figure 4-1).  Locally derived recharge is also prominent in the northeastern 
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part of the basin, but geochemical models indicate an additional groundwater component possibly 

entering the basin from Emigrant Valley through low-permeability siliciclastic rocks in the Halfpint 

Range.  Groundwater also appears to enter northern Yucca Flat along an LCA flow path near the 

margin of the Climax Stock; however, a lack of data for LCA groundwater north of the NTS 

precluded a rigorous evaluation.

Modeling results indicated that the groundwater in northern Yucca Flat moves southward along 

independent flow paths on the eastern and western sides of the basin.  However, the models for these 

north-to-south flow paths were frequently non-unique, and the composition of groundwater at a given 

well could often be explained by mixing groundwater from more than one combination of wells.  

Nevertheless, the models consistently indicated that the groundwater transit times are extremely long.  

For example, transit times based on carbon-14 (14C) of approximately 16,000 to 24,000 years were 

predicted for flow in the LCA from UE-10j in northern Yucca Flat to WW-C in southern Yucca Flat, 

resulting in estimated linear groundwater velocities of approximately 1.3 to 1.9 meters per year 

(m/yr) over this 30-km distance.  Along a shorter path length between wells ER-7-1 and ER-6-1#2, 
14C derived transit times were estimated to be approximately 6,500 years, yielding a similar flow 

velocity of 1.7 m/yr.  It is notable that recent hydraulic tests have indicated a high degree of hydraulic 

continuity between ER-7-1 and ER-6-1#2 (SNJV, 2005a).  Hence, the long transit times suggest the 

groundwater flux through the LCA in Yucca Flat may be relatively small.  This feature is attributed to 

the small inflow of groundwater into the basin from the north and the low hydraulic gradient from the 

north to the south within the basin (SNJV, 2006c). 

Geochemical models also indicated that influx of LCA groundwater from east of Yucca Flat is not a 

prominent part of the groundwater system except in the southeastern part of the basin.  In this area, 
14C derived transit times are on the order of 1,000 to 3,000 years between ER-3-1 and WW-C, and 

predicted groundwater flow velocities show a corresponding increase (4.3 to 13 m/yr).  The increased 

flux of groundwater from east of the basin into the southeastern part of Yucca Flat is consistent with 

the absence of the LCCU in the southeast portion of the basin.  Flow conditions in this part of the 

system appear to be more dynamic when compared to the relatively stagnant flow conditions within 

the upgradient parts of the Yucca Flat basin.
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Wells completed in the LCA near the west-central part of the basin (e.g., TW-D and UE-1q) show 

potential evidence of groundwater leakage from overlying volcanic units.  Although it was not 

possible to uniquely ascribe the observed geochemical signatures to locally derived vertical transport, 

it is possible that nearby faults have created localized flow paths between the volcanic and carbonate 

HSUs in this area.

5.2 Data Compilation and Data Transfer

5.2.1 Data Compilation

Groundwater major and minor chemistry data from wells and springs within the Yucca Flat/Climax 

Mine HFM boundaries (Figure 5-2) were compiled from GEOCHEM06.mdb (SNJV, 2006a).  The 

resulting Yucca Flat/Climax Mine chemistry dataset includes samples collected over a large period of 

time (1957 to 2006) that were analyzed using a variety of techniques (SNJV, 2006c).  The variation in 

sampling and analytical techniques over this time period resulted in significant variations in some 

measurements.  The goal of the data compilation described within this section is to acquire a dataset 

that contains representative major and minor solute data for groundwaters of the Yucca Flat/Climax 

Mine HSUs, primarily for use in calculating Kds as described in Section 11.0.  The first step in the 

analysis was therefore to reduce the dataset so that it excludes as much of the variability due to poor 

sampling conditions and analysis as possible.  The dataset used for the analyses is described as 

follows:   

1. The chemical constituents included are calcium (Ca2+), magnesium (Mg2+), sodium (Na+), 
potassium (K+), chloride (Cl-), sulfate (SO4

2-), bicarbonate (HCO3
-), carbonate (CO3

2-), 
silica (SiO2), nitrate (NO3

-), bromide (Br-), phosphate (PO4
3-), and fluoride (F-).  Also 

included are pH and water temperature.

2. Samples with a full suite of the above parameters and a charge balance within ±5 percent 
are included.  This criterion was relaxed if the charge balance exceeded 5 percent for all 
samples collected from a given location or when anomalous (or inconsistent) water 
chemistry is observed in the sample with a 5 percent charge balance.

3. Samples were removed if multiple outliers (outliers for multiple parameters) were present. 

In addition to the parameters described above, this compilation includes the results of in situ 

measurements performed by LANL for a select number of wells within Yucca Flat.  The in situ 
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Figure 5-2
Yucca Flat/Climax Mine Geochemistry Study Area
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measurements include oxidation-reduction potential (ORP), water temperature, specific conductance, 

and pH.  These results are compiled from a series of LANL annual reports (Finnegan et al., 2004 and 

2005; Finnegan and Thompson, 2002 and 2003).  The calcite and dolomite saturation indices as 

presented in SNJV (2006b) are also presented.  A positive saturation index indicates that the mineral 

is oversaturated, and a negative saturation index indicates undersaturation.  The final dataset is 

presented in Appendix E.

Data documentation evaluation flags (DDE_Fs) are also provided for these data; these data 

documentation evaluation indicators are also reported within GEOCHEM06.mdb (SNJV, 2006a).  

Data quality evaluation flags (DQE_Fs) for the data used in this analysis are reported as “Level C.”  

This indicates that the analytical result is consistent with historical or regional trends for the reported 

location(s); or, for a given sample, there are no anomalous results within the suite of parameters that 

would indicate sample contamination due to improper sample collection or erroneous laboratory 

procedures.  This data quality indicator is included in the GEOCHEM06.mdb database as well. 

5.2.2 Data Transfer

All data used in the quantitative analyses in this section are from the Yucca Flat/Climax Mine HFM 

area or surrounding springs; see Figure 5-2, Appendix E, and the associated dataset referenced in 

Section E.3.0. 

5.2.3 Data Analysis

Using the dissolved constituents in groundwater, Schoff and Moore (1964), Blankennagel and Weir 

(1973), and Winograd and Thordarson (1975) identified three main hydrochemical water types, or 

facies, in NTS groundwaters.  These include a Na-K-HCO3 groundwater facies (Na+ plus K+ 

constitute at least 60 percent of the total cation concentration) commonly found in volcanic-rock 

aquifers, a Ca-Mg-HCO3 facies (Ca2+ plus Mg2+ constitute at least 60 percent of the total cation 

concentration) commonly occurring in carbonate aquifers, and a Ca-Mg-Na-HCO3 facies assumed to 

be a mixture of the Na-K-HCO3 and Ca-Mg-HCO3 facies (Schoff and Moore, 1964).  The source of 

Ca2+ and Mg2+ in the groundwater of carbonate aquifers is dissolution of calcite and dolomite.  

Groundwater in volcanic HSUs gains Na+ from reaction with volcanic glass and feldspar minerals.  
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Bicarbonate is the predominant anionic constituent in the majority of the groundwater and is derived 

primarily from the dissolution of soil carbon dioxide (CO2) gas and reaction with carbonate minerals.

Piper diagrams are used within this section to classify the groundwater as a hydrochemical type; ion 

concentrations are expressed in percent milliequivalents per liter.  A Piper diagram consists of three 

different component representations of major-ion chemistry.  Cation (i.e., Ca2+, K+, Mg2+, Na+) and 

anion (i.e., Cl-, SO4
2-, HCO3

-, and CO3
2-) data are plotted in separate triangles.  Both cation and anion 

data are then projected on to a central diamond-shaped area so that compositional relationships (such 

as mixing or evolutionary trends) within or between a group or groups of groundwater samples are 

visually presented.  In addition, bar plots are used to illustrate the total concentrations of each 

chemical constituent; chemical concentrations are reported in units of milligram per liter (mg/L).  

Because of the high relative concentration of HCO3
- compared to the other constituents in some of the 

groundwaters, HCO3
- is plotted on a separate right axis for some bar plots.  Error bars (mean ± 1 

standard deviation [SD]) are presented on the bar plots when multiple samples have been collected 

from the same location.

5.2.3.1 Groundwater Chemistry Representative of Hydrostratigraphic Units

The primary HSU is assigned to each groundwater sample based on the HSU associated with either 

the formation access interval (FAI) or with the depth from which the discrete bailed samples were 

collected.  Well samples included in the dataset were often collected as composites, either from wells 

with single completions that transect multiple HSU boundaries, or from wells with multiple 

completions that were all pumped simultaneously.  Generally, the HSU that spans the largest portion 

of the formation access interval is assigned to a water sample.  For those cases with large relative 

proportions of multiple HSUs encountered, the most transmissive unit is generally assigned.

Groundwater samples have been collected using several different techniques.  Recent samples 

collected for the UGTA Project include both depth-discrete bailed samples and composite 

groundwater characterization samples.  Depth-discrete bailed samples are typically collected using a 

wireline run discrete bailer, under pumping conditions, after flow logging is complete.  The depths at 

which discrete bailer samples are collected are determined using flow log and temperature data, and 

are generally above each screened completion interval that is productive.  Composite groundwater 

characterization samples are collected from the well-head during pumping.  The sample is a 
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composite representative of the proportional contribution from the water-producing zone(s) in the 

well.  During drilling operations, makeup water is tagged with lithium bromide (LiBr) as a tracer to 

evaluate the progress and completeness of development.  A low Br- concentration likely indicates that 

the well was sufficiently developed to restore groundwater quality back to its natural condition.  

Water discharged during well development is monitored for pH, electrical conductivity, dissolved 

oxygen, temperature, turbidity, and Br- concentration.  Groundwater samples are collected after these 

parameters have stabilized.  Earlier groundwater sampling included depth-discrete bailed samples and 

pumped composite samples, although the sampling technique is not always reported with the 

GEOCHEM06.mdb database (SNJV, 2006a).

5.2.3.1.1  Alluvial Aquifer

Four wells (UE-1a, UE-6d, WW-A, and WW-3) are completed in the AA in southern Yucca Flat 

(Figure 5-2).  The chemistry of these groundwaters range from a borderline Ca-Mg-HCO3 type 

(UE-1a) to the Ca-Mg-Na-HCO3 mixed type (WW-3) to a borderline Na-K-HCO3 type (UE-6d and 

WW-A).  The more recent samples from WW-A (collected between 2003 and 2005) were collected 

from a depth of approximately 550 m using a bailer; the earlier samples from this well (collected 

between 1961 and 1988) were collected during pumping while it was used as a supply well.  The three 

bailed samples are distinguishable from all others in the Piper diagram as having a slightly greater 

relative proportion of Cl- (Figure 5-3).  The difference in the chemistry of the bailed versus pumped 

samples may reflect differences in groundwater of the deeper zone of the alluvium (sample collected 

using the discrete bailer) relative to the composite samples that combine groundwater from the entire 

length of the FAI (approximately 80-m thickness). 

The groundwater chemistry of the samples of the AA are further evaluated in the bar plot presented in 

Figure 5-4.  The concentration of the major and minor solutes are shown to be quite similar for the 

AA groundwaters with the exception of UE-1a.  Groundwater of UE-1a has a higher concentration of 

HCO3
-, Ca2+, Mg2+, and Cl- and a lower concentration of SO4

2- and SiO2 more typical of water that has 

interacted with carbonate rocks.  The pH of the AA groundwater samples (mean ± SD) are 7.8 ± 0.2, 

7.9 ± 0.1, 8.0, and 8.3 for WW-A, WW-3, UE-1a, and UE-6d, respectively.     

The ORP was measured in situ for WW-3 at depths ranging from 1,550 ft to 1,750 ft (472 m to 

533 m).  The groundwaters were determined to be in an oxidizing environment with the ORP ranging 
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Figure 5-3
Piper Diagram for Samples Collected from the Alluvial Aquifer

Figure 5-4
Bar Plot for Samples Collected from the Alluvial Aquifer
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from 52 to 169 millivolts (mV).  No correlation between ORP and well depth was observed; the range 

in ORP was thought to be a result of measurement variability (Finnegan et al., 2004).  The in situ 

water temperatures ranged from 19.3 to 19.9 degrees Celsius (°C) and the specific conductance 

ranged from 0.41 to 0.42 milliSiemens per centimeter (mS/cm).  No in situ measurements of pH were 

made (Finnegan et al., 2004). 

The RMC associated with the AA is the VMP (see Table 4-5).  As shown in Table 4-4, this RMC 

represents a high glass content (greater than 30 percent), low clay (less than 10 percent) and zeolite 

(less than 10 percent), and low biotite plus hornblende (less than 1.5 percent). 

5.2.3.1.2  Volcanic-Rock Aquifers and Tuff Confining Units

The dataset is limited with respect to the number of groundwater samples from the volcanic-rock 

aquifers and the tuff confining units of the Yucca Flat/Climax Mine CAU.  Two wells sample 

groundwater of the TSA (UE-14b and TW-B), four wells sample the LTCU (TW-7, U-2bs, U-3cn 

PS#2, and U-4u PS#2A), and one well samples the OSBCU (UE-10 ITS #3).  The FAI for ER-2-1 

includes a large section of both the TM-LVTA (53-m thickness) and the LTCU (80-m thickness).  The 

groundwater of these volcanic HSUs are all the Na-K-HCO3 type; Na+ is the dominant cation, and 

HCO3
- is the dominant anion (Figure 5-5).  Relatively tight clusters are formed in the Piper diagram 

for most samples collected from the same well, indicating consistent sampling and analysis for the 

majority of the groundwaters.

The groundwater chemistry of the well, J-13, is also presented in Figures 5-5 and 5-6.  Groundwater 

from this well, or synthetic water similar in chemical composition to this well, was used in the 

laboratory sorptions studies performed in support of the YMP (see Section 11.0).  These data are 

therefore presented to allow for comparison between waters used for the sorption studies and those of 

the Yucca Flat/Climax Mine CAU.    

Groundwater of the TSA HSU

Three samples from UE-14b and five samples from TW-B were collected between 1988 and 1991.  

A larger proportion of SO4
2- is present in the groundwaters of UE-14b relative to all others in the 

volcanic HSUs (Figures 5-5 and 5-6).  The concentration of Ca2+ is lower in one sample (7.5 mg/L 
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Figure 5-5
Piper Diagram for Samples Collected from the Volcanic Hydrostratigraphic Units

Figure 5-6
Bar Plot for Samples Collected from the Volcanic Hydrostratigraphic Units
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compared to 13.4 and 13.5 mg/L) probably due to analytical variability.  The major-ion composition 

of groundwater sampled at TW-B is consistent between samples and with other groundwaters of the 

volcanic HSUs (Figures 5-5 and 5-6).  The pH of these groundwater samples were 8.4 ± 0.1 for 

UE-14b and 8.31 ± 0.02 for TW-B.  No water temperature data were reported for either of these 

groundwaters.

The RMC associated with the TSA in the vicinity of UE-14b and TW-B is the DMP (see Table 4-5).  

As presented in Table 4-4, this RMC represents a high content of quartz and feldspar (greater than 

60 percent), low glass (less than 20 percent), and low biotite plus hornblende (less than 1.5 percent).

Groundwater of the LTCU HSU

Groundwater sampling of TW-7 and U-2bs is limited to one sample collected in 1958 from TW-7 and 

two samples collected in 1972 from U-2bs.  These groundwaters are strongly dominated by Na+ 

(Figures 5-5 and 5-6) consistent with cation exchange of Ca2+ with Na+ in the highly zeolitic rocks of 

the TCU.  A near neutral pH of 7.3 (TW-7) and 7.1 ± 0.4 (U-2bs) is observed for these groundwaters.    

Finnegan and Thompson (2002) report the results of in situ ORP measurements made for TW-7 at 

depths ranging from 500 to 672 m.  The ORP indicates that the groundwaters may be slightly 

reducing; the ORP ranged from 206 mV to -59 mV.  Reducing waters, with an ORP of -8 mV, were 

observed beginning at a depth of 565 m.  The ORP slightly decreased for each subsequent 

measurement even though measurements were made both while proceeding down the hole as well as 

back up again.  The last measured value was -59 mV at a depth of 581 m, whereas a value of -20 mV 

was observed earlier at a depth of 596 m.  The results suggest that some of the variability in the ORP 

may have been due to instrument drift.  The in situ water temperatures ranged from 22.1 to 23.1°C 

and the specific conductance ranged from 0.54 to 0.57 mS/cm (Finnegan and Thompson, 2002).

Two wells, U-3cn PS#2 and U-4u PS#2A, are post-test holes and will be discussed further in 

Sections 6.4.3 and 6.4.1, respectively.  Well U-3cn PS#2 was drilled into the chimney of the BILBY 

test.  Five groundwater samples have been collected from this well over the period of 1969 to 2004.  

With the exception of a slightly greater Cl- and SiO2 concentration in the most recent sample, the 

major-ion composition is relatively consistent between all samples (Figure 5-6).  The concentrations 

in the recent sample were 17.3 and 100 mg/L for Cl- and SiO2, respectively, compared to ranges of 
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7.2 to 8.8 mg/L for Cl-, and 51 to 61 mg/L for SiO2 in the earlier samples.  The pH values were 

reported as 7.8 ± 0.2.

Five samples have been collected from U-4u PS#2A over the period of 1993 to 2003.  Only one 

sample, collected in 1993, has a charge balance within ±5 percent (Appendix E).  The concentrations 

of most major solutes in this early sample are greater than in all subsequent samples collected from 

this well.  This may be attributed to the impact of drilling fluids.  Although all samples from this well 

are the Na-K-HCO3 type, a high degree of variability is observed in the major-ion concentrations 

(Figure 5-6).  The pH reported for these samples was 7.6 ± 0.7. 

The RMC associated with the LTCU for the above described wells is ZEOL.  For this RMC, zeolites 

and clays are abundant (greater than 30 percent) with zeolites more abundant than clays, and the 

abundance of glass is low (less than 10 percent).

Groundwater of the TM-LVTA/LTCU HSU

Well ER-2-1 is located just west of the Yucca Fault and is completed in the TCU near a cluster of 

underground nuclear tests.  During well development and testing, the water level in ER-2-1 declined 

substantially at low pumping rates, implying very low hydraulic conductivity (SNJV, 2004c).  Despite 

the close proximity of this well to several underground test cavities, a low-level tritium (3H) activity 

(228 picocuries per liter [pCi/L]) was measured in the water, suggesting very slow groundwater flow 

in the vicinity of ER-2-1.  The FAI of this well contains large sections of both the TM-LVTA (53-m 

thickness) and the LVTA (80-m thickness) HSUs.  Water produced during development and testing 

entered the borehole above a depth of about 610 m (SNJV, 2004c and 2005d).  The temperature log 

suggests specific inflows of water through fractures in the upper 22 m of the LTCU.  Additional 

inflow probably occurs above these fractures within the TM-LVTA; there are additional fractures in 

the vicinity of 580 m and above.  Water production during drilling primarily occurred within the 

TM-LVTA, with no water production in the LTCU below the fractures mentioned above.  The 

chemical composition of the groundwaters collected both as the composite samples (sampled from 

the interval spanning both the LTCU and the TM-LVTA) and the depth-discrete bailed sample 

(sampled from the TM-LVTA) are quite similar suggesting the source of this groundwater may be the 

TM-LVTA.  The RMC associated with the TM-LVTA, VMP, is the same as that assigned to the AA 

(Table 4-5).  A relatively high pH, ranging from 8.8 to 9.3, is observed for all groundwater samples 
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collected from ER-2-1.  The high pH may result from the inability to adequately develop this well 

(SNJV, 2004c).  

Groundwater of the OSBCU HSU

Only a single sample has been collected from UE-10 ITS #3.  Although the major-ion composition of 

the groundwater of UE-10 ITS#3 is similar to the other samples as shown in the Piper diagram, the 

bar plot (Figure 5-6) shows that these groundwaters have a much higher concentration of most major 

ions than in all other samples collected from the volcanic HSUs.  A pH of 8.3 was measured for this 

sample, and no water temperature was reported.  The OSBCU is assigned as the ZEOL RMC, 

consistent with that of the LTCU. 

5.2.3.1.3 Carbonate Aquifers

A significant number of samples have been collected from the carbonate aquifers of the Yucca 

Flat/Climax Mine CAU (Figure 5-2).  Groundwaters of the LCA are separated into the northern, 

western, eastern, and southeastern sections of the Yucca Flat basin for this analysis.  In addition, 

several wells were completed within the LCA3, and one was completed within the UCA.  These 

groundwaters are also described within this section.  The RMC associated with all of the carbonate 

aquifers, characterized by greater than 50 percent carbonates, is CC.

Lower Carbonate Aquifer of Northern Yucca Flat   

Well UE-10j is the northernmost Yucca Flat well completed in the LCA (Figure 5-2).  This well was 

constructed with three sliding sleeves so that discrete groundwater samples could be collected at three 

depth intervals: 765.0 to 773.0 m (UE-10j-1), 732.3 to 740.1 m (UE-10j-2), and 691.1 to 699.0 m 

(UE-10j-3).  All three zones are completed within the Banded Mountain Member of the Cambrian 

Bonanza King Formation (IT, 1995).  The groundwaters are the Ca-Mg-HCO3 type with a consistent 

major-ion composition for all three zones (Figures 5-7 and 5-8).  It was concluded by SNJV (2006b), 

that groundwater of the deeper zone of UE-10j (UE-10j-1) is linked to a regional LCA flow path 

north of Yucca Flat and the more shallow LCA groundwater of UE-10j (UE-10j-3) contains a 

dominant component of local recharge (groundwater entering the LCA from overlying units) that has 

mixed with a much smaller percentage of deeper LCA groundwater.  The geochemical and stable 
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Figure 5-7
Piper Diagram for Samples from the LCA of Northern and Western Yucca Flat

Figure 5-8
Bar Plot for Samples from the LCA of Northern and Western Yucca Flat
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isotope compositions of groundwaters from the middle zone of UE-10j (UE-10j-2) are intermediate 

between those of UE-10j-1 and UE-10j-3.  The pH and water temperature of groundwaters of UE-10j 

range from 6.4 to 7.2 and 32.1 to 32.7 °C, respectively.  

The ORP was measured for groundwaters of UE-10j in 2003 for depths ranging from 2,170 ft (661 m) 

to 2,330 ft (710 m) and the results ranged from -342 to -439 mV, indicating a reducing environment.  

Although variability in the measurements is rather large, a trend of increasing ORP with depth is 

reported (Finnegan et al., 2004).  The in situ water temperatures ranged from 32.0 to 32.5 °C.  The 

specific conductance (and pH) ranged from 0.22 to 0.24 mS/cm (pH of 8.9 to 9.2) at depths of 661 to 

689 m, and from 0.59 to 0.60 mS/cm (pH of 8.0 to 8.1) at depths of 698 to 710 m (Finnegan et al.,  

2004).  Only the uppermost sleeve has been left open since March 1997 (Fenelon, 2005), restricting 

circulation of groundwater in this well.    

The groundwaters of WW-2, another well in northern Yucca Flat completed in the LCA, are also the 

Ca-Mg-HCO3 type (Figure 5-7).  These groundwaters are thought to contain little deep LCA 

groundwater but are instead composed predominantly of local recharge with a component of 

groundwater with a volcanic geochemical signature (SNJV, 2006b).  The Ca2+ concentration was 

slightly lower and the Mg2+ concentration slightly greater in the earliest sample (collected in 1963) 

from WW-2.  Water Well 2 was pumped as a water-supply well between 1962 and 1990 

(Fenelon, 2005).  This well was resampled in 2006, and the major-ion compositions were consistent 

with that of the pumped samples as well as the bailed sample that was collected in 1991.  The pH of 

the water samples from WW-2 were reported as 7.9 ± 0.2, and the water temperature was reported as 

34.4 ± 0.4 °C. 

The ORP was measured in situ for WW-2 in 2001 and again in 2006 by LANL.  The more recent 

measurements were made under pumping conditions.  The first measurements, made in 2001, were 

made at depths ranging from 633 to 749 m (Finnegan and Thompson, 2002).  The reported values 

range from -97 to -149 mV, indicating a reducing environment.  An increasing trend in water 

temperature, ranging from 27.3 to 30.0 °C, was observed with depth.  The in situ measurements of pH 

and specific conductance ranged from 7.9 to 8.4 and 0.317 to 0.324 mS/cm, respectively.  

Interestingly, the ORP measured more recently for WW-2, 33 mV relative to the standard hydrogen 

electrode, indicated an oxidizing environment.  In addition to the directly measured ORP, some 
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measurements of redox couples were performed in 2006.  For instance, the concentration of the 

oxidized form of nitrogen, NO3
-, was measured along with the reduced forms, nitrite (NO2

- ) and 

ammonia (NH4 ).  The reported concentrations of NO3
-, NO2

- , and NH4 were 5.5, 0.000, and 0.1 mg/L, 

respectively.  In addition, the concentrations of total iron and ferrous iron (the reduced form of iron) 

were measured to be 0.32 and 0.03 mg/L, respectively.  The presence of both ferrous iron and 

ammonia, along with the relatively high concentration of manganese, 0.134 mg/L, in the groundwater 

of WW-2 indicates that, although the groundwaters are oxidizing, reduced species are present 

possibly resulting from mixing of reducing and oxidizing groundwaters from different producing 

zones in the wellbore.  The water temperature,  specific conductance, and pH were reported to be 

33.6 °C, 452, and 7.56, respectively, for the 2006 in situ measurements.   

Lower Carbonate Aquifer of Western Yucca Flat

Samples were collected from three wells (UE-1q, TW-D, and UE-1h) completed in the LCA in west 

central Yucca Flat.  The groundwater chemistry of these groundwaters varies considerably, ranging 

from the Ca-Mg-HCO3 type, which is typical of groundwater of a carbonate aquifer, to the 

Na-K-HCO3 type, which is typical of groundwater of a volcanic-rock aquifer (Figure 5-7). 

Two samples were collected from UE-1q in 1992 toward the end of a long-term aquifer test 

(DOE/NV, 1996).  The water chemistry for these samples was considerably different than that of the 

samples collected more recently using a discrete bailer (Figure 5-7).  The 1992 samples plot similarly 

to those of WW-2 on the Piper diagram and are a Ca-Mg-HCO3 type, whereas the more recent 

depth-discrete bailed samples are the Ca-Mg-Na-HCO3 mixed type (Figure 5-7).  The top of the FAI 

for UE-1q, defined by a fully cemented casing, is 33.4 m below the top of the LCA.  There is 

approximately 31-m head difference between the overlying volcanic formation and the LCA, based 

on pre-recompletion water levels (Fenelon, 2005), with the gradient downward.  It is reasonable to 

assume that there is vertical flow from the overlying volcanic formation into the LCA driven by the 

head gradient, and further, there may be downward flow in the open hole completion within the LCA.  

During prolonged pumping, the production from the LCA, which is typically a much more productive 

formation than the overlying volcanic tuff, would probably contribute a high proportion of the total 

production.  Lower carbonate aquifer water chemistry would predominate in a water sample of the 

produced water.  However, in the ambient flow condition, vertical flow from the overlying volcanic 
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formation may be a larger component of the water in the completion.  A groundwater sample 

collected downhole from the completion in an equilibrium condition would have a volcanic 

component proportional to the ratio of the vertical flow to ambient lateral flow in the LCA; lateral 

flow in the LCA within Yucca Flat is presumed to be low as a function of the low horizontal gradient. 

Groundwater at UE-1h in western Yucca Flat has a unique geochemical signature relative to other 

LCA groundwater in Yucca Flat.  These groundwaters are the Na-K-HCO3 type (Figure 5-7) and have 

relatively high Cl- and low SO4
2- concentrations (Figure 5-8).  Geochemical models presented in 

SNJV (2006b) indicated that UE-1h groundwater could originate from mixtures of groundwater of a 

volcanic aquifer and groundwater from the UCCU in western Yucca Flat.  

Groundwater at TW-D, the final well located in west-central Yucca Flat, is the Na-K-HCO3 type, 

indicating a large component of groundwater from a volcanic-rock HSU.  Geochemical mixing 

models developed for the groundwater of these wells indicates a maximum of 18 percent of an LCA 

component in the groundwaters of TW-D.  Within the TW-D completion, there is about 1.4 m of 

ATCU at the top, above the LCA contact.  This overlying formation is described as brecciated in the 

original drilling report.  There is approximately 30-m head difference between the overlying volcanic 

formation(s) and the LCA, with the gradient downward.  It is reasonable to assume that there is 

vertical flow from the overlying volcanic formation into the LCA driven by the head gradient, and 

further, there may be downward flow in the open hole completion in the LCA.  This downward flow 

(recharge) could result in a volcanic component in groundwater samples from the LCA completion.

Lower Carbonate Aquifer of Eastern Yucca Flat

A series of wells have been completed in the LCA along a north-south trend on the eastern side of 
Yucca Flat.  These include UE-7nS, ER-7-1, U-3cn #5, TW-E, ER-6-1, and ER-6-1 #2.  The 
major-ion compositions of the majority of these LCA groundwaters are the Ca-Mg-Na-HCO3 mixed 
type (Figure 5-9).  Their compositions are quite similar, as indicated by the relatively tight clustering 
of most samples within the Piper diagram.  

The geochemical compositions of groundwaters of ER-7-1, ER-6-1, and ER-6-1 #2 are nearly 
identical (Figures 5-9 and 5-10).  A near neutral pH was observed: 7.62 ± 0.04 (ER-7-1), 7.3 ± 0.1 
(ER-6-1), and 7.6 ± 0.1 (ER-6-1 #2).  Water temperatures for these samples were reported as 49.0 ± 
1.1 °C (ER-7-1), 38.1 ± 4.2 °C (ER-6-1), and 36.9 ± 5.4 °C (ER-6-1 #2).  The ORP, measured for 
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Figure 5-9
Piper Diagram for Samples Collected from the LCA of 

Eastern and Southwestern Yucca Flat

Figure 5-10
Bar Plot for Samples Collected from the LCA of Eastern and Southwestern Yucca Flat
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ER-6-1 in 2001, ranged from 134 mV (504-m depth) to 143 mV (489-m depth) to 266-276 mV 
(473-m depth), indicating that the groundwaters are oxidizing (Finnegan and Thompson, 2002).  An 
increasing trend in water temperature with depth was observed with temperatures ranging from 
38.2 (473-m depth) to 39.1 °C (504-m depth).  The in situ measurements of pH were consistently 7.9, 
and the specific conductance ranged from 0.637 to 0.638 mS/cm. 

Well TW-E is located approximately 2 km southeast of ER-7-1, and both wells appear to be 

completed in the same LCA structural block.  Fenelon (2005) states that the recently measured water 

levels in TW-E are assumed to be a composite of water levels in volcanic tuffs and the LCA.  It is also 

stated that this well was never properly developed and that significant amounts of mud were observed 

in the groundwaters in 2003.  The water chemistry of TW-E is unusually dilute compared with other 

LCA water samples (Figure 5-10), which raises concerns that this sample may reflect water that 

leaked into the well from an overlying (possibly perched) zone.  Groundwater of this well is therefore 

not considered to be representative of the LCA.

Well UE-7nS is a satellite well that is located 137 m southeast of the emplacement hole (U-7n) used 

for the BOURBON test and will be discussed further in Section 6.5.2.  The major-ion composition of 

groundwater of UE-7nS is unique when compared to that of the other wells in its vicinity 

(Figure 5-9).  The groundwaters of UE-7nS are the Na-K-HCO3 type and have significantly greater 

concentrations of Cl- and lower concentrations of SO4
2- (Figure 5-10).  The pH of the samples 

collected from UE-7nS were 7.6 ± 0.1, and the water temperatures were 36.2 ± 1.3 °C.

Well U-3cn #5 is a satellite well that is located 122 m laterally from the BILBY working point 

location and is discussed further in Section 6.4.3.  Samples have been collected from this well over 

the period of 1967 to 1997.  The groundwater is a Ca-Mg-Na-HCO3 mixed type similar to that 

observed in the other wells within its vicinity although the relative concentration of Cl- is greater in 

the U-3cn #5 groundwaters (Figures 5-9 and 5-10). 
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Lower Carbonate Aquifer of Southeastern Yucca Flat

Three wells in southeastern Yucca Flat (ER-3-1, WW-C, and WW-C1) produce LCA groundwater 

with a distinct set of geochemical characteristics.  Although the relative major-ion compositions of 

these groundwaters are quite similar to those previously described (Figure 5-9), these groundwaters 

have high solute concentrations, including Cl- concentrations that range from 35 to 42 mg/L 

(Figure 5-10). 

Water-level contours for the LCA in Yucca Flat (SNJV, 2006c) indicate that groundwater in the 

eastern, northern, and western parts of the Yucca Flat basin converges toward faults in the center of 

the basin and probably exits the basin in the vicinity of WW-C and WW-C1.  Well ER-3-1 penetrates 

the LCA just east of Yucca Flat in the southern portion of the Halfpint Range.  Wells WW-C and 

WW-C1 are located at the southernmost margin of Yucca Flat, approximately 12 km southwest of 

ER-3-1.  The two wells are only about 30 m apart, and both are completed to nearly the same depth in 

Cambrian limestone of the Carrera Formation (Winograd and Thordarson, 1975).  Hence, both wells 

should produce groundwater that is essentially identical in composition.  Small differences in the 

average stable isotope and Cl- values are observed, but these differences are within the range of 

analytical uncertainty.  A near neutral pH was observed: 6.7 (ER-3-1), 7.4 ± 0.3 (WW-C), and 7.4 ± 

0.4 (WW-C1).  Water temperatures were reported as 37.8 °C (ER-3-1), 36.7 ± 0.3 °C (WW-C), and 

36.2 ± 1.3 °C (WW-C1). 

Lower Carbonate Aquifer - Thrusts

Four wells within the Yucca Flat/Climax Mine geochemistry study area (ER-6-2, UE-1c, UE-2ce, and 

ER-12-1) are completed within the LCA3 (Figure 5-2).  The first three (ER-6-2, UE-1c, and UE-2ce) 

are completed in the Yucca Flat upper thrust plate of the CP thrust.  Well ER-12-1 is completed in a 

thrust block of the Belted Range thrust.  These groundwaters range from borderline mixed (ER-6-2 

and UE-1c) to the Ca-Mg-HCO3 type (UE-2ce) to a Ca-Mg-SO4 type (ER-12-1). 

Well UE-2ce is completed in the LCA3 near the NASH (U2ce) underground nuclear test.  Well 

UE-2ce groundwater appears to contain a large fraction of locally derived perched water represented 

in the geochemical models of SNJV (2006b) by the Oak, Whiterock, and Captain Jack Springs.  The 

major-ion compositions of these groundwaters, Ca-Mg-HCO3 type, are highly variable over the time 
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period sampled (Figure 5-11).  The time trend for the concentrations of four chemical parameters in 

groundwaters of UE-2ce is presented in Figure 5-13.  As shown in this figure, a significant increase in 

the concentration of the major ions, especially Ca2+ and Cl-  (possibly due to increased calcite 

dissolution), was observed during the period of 1977 to 1978.  This time period coincides with the 

pumping experiments performed at this well.  The pumping experiments are discussed further in 

Section 6.5.1.  Although the concentrations appear to have stabilized by 2005 (the most recent 

sampling of this well), the Cl- concentration is still high relative to other groundwaters of the LCA3 

(Figure 5-12).  It is likely that the satellite wells associated with underground tests in the LCA would 

have signatures of high calcite dissolution.    

Wells ER-6-2 and UE-1c are LCA3 wells in southwestern Yucca Flat that produces groundwater 

chemically similar to other Yucca Flat LCA groundwater and are the Ca-Mg-Na-HCO3 mixed type 

(Figure 5-11).  The pH of the groundwater samples are 7.3 ± 0.2 for ER-6-2 and 7.5 ± 0.6 for UE-1c.  

A water temperature of 35.2 ± 0.5 °C was reported for the ER-6-2 samples, and temperature was not 

reported for the UE-1c samples.  The ORP measured for UE-1c indicates that the groundwaters are 

oxidizing with very small variability observed (179 to 183 mV) between depths ranging from 1,310 to 

1,700 ft (400 m to 518 m) (Finnegan and Thompson, 2003).  The in situ measurements performed on 

groundwaters of UE-1c reported a range in pH of 7.2 to 7.4 and a range in water temperature of 25.8 

to 27.7 °C.  A trend of increasing water temperature with groundwater depth was observed (Finnegan 

and Thompson, 2003).         

The monitored zone in ER-12-1 is between depths of 518 and 555 m and consists of a thin sliver of 

Upper Simonson or Lower Guilmette Formation dolostone that is tectonically sandwiched within 

Eleana Formation clastic rocks.  Groundwater of ER-12-1 is unique relative to all others within the 

carbonate aquifers.  The dominant cation and anion are Ca2+ and SO4
2-, respectively, and the 

groundwaters are a Ca-Mg-SO4 type (Figures 5-11 and 5-12).  The in situ measurements of ORP 

(-113 to 13 mV) indicate that the groundwaters of ER-12-1 are slightly reducing at most depths 1,540 

to 2,500 ft (469 to 762 m) measured (Finnegan and Thompson, 2003).  Both the completion casing 

string and the production string for this well are carbon steel.  Although five sliding sleeves exist in 

this well (Russell et al., 1996), only the upper sleeve (535.5 to 536.7 m) was open during all 

sampling, including in situ measurements, for this well.  Stagnant water would therefore be expected 

to exist below the sliding sleeve opening, and reducing conditions may have resulted from oxidation 
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Figure 5-11
Piper Diagram for Samples Collected from the LCA3 and UCA

Figure 5-12
Bar Plot for Samples Collected from the LCA3 and UCA
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of the carbon-steel casing of this well.  A trend of decreasing pH (8.9 to 6.4) and increasing 

temperature (22.8 to 28.3 °C) with depth was observed.  The pH and water temperature measured at a 

depth closest to the sliding sleeve (549-m depth) were 8.8 and 24.2 °C, respectively (Finnegan and 

Thompson, 2003).  

Upper Carbonate Aquifer

A single well, UE-16d, is completed in the UCA within the Yucca Flat/Climax Mine CAU.  The 

groundwaters of UE-16d are a Ca-Mg-HCO3 type (Figure 5-11), similar to the LCA groundwaters of 

northern Yucca Flat.  The pH and water temperature reported for the samples collected from UE-16d 

were 7.6 ± 0.2 and 23.1 ± 1.8 °C, respectively. 

5.2.4 Clastic Confining Units

Four wells within the Yucca Flat/Climax Mine geochemistry study area are completed in the UCCU 

(ER-12-2, UE-16f, UE-17a, and UE-1b), and three are completed within the LCCU (UE-15d WW, 

UE-15j, and UE-15j A-5).  A relatively variable chemical composition of these groundwaters is 

observed (Figures 5-14 and 5-15).    

Figure 5-13
Concentration of Select Major Ions in Groundwater of UE-2ce
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Figure 5-14
Piper Diagram for Samples Collected from the Clastic Confining Units

Figure 5-15
Bar Plot for Samples Collected from the Clastic Confining Units

Note:  All samples (composite and discrete-depth) are combined for UE-17a.
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Upper Clastic Confining Unit

A discrete bailer sample and a composite sample were collected from ER-12-2.  The composite 

sample was collected after approximately 350,000 gallons of groundwater had been pumped from the 

well during development and testing activities.  The groundwaters are the Na-K-HCO3 type with 

relatively consistent chemistry between the composite and bailed samples (Figures 5-14 and 5-15).  

The groundwater of ER-12-2 is thought to be derived from local recharge sources in the Rainier Mesa 

area (SNJV, 2006b).  The pH and water temperature reported for the samples collected from ER-12-2 

were 8.3 ± 0.2 °C and 35.0 ± 1.1 °C, respectively.

Only a single sample, collected in 1988, is available from UE-16f.  This well is open to about 180 ft 
(55 m) of quartzite and argillite, and the groundwaters are the Na-K-HCO3 type.  The Na+ 
concentration for this groundwater sample exceeds that of any other samples within the Yucca 
Flat/Climax Mine CAU (Figure 5-15).  The pH reported for this sample was 9.4.  This relatively high 
pH possibly is a result of the inability to adequately purge this well of residual drilling fluid.  The 
ORP measurements for groundwater of UE-16f (depths between 380 to 1,350 ft [116 m to 411 m]) 
ranged from -51 to -367 mV, indicating a reducing environment.  The in situ measurements of water 
temperature, ranging from 19.6 to 26.2 °C, indicate an increasing trend with depth 
(Finnegan et al., 2004). 

Samples were collected from UE-17a during two sampling events.  The first sample was collected at 
the end of well construction (Fenelon, 2005).  This sample is the only one with a charge balance 
within ± 5 percent.  During the second sampling event bailed samples were collected from depths of 
253, 302, and 331 m bgs.  The groundwater major-ion chemistry for all four samples are presented in 
the Piper diagram (Figure 5-14).  The two samples collected at depths of 253 and 302 m are the 
Ca-Mg-Na-HCO3 mixed type and plot identically on the Piper diagram.  The sample collected at a 
depth of 331 m is the Na-K-HCO3 type and plots next to the ER-12-2 samples (Figure 5-14).  The 
concentration of Na+  is significantly greater in this sample (298 mg/L) when compared to that of the 
other depths of this well (79 and 80 mg/L).  The composite sample for UE-17a, collected in 1976, lies 
between the depth discrete samples and is the Na-K-HCO3 type, which indicates mixing of 
groundwaters with significantly different water chemistry within the borehole.  This variability in 
groundwater chemical parameters with depth is consistent with the in situ measurements made at this 
well (Finnegan and Thompson, 2003).  The specific conductance increased from 0.760 mS/cm at a 
depth of 640 ft (195 m) to 1.530 mS/cm at 1,175 ft (358 m).  The water temperature (22.3 to 25.3 °C) 
showed an increase with increasing depth.  The ORP measured for this groundwater ranged from -144 



Section 5.0

Phase I Contaminant Transport Parameters for CAU 97: Yucca Flat/Climax Mine, Nye County, Nevada

5-28

to -349 mV, indicating a reducing environment.  The pH reported for the groundwater samples was 
7.58 (253-m depth), 7.63 (302-m depth), and 8.3 (331-m depth).  The pH was not measured for the 
composite sample.

The saturated part of UE-1b is open to about 75 ft (23 m) of bedded and reworked tuff overlying 
about 500 ft (152 m) of primarily argillite of the Eleana Formation (Fenelon, 2005).  A single sample 
collected from UE-1b in 1988 meets the charge balance criteria set for these analyses.  An additional 
sample was collected in 1992 from a depth of 207 m bgs, but SO4

2- was not measured for this sample 
and the HCO3 appears to be low.  The groundwater of this sample is the Ca-Mg-HCO3 type.  The pH 
of this sample was 8.08. 

The primary RMC associated with the UCCU of these wells is the ARG (see Table 4-5).  As shown in 
Table 4-4, this RMC represents a high clay content (greater than 30 percent) with the abundance of 
clay exceeding that of zeolite.

Lower Clastic Confining Unit

Well UE-15d WW was completed as a supply well in April 1962 and is open to about 600 ft (183 m) 
of dolomite of the Precambrian Noonday Dolomite within the LCCU (Fenelon, 2005).  The 
groundwater of UE-15d WW is the mixed Ca-Mg-Na-HCO3 type.  The pH and water temperature 
reported for the samples collected from this well were 7.4 ± 0.5 and 35.0 ± 1.4 °C, respectively. 

The saturated part of UE-15j is open to about 800 ft (244 m) of Precambrian Stirling Quartzite, and 
the saturated part of well UE-15j A-5 is open to about 280 ft (85 m) of zeolitized tuff (Fenelon, 2005).  
The major-ion composition of these groundwaters are quite similar and are the Na-K-HCO3 type 
(Figure 5-14).  The similarities between these groundwaters are further demonstrated in Figure 5-15.  
The pH and water temperature of the groundwater samples were 6.6 and 45 °C, respectively, for 
UE-15j and 6.7 and 44 °C, respectively, for UE-15j A-5.

The RMC associated with the LCCU of these wells is the SC (see Table 4-5).  As shown in Table 4-4, 
this RMC represents a high silica/quartz content (greater than 50 percent).

5.2.5 Granite Confining Unit

The available groundwater chemistry data for the Climax Stock (MGCU HSU) are limited to that 
reported in Isherwood et al. (1982).  Groundwater samples were collected from five sites in the 
fractured climax granite at the Spent Fuel Test facility (Shaft U-15.01) at depths ranging from 64 to 
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565 m bgs (Figure 5-16).  Four of the samples were collected from groundwater seeps out of isolated 
fractures, and one was collected from a borehole believed to intersect with the local water table 
(UG-02, see Figure 5-16).  The major-ion composition of the Climax waters are highly variable 
(Figure 5-17).  In addition, the Climax Stock samples are relatively unique when compared to all 
samples within the study area in that the total solute concentrations are much greater in general   
(Figure 5-18), and the dominant anion is SO4

2- rather than HCO3
-.  The high SO4

2- in these samples is 
inferred to reflect oxidation of the abundant pyrite present along the fractures in the hydrothermally 
altered granite.  One sample from the Climax Stock, C30, is somewhat similar to samples of ER-12-1 
groundwater shown in Figure 5-11.  The dominant anion and cation in both samples are SO4

2- 
(343 mg/L in ER-12-1 and 325 mg/L in C30) and Ca2+ (94 mg/L in ER-12-1 and 126 mg/L in C30), 
respectively.  The total dissolved solids in the C30 sample (1,150 mg/L) is greater than that of the 
ER-12-1 sample (760 mg/L) because of the higher relative concentrations of most major ions 
(Appendix E).  The differences in composition between the five samples suggest the samples are from 
different independent fracture systems.  However, an apparent trend of Na+ with depth at the expense 
of Ca2+, and Mg2+ suggests a common evolutionary chemical process, and possibly an interconnected 
system (Isherwood et al., 1982).    

Figure 5-16
Schematic for the U15 Shaft

Source: Isherwood et al., 1982
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Figure 5-17
Piper Diagram for Samples Collected from the Granite Confining Unit

Figure 5-18
Bar Plot for Samples Collected from the Granite Confining Unit
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The RMC associated with the MGCU is the DMR (see Table 4-5).  As shown in Table 4-4, this RMC 

represents a high content of quartz and feldspars (greater than 60 percent), and a biotite and 

hornblende content exceeding 1.5 percent.

5.2.6 Perched Springs

Three small springs — Captain Jack Spring, Whiterock Spring, and Oak Spring — are located in the 

Yucca Flat/Climax Mine geochemistry study area.  The springs emanate from the OSBCU HSU.  

Captain Jack Spring discharges from the base of a narrow rocky box canyon where a shallow pool of 

water (20 centimeters [cm] deep) forms (Hansen et al., 1997).  Whiterock Spring has been developed 

with two shallow adits, and water is transmitted approximately 50 m to a weir box through a plastic 

pipe with a 4-cm diameter (Lyles et al., 1990).  Oak Spring, which is the smallest of the these springs, 

is only a small depression in the soil about 2.5 cm deep with a surface area of less than 1 square meter 

(m2) (Hansen et al., 1997).  These springs have discharge rates ranging from as little as 0.4 liters per 

minute (L/min) at Oak Spring (Hansen et al., 1997) to an average flow rate at one of the two adits at 

Whiterock Spring of 1.2 L/min, over a seven-year period (Lyles et al., 1990).  Groundwater sources 

of the springs are perched above the regional saturated groundwater flow system.  The major-ion 

chemistry is of two types, an Na-K-HCO3 type water and a Ca-Na-K-HCO3 type water.  These 

chemical differentiations are shown on Figures 5-19 and 5-20.    

5.3 Limitations

Groundwater data included in this study represent a time period from the late 1950s to 2005, and in 

many cases, data for a given well or spring are limited to samples collected more than 20 years ago.  

These older datasets are limited in that the entire parameter suite used for the geochemical 

investigations is lacking.  Geochemical evaluations depend on adequate data coverage, both laterally 

and vertically, within the study region.  Within the Yucca Flat/Climax Mine CAU, the wells with the 

parameter suite necessary to support geochemical flow-path analysis and characterization are 

irregularly distributed.  This is compounded by sparse groundwater samples from most HSUs, 

particularly the alluvial and volcanic aquifers.  Well samples included in the dataset were often 

collected as composites, either from wells with single completions that transect multiple HSU 

boundaries, or from wells with multiple completions that were all pumped simultaneously.  Many 

wells draw from a large vertical cross section of saturated media, possibly resulting in 
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Figure 5-19
Piper Diagram for Samples Collected from the Perched Springs of Yucca Flat

Figure 5-20
Bar Plot for Samples Collected from the Perched Springs of Yucca Flat
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homogenization of the water composition within the borehole (Fenelon, 2005).  This limits the ability 

to uniquely define the geochemical characteristics of groundwater within a specific HSU, either 

locally or regionally, and may have resulted in some of the groundwater mixing that is inferred to 

have taken place through hydrodynamic processes.  Additional limitations associated with the 

geochemical flow-path evaluation are described in SNJV (2006b).   

Oxidation-reduction potentials were made in situ for groundwaters of several wells within the Yucca 

Flat/Climax Mine CAU.  It is important to note that these measurements are not always 

straightforward to make, and the resulting values of ORP are often significantly different than those 

calculated based on redox couples (Lindberg and Runnells, 1984).  As stated in Langmuir (1997), 

several reasons for these differences include (1) malfunction of the indicator electrode, 

(2) disequilibrium between and among different redox couples resulting from irreversible or slow 

kinetics of most redox couple reactions, and (3) existence of mixed potentials in natural waters.  More 

recently (2006 sampling of WW-2), measurements of several different redox couples have been made 

to reduce uncertainty of the redox state of the groundwater.  

5.4 Summary

Recent geochemical evaluations of groundwater flow paths focused on flow in the LCA.  Based on 

previous hydrogeologic studies of the groundwater flow system along with observed trends in 

geochemical parameters, five conceptual flow paths were identified and thus evaluated.  The flow 

paths were (1) a northern flow path that addressed the proportion of groundwater inflow to Yucca 

Flat, (2) a flow path from north to south along the eastern side of the Yucca Flat basin, (3) a flow path 

from north to south along the western side of the basin, (4) a flow path from the southeastern basin 

margin and moving through southern Yucca Flat to Frenchman Flat, and (5) a west-central flow path 

addressing the possible source of the strong volcanic-rock signature of the LCA groundwaters.  

Possible mixing components for individual wells along these groundwater flow paths were identified, 

and groundwater transit times were estimated.  The details of these evaluations are presented within a 

report, SNJV (2006b), that was prepared in collaboration between multiple UGTA organizations.  An 

important finding of this investigation was the large predicted 14C derived transit times, 

approximately 16,000 to 24,000 years, for flow in the LCA from UE-10j in northern Yucca Flat to 

WW-C in southern Yucca Flat. 
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Further geochemical analysis described within this section focused on compiling and describing a 

geochemistry dataset that is representative of the HSUs of the Yucca Flat/Climax Mine CAU.  This 

analysis was preformed primarily to support the estimates of distribution coefficients described in 

Section 11.0.  Included in the compilation were major and minor chemistry data, along with in situ 

measurements of ORP, water temperature, pH, and specific conductance.  A summary of the data for 

the HSU groups is as follows. 

Alluvial Aquifer

Four wells are completed in the AA in southern Yucca Flat (Figure 5-2).  The chemistry of these 

groundwaters range from a borderline Ca-Mg-HCO3 type to a borderline Na-K-HCO3 type.  In situ 

measurements were performed for only a single well, WW-3, within the AA.  The groundwaters were 

determined to be in an oxidizing environment with the ORP ranging from 52 to 169 mV.  The pH of 

groundwaters within the AA ranged from 7.8 to 8.3.  The RMC associated with the AA is the VMP, 

which represents a high glass content (greater than 30 percent), low clay (less than 10 percent) and 

zeolite (less than 10 percent), and low biotite and hornblende (less than 1.5 percent). 

Volcanic Units

The dataset is limited with respect to the number of groundwater samples from the volcanic-rock 

aquifers and the tuff confining units of the Yucca Flat/Climax Mine CAU.  Two wells sample 

groundwater of the TSA, four wells sample the LTCU, and one well samples the OSBCU.  The 

formation access interval for one well, ER-2-1, includes a large section of both the TM-LVTA and the 

LTCU.  Although quite variable, the groundwater of these HSUs are all the Na-K-HCO3 type.  Strong 

correlations between water chemistry and the specific HSU were not observed.  In situ measurements 

were performed for only a single well within the LTCU, TW-7.  The groundwaters were determined 

to be slightly reducing at some depths with the ORP ranging from 206 to -59 mV.  This series of 

in situ measurements was performed in 2001, and the results suggest possible instrument drift.  

Further measurements are required to determine whether these groundwaters are truly within a 

reducing environment.  The mean pH of these groundwaters ranges from 7.1 to 8.4.  The anomalously 

high pH observed for the groundwater of ER-2-1 (mean pH of 9.1) is not included in this range.
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The RMC associated with the LTCU and OSBCU for the well locations described within this dataset 

is ZEOL.  For this RMC, zeolites and clays are abundant (greater than 30 percent) with zeolites more 

abundant than clays, and the abundance of glass is low (less than 10 percent).  The RMC associated 

with the TM-LVTA, VMP, is the same as that assigned to the AA.  The RMC associated with the TSA 

in the vicinity of the well locations described within this dataset is the DMP; this RMC represents a 

high content of quartz and feldspar (greater than 60 percent), low glass (less than 20 percent), and low 

biotite and hornblende (less than 1.5 percent).

Clastic Confining Units

Four wells within the Yucca Flat/Climax Mine geochemistry study area are completed in the UCCU, 

and three are completed within the LCCU.  A relatively variable chemical composition of the 

groundwaters is observed within these units.  The groundwater of the UCCU ranges from the 

Ca-Mg-Na-HCO3 mixed to the Na-K-HCO3 type, and that of the LCCU ranges from the 

Ca-Mg-HCO3 to the Na-K-HCO3 type.  In situ ORP measurements for groundwater of two wells 

completed in the UCCU indicate a reducing environment (ORP ranges from -51 to -349 mV).  No 

in situ measurements were performed on groundwater of the LCCU.  The mean pH of groundwater 

samples ranged from 6.6 to 7.4 and 8.1 to 8.3 for the LCCU and UCCU, respectively.  An 

anomalously high pH observed for the UCCU Well (9.4), UE-16f, is not included in this range.

The primary RMC associated with the UCCU of these wells is the ARG; this RMC represents a high 

clay content (greater than 30 percent) with the abundance of clay exceeding that of zeolite.  The RMC 

associated with the LCCU is the SC, which represents a high silica/quartz content (greater than 

50 percent).

Granite Confining Unit

The available groundwater chemistry data for the Climax Stock (MGCU HSU) are limited to samples 

collected from five sites in the fractured climax granite from Shaft U-15.01.  Four of the samples 

were collected from groundwater seeps out of isolated fractures, and one was collected from a 

borehole believed to intersect with the local water table.  The major-ion composition of the Climax 

waters is highly variable.  In addition, the Climax Stock samples are relatively unique when compared 

to all samples within the study area in that the total solute concentrations are much greater in general, 



Section 5.0

Phase I Contaminant Transport Parameters for CAU 97: Yucca Flat/Climax Mine, Nye County, Nevada

5-36

and the dominant anion is SO4
2- rather than HCO3

-.  The high SO4
2- in these samples is inferred to 

reflect oxidation of the abundant pyrite present along the fractures in the hydrothermally altered 

granite. 

The RMC associated with the MGCU is the DMR.  This RMC represents a high content of quartz and 

feldspars (greater than 60 percent), and a biotite and hornblende content exceeding 1.5 percent.

Carbonate Aquifers

A significant number of samples have been collected from the carbonate aquifers (LCA, LCA3, and 

UCA) of the Yucca Flat/Climax Mine CAU.  Groundwaters of the LCA are separated into the 

northern, west-central, eastern, and southeastern sections of the Yucca Flat basin for the analysis.  The 

RMC associated with all of the carbonate aquifers is CC, which is characterized by the presence of 

greater than 50 percent carbonates.

The LCA groundwaters of northern Yucca Flat are the Ca-Mg-HCO3 type.  The other LCA 

groundwaters within Yucca Flat range from the mixed Ca-Mg-Na-HCO3 to the Na-K-HCO3 type.  

The mean pH for these samples range from 6.4 to 8.4.  Measurements of ORP (-97 to -439 mV) 

indicate a reducing environment for the LCA groundwaters within northern Yucca Flat.  The reducing 

conditions in two of the wells, UE-10j and ER-12-1, (and possibly others) may be attributed to the 

presence of stagnant water reacting with well casing or sliding sleeve material.  A single series of 

in situ measurements of ORP (134 to 276 mV) for the groundwater of a well located within eastern 

Yucca Flat (ER-6-1) indicates an oxidizing environment. 

Groundwaters of the single well completed within the UCA are the Ca-Mg-HCO3 type.  

Groundwaters of the LCA3 range from borderline mixed (Ca-Mg-Na-HCO3) to the Ca-Mg-HCO3 to a 

Ca-Mg-SO4 type.  A large variability in groundwater chemistry for the near-field well, UE-2ce, is 

observed over the time period sampled.  A significant increase in the concentration of the major ions 

was observed during the pumping experiments performed at this well.  This variability may be 

attributed to nuclear test-related effects.  The ORP measured for one well completed within the 

LCA3, UE-1c, indicates that the groundwaters are oxidizing (179 to 183 mV). 
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6.0 CONTAMINATION SOURCES AND EXTENT

A total of 828 underground nuclear tests were conducted at the NTS between 1951 and 1992 

(DOE/NV, 2000b).  The Yucca Flat/Climax Mine CAU is particularly important because of the large 

number of tests (747 detonations) and the variability of geological settings (including both saturated 

and unsaturated alluvium, vitric tuff, welded tuff, zeolitized tuff, carbonate rock, and granite).  In the 

FFACO (1996; as amended, August 2006), tests are subdivided into CASs, which are either 

individual tests or small groups of tests.  Thus, the number of CASs (720) in the Yucca Flat/Climax 

Mine CAU is less than the number of detonations.

Unclassified information related to the underground nuclear tests conducted within the Yucca 

Flat/Climax Mine CAU is compiled primarily in two reports, United States Nuclear Tests, July 1945 

through September 1992 (DOE/NV, 2000b) and Shaft and Tunnel Nuclear Detonations at the Nevada 

Test Site:  Development of a Primary Database for the Estimation of Potential Interactions with the 

Regional Groundwater System (DOE/NV, 1997b).  These data — including the name and date of each 

detonation, name and location of the emplacement holes, announced yields, depths of burial (i.e., the 

working point), estimated depths to the water table, and the HSU associated with the working 

point — are summarized in Appendix A. 

The term “yield” refers to the total effective energy released in a nuclear explosion and is usually 

expressed in terms of equivalent tonnage of trinitrotoluene (TNT) required to produce the same 

energy release in an explosion (1 kt = 1015 calories).  Announced yield ranges are reported in 

DOE/NV (2000b); the specific yields for many tests remain classified.  The announced yields for 

some tests were termed low, intermediate, or slight (see Appendix A).  Between 1945 and 1963, a 

less-than-20-kt yield was defined as “low,” while a 20- to 200-kt-yield range was referred to as 

“intermediate.”  In a few cases, the term “slight” was used without amplification (DOE/NV, 2000b).  

The maximum upper limit of the announced yield range for Yucca Flat is 500 kt, whereas that of the 

Climax Mine tests is 62 kt.  A zero yield was reported for three tests, SAN JUAN (Operation 

Hardtack II), COURSER (Operation Whetstone), and TRANSOM (Operation Cresset).  
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The TRANSOM nuclear device did not detonate and was later destroyed, as planned, by the 

HEARTS detonation (Operation Quicksilver) approximately 16 months later (DOE/NV, 2000b). 

The total inventory (or quantity) of radionuclides associated with each individual test, regardless of 

form and distribution, is referred to as the radiologic source term (RST) of that test.  Radionuclides 

listed in Bowen et al. (2001) are the most relevant radionuclides for consideration.  These should not 

be considered an exhaustive list of all possible test-related radionuclides but, rather, those with 

sufficiently long half-lives and abundance to be of regulatory concern over the next 1,000 years.  It 

should be noted that the reported inventories of 40K, 232Th, 234U, 235U, and 238U include estimates of 

their natural (non test-related) abundance that was incorporated in melt glass.  With the exception of 
40K, the amount of these radionuclides that is either natural or test-related in origin has not been 

determined.  Note that 40K is entirely of natural origin (Tompson et al, 2004).  

The hydrologic source term (HST), which is the amount of radionuclide available for transport in 

groundwater, is a subset of the RST, both as the specific radionuclides and the amounts of 

radionuclide.  The “exchange volume” is the initially contaminated region for each test.  Inventory 

fractions described as located in the “rubble,” “gas,” and “water” phases are assigned to the exchange 

volume, where they are distributed among aqueous and sorbed states in alluvium as described below.  

The melt glass comprises a storage component for radionuclides from which the radionuclides are 

slowly released with dissolution of the glass.  Some radionuclides are in forms that are almost 

completely mobile in groundwater, and these are sometimes referred to as “conservative tracers” 

because they do not interact with the rock through which they move.

6.1 Data Compilation and Data Transfer

All data used in the quantitative analyses in this section are from the Yucca Flat/Climax Mine HFM 

area; see Appendix A.

6.2 The Yucca Flat/Climax Mine Radiologic Source Term 

The RST for the Yucca Flat/Climax Mine CAU was reported in an unclassified report (Bowen et al., 

2001), wherein the RST associated with underground nuclear tests at the NTS was subdivided into 

five principal geographic test centers (Figure 6-1).  For each geographic test center, a total 
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Figure 6-1
Locations of the 828 Underground Nuclear Tests 
at the Nevada Test Site Between 1951 and 1992
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unclassified RST was calculated based on the sum of the classified inventories of individual tests. The 

list of radionuclides included in Bowen et al. (2001), with Yucca Flat/Climax Mine CAU inventories 

corrected to September 23, 1992, is presented in Table 6-1.  For the Yucca Flat/Climax Mine CAU, 

Bowen et al. (2001) subdivided tests detonated greater than 100 m above the water table (a total of 

577 nuclear tests), and below or within 100 m of the water table (170 tests).  Of these, four tests 

consisted of multiple detonations conducted simultaneously over a depth interval both above and 

below the static water level (SWL) plus 100 m (Smith et al., 2003).  The locations of the water table 

and the test were taken from DOE/NV (1997b).  Importantly, the water table position reported in 

DOE/NV (1997b) may be less reliable than the most recent regional water table estimates completed 

for the Yucca Flat/Climax Mine CAU.  As a result, tests considered saturated or unsaturated in Bowen 

et al. (2001) may not be so in future Yucca Flat/Climax Mine CAU flow and transport models.   

Table 6-1
Radionuclide Inventory for Yucca Flat/Climax Mine 

 (Page 1 of 2)

Radionuclide Symbol Half-Life
(Years)

Atoms Curies

Yucca Flat - 
Above a

Yucca Flat- 
Below b

Yucca Flat - 
Above a

Yucca Flat - 
Below b

Total Yucca 
Flat 

Ratio of 
Yucca Flat to 

NTS (%)

Tritium 3H 12.32 3.055E+26 6.881E+26 1.472E+07 3.316E+07 4.79E+07 38.1

Carbon-14 14C 5715 1.094E+25 8.076E+24 1.137E+03 8.389E+02 1.98E+03 69.5

Aluminum-26 26Al 7.1 x 105 6.665E+22 4.300E+22 5.573E-02 3.595E-02 9.17E-02 84.6

Chlorine-36 36Cl 3.01 x 105 5.899E+25 1.171E+26 1.163E+02 2.309E+02 3.47E+02 56.4

Argon-39 39Ar 269 1.452E+23 4.328E+23 3.204E+02 9.551E+02 1.28E+03 39.8

Potassium-40 40K 1.27 x 109 1.758E+29 5.181E+29 8.219E+01 2.422E+02 3.24E+02 40.0

Calcium-41 41Ca 1.03 x 105 1.483E+26 2.882E+26 8.545E+02 1.661E+03 2.52E+03 56.8

Nickel-59 59Ni 7.6 x 104 2.738E+24 5.460E+24 2.139E+01 4.265E+01 6.40E+01 56.5

Nickel-63 63Ni 100 3.932E+23 8.808E+23 2.334E+03 5.229E+03 7.56E+03 59.1

Krypton-85 85Kr 10.76 2.06E+23 1.052E+24 1.137E+04 5.805E+04 6.94E+04 39.0

Strontium-90 90Sr 28.78 7.265E+24 3.626E+25 1.499E+05 7.479E+05 8.98E+05 41.2

Zirconium-93 93Zr 1.5 x 106 1.731E+25 6.587E+25 6.852E+00 2.607E+01 3.29E+01 43.1

Niobium-93m 93mNb 16.1 1.694E+22 1.825E+23 6.246E+02 6.730E+03 7.35E+03 47.7

Niobium-94 94Nb 2.0 x 104 7.734E+23 6.652E+24 2.296E+01 1.975E+02 2.20E+02 55.1

Technetium-99 99Tc 2.13 x 105 2.208E+25 6.727E+25 6.153E+01 1.875E+02 2.49E+02 43.6

Palladium-107 107Pd 6.5 x 106 8.359E+24 1.010E+25 7.634E-01 9.226E-01 1.69E+00 49.3

Cadmium-113m 113mCd 14.1 3.719E+21 1.186E+22 1.566E+02 4.994E+02 6.56E+02 33.9

Tin-121m 121mSn ~55 6.243E+22 1.777E+23 6.738E+02 1.918E+03 2.59E+03 36.2
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Tin-126 126Sn 2.5 x 105 1.433E+24 3.858E+24 3.402E+00 9.161E+00 1.26E+01 37.9

Iodine-129 129I 1.57 x 107 5.498E+24 1.434E+25 2.079E-01 5.422E-01 7.50E-01 42.6

Cesium-135 135Cs 2.3 x 106 2.683E+25 7.633E+25 6.926E+00 1.970E+01 2.66E+01 44.4

Cesium-137 137Cs 30.07 1.478E+25 4.710E+25 2.919E+05 9.299E+05 1.22E+06 42.8

Samarium-151 151Sm 90 2.105E+24 4.835E+24 1.388E+04 3.189E+04 4.58E+04 42.9

Europium-150 150Eu 36 8.209E+23 6.664E+21 1.354E+04 1.099E+02 1.36E+04 92.3

Europium-152 152Eu 13.54 8.288E+23 1.615E+24 3.634E+04 7.083E+04 1.07E+05 71.1

Europium-154 154Eu 8.593 4.297E+23 7.932E+23 2.968E+04 5.480E+04 8.45E+04 79.7

Holmium-166m 166mHo 1.2 x 103 5.387E+22 1.115E+23 2.665E+01 5.514E+01 8.18E+01 55.7

Thorium-232 232Th 1.40 x 1010 1.408E+29 4.133E+29 5.969E+00 1.752E+01 2.35E+01 39.8

Uranium-232 232U 69.8 1.059E+22 4.338E+22 9.004E+01 3.690E+02 4.59E+02 63.7

Uranium-233 233U 1.592 x 105 3.223E+25 4.090E+25 1.202E+02 1.525E+02 2.73E+02 58.5

Uranium-234 234U 2.46 x 105 3.534E+25 6.194E+25 8.528E+01 1.495E+02 2.35E+02 60.6

Uranium-235 235U 7.04 x 108 3.032E+27 3.819E+27 2.557E+00 3.220E+00 5.78E+00 67.2

Uranium-236 236U 2.342 x 107 3.599E+25 1.364E+26 9.123E-01 3.458E+00 4.37E+00 46.6

Uranium-238 238U 4.47 x 109 6.531E+28 1.182E+29 8.674E+00 1.570E+01 2.44E+01 54.8

Neptunium-237 237Np 2.14 x 106 4.108E+24 3.863E+25 1.140E+00 1.072E+01 1.19E+01 24.4

Plutonium-238 238Pu 87.7 2.621E+24 1.647E+24 1.774E+04 1.115E+04 2.89E+04 73.1

Plutonium-239 239Pu 2.410 x 104 4.058E+27 1.115E+27 9.997E+04 2.746E+04 1.27E+05 79.6

Plutonium-240 240Pu 6.56 x 103 2.798E+26 7.785E+25 2.523E+04 7.045E+03 3.24E+04 77.2

Plutonium-241 241Pu 14.4 8.284E+24 2.508E+24 3.415E+05 1.034E+05 4.45E+05 75.2

Plutonium-242 242Pu 3.75 x 105 4.728E+24 2.919E+24 7.485E+00 4.621E+00 1.21E+01 74.8

Americium-241 241Am 432.7 1.683E+25 4.437E+24 2.309E+04 6.088E+03 2.92E+04 78.6

Americium-243 243Am 7.37 x 103 3.33E+22 4.241E+22 2.682E+00 3.416E+00 6.10E+00 86.2

Curium-244 244Cm 18.1 4.836E+22 7.641E+22 1.586E+03 2.506E+03 4.09E+03 54.3

Total 3.899E+29 1.057E+30 1.578E+07 3.523E+07 5.10E+07 38.6

Source: Modified from Bowen et al., 2001
a Total inventory for tests detonated more than 100 m above the water table
b Total inventory for tests detonated below or within 100 m of the water table

Note: Data are decay corrected to September 23, 1992 (date of last underground nuclear test).  

Table 6-1
Radionuclide Inventory for Yucca Flat/Climax Mine 

 (Page 2 of 2)

Radionuclide Symbol Half-Life
(Years)

Atoms Curies

Yucca Flat - 
Above a

Yucca Flat- 
Below b

Yucca Flat - 
Above a

Yucca Flat - 
Below b

Total Yucca 
Flat 

Ratio of 
Yucca Flat to 

NTS (%)
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Bowen et al. (2001) also report an estimation of the accuracy of the radionuclide inventory.  

Radionuclides measured directly are more accurately reported than those for which estimates had to 

be made based on device characteristics and performance.  There are also tests in the inventory for 

which little or no post-test information exists; estimates of radionuclide content for these tests are 

considerably more uncertain and increase the overall uncertainty for a given nuclide.  The accuracy of 

the estimate of the radionuclide content is highly dependent on the source(s) of the radionuclide.  

Bowen et al. (2001) therefore report the accuracy of the reported inventory as a function of 

radionuclide groups depending on their source: fission products (approximately 10 to 30 percent), 

unspent fuel materials (less than or equal to 20 percent),  fuel activation products (less than or equal to 

50 percent), residual 3H (less than or equal to 300 percent), and activation products (approximately a 

factor of 10).  

6.3 Groundwater Sampling Locations in the Yucca Flat/Climax Mine CAU

Of the 828 underground nuclear detonations at the NTS, 259 are located near or below the regional 

water table.  Few of these sites have wells that can be used for groundwater sampling.  The paucity of 

sampling locations reflects the logistical complexities associated with accessing the underground 

testing environment.  Most of the nuclear tests were conducted between 300 and 1,400 m bgs.  Well 

construction and development at these sites is difficult and expensive (Smith, 2002).  Approximately 

half of the near-field wells (wells with radionuclide contamination located nearby nuclear tests) used 

for groundwater sampling were completed opportunistically in post-test, re-entry holes.  These 

boreholes were originally drilled into test cavities to return solid samples for the diagnosis of device 

performance.  The remaining wells were drilled specifically for near-field groundwater 

characterization purposes by the Hydrologic Resources Management Program (HRMP), the 

Radionuclide Migration (RNM) Program, or the UGTA Project.          

Groundwater samples from near-field or post-test wells have been collected at 15 test locations,  

shown on Figure 6-2.  Of these, eight are located in the Yucca Flat/Climax Mine CAU.  Details 

regarding the sampling wells located in Yucca Flat are compiled in Table 6-2.  The table includes 

information on the associated nuclear test name.  Several of the sites have (or had) more than one 

sampling well, providing data at different locations or depth intervals relative to the test working 

point, so radionuclide transport information could be inferred.  Many of the sampling wells were 
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Figure 6-2
Map of the Nevada Test Site Showing the Near-field Sampling Sites 

Test name and affiliated near-field well (in parentheses) are provided.
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drilled at a slant to access the cavity from a surface location outside of the collapse crater.  True 

vertical depth is provided unless otherwise specified.  The “working point” refers to the depth of 

burial of the nuclear device in meters below the local ground surface.  Reported test yields 

(in kilotons of TNT equivalent) are taken from an unclassified data compilation prepared by the 

DOE (DOE/NV, 2000b).  The HGUs or HSUs at the working point and at the sampling point are 

specified; the LCA and LCA3 are distinguished at the HSU-level to indicate significant differences.  

Hydrogeologic units are used to categorize rocks according to their ability to transmit groundwater, 

which is a function of their lithologic properties, degree of fracturing, and secondary mineral 

alteration (Section 4.0).  

Table 6-3 provides a historical summary of the groundwater sampling events — including the 

collection method, dates, and number of sampling events — for each of the near-field wells located 

within the Yucca Flat/Climax Mine CAU.  A comprehensive database, recently compiled by LLNL 

and LANL, contains radionuclide data for 22 monitoring wells associated with 15 underground    

Table 6-2
Underground Nuclear Tests Associated with Near-field Sampling Wells 

in the Yucca Flat/Climax Mine CAU

Test 
Name

Emplacement 
Hole

Test 
Date

Working 
Point 
(m)

Test Yield 
(kt) a

Working 
Point 

HGU/HSU 
Sampling Well Sampled 

HGU/HSU

Sampling Location with 
Respect to the 

Emplacement Hole

ALEMAN U-3kz 09/11/1986 503 <20 VTA UE-3e #4    
(slant hole) VTA 58 m north

BASEBALL U-7ba 01/15/1981 564 20-150 TCU  U-7ba PS #1AS
(slant hole) TCU Cavity/chimney region

BILBY U-3cn 09/13/1963 715 249 TCU
U-3cn PS #2 TCU Chimney region

U-3cn #5 LCA 129 m southeast 

BOURBON U-7n 01/20/1967 560 20-200 LCA UE-7nS LCA 137 m from working point

DALHART U-4u 10/13/1988 640 <150 TCU U-4u PS #2A
(slant hole) TCU Chimney region

GASCON U-4t 11/14/1986 593 20-150 TCU

UE-4t 

TCU

~170 m to the south

U-4t PS #3A 
(slant hole) ~54 m from cavity wall

INGOT U-2gg 03/09/1989 500 20-150 VTA  U-2gg PSE #3A
(slant hole) VTA 65 m below working point 

in saturated zone

NASH U-2ce 01/19/1967 364 39 LCA3 UE-2ce LCA3 183 m from working point

a Announced yields are from DOE/NV, 2000b.
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nuclear tests at the NTS (Figure 6-2), with a total of nearly 1,300 sampling events.  However, 

approximately 950 of these sampling events were at RNM-2S in Frenchman Flat during the 

CAMBRIC RNM experiment.  The near-field well database has been incorporated, and is updated 

annually, in the Comprehensive Water Quality Database for Groundwater in the Vicinity of the 

Nevada Test Site, Geochem06.mdb (SNJV, 2006a).    

Each near-field well is unique, and the set of wells with radionuclide contamination presents a wide 

range of geologic and hydrogeologic conditions, RSTs, and groundwater sample quality.  There also 

have been significant differences in sampling protocols over the years; hence, caution should be used 

when comparing data from different wells (Kersting, 1996).  Samples collected using downhole 

submersible pumps are more likely to be representative of the bulk fluid composition in the near-field 

environment.  Several of the wells, particularly those that have been converted from post-test re-entry 

holes, consist of a small diameter (7.3-cm) carbon-steel piezometer tube (Smith, 2002).  In most 

cases, these wells have only been sampled using wireline bailers, although there have been recent 

attempts to develop pumps that would fit into the small diameter tubing.  Given that the standing fluid 

in these piezometers does not circulate freely with the sampled formation and that thorough purging 

could not be accomplished, samples collected from these wells tend to be of lower quality than those 

Table 6-3
Compilation of Groundwater Sample Collection Methods and Dates

Test Name Sampling Well 
Name(s)

Sample Collection 
Method

Sample Collection 
Dates

ALEMAN UE-3e #4 (P1, P2, P3) Pump/Pressure tube 1990 - 1998

BASEBALL U-7ba PS #1AS Pressure tube 1995

BILBY
U-3cn PS #2

Pump
1964 - 2004

U-3cn #5 1965 - 1997

BOURBON UE-7nS Pump/Bailer 1983 - 2005

DALHART U-4u PS #2A Bailer (1992 - 1997);    
Pump (after 1997) 1992 - 2003

GASCON
U-4t PS #3A

Pressure tube
1993

UE-4t 1990 - 1992

INGOT U-2gg PSE #3A Bailer 1993 - 1994

NASH UE-2ce Pump/Bailer 1977 - 2005
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from pumped wells.  Sample collection methods for wells within Yucca Flat are compiled in 

Table 6-3. 

Hu et al. (2003) assessed the migration behavior of mobile radionuclides (3H, 14C, 36Cl, 85Kr, 99Tc, and 
129I) at the NTS and concluded that understanding the speciation and partitioning of radionuclides 

(e.g., long-lived 99Tc and 129I) is important for understanding their transport behavior.  For example, 

the interaction of 3H with a solid surface via isotopic exchange with clay lattice hydroxyls may cause 

a slight delay in the transport of 3H.  The transport of 14C is likely retarded by its isotopic exchange 

with carbonate minerals, and the exchange may be more pronounced in the vadose zone.  Without a 

detailed examination of rock properties (e.g., mineralogy), the role of processes such as anion 

exclusion cannot be adequately evaluated.

Based on available groundwater radiochemical analyses, it appears that actinides (one class of 

radionuclides, the remainder from unburned fuel) are only present at very low concentrations in NTS 

groundwater (Hu et al., 2006).  The majority of the actinide source term is immobilized in the melt 

glass or on rubble surfaces.  Actinide release rates are dependent on glass dissolution rates as well as 

the rate of water-rock reactions with sorbed species.  Their mobility in groundwater is strongly 

dependent on ambient reduction-oxidation (redox) conditions because the most prominent actinides 

(U, Np, Pu) occur in multiple valence states.  Low-solubility (low valence state) actinides may also be 

transported as real colloids or pseudo-colloids (actinide sorbed to mineral colloids).

In addition to the sites discussed above, where groundwater samples have been collected and 

analyzed, there are several sites (e.g., BASEBALL, INGOT, HYRAX, HANDCAR) where 

information is available on the physical distribution of radionuclides in the near-field, but data for 

radionuclide concentrations in groundwater are either absent or extremely limited.  Drillbacks into 

nuclear test cavities have been conducted for many tests to obtain melt glass for diagnostic purposes.  

Other drillbacks were specifically performed with the objective of acquiring data on the distribution 

of radionuclides, and useful information on vertical distributions of 3H and fission products at the 

NTS has been obtained (Thompson, 1996b; Smith, 1998).  Tests associated with the Plowshare 

program were often examined in great detail.  Furthermore, due to the nature of the Plowshare 

program, much of this information is unclassified.  Unclassified data used to characterize the 
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near-field environment of tests detonated in the Yucca Flat/Climax Mine CAU are summarized in the 

following sections.

In addition to information on radionuclides in the test cavity, there is some information on 

radionuclides distributed by prompt injection and by convection in the chimney.  Prompt injection 

refers to dynamic, early-time movement of radionuclides as plasma or high-temperature gas along 

zones of weakness in rock adjoining the test cavity (Smith, 2002).  Convection in the chimney driven 

by residual heat from the test can move radionuclides upwards to permeable rock layers.  The extent 

of convection from the cavity up the chimney is dependent upon the saturated height within the 

chimney, sufficient increase of permeability in the chimney, and the residual heat to drive buoyancy 

effects.  

6.4 Alluvium and Tuff Tests

6.4.1 DALHART

The DALHART test was conducted in 1988 with an announced yield of less than 150 kt 

(DOE/NV, 2000b).  The test working point was at a depth of 640 m bgs in zeolitized tuff  

(Figure 6-3).  The water level was at a depth of 508 m bgs.  Mathews et al. (1994) estimated a cavity 

radius of 61 m based on a yield of 150 kt.  In 1990, the post-test drillback U-4u PS #2A was 

completed with a slotted interval between 472 and 501 m; the water level had risen to 477 m by 1993 

and to 455 m by 1998 (Thompson, 1995; Fenelon, 2005).  The slotted interval is 139 to 168 m above 

the working point (2.25 to 2.75 cavity radii).  Radioactivity in drilling fluids was first encountered at 

532 m bgs.  The radionuclide, 137Cs, was detected in core from 525 m bgs, 115 m above the working 

point (1.9 cavity radii).  Importantly, no radioactivity was observed in the vadose zone (Figure 6-3).  

Water samples have been collected intermittently at this site since 1992.  Early samples had a 

significant particulate load resulting from drilling muds (Thompson, 1995 and 1999).  The well had 

never been thoroughly cleaned out.  However, the most recent set of samples were collected in 2003 

using a low-flow coil pump.  At that time, a total of 7,058 gallons (26.7 cubic meters [m3]) of water 

was purged from the well before sampling.  Samples contained 6.17 x 107 pCi/L 3H decay corrected to 

time zero (t0) for the DALHART test.  This represents a modest increase compared to the previous 

sampling event in August 1999, when the decay-corrected activity for 3H was 1.6 x 107 pCi/L.  The 
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l

Figure 6-3
The DALHART Near-field 

Drillback location is approximate.
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14C activity in the 2003 samples (326 pCi/L) increased by 30 percent relative to the 1999 samples 

(229 pCi/L).  The 36Cl activity showed a more dramatic change over the same time period, increasing 

from 8.52 pCi/L to 29.3 pCi/L.  Between 1999 and 2003, the 99Tc activity rose by almost a factor of 

three (13.1 to 35.1 pCi/L), and the 129I activity increased by more than a factor of four (0.029 to 

0.13 pCi/L).  Although only modest amounts of groundwater have been pumped from the U-4u 

PS #2A borehole throughout its history, the pumping process may be drawing in water with higher 

levels of activity from the test cavity.  However, the rocks associated with the working point and 

chimney (TCU versus LFA) are much different, and the expected vertical hydraulic conductivity of 

the chimney would be much lower than that of the DALHART cavity.  Alternatively, test-derived heat 

may be driving radionuclides higher into the chimney, as predicted at CHESHIRE and other sites 

(Pawloski et al., 2001).  The 2003 samples also contained readily detectable amounts of Pu, with a 

total concentration of 5.0 picograms per liter and a 239,240Pu activity of 0.32 pCi/L.  Filtration 

experiments showed that essentially all of the Pu is associated with colloids.  It appears that both 

non-sorbing and colloid-associated radionuclides (e.g., Pu) migrated at least 2 to 3 cavity radii 

vertically in the DALHART chimney over the 15-year period following detonation.

6.4.2 GASCON

GASCON was a 20- to 150-kt test detonated in 1986 (DOE/NV, 2000b).  The working point was at a 

depth of 593 m bgs, and a confined aquifer was penetrated during drilling (Thompson, 1994; 

DOE/NV, 1997b).  In May 1993, post-test hole (U-4t PS #3A) was drilled to within 54 m of the cavity 

wall and extended underneath the cavity (Figure 6-4).  Tritium was encountered during drilling, 

indicating some radionuclide transport occurred beyond the GASCON cavity.  Sampling at GASCON 

was attempted in 1993 from U-4t PS #3A and UE-4t in 1990, 1992, and 2000.  However, samples 

appeared to be highly contaminated with drilling fluids.  Thus, radionuclide concentrations measured 

in GASCON at U-4t PS #3A may be unrepresentative of formation waters, and little information can 

be gleaned from these measurements (Thompson, 1994).  

6.4.3 BILBY 

The BILBY test (249 kt, 87-m cavity radius) was emplaced in zeolitized tuff very close to the 

underlying regional carbonate aquifer (within approximately 150 m).  The bottom of the BILBY 

cavity is estimated to be approximately 60 m from the tuff-carbonate contact.  Both a post-test 
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Figure 6-4
Plan View Location of Post-test and Exploratory Holes in the GASCON Near-field 

Source: Modified from Thompson, 1994
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drillback access hole (U-3cn PS #2), and a satellite well (U-3cn #5), 122 m laterally from the working 

point and completed in carbonate rock, have been sampled over many years (Figure 6-5).  The 

drillback has both perforations approximately 200 m above the working point and is open to the 

cavity, but crimping below the perforations prevented sampling at a lower level.  The satellite well 

was drilled to evaluate the connectivity between the TCU and carbonate aquifer (Buddemeier and 

Isherwood, 1985).  Water levels in the satellite well completed in the carbonate aquifer are 15.8 m 

lower than the post-test hole.  Thus, the groundwater gradient is from the tuff to the carbonate, but the 

permeability of the zeolitized unit may prevent significant downward transport (Carle et al., 2007).  

Note that water levels in the BILBY post-test hole took approximately five years to recover.  No 

significant radioactivity has been detected in the satellite well.  However, some indication of prompt 

injection was reported (Buddemeier and Isherwood, 1985).  It appears from these analyses that 

upward migration of radionuclides into the chimney (possibly as a result of test-induced heat) is more 

likely than downward migration and contamination of the carbonate aquifer.  However, as noted in 

Buddemeier and Isherwood (1985), due to the spatially heterogeneous nature of fracture flow in the 

carbonate aquifer, contamination of the carbonate aquifer cannot be ruled out based on sampling of 

U-3cn #5 alone.  Pumping rates of 50 gallons per minute (gpm) were used in the satellite well.  This is 

significantly lower than the CAMBRIC pumping rate (600 gpm) and may not have provided a 

sufficient gradient to draw the BILBY cavity water to the satellite well. 

6.4.4 BASEBALL

The BASEBALL test was detonated in 1981 in Yucca Flat with an announced yield of 20 to 150 kt 

(DOE/NV, 2000b).  The BASEBALL test was located at a depth of 564 m bgs in tuff and with a water 

table measured at 458 m (DOE/NV, 1997b).  Smith (1997) and Thompson (1996a and b) report the 

water table at 512 m (Figure 6-6).  Smith (2002) reports the water table at both 458 and 512 m, 

suggesting that pre-test and post-test water levels may have changed.  In 1994, two post-test holes 

were drilled into the cavity of BASEBALL (Thompson, 1996a and b).  During post-test drilling, 

radiation levels in the upper part of the cavity were measured using a high-sensitivity gamma 

detector.  The results showed extremely heterogeneous radionuclide deposition in the underground 

environment of the cavity region.  An extreme variability of radionuclide content exists in samples 

taken from locations close to one another even at the same depth.  Even 3H preserves a distribution 

pattern such that large concentration differences exist over narrow intervals both vertically and 
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Figure 6-5
The BILBY Near-field 

Source: Modified from Buddemeier and Isherwood, 1985
Note:  Cavity radius reported in original figure, 64 m, was changed to be consistent with Buddemeier and Isherwood (1985) text and 
information reported in DOE/NV (1997b).
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horizontally.  Radionuclides appear to have remained where they were originally deposited during the 

formation of the cavity and chimney (Thompson, 1996a and b).  During a 13-year span from the 

detonation and drillbacks, there seems to have been little vertical or horizontal migration of 3H.  It is 

likely that the lack of vertical migration is in part due to the very shallow location of this test relative 

to the water table.  Unlike the DALHART test, a water column above the working point, which could 

provide vertical transport as a result of test-derived heat, is not present.  Gamma activity was not 

detected above the water table or significantly outside the estimated cavity radius of approximately 

60 m based on a yield of 150 kt.  A similar lack of vertical migration was simulated at the CAMBRIC 

test due to the proximity of the water table to the working point.

In July 1995, bailed samples were taken at several intervals in the BASEBALL post-test hole 

(U7ba PS#1AS).  Unfortunately, the hole was never successfully cleaned out.  Thompson (1996a 

Figure 6-6
The BASEBALL Near-field  

Source: Modified from Figure 3 of Thompson, 1996b
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and b) concluded that little or no communication occurred between the water in the casing and the 

formation water since the time the hole had been drilled.  Interestingly, the 3H concentration in the 

bailed samples (approximately 2 x 107 pCi/L) is consistent with the 3H concentrations found in water 

from earlier core samples (106 to 108 pCi/L).

6.4.5 INGOT

The INGOT test was detonated in emplacement hole U-2gg in 1989, in Yucca Flat, with an 

announced yield of 20 to 150 kt (DOE/NV, 2000b).  The INGOT test was located at a depth of 

500 m bgs in tuff and 300 m above the Paleozoic carbonates (Hudson and Stubbs, 1990).  The water 

table was reported at 564 m (DOE/NV, 1997b).  As discussed in Smith (1998) and Smith et al. 

(1996a and b), the 1994 INGOT drillback targeted fractured media adjacent to the edge of the cavity 

and emphasized the extent of gaseous transport in discrete intervals of enhanced permeability 

(Figure 6-7).  The drillback hole, U-2gg PSE #3A, was slant-drilled to pass within 10 m of the edge of 

the cavity, at the level of the working point, at a total depth 46 m below SWL.  The results show that 

in addition to 3H, gaseous fission daughter products, including 137Cs, are abundant and may be 

encountered 10 m or more from the cavity edge (Figure 6-8).  Over 90 percent of the 137Cs is 

produced from beta-decay of a gaseous 137Xe parent with a 3.84-minute (min) half-life.  Overall, the 

late-time gaseous transport of 137Xe and 90Kr is responsible for the dispersion and subsequent 

deposition of 137Cs and 90Sr.  Importantly, the INGOT cavity is located in the unsaturated zone, with a 

working point that is 65 m above the SWL.  Bailed groundwater samples collected from below the 

cavity suggests that very little radioactivity reached the water table.  For example, measured 3H 

concentrations are on the order of 10,000 pCi/L, below the EPA limit for drinking water (EPA, 2000).  

The 137Cs and 85Kr concentrations in groundwater were less than 10 pCi/L and less than 20 pCi/L, 

respectively.  This can be compared to the 1 x 103 to 3 x 106 picocuries per kilogram (pCi/kg) 

measured in rubble material located approximately 10 m away from the INGOT cavity.  The 14C 

activity in these waters was reported to be as high as 20,000 pCi/L in these waters; however, the value 

was reported only once (Smith et al., 1998; Thompson, 1995).  Thus, the reported groundwater 

chemistry may not be representative of formation waters.  The observed poor connectivity between 

the unsaturated cavity and saturated groundwater is not conclusive.   
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Figure 6-7
The INGOT Slant Drilled Groundwater Sampling Well

Source: Smith et al., 1996b

Figure 6-8
Activity in the INGOT Drillback 

Source: Smith et al., 1996b
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6.4.6 ALEMAN

The ALEMAN test was detonated in 1986 with an announced yield of less than 20 kt (DOE/NV, 

2000b).  The ALEMAN test was located at a depth of 503 m bgs in tuff; the water table was reported 

to be 474 m (DOE/NV, 1997b).  Hole UE-3e #4 was completed 57 m from the working point with 

three piezometer tubes accessing depths 655 to 662 m (tube 1), 575 to 582 m (tube 2), and 493 to 

500 m (tube 3) (Thompson, 1999).  The tubes were swabbed in an attempt to clean them out.  

Nevertheless, groundwater samples had significant quantities of cement and corresponding very high 

pHs.  Samples from the deepest interval consistently had higher 3H concentrations than in the other 

two tubes.  Thompson (1992a) suggested that 137Cs found at approximately 650 m in sidewall samples 

in this hole is likely to be coming from the SANDREEF test (701 m depth of burial; 20 to 150 kt 

yield) that is located 350 m laterally from the ALEMAN test.  It is possible that measured 3H is also 

influenced by SANDREEF.  This would be an example of prompt injection of volatile radionuclides 

along fractures.  

6.4.7 Other Alluvium and Tuff Tests

Early-time 137Cs transport due to the volatility of its precursors has been observed at HYRAX (hole 

U-3bh).  HYRAX was detonated in unconsolidated alluvium of Area 3 in 1962 at a working point 

272 m above the static water table (Smith, 1998).  Two vertical boreholes (U-3bh #1 and #2), 

separated by 15 m, were drilled in the bottom of the subsidence crater.  Drill cores indicate the 

presence of 137Cs in the collapse chimney at 152 m above the working point (about 5 cavity radii 

based on a yield of 20 kt) in the unsaturated zone.  This 137Cs was probably produced from the 

beta-decay of a gaseous 137Xe parent due to gas movement at the time the cavity and chimney formed 

(cavity collapse time was 7.9 min).  This suggests that significant radionuclide transport can occur in 

the distributed chimney region of a nuclear test conducted in the vadose zone.  A significant amount 

of carbonate existed at the HYRAX working point, and the vaporization and melting of the carbonate 

produced an abundance of noncondensible CO2 gas (based on 5.9 weight percent calcite for Yucca 

Flat alluvium, approximately 106 liters of CO2 gas are produced per kt of nuclear explosive yield) 

that entrained the radioactive gases (Thompson, 1997).  While 137Cs abundances are nearly the same 

in the two boreholes, the 3H abundances vary by two orders of magnitude; other causes for the 

observed 3H distribution were suspected (Thompson, 1997). 
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Two neighboring tests, BOBAC and JERBOA, were conducted at similar depths as HYRAX in the 

same carbonate-rich alluvium with similar phenomenology, but these tests showed no evidence of 

significant 137Cs ascent through the chimney (Thompson, 1999; Smith, 2002).  This implies that 

differences in radionuclide production, transport mechanisms, or collapse phenomena produced 

significantly different radionuclide distributions at BOBAC and JERBOA compared to HYRAX 

(Smith, 2002).  The BOBAC test (U-3bl) was conducted in 1962 at a depth of 195 m bgs.  Cavity 

collapse occurred 8.2 min after the test (similar to HYRAX); the collapse zone extended to the 

surface and formed a crater about 14 m deep.  The slant hole (U-3bl-D2), drilled in 1996, passed 

under the collapse zone and through the rubble chimney below the zone.  The hole terminated at a 

vertical depth of approximately 97 m.  Twenty-nine cores were collected at 3-m intervals throughout 

the chimney region.  No 137Cs was detected, even in cores taken from about 3.5 to 4.5 cavity radii 

above the working point; the 3H content in all cores was also quite low. 

The JERBOA test was conducted in 1963 at a depth of 310 m bgs in Emplacement Hole, U-3at.  The 

cavity collapsed 35.3 min after detonation (long enough for the precursor to 137Cs to have decayed to 

its nongaseous radionuclide); the collapse zone extended to the surface and formed a crater about 

32 m deep.  In 1996, a slant hole (U-3at-D1) was drilled under the collapse crater at U-3at, and core 

samples were obtained from vertical depths as deep as 147 m.  No 137Cs was detected in any cores, 

although there was a slight increase in 3H levels over the ambient levels in the very deepest samples 

(at about 4 cavity radii above the working point). 

6.5 Carbonate Tests

Only four tests have been detonated in carbonate rock at the NTS (Figure 6-9).  Of these, satellite 

wells were installed at the NASH and BOURBON locations to evaluate radionuclide transport 

(Table 6-2).  The HANDCAR test was the site of significant post-test characterization efforts as part 

of the Plowshare program.  Few data are available regarding the KANKAKEE test.  

6.5.1 NASH

The NASH test was detonated in 1967 at a depth of 368 m and a yield of 39 kt in carbonate rock 

(Buddemeier and Isherwood, 1985).  In this location, the carbonates are LCA3 in the HFM model.  

The tuff-carbonate contact is located at 340 m (Figure 6-10).  A satellite well, UE-2ce, was completed 

in 1977 to a total depth of 503 m with the bottom 73 m slotted.  The satellite well is located 
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Figure 6-9
Location of Four Tests Detonated in Carbonate Rock
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Figure 6-10
The NASH Near-field
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approximately 183 m south of the NASH working point (Figure 6-10).  Water levels measured at 

UE-2ce are shown in Figure 6-10.  The water level was drawn down during different pumping 

episodes from 1977 to 1984.  After pumping ended in 1984, water levels recovered through 1994 and 

have since declined about 2 ft (0.6 m) from 1995 to 2003 (Fenelon, 2005).  The DOE/NV (1997b) 

reports a water level at NASH of 527 m. 

The NASH site is the only location in Yucca Flat where a long-term pumping experiment was 

performed.  It was meant to be analogous to the radionuclide migration pumping experiment 

performed at the CAMBRIC site in Frenchman Flat.  Pumping at the satellite well began in 1977.  

The 3H concentrations rose with the cumulative volume of water pumped from the well.  By late 

1977, a few thousand cubic meters of water had been pumped, and the 3H concentration had begun to 

level off at approximately 107 to 108 pCi/L, decay corrected to t0 (Figure 6-11).  The pump in the 

NASH satellite well (UE-2ce) failed in 1984, after pumping approximately 42,000 m3.  Since then, 

periodic samples have been collected from the satellite well by bailing.  In the bailed samples, 3H 

concentrations are approximately two orders of magnitude lower than in the earlier pumped samples.  

Other radionuclides that have been detected in the satellite well include 14C, 22Na, 36Cl, 85Kr, 90Sr, 129I, 
137Cs, and 155Eu.  The results indicate that non-sorbing and some sorbing radionuclides have been 

transported downgradient in the carbonate aquifer.  Well UE-2ce is an important site because it is the 

only case in which it is clear that radionuclides from a nuclear test at the NTS are present in the 

carbonate aquifer.          

Three separate pumping experiments were performed at UE-2ce between 1977 and 1978 

(Figure 6-12).  An injection exercise was also performed.  The pumping rate was typically around 28 

gpm (Figures 6-11 through 6-13), but it was estimated that only 50 days of constant pumping were 

sustainable.  Archived data at LLNL include an unclassified source term estimate for 3H and 85Kr at 

NASH.  Discussions with the LLNL classification office deemed these data unclassified.  The 3H 

source term was estimated to be 3 to 6 moles.  The 85Kr source term was estimated to be 0.016 to 

0.033 moles.  These source term data, combined with the radionuclide breakthrough results at 

UE-2ce, can be used to calibrate radionuclide transport models at NASH.  Based on pumping data, it 

is estimated that only 0.7 to 1.3 percent of the 3H source term has reached the NASH satellite well.  It 

is not known whether this fraction represents prompt injection, intersection of the exchange volume 



Section 6.0

Phase I Contaminant Transport Parameters for CAU 97: Yucca Flat/Climax Mine, Nye County, Nevada

6-25

with the water table, recharge through the vadose zone cavity, or a combination of these processes.  

Detailed HST modeling will be necessary to further evaluate each of these transport pathways.

6.5.2 BOURBON

The BOURBON test (U-7n) was detonated in 1967 at a depth of 560 m, with an announced yield of 

20 to 200 kt (DOE/NV, 2000b).  The rock at the working point was a silty limestone and located very 

close to the tuff-Paleozoic carbonate boundary.  The water table depth is reported as 601 m 

Figure 6-11
Tritium Concentrations in Pumped Groundwater from the NASH Satellite Well 

as a Function of (a) Time and (b) Total Volume of Water Pumped 
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Figure 6-12
Tritium Concentrations and Volume Pumped from the NASH Satellite Well as a 

Function of Time (10 to 11 Years, 11 to 12 Years, and 15 to 18 Years from Time of 
Detonation) 



Section 6.0

Phase I Contaminant Transport Parameters for CAU 97: Yucca Flat/Climax Mine, Nye County, Nevada

6-27

(DOE/NV, 1997b).  Thus, the bottom of the BOURBON cavity is likely to be located in the saturated 

zone.    

A satellite well, UE-7nS, was drilled in 1976 to a depth of 672 m with the bottom 62 m slotted.  The 

satellite well is located 137 m southeast of the emplacement hole (Figure 6-14).  A fault was 

identified at 594 m, very close to the water table.  A pump was installed in the satellite well, but the 

yield was too low to adequately clean out the well.  Groundwater has been sampled at this well 

periodically.  However, only very low 3H concentrations have been measured (Figure 6-15).  

Measured concentrations have consistently been near 104 pCi/L, which is several orders of magnitude 

lower than those measured at NASH.  

Figure 6-13
Tritium Concentrations in Pumped Groundwater from the NASH Satellite Well
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Figure 6-14
BOURBON Near-field

Source: Modified from Buddemeier and Isherwood, 1985
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6.5.3 HANDCAR 

The HANDCAR test (U-10b) was detonated in 1964 in the Bonanza King dolomite at a depth of 

403 m, with an announced yield of 12 kt (DOE/NV, 2000b).  The water table depth is reported at 

598 m (DOE/NV, 1997b).  Thus, the HANDCAR cavity is unsaturated and located far above the 

water table.  Importantly, this test was part of the Plowshare program and underwent significant 

post-test characterization.  It is the only carbonate test to have received a detailed post-test 

investigation.  Werth (1970) and others provide a detailed summary of the HANDCAR test and the 

characterization of radionuclide distribution (Figure 6-16).  Importantly, the liberation of large 

quantities of CO2 as a gas phase is distinctly different from tests detonated in silicate materials.  Werth 

(1970) estimates that (9 ± 7) x 108 liters of CO2 (at standard temperature and pressure) were generated 

by the HANDCAR detonation.  Generation of this large quantity of CO2 could drastically increase the 

distribution of radionuclides external to the cavity region as a result of cavity gas expansion.  Also, 

the formation of puddle glass does not occur due to the nature of the surrounding medium.  Refractory 

radionuclides are deposited in a rubblized material composed of limestone, dolomite, calcium oxide, 

magnesium oxide, and other trace minerals.  The dissolution of this material and subsequent release 

of radionuclides will differ drastically from what is expected for silicate glass.  

Figure 6-15
Measured Tritium Concentrations in BOURBON Satellite Well
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Figure 6-16
Schematic of the HANDCAR Cavity and Distribution of Radioactivity 

Source: Nervik, 1970; Boardman and Meyer, 1970
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6.6 Granite Tests

Only three tests were detonated in granite (Figure 6-17) at the NTS.  Of these, the HARD HAT and 

PILE DRIVER tests were characterized with a large number of post-test drill holes.  Little 

information is available regarding the TINY TOT test. 

6.6.1 HARD HAT

The HARD HAT test was conducted on February 15, 1962, in U15a with an announced yield of 

5.7 kt.  The surface elevation at that location is 1,532 m (DOE/NV, 2000b).  A surface elevation of 

1,559 m and a device depth of burial of 287.4 m bgs is reported in DOE/NV (1997b).  The water table 

depth was reported at 222 m (DOE/NV, 1997b).  This is likely to be a perched water zone and not 

representative of the regional water table depth.  In addition to the emplacement hole (U15a), pre-test 

underground workings included a vertical shaft and one main tunnel that reached within 180 ft 

horizontally and 89 ft vertically of the working point.  The underground workings also included a 

number of drifts normal to the main tunnel (Figure 6-18).     

The HARD HAT test was emplaced in the Climax Stock granite.  The stock varies from a quartz 

monzonite to a granodiorite; the HARD HAT event took place within the granodiorite (McArthur, 

1963).  As part of post-test operations, the original tunnel was reopened and extended into the 

chimney.  A post-test drillback (U15a PS or U15a 28s) was also completed.  Additional drilling 

occurred approximately 1.5 or more years after the test; those results are discussed later in this 

section.  Test fractures were evident in the extended tunnel and significant movement along a 

near-vertical shear zone was observed.  At 21 ft (6.4 m) from the chimney edge, the intensity of shock 

fractures increased and vertical sheers parallel to the chimney occurred at 3- to 4-ft intervals.  Within 

the chimney, rock was severely damaged and was not competent (Figure 6-19).

The combined cavity-collapse chimney was 347 ft (106 m) high and 43 to 35.4 m in diameter.  The 

cavity radius was estimated at 63 ft (19.2 m).  A 34-ft (10-m) void existed at the top of the chimney 

(McArthur, 1962), and based on volume calculations, it is estimated that 27 percent of the chimney is 

void space.  If the void at the top of the chimney is excluded, that void space is reduced to 22 percent 

(Boardman, 1965 and 1966).  Beyond the lower hemisphere of the cavity, a zone of extreme alteration 

(greater than 15 ft) was observed in which quartz and feldspar were minutely fractured so as to appear 
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Figure 6-17
Location of Three Tests Detonated in Granite 

Source: Modified from Murray, 1981
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Figure 6-18
Diagram of HARD HAT Near-field and Post-test Drilling Operations

Source: Borg, 1970
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chalky.  Bulk densities in this zone decreased from 2.67 to 2.36 grams per cubic centimeter (g/cm3), 

resulting in a porosity of 11 percent (Boardman, 1965 and 1966).

Fluid losses during drilling occurred at 483 ft (147 m) above the working point.  This is equivalent to 

7.7 cavity radii and is consistent with observations of shock fractures out to 520 ft (158 m, 8.25 cavity 

radii) (McArthur, 1963).  In the summer of 1964, nearly 1.5 years after the HARD HAT test, three 

holes were continuously cored from the original exploratory tunnel into or close to the 

cavity/chimney (Boardman, 1966).  For the two holes that entered the cavity/chimney, loss of drilling 

fluid circulation occurred only when drilling reached to within a few meters of the cavity/chimney.  

For the hole that was drilled through the cavity edge and past the glass zone, rock out to 4 m beyond 

the cavity had a chalky appearance and was friable.  A similar chalky appearance was observed in the 

third hole up to 7 m beyond the cavity edge, which was meant to approach but not reach the cavity 

Figure 6-19
Re-entry Drift at the HARD HAT Chimney Edge

Source: McArthur, 1963
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boundary.  The permeability of small core samples from this zone was measured to be 7 to 

15 millidarcies (mD) (Boardman, 1966).  However, fracture permeability is said to be much higher.  

Permeability of native rock is on the order of 0.01 mD (Mehta et al., 1964).  Cavity/chimney 

pressurization measurements suggested that wall rock permeabilities are on the order of 1.2 to 

1.4 darcies (1,200 to 1,400 mD) (Boardman, 1965).  More direct measurements of rock permeability 

near the cavity/chimney were reported to be 0.2 to 2 darcies and decaying exponentially with distance 

from the working point to less than 1 mD (Figure 6-20) (Boardman and Skrove, 1966).  It is apparent 

that field-scale permeabilities are likely driven by large-scale fracture flow phenomena that cannot be 

captured with small laboratory measurements (Figure 6-21).       

Interestingly, melt glass was found as far as 23.8 m from the working point (1.2 cavity radii) and is 

likely the result of a prompt injection.  Similar injection phenomena were observed in the PILE 

DRIVER test.  Importantly, the HARD HAT cavity did not collapse until 11 hours after detonation.  

As a result, sufficient time was available for much of the melt glass to flow and pool at the bottom of 

the cavity and begin to solidify.  This led to an unusually high fraction of glass in the glass puddle 

(73 percent by volume).  Cavities that collapse quickly typically have glass fractions of 20 to 

30 percent in the glass puddle due to the incorporation of infallen rock (Boardman, 1966).  

6.6.2 PILE DRIVER

The PILE DRIVER test was conducted in 1966 in U15a.01 with an announced yield of 62 kt 

(DOE/NV, 2000b).  Accidental release of radioactivity detected onsite only is reported in 

DOE/NV (2000b) for the PILE DRIVER test.  The surface elevation is reported to be 5,090 ft 

(1,551 m), and the depth of burial is reported as 1,518 ft (463 m) (DOE/NV, 1997b).  The water table 

depth is reported as 185 m; however, this is likely to be perched water and not the regional water 

level.  A number of drillback operations were conducted in the years following the PILE DRIVER 

test.  These are shown in Figure 6-22.   

From July 21 to August 2, 1966, a chimney exploration program was conducted (Boardman, 1967).  

Hole U15.01 PS#1V was drilled into the top of the PILE DRIVER chimney (Figure 6-22).  The top of 

the chimney was found to be at 277.3 m from the working point.  Based on air pressurization 

experiments, it was found that the void volume in the chimney was 367,900 ± 20,000 m3.  This is 

equivalent to an open cavity radius of 44.5 ± 1 m and a chimney void porosity of 19 percent.  Field 
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permeability measurements above the chimney suggest that increased permeabilities extend out to 

7.1 ± 0.2 cavity radii and approach 1 darcy.  The field permeability of the chimney wall rock was 

found to be 1.5 ± 0.3 darcies.

In September/October 1967, a drift was extended into the chimney of the PILE DRIVER test from the 

emplacement drift (Rabb, 1968).  This drift extended 67 ft into the chimney.  The chimney edge was 

clearly discernible (Figure 6-23) with relatively solid rock outside the chimney and highly rubblized 

material within it.  Particle sieving found that about 40 percent of the chimney rubble is greater that 

6 inches (in.) (greater than 0.15 m) and 20 percent is less than 1 in. (less than 0.025 m).  Interestingly, 

radioactivity correlated with particle surface area, with most of the radioactivity found in the smaller 

particle-size fractions.    

In June to August 1969, three holes were drilled into the lower part of the PILE DRIVER cavity and 

below the access drift (Sterrett, 1969).  Distribution of radioactive material was found to be very 

heterogeneous near the cavity.  In one drilling operation, drilling fluid circulation was lost at 

1.5 cavity radii.  In another drilling operation, fluid circulation was never lost even though drilling 

was as close as 1.2 cavity radii from the working point.  Seams of glass were encountered outside the 

cavity sporadically during these drilling operations.  Thin section examination of core samples from 

these hole identified radial distances of intense to low test-induced micro-fracturing (Borg, 1971).  

These results were compared with an analysis of HARD HAT core material.  PILE DRIVER and 

HARD HAT limits of intense fracturing were 1.3 ± 0.1 and 1.3 ± 0.2 cavity radii, respectively.  

Detectable microfracturing was observed out to 2.7 ± 0.2 and 2.9 ± 0.4 cavity radii, respectively.  

Field scale permeability measurement at HARD HAT indicated that test-induced high permeabilities 

(greater than 0.1 darcy) were observed at these distances as well.  Interestingly, the observed distance 

for intense and detectable fracturing in granite from French tests conducted in Algeria showed similar 

behavior (Borg, 1973).

6.6.3 Tritium Observations in Granite

Observations of 3H distribution in the Climax Stock provide important information with regard to 

tracer transport in the near field.  Figure 6-24 is a plot of the measured 3H concentrations relative to 

the locations of the HARD HAT and PILE DRIVER tests.  The location of the pre-test tunnel 

complex and Spent Fuel Test (SFT) drift is also included.  Samples in the tunnel complex were 
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Figure 6-20
 Location and Measured Permeability of Rocks in the

 Vicinity of the HARD HAT Test
 Source: Modified from Boardman and Skrove, 1966 
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analyzed for 3H in 1981 and 1982 (Isherwood et al., 1982).  The 3H concentration in the 

PILE DRIVER cavity was estimated from 3H concentrations in water trapped in nuclear melt glass 

measured by Borg (1974).  Importantly, these data suggest that (1) a significant quantity of 3H has 

escaped well beyond the exchange volume of the two tests, (2) the observed concentrations outside 

the exchange volume are significantly lower than those observed in the cavity glass, and (3) 3H has 

migrated down to the regional groundwater and contaminated it well above the drinking water 

standards (20,000 pCi/L).  This indicates that tests conducted above the water table may still provide 

a significant RST below the regional groundwater table.

In the original evaluation of 3H data, Isherwood et al. (1982) suggested that 3H observed in the shafts 

and tunnels were likely deposited as a result of the PILE DRIVER test, soon after the detonation, 

without elaboration on how the conclusion was reached.  Although it may be true that observed 3H 

concentration were the result of the PILE DRIVER test, the potential role of the HARD HAT test 

Figure 6-21
Summary of Permeability Measurements

 Source: Quong, 1969; Boardman and Skrove, 1966; Short, 1964; Mehta et al., 1964; and Boardman, 1965



Section 6.0

Phase I Contaminant Transport Parameters for CAU 97: Yucca Flat/Climax Mine, Nye County, Nevada

6-39

Figure 6-22
Diagram of PILE DRIVER Near-field and Post-test Drilling Operations

Source: Borg, 1970
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should not be ignored.  Because all samples but one were derived from seeps located in the shafts and 

tunnels, and that the highest 3H concentration were found in vertical fractures, it should be expected 

that the source of the 3H should have a significant vertical component.  In fact, it was suggested in 

several reports that the seepage rates in the tunnels increased markedly during heavy rainfall.  This 

would suggest fast water transport rates in the vadose zone when an underground excavation at 

atmospheric pressure exists.  The HARD HAT test is laterally closer to the locations of measured 3H 

and is also located vertically above the areas where high 3H concentrations were measured.  The PILE 

DRIVER test is located vertically well below all 3H measurement locations except the sample located 

at the water table.  Importantly, Wilder (1987) indicated that significant seepage in the Climax Stock 

tunnels appears to occur only near fault and sheer zones, but not in joints.  Based on the location of 

the seepage points and direction of prominent sheer and fault zones, it is not clear whether PILE 

DRIVER is the source of the 3H found in the Climax Stock tunnels.  The HARD HAT test seems to be 

as likely of a source. 

6.6.4 Tuff Pile/High-Pressure Area  

The Tuff Pile is an area in west-central Yucca Flat, situated between the Yucca Fault to the east and 

the Topgallant Fault to the west, with a thick sequence of buried air-fall tuffs that has been used 

extensively for underground nuclear tests.  The Tuff Pile area encompasses about 8 square kilometers 

Figure 6-23
PILE DRIVER Chimney Edge

Source: Rabb, 1968
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(km2), including parts of Areas 1, 3, 4, and 7 (Figure 6-25).  Numerous observations of water levels in 

drill holes in the vicinity of the Tuff Pile that are elevated by up to hundreds of meters (hence also 

referred to as the high-pressure area) are coupled to measurements of radionuclide contamination in 

groundwater sampled from areas nearby (Wohletz et al., 1999).  Changes in the groundwater levels 

within the tuffs and changes in the rate and distribution of land-surface subsidence above the tuffs 

indicate that pore-fluid pressures have been slowly depressurizing since the cessation of nuclear 

testing in 1992 (Halford et al., 2005).  Recently, analyses of groundwater flow and transport in the 

high-pressure areas have been conducted by the USGS and LANL.  The USGS study results are 

reported in Halford et al. (2005).  The LANL study is in progress, and a report will be published 

following completion of the study.  These reports address the mechanisms for generating high pore 

Figure 6-24
Distribution of Tritium (pCi/L) in Waters Located Near the HARD HAT 
and PILE DRIVER Tests (red), Regional Water Table Identified in Blue

Pre-test shafts and tunnels identified along with the SFT drifts.
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pressures and evaluate the persistence of the high pressures.  The LANL study considers the effect of 

the high pressure on groundwater flow, specifically regarding potential transport of contaminants 

from the high-pressure tuffs (host to nuclear tests) to the LCA.  In general, the reports conclude that 

the high pressures occur locally within very low-permeability formations and do not result in 

substantially increased groundwater flow to the LCA from the high-pressure areas.  The 

high-pressure areas do not appear to represent integral features of the hydrologic system, but rather 

localized and compartmentalized pore pressure. 

6.7 Prompt Injection Phenomena

A number of investigations at the NTS have suggested “prompt fracture injection” as a mechanism 

for transporting radionuclides away from the working point.  In this conceptual model, a 

high-temperature and high-pressure plasma produced by the detonation is injected along newly 

created and reactivated fractures/fault zones surrounding the working point.  The DOE/NV (1992) 

Figure 6-25
Location of Tuff Pile 1

Source: Wohletz et al., 1999
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attributed radionuclide migration in the unsaturated zone at U-3 cn#5 (BILBY satellite well), 

UE-4g #2, U-9 ITS U-29, U-3kz (ALEMAN), and UE-2ce (NASH) to prompt injection.  Thompson 

(1992b) reported that 192Ir and fission products were found in fractures in an emplacement hole 170 m 

from a nuclear test (detonated two months earlier) in which 192Ir was loaded as a tracer.  The fractures 

were well above the water table, so water transport was not a possibility.  Other examples of prompt 

injection have also been described in this section.
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7.0 MATRIX POROSITY

The matrix porosity of a geologic medium is a component of the medium’s total porosity.  The total 

porosity is the proportion of void space within the total unit volume of the medium at a representative 

elementary scale.  The porosity of geologic material can be of two types: primary (or interstitial) and 

secondary.  Primary porosity is due to the soil or rock matrix (i.e., matrix porosity), and secondary 

porosity is due to secondary changes to the rock, such as solution or fracture development 

(i.e., fracture porosity).  If the medium is porous, the matrix porosity can be considered to be 

approximately equivalent to the total porosity of the medium.  In fractured rock, fracture porosity and 

matrix porosity differ, and matrix porosity becomes a distinct component of the total porosity.  

Definitions of the various porosity types are presented and further discussed in Section 3.1.1.1.

The objective of this section is to evaluate matrix porosity data and assign a probability distribution of 

matrix porosity to each Yucca Flat HGU for use in a CAU-scale flow and contaminant transport 

model. 

7.1 Role of Matrix Porosity in Contaminant Transport

In unfractured rock, flow is through the rock matrix.  In a fractured rock, a double-porosity 

conceptualization is typically assumed, with flow and transport through the fractures and the matrix 

acting as storage for solutes diffusing from the fractures into the matrix or from the matrix into the 

fractures.  For most fractured geologic systems, the volume of rock that comprises fractures is a small 

percentage of the total rock volume; the matrix comprises the majority of the rock volume.  In this 

case, the total porosity and matrix porosity are nearly equivalent.  The large reservoir of water in the 

matrix can be extremely important to radionuclide migration.  When matrix pores are well connected 

through diffusive pathways, a higher radionuclide concentration in fracture water causes the 

migration of the radionuclide into the matrix, effectively slowing the rate of transport relative to 

groundwater flow.  The matrix porosity, coupled with the matrix diffusion coefficient, controls the 

rate of diffusion into and out of the matrix.
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7.2 Data Compilation and Data Transfer

Matrix porosity data are widely available from boreholes in Yucca Flat.  This section discusses the 

types of measurements and sources from which the porosity data are derived and their evaluation and 

analysis.  All data used in the quantitative analyses are from the Yucca Flat/Climax Mine HFM area; 

see Appendix F and associated dataset referenced in Section F.2.2.

7.2.1 Data Types

Matrix porosity data are available from the analysis of borehole geophysical logs and borehole core 

samples.  Almost all of the matrix porosity data used in this study are from 13,832 borehole core 

samples (USGS, 2006).  Appendix F contains additional data and analyses from the ER wells 

geophysical logs.  In addition, matrix porosity values have been recently measured by LANL, LLNL, 

and DRI for the LCA and TCU using laboratory transport experiments (Ware et al., 2005; Reimus 

et al., 2006c; Zavarin et al., 2005). 

Porosity measurement methods for core data typically involve the measurement of dry bulk density, 

grain density, and saturated water content in the laboratory.  A discussion of laboratory core 

measurement is also in Attachment A, Section 2.0, of SNJV (2004e).  In general, core-derived 

measurements provide the best estimates of matrix porosity in both porous and fractured media if the 

sample is at least as large as the matrix representative elementary volume.  However, in 

unconsolidated media (e.g., alluvium), grain radii can range in size from microns to meters, and the 

sample volume will be, in general, too small to accurately measure matrix porosity.  Accordingly, 

estimates of matrix porosity in unconsolidated media may be highly spatially variable depending on 

the degree of grain size heterogeneity and anisotropy.  Other sources of uncertainty related to core 

laboratory measurement are incomplete saturation of the sample (underestimate of matrix porosity), 

and unconsolidation of the sample resulting from both physical disturbance and reduced lithostatic 

confining pressure in the laboratory (overestimate of matrix porosity).

A large portion of the data used to determine matrix porosity is total porosity.  In most fractured rock 

aquifers, the total porosity is the sum of matrix porosity and effective or fracture porosity.  Fracture 

porosities are typically less than 1 percent, whereas matrix porosity may be 25 percent or more.  The 

total porosity is, therefore, a good estimator of the matrix porosity of fractured rocks in most cases.  In 
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the case of unfractured rocks, matrix porosity can be reasonably assumed to be equivalent to total 

porosity. 

7.2.2 Data Sources

The porosity dataset is primarily from the USGS Rock-Property Database generated as part of the 

FY 2006 data integration task for the UGTA Project (USGS, 2006).  The data are therefore current to 

the end of FY 2006.  The USGS compiled interval-specific rock-property data for nearly 600 holes 

drilled or mined on and around the NTS.  Rock-property data were taken from reports and historical 

paper files located at the USGS Las Vegas office and the USGS Core Library and Data Center in 

Mercury, NV.  Records were compiled from a combination of sources, including field notes and 

forms, memorandums and other internal correspondence, unpublished draft manuscripts and tables, 

and published reports.  Because record reviews ranged from cursory to thorough, some data are 

preliminary and may be subject to revision.  Figure 7-1 is a map of the 281 borehole locations used in 

the porosity study for Yucca Flat.  Matrix porosity values for the LCA and TCU, which were 

measured during recent laboratory transport studies (Table 7-1), are also included in this analysis.  In 

addition, geophysical logs from nine ER wells were analyzed and are included in Appendix F.  The 

complete matrix porosity datasets are described in Appendix F.    

7.3 Data Evaluation

Because the matrix porosity data are primarily from a single source (i.e., the USGS Rock-Property 

Database [USGS, 2006]) they were not weighted before analysis.  The data consist of laboratory 

measurements of porosity collected since the early 1970s as part of the underground testing 

containment program.  Hydrostratigraphic units were assigned to each porosity value using a query of 

the Yucca Flat/Climax Mine HFM.  This dataset was supplemented with porosity values from the 

recent laboratory studies for the LCA and TCU presented in Table 7-1 (Ware et al., 2005; Reimus 

et al., 2006c; Zavarin et al., 2005).  Although not discussed within this section, the geophysical data 

analysis of ER wells is summarized in Appendix F.  The basis of the HGU assignments for each 

porosity value is provided in Table 7-2.   

Several high porosity values for the carbonate aquifers, ranging from approximately 9 to 44 percent, 

were identified and subsequently removed from the dataset.  The high porosities are inconsistent with 
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Figure 7-1
Yucca Flat/Climax Mine Borehole Locations with Matrix Porosity Values



Section 7.0

Phase I Contaminant Transport Parameters for CAU 97: Yucca Flat/Climax Mine, Nye County, Nevada

7-5

Table 7-1
Yucca Flat Matrix Porosity Values from Laboratory Transport Experiments 

Borehole Sample 
ID

Interval 
(ft)

Matrix 
Porosity Range Mean Source Source

Table Method

Lower Carbonate Aquifer

ER-6-1 LCA 2,240 - 2,240.8 0.031 & 0.035 0.004 0.0330 B 3 wafer

ER-6-1 LCA 2,399.4 - 2,400.1 0.003 - 0.015 0.012 0.0090 A 3 weight

ER-6-1 LCA 2,400.2 - 2,400.7 0.009 & 0.01 0.001 0.0095 B 3 wafer

ER-6-1 LCA 2,512 - 2,512.8 0.011 - 0.038 0.027 0.0250 A 3 weight

ER-6-1 LCA-3 2,552.1 - 2,553.1 0.0170 N/A 0.0170 C 2.1 helium

ER-6-1 LCA-1 2,604.7 - 2,605.7 0.0220 N/A 0.0220 C 2.1 helium

ER-6-1 LCA 2,675 - 2,675.7 0.014 - 0.028 0.014 0.0210 A 3 weight

ER-6-1 LCA-2 2,732.2 - 2,733.1 0.0160 N/A 0.0160 C 2.1 helium

ER-6-1 LCA 2,846.5 - 2,847.3 0.013 - 0.027 0.014 0.0200 A 3 weight

ER-6-1 LCA 2,915 - 2,915.8 0.017 - 0.042 0.025 0.0300 A 3 weight

ER-6-1 LCA 2,943.8 - 2,944.2 0.059 & 0.06 0.001 0.0595 B 3 wafer

ER-6-1 LCA 3,028 - 3,029 0.016 - 0.031 0.015 0.0240 A 3 weight

ER-6-1 LCA 3,047.5 - 3,048.2 0.013 & 0.013 0 0.0130 B 3 wafer

ER-6-2 LCA 2,730.2 - 2,730.7 0.002 - 0.015 0.013 0.0090 A 3 weight

ER-6-2 LCA 2,749.9 - 2,750.9 0.0026 - 0.0058 0.0032 0.0040 A 3 weight

Tuff Confining Unit

UE-4a TCU 2,028.9 - 2,031.1 0.36 - 0.38 0.02 0.3700 A 4 weight

UE-7az TCU-6 1,678.2 - 1,679 0.3370 N/A 0.3370 C 2.1 helium

UE-7az TCU 1,769.1 - 1,771.1 0.36 - 0.37 0.01 0.3650 A 4 weight

UE-7az TCU-4 1,779.9 - 1,780.2 0.3080 N/A 0.3080 C 2.1 helium

UE-7az TCU-2 1,798.8 - 1,799.5 0.2910 N/A 0.2910 C 2.1 helium

UE-7ba TCU-5 1,626.2 - 1,627 0.3090 N/A 0.3090 C 2.1 helium

UE-7ba TCU 1,822.3 - 1,823.7 0.27 - 0.28 0.01 0.2750 A 4 weight

UE-7ba TCU 1,862.5 - 1,863.3 0.26 - 0.28 0.02 0.2700 A 4 weight

A - Ware et al., 2005
B - Reimus et al., 2006c
C - Zavarin et al., 2005

N/A - Not applicable (only a single measurement is reported)
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the ranges of 0 to 9 percent reported by Winograd and Thordarson (1975) for the LCA as well as 

those of the laboratory studies (Table 7-1).  These samples were collected from the contact zone 

between the carbonate aquifer and the overlying unit.       

7.3.1  Variability of Porosity with Depth

The intent of this section is to assign a matrix porosity probability distribution to each Yucca Flat 

HGU.  A probability distribution does not include spatial components of the measured data (i.e., the 

distribution and its descriptive parameters do not contain any information describing the spatial 

variability of first- or higher-order statistics of the measured porosity).  It is important to confirm 

spatial trends do not exist within an HSU that would act to both bias and increase the apparent 

Table 7-2
HSU to HGU Assignment 

HSU a HGU b

AA
VCU AA

LCA3
UCA
LCA

CA

LCCU1
LCCU2
UCCU
LCCU

CCU

MGCU GCU

BLFA
PRETBG
PRETBG1

LFA

PCUT PCU

UTCU
BRCU
LTCU

OSBCU
ATCU

TCU

TM-LVTA
LVTA

TM-UVTA
VTA

TSA
BRA

TM-WTA
TUBA

WTA

a See Table 4-2 for definitions of hydrostratigraphic units.
b See Table 4-1 for definitions of hydrogeologic units.
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variability of the measured and estimated probability distribution.  The spatial features of the porosity 

data are considered in the vertical direction only due to the spatial orientation of porosity 

measurements in boreholes. 

Figure 7-2 presents the porosity data for each HGU as a function of depth.  Although a trend of 

decreasing porosity with depth is often observed due to compaction, high stresses, closing fractures 

and circulating groundwater, no significant correlation between porosity and depth is observed for 

any of the HGUs.  Subtle trends that may exist cannot be identified due to the large scatter in the 

measured data.  A trend is inherently difficult to identify in the alluvium due to the variability 

resulting from the unconsolidated, complex poorly sorted nature of alluvial deposits and limitations 

with the techniques used to collect and analyze them.

7.4 Development of Parameter Distributions

Part of the Yucca Flat CAU-scale flow and transport model input parameter selection involves the 

assignment of the matrix porosity parameters from a probability distribution.  To derive the HGU and 

HSU porosity data probability distributions, cumulative distribution functions (CDFs) were fit to the 

sample data.  The fitting algorithm uses Maximum Likelihood Estimation, a statistical method used to 

make inferences about parameters of the underlying probability distribution of a given dataset 

(Fisher, 1922).  The fitted distribution parameters do not always exactly reproduce the measured data 

statistics so the fitted distributions are ranked based on either their chi-squared statistic, 

Anderson-Darling  (A-D) statistic, or Kolmogorov-Smirnov (K-S) statistic.  A CDF for the data is 

chosen based on the most suitable fit statistic for the fitted distribution. 

7.4.1 Porosity Distributions by HGU and HSU

Box and whisker plots of the HGU and HSU values are presented in Figures 7-3 and 7-4, and the 

sample summary statistics are contained in Table 7-3.  (Figures and tables are presented at the end of 

this section.)  Plots are not presented for HSUs with sample population sizes of less than 10.  

Figures 7-5 through 7-24 show histograms and CDFs of matrix porosity for the Yucca Flat HGUs and 

HSUs.  Table 7-4 lists the fitted distribution, descriptive statistics, and fit statistics for the matrix 

porosities for the Yucca Flat HGUs and HSUs, respectively.  The distribution parameters in Table 7-4 

may be used for populating the model hydrogeologic flow domain with matrix porosity values.



Section 7.0

Phase I Contaminant Transport Parameters for CAU 97: Yucca Flat/Climax Mine, Nye County, Nevada

7-8

Figure 7-2
Linear Regression Analysis of HGU Porosity (%) as a Function of Depth (m bgs)
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7.5 Scaling Considerations

The matrix porosity data are small-scale (sub-meter) measurements that, in most cases, do not 
correspond with the larger (tens-of-meters to km) scale at which flow and transport modeling are 
completed.  As noted by McKenna and Rautman (1996), porosity can be effectively upscaled by the 
volume variance method, which is also presented in several textbooks including 
Journel and Huijbregts (1978) and Vanmarcke (1983).  The method preserves the sample mean, and 
the upscaled variance reduction (due to sample averaging) is a function of the ratio of the correlation 
length of the point process to the averaging interval.  The point process correlation length is unknown 
and cannot be sufficiently estimated (with respect to the sample number) in any orientation but the 
vertical; therefore, the method is impractical for application with this dataset.

In general, the spatial sampling of matrix porosity (and related hydrogeologic rock properties) is 
sparse in the horizontal plane, primarily because the majority of data are collected from vertical 
boreholes.  Limited lateral porosity data have been collected at Yucca Mountain from surface 
outcrops (e.g., Flint et al. [1996]) and from tunnels (e.g., Freifeld [2001]); however, these data are 
from the unsaturated zone and do not represent the full suite of HGUs at Yucca Flat.  To circumvent 
the problem of limited data for estimation of a spatial statistic (e.g., the correlation length) in the 
horizontal plane, it is common to assume a ratio of anisotropy in the principal directions and then 
scale the statistic relative to the known orientation.  Lateral spatial statistics may be inferred if the 
relationship is known between matrix porosity and a secondary variable with known directional 
spatial statistics.  For example, in the alluvium, porosity strongly correlates with the sample grain size 
distribution, which itself depends on depositional features.  In other words, laterally varying deposits 
could define the scale at which matrix porosity varies.                              

Additional complications to spatial averaging are related to heterogeneity due to contributions from 
different lithologies within a single HGU.  Consider, for example, a stratum of welded tuffs situated 
between nonwelded tuffs in a single (composite) HGU.  Because the welded tuff is likely to transmit 
most of the flow, the upscaled matrix porosity should reflect the welded unit (through vertical 
thickness weighting) rather than corresponding to the arithmetic mean of all lithologies in the unit.  

In summary, the variance reduction for each HGU cannot be calculated at this time, although the 
HGU sample means (Table 7-4) can be as they are unaffected by the scaling process.  Before applying 
the data at the larger CAU scale, it may be important to resolve the quantity of variance reduction per 
HGU.  For example, high porosities will result in either unrealistically slow groundwater flow rates, 
large amounts of matrix diffusion, or both.  Alternatively, the quantity of variance reduction may be 
addressed via a parameter sensitivity analysis during the numerical simulation of transport.
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Figure 7-3
Yucca Flat HGU Porosity Values

Note:  Mean – Red vertical dashed line in box;  Median – Blue vertical line in box;  25th Percentile – Left box side;  75th Percentile – Right box side;  
10th Percentile – Left whisker;  90th Percentile – Right whisker;  5th Percentile – Left green diamond; 95th Percentile – Right green diamond
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Figure 7-4
Yucca Flat HSU Porosity Values

Note:  Mean – Red vertical dashed line in box;  Median – Blue vertical line in box;  25th Percentile – Left box side;  75th Percentile – Right box side;  
10th Percentile – Left whisker;  90th Percentile – Right whisker;  5th Percentile – Left green diamond; 95th Percentile – Right green diamond
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Table 7-3
Sample Summary Statistics for Matrix Porosity

Unit N Range Min Max Mean Median SD CV

Hydrogeologic Units

AA 6203 95.73 1.30 97.03 34.44 34.13 6.65 19.30%

CA 34 5.85 0.35 6.20 2.63 2.44 1.63 61.98%

CCU 38 10.11 0.00 10.11 3.24 3.06 2.42 74.72%

GCU 78 8.30 0.00 8.30 1.91 1.48 1.64 85.65%

LFA 1 0.00 4.12 4.12 4.12 N/A N/A N/A

PCU 1 0.00 36.72 36.72 36.72 N/A N/A N/A

TCU 3839 68.72 0.70 69.42 39.75 39.80 5.87 14.78%

VTA 2718 69.92 0.85 70.76 43.00 43.08 7.32 17.02%

WTA 693 52.85 4.61 57.47 38.91 41.24 9.09 23.37%

Hydrostratigraphic Units

AA2 113 20.49 29.80 50.29 40.90 42.67 5.97 14.59%

AA3 6090 95.73 1.30 97.03 37.33 34.08 6.61 19.25%

ATCU 34 52.52 2.11 54.63 33.83 35.14 10.71 31.65%

BLFA 1 0.00 4.12 4.12 4.12 N/A N/A N/A

BRCU 1 0.00 46.15 46.15 46.15 N/A N/A N/A

LCA 26 5.60 0.35 5.95 2.23 2.10 1.40 62.78%

LCA3 8 4.46 1.75 6.20 3.94 3.92 1.74 44.02%

LCCU 34 10.11 0.00 10.11 3.26 2.73 2.52 77.20%

LTCU 2828 61.85 7.57 69.42 40.36 40.27 5.52 13.68%

MGCU 78 8.30 0.00 8.30 1.91 1.48 1.64 85.65%

OSBCU 958 57.25 0.70 57.95 38.06 38.47 6.19 16.25%

PCUT 1 0.00 36.72 36.72 36.72 N/A N/A N/A

TMLVTA 2290 69.92 0.85 70.76 43.18 43.10 7.47 17.29% 

TMUVTA 428 54.78 8.34 63.12 42.05 43.00 6.39 15.21%

TMWTA 592 52.85 4.61 57.47 38.36 40.55 9.32 24.29%

TSA 31 33.18 17.83 51.01 37.64 37.80 8.36 22.20%

TUBA 70 21.70 32.90 54.60 44.11 44.63 4.98 11.28%

UCCU 4 3.60 0.73 4.33 3.09 3.65 1.63 52.79%

UTCU 18 17.73 33.29 51.02 43.22 45.76 6.06 14.02%

CV - Coefficient of variation
Max - Maximum
Min - Minimum
N - Population size
N/A - Not applicable (only a single measurement is reported)
SD - Standard deviation
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Figure 7-5
AA HGU Matrix Porosity Histogram and CDF

Note:  M + 2SD – Mean plus two standard deviations; Blue curve (darker line) and annotations – Sample data 
CDF; Red curve (lighter line) and annotations – Fitted PDF
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Figure 7-6
WTA HGU Matrix Porosity Histogram and CDF

Note:  M + 2SD – Mean plus two standard deviations; Blue curve (darker line) and annotations – Sample data 
CDF; Red curve (lighter line) and annotations – Fitted PDF
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Figure 7-7
VTA HGU Matrix Porosity Histogram and CDF

Note:  M + 2SD – Mean plus two standard deviations; Blue curve (darker line) and annotations – Sample data 
CDF; Red curve (lighter line) and annotations – Fitted PDF
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Figure 7-8
TCU HGU Matrix Porosity Histogram and CDF

Note:  M + 2SD – Mean plus two standard deviations; Blue curve (darker line) and annotations – Sample data 
CDF; Red curve (lighter line) and annotations – Fitted PDF
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Figure 7-9
GCU HGU Matrix Porosity Histogram and CDF

Note:  M + 2SD – Mean plus two standard deviations; Blue curve (darker line) and annotations – Sample data 
CDF; Red curve (lighter line) and annotations – Fitted PDF
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Figure 7-10
CCU HGU Matrix Porosity Histogram and CDF

Note:  M + 2SD – Mean plus two standard deviations; Blue curve (darker line) and annotations – Sample data 
CDF; Red curve (lighter line) and annotations – Fitted PDF
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Figure 7-11
CA HGU Matrix Porosity Histogram and CDF

Note:  M + 2SD – Mean plus two standard deviations; Blue curve (darker line) and annotations – Sample data 
CDF; Red curve (lighter line) and annotations – Fitted PDF



Section 7.0

Phase I Contaminant Transport Parameters for CAU 97: Yucca Flat/Climax Mine, Nye County, Nevada

7-20

Figure 7-12
AA HSU Matrix Porosity Histogram and CDF

Note:  M + 2SD – Mean plus two standard deviations; Blue curve (darker line) and annotations – Sample data 
CDF; Red curve (lighter line) and annotations – Fitted PDF
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Figure 7-13
ATCU HSU Matrix Porosity Histogram and CDF

Note:  M + 2SD – Mean plus two standard deviations; Blue curve (darker line) and annotations – Sample data 
CDF; Red curve (lighter line) and annotations – Fitted PDF
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Figure 7-14
LCA HSU Matrix Porosity Histogram and CDF

Note:  M + 2SD – Mean plus two standard deviations; Blue curve (darker line) and annotations – Sample data 
CDF; Red curve (lighter line) and annotations – Fitted PDF



Section 7.0

Phase I Contaminant Transport Parameters for CAU 97: Yucca Flat/Climax Mine, Nye County, Nevada

7-23

Figure 7-15
LCCU HSU Matrix Porosity Histogram and CDF

Note:  M + 2SD – Mean plus two standard deviations; Blue curve (darker line) and annotations – Sample data 
CDF; Red curve (lighter line) and annotations – Fitted PDF
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Figure 7-16
LTCU HSU Matrix Porosity Histogram and CDF

Note:  M + 2SD – Mean plus two standard deviations; Blue curve (darker line) and annotations – Sample data 
CDF; Red curve (lighter line) and annotations – Fitted PDF
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Figure 7-17
MGCU HSU Matrix Porosity Histogram and CDF

Note:  M + 2SD – Mean plus two standard deviations; Blue curve (darker line) and annotations – Sample data 
CDF; Red curve (lighter line) and annotations – Fitted PDF
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Figure 7-18
OSBCU HSU Matrix Porosity Histogram and CDF

Note:  M + 2SD – Mean plus two standard deviations; Blue curve (darker line) and annotations – Sample data 
CDF; Red curve (lighter line) and annotations – Fitted PDF
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Figure 7-19
TM-LVTA HSU Matrix Porosity Histogram and CDF

Note:  M + 2SD – Mean plus two standard deviations; Blue curve (darker line) and annotations – Sample data 
CDF; Red curve (lighter line) and annotations – Fitted PDF
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Figure 7-20
TM-UVTA HSU Matrix Porosity Histogram and CDF

Note:  M + 2SD – Mean plus two standard deviations; Blue curve (darker line) and annotations – Sample data 
CDF; Red curve (lighter line) and annotations – Fitted PDF
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Figure 7-21
TM-WTA HSU Matrix Porosity Histogram and CDF

Note:  M + 2SD – Mean plus two standard deviations; Blue curve (darker line) and annotations – Sample data 
CDF; Red curve (lighter line) and annotations – Fitted PDF
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Figure 7-22
TSA HSU Matrix Porosity Histogram and CDF

Note:  M + 2SD – Mean plus two standard deviations; Blue curve (darker line) and annotations – Sample data 
CDF; Red curve (lighter line) and annotations – Fitted PDF
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Figure 7-23
TUBA HSU Matrix Porosity Histogram and CDF

Note:  M + 2SD – Mean plus two standard deviations; Blue curve (darker line) and annotations – Sample data 
CDF; Red curve (lighter line) and annotations – Fitted PDF
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Figure 7-24
UTCU HSU Matrix Porosity Histogram and CDF

Note:  M + 2SD – Mean plus two standard deviations; Blue curve (darker line) and annotations – Sample data 
CDF; Red curve (lighter line) and annotations – Fitted PDF
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Table 7-4
Matrix Porosity Distribution Summary

HGU Distribution Shift Mean SD A-D
Test Value

A-D 
Rank

K-S 
Test Value

K-S 
Rank

Chi-Sq Test 
Value

Chi-Sq 
Rank

Hydrogeologic Units
AA Normal N/A 34.45 6.65 +Infinity 10 0.03 6 137.70 4

WTA Normal N/A 38.91 9.09 13.65 2 0.11 2 136.40 2
VTA Normal N/A 43.00 7.32 14.44 2 0.05 2 154.70 2
TCU Normal N/A 39.75 5.87 9.11 2 0.04 2 136.60 2
GCU Log Normal -0.23 1.92 1.71 0.61 2 0.10 4 23.79 6
CCU Normal N/A 3.24 2.42 0.68 3 0.10 2 8.32 5
CA Normal N/A 2.64 1.63 1.03 7 0.18 8 8.82 7

Hydrostratigraphic Units
AA Normal N/A 34.45 6.65 +Infinity 10 0.03 6 137.70 4

ATCU Normal N/A 33.83 10.70 0.26 3 0.09 3 4.29 2
LCA Normal N/A 2.64 1.63 1.03 7 0.18 8 8.82 7

LCCU Log Normal -1.11 3.33 3.04 0.70 6 0.15 9 5.94 6
LTCU Log Normal -749 40.36 5.52 2.55 3 0.03 5 74.40 1
MGCU Log Normal -0.22 1.92 1.71 0.71 2 0.12 4 23.79 6
OSBCU Normal N/A 38.07 6.19 6.48 3 0.07 3 106.20 3
TMLVTA Normal N/A 43.18 7.47 8.99 2 0.04 2 111.50 2
TMUVTA Normal N/A 42.05 6.40 10.36 3 0.12 3 88.07 3
TMWTA Normal N/A 38.36 9.32 11.53 3 0.11 3 119.70 3

TSA Normal N/A 37.64 8.36 0.51 4 0.14 4 5.19 3
TUBA Normal N/A 44.11 4.98 0.24 3 0.06 1 4.57 3
UTCU Normal N/A 43.22 6.07 0.90 3 0.21 4 2.00 4

N/A - Not applicable
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8.0 EFFECTIVE POROSITY

This section presents the development of effective porosity estimates for the Yucca Flat/Climax Mine 

CAU groundwater flow and transport model.  Porosity is defined as the total volume of voids per total 

volume of rock.  In geologic material, not all voids transmit water.  Therefore, the appropriate 

porosity for transport modeling is the effective porosity, which is defined as the volume of voids 

transmitting water (interconnected voids) per total volume of rock.  

Effective porosity is always less than or equal to total porosity due to the adhesion of water to solids, 

unconnected pores, and dead-end pores.  The difference between the total and effective porosity 

increases as the size of the grains in the rock decreases (de Marsily, 1986) and as the amount of 

cementation increases (Bradley, 1992).  Thus, for small-grained, well-cemented sediments, the 

effective porosity could be significantly lower than the total porosity but for unconsolidated, 

large-grained sediments, the effective porosity could be about equal to the total porosity.  De Marsily 

(1986), citing Castany (1967), presents a comparison of effective and total porosity as a function of 

grain size.  That comparison shows an effective to total porosity ratio ranging from about 0.5 for 

fine-grained clay (grain size of 0.0003 millimeter [mm]) to 0.9 for fine gravel (grain size of 30 mm).  

Using a radial diffusion method on core samples, van der Kamp et al. (1996) found a ratio of effective 

to total porosity of 0.43 to 1 for a low-permeability aquitard.  In a controlled experiment using clean, 

coarse silica sand, van der Kamp et al. (1996) found that the effective porosity was close to the total 

porosity.  Hudak (1994) measured effective and total porosity on unconsolidated sand samples and 

found that the two closely match.  In summary, the effective porosity for systems that behave as a 

porous media can be estimated as 50 to 100 percent of the total porosity depending on the 

characteristics of the media (e.g., grain size, consolidated or unconsolidated).

An issue that should be evaluated from a feasibility standpoint during regional transport model 

implementation is the conceptualization adopted for the solute transport simulations.  Typically, flow 

through the matrix is ignored, and all flow is assumed to be in the fractures (with diffusive interaction 

with the matrix) when modeling a double-porosity transport system.  However, as fracture spacing 
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becomes large and/or the aperture size becomes very small (and/or fracture continuity becomes 

limited), the assumption of flow in fractures only may become invalid and a greater proportion of the 

solutes will be transported in the matrix system.

Van Golf-Racht (1982) provides a comprehensive presentation of the origin of fractures, fracture 

detection and evaluation, case studies, and flow to wells in fractured formations.  Van Golf-Racht 

(1982) presents ranges of fracture porosities: macrofracture network (10-4 to 5 x 10-3), isolated fissures 

or microfractures (10-5 to 10-4), and fissure network (10-4 to 2 x 10-2).  He states that macrofractures are 

extended fractures with wider openings that develop through various geologic layers and fissures, and 

microfractures are fractures with narrower openings and limited extent.  Freeze and Cherry (1979) 

report similar effective fracture porosities for fractured rock.  They report that typical values range 

from 10-5 to 10-2.  The fracture opening or aperture is dependent on depth, pressure, 

lithologic-petrographic characteristics of the rock, structural unit thickness, nature of in situ stresses, 

and geologic history of the formation.  Van Golf-Racht (1982) presents a frequency plot of fracture 

opening data and a fitted curve.  The asymmetrical curve through the data has a rising limb starting at 

about 4 microns, peaks at about 23 microns with a frequency of about 30 percent, and ends at about 

150 microns with a frequency of about 3 percent.

Effective or fracture porosity estimates determined for fractured geologic systems must have 

magnitudes consistent with the conceptualization of the site-specific fractured system.  For example, 

there are cases with reported porosities that have large magnitudes beyond that expected for fractured 

systems and are also inconsistent with the interpreted hydraulic properties for the site.  These reported 

porosities are uncertain and are not considered representative.  The problem with using these 

questionable values is further amplified in cases where the parameter distribution for effective 

porosity is sampled in conjunction with fracture spacing distribution and may yield extremely 

unrealistic fracture apertures.  In the evaluations presented in this section, there has been an attempt to 

eliminate the more uncertain reported fracture porosities.

Several field methods are available for determining the porosity of a geologic material.  These 

include, but are not limited to:

• Determined through interpretations of field tracer tests
• Calculated from borehole fracture data
• Calculated from density and moisture content measurements with geophysical logs
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Some of these methods, however, typically determine the matrix or fracture porosity but not the 

effective porosity.  The method that yields the best estimate of the effective porosity is through 

interpretation of field tracer tests.  Unfortunately, it is impractical to perform tracer tests in all 

geologic materials of interest at all locations of interest.  Therefore, the available information on 

effective porosity is limited and is often assumed to be equivalent to the matrix or fracture porosity, 

which are more easily determined.  

This section is divided into multiple subsections that discuss (1) the role of effective porosity in 

contaminant transport, (2) the procedures used to determine estimates of effective porosity, 

(3) the effective porosity estimates for each HGU, (4) the limitations in the estimated effective 

porosities, and (5) a summary of the effective porosity distribution recommended for each HGU.

8.1 The Role of Effective Porosity in Contaminant Transport

The nature of fluid flux through a porous system was first outlined by French engineer Henri Darcy in 

1856.  Darcy’s law states that the volumetric discharge of a porous flow system is equal to the 

hydraulic conductivity of the media multiplied by the hydraulic gradient and the cross-sectional flow 

area.  The law is described by the equation (Domenico and Schwartz, 1990):

(8-1)

where: 
q = specific discharge (L/t), 
Q = volumetric flow rate (L3/t), 
A = cross-sectional area perpendicular to flow (L2), 
K = hydraulic conductivity (L/t), and 
i = hydraulic gradient (dimensionless).

Ki
A
Qq −==
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In Equation (8-1), the cross-sectional area is the entire surface area not the surface area of the pore 

openings.  Therefore, the specific discharge in Darcy’s law must be divided by the effective porosity 

in order to obtain the actual groundwater velocity.  The interstitial groundwater velocity is given by 

the equation (Domenico and Schwartz, 1990):

(8-2)

where: 
v = interstitial groundwater velocity (L/t), and 
φe = effective porosity (dimensionless)

The interstitial velocity is always larger than the specific discharge and decreases with increasing 

effective porosity.  The groundwater velocity, and thus velocity of contaminant migration, in a porous 

media is governed by Equation (8-2).  Therefore, knowledge of the effective porosity of a porous 

media is essential for contaminant transport modeling.

8.2 Data Compilation and Data Transfer

Data from the Yucca Flat/Climax Mine HFM area and data from other NTS CAUs and YMP were 

used for this analysis due to the unavailability of comprehensive data from the Yucca Flat/Climax 

Mine HFM area for all HGUs.  Figure 8-1 shows the source locations for the data used in the analysis.  

Individual discussions of the applicability of the transferred data are provided for each HGU.  The 

data were used to determine a distribution appropriate for the Yucca Flat/Climax Mine CAU based on 

professional judgment.  A quantitative assessment of the sensitivity of transport modeling to the 

uncertainty in this parameter cannot be provided before the transport model development.  The 

parameter description discusses the importance of this parameter.   

8.3 Data Evaluation Procedures

The hydrogeologic framework for Yucca Flat and vicinity uses two classification systems for the 

geologic material (BN, 2006).  The first is HGUs, which categorize lithologic types by their ability to 

transmit water.  The second is HSUs, which are groupings of contiguous stratigraphic units that have 

a particular hydrogeologic character, such as an aquifer or confining unit.  A detailed description of 

the HGUs and HSUs in the Yucca Flat/Climax Mine CAU is provided in Section 4.0.

iK
A
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Figure 8-1
Spatial Distribution of Effective Porosity Data
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The effective porosities for Yucca Flat were evaluated by HGU.  The HGUs classified as aquifers are 

discussed first, followed by the HGUs classified as confining units.  The first step in investigating the 

effective porosity for an HGU was assessing whether it behaves as porous media or fractured media.  

If it behaves as porous media, the effective porosity for the HGU was assumed to be represented by a 

fraction of the matrix porosity discussed in Section 7.0.  The value of the fraction varied depending 

on the type of sediments, grain size, and cementation or welding.  If it behaves as fractured media, 

fracture porosities from available sources were compiled and evaluated, and a distribution was 

developed.  For fractured media, the effective porosity was assumed to be the same as the fracture 

porosity.

To assign an effective porosity to an HGU, the quality and suitability of the data sources for the unit 

must be evaluated.  Where multiple data sources exist for a given HGU, they must be compared and 

condensed to define an estimate and account for uncertainty.  Each measurement and analysis method 

is discussed, and an estimate is recommended based on their associated strengths and weaknesses.

8.4 Data Documentation Qualification

Data documentation provides information on the traceability (or pedigree) of the data.  Typically, data 

collected in recent years have better documentation than that collected and reported years ago.  

Qualification of the data documentation provides a mechanism for investigating and evaluating the 

quality of the data used in modeling.  The data used to develop recommended ranges of the effective 

porosity for the Yucca Flat/Climax Mine CAU have been assigned a DDE_F value to indicate the 

level of documentation available for the data (see Section 3.3.1 for discussion of DDE_F values).  It 

is important to note that the data documentation qualification does not indicate the usefulness of the 

data for modeling.  Historical data, which may be poorly documented by current standards, are often 

of high quality and extremely useful in the CAU investigations.

8.5 Effective Porosity for the Aquifer Hydrogeologic Units

The hydrostratigraphic model of Yucca Flat comprises five HGUs (AA, WTA, VTA, LFA, and CA) 

classified as aquifers.
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8.5.1 The Alluvial Aquifer Hydrogeologic Unit

The AA consists of unconsolidated to partially consolidated sandy gravel and gravelly sand.  The 

source of these sediments is erosion of the surrounding mountains during basin development.  

Interspersed within these coarser-grained alluvial deposits are finer-grained eolian sands.  The AA 

HSU corresponds to the AA HGU in Yucca Flat.  Although the AA HGU is thick and extends over 

much of the Yucca Flat basin, significant sections of it are saturated only in the central portion of the 

basin (BN, 2006).  

This loosely consolidated aquifer is not fractured; therefore, flow through it is diffuse and the 

effective porosity is assumed to be a fraction of the matrix porosity.  The recommended matrix 

porosity distribution for the AA HGU is discussed in Section 7.0.  Based on the loosely consolidated 

sediments making up this HGU, it is estimated that the effective porosity ranges from 80 to 

100 percent of the matrix porosity.  Therefore, the recommended distribution for the effective 

porosity is 80 to 100 percent of the recommended matrix porosity distribution. 

8.5.2 The Welded-Tuff Aquifer Hydrogeologic Unit

The WTA consists of ash-flow tuffs welded to varying degrees.  The initial primary components of 

the ash-flow tuffs are glass shards and pumice fragments.  After emplacement, devitrification of the 

glass and pumice commonly occurs.  The material in these tuffs is not sorted and does not show signs 

of bedding.  The thickness of ash-flow tuffs can range from tens to hundreds of meters (Winograd, 

1971).  

Welding of the ash-flow tuffs occurs after emplacement and involves bonding of the hot glass shards 

and pumice.  The degree of welding is affected by the temperature, the amount and composition of 

volatiles, the composition of the ash, the lithostatic load, the rate of cooling, and the rate of 

crystallization (Winograd, 1971).  Within a single ash flow, welding is variable.  In general, welding 

is most dense near the middle of the ash flow and decreases both above and below.  As described in 

Winograd (1971), “the zone of dense welding is commonly underlain and overlain by zones of partial 

welding that, in turn, are sandwiched between zones of no welding.”  Ash flows can occur as a single 

emplacement, multiple flows that are emplaced in rapid succession and cool as a single unit, and 

multiple flows that are emplaced such that they cool separately.  For the first two occurrences 
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(referred to as a simple cooling unit), a single zone of densely welded tuff is typical.  For the latter 

occurrence (referred to as a compound cooling unit), multiple zones of dense welding may be present.  

The degree of welding of the ash-flow tuffs is a primary factor controlling its porosity and 

permeability.  Welding bonds the glass and pumice fragments together and causes them to flatten and 

become subparallel, which results in a decrease in the interstitial (matrix) porosity and permeability.  

Therefore, the interstitial porosity and permeability decrease as the degree of welding increases.  

Winograd (1971) reports that densely welded tuff may have an interstitial porosity less than 5 percent, 

and nonwelded tuff may have an interstitial porosity greater than 50 percent.  

Columnar fractures caused by tensional forces active during cooling characterize the zones of dense 

and partial welding in the ash-flow tuffs.  The spacing of these fractures ranges from a few tenths of 

an inch to several feet (Winograd, 1971).  The smallest spacings are usually associated with the most 

densely welded zones.  These cooling fractures are uncommon in nonwelded tuff.  

Regional stresses may induce secondary fracturing in ash-flow tuffs.  Although densely welded tuffs 

have very low interstitial porosity and permeability, they can transmit groundwater due to the 

presence of fractures.  Because the degree of fracturing and its continuity is variable due to the 

variable degrees of welding, the hydraulic conductivity of these tuffs is also variable.

The WTA HGU is characterized by aquifers consisting predominately of welded tuffs.  In Yucca Flat, 

the WTA HGU is defined by four HSUs (TM-WTA, TSA, BRA, and TUBA).  The TM-WTA is 

located east of the faults that form the Yucca Flat basin and is saturated only in the deeper portions of 

the basin.  Up to 20 percent vitric-tuff aquifer may by contained in the TM-WTA.  At some locations, 

intervening nonwelded tuff and bedded tuff are incorporated into the TM-WTA.  Wells completed in 

the TM-WTA generally have high production as observed in well ER-5-3 in Frenchman Flat and 

wells WW-4 and WW-4a in CP basin.  Bechtel Nevada (2006) states that this HSU “is a 

fracture-controlled aquifer.”  

The TSA HSU, which is composed of welded ash-flow tuff, is located only in the extreme southern 

portion of Yucca Flat.  This HSU is saturated, typically well fractured, and typically highly 

transmissive.  Although this ash-flow tuff is generally welded, up to 15 percent may consist of 

nonwelded portions overlying and underlying the welded portion.  The BRA HSU is composed of 
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peralkaline, welded ash-flow tuff; is located in the Belted Range just north of Yucca Flat; and is 

typically unsaturated in the Yucca Flat/Climax Mine CAU model area.  The welded portion of the 

Tub Spring tuff makes up the TUBA HSU.  This HSU is found only in the northern portion of Yucca 

Flat, is saturated only in the deeper portions of West Emigrant Valley, and is typically fractured and 

has high productivity.

The WTA HGU will be conceptualized as a double-porosity medium in the Yucca Flat/Climax Mine 

CAU flow and transport model due to its fractured nature.  A double-porosity conceptualization 

consists of fractures and matrix.  Advective and diffusive flow and transport are assumed to occur 

exclusively in the fractures.  Interaction between the fractures and matrix is restricted to molecular 

diffusion from the fractures to the matrix and vice versa.  It is generally assumed that no advective 

flow or transport occurs in the matrix.  In order to appropriately represent the WTA HGU in the 

CAU-scale model, the recommended distribution for the effective porosity must be consistent with 

this conceptualization.  Data sources relevant for estimating the effective porosity of the WTA HGU 

are described below.

8.5.2.1 Groundwater Tracer Tests

Cross-hole, forced-gradient tracer tests were conducted at the C-holes Complex in fractured volcanic 

tuffs for the YMP (Bechtel SAIC, 2004c).  The fractured volcanic tuffs tested with these tracer tests 

are assumed to be representative of the WTA HGU.  The C-holes Complex consists of three wells 

(UE-25 c#1, UE-25 c#2, and UE-25 c#3) located about 2 km southeast of the footprint of the potential 

repository (Figure 8-1).  Tracers were injected into two horizons.  The upper horizon consisted of the 

lower Prow Pass Tuff, and the lower horizon consisted of the lower Bullfrog Tuff. 

Bechtel SAIC (2004c) states that the completion interval in both the Prow Pass Tuff and the Bullfrog 

Tuff consists of variably welded tuffaceous rocks.  The tuff at the completion in the Prow Pass Tuff is 

described as partially welded and partially to moderately welded.  The tuff at the completion in the 

Bullfrog Tuff is described as partially welded, partially to moderately welded, and moderately to 

densely welded.
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Tracer Test in the Bullfrog Tuff

Two tracer tests were conducted in the Bullfrog Tuff at the C-holes Complex.  The first was a pilot 

test with injection into wells c#1 and c#2 and pumping of well c#3.  The purpose of the pilot test was 

to determine the fastest flow path at the complex.  The test results indicate that the most rapid 

transport occurs between wells c#2 and c#3.  That path was then used for a subsequent multi-tracer 

test involving the injection of two conservative tracers (pentafluorobenzoic acid [PFBA] and Br), one 

reactive tracer (lithium [Li]), and one microsphere tracer.  

For the multi-tracer test, tracer was injected over a period of 10 hours into well c#2, and well c#3 was 

pumped at a rate of about 9.5 liters per second (L/s).  About 3.3 percent of the fluid pumped from well 

c#3 was recirculated into tracer-injection well c#2.  This recirculation was initiated about 36 hours 

before tracer injection and continued for 40 days after injection.  The volume of the tracer solution 

injected into well c#2 was about 2.8 times larger than the packed-off injection interval volume.  The 

thickness of the Bullfrog Tuff interval tested was about 100 m.  At the depth of the completion 

intervals, the distance between the wells is about 30 m.   

The breakthrough curves observed in the pumping well show a bimodal behavior for all tracers 

(Bechtel SAIC, 2004c).  The first peak occurred at about 31 hours for PFBA, Br, and Li, and at about 

23 hours for the microspheres.  The arrival time for the second peak varied from about 210 hours to 

more than 1,000 hours and was different for each of the tracers.  The magnitude of the second peak 

for Li was very small.  The tracer responses in the Bullfrog Tuff are consistent with double-porosity 

transport behavior.  This is evidenced by the different first peak concentrations for the conservative 

tracers consistent with their different molecular diffusion coefficients.  

Bechtel SAIC (2004c) attributes the bimodal behavior of the breakthrough curves to tracer transport 

through two different flow paths within the tested interval.  An open-hole flow survey of the Bullfrog 

Tuff interval in injection well c#2 indicates that the majority of flow (about 75 percent) enters the 

formation near the top (Bechtel SAIC, 2004c).  The tracer-injection solution was about 2 percent 

more dense than the groundwater.  Bechtel SAIC (2004c) speculate that some of the tracer entered the 

formation near the top of the interval but that most of the tracer solution sank rapidly to the bottom of 

the interval, due to its higher density, and then entered the formation.  
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Due to the quick arrival and higher normalized concentrations of the first peaks, those peaks are 

assumed to be representative of fracture flow through the moderately to densely welded tuffs in the 

upper portion of the interval.  The long time of arrival and lower normalized concentrations of the 

second peaks is assumed to be the result of transport through fractures and matrix in the partially 

welded tuff at the bottom of the interval.  This conclusion assumes that the densely welded tuff is 

more fractured than the partially welded tuff.  This assumption is consistent with the known 

characteristics of welded tuffs.

The semi-analytical, dual-porosity transport model Reactive Transport LaPlace Inversion 

code (RELAP) was used to analyze the results from the tracer test conducted in the Bullfrog Tuff 

(Bechtel SAIC, 2004c).  In order to account for the two peaks observed in the breakthrough curves, 

each of the first peaks were fit first, the response for the first peak was subtracted from the entire 

curve, and then each of the second peaks were fitted (Bechtel SAIC, 2004c).  The fitting parameters 

were the mean fluid residence times, the Peclet number (equal to the distance between the injection 

and withdrawal wells divided by the longitudinal dispersivity), the tracer mass fraction participating 

in the test, and the mass transfer coefficient for matrix diffusion (equal to the matrix porosity divided 

by the fracture half aperture times the square root of the matrix diffusion coefficient).  The 

breakthrough curves for PFBA and Br, which have different molecular diffusion coefficients, were 

analyzed simultaneously.  The breakthrough curves were interpreted assuming both radial and linear 

flow.  

Effective porosity was calculated using the equation of Welty and Gelhar (1989), which assumes plug 

flow in a cylindrical homogeneous isotropic volume of the tested stratigraphic interval centered on 

the production well with outer radius equivalent to the distance to the tracer-addition well:

(8-3)

where: 
t = travel time (t), 
φ = effective porosity (fraction), 
b = interval thickness or length (L), 
R = distance between tracer-injection and withdrawal wells (L), and 
Q = production rate (L3/t).

2
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φφπ
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Travel time, t, in Equation (8-3) for convergent-flow tracer tests, is defined in two different ways in 

the literature.  Some researchers define it as the time of arrival of the peak tracer concentration at the 

pumped well (e.g., Halevy and Nir, 1962; Welty and Gelhar, 1989; Jones et al., 1992; IT, 1998, 

Section 5.1).  Other researchers (e.g., Lenda and Zuber 1970; Zuber, 1974) define t in Equation (8-3) 

as the mean transit time found principally through simultaneous fitting of mean transit time and a 

dispersion parameter.  Similar to Lenda and Zuber (1970) and Zuber (1974), the documents by 

IT (1998, Section 5.2), Reimus and Haga (1999), and Reimus (2003) define t as the mean fluid 

residence time and perform a least squared fit of the simulated to observed breakthrough curves by 

simultaneously fitting mean fluid residence time, mass injected, Peclet number, and mass transfer 

coefficient (function of matrix porosity, fracture half aperture, and matrix diffusion coefficient for 

double-porosity cases).  Either approach (peak-concentration arrival time or mean residence time) has 

been shown in the literature to be suitable for calibration of the breakthrough curves from 

convergent-flow tracer tests.  

The tracer breakthrough at the pumping well will be dominated by the most transmissive 

interconnected zone(s) between the tracer-injection well and the pumping well.  The effective 

thickness of the test interval should be incorporated in the choice of interval thickness, b, in 

Equation (8-3).  The rate of transport between the wells is dependent on the variability (in three 

dimensions) of both hydraulic conductivity and effective porosity.  One may expect that the 

difference between the time of arrival of the peak concentration and the mean residence time may 

increase with increasing heterogeneity.  The effective porosities calculated using Equation (8-3) and 

the time of arrival of the peak tracer concentration tend to be smaller than those calculated using the 

fitted mean transit or mean residence time.  Also, the dispersivities determined using the fitting 

approach with mean transit or mean residence time are typically much greater than those determined 

using the time of arrival of peak concentration.  In some cases, the interpreted dispersivities can be 

extremely large (indicating an overwhelmingly dispersion-dominated transport system) and 

inconsistent with dispersivity values generally reported in the literature for similar scales.  For this 

reason, this report favors the use of effective porosities calculated using travel time equal to the time 

of arrival of the peak concentration.

The effect of recirculated flow (3.3 percent of the pumped flow for the tracer test in the Bullfrog Tuff) 

is assumed to have a negligible effect on the calculation of effective porosity using Equation (8-3).  
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Bechtel SAIC (2004c) calculated effective porosities with Equation (8-3) using the mean residence 

times from RELAP fits to both the first and second peaks.  They report a minimum effective porosity 

of 3 x 10-3 using the shortest residence time (radial fit to first peaks) and a maximum effective 

porosity of 3.1 x 10-2 using the longest residence time (linear fit to second peaks).  These calculations 

assumed that 75 percent of the production flow was associated with the flowpaths that resulted in the 

first peaks and 25 percent was associated with the flowpaths that resulted in the second peaks based 

on flow survey results (Bechtel SAIC, 2004c).  The mean residence times determined with RELAP 

were 36 and 30 hours for assumptions of linear and radial flow, respectively.  For comparison, these 

times are similar to the peak-concentration arrival times for the two conservative tracers (about 30 

and 31 hours) and the reactive tracer (about 32 hours).  Because the first peaks are assumed to 

represent the effects of fracture flow through the densely welded tuff at the top of the injection 

interval, these values were used in developing the effective porosity distribution for the WTA HGU.

The maximum effective porosity reported by Bechtel SAIC (2004c) based on fitting to the second 

peaks is on the order of 3 percent.  This value was not considered when developing the effective 

porosity distribution for the WTA HGU at Yucca Flat because it (1) is likely not representative of 

purely fracture flow; (2) the conceptualization for the WTA HGU for the CAU-scale transport model 

is that of a double-porosity medium with advective flow and transport through the fractures only; and 

(3) the interpreted value is affected by the likely heterogeneous, nonradial character of flow through 

the fractured tuffs (principal fracture strikes at the C-holes Complex are approximately perpendicular 

to the direct path between tracer-injection and pumping wells).  Examples of simulations of the effect 

of heterogeneity and fracture orientations on interpreted effective porosity are presented in Reimus 

(2003). 

Fracture porosity can also be calculated using Equation (8-3) and the peak-concentration arrival time.  

Equation (8-3) assumes a homogeneous, isotropic volume and plug flow.  In application, the total 

fracture volume is treated as homogeneous and isotropic, with no flow in the matrix.  While actual 

field conditions, whether in fractured or porous media, are generally more complex, initial estimates 

of fracture porosity using this equation have been demonstrated to be consistent with final calibrated 

values from calibration of numeric transport models to field tracer tests (Jones et al., 1992).  This time 

is considered to be representative of the time for tracer to travel through the fractures from the 

tracer-injection well to the pumping well.    Because the mean residence times determined by Bechtel 
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SAIC (2004c) are relatively similar to the peak-concentration arrival times (see above), fracture 

porosity was not calculated using the peak-concentration arrival times.

Tracer Tests in the Prow Pass Tuff

Two phases of tracer testing were conducted in the Prow Pass Tuff at the C-holes Complex.  The first 

phase (the conservative tracer test) consisted of the injection of two conservative tracers 

(trifluorobenzoic acid [TFBA] and iodide [I]).  The second phase (the reactive tracer test) consisted of 

the injection of three conservative tracers (PFBA, Br, and Cl), one sorbing tracer (Li), and three 

microsphere tracers.  The testing procedure for the two phases was similar.  Well c#3 was the 

tracer-injection well, and well c#2 was the pumping well.  The pumping rate during the tests was 

0.33 L/s.  Of the 0.33 L/s of fluid pumped from c#2, 0.095 L/s (about 29 percent) was recirculated 

into injection well c#3.  The time to flush the tracer from the injection well was about 8.5 hours for 

the conservative tracer test.  Wells c#2 and c#3 are located 29 m apart at the depth of the completion 

interval.  The tracer responses for both phases of testing in the Prow Pass Tuff are consistent with 

double-porosity transport behavior.  This is evidenced by the different peak concentrations for the 

conservative tracers consistent with their different molecular diffusion coefficients.  

The fracture porosity for the portion of the Prow Pass Tuff tested during the conservative and reactive 

tracer tests can also be estimated from the arrival time of the peak concentration of the conservative 

tracers in both tests.  For a recirculating tracer test, the plug flow travel time is defined as (Gelhar, 

1982):

(8-4)

where F is a nonlinear expression that varies from one half for a test with no recirculation to one sixth 

for a test with 100 percent recirculation.  For no recirculation, Equation (8-4) is identical to 

Equation (8-3).  The values of F at various recirculation percentages are illustrated in Figure 8-2 

(calculated using Equation E21 from Gelhar [1982]).  For the 29 percent recirculation in the Prow 

Pass Tuff tracer tests, F is equal to 0.277 and Equation (8-4) becomes: 

(8-5)
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The peak tracer concentrations arrived at about 7 days in the conservative tracer test and at about 

10.4 days in the reactive tracer test.  Recall that the pumping rate for both tests was 0.33 L/s, and the 

distance between wells at the location of the Prow Pass is about 29 m.  The interval thickness used in 

the calculations was taken as the distance from the top of the uppermost packer in the two wells to the 

bottom of the lowermost packer in the two wells.  This thickness was about 74 m for the conservative 

tracer test and about 80 m for the reactive tracer test.  Fracture porosities were also calculated using 

the thickness of the transmissive zone in well c#3 (33.8 m) as reported in Geldon et al. (1998).  Using 

Equation (8-5), the calculated fracture porosities are 1.8 x 10-3 for the conservative tracer test and 

2.4 x 10-3 for the reactive tracer test using the full thickness, and 4.0 x 10-3 for the conservative tracer 

test and 5.8 x 10-3 for the reactive tracer test using the thickness of the transmissive zone. 

Bechtel SAIC (2004c) analyzed the results of the conservative tracer test using the single-porosity 

Moench (1989) solution to the advection-dispersion equation assuming both purely convergent flow 

and partial recirculation.  Their interpretation for the purely convergent flow field assumed two 

Figure 8-2
Function for Recirculating Tracer Tests
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values for the mixing length, which is the length within the boreholes through which tracer enters or 

exits the aquifer.  These two values were 30.5 m and 0.3 m.  All of their interpretations assumed an 

aquifer thickness of 61 m.  The flow porosities determined assuming a purely convergent flow field 

and a single-porosity conceptualization were 7 x 10-4 and 1.6 x 10-3 for mixing lengths of 30.5 and 

0.3 m, respectively.  Their analysis using the Moench (1989) single-porosity solution and 

incorporating a partially recirculating flow field yielded a flow porosity of 4.5 x 10-4.  The range in 

flow porosity due to uncertainties in the method used to incorporate recirculation was 2 x 10-4 to 

5 x 10-4.  Although Bechtel SAIC (2004c) interpreted the conservative tracer test using a 

double-porosity conceptualization and partial recirculation, that interpretation used the same fracture 

porosity as determined for the single-porosity conceptualization.  The effective porosities determined 

using the Moench (1989) single-porosity solution were not used in developing the effective porosity 

distribution for the WTA HGU at Yucca Flat.  The single-porosity conceptualization used in the 

analysis is inconsistent with the double-porosity conceptualization of the WTA HGU selected for the 

CAU-scale model.

Bechtel SAIC (2004c) analyzed the results of the reactive tracer test using the semi-analytical, 

dual-porosity transport model RELAP.  Their analysis included the recirculation and simultaneously 

fit responses for tracers with different molecular diffusion coefficients.  The parameters adjusted in 

RELAP to obtain fits to the observed breakthrough curves were the mean residence time, the Peclet 

number, the fraction of injected mass participating in the test, and the matrix diffusion mass transfer 

parameter.  The RELAP analyses were conducted assuming both linear and radial flow.  The 

breakthrough curves for PFBA and Br were analyzed simultaneously, and the curves for PFBA and Cl 

were analyzed simultaneously.  The flow porosity interpreted from the tracer test was calculated by 

using the mean residence time yielded by RELAP and the equation for plug flow (Equation [8-3]).  

The flow porosities calculated by Bechtel SAIC (2004c) range from 3 x 10-3 to 6 x 10-3 for mean 

residence times of 610 and 1,210 hours (25.4 and 50.4 days), respectively.  

The effective porosities determined from tracer testing at the C-holes Complex by all methods are 

summarized in Table 8-1.  The porosities considered as representative range from 1.8 x 10-3 to 

6 x 10-3.
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8.5.2.2 Gas Tracer Tests

Freifeld (2001) discusses fracture porosities estimated from air-permeability tests and gas tracer tests 

conducted in the unsaturated portion of the Topopah Spring welded-tuff aquifer in the Exploratory 

Studies Facility (ESF) at the Yucca Mountain site.  Estimation of fracture porosity from the 

air-permeability tests used the air-injection pressure transients for tests conducted in four boreholes 

Table 8-1
Effective Porosities Determined from Tracer Testing at the C-holes Complex

Method
Effective 

Thickness 
(m)

Travel 
Time

(hours)

Fracture Porosity 
(fraction)

Bullfrog Tuff

Mean residence time from RELAP fit to first peak - radial flow 
(Bechtel SAIC, 2004c) 100 30 3 x 10-3

Mean residence time from RELAP fit to second peak - linear flow 
(Bechtel SAIC, 2004c) 100 1,020 3 x 10--2

Prow Pass Tuff

CTT - Peak-concentration arrival time and Equation (8-5) 74 168 1.8 x 10-3

CTT - Peak-concentration arrival time and Equation (8-5) 33.8 168 4.0 x 10-3

RTT - Peak-concentration arrival time Equation (8-5) 80 250 2.4 x 10-3

RTT - Peak-concentration arrival time Equation (8-5) 33.8 250 5.8 x 10-3

RTT - Moench single-porosity solution - no recirculation - 30.5 m 
mixing length (Bechtel SAIC, 2004c) 61 N/A 7 x 10-4

RTT - Moench single-porosity solution - no recirculation - 0.3 m 
mixing length (Bechtel SAIC, 2004c) 61 N/A 1.6 x 10-3

RTT - Moench single-porosity solution - partial recirculation - 
30.5 m mixing length (Bechtel SAIC, 2004c) 61 N/A 4.5 x 10-4

RTT - Moench single-porosity solution - investigation of 
uncertainty (Bechtel SAIC, 2004c) 61 N/A 2 x 10-4 to 5 x 10-4

RTT - Minimum mean residence time from RELAP fit PFBA and 
Br - radial flow (Bechtel SAIC, 2004c) 80 1,210 6 x 10-3

RTT - Maximum residence time from RELAP fit to PFBA and Br - 
linear flow (Bechtel SAIC, 2004c) 80 610 3 x 10-3

Note: Shaded values were not used in developing the effective porosity distribution for the WTA HGU (see discussion in 
text).

CTT - Conservative tracer test
N/A - Not applicable
RTT - Reactive tracer test
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drilled from a drift in the ESF.  Freifeld (2001) first developed a transient flow model that 

incorporated the geometry of the borehole and the injection flowrate of the testing gas.  He then 

performed inverse modeling of the measured pressure and flowrate data using iTOUGH2.  The 

purpose of this inversion was to develop a best estimate of both porosity and permeability as a 

function of distance from the injection borehole to an outer-boundary condition.  A range for the 

radius of the assumed outer boundary was determined using cross-hole pressure data.  Using that 

range, the porosity was estimated.  Error bounds were placed on the porosity based on the uncertainty 

in the radius of the outer boundary.  

Matrix diffusion was not included in the iTOUGH simulations.  As a result, the estimated fracture 

porosities are considered to be upper bounding estimates (Freifeld, 2001).  Pressure responses at 

nearby boreholes were reviewed in order to identify a distance at which no discernible pressure 

response was observed based on injection into the test borehole.  Table 8-2 summarizes the fracture 

porosities estimated using this method, which are 0.01 ± 0.003 for one borehole and 0.001 ± 0.0001 

for the other borehole.  Freifeld (2001) states that the pore space measured with the air-injection tests 

will be that for all connected fractures, including dead-end fractures that do not participate in 

advective transport.  As a result, the fracture porosities estimated using the results of this test are 

likely overestimates.  Therefore, these porosities were not used in developing the effective porosity 

for the WTA HGU.  

Freifeld (2001) also estimated fracture porosity from the results of two gas tracer tests conducted in 

the unsaturated portion of the Topopah Spring welded-tuff aquifer in the ESF at the Yucca Mountain 

site.  These tests consisted of injecting sulfur hexafluoride (SF6) gas into one borehole and 

withdrawing it from another borehole.  For both tests, the flow rate for tracer injection was much 

smaller than the flow rate for withdrawal.  For one test, the ratio of withdrawal flow rate to injection 

flow rate was 10:1, and for the other test, ratios of both 10:1 and 30:1 were used.  The injection and 

withdrawal boreholes for both tests were the same, with each test conducted in a different packed off 

zone.  The distance between the boreholes was 7.93 m for one zone and 9.12 m for the other zone.

Fracture porosities were estimated by two methods using breakthrough curves from the gas tracer 

tests (Freifeld, 2001).  The first method involved estimating the fracture porosity assuming plug flow 

and using Equation (8-3).  The travel time entered into the equation was the average travel time for 
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the tracer calculated as the integrated time weighted cumulative mass recovery divided by the 

integrated actual mass recovery (Freifeld, 2001).  This method to calculate the average travel time 

was used to account for the fact that tracer recovery is frequently less than 100 percent.  The 

calculated fracture porosities ranged from 6 x 10-3 to 1 x 10-2 (Table 8-2).  Freifeld (2001) states that 

these porosities should be taken as an upper bound because they were determined neglecting 

retardation of tracer arrival due to diffusion and dispersion.  Therefore, these estimates may not be 

representative in developing the effective porosity distribution for the WTA HGU. 

The gas tracer tests were also analyzed using a random-walk particle method incorporating Fickian 

transport.  The tests were analyzed in two dimensions and included the effect of dispersion and 

diffusion.  The results of the random-walk particle method simulations were matched to the observed 

breakthrough curves using fracture porosity and dispersivity as fitting parameters.  The best-fit 

fracture porosities ranged from 2 x 10-3 to 4 x 10-3.  Freifeld (2001) places a high degree of confidence 

in the fracture porosities determined using this method based on the results of an uncertainty analysis.  

An advantage of the gas tracer tests over the air-permeability tests is that the tracer tests involve only 

fractures that are hydraulically connected between the injection and withdrawal boreholes.  The 

Table 8-2
Effective Porosities from Welded-Tuff Air-Permeability and Gas Tracer Tests 

(after Freifeld, 2001)

Borehole(s) Withdrawal Rate to Injection 
Rate Ratio

Estimated Fracture Porosity 
(fraction)

58-3 N/A 1 x 10-2 ± 3 x 10-3 (a)

74-2 N/A 1 x 10-3 ± 1 x 10-4 (a)

76-2 to 75-2 10:1 1 x 10-2 (b)

76-2 to 75-2 30:1 6 x 10-3 (b)

76-4 to 75-4 10:1 9 x 10-3 (b)

76-2 to 75-2 10:1 2 x 10-3 (c)

76-2 to 75-2 30:1 4 x 10-3 (c)

76-4 to 75-4 10:1 3 x 10-3 (c)

Note: Shaded values were not used in developing the effective porosity distribution for the WTA HGU (see discussion in text).
a Estimated from air-injection pressure transients resulting from air-permeability testing.
b Estimated from gas tracer tests using the plug flow method.
c Estimated from gas tracer tests using random-walk particle method simulations.

N/A - Not applicable
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fracture porosities determined from the interpreting gas tracer tests using the random-walk particle 

method are considered to be representative of fracture porosities in the WTA HGU and were, 

therefore, used in developing the effective porosity distribution.    

8.5.2.3 Infiltration Tests

An infiltration test was conducted at the Yucca Mountain site in Alcove 1 near the North Portal of the 

ESF (Liu et al., 2003; CRWMS M&O, 2004).  The predominant lithology tested was welded tuff of 

the Tiva Canyon Tuff.  This tuff is assumed to be representative of the WTA HGU.  Alcove 1 is 

located about 30 m bgs.  The infiltration test consisted of applying water at the ground surface and 

collecting water that seeped into the alcove.  Two phases of infiltration were performed with the 

infiltration rate for the first phase higher than that for the second phase.  Bromide tracer was added to 

the infiltrating water during the late portion of the second phase.  A numerical model was used to 

calibrate to the seepage data collected in Alcove 1 during the infiltration test.  The model was 

calibrated to both phases by adjusting the hydraulic rock-properties fracture porosity, vertical fracture 

and matrix permeabilities, horizontal fracture and matrix permeabilities, the van Genuchten 

parameter, α, and a factor describing the reduction in interface area between the fractures and matrix.  

The calibrated fracture porosity was 2.8 x 10-2 for the first phase and 3 x 10-2 for the second phase 

(Liu et al., 2003; CRWMS M&O, 2004).  These porosities were not used in developing the 

distribution for the effective porosity of the WTA HGU for two reasons.  First, this test was conducted 

in near-surface (ground-surface to alcove-depth) rocks that are likely to be more fractured and exhibit 

a larger fracture porosity than the buried welded-tuff aquifers in Yucca Flat.  Second, many of the 

properties of the tested rock were unknown, resulting in a large number of fitting parameters, which 

results in large uncertainty in the calibrated parameters.

8.5.2.4 Seepage Tests

Seepage tests were conducted in the fractured middle nonlithophysal zone of the unsaturated Topopah 

Spring welded tuff at Niches 2, 3, and 4 in the ESF at the Yucca Mountain site (Bechtel SAIC, 

2004a).  This tuff is assumed to be representative of the WTA HGU.  Water was pumped into three 

boreholes above each niche.  Different tests were conducted using different test intervals within the 

boreholes.  The distance from the borehole test intervals to the top of the niches ranged from 0.58 to 

1.23 m.  The general purpose of the tests was to evaluate how much water seeps into the drift from a 



Section 8.0

Phase I Contaminant Transport Parameters for CAU 97: Yucca Flat/Climax Mine, Nye County, Nevada

8-21

localized water source of known intensity and duration.  A liquid-return, or overflow, line was used in 

each of the test intervals.  The rate of liquid release from the test intervals to the formation was 

calculated as the injection flow rate into the borehole minus the return flow rate.  Water that migrated 

from the boreholes to the niches was captured and weighed.  The seepage tests at Niche 2 were of 

short duration and the seepage tests at Niches 3 and 4 were of long duration.

Seepage data from the Niche 2 and 4 tests were used to estimate the change in volumetric water 

content (Bechtel SAIC, 2004a).  The saturated fracture volumetric water content, which is defined as 

the volume of water in the fractures divided by the bulk volume of the fractured material, was 

assumed to provide an approximation of the fracture porosity, which is defined as the fracture volume 

divided by the total volume, under saturated conditions.  Bechtel SAIC (2004a) used the wetting-front 

arrival times from the seepage tests to indirectly determine the average volumetric water contents 

using the relationship:

(8-6)

where: 
zp = depth from the water source to the leading edge of the wetting front (L), 
qs = flow rate of water supplied at the source (L/t), 
t = arrival time of the front at depth zp (t),  
θave = average water content, and 
θn = initial or antecedent or residual water content.

The change in volumetric water content change (i.e., the change in θave - θn) was calculated for zones 

where three or more seepage tests were conducted.  This change becomes the average volumetric 

water content assuming θn is negligible compared to θave.  This average volumetric water content 

approximates the fracture porosity.  The average volumetric water contents, or fracture porosities, 

calculated by Bechtel SAIC (2004a) range from 9 x 10-4 to 5.03 x 10-2, and average 1.2 x 10-2 for 20 

tests at Niche 2 and 11 tests at Niche 4.  These fracture porosities are not considered to be 

representative for estimating the effective porosity distribution for the WTA HGU at Yucca Flat.  The 

seepage tests were conducted in fractured tuff likely to have been altered due to construction of the 

niches and boreholes, resulting in estimates that are large compared to zones of undisturbed fracture 

tuff.

( )nave

s
p
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8.5.2.5 Calculations of Fracture Porosity from Fracture and Producing Zone Data in 
Test Well USW H-4

Erickson and Waddell (1985) calculated the fracture porosity for fractured volcanic tuffs in test well 

USW H-4 located near the western boundary of the NTS (Figure 8-1).  This tuff is assumed to be 

representative of the WTA HGU.  In their calculation, they assumed that each production zone in the 

well, as determined by a temperature log, was due to a single fracture.  These fractures were assumed 

to all have the same aperture and permeability.  They divided the estimated transmissivity for the well 

by the number of producing zones and then used the cubic law for flow between parallel plates to 

calculate the equivalent fracture aperture.  They then determined a correction factor to account for 

error in the sampling frequency due to the high dip angle of the fractures relative to the borehole.  The 

inverses of the cosines of the dip angle for the fractures determined from the acoustic-televiewer log 

were summed and then divided by the total number of fractures.  This calculation yielded a correction 

factor of 5.17, which was multiplied by the number of producing zones to estimate the number of 

fractures that would have been intersected by the borehole if all of the fractures had been oriented 

perpendicular to the borehole.  The fracture porosity was then calculated as the equivalent aperture of 

the fractures times the corrected number of fractures divided by the length of the production zone in 

the borehole.

The cubic law assumes flow between two smooth plates.  Erickson and Waddell (1985) used an 

empirical roughness coefficient to account for changes in flow rate through fractures due to deviation 

from smooth plates.  They arbitrarily selected roughness factors of 1.0 (corresponding to smooth 

plates), 0.1, and 0.01.  For each roughness factor, they calculated the fracture porosity for the 

estimated minimum and maximum transmissivity for the test well.  Table 8-3 summarizes the fracture 

porosities calculated by Erickson and Waddell (1985) for test well USW H-4.  The calculated values 

range from 1.1 x 10-4 to 8.4 x 10-4.  They state that the effective porosity for the tuffs at the location of 

this test well is the same or less than their calculated fracture porosities.  These fracture porosity 

estimates are relatively uncertain as a result of all of the assumptions used in their determination as 

discussed above. 
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8.5.2.6 Hydraulic Conductivity and Fracture Spacing Calculations

Rehfeldt et al. (2003) calculated fracture porosities for the volcanic rocks at the NTS based on 

interpreted hydraulic conductivities derived from pumping tests and fracture spacings determined 

from borehole logs and core surveys.  The fracture porosity was calculated using an equation that 

combines the cubic law, Darcy’s law, and the definition of fracture porosity.  The cubic law describing 

the volumetric flow rate in the direction of flow between parallel, smooth plates is given by 

Domenico and Schwartz (1990) as:

(8-7)

where: 
Q = volumetric flow rate (L3/t), 
ρw = density of water (M/L3), 
g = gravitational acceleration (L/t2) 
b = fracture aperture (L), 
μ = viscosity of water (M/Lt), 
w = fracture width perpendicular to the flow direction (L), and 

= hydraulic gradient (L/L).

Table 8-3
Estimate of Fracture Porosity of the Tuffs Penetrated 

by Test Well USW H-4 (from Erickson and Waddell, 1985)

Roughness 
Coefficient

Assumed Transmissivity (ft2/d)

2,152 8,500

Fracture Porosity (fraction)

1.0 (smooth plate) 1.1 x 10-4 1.8 x 10-4

0.1 2.5 x 10-4 3.9 x 10-4

0.01 5.3 x 10-4 8.4 x 10-4

ft2/d - Square feet per day
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Darcy’s law, which calculates the water discharge or flow rate through a porous medium in the 

direction of flow, is given by Domenico and Schwartz (1990) as:

(8-8)

where: 
K = hydraulic conductivity (L/t), and 
A = discharge area perpendicular to the flow direction (L2).

The fracture porosity is defined as:

(8-9)

where: 
φe = effective porosity (dimensionless),  
φf  = fracture porosity (dimensionless), 
vf = fracture volume (L3), and 
vt = total volume (L3).

Development of the equation to calculate fracture porosity requires the assumption of the equivalent 

porous media model.  This assumption is necessary to assign an estimation of hydraulic conductivity 

to an interval containing fractures within a geologic media.  With some algebraic manipulation, the 

equivalent porous media model shows that the product of the fracture spacing (e) and fracture width 

perpendicular to the flow direction (w) can be substituted for discharge area (A) in Equation (8-8); 

and the fracture aperture (b) can be substituted for the fracture volume (vf), and the fracture spacing 

(e) can be substituted for the total volume (vt) in Equation (8-9).  After making these substitutions, 

Equations (8-7) and (8-8) are solved for the volumetric flow rate (Q) and then set equal to solve for 

the fracture aperture (b).  The solution for the fracture aperture (b) is then substituted into 

Equation (8-9) to yield the following equation for calculation of the effective porosity (SNJV, 2005b):

(8-10)
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where e is the fracture spacing.  The two independent variables in Equation (8-10) are the fracture 

spacing and the hydraulic conductivity.  

Rehfeldt et al. (2003) used hydraulic conductivities derived from pumping tests, and fracture spacings 

derived from borehole logs and core surveys.  Of these two variables, fracture spacing is the most 

uncertain and has the largest effect on the calculated effective porosity.  The estimates of fracture 

spacing used for these calculations are uncertain and probably biased low because the surveys count 

fractures that are open at the borehole, and these fractures may have limited lateral extent or have 

been infilled before drilling but opened up as a consequence of drilling and well development 

operations.  The calculations by Rehfeldt et al. (2003) used a water density of 998.2 kilograms per 

cubic meter, a water viscosity of 1.002 grams per meter per second, and an acceleration of gravity of 

9.80665 meters per square second.  The water density and viscosity values correspond to water at a 

temperature of 20 °C.  

The frequency of fractures determined by the borehole image logs is biased due to a vertical borehole 

intersecting non-horizontal fractures.  Therefore, the fracture spacing observed in the borehole is not 

the same as the true fracture spacing, which is defined as the distance between two parallel fractures 

measured perpendicular to the fracture plane (Rehfeldt et al., 2003).  Rehfeldt et al. (2003) calculated 

a correction to account for the difference between the observed and true fracture spacing.  They first 

grouped the observed fractures according to their dip angle.  They considered three groups:  fractures 

with a dip angle between 0 and 30 degrees, those with a dip angle between 30 and 60 degrees, and 

those with a dip angle between 60 and 90 degrees.  For each of these groups, they calculated the 

observed fracture frequency as the number of fractures in the group divided by the total length of the 

interval of interest and they calculated the average dip angle.  The corrected fracture frequency was 

calculated as (Rehfeldt et al., 2003):

(8-11)

where: 
Nc = corrected fracture frequency (L-1), 
Nr = observed fracture frequency (L-1), and 
f = average fracture dip angle (degrees).

A corrected fracture frequency was calculated for each of the three groups.  The total corrected 

fracture frequency was calculated as the sum of the corrected fracture frequency of each group.  The 

)( fcos
NN r

c =
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total corrected fracture spacing, Sf, was calculated as the inverse of the total corrected fracture 

frequency:

(8-12)

The total corrected fracture spacing was then used in Equation (8-10) to calculate the fracture 

porosity.

Using this method, Rehfeldt et al. (2003) reported calculated fracture porosities for four boreholes 

completed to the WTA HGU:  ER-18-2, ER-EC-5, ER-EC-8, and UE-18r.  Fracture porosity 

calculations for these boreholes were repeated, where meaningful, using available underlying 

borehole logging and testing information.  Additional data for these wells are provided in 

SNJV (2004b).

ER-18-2

The following completion information for well ER-18-2 was taken from BN (2003).  Well ER-18-2 

consists of uncemented casing from depths of 408.1 to 653.2 m.  The casing is slotted in three about 

9-m-long intervals between the depths of 588.4 to 640.3 m.  The total length of the slotted intervals is 

51.9 m.  Below this casing, the well is completed open hole from a depth of 653.2 m to total depth at 

762.0 m.  The length of the portion of the formation not isolated from the borehole, that is the length 

adjacent to either uncemented casing or open hole, is about 353.9 m (from total depth at 762.0 m to 

depth of bottom of cemented casing at 408.1 m).  Information on the portion of the formation 

producing fluid is not available for ER-18-2 because flow logging was not conducted in this well 

(IT, 2002a).  Although estimates of transmissivity are available for ER-18-2 (IT, 2002a), the 

appropriate thickness for calculation of hydraulic conductivity for use in Equation (8-10) is unknown.  

Therefore, porosity values were not calculated for ER-18-2.

ER-EC-5

IT (2002d) reports hydraulic conductivities for eight of the nine screened intervals in well ER-EC-5 

determined from analysis of flow logging data.  The flow rate was too low in one of the screened 

intervals to determine a hydraulic conductivity.  The screens are configured into three groups 

consisting of three screens each.  A filter pack is adjacent to each group.  The filter packs are 

c
f N

S 1
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separated by cement plugs.  The length of the filter packs is longer than that of the screened intervals.  

This leads to some uncertainty in the appropriate thickness to use in calculating hydraulic 

conductivity from interpreted transmissivity values.  IT (2002d) calculated hydraulic conductivities 

using both the length of the screen interval and the length of the filter pack to obtain maximum and 

minimum values, respectively.  They calculated a hydraulic conductivity for each logging run using 

three interpretation methods.  In determining the hydraulic conductivity for use in calculating the 

fracture porosity, all hydraulic conductivities reported by IT (2002d) assuming the screen length were 

averaged to get a maximum value and all of the hydraulic conductivities assuming the filter pack 

length were averaged to get a minimum value.

Fracture density and dip data are available for well ER-EC-5 in IT (2001) based on interpretation of 

ultrasonic borehole imager and micro-resistivity electronic scanner logs.  Fracturing in the borehole at 

the location of the upper filter pack/screen group is not available because the portion of the image log 

across this interval was of poor quality and was not analyzed (IT, 2001).  Therefore, fracture 

porosities could not be calculated for the upper three screen intervals.  IT (2001) identified fractures 

as either conductive or resistive.  A fracture was identified as conductive if it was a dark feature and if 

its topography produced by low acoustic response was negative.  A fracture was identified as resistive 

if it was a white feature and had a positive topography.  A total of 35 conductive fractures were 

observed in ER-EC-5 across the logged thickness of 188.7 m (IT, 2001).  Twenty-five of the fractures 

dipped at an angle between 0 and 30 degrees, and 10 dipped at an angle between 30 and 60 degrees.  

Assuming the average dip angle is the average of the dip for each group (e.g., average dip angle is 

15 degrees for fractures with a dip angle between 0 and 30 degrees), the fracture spacing calculated 

using Equations (8-11) and (8-12) is 4.7 m.  This spacing is an average spacing across the entire 

logged interval having good image quality.  The fracture density plot in IT (2001) indicates that the 

density of fractures is higher across screen intervals 4 through 6 than across intervals 7 through 9.  

This difference could not be incorporated into the calculation of fracture spacing, however, because 

individual fracture locations and dips are not reported in IT (2001).  The calculated spacing of 4.7 m 

is about twice that used by Rehfeldt et al. (2003).  The difference between the two spacings could not 

be reconciled because the specific fracture data used by Rehfeldt et al. (2003) was not available.  The 

calculated fracture porosities for well ER-EC-5, which are summarized in Table 8-4, range from 

1.3 x 10-4 to 3.7 x 10-4.
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ER-EC-8

IT (2002g) reports hydraulic conductivities for 6 of the 10 screened intervals in well ER-EC-8 

determined from analysis of flow logging data.  Two of the screens are completed across partially 

Table 8-4
Fracture Porosities Calculated for the Welded-Tuff Aquifers 

from Hydraulic Conductivity and Fracture Spacing Using Equation (8-10)

Well Interval 
Name

Hydraulic Conductivity 
(m/s) Fracture 

Spacing 
(m)

Calculated Fracture 
Porosity (fraction) HGU

Minimum Maximum Minimum Maximum

ER-18-2 Value not calculated due to large uncertainty in effective interval thickness WTA

ER-EC-5 Screen 
Interval 1 4.24 x 10-5 6.93 x 10-5 NA a N/A N/A WTA

ER-EC-5 Screen 
Interval 2 4.35 x 10-5 1.23 x 10-4 NA a N/A N/A WTA

ER-EC-5 Screen 
Interval 3 NC b NC b NA a N/A N/A WTA

ER-EC-5 Screen 
Interval 4 1.58 x 10-4 3.37 x 10-4 4.7 2.1 x 10-4 2.7 x 10-4 WTA

ER-EC-5 Screen 
Interval 5 3.18 x 10-4 8.85 x 10-4 4.7 2.6 x 10-4 3.7 x 10-4 WTA

ER-EC-5 Screen 
Interval 6 1.05 x 10-4 4.22 x 10-4 4.7 1.8 x 10-4 2.9 x 10-4 WTA

ER-EC-5 Screen 
Interval 7 4.92 x 10-5 1.42 x 10-4 4.7 1.4 x 10-4 2.0 x 10-4 WTA

ER-EC-5 Screen 
Interval 8 5.48 x 10-5 1.52 x 10-4 4.7 1.4 x 10-4 2.0 x 10-4 WTA

ER-EC-5 Screen 
Interval 9 4.09 x 10-5 1.82 x 10-4 4.7 1.3 x 10-4 2.2 x 10-4 WTA

ER-EC-8 Values not calculated due to borehole characteristics inconsistent
with WTA HGU conceptualization WTA

UE-18-r Completion 
interval 3.22 x 10-6 0.76 1.9 x 10-4 WTA

Note:  Shaded value was not used in developing the effective porosity distribution for the WTA HGU  (see discussion in text).
a Not available due to poor image log quality (IT, 2001).
b Not calculated due to low flow rate (IT, 2002d).

m/s - Meters per second
N/A  -  Not applicable
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welded tuff, one is completed across moderately welded tuff, and seven are completed across the tuff 

confining unit.  Interpretation of flow logging results yields higher hydraulic conductivities for the 

tuff confining unit than for the partially and moderately welded tuff (IT, 2002g).  Fracture density and 

dip data are available for well ER-EC-8 in IT (2001) based on interpretation of ultrasonic borehole 

imager logs.  They report no fractures in the partially welded tuff and only a few fractures in the 

moderately welded tuff.  The lack of fracturing and low hydraulic conductivities, relative to the tuff 

confining unit, for the welded tuff at this borehole is inconsistent with the conceptualization of the 

WTA HGU as a transmissive, fractured unit.  Therefore, fracture porosities were not calculated from 

the hydraulic conductivity and fracture spacing for this well.  

UE-18r

Blankennagel and Weir (1973) report a transmissivity for well UE-18r of 23,000 gallons per day per 

foot (gpd/ft), which converts to 3.31 x 10-3 square meters per second (m2/s).  The length from the top 

of the uppermost screen in this well to the bottom of the lowermost screen is 1,028.7 m.  For this 

length, the calculated hydraulic conductivity is 3.22 x 10-6 m/s.  Well UE-18r is completed across 

welded-tuff and lava-flow aquifers.  Analysis of 35.7 m of core from this well yielded 42 fractures, 

26 percent of which were high-dip open fractures (60 to 90 degrees) and 7 percent of which were 

medium-dip open fractures (30 to 60 degrees) (Drellack et al., 1997).  All other fractures were 

identified as closed and were not used in the calculation of fracture spacing.  The fracture spacing 

calculated using Equations (8-11) and (8-12) for open fractures is 0.76 m.  This spacing is highly 

uncertain as representative of the tested formation interval because it is based on only 35.7 m of core, 

but the completion interval is 1,028.7 m thick.  The fracture porosity calculated from the fracture 

spacing and hydraulic conductivity is 1.9 x 10-4.  This porosity is highly uncertain because of the 

uncertainty in the fracture spacing.  Therefore, this fracture porosity was not used in developing the 

effective porosity distribution for the WTA HGU at Yucca Flat.

8.5.2.7 Fracture Aperture, Density, Orientation, and Percent Open Area Calculations

Regional groundwater flow and 3H transport models used to evaluate migration from the underground 

testing areas of the NTS are presented in DOE/NV (1997a).  They compiled existing and new 

hydrogeologic data for a large portion of southern Nevada and California, including the NTS.  Using 

the fracture aperture, density, orientation, and percent open area data from seven wells in Pahute 

Mesa, they calculated fracture porosities for the welded-tuff aquifer ranging from 6.1 x 10-6 to 
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2.3 x 10-4 (Table 8-5).  Using these data, DOE/NV (1997a) selected a range of 2 x 10-6 to 5 x 10-4 for 

the effective porosity of fractured volcanic rock for their modeling of 3H transport at the NTS.  The 

specific data and method used by DOE/NV (1997a) to calculate these fracture porosities were not 

reported.  Therefore, these values are considered to be uncertain and were not used in developing the 

effective porosity distribution for the WTA HGU at Yucca Flat. 

8.5.2.8 Literature Review of Basin and Range Province Rocks

Bedinger et al. (1989) developed distributions for hydraulic properties of rocks in the Basin and 

Range Province in the southwestern United States.  They conducted a literature review of hydraulic 

conductivity and effective porosity for rocks in the Basin and Range Province and for rocks of similar 

types in other areas.  The collected data were then synthesized, and the mean and 16.5 and 

93.5 percentiles were determined for each rock type.  Table 8-6 summarizes their findings of effective 

porosity for welded tuff.  Because the degree to which the characteristics of the rocks found in the 

review by Bedinger et al. (1989) match the characteristics of the WTA HGU at Yucca Flat is 

unknown, these effective porosities were not used in developing the effective porosity distribution for 

the WTA HGU at Yucca Flat.

8.5.2.9 Values Used in Previous NTS Modeling Studies

Wolfsberg et al. (2002) simulated the migration of radionuclides from the BENHAM and TYBO 

underground nuclear tests at Pahute Mesa in response to the observation of radionuclides in 

groundwater wells ER-20-5#1 and ER-20-5#3 located downgradient of the cavities.  These wells are 

located about 1.3 km and 300 m from the BENHAM and TYBO cavities, respectively.  The working 

Table 8-5
Calculated Fracture Porosities for the Welded-Tuff Aquifer (after DOE/NV, 1997a)

Unit Description Calculated Fracture Porosity Range 
(fraction)

Timber Mountain Aquifer (TMA) Uppermost welded tuffs 2.2 x 10-5 to 2.1 x 10-4

Belted Range Aquifer (TBA) Welded tuffs above the 
basal confining unit 1.2 x 10-5 to 4.4 x 10-5

Basal Aquifer (BAQ) Welded tuffs 6.1 x 10-6 to 2.3 x 10-4

Note: Shaded values were not used in developing the effective porosity distribution for the WTA HGU  
(see discussion in text).
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point of BENHAM and the sampling location in a lava formation of well ER-20-5#3 are at about the 

same elevation.  Well ER-20-5#1 samples a welded-tuff aquifer that is just above the working point of 

TYBO and more than 500 m above the working point of BENHAM.  Wolfsberg et al. (2002) used a 

reactive, dual-porosity transport model to simulate contaminant migration from BENHAM to the 

observations wells and the NTS boundary in a 3-D, heterogeneous flow field.  For these simulations, 

they calculated low and high fracture porosity estimates for the welded-tuff aquifer and then 

calculated a base case value as the log average of the high and low values.  The low and high values 

were calculated using fracture spacing and fracture aperture data from Drellack et al. (1997) assuming 

a parallel-plate model.  The low value was determined assuming a single set of parallel fractures, and 

the high value was determined assuming three orthogonal fracture sets.  Table 8-7 summarizes the 

fracture porosity values given in Wolfsberg et al. (2002).  In their simulation of 30 equally likely 

realizations of the heterogeneous flow field using the base case parameter values, they found that one 

of the realizations generated transport results consistent with field observations.  This supports that 

the base case fracture porosity determined by Wolfsberg et al. (2002) may be an appropriate effective 

porosity at larger scales.  However, this interpreted value is uncertain because it represents just one 

realization that provided a match of simulated versus field transport results.

8.5.2.10 Recommended Ranges in Previous NTS Data Document Reports

Distributions and ranges of effective porosity for the WTA HGU for use in groundwater flow and 

contaminant transport models have been estimated and reported for Pahute Mesa (Rehfeldt et al., 

2003) and Frenchman Flat (SNJV, 2005b).  Rehfeldt et al. (2003) recommended a range from 1 x 10-5 

Table 8-6
Effective Porosity Estimates for Welded Tuff in the Basin 

and Range Province (after Bedinger et al., 1989)

Rock Type Description
Effective Porosity (fraction)

16.5 Percentile Mean 83.5 Percentile

Tuff

Welded and fractured 2 x 10-2 3 x 10-2 4 x 10-2

 Welded and moderately 
fractured to dense 4 x 10-4 1 x 10-3 3 x 10-3

Note: Shaded values were not used in developing the effective porosity distribution for the WTA HGU  
(see discussion in text).
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to 0.1 for Pahute Mesa.  The SNJV (2005b) report recommended a range of 1.4 x 10-5 to 5.2 x 10-4 for 

the CAU-scale modeling for Frenchman Flat.  These ranges are superseded by the range developed 

from the more recent analyses presented above.

8.5.2.11 Summary and Recommended Distribution

The previous sections discussed fracture porosity data for the WTA HGU determined by several 

methods and used or recommended in previous NTS modeling studies.  The values used in 

developing the distribution for the effective porosity must be consistent with the conceptual model 

that will be used for the WTA HGU in the CAU-scale flow and transport model.  That 

conceptualization is one of a double-porosity system with advective flow and transport through 

fractures only and matrix participation only through molecular diffusion from and to the fractures.  

The fracture porosities considered to be consistent with this conceptualization are summarized in 

Table 8-8 and graphically illustrated in Figure 8-3.      

The fracture porosities calculated from hydraulic conductivities and fractures spacings are 

consistently lower, by about one order of magnitude, than those calculated using peak-concentration 

arrival times from convergent-flow tracer tests.  The cause of this discrepancy has been addressed by 

Tsang (1984 and 1992).  This difference is a function of the portion of the aperture distribution within 

the fracture that participates during hydraulic and tracer tests.  For hydraulic tests, the effective 

aperture will be most impacted by the smaller aperture regions because those are the areas that offer 

the most resistance to flow (Tsang, 1992).  The influence of fracture roughness and contact area, 

resulting in tortuous flow and reduction in flow rate, is largest when there is a larger fraction of small 

Table 8-7
Fracture Porosities Used by Wolfsberg et al. (2002)

 for the Welded-Tuff Aquifer

Value Fracture Porosity (fraction)

Low Value 7.00 x 10-5

Base Case Value 4.98 x 10-4

High Value 3.54 x 10-3

Note: Shaded values were not used in developing the effective porosity 
distribution for the WTA HGU.
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Table 8-8
Summary of Estimated Effective Porosity Ranges for the WTA HGU 

and Recommended Range for the Yucca Flat/Climax Mine CAU-Scale Model

Source
Effective Porosity (fraction)

Location Method DDE_F
Minimum Maximum

Groundwater Tracer Tests

Bechtel SAIC, 2004c 3 x 10-3 Bullfrog Tuff at C-holes Complex at 
Yucca Mountain

Plug flow method (Equation [8-3]) using 
mean residence time from RELAP 
analysis

3

Bechtel SAIC, 2004c 3 x 10-3 6 x 10-3 Prow Pass Tuff at C-holes Complex at 
Yucca Mountain

Plug flow method (Equation [8-3]) using 
mean residence time from RELAP 
analysis

3

Current Report 1.8 x 10-3 5.8 x 10-3 Prow Pass Tuff at C-holes Complex at 
Yucca Mountain

Plug flow method (Equation [8-5]) using 
peak-concentration arrival time 1

Gas Tracer Tests

Freifeld, 2001 2 x 10-3 4 x 10-3 Exploratory Studies Facility at Yucca 
Mountain

Random-walk particle method analysis of 
breakthrough curves 3

Calculated from Producing Zone and Fracture Data

Erickson & Waddell, 1985 1.1 x 10-4 8.4 x 10-4 Test well USW H-4
Calculated using fracture orientation, 
fracture frequency, and production zone 
data

3

Calculated from Hydraulic Conductivity and Fracture Spacing Data

Current Report 1.3 x 10-4 3.7 x 10-4 Well ER-EC-5 at Pahute Mesa

K from hydraulic tests; fracture spacing 
calculated using Equations (8-11) and 
(8-12); porosity calculated using 
Equation (8-10)

1

Used in Previous NTS Modeling Studies

Wolfsberg et al., 2002 4.98 x 10-4 TYBO/BENHAM Base case value; one of 30 flow field 
realizations fitted 1

Recommended Range for the Yucca Flat/Climax Mine CAU-Scale Flow and Transport Model

Current Report 1 x 10-4 6 x 10-3 Yucca Flat Recommended range based on review 
and analyses N/A

K - Hydraulic conductivity
N/A - Not applicable
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Figure 8-3
Estimated Effective Porosity Ranges for the Welded-Tuff Aquifer Hydrogeologic Unit
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aperture regions (Tsang, 1984).  The parallel-plate conceptualization is based on the assumption that 

roughness and tortuous flow caused by the aperture variation with the fracture have no effect on fluid 

flow.  Moreover, tracer tests measure a volumetric flow rate that is not affected by the tortuous flow 

resulting from aperture variation.  Therefore, the migration during tracer tests is controlled by the 

arithmetic mean of the fracture apertures (Tsang, 1992).  Hydraulic conductivities from hydraulic 

tests will be controlled by the small aperture regions in the fracture system, and they will yield 

smaller fracture porosities calculated using the cubic law than will fracture porosities calculated from 

tracer tests that are controlled by the mean fracture aperture.  Thus, the fracture porosities calculated 

from hydraulic conductivity and fracture spacing will likely be consistently biased lower than those 

calculated from tracer test results.  This conclusion suggests that the fracture porosities determined 

from hydraulic conductivities and fracture spacings are too low to be representative for modeling 

transport at the CAU scale.  This consideration should be included in developing the effective 

porosity distribution for the Yucca Flat/Climax Mine CAU flow and transport model.

Although the arrival time of the peak concentration from a convergent-flow tracer test provides a 

good estimate of the fracture porosity assuming plug flow, it yields a value that is biased slightly high 

for double-porosity media.  This occurs because the plug flow calculation neglects the effects of 

matrix diffusion, which acts to retard the tracer.

Based on the results of the evaluation of fracture porosities for the WTA HGU, a range in effective 

porosity of 1 x 10-4 to 6 x 10-3 (interpreted values are rounded to one significant figure) is 

recommended for the WTA HGU at Yucca Flat (Table 8-8 and Figure 8-3).  The recommended 

distribution for sampling this range is skewed log triangular with a peak at 3 x 10-3.  This distribution 

reflects the fact that fracture porosities determined from tracer tests are considered more 

representative and less uncertain than those determined from hydraulic conductivities and fracture 

spacings. 

8.5.3 The Vitric-Tuff Aquifer Hydrogeologic Unit

The VTA HGU consist of nonzeolitized, nonwelded ash-flow and bedded tuff units and, in general, is 

saturated only in the deepest portion of the basin and does not extend much below the water table 

(BN, 2006).  The VTA HGU is defined by three HSUs: the TM-UVTA, TM-LVTA, and LVTA 

(BN, 2006).  Fractures are not common in the VTA HGU because it tends to be poorly to moderately 
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indurated (BN, 2006).  Winograd and Thordarson (1975), Borg et al. (1976), and Blankennagel and 

Weir (1973) indicate that the formation and maintenance of open fractures is rare in ash-fall and 

nonwelded or slightly welded ash-flow tuffs due to their soft, friable nature.  Winograd and 

Thordarson (1975) state that the bedded-tuff aquifers (assumed to be equivalent to the VTA HGU) 

“store and transmit ground water chiefly through primary or interstitial openings.”  Bechtel 

Nevada (2006) states that the interstitial porosity for the VTA HGU ranges from about 20 to 

40 percent and its transmissivity is low.  

Due to the lack of open fractures and the high interstitial porosity in the VTA HGU, flow through it is 

considered to be diffuse rather than fracture dominated.  As a result, the effective porosity is 

considered to be a fraction of the matrix porosity for this HGU.  Details regarding the recommended 

matrix porosity distribution for the VTA HGU at Yucca Flat are provided in Section 7.0.  The 

effective porosity of this HGU is estimated to range from 80 to 100 percent of the matrix porosity 

because the VTA HGU is only slightly welded and has a soft, friable nature.

8.5.4 The Lava-Flow Aquifer Hydrogeologic Unit

The LFA HGU at Yucca Flat is defined by two HSUs:  the BLFA and PRETBG.  All occurrences of 

basalt beneath Yucca Flat are included in the BLFA HSU.  Basalt has been identified in drill holes 

UE-1h and UE-1j in western Yucca Flat (Drellack and Thompson, 1990) and along the eastern side of 

Yucca Flat in the northern portion of Halfpint Range (Byers and Barnes, 1967).  The BLFA is 

unsaturated within the Yucca Flat model area (BN, 2006).  Separate local peralkaline lava flows that 

erupted before the Grouse Canyon Tuff make up the PRETBG HSU.  These lava flows are located 

north of Yucca Flat in the northwest corner of the model area.  Only small portions of this HSU are 

saturated (BN, 2006).  In general, the lava-flow aquifers are dense and, as a result, tend to be fractured 

(BN, 2006).  Blankennagel and Weir (1973) state that most groundwater flow in the rhyolitic lava 

flows in Pahute Mesa “occurs along faults and interconnected vertical and horizontal fracture systems 

that developed during cooling and shrinkage of the lava flow.”  

The LFA HGU will be conceptualized as a double-porosity medium in the flow and transport model 

of the Yucca Flat/Climax Mine CAU due to its fractured nature.  A double-porosity conceptualization 

consists of fractures and matrix.  Advective and diffusive flow and transport are assumed to occur 

exclusively in the fractures.  Interaction between the fractures and matrix is restricted to molecular 
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diffusion from the fractures to the matrix and vice versa.  It is assumed that no advective flow or 

transport occurs in the matrix.  In order to appropriately represent the LFA HGU in the CAU-scale 

model, the recommended distribution for the effective porosity must be consistent with this model 

conceptualization.  Data sources relevant for estimating the effective porosity of the LFA HGU are 

described below.

8.5.4.1 Tracer Tests

The most extensive information regarding lava-flow aquifers at the NTS was obtained from the 

BULLION Forced-Gradient Experiment (FGE) conducted at Pahute Mesa.  The following general 

description of this experiment was taken from IT (1998).  The BULLION FGE consisted of the 

injection of solute and microsphere tracers into a fractured lava-flow aquifer at a location 

downgradient of the BULLION nuclear test.  Three wells were installed in an approximate line 

oriented consistent with the major fracture system.  Tracers were injected into two wells (ER-20-6#1 

and ER-20-6#2), while the third well (ER-20-6#3) was pumped at an average rate of 7.3 L/s.  Within 

about three days of injection, pumping of both tracer-injection wells at a rate of about 0.3 L/s began.  

The purpose of this pumping was (1) to provide tracer pumpback data, (2) to sample for radionuclides 

migrating from the BULLION cavity due to the flow field induced by the pumping well, and 

(3) to provide data regarding transport of tracers from tracer-injection well ER-20-6#1 to 

tracer-injection well ER-20-6#2.  The tracer-injection wells are located approximately 89 and 132 m 

from the pumping well (ER-20-6#3).

Tracer recovery was observed in the pumping well and in the tracer-injection well located closest to 

the pumping well for a total of three flow paths for data analysis.  Two of the flow paths were from 

the tracer-injection wells (ER-20-6#1 and ER-20-6#2) to the pumping well (ER-20-6#3), and the 

third flow path was from the tracer-injection well located 130 m from the pumping well (ER-20-6#1) 

to the tracer-injection well located 89 m from the pumping well (ER-20-6#2).  Samples were 

analyzed for the injected tracers as well as for radionuclides originating from the BULLION test.  

Well characterized breakthrough curves were observed for the tracers injected during the experiment, 

but little information regarding migration of radionuclides from the BULLION cavity was obtained.

IT (1998) interpreted the breakthrough curves from the BULLION FGE using two methods.  First, 

they used a plug flow method (Equation [8-3]) assuming the average groundwater travel time is 
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approximated as the time of arrival of the peak concentration.  The parameters and calculated 

porosities obtained by IT (1998) are summarized in Table 8-9.  They performed this analysis only on 

the solute breakthrough curves observed at the pumping well and obtained calculated effective 

porosities of 6.8 x 10-3 and 4.9 x 10-3.  

IT (1998) also interpreted the results from the BULLION FGE using the numerical model 

MODFLOWT, which they modified to add matrix diffusion capabilities.  After calibrating the model 

to the flow data, they calibrated it to the tracer data observed in the pumping well.  Their primary 

fitting parameters for the calibration were effective porosity, matrix porosity, longitudinal 

dispersivity, and effective matrix diffusion coefficient.  If needed to obtain a better fit between the 

simulated and observed data, they also adjusted the fracture spacing, hydraulic anisotropy ratios, and 

the amount of water injected or withdrawn from the upper and lower portions of the tested interval.  

Table 8-10 summarizes their model parameters and transport calibration results for the solute tracer 

breakthrough curves observed at the pumping well.  Based on calibration to the tracer breakthrough 

curves observed in the pumping well, the analyses by IT (1998) yielded effective porosities of 

1.8 x 10-2 and 2.3 x 10-2.   

IT (1998) also conducted nine alternative calibrations to the breakthrough curves for tracers injected 

into ER-20-6#1 and recovered in the pumping well.  These alternatives showed that the calibration is 

non-unique and the calibrated parameter values are uncertain.  A factor of two is estimated for 

uncertainty for effective porosity because any change greater than a factor of two would make 

Table 8-9
Estimate of Effective Porosity for the BULLION Forced-Gradient 

Experiment Based on Plug Flow Calculations (after IT, 1998)

Parameter
Transport from Tracer-Injection 

Well ER-20-6#1 to Pumping 
Well ER-20-6#3

Transport from Tracer-Injection 
Well ER-20-6#2 to Pumping 

Well ER-20-6#3

Peak-Concentration Arrival Time 41 days 26 days

Discharge Rate 7.6 L/s 7.6 L/s

Aquifer Thickness 100 m 100 m

Radial Distance 131.5 m 89.16 m

Calculated Effective Porosity 6.8 x 10-3 4.9 x 10-3



Section 8.0

Phase I Contaminant Transport Parameters for CAU 97: Yucca Flat/Climax Mine, Nye County, Nevada

8-39

calibration to the observed data extremely difficult.  The effective porosities obtained with the 

alternative calibrations were 1.8 x 10-2, 3.6 x 10-2, and 9 x 10-3. 

The results of the MODFLOWT calibration to the BULLION FGE are considered to be uncertain 

because of the large number of parameters varied to obtain a match between measured and simulated 

breakthrough curves.  The model consisted of six layers, and the amount of water injected into or 

withdrawn from two of those layers was varied during the calibration.  For the calibrated transient 

flow model, which was used for calibration of the transport model, the amount of flow into and out of 

these two layers in the model was different for all three wells.  Hydraulic conductivity zones were 

incorporated into the model in each of the six layers, and the amount of data available to support the 

zone locations and values was limited.  Two of the fitting parameters for the transport calibration are 

matrix porosity and effective matrix diffusion coefficients.  Both of these parameters have a large 

impact on the tracer travel time in the formation, and thus on the interpreted effective porosity.  For 

these reasons, the effective porosities determined with the MODFLOWT model are considered to be 

Table 8-10
Effective Porosities from the IT (1998) Numerical Model Calibration to Tracer 

Recovery During the BULLION Forced-Gradient Experiment

Parameter

DFBA Transport from 
Injection Well 

ER-20-6#1 to Pumping 
Well ER-20-6#3

Iodide Transport from 
Injection Well 

ER-20-6#1 to Pumping 
Well ER-20-6#3

PFBA Transport from 
Injection Well 

ER-20-6#2 to Pumping 
Well ER-20-6#3

Fracture Spacing 0.25 m 0.25 m 0.25 m

Matrix Porosity 0.35 0.35 0.35

Effective Matrix 
Diffusion Coefficient 1.2 x 10-6 m2/d 1.6 x 10-6 m2/d 1.35 x 10-6 m2/d

Dispersivity

   longitudinal 
   transverse 
   vertical

10 m
3 m
2 m

10 m
3 m
2 m

10 m
3 m
2 m

Portion of Mass Injected into Tested Interval

   upper interval 
   lower interval

35%
65%

35%
65%

75%
25%

Effective Porosity 1.8 x 10-2 1.8 x 10-2 2.3 x 10-2

DFBA - Difluorobenzoic acid
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somewhat uncertain but were included in developing the effective porosity distribution for the LFA 

HGU at Yucca Flat.

The BULLION FGE was also analyzed by Reimus and Haga (1999).  They used the semi-analytical 

model RELAP to interpret the solute and microsphere data from the cross-hole breakthrough curves.  

They did not interpret the breakthrough curves from pumpback of the injection wells.  As a sensitivity 

analysis, Reimus and Haga (1999) evaluated the effects of radial versus linear flow, a finite rather 

than infinite matrix, and rate limited versus equilibrium sorption.  The fitting parameters for model 

calibration were the tracer mass fraction participating in the test, the mean fluid residence time, the 

Peclet number (equal to the distance between the injection and withdrawal wells divided by the 

longitudinal dispersivity), and an effective mass transfer coefficient for diffusion into the matrix 

(equal to the matrix porosity divided by the fracture half aperture times the square root of the matrix 

diffusion coefficient).  The fitting parameters were manually adjusted to achieve a least squared fit of 

the simulated data to the observed data.  The effective porosities for the calibrated results were 

determined directly from the fitted mean residence time using the equation for plug flow 

(Equation [8-3]).  

The effective porosities obtained by Reimus and Haga (1999) for their model fits to the various 

cross-hole breakthrough curves are summarized in Table 8-11.  In their analysis of the breakthrough 

curve for tracer travel from injection well ER-20-6#1 to injection well ER-20-6#2, they considered 

two scenarios for the source of tracer movement.  The first scenario assumed movement between 

these two wells was due solely to the pumping in injection well ER-20-6#2 and the second scenario 

assumed the movement was due solely to the pumping in pumping well ER-20-6#3.  Their analyses 

for the various transport paths yielded effective porosities ranging from 3.6 x 10-4 to 2.1 x 10-2.  Note 

that the mean residence times (66.7 to 81.3 days) that Reimus and Haga (1999) obtained with RELAP 

are significantly larger than the peak-concentration arrival time of 41 days for the pathway from 

well #1 to well #3.  For the pathways from well #2 to well #3, the peak-concentration arrival time is 

26 days, and the mean residence times from Reimus and Haga (1999) range from 53.1 to 96.9 days.

8.5.4.2 Hydraulic Conductivity and Fracture Spacing Calculations

Rehfeldt et al. (2003) calculated fracture porosities for the volcanic rocks at the NTS based on 

hydraulic conductivities derived from pumping tests and on fracture spacings determined from 
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borehole logs and core surveys.  The fracture porosity was calculated using an equation that combines 

the cubic law, Darcy’s law, and the definition of fracture porosity.  This method for estimating 

fracture porosity is described in detail in Section 8.5.2.6.  Rehfeldt et al. (2003) reported calculated 

fracture porosities, using this method, for seven boreholes completed to the LFA HGU:  ER-20-6#1, 

ER-20-6#2, ER-EC-1, ER-EC-4, ER-EC-6, ER-EC-7, and UE-18r.  Fracture porosity calculations for 

these boreholes were repeated using available underlying borehole logging and testing information.  

Those calculations are described below and the calculated porosities are summarized in Table 8-12. 

ER-20-6#1

IT (1998) reports transmissivities for well ER-20-6#1 based on analysis of hydraulic responses during 

the BULLION FGE.  The drawdown data were analyzed using both the Theis equation for a confined 

aquifer and using a dual-porosity model for a fractured formation.  The recovery data were also 

analyzed using the Theis equation.  Well ER-20-6#1 is completed with a gravel or sand pack adjacent 

to the lava-flow aquifer, which is 132.6 m thick at the location of this well (BN, 1997a).  The 

transmissivities reported in IT (1998) were converted to hydraulic conductivities using this thickness.  

Table 8-11
Effective Porosities from the Reimus and Haga (1999) 
Analysis of the BULLION Forced-Gradient Experiment

Travel Path a Source of Tracer 
Migration

Mean Residence Time
(hr)

Effective Porosity
(fraction)

Linear Flow Radial Flow Linear Flow Radial Flow

Injection Well #1 to 
Pumping Well #3 Well #3 Pumping 1,950 1,600 8.0 x 10-3 6.6 x 10-3

Injection Well #1 to 
Injection Well #2 Well #2 Pumping 300 210 5 x 10-4 3.6 x 10-4

Injection Well #1 to 
Injection Well #2 Well #3 Pumping 300 210 2.3 x 10-3 1.6 x 10-3

Injection Well #2 to 
Pumping Well #3 Well #3 Pumping 2,325 1,675 2.1 x 10-2 (b) 1.5 x 10-2 (b)

Injection Well #2 to 
Pumping Well #3 Well #3 Pumping 1,825 1,275 1.6 x 10-2 (c) 1.1 x 10-2 (c)

a Well #1 is ER-20-6#1, well #2 is ER-20-6#2, and well #3 is ER-20-6#3.
b Assumes smallest value of effective mass transfer coefficient as determined for well #1 to well #3 travel path.
c Assumes largest value of effective mass transfer coefficient as determined for well #1 to well #3 travel path.
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Table 8-12
Fracture Porosities Calculated for Lava-Flow Aquifers 

from Hydraulic Conductivity and Fracture Spacing Using Equation (8-10)

Well Interval 
Name

Hydraulic Conductivity 
(m/s) Fracture 

Spacing 
(m)

Calculated Fracture 
Porosity (fraction) HGU

Minimum Maximum Minimum Maximum

ER-20-6#1 Completion 
Interval 2.06 x 10-5 3.07 x 10-5 0.59 4.2 x 10-4 4.8 x 10-4 LFA

ER-20-6#2 Completion 
Interval 1.23 x 10-5 1.82 x 10-5 1.7 1.7 x 10-4 2.0 x 10-4 LFA

ER-EC-1 Screen 
Interval 1 1.98 x 10-4 6.11 x 10-4 3.9 2.5 x 10-4 3.7 x 10-4 LFA

ER-EC-1 Screen 
Interval 2 4.46 x 10-5 1.24 x 10-4 3.9 1.5 x 10-4 2.2 x 10-4 LFA

ER-EC-1 Screen 
Interval 3 1.19 x 10-4 3.30 x 10-4 3.9 2.1 x 10-4 3.0 x 10-4 LFA

ER-EC-1 Screen 
Interval 4 1.26 x 10-5 3.57 x 10-5 3.9 1.0 x 10-4 1.4 x 10-4 LFA

ER-EC-4 Screen 
Interval 1 3.42 x 10-4 6.63 x 10-4 8.0 1.9 x 10-4 2.3 x 10-4 LFA

ER-EC-4 Screen 
Interval 2 3.23 x 10-4 9.14 x 10-4 8.0 1.8 x 10-4 2.6 x 10-4 LFA

ER-EC-4 Screen 
Interval 3-1 3.27 x 10-4 5.66 x 10-3 8.0 1.8 x 10-4 4.8 x 10-4 LFA

ER-EC-6 Values not calculated due to borehole characteristics 
inconsistent with LFA HGU conceptualization LFA

ER-EC-7 Screen 
Interval 1 1.51 x 10-5 3.11 x 10-5 6.8 7.4 x 10-5 9.4 x 10-5 LFA

ER-EC-7 Screen 
Interval 2 1.31 x 10-4 1.97 x 10-4 4.8 1.9 x 10-4 2.2 x 10-4 LFA

UE-18r Completion 
Interval 3.22 x 10-6 0.76 1.9 x 10-4 LFA

Note: Shaded values were not used in developing the effective porosity distribution for the LFA HGU (see discussion in text).
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Fracture location and dip data for ER-20-6#1 are available in Data Tracking Number (DTN) 1161 of 

the Common Data Repository (CDR).  A corrected fracture spacing of 0.59 m was calculated from 

these data for the lava-flow aquifer using Equations (8-11) and (8-12).  The minimum and maximum 

fracture porosities calculated for this well from the minimum and maximum reported transmissivities 

using Equation (8-10) are 4.2 x 10-4 and 4.8 x 10-4, respectively.

ER-20-6#2

IT (1998) reports transmissivities for well ER-20-6#2 based on analysis of hydraulic responses during 

the BULLION FGE.  The drawdown data were analyzed using both the Theis equation for a confined 

aquifer and using a dual-porosity model for a fractured formation.  The recovery data were also 

analyzed using the Theis equation.  Well ER-20-6#2 is completed with a gravel or sand pack adjacent 

to the upper 139 m of the 195.4-m-thick lava-flow aquifer at the location of this well 

(DOE/NV, 1998).  The transmissivities reported in IT (1998) were converted to hydraulic 

conductivities using a thickness of 139 m.  Fracture location and dip data for ER-20-6#2 are available 

in DTN 1161 of the CDR.  A corrected fracture spacing of 1.7 m was calculated from these data for 

the lava-flow aquifer using Equations (8-11) and (8-12).  The minimum and maximum fracture 

porosities calculated for this well from the minimum and maximum reported transmissivities using 

Equation (8-10) are 1.7 x 10-4 and 2.0 x 10-4, respectively.

ER-EC-1

IT (2002b) reports hydraulic conductivities for the upper four screen intervals in well ER-EC-1 based 

on analysis of flow logging data.  These intervals are screened across a lava-flow aquifer.  A filter 

pack extends from above the top of the uppermost screen to below the base of the fourth screen.  

IT (2002b) calculated hydraulic conductivities from the interpreted transmissivity values using both 

the length of the screened interval and the length of the filter pack.  They calculated a hydraulic 

conductivity for each logging run using three interpretation methods.  In determining the hydraulic 
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conductivity for use in calculating the fracture porosity, all of the hydraulic conductivities reported by 

IT (2002b) using the screen length were averaged to get a maximum value, and all of the hydraulic 

conductivities calculated using the filter pack length were averaged to get a minimum value for each 

screen.

Fracture density and dip data are available for well ER-EC-1 in IT (2001).  These data are based on 

interpretation of formation microimager and ultrasonic borehole imager logs.  The upper four 

screened intervals are located in the top 90 m of the 835-m-thick logged interval.  The density of 

fractures is much higher at the top of the logged interval than in the middle and at the bottom.  

Therefore, an average fracture spacing for the entire logged interval calculated using Equations (8-11) 

and (8-12) would yield a value that is not representative of fracturing at the location of the upper four 

screened intervals.  It is not possible to calculate a corrected fracture spacing at the locations of the 

upper four screened intervals based on the information provided in IT (2001) because the fracture 

location and fracture dip data are not correlated.  That is, the provided fracture locations and fracture 

dips do not indicate which dip goes with which fracture.  As a result, an uncorrected fracture spacing 

was calculated.  Twenty-three fractures are located in the 90-m section that includes the upper four 

screen intervals.  This corresponds to a fracture spacing of 3.9 m.  Using this spacing and the 

hydraulic conductivities provided in IT (2002b), fracture porosities ranging from 1.0 x 10-4 to 

3.7 x 10-4 were calculated using Equation (8-10).

ER-EC-4

IT (2002c) reports hydraulic conductivities for the three upper screened intervals in well ER-EC-4 

based on analysis of flow logging data.  These intervals are screened across a lava-flow aquifer.  A 

filter pack extends from above the top of the uppermost screen to below the base of the third screen.  

IT (2002c) calculated hydraulic conductivities from the interpreted transmissivity values using both 

the length of the screened interval and the length of the filter pack.  A hydraulic conductivity for each 

logging run that produced measurable flow using three interpretation methods was calculated.  In 

determining the hydraulic conductivity for use in calculating the fracture porosity, all of the hydraulic 

conductivities reported by IT (2002c) assuming the screen length were averaged to get a maximum 

value and all of the hydraulic conductivities calculated assuming the filter pack length were averaged 

to get a minimum value for each screen.
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Fracture density and dip data are available for well ER-EC-4 in IT (2001).  These data are based on 

interpretation of formation microimager and ultrasonic borehole imager logs.  The upper three 

screened intervals are located in the top about 64 m of the 780-m-thick logged interval.  The density 

of fractures is variable across the logged interval.  Therefore, an average fracture spacing for the 

entire logged interval calculated using Equations (8-11) and (8-12) would yield a value that is not 

representative of fracturing at the location of the upper three screened intervals.  It is not possible to 

calculate a corrected fracture spacing at the locations of the upper three screened intervals based on 

the information provided in IT (2001) because the fracture location and fracture dip data are not 

correlated.  As a result, an uncorrected fracture spacing was calculated.  Eight fractures are located in 

the 64-m section that includes the upper three screen intervals.  This corresponds to a fracture spacing 

of 8.0 m.  Using this spacing and the hydraulic conductivities provided in IT (2002c), fracture 

porosities ranging from 1.8 x 10-4 to 4.8 x 10-4 were calculated using Equation (8-10).

ER-EC-6

IT (2002e) reports hydraulic conductivities for the two uppermost screened intervals in well ER-EC-6 

determined from analysis of flow logging data.  These screens are completed across a lava-flow 

aquifer.  Interpretation of flow logging results yields lower hydraulic conductivities for the lava-flow 

aquifer in this well (from 10-6 to 10-5 m/s) than was interpreted for the lava-flow aquifer in wells 

ER-EC-1, ER-EC-4, and ER-EC-7 (from 10-5 to greater than 10-3 m/s).  Fracture density and dip data 

are available for well ER-EC-6 in IT (2001) based on interpretation of ultrasonic borehole imager 

logs.  Nondense fracturing in the lava-flow aquifer adjacent to the two uppermost screened intervals 

was reported.  The lack of fracturing and low hydraulic conductivities for the lava-flow aquifer at this 

borehole is inconsistent with the conceptualization of the LFA HGU as a transmissive, fractured unit.  

Therefore, fracture porosities were not calculated from hydraulic conductivity and fracture spacing 

for this well.  

ER-EC-7

IT (2002f) reports hydraulic conductivities for the two screened intervals in well ER-EC-7 based on 

analysis of flow logging data.  These intervals are screened across a lava-flow aquifer.  A filter pack 

extends from above the top to below the bottom of each screen.  The filter packs are separated by 

cement.  IT (2002f) calculated hydraulic conductivities from the interpreted transmissivity values 
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using both the length of the screened interval and the length of the filter pack.  They calculated a 

hydraulic conductivity for each logging run that produced measurable flow using three interpretation 

methods.  In determining the hydraulic conductivity for use in calculating the fracture porosity, all of 

the hydraulic conductivities reported by IT (2002f) using the screen length were averaged to get a 

maximum value and all of the hydraulic conductivities calculated using the filter pack length were 

averaged to get a minimum value for each screen.

Fracture density and dip data are available for well ER-EC-7 in IT (2001).  These data are based on 

interpretation of ultrasonic borehole imager logs.  The screened intervals are located near the top and 

bottom of the logged interval and are separated by an interval of tuff-confining unit that is basically 

unfractured.  The density of fractures is different across the two screened intervals and is extremely 

low in the tuff-confining unit interval that was also logged.  Therefore, an average fracture spacing for 

the entire logged interval calculated using Equations (8-11) and (8-12) would yield a value that is not 

representative of fracturing at the location of the screened intervals.  It is not possible to calculate a 

corrected fracture spacing at the location of the two screened intervals based on the information 

provided in IT (2001) because the fracture location and fracture dip data are not correlated.  As a 

result, an uncorrected fracture spacing was calculated.  Five fractures are located in the 34-m section 

that includes the upper screen interval and filter pack.  This corresponds to a fracture spacing of 

6.8 m.  Eight fractures are located in the 38-m section that includes the lower screen interval and filter 

pack.  This corresponds to a fracture spacing of 4.8 m.  Using these spacings and the hydraulic 

conductivities provided in IT (2002f), fracture porosities ranging from 7.4 x 10-5 to 2.2 x 10-4 were 

calculated using Equation (8-10).  IT (2001) indicates that the quality of the image log in well 

ER-EC-7 is only fair due to missing fractures in washout zones.  Adjacent to both screened intervals, 

washouts probably concealed fractures (IT, 2001).  Therefore, the fracture porosities given above are 

most likely low estimates because the fracture spacings used in the calculations are most likely too 

large due to the missed fractures as a result of the only fair quality of the log.  As a result, these 

fracture porosities were not used in developing the effective porosity distribution for the LFA HGU at 

Yucca Flat.
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UE-18r

Blankennagel and Weir (1973) report a transmissivity for well UE-18r of 23,000 gpd/ft, which 

converts to 3.31 x 10-3 m2/s.  The length from the top of the uppermost screen in this well to the 

bottom of the lowermost screen is 1,028.7 m.  For this length, the calculated hydraulic conductivity is 

3.22 x 10-6 m/s.  Well UE-18r is completed across the welded-tuff and lava-flow aquifers.  Analysis of 

35.7 m of core from this well yielded 42 fractures, 26 percent of which were high-dip open fractures 

(60 to 90 degrees) and 7 percent of which were medium-dip open fractures (30 to 60 degrees) 

(Drellack et al., 1997).  All other fractures were identified as closed and were not used in the 

calculation of fracture spacing.  The fracture spacing calculated using Equations (8-11) and (8-12) for 

open fractures is 0.76 m.  This spacing is highly uncertain as representative of the tested formation 

interval because it is based on only 35.7 m of core but the completion interval is 1,028.7 m thick.  The 

fracture porosity calculated from the fracture spacing and hydraulic conductivity is 1.9 x 10-4.  This 

porosity is also highly uncertain because of the uncertainty in the fracture spacing.  Therefore, this 

fracture porosity was not used in developing the effective porosity distribution for the LFA HGU at 

Yucca Flat.

8.5.4.3 Values Used in Previous NTS Modeling Studies

Wolfsberg et al. (2002) simulated the migration of radionuclides from the BENHAM and TYBO 

underground nuclear tests at Pahute Mesa in response to the observation of radionuclides in 

groundwater wells ER-20-5#1 and ER-20-5#3 located downgradient of the cavities.  These wells are 

located about 1.3 km and 300 m from the BENHAM and TYBO cavities, respectively.  The working 

point of BENHAM and the sampling location in a lava formation of well ER-20-5#3 are at about the 

same elevation.  Well ER-20-5#1 samples a welded-tuff aquifer that is just above the working point of 

TYBO and more than 500 m above the working point of BENHAM.  Wolfsberg et al. (2002) used a 

reactive, dual-porosity transport model to simulate contaminant migration from BENHAM to the 

observations wells and the NTS boundary in a 3-D, heterogeneous flow field.  For these simulations, 

they estimated a low and high fracture porosity for the lava-flow aquifer and then calculated a base 

case value as the log average of the high and low values.  The low fracture porosity was calculated 

using fracture spacing and fracture aperture data from Drellack et al. (1997) assuming parallel plates.  

The high fracture porosity was taken as the highest value determined by the IT (1998) analysis of the 

BULLION FGE.  Table 8-13 summarizes the fracture porosity values given in Wolfsberg et al. 
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(2002).  In their simulation of 30 equally likely realizations of the heterogeneous flow field using the 

base case parameter values, they found that one of the realizations generated transport results 

consistent with field observations.  This suggests that the base case fracture porosity determined by 

Wolfsberg et al. (2002) may be an appropriate effective porosity at larger scales.  However, this 

interpreted value is uncertain because it represents just one realization that provided a match of 

simulated versus field transport results.

Pawloski et al. (2001) simulated radionuclide release and migration in the groundwater from the 

CHESHIRE cavity, located in Pahute Mesa, over a time period of 1,000 years.  The CHESHIRE 

cavity is located within fractured rhyolite lava flows.  They calculated a fracture porosity for the lava 

of 2 x 10-4 using average fracture density and aperture data from Drellack et al. (1997).  They then 

multiplied this fracture porosity by a factor of 45 to obtain an effective porosity of 9 x 10-3.  The factor 

of 45 applied to the effective porosity over fracture porosity was obtained from Knox et al. (1965) 

from tracer tests in fractured dolomite at the GNOME site in New Mexico.  The factor is obtained 

from the conversion of fracture porosity to effective porosities for a homogeneous porous media 

model.  Based on their calculations, Pawloski et al. (2001) selected an effective porosity of 1 x 10-2 

for the portions of the lava assigned high and moderate permeabilities in their model.  Considering the 

purpose and use of the effective porosity determined using this approach, it is not used in developing 

the effective porosity distribution for the LFA HGU.

8.5.4.4 Recommended Ranges in Previous NTS Data Document Reports

Distributions and ranges of effective porosity for the LFA HGU for use in groundwater flow and 

contaminant transport models have been estimated and reported for Pahute Mesa (Rehfeldt et al., 

2003) and Frenchman Flat (SNJV, 2005b).  Rehfeldt et al. (2003) selected a log triangular distribution 

Table 8-13
Fracture Porosities Used by Wolfsberg et al. (2002)

 for a Lava-Flow Aquifer

Values Fracture Porosity 
(fraction)

Low Value 2.19 x 10-4

Base Case Value 2.09 x 10-3

High Value 2.00 x 10-2
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with a minimum of 1 x 10-5, a maximum of 0.1, and a mean of 1 x 10-3 for Pahute Mesa.  The SNJV 

(2005b) report recommended a range of 2.4 x 10-5 to 0.1 for the CAU-scale modeling of Frenchman 

Flat.

8.5.4.5 Summary and Recommended Distribution

The previous sections discussed fracture porosity data for the LFA HGU determined by several 

methods and used or summarized in previous NTS modeling studies.  The values used in developing 

the distribution for the effective porosity must be consistent with the conceptual model that will be 

used for the LFA HGU in the CAU-scale flow and transport model.  That conceptualization is one of 

a double-porosity system with advective flow and transport through fractures only and matrix 

participation only through molecular diffusion from and to the fractures.  The fracture porosities 

considered to be consistent with this conceptualization are summarized in Table 8-14 and are 

graphically illustrated in Figure 8-4.       

The fracture porosities calculated from hydraulic conductivity and fracture spacing will likely be 

consistently biased lower than those determined from tracer test results because hydraulic tests are 

controlled by small aperture regions in the fractures and tracer tests are controlled by the average 

fracture aperture (see discussion in Section 8.5.2.11).  This consideration should be included in 

developing the effective porosity distribution for the Yucca Flat/Climax Mine CAU flow and 

transport model.  Although the arrival time of the peak concentration from a tracer test provides a 

good estimate of the fracture porosity assuming plug flow, it yields a value that is biased slightly high 

for double-porosity media.  This occurs because the plug flow calculation neglects the effects of 

matrix diffusion, which acts to retard the tracer.  

Based on the results of the evaluation of fracture porosities for the LFA HGU, a range in effective 

porosity of 1 x 10-4 to 2 x 10-2 (interpreted value is rounded to one significant figure) is recommended 

for the LFA HGU at Yucca Flat (Table 8-14 and Figure 8-4).  The recommended distribution for 

sampling this range is skewed log triangular with a peak at 6 x 10-3.  This distribution reflects the fact 

that fracture porosities determined from tracer tests are considered more representative and less 

uncertain than those determined from hydraulic conductivities and fracture spacings.
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Table 8-14
Summary of Estimated Effective Porosity Ranges for the Lava-Flow Aquifer 
and Recommended Range for the Yucca Flat/Climax Mine CAU-Scale Model

Source
Effective Porosity (fraction)

Location Method DDE_F
Minimum Maximum

Tracer Tests

IT, 1998 4.9 x 10-3 6.8 x 10-3 BULLION FGE Plug flow method (Equation [8-3]) using 
peak-concentration arrival time 1

IT, 1998 1.8 x 10-2 2.3 x 10-2 BULLION FGE Numerical model calibration  
(six-layer model) 1

Reimus and Haga, 1999 3.6 x 10-4 2.1 x 10-2 BULLION FGE Plug flow method (Equation [8-3]) using mean 
residence time from RELAP analysis 1

Calculated from Hydraulic Conductivity and Fracture Spacing Data 

Current Report 1.0 x 10-4 4.8 x 10-4
Wells ER-20-6#1, 
ER-20-6#2, ER-EC-1, and 
ER-EC-4 at Pahute Mesa

K from hydraulic tests; fracture spacings calculated 
using Equations (8-11) and (8-12); porosity 
calculated using Equation (8-10)

1

Used in Previous NTS Modeling Studies

Wolfsberg et al., 2002 2.09 x 10-3 TYBO/BENHAM Base case value; one of 30 flow field realizations 
fitted 1

Recommended Range for the Yucca Flat/Climax Mine CAU-Scale Flow and Transport Model

Current Report 1 x 10-4 2 x 10-2 Yucca Flat Recommended range based on review and 
analyses N/A

K - Hydraulic conductivity
N/A - Not applicable
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Figure 8-4
Estimated Effective Porosity Ranges for the Lava-Flow Aquifer Hydrogeologic Unit
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8.5.5 The Carbonate Aquifer Hydrogeologic Unit

The following discussion of the CA HGU is taken from BN (2006).  This HGU consists of 

Proterozoic and Paleozoic stratigraphic units of predominately limestone and dolomite lithology.  

Two HSUs are defined within the CA HGU: the UCA and LCA.  The UCA HSU consists of thick 

limestone layers with interbedded mudstones and siltstones and is present only in the central portion 

of western Yucca Flat.  Perched water is produced from this HSU by water well UE-16d.  The LCA 

HSU consists of thick sequences of carbonate rock with thin layers of shale, quartzite, and calcareous 

clastic units.  The LCA is a major regional aquifer underlying the NTS and most of southern Nevada.  

Winograd and Thordarson (1975) state that the lower and upper carbonate aquifers “store and 

transmit ground water chiefly through secondary openings developed along fractures.”  They also 

report that the matrix porosity and permeability, determined from cores, is extremely low in the LCA.  

Results of pumping tests in 10 wells penetrating the LCA “may suggest that the water-bearing 

fractures are reasonably well connected and that fractures of differing transmissibility, if present, are 

randomly distributed” (Winograd and Thordarson, 1975).  This conclusion is based on the fact that 

the portion of the drawdown curves representative of formation conditions do not show any change in 

slope.  This information indicates that fracture flow dominates the movement of water in the LCA.

The CA HGU will be conceptualized as a double-porosity medium in the flow and transport model of 

the Yucca Flat/Climax Mine CAU due to its fractured nature.  A double-porosity conceptualization 

consists of fractures and matrix.  Advective and diffusive flow and transport are assumed to occur 

exclusively in the fractures.  Interaction between the fractures and matrix is restricted to molecular 

diffusion from the fractures to the matrix and vice versa.  It is assumed that no advective flow or 

transport occurs in the matrix.  In order to appropriately represent the CA HGU in the CAU-scale 

model, the recommended distribution for the effective porosity must be consistent with this model 

conceptualization.  The fracture porosity will be used as the effective porosity for the CA HGU.  Data 

sources relevant for estimating the effective porosity of the CA HGU are described below.
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8.5.5.1 Tracer Tests

Convergent Flow Tracer Test Between Water Wells C and C-1 in Yucca Flat

Winograd and West (1962) report on a convergent-flow tracer test conducted in the LCA between 

WW-C and C-1 in Yucca Flat.  These two wells are about 29.3 m apart at the water table.  The slotted 

interval is 32.9 m thick in WW-C.  Water Well C-1 is completed open hole across 239 m of the LCA.  

Initial tracer breakthrough occurred after about 4.2 hours, and peak tracer concentration was observed 

between 3 and 4 hours later.  The discharge rate at the withdrawal well was 13.9 L/s.  For a radial flow 

field, the time for plug flow between the pumping and injection wells can be estimated 

Equation (8-3).

Using the parameter values from Winograd and West (1962) given above and peak-concentration 

arrival of about 3.5 hours after first tracer breakthrough, (7.7 hours after tracer injection), a 

porosity-thickness product of 0.14 m is calculated using Equation (8-3).  A maximum effective 

porosity of 4.3 x 10-3 is calculated assuming a thickness equivalent to the slotted interval length of 

32.9 m in WW-C.  A minimum effective porosity of 5.9 x 10-4 is calculated assuming a thickness 

equivalent to the open interval length of 239 m in WW-C-1.

Convergent Flow Tracer Test at the ER-6-1 Well Cluster in Yucca Flat

A multiple-well aquifer test-tracer test (MWAT-TT) was conducted in the LCA at the ER-6-1 Well 

Cluster located in Yucca Flat from late April to late July 2004.  The test details discussed here were 

taken from SNJV (2005e and f).  Well ER-6-1#2 was the pumping well and tracers were injected into 

upper and lower completion intervals in ER-6-1, located 64 m from the pumping well, and ER-6-1#1, 

located 50.8 m from the pumping well.  The direction of tracer migration from the injection wells to 

the pumping well is approximately aligned with the dominant local fracture orientation.  The 

pumping rate in well ER-6-1#2 averaged 33.0 L/s over a 434.3-m-thick interval during the 

MWAT-TT.  Tracer injection occurred in four stages.  The first stage consisted of the injection of 

microspheres into the upper zone in well ER-6-1; the second stage consisted of the injection of 

2,5-DFBA into well ER-6-1#1; the third stage consisted of the injection of NaI and 2,4,5-TFBA into 

the lower zone in well ER-6-1; and the fourth stage consisted of the injection of LiBr, LiCl, and 

PFBA into the upper zone in well ER-6-1.  For each stage, tracer injection was followed by the 
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injection of chase water to flush the tracer from the borehole.  A complete description of tracer 

breakthrough for this test can be found in SNJV (2005f).

Fracture porosities for the LCA were estimated using the breakthrough curves for the tracers injected 

into well ER-6-1 during the ER-6-1 MWAT-TT based on peak-concentration arrival time and the 

theoretical plug flow method (Equation [8-3]).  Both of the breakthrough curves for tracers injected 

into the lower zone of well ER-6-1 show peak arrival at about nine days.  Although the total pumping 

rate during the test averaged 33.0 L/s, the relative amounts of flow through the upper and lower zones 

of the LCA at the ER-6-1 complex were determined based on the flow logging results.  Flow logging 

indicated that flow in the lower portion of well ER-6-1 is about 31 percent of the total flow and flow 

in the lower portion of well ER-6-1#2 is about 39 percent of the total flow.  Using the average of these 

two percentages (35 percent) and multiplying by the total flow rate yields an adjusted flow rate of 

11.6 L/s for the lower zone.  An interval thickness of 148.1 m for the lower zone was used in the 

calculation.  This thickness corresponds to the length between the top of the lower zone in ER-6-1 at 

a depth of 792.5 m and the top of the Eureka Quartzite at a depth of 940.6 m.  Flow into and out of the 

borehole was assumed to be negligible in the Eureka Quartzite.  Substituting these values in 

Equation (8-3) yields a fracture porosity of 4.7 x 10-3 based on the breakthrough of tracers injected 

into the lower zone in well ER-6-1 (Table 8-15).   

This same method was also used to estimate a fracture porosity based on the breakthrough curves for 

tracers injected into the upper zone in well ER-6-1.  Peak arrival for these tracers occurred at about 

29 days.  Flow into the upper zone in well ER-6-1 is about 69 percent of the total flow, and flow into 

the upper portion of well ER-6-1#2 is about 61 percent based on flow logging results.  Using the 

average of these two values (65 percent) and multiplying it by the total flow rate yields an adjusted 

flow rate of 21.5 L/s.  An interval thickness of 252.7 m was used.  This thickness corresponds to the 

length between the top of the LCA at a depth of 539.5 m and the bottom of the upper zone at a depth 

of 792.2 m.  Substituting these values into Equation (8-3) yields a fracture porosity of 1.7 x 10-2 

(Table 8-15).   

Observed tracer breakthrough curves from the tracer tests at the ER-6-1 cluster were analyzed by 

SNJV (2006d) using the semi-analytical model RELAP.  Based on interpretations of hydraulic data at 

the cluster, analysis of the tracer test results assumed a linear flow regime.  This analysis assumed 
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Table 8-15
Summary of Effective Porosities Determined Using the Breakthrough Curves 

from the ER-6-1 Well Cluster Tracer Test

Injection 
Well/Zone

ER-6-1 Lower ER-6-1 Upper ER-6-1#1

Current 
Report

SNJV, 2006d
Current 
Report

SNJV, 2006d
Current 
Report SNJV, 2006dSingle 

Porosity
Double 

Porosity
Pathway 1

Double Porosity
Pathway 2

Double Porosity

Time 9 days a 34.4 days b 32.5 days b 29 days a 54.2 days b 145.8 days b N/A c 137.5 days b

Flow rate 11.6 L/s d QT x 0.4 e QT x 0.4 e 21.5 L/s f QT x 0.4 e QT x 0.1g N/A QT x 0.4 e

Thickness 148.1 m 125 m 125 m 252.7 m 300 m 300 m N/A 300 m

Distance 64 m NR NR 64 m NR NR N/A 64 m

Effective Porosity 4.7 x 10-3 2 x 10-2 1.8 x 10-2 1.7 x 10-2 1.6 x 10-2 1.1 x 10-2 N/A 2.0 x 10-2

Note: Shaded values were not used in developing the effective porosity distribution for the CA HGU (see discussion in text).
a Time to peak arrival.
b Mean residence time as determined by RELAP analysis.
c No peak concentration identifiable in tracer breakthrough curve.
d 35 percent of total production rate of 33.0 L/s.
e Total production rate times 40 percent; actual value used not reported.
f 65 percent of total production rate of 33.0 L/s.
g Total production rate times 10 percent; actual value used not reported.

N/A - Not applicable
NR - Not reported
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diffusion into a matrix with a 3 percent porosity.  The breakthrough curves for I and 2,4,5-TFBA, 

injected into the lower zone in ER-6-1 and recovered in pumping well ER-6-1#2, were analyzed using 

both single- and double-porosity conceptualizations.  The RELAP analyses yield a mean residence 

time for the tracers.  The SNJV (2006d) then used this mean residence time and the assumption of 

plug flow to calculate the flow (or effective) porosity using Equation (8-3).  The interpreted mean 

residence times were 825 hours (34.4 days) for the single-porosity conceptualization and 780 hours 

(32.5 days) for the double-porosity conceptualization (SNJV, 2006d).  Note that these mean residence 

times are significantly larger than the peak-concentration arrival time of nine days discussed above.  

In their calculation of the flow porosity, they used a production rate equal to 40 percent of the total 

rate and an interval thickness of 125 m.  Both of these values are slightly different from those used in 

the calculations discussed in the previous paragraph.  For the RELAP interpretation of transport of 

tracers injected into ER-6-1 lower zone, the flow porosities reported by SNJV (2006d) are 2 x 10-2 for 

the single-porosity conceptualization and 1.8 x 10-2 for the double-porosity conceptualization 

(Table 8-15).  The two interpreted values are similar, indicating a minimal effect of matrix diffusion; 

however, the effective porosity from the double-porosity interpretation is considered more 

representative for comparison purposes (Table 8-15).

The SNJV (2006d) report states that two inflow zones were identified by flow logging in pumping 

well ER-6-1#2 that correspond to the upper injection zone in ER-6-1.  The analysis of the PFBA 

breakthrough in the upper zone considered these inflow locations as individual pathways.  Spinner 

log results indicate that flow in the lower of these two inflow zones is less than 10 percent of the total 

flow rate.  The RELAP analysis of the PFBA breakthrough curve yielded a mean residence time of 

1,300 hours (54.2 days) for pathway 1 (the upper inflow zone in the upper injection zone) and 

3,500 hours (145.8 days) for pathway 2 (the lower inflow zone in the upper injection zone) for a 

single-porosity conceptualization.  The estimated mean residence times are much larger than the 

tracer peak-concentration arrival time of 29 days.  They calculated the flow porosity with 

Equation (8-3) using mean residence times determined with RELAP.  For the upper injections into 

ER-6-1, they assumed an interval thickness of 300 m and production rates of 40 and 10 percent of the 

total rate for pathways 1 and 2, respectively.  Their calculated flow (effective) porosities are 1.6 x 10-2 

for pathway 1 and 1.1 x 10-2 for pathway 2 (Table 8-15).
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A single-porosity interpretation of the breakthrough of 2,5-DFBA, which was injected into ER-6-1#1, 

using RELAP yielded a mean residence time of 3,300 hours (137.5 days).  Using this time, an interval 

thickness of 300 m, a production rate 40 percent of the total rate, and a distance of 92 m, SNJV 

(2006d) calculated a flow porosity of 2.0 x 10-2 (Table 8-15).  The breakthrough curve for 2,5-DFBA 

for the ER-6-1#1 to ER-6-1#2 flow path exhibited a large amount of noise because measured 

concentrations were near the detection limit; thus any interpretation of the breakthrough curve is 

uncertain.  The effective porosity from the RELAP single-porosity interpretation for this flow path is 

not recommended for inclusion in determining a representative range from the ER-6-1 tracer test.

Two-Well Recirculating Tracer Tests at the Amargosa Tracer Site

Johnston (1968) discusses the tracer well construction program for a two-well recirculating tracer test 

performed in the carbonate aquifer at the Amargosa tracer site.  This site is located about 31.5 km 

southwest of Mercury, Nevada.  The injection well is completed in the lower 20.7 m of the 

22.9-m-thick Bonanza King Formation and in 41.8 m of the underlying Carrara Formations.  The 

pumping well is completed in the lower 45.4 m of the 48.5-m-thick Bonanza King Formation and in 

the upper 6.4 m of the underlying Carrara Formation.  The Bonanza King Formation consists 

primarily of brecciated dolomite while the Carrara Formation consists primarily of coarsely 

crystalline limestone.  The Bonanza King Formation is highly permeable compared to the low 

permeability of the Carrara Formation.  The injection and withdrawal wells are located 122.7 m apart 

at ground surface and were considered to be aligned approximately parallel to the direction of 

regional groundwater flow.  Both wells were completed open hole in the carbonate portion except for 

a section of perforated casing across a fault zone in both wells that caused extensive caving of the 

holes.  The fault zone was located between the dolomite of the Bonanza King Formation and the 

limestone of the Carrara Formation in the injection well, and in the Bonanza King Formation in the 

withdrawal well.  A tracejector survey in the injection well identified two zones of greatest 

permeability: an upper zone approximately 1.5 m thick at the top of the carbonate section below the 

casing shoe, and a lower zone in the 14.9-m-thick fault zone.  The rate of inflow in the upper zone 

was a factor of 11 greater than the rate of inflow in the lower zone.  For the pumping well, the 

9.8-m-thick fault zone was shown by a tracejector survey to be the most permeable interval in the 

well.  The tracer for the recirculating tracer test consisted of tritiated water injected into the injection 

well.  
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Claassen and Cordes (1975) analyzed the breakthrough of the tritiated water at the pumping well for 

the two-well recirculating tracer test conducted at the Amargosa tracer site as described by Johnston 

(1968) above.  They used the dispersion model method of analysis described in Grove and Beetem 

(1971) and Grove (1971) to analyze the test.  This method involves developing theoretical 

breakthrough curves for various assumed longitudinal dispersion-porosity combinations, and then 

comparing those curves to the observed data.  The theoretical curve that best matches the observed 

data gives the longitudinal dispersion and porosity for the tracer test.  The analysis by Claassen and 

Cordes (1975) yielded a dispersivity of 15 m and a porosity-thickness product of 0.88 m.  The active 

thickness for the tracer test at the Amargosa tracer site is unknown.  Tracejector survey data 

(Johnston, 1968) suggest a range of 16.5 m (thickness of upper and lower permeable zones in the 

injection well) to 1.5 m (thickness of upper permeable zone only in the injection well).  Using this 

range for thickness (16.5 to 1.5 m) and the porosity-thickness product from Claassen and Cordes 

(1975) yields a porosity range of 5.3 x 10-2 to 0.59, respectively.  Claassen and Cordes (1975) found 

that the analysis results were more sensitive to changes in the porosity-thickness product than to 

changes in the dispersivity.   

Leap and Belmonte (1992) discuss three two-well recirculating tracer tests conducted at the 

Amargosa tracer site.  The first test is the same as that reported in Claassen and Cordes (1975).  Leap 

and Belmonte (1992) do not present a reanalysis of this first test, but rather report the results from 

Claassen and Cordes (1975).  The second and third tests used the same injection and withdrawal wells 

as did the first test.  Sulfur-35 was the tracer for the second test, and 3H and Br were the tracers for the 

third test.  Leap and Belmonte (1992) also analyzed these tests using the method of Grove (1971) and 

obtained a porosity-thickness product of 0.84 m for all three breakthrough curves.  They report a 

thickness for the Bonanza King Formation of 3.0 m at the injection well and 14.6 m at the withdrawal 

well.  Using the average of these two thicknesses (8.8 m), Leap and Belmonte (1992) interpreted a 

porosity of 10 percent based on the analysis of the 35S, 3H, and Br breakthrough curves.  Their 

analyses also yielded apparent dispersivities of 22.9, 27.4, and 30.5 m based on analysis of the 35S, 3H, 

and Br breakthrough curves, respectively.  Note that the focus of the analyses by Leap and Belmonte 

(1992) was determination of dispersivity not determination of porosity.  
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The plug flow time for tracer to travel from the injection well to the withdrawal well in a two-well 

recirculating tracer test is given by Equation (8-4).  For 100 percent recirculation, the function F has a 

value of one sixth and Equation (8-4) becomes:

(8-13)

Table 8-16 summarizes the approximate time to reach peak concentration, the pumping rate, the 

porosity-thickness product calculated using Equation (8-13), and the calculated porosity for several 

assumed effective thicknesses for each of the three two-well recirculating tracer tests conducted at the 

Amargosa tracer site.  Assuming an average thickness of 9.0 m, the calculated effective porosity 

ranges from about 5.7 x 10-2 to 8.4 x 10-2.

Johnston (1968) describes the carbonate aquifer at the Amargosa tracer site as having a few zones of 

very high permeability separated by rock of comparatively lower permeability.  He states that “the 

zones of high permeability occur in faulted, highly brecciated intervals in the dolomite (Bonanza 

King Formation).”  The estimated porosities of 3 to 10 percent determined from the tracer tests at the 

Table 8-16
Calculated Porosities for the Two-Well Recirculating Tracer Tests Conducted 

at the Amargosa Tracer Site Assuming Plug Flow

Tracer 
Test

Approx.  
Time to 

Peak Arrival 
(days) a

Pumping 
Rate (L/s)

Porosity-
Thickness 
Product 

(m) b

Porosity (fraction)

1.5-m 
Thickness c

9.0-m 
Thickness d

16.5-m 
Thickness e

Test 1 6.2 22.5 f 0.764 0.51 8.4 x 10-2 4.6 x 10-2

Test 2 6.9 13.7 g 0.517 0.34 5.7 x 10-2 3.1 x 10-2

Test 3
   3H
   Br

7.4
7.8

15.5 g 0.628
0.662

0.42
0.44

6.9 x 10-2

7.3 x 10-2
3.8 x 10-2

4.0 x 10-2

Note: Shaded values were not used in developing the effective porosity distribution for the CA HGU 
(see discussion in text).

a Estimated from breakthrough curves given in Leap and Belmonte, 1992
b Calculated using Equation (8-13)
c Minimum estimated effective thickness
d Average estimated effective thickness
e Maximum estimated effective thickness
f Claassen and Cordes, 1975
g Leap and Belmonte, 1992
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Amargosa tracer site appear large if the tracer transport was controlled by a direct pathway in the 

fractures between the injection and pumping wells.  Tracer tests conducted in fractured dolomite at 

the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, indicate that the direction of the 

tracer transport path relative to the primary fracture direction has a significant impact on the fracture 

porosities calculated using the peak-concentration arrival time (see discussion below).  For three 

tracer test locations at the WIPP site, the fracture porosity calculated for the path aligned with the 

fractures (the fast path) were about 10-3, while the apparent effective porosities calculated for paths 

not aligned with the fractures (the slow paths) were an order of magnitude or more higher (Jones 

et al., 1992).  Travel along pathways not aligned with the predominate fracture direction will be more 

tortuous and undergo more molecular diffusion than pathways aligned with the fractures.  Both of 

these factors may result in slower transport times, which result in the calculated fracture porosity 

being an overestimate.  

The large porosities calculated for the tracer tests at the Amargosa tracer site suggest the possibility 

that the tracer flow path for the tests was not aligned with the predominate fracture direction.  

Therefore, the porosities determined from the tests may not be representative of the fracture porosity.  

In addition, fracture flow only in a geologic medium with a 10 percent fracture porosity would yield 

extremely large transmissivities (not consistent with those interpreted for the site).  Because of these 

uncertainties, the porosities determined from these tests were not used in developing the effective 

porosity distribution for the CA HGU at Yucca Flat.

Tracer Test in the Culebra Dolomite at the Gnome Site, New Mexico

Grove and Beetem (1971) analyzed a two-well recirculating tracer test conducted in the Culebra 

Dolomite at the Gnome site in Eddy County, New Mexico.  The Culebra Dolomite is similar to the 

LCA at the NTS in that it is a fractured dolomite aquifer.  The two wells were originally designed to 

be parallel to the direction of regional flow in the aquifer.  However, due to drilling problems, one of 

the wells deviated from vertical and the flow direction between the two wells is estimated to be about 

35 degrees from the regional flow direction.  The distance between the wells at the depth of the 

Culebra is 54.9 m, the Culebra thickness is 10.4 m, the withdrawal-injection rate was 2.8 L/s, and the 

time to peak concentration was about 12.8 days.  Using their analysis method, Grove and Beetem 

(1971) obtained an estimated porosity of 0.12.  Assuming plug flow and using Equation (8-3), a 
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porosity of 9.4 x 10-2 is calculated for this tracer test.  For comparison, tracer tests conducted in the 

Culebra Dolomite at the WIPP site near Carlsbad, New Mexico, yielded estimated fracture porosities 

of about 10-3 (Jones et al., 1992).  The high porosities determined for the test at the Gnome site are 

considered to be the result of the tracer travel path not being aligned with the predominate fracture 

direction.  If that is the case, these porosities do not reflect the fracture porosity of the Culebra 

Dolomite at this site.  Therefore, these porosities were not used in developing the effective porosity 

distribution for the CA HGU at Yucca Flat.

Tracer Tests in the Culebra Dolomite at the Waste Isolation Pilot Plant, New Mexico

Fracture porosities have been determined by analysis of three convergent-flow tracer tests conducted 

in the Culebra Dolomite at three different hydropad locations (H-3, H-6, and H-11) at the WIPP site 

near Carlsbad, New Mexico (Jones et al., 1992).  At the H-3 and H-6 hydropads, tracer was injected 

into two wells and recovered in a third well.  At the H-11 hydropad, tracer was injected into three 

wells and recovered in a fourth well.  At all three locations, tracer transport during the test was rapid 

along one path and much slower along the other path(s).  The rapid transport path was considered to 

be aligned approximately parallel to the dominate direction of fracture orientation.  As a result, 

transport along the rapid path was assumed to be dominated by fracture flow.  Numerical analysis of 

the tracer breakthrough curves for the rapid transport path for these three convergent-flow tracer tests 

yielded fracture porosities for the Culebra Dolomite ranging from 5.0 x 10-4 to 1.5 x 10-3 (Jones et al., 

1992) (Table 8-17).  

The porosities determined by Jones et al. (1992) are much lower than the value of 0.12 interpreted by 

Grove and Beetem (1971) for the Culebra at the Gnome site.  This is likely the result of the transport 

direction for the recirculating tracer test at the Gnome site not being aligned parallel to the dominant 

fracture direction.  Fracture porosities for the convergent-flow tracer tests discussed in Jones et al. 

(1992) were initially calculated using the peak-concentration arrival time and assuming plug flow 

(Equation [8-3]).  Those calculated porosities are also given in Table 8-17.  Notice that the calculated 

fracture porosities are higher than those determined through model calibration.  As expected, fracture 

porosities calculated using Equation (8-3) are an overestimate even when determined from pathways 

with fracture-dominated transport because the delayed response resulting from matrix diffusion and 

dispersion is ignored.  Also notice that the fracture porosities calculated for the fast transport paths, 
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the paths assumed to be aligned approximately parallel with the fracture orientation, are more than 

one order of magnitude lower than those for the slow transport paths, which are not aligned with the 

fractures.  This indicates that if the tracer transport path is not aligned with the major fracture 

direction, the calculated fracture porosity will likely be greatly overestimated. 

8.5.5.2 Hydraulic Conductivity and Fracture Spacing Calculations

Section 8.5.2.6 discusses the methodology for calculation of fracture porosity using hydraulic 

conductivity data from hydraulic tests and fracture spacings from borehole fracture data.  This 

method was used to calculate fracture porosities for wells ER-6-1#2 and ER-7-1 located in Yucca Flat 

and completed to the LCA.  Well ER-5-3#2, located in Frenchman Flat, is also completed to the LCA.  

Analysis of the formation microimager log conducted in well ER-5-3#2 is provided in SNJV (2005c).  

The quality of this log is poor due to numerous washouts and breakouts in the well (SNJV, 2005c).  

These features cause intermittent contact between the logging tool pad and the borehole well.  

Because of the poor quality of the log, the fracture density in well ER-5-3#2 was considered to be 

uncertain, and no fracture porosity was calculated using hydraulic conductivity and fracture spacing.

Table 8-17
Summary of Fracture Porosities Determined for the 

Culebra Dolomite at the Waste Isolation Pilot Plant Site

Test Location Path a/Tracer

Injection Well 
to Pumping 

Well Distance 
(m)

Fracture Porosity 
Determined from 

Model Calibration b 
(fraction)

Porosity Calculated 
Assuming Plug 

Flow c

(fraction)

H-3 Hydropad
fast (m-TFMB) 30.7 1.2 x 10-3 1.9 x 10-3

slow (PFBA) 26.8 2.3 x 10-2

H-6 Hydropad
fast (PFBA) 29.9 1.5 x 10-3 3.1 x 10-3

slow (m-TFMB) 29.9 5.6 x 10-2

H-11 Hydropad

fast (m-TFMB) 20.9 5.0 x 10-4 1.0 x 10-3

slow (PFBA) 21.4 1.8 x 10-2

slow (o-TFMB) 43.1 1.8 x 10-2

Note: Shaded values were not used in developing the effective porosity distribution for the CA HGU (see 
discussion in text).

a Fast path means travel path with the most rapid tracer breakthrough; slow path means travel path with slower 
tracer breakthrough.

b Model calibration only to breakthrough curve from fast travel path (Jones et al.,1992).
c Calculated for this report assuming plug flow using Equation (8-3).
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ER-6-1#2

Hydraulic conductivity data for well ER-6-1#2 are reported in SNJV (2005a).  A hydraulic 

conductivity value of 1.3 x 10-4 m/s was determined for the entire completion interval through 

analysis of a 90-day pumping test with ER-6-1#2 as the pumping well.  Hydraulic conductivities 

determined through analysis of data from the spinner flow meter log conducted in the well were also 

reported.  Fracture data from analysis of an electric microimager log conducted in well ER-6-1#2 is 

provided in SNJV (2005d).  This report provides general information regarding fractures in the 

borehole.  Specific locations and dip angles for the individual fractures were obtained from SNJV 

(2005d).  Using these data and Equations (8-11) and (8-12), a fracture spacing was calculated for the 

entire completion interval and for each of the intervals associated with the reported hydraulic 

conductivities from analysis of the spinner flow log data.  Table 8-18 summarizes the fracture 

porosities calculated for well ER-6-1#2 using hydraulic conductivity and fracture spacing 

(Equation [8-10]).  These porosities range from 2.0 x 10-4 to 8.3 x 10-4.  

ER-7-1

Hydraulic conductivity data for well ER-7-1 are reported in SNJV (2004a).  The nSIGHTS 

(n-Dimensional Statistical Inverse Graphical Hydraulic Test Simulator) code and a 50-simulation 

perturbation analysis were used to simulate 50 hydraulic conductivity solutions.  They defined the 

range in hydraulic conductivity values as the central 90 percent of the solution distribution.  This 

yielded hydraulic conductivities of 8.1 x 10-4 and 4.9 x 10-3 m/s.  Fracture data from analysis of an 

electric microimager log conducted in well ER-6-1#2 are provided in SNJV (2005d).  This report 

provides general information regarding fractures in the borehole.  Specific locations and dip angles 

for the individual fractures were obtained from SNJV (2005d).  Using these data and Equations (8-11) 

and (8-12), a fracture spacing of 1.0 m was calculated for the effective interval as determined with an 

impeller flowmeter.  Table 8-18 summarizes the minimum and maximum fracture porosities 

calculated for well ER-7-1 using the minimum and maximum hydraulic conductivities and the 

fracture spacing.  These porosities are 1.0 x 10-3 to 1.8 x 10-3.

8.5.5.3 Fracture Spacing and Aperture Calculations

The SNJV (2005d) report provides a fracture analysis for four boreholes in Yucca Flat based 

predominately on the results from borehole electric microimager logs.  These four boreholes are 



Section 8.0

Phase I Contaminant Transport Parameters for CAU 97: Yucca Flat/Climax Mine, Nye County, Nevada

8-64

ER-2-1 located in north-central Yucca Flat, ER-6-1#2 located in the southeastern corner of Yucca 

Flat, ER-7-1 located in eastern Yucca Flat, and ER-12-2 located in northwestern Yucca Flat.  Two of 

these boreholes, ER-6-1#2 and ER-7-1, are completed in the LCA.  The results from the borehole 

image logs were processed (enhanced) and then manually interpreted and statistically analyzed for 

fractures, bedding, and borehole washouts/breakouts.  The analysis provided fracture aperture, 

Table 8-18
Fracture Porosities Calculated for Wells ER-6-1#2 and ER-7-1 Using 

Hydraulic Conductivity and Fracture Spacing (Equation [8-10]) 

Well

Interval 
(m bgs)

Hydraulic 
Conductivity 

(m/s)
Fracture 
Spacing

(m)

Calculated 
Fracture Porosity 

(fraction)

Top Bottom Minimum Maximum Minimum Maximum

ER-6-1#2 541.0 941.8 1.3 x 10-4 (a) 2.5 2.9 x 10-4

ER-6-1#2 563.9 593.1 ND b 1.4 N/A

ER-6-1#2 593.1 619.0 2.8 x 10-4 (c) 1.0 7.0 x 10-4

ER-6-1#2 619.0 629.7 1.01 x 10-3 (c) 4.6 3.9 x 10-4

ER-6-1#2 629.7 645.0 ND b 4.4 N/A

ER-6-1#2 645.0 649.5 3.93 x 10-3 (c) 0.8 2.0 x 10-3

ER-6-1#2 649.5 655.6 ND b No fractures N/A

ER-6-1#2 655.6 678.5 5.66 x 10-3 (c) 16.5 2.9 x 10-4

ER-6-1#2 678.5 710.5 ND b 3.4 N/A

ER-6-1#2 710.5 733.3 1.10 x 10-3 (c) 1.9 7.2 x 10-4

ER-6-1#2 733.3 750.1 ND b 1.4 N/A

ER-6-1#2 750.1 776.0 1.11 x 10-3 (c) 2.4 6.2 x 10-4

ER-6-1#2 776.0 858.3 1.5 x 10-4 (c) 4.9 2.0 x 10-4

ER-6-1#2 858.3 869.0 3.54 x 10-3 (c) 7.6 4.2 x 10-4

ER-6-1#2 869.0 899.5 2.95 x 10-3 (c) 2.5 8.3 x 10-4

ER-7-1 664.9 722.4 8.1 x 10-4 (d) 4.9 x 10-3 (e) 1.0 1.0 x 10-3 1.8 x 10-3

a Value determined from analysis of pumping test.
b ND - No value determined because normalized flow rate was zero. 
c Value determined from analysis of spinner flow log.
d 5th empirical percentile of K distribution determined through analysis of constant-rate test.
e 95th empirical percentile of K distribution determined through analysis of constant-rate test.

K - Hydraulic conductivity
N/A - Not applicable
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fracture dip, fracture orientation, and fraction of fracture infilling.  Mineral infilling was considered to 

be 0 to 50 percent for fractures identified as open, 50 to 80 percent for fractures identified as mineral 

filled, and 80 to 100 percent for fractures identified as closed (SNJV, 2005d).

Estimates of the fracture porosity for the lower carbonate interval in boreholes ER-6-1#2 and ER-7-1 

based on fracture data from the borehole image logs were determined using the following relationship 

given in Bryant (2005):

(8-14)

where: 
φf is the fracture porosity (unitless), 
b is the fracture aperture (L),  
o is the fraction of the fracture that is open (unitless),  
θ is the fracture dip angle,  
tT is the total interval thickness (L), and 
n is the number of fractures.  

The data for fracture aperture, fracture dip, and fraction of fracture infilling were obtained from SNJV 

(2005d).  Two fracture porosities were calculated for each borehole.  The first corresponds to the LCA 

interval, and the second corresponds to the interval within the LCA that is most productive.  The 

depths for LCA intervals in each borehole were taken from BN (2006).  The depths for the most 

productive interval or the water producing zone based on fluid logging were taken from SNJV 

(2005d) for borehole ER-6-1#2 and from SNJV (2004a) for borehole ER-7-1.  The fracture porosity 

for the perforated interval in ER-7-1, taken from SNJV (2004a), was also calculated.  In some 

instances, the top or bottom of the interval used in the calculation was defined by the depth range of 

the borehole image logging.  Table 8-19 summarizes the fracture porosities for boreholes ER-6-1#2 

and ER-7-1 calculated using Equation (8-14).  For each interval, a minimum and maximum fracture 

porosity was calculated using the minimum and maximum from the range of infilling for the fracture.  

The calculated fracture porosities range from 1.9 x 10-3 to 9.4 x 10-3.  Some of the limitations involved 

with these calculations include: 

• The manual interpretation used to estimate fracture data from the image logs is subject to 
human bias/error.
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• Undersampling of vertical fractures is possible because the boreholes are vertical.

• The three ranges of mineral infilling used in the calculations most likely do not adequately 
characterize the nature of infilling in the fractures; also, the infilling may be removed locally 
by the drilling action, and therefore the degree of openness is likely overestimated.

• Each fracture aperture is assumed to be constant in thickness, although this is highly unlikely. 

• The fractures are assumed to be continuous in lateral extent, although this is highly unlikely.   

8.5.5.4 Geophysical Logging 

Berger (1992) reports porosities for carbonate-rock aquifers in the Coyote Spring Valley Area 

determined from geophysical logging.  These aquifers were investigated as part of the Nevada 

Carbonate Aquifers Program as potential sources for water supply and correlate to the CA HGU at the 

NTS.  Coyote Spring Valley is located about 100 km due west of Frenchman Flat.  Berger (1992) 

“describes the application and results of borehole geophysical log analyses from five test wells that 

penetrated the carbonate-rock aquifers.”  He used litho-porosity plots (M-N plots) to detect secondary 

Table 8-19
Calculated Fracture Porosities for Boreholes ER-6-1#2 

and ER-7-1 Using Fracture Spacing and Aperture Calculations

Interval

Depth to 
Interval 

Top
(m)

Depth to 
Interval 
Bottom

(m)

Minimum 
Fracture 
Porosity 
(fraction)

Maximum 
Fracture 
Porosity 
(fraction)

ER-6-1#2
LCA 545.59 a 975.4 b 2.5 x 10-3 5.6 x 10-3

Producing Zone 883.92 c 975.4 b 1.9 x 10-3 4.3 x 10-3

ER-7-1
LCA 539.50 a 758.65 d 3.8 x 10-3 9.4 x 10-3

Most Conductive Interval 665.07 c 722.38 e 2.4 x 10-3 5.9 x 10-3

Slotted Casing Interval 655.07 f 755.9 g 2.7 x 10-3 6.8 x 10-3

a Depth to the top of the borehole image log (SNJV, 2005d)
b Total depth of the borehole (BN, 2006)
c Depth to the top of producing zone (SNJV, 2005d)
d Depth to the bottom of the borehole image log (SNJV, 2005d)
e Depth to the bottom of the producing zone (SNJV, 2004a)
f Depth to the top of the slotted interval in the borehole (SNJV, 2004a)
g Depth to the bottom of the slotted interval in the borehole (SNJV, 2004a)
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(fracture) porosity in the test wells.  The porosity-independent parameters M and N are calculated 

from responses of neutron, gamma-gamma, and acoustic logs by (Berger, 1992):

(8-15)

and

(8-16)

where: 
= transit time of the fluid (200 microseconds per foot [μsec/ft]),  
= transit time recorded by the acoustic log (μsec/ft),  

ρb = bulk density recorded by the gamma-gamma log (grams per cubic centimeter [g/cm3]),  
ρf = fluid density (1g/cm3),  
φf = neutron porosity of fluid (100 percent as decimal), and  
φLS = neutron porosity recorded by the neutron log (percent as decimal).  

Values for M and N are calculated for pure lithologies of silica, calcite, and dolomite and for the 

lithologies in the test wells.  Values of M are plotted versus N values.  Well test zones with values that 

plot above the lithology triangle created by the pure mineral endpoints (which represents a shale-free 

carbonate zone) are considered to have secondary porosity.  The magnitude of the secondary porosity 

is determined by the distance from the lithology triangle to the plotted point.  Using this method, 

Berger (1992) identified secondary porosity in only one of the test wells (CE-DT-4).  He determined 

secondary (fracture) porosity values for this well ranging from 6 x 10-3 to 9.6 x 10-2.  Due to the fact 

that only one of the five wells showed secondary porosity using this method and the method 

calculates secondary porosity indirectly, these values were not used in developing the effective 

porosity distribution for the CA HGU at Yucca Flat.

8.5.5.5 Literature Review of Basin and Range Province Rocks

Bedinger et al. (1989) developed distributions for hydraulic properties of rocks in the Basin and 

Range Province in the southwestern United States.  They conducted a literature review of hydraulic 

conductivity and effective porosity for rocks in the Basin and Range Province and for rocks of similar 

types in other areas.  The collected data were then synthesized, and the mean and 16.5 and 

93.5 percentiles were determined for each rock type.  Table 8-20 summarizes their findings of 
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effective porosity for carbonate rocks, including limestone, dolomite, and marble.  Because the 

degree to which the characteristics of the carbonate rocks found in the review by Bedinger et al. 

(1989) match the characteristics of the CA HGU at Yucca Flat is unknown and the methods used to 

determine the porosities are unknown, these effective porosities were not used in developing the 

effective porosity distribution for the CA HGU at Yucca Flat.     

8.5.5.6 Values Used in Previous NTS Modeling Studies

The DOE/NV (1997a) report presents regional groundwater flow and 3H transport models to evaluate 

migration from the underground testing areas of the NTS.  They compiled hydrogeologic data for a 

large portion of southern Nevada and California, including the NTS.  They looked at porosities for the 

LCA based on the tracer tests at the Amargosa tracer site (Leap and Belmonte, 1992) and the tracer 

test between wells C and C-1 in Yucca Flat (Winograd and West, 1962) analyzed using the method of 

Welty and Gelhar (1989).  They also looked at the fracture analysis of core from ER-6-2 (IT, 1996c).  

For ER-6-2, they calculated a true fracture spacing of 0.22 m from the mean of the reported fracture 

dip angle (81 degrees) and fracture aperture (0.9 mm).  They then divided the mean fracture aperture 

by the calculated true fracture spacing to determine a fracture porosity of 4 x 10-3.  They conducted a 

literature review and found fracture porosities ranging from 2 x 10-4 to 2 x 10-2 reported as 

representative for the Culebra Dolomite at the WIPP site (Tomasko et al., 1989).  For their modeling 

of 3H transport, DOE/NV (1997a) assumed a log-normal distribution having a log10 mean value of 

-2.46 and a log10 SD of 0.25 for the effective porosity of the LCA.  This translates to a mean effective 

porosity of 3.47 x 10-3.  The effective porosity range, defined by two SDs, is 1.1 x 10-3 to 1.1 x 10-2.  

Table 8-20
Effective Porosity Estimates for Carbonate Rocks 

in the Basin and Range Province (after Bedinger et al., 1989)

Rock Type Description
Effective Porosity (fraction)

16.5 Percentile Mean 83.5 Percentile

Carbonate Rocks, including 
limestone, dolomite, and marble

Fractured, karstic, cavernous 0.09 0.12 0.16

Dense to moderately dense 0.005 0.01 0.02

Note: Shaded values were not used in developing the effective porosity distribution for the CA HGU  
(see discussion in text).
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8.5.5.7 Recommended Ranges in Previous NTS Data Document Reports

Distributions and ranges of effective porosity for the CA HGU for use in groundwater flow and 

contaminant transport models have been estimated and reported for Pahute Mesa CAU (Rehfeldt 

et al., 2003) and Frenchman Flat CAU (SNJV, 2005b).  The distribution selected by Rehfeldt et al. 

(2003) for Pahute Mesa is the distribution used by DOE/NV (1997a) for their regional 3H model 

(see previous section).  The SNJV (2005b) report selected a log-uniform distribution for the effective 

porosity of the CA HGU with a range of 6.4 x 10-4 to 1.6 x 10-2 for Frenchman Flat.

8.5.5.8 Summary and Recommended Distribution

The previous sections discussed fracture porosity data for the CA HGU determined by several 

methods and used or recommended in previous NTS modeling studies.  The values used in 

developing the distribution for the effective porosity must be consistent with the conceptual model 

that will be used for this HGU in the CAU-scale flow and transport model.  That conceptualization is 

a double-porosity system with advective flow and transport through fractures only, and matrix 

participation only through molecular diffusion from and to the fractures.  The fracture porosities 

considered to be consistent with this conceptualization are summarized in Table 8-21 and graphically 

illustrated in Figure 8-5.     

The fracture porosities calculated from hydraulic conductivity and fracture spacing will likely be 

consistently biased lower than those determined from tracer test results because hydraulic tests are 

controlled by small aperture regions in the fractures, and tracer tests are controlled by the average 

fracture aperture (see discussion in Section 8.5.2.11).  Both hydraulic and tracer tests are impacted by 

the range and distribution of fracture apertures.  This consideration should be included in developing 

the effective porosity distribution for the Yucca Flat/Climax Mine CAU flow and transport model.  

Although the arrival time of the peak concentration from a tracer test provides a good estimate of the 

fracture porosity assuming plug flow, it yields a value that is biased slightly high for double-porosity 

media.  This occurs because the plug flow calculation neglects the effects of matrix diffusion, which 

acts to retard the tracer.  

Based on the results of the evaluation of fracture porosities for the CA HGU, a range in effective 

porosity of 2 x 10-4 to 2 x 10-2 (interpreted values are rounded to one significant figure) is 
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Table 8-21
Summary of Estimated Effective Porosity Ranges for the Carbonate Aquifer and Recommended Range 

for the Yucca Flat/Climax Mine CAU-Scale Model

Source
Effective Porosity (fraction)

Location Method DDE_F
Minimum Maximum

Tracer Tests

Current Report (based on 
test data from Winograd 
and West, 1962)

5.9 x 10-4 4.3 x 10-3 WW-C and WW-C1 in Yucca Flat Plug flow method (Equation [8-3]) using 
peak-concentration arrival time 5

Current Report 4.7 x 10-3 1.7 x 10-2 ER-6-1 Well Cluster in Yucca Flat Plug flow method (Equation [8-3]) using 
peak-concentration arrival time 1

SNJV, 2006d 1.1 x 10-2 1.8 x 10-2 ER-6-1 Well Cluster in Yucca Flat Plug flow method (Equation [8-3]) using 
mean residence time from RELAP analysis 1

Jones et al., 1992 5.0 x 10-4 1.5 x 10-3 Culebra Dolomite at the WIPP 
site in New Mexico

Model calibration to tracer breakthrough 
curves 3

Current Report 1.0 x 10-3 3.1 x 10-3 Culebra Dolomite at the WIPP 
site in New Mexico

Plug flow method (Equation [8-3]) using 
peak-concentration arrival time 1

Calculated from Hydraulic Conductivity and Fracture Spacing Data

Current Report 2.0 x 10-4 2.0 x 10-3 ER-6-1#2 and ER-7-1 in Yucca 
Flat

K from hydraulic tests; fracture spacing 
calculated using Equations (8-11) and 
(8-12); porosity calculated using 
Equation (8-10)

1

Calculated from Fracture Spacing and Fracture Aperture Data

Current Report 1.9 x 10-3 9.4 x 10-3 ER-6-1#2 and ER-7-1 in Yucca 
Flat

Calculated from fracture aperture and 
spacing using Equation (8-14) 1

Recommend Range for the Yucca Flat/Climax Mine CAU-Scale Flow and Transport Model

Current Report 2 x 10-4 2 x 10-2 Yucca Flat Recommended range based on review and 
analyses N/A

K - Hydraulic conductivity          N/A - Not applicable
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Figure 8-5
Estimated Effective Porosity Ranges for the Carbonate Aquifer Hydrogeologic Unit
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recommended for the CA HGU at Yucca Flat (see Table 8-21 and Figure 8-5).  The recommended 

distribution for sampling this range is skewed log triangular with a peak at 5 x 10-3.  This distribution 

reflects the fact that fracture porosities determined from tracer tests are considered more 

representative and less uncertain than those determined from hydraulic conductivities and fracture 

spacings.   

8.6 Effective Porosity of the Confining Unit Hydrogeologic Units

There are four confining unit HGUs (PCU, TCU, GCU, and CCU) in the Yucca Flat model area.  

8.6.1 The Playa Confining Unit

The PCU HGU consists predominately of clayey silt and is located at the Yucca Lake playa, the 

Papoose Lake playa, and an unnamed playa.  There is no evidence of fracturing in the PCU.  

However, large cracks have historically opened in the dry bed of Yucca Lake.  Water accumulating in 

the playa due to precipitation has rapidly drained into the cracks potentially providing a means of 

recharge to the regional groundwater system.  Doty and Rush (1985) indicate that the cracks have 

naturally formed probably due to the combination of natural desiccation of playa deposits and fault 

movement.

The PGU HGU is unsaturated in Yucca Flat.  Therefore, an effective porosity distribution is not 

provided since this HGU will not be included in the CAU-scale model.

8.6.2 The Tuff Confining Unit 

The TCU HGU consists predominately of zeolitized nonwelded tuffs but also includes zeolitized 

bedded tuff, devitrified ash-flow tuff, tuffaceous sandstone, tuffaceous paleocolluvium, argillized 

bedded tuff, ash-fall tuff, and reworked tuff.  A distinguishing characteristic of the TCU HGU is the 

extensive zeolitization that substantially decreases the permeability of the unit.  Zeolitization 

diagenesis also tends to decrease the overall porosity of the TCU HGU (Moncure et al., 1981).  The 

TCU HGU is defined by five HSUs (UTCU, BRCU, LTCU, OSBCU, and ATCU). 

Although there are some fractures in the TCU HGU, they tend to be clogged with clay or zeolites and 

tend to be poorly hydraulically connected.  Pumping tests in the unit indicate that fractured zones 
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initially yield more water than the surrounding matrix, but the yield of these zones generally 

decreases rapidly as fractures are depressurized.  Flow through the unit is probably controlled by 

interstitial permeability rather than fracture transmissibility (Winograd and Thordarson, 1975).  

Due to the lack of fracture flow within the TCU HGU, the effective porosity for this HGU is assumed 

to be represented by a fraction of the matrix porosity.  The recommended matrix porosity distribution 

for the TCU HGU is discussed in Section 7.0.  Based on the types of material found in this HGU, it is 

estimated that the effective porosity ranges from 50 to 80 percent of the matrix porosity.  Therefore, 

the recommended distribution for the effective porosity of the TCU HGU is 50 to 80 percent of the 

recommended matrix porosity distribution.

8.6.3 The Granite Confining Unit 

The following discussion of the granite confining unit HGU is taken from BN (2006).  This HGU 

consists of the intrusive Climax Stock composed of granodiorite and quartz monzonite.  The Climax 

Stock is located at the north end of Yucca Flat.  The GCU HGU is saturated at depth, has low 

intergranular porosity, and has a low permeability.  The GCU HGU is defined by a single HSU, the 

MGCU.  

The GCU HGU will not be directly included in the Yucca Flat/Climax Mine CAU flow and transport 

model.  Rather, it will be incorporated into the Climax Stock model.  Simulated flow across the 

southern boundary of the Climax Stock model will then be used as a boundary condition for the 

Yucca Flat model.  Therefore, an effective porosity distribution for the GCU HGU is not presented 

here.

8.6.4 The Clastic Confining Unit 

The CCU HGU consists of siliciclastic sedimentary rocks, quartzite, and shale.  Although some 

fractures are found within the CCU, they tend to be either healed or sealed, and little groundwater is 

produced from this HGU (BN, 2006).  The CCU yields very little groundwater and is saturated only 

in parts of western Yucca Flat (BN, 2006).  Winograd and Thordarson (1975) report that fractures 

observed in core from this HGU in a Yucca Flat well were “tightly sealed either by selvage minerals 

or by quartz or calcite veinlets, or by virtue of their never having been opened.”  They also state that 
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the porous, fine-grained rock found in the CCU typically deform plastically, which limits 

development of open fractures.  These porous, fine-grained rocks will also tend to seal or isolate 

fractures developed in the dense quartzite (Winograd and Thardarson, 1975).  Regional flow in this 

HGU is most likely controlled by interstitial permeability rather than fracture transmissibility 

(Winograd and Thordarson, 1975).

Due to the lack of interconnected fractures, the effective porosity of the CCU HGU is considered to 

be a fraction of the matrix porosity.  A detailed discussion of the matrix porosity for this HGU is 

provided in Section 7.0 along with the distribution recommended for the CAU-scale model.  Based on 

the types of sediments found in this HGU, the effective porosity is estimated to be 50 to 90 percent of 

the matrix porosity.  Therefore, the recommended effective porosity distribution for the CCU HGU is 

50 to 90 percent recommended of the matrix porosity distribution.

8.7 Data Scaling Considerations

For proper representation of a double-porosity media in regional flow and transport models, 

characteristics of the fracture system at the scale of the model must be developed.  The most common 

scales at which fracture data are available are the borehole scale through observations of fractures in 

core and with borehole image logs, and at the scale of tens of meters through interpretations of 

breakthrough curves from tracer tests.  Both of these scales are significantly smaller than the scale of 

the Yucca Flat/Climax Mine CAU flow and transport model, which is tens of kilometers.  

Scale and measurement uncertainty must be considered when determining ranges for fracture 

parameters.  While the apertures (above a threshold minimum thickness) of fractures may be 

measured at various depths in a borehole based on borehole or core logging, observations of open or 

partially open fractures may be uncertain because the openness of the fracture may have resulted from 

physical erosion during drilling and may not be representative at even short distances beyond the 

nominal borehole diameter.  In addition, fractures that are truly open may have limited lateral extent 

and continuity, and thus would not provide a fracture transport pathway important for the distance and 

time scales of interest in a regional transport evaluation.

In fractured media, the effective porosity is a measure of the interconnectedness of open fractures 

available for flow.  Many fractures may dead end and not participate in flow at any scale, whereas 
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other fractures may participate at the scale of tens of meters but not at hundreds of meters or several 

kilometers.  The percentage of fractures interconnected at the CAU scale will be much smaller than 

those interconnected at the scale of tens of meters and those observed in boreholes.  From 

observations at the borehole scale, it is not possible to determine the interconnectedness of fractures 

beyond the borehole scale.  In addition, the degree to which fractures interconnected at the tracer test 

scale (tens of meters) are also interconnected at the CAU scale is unknown.  Adding to this 

complication are the assumptions of the fracture geometry and characteristics in the double-porosity 

conceptual model used in the CAU-scale modeling.  This conceptualization typically assumes that 

fractures in a fractured HSU are equally spaced and hydraulically connected with a constant aperture 

across the entire domain of the HSU in the model.

In fractured media, the lateral extent and aperture of fractures is not constant.  As a result, open 

fractures observed at one location may not be found at other locations, and dense fracturing at one 

location may diminish laterally or become sparse.  This difference in scales is important because 

fracture characteristics determined at the measurement scale should not be expected to be 

representative to the much larger model scale, in particular if the fracture property is implemented as 

uniform for the entire HGU or HSU.  The presence of a few fractures in a HGU at the local scale, 

which may indicate a fractured media conceptualization, may, in some cases, be more appropriately 

modeled as porous media conceptualized at the CAU scale when one considers the limited number 

and lateral extent of the fractures (e.g., in a situation where the HGU generally appears to be 

predominantly unfractured).  When a double-porosity conceptualization is appropriate for an HGU, it 

is necessary to scale the fracture porosities obtained from borehole observations and tracer test 

interpretations to the CAU scale to appropriately incorporate the fractures in the CAU-scale models 

(see discussion below).  Methods must be developed to address translating ranges determined at the 

measurement scale to ranges for implementation in the transport model.

8.8 Limitations

The major limitations associated with the effective porosity distributions developed for the Yucca 

Flat/Climax Mine CAU model are the sparse data environment, the uncertainty in the data inputs and 

methods used to estimate effective porosity, and the issue of scaling borehole and tracer test values to 

values representative at the CAU scale.  Effective porosity distributions were developed in this 

section for the three fractured aquifer HGUs.  The scale of these aquifers within the Yucca 



Section 8.0

Phase I Contaminant Transport Parameters for CAU 97: Yucca Flat/Climax Mine, Nye County, Nevada

8-76

Flat/Climax Mine CAU model is up to hundreds of square kilometers.  The actual effective porosity 

in such a large area will be heterogeneous, varying both in the lateral and vertical directions.  

Determining values for effective porosity that capture this heterogeneity would require extensive data 

collection at time and spatial scales that are impractical.  The limitation due to the sparse data 

environment results in an inability to capture the heterogeneous nature of the effective porosity and its 

effect on contaminant movement.  The use of a distribution and multiple simulations using different 

values from the distribution is the method implemented to try to bound the effects of heterogeneity in 

effective porosity.  

Fracture porosity must be estimated from fracture data or tracer tests because it cannot be measured 
directly in situ.  Estimation of fracture porosity from fracture data uses the parallel-plate model and 
cubic law.  A limitation to this approach is its assumption that the fractures are parallel yielding 
constant-thickness apertures, are infinite in extent, have the same properties everywhere, and are 
equally spaced.  Because of these assumptions, estimates of fracture porosity based on this approach 
are considered to provide lower bound values (see discussion in Section 8.5.2.11).  Effective 
porosities determined from tracer tests are dependent upon knowledge of the matrix diffusion process 
and on transport direction relative to the predominant fracture direction.  If parameters related to 
matrix diffusion are uncertain, the effective porosities determined through numerical modeling will 
also be uncertain.  If tracer migration in a tracer test occurs along a pathway that is near parallel with 
the primary interconnected fracture direction, transport times will predominantly be a function of 
advection and dispersion through the fractures with less influence of matrix diffusion as compared to 
other pathways.  If, however, tracer migration occurs along a pathway at an angle to the primary 
fracture direction, transport will be retarded due to increased matrix diffusion along a more tortuous 
travel path (increased travel time and fracture surface area for diffusion).  Therefore, use of time to 
peak arrival to estimate fracture porosity will yield different values depending on the geometry 
between the tracer travel path and the fracture direction.  The closer the travel path is to the direction 
of fracturing, the smaller the estimated porosity and the closer the estimated value may reflect the 
actual fracture porosity.

Data scaling considerations are discussed in Section 8.7.  These considerations are important because 
fracture characteristics determined at the measurement scale should not be expected to be 
representative at the scale of a regional model, where a single value is being implemented for the 
entire CAU for an individual model realization.  If sufficient data were available, determination of an 
effective porosity distribution for an HGU on the regional scale should use the variance of the mean 
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values observed at various locations in the HGU at local scales rather than the variance of the entire 
distribution from all measurements in the HGU.  This approach results in a reduction of the variance 
in the parameter at the regional scale.  The extreme large and small values obtained from local 
measurements reflect local features.  On a regional basis, these local features are not likely to be 
significant in controlling migration and the full range of parameter values from those features should 
not be used.  Scaling of measurement data to the CAU scale needs to be considered in the final 
application of the effective porosity distributions to the Yucca Flat/Climax Mine CAU flow and 
transport model and sensitivity and uncertainty analyses.

8.9 Summary of Effective Porosity for the HGUs at the Yucca Flat/Climax Mine CAU

Effective porosity is defined as the volume of rock voids transmitting fluid (interconnected voids) per 
total volume of rock.  All geologic material has primary (or interstitial) porosity due to the soil or rock 
matrix.  Fractured geologic material also has secondary porosity as a result of the introduction of 
additional voids associated with the fractures.  Flow and transport occurs through the rock matrix in 
an unfractured rock and through fractures, and sometimes also through the matrix, in a fractured rock.  
The two conceptualizations most often used for fractured rock are the double-porosity 
conceptualization or the dual-permeability conceptualization.  For the former, advective and 
dispersive flow and transport occurs through the fractures only, and the matrix acts as a storage for 
solutes diffusing from the fractures into the matrix or from the matrix into the fractures.  For the latter, 
advective and dispersive flow and transport occurs through both the fractures and the matrix.  The 
double-porosity conceptualization will be used for the fractured HGUs in the Yucca Flat/Climax 
Mine CAU model.

The effective porosities for Yucca Flat were evaluated by HGU.  The first step in the evaluation 
assessed whether the HGU behaves as a porous or fractured medium.  Those HGUs determined to 
behave as a porous medium are the AA, VTA, PCU, TCU, and CCU HGUs.  The effective porosity 
for these porous media HGUs was assumed to be represented by a fraction of the matrix porosity, 
which is discussed in Section 7.0.  The value of the fraction varied depending on the type of 
sediments, grain size, and cementation or welding.

The HGUs determined to behave as fractured media are the WTA, LFA, and CA HGUs.  For these 
HGUs, the fracture porosities from available sources were compiled and evaluated, and a distribution 
was developed.  For fractured media, the effective porosity was assumed to be the same as the 
fracture porosity.  Fracture porosity data were determined predominately from interpretations of 
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tracer tests and borehole fracture data.  The spatial locations of the fracture porosity data used in 
developing the effective porosity distributions are shown in Figure 8-5.

The recommended effective porosity range and distribution for the WTA, LFA, and CA HGUs are 
summarized in Table 8-22 and shown graphically in Figure 8-6.  The recommended range and 
distribution for each of these HGUs is similar with the lower bound at about 10-4 and the upper bound 
at about 2 x 10-2.  A skewed log triangular distribution is recommended for these HGUs, thus 
allowing a stronger weighting to the tracer test data.  The modes, or most likely values, for the 
recommended distributions are slightly different for the three HGUs, with the value being highest for 
the LFA HGU and lowest for the WTA HGU (see Table 8-22).  Because the distributions developed 
for these three HGUs are similar, a single distribution could be used for all of the fractured HGUs if 
needed (i.e., the data available for each HGU is sufficiently sparse that the three distributions could 
not be considered as distinctly different).       

A skewed log triangular distribution is recommended because it reflects the fact that higher fracture 
porosities determined from tracer tests are considered more representative and less uncertain than the 
lower values determined from hydraulic conductivities, fracture spacings, and fracture apertures.  The 
difference between the fracture porosities determined by the tracer test and hydraulic conductivity 
methods is a function of the portion of the fracture aperture effective during hydraulic and tracer 
testing.  Hydraulic conductivity measurements are controlled by smaller apertures while migration 
during tracer tests is controlled by the mean fracture aperture (Tsang, 1992).  Therefore, fracture 
porosities determined using hydraulic conductivity will be biased low, and thus they were given a 
lower probability in the distribution.  

Table 8-22
Summary of Recommended Distributions for the Effective Porosity 

of the Fractured Aquifer HGUs for the Yucca Flat/Climax Mine CAU-Scale Model

HGU Lower Bound Upper Bound Mode (Peak) Distribution

WTA 1 x 10-4 6 x 10-3 3 x 10-3 Skewed log triangular

LFA 1 x 10-4 2 x 10-2 6 x 10-3 Skewed log triangular

CA 2 x 10-4 2 x 10-2 5 x 10-3 Skewed log triangular
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Figure 8-6
Recommended Effective Porosity Distributions for the Fractured Hydrogeologic Units
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9.0 DISPERSIVITY

This section describes the role of dispersion in contaminant transport in groundwater, the available 

dispersivity data, analysis of these data, and the associated results.  The objective is to use the data 

from the NTS and the scientific literature to develop an approach for selecting appropriate 

dispersivity values for use in the Yucca Flat/Climax Mine CAU groundwater flow and transport 

model.  Conceptually, dispersivity is not a characteristic property of the geologic system but rather is 

a modeling parameter that accounts for the unmeasured and/or unspecified variability in the hydraulic 

properties within the flow and transport model domain.  Dispersivity is often observed to be 

scale-dependent (i.e., a function of mean travel distance of solutes).  Representative dispersivity 

values (at specific transport scales) are typically derived from data collected during tracer tests, and 

from model calibration of contaminant plumes and geochemical or environmental isotope 

distributions in regional flow systems.  For additional discussion on the role of dispersion in 

contaminant transport, refer to the technical basis document entitled, The Role of Dispersion in 

Radionuclide Transport - Data and Modeling Requirements (SNJV, 2004d).

9.1 Role of Dispersion in Contaminant Transport

Unlike molecular diffusion, an inherent property of a solute in water, mechanical dispersion arises 

from the complex and heterogeneous movement of water and solute particles through an intricate 

network of pores and fractures.  In the simplest terms, dispersion is the process of spreading a solute 

over a volume that is larger than it would be predicted based on estimates of the mean groundwater 

velocity.  Because, in practice, the results of mechanical dispersion and molecular diffusion are not 

easily separable, hydrodynamic dispersion is defined as a combined effect of both processes.  Freeze 

and Cherry (1979) write the following relationship for the hydrodynamic dispersion coefficient:

(9-1)dDVD += α
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where D is the hydrodynamic dispersion coefficient (L2/t), α is dispersivity (L), V is the average 

groundwater flow velocity (L/t), and Dd is the coefficient of molecular diffusion (L2/t) for the solute in 

the porous medium.

A conceptual understanding of mechanical dispersion along individual conduits can enhance the 

understanding of the processes involved.  At relatively small scales in porous media, mechanical 

dispersion is the result of the velocity distribution in the pore spaces, changes in direction of flow, and 

variation in mean velocity as fluid moves from one pore space to the next.  Mechanical dispersion in 

fractured networks can grow complicated as mixing occurs in preferential pathways.  One might 

visualize the complicated system of fractures where fractures with varying dip and strike, aperture 

thickness, and aperture surface roughness are encountered in geologic systems such as that of the 

Yucca Flat/Climax Mine CAU.  At larger scales, dispersion is controlled by the spreading caused by 

the heterogeneous nature of the geologic system. 

The effect of dispersion during transport of solutes in geologic systems is commonly quantified in 

terms of longitudinal and transverse dispersivities.  Longitudinal dispersivity is defined relative to the 

direction of flow, whereas transverse dispersivity is defined relative to directions normal to the flow 

direction.  Determination of appropriate values for these dispersivities is important for predicting 

contaminant concentrations in groundwater flow systems.  These parameters affect the spreading of 

contaminants at a macroscopic scale.  Theoretically, hydrodynamic dispersion is independent of the 

scale of measurement as long as the measurement is made within a representative elementary volume 

(Bear, 1972; Bear and Verruijt, 1990).  However, in reality, the representative elementary volume 

changes with the size of the measurement scale because the heterogeneity introduced in the expanded 

domain results in larger overall dispersivity values.

Dispersivities estimated from laboratory experiments are found to be much smaller that those 

determined for field conditions.  Dispersivity values representative of field conditions are derived 

from data collected during tracer experiments or observations of plume migration, geochemical data, 

or environmental isotope data.  Field-scale dispersion observed in large-scale plumes or 

geochemical/isotope data is generally accepted to be the result of the heterogeneous velocity field at 

scales smaller than the plume or scale of investigation.  Heterogeneity at scales larger than the plume 

causes changes in the mean position of the plume; however, if the plume encompasses several 
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heterogeneous domains, the result may appear as a larger dispersivity.  The nature of heterogeneity 

differs from site to site.  Dispersivity values may vary by orders of magnitude depending on the 

nature of the site and the transport scale of interest.  Unless the transport properties of each of the 

domains are characterized in detail, a lumped dispersivity value may be used to simulate the plume.

Based on data from studies in a variety of geologic settings, dispersivity appears to be 

scale-dependent (Lallemand-Barres and Peaudecerf, 1978; Pickens and Grisak, 1981a and b; 

Gelhar et al., 1992; Neuman, 1990 and 1995; Neuman and Di Federico, 2003; Schulze-Makuch, 

2005).  In the dispersivity-scale analyses presented in SNJV (2005b), it was noted that the 

scale/dispersivity relationship is not linear.   

Field-scale tracer tests are typically limited to a few hundred meters in scale, so experimentally 

derived dispersivity values are available only for relatively short transport distances as compared to 

the transport distances of interest for predictions of long-term contaminant transport.  Dispersivity 

data for larger scales have been determined at some sites through transport model calibration to 

observations of concentration distribution within contamination plumes.  With a site as large and as 

varied as the Yucca Flat/Climax Mine CAU, it is impractical to conduct tracer tests in enough 

locations to accurately estimate dispersivity, particularly at a physical scale representative of transport 

for the 1,000-year period of interest.  Tracer tests conducted at scales of a few tens to hundreds of 

meters will not yield dispersivity values appropriate at the CAU scale because of the apparent trends 

in dispersivity with scale.  Time and budget constraints make it nearly impossible to perform a tracer 

test at the CAU scale.  Thus, the appropriate dispersivity values to use for the CAU-scale modeling 

will depend on the expected distance of transport.  As a result, it is helpful to know the expected 

distances of contaminant transport a priori to best assess the range of dispersivity values most 

appropriate for modeling efforts.  Future Yucca Flat/Climax Mine CAU modeling activities will 

provide information about expected radionuclide transport paths and distances from source locations 

of interest.  Based on the estimated distances, expected values and bounds of dispersivities may be 

estimated using the statistical relationships developed from this study.  These bounds and statistical 

parameters will also be useful in uncertainty analysis for transport of contaminants.
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This section is intended to document the available dispersivity data from the NTS region and the 

general literature and to provide relationships for use in estimating appropriate values for the Yucca 

Flat/Climax Mine CAU contaminant transport model and for performing uncertainty analyses.

9.2 Data Compilation and Data Transfer

The dispersivity data types, data sources, and data documentation evaluation process are described in 

this section.  Data from the Yucca Flat/Climax Mine HFM area and data from other NTS CAUs, 

YMP, and Nye County were used for this analysis due to the unavailability of comprehensive data 

from the Yucca Flat/Climax Mine HFM area for all HGUs.  Figure 9-1 shows the source locations for 

the NTS-area data used in the analysis.  All data locations used in quantitative analyses are identified 

in Appendix G and the associated dataset referenced in Section G.4.0.  Individual discussions of the 

applicability of the transferred data are provided for each HGU.  There are limited data from the NTS 

area to determine a Yucca Flat/Climax Mine specific distribution for the parameter values.  Data from 

literature for locations worldwide were used to evaluate the NTS area data with respect to the general 

distribution of dispersivity and scale dependence.  A quantitative assessment of the sensitivity of 

transport modeling to the uncertainty in this parameter cannot be provided before the transport model 

development.  The parameter description discusses the importance of this parameter.

9.2.1 Data Types

Dispersivity values are derived from interpretation of tracer tests or studies of contaminant plume 

migration.  The types of data used to document dispersivity include the location of the site, primary 

lithology of the rocks, identity of the tracer or contaminant that migrated, transport scale, data 

analysis method, dispersivity interpretation results, and data source.

9.2.2 Data Sources

Dispersivity data have been determined from one RNM investigation (CAMBRIC) and several tracer 

tests conducted at or near the NTS.  These studies were conducted at the following sites (Figure 9-1):

• CAMBRIC site, Frenchman Flat, NTS
• BULLION FGE, Pahute Mesa, NTS
• C-holes Complex, Yucca Mountain
• Amargosa Tracer Calibration Site, Amargosa Desert, NV
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Figure 9-1
Locations of CAMBRIC Radionuclide Migration Experiment 

and Tracer Tests at NTS and Vicinity
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• C-Well Site, Yucca Flat, NTS
• ER-6-1 Well Cluster, Yucca Flat, NTS
• Nye County Early Warning Drilling Program (NC-EWDP) Site 22, Fortymile Wash, NTS

Additional data available from non-NTS sites were obtained from the scientific literature.  Gelhar et 

al. (1992) published a critical review of data on field-scale dispersion in aquifers reporting data from 

59 different field sites.  The most recent summary of laboratory and field dispersivity data is 

presented in Schulze-Makuch (2005).  He states that he has summarized data from 109 authors, 

including those summarized in Gelhar et al. (1992).  Dispersivity data from Gelhar et al. (1992), 

selected sources of values representative of field values cited by Schulze-Makuch (2005), and other 

investigations reported in the scientific literature were used to supplement the tracer test data from the 

NTS and vicinity to develop a dataset of dispersivity versus scale.

9.2.3 Data Documentation Evaluation

The DDE_F in the database was assigned to the records based on the level of reliability and the 

amount of documentation available (see Section 5.0).  The BULLION FGE and the ER-6-1 Well 

Cluster multiple-well tracer tests are the only tracer tests conducted under the Environmental 

Restoration Project (ERP).  These tests were conducted following an established QA program, and 

the data were assigned a DDE_F of 1 because adequate documentation is available.  Documentation 

of the experiments conducted at the CAMBRIC site and the C-holes Complex of Yucca Mountain 

were assigned a DDE_F of 1.  At the WIPP site, the data were assigned a level of 3 as these tests were 

conducted outside of the ERP but are well documented under a Nuclear Quality Assurance (NQA)-1 

program.  The DDE_F for the tracer tests conducted at the C-Well Site in Yucca Flat and at Amargosa 

Desert was assigned a level of 4 as the data were not documented under an NQA-1 program.  All 

other data were assigned a DDE_F of 5 as sufficient documentation of the procedures and their 

application during field data collection and analysis are not readily available.  

9.3 Data Evaluation

The data evaluation approach consisted of summarizing the existing NTS and vicinity studies, 

including the range of dispersivity values obtained by different investigators.  Data from dispersivity 

studies available in the scientific literature were also incorporated to determine a range of values 

appropriate for the scales of interest for the Yucca Flat/Climax Mine CAU transport modeling effort.  
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This section provides descriptions of the available data, data quality evaluation, dataset analysis 

approach, and derived dispersivity-scale relationship results.

The dispersivity data derived from tracer tests and observations of plume migration, geochemical 

data, or environmental isotope data were compiled into a comprehensive dataset described in 

Appendix G.  The dataset includes 208 records for longitudinal dispersivity.  A subset of the data 

sources reporting longitudinal dispersivity also provides transverse dispersivity data.  Summary 

descriptions of the dispersivity data and observations from an initial examination of the data are 

provided in the following sections.  

9.3.1 NTS and Vicinity Dispersivity Data

This subsection describes dispersivities obtained from the RNM experiment and tracer tests 

conducted to date at the NTS and vicinity.  Results derived from the migration and tracer tests data 

using different interpretation approaches are included.  The data for these experiments are 

summarized in Table 9-1 with regard to the aquifer types and geology, test method, tracer type, 

analytical method, and the derived longitudinal dispersivities.  Further information and discussion on 

the test sites, experimental methods, interpretation approaches, and interpreted dispersivity results for 

the CAMBRIC site, BULLION FGE, C-holes Complex, Amargosa Tracer Calibration Site, and 

C-Well Site are presented and discussed in detail in Phase II Contaminant Transport Parameters for 

the Groundwater Flow and Contaminant Transport Model for Corrective Action Unit 98: Frenchman 

Flat, Nye County, Nevada (SNJV, 2005b) and are not repeated here.  Summary descriptions and 

discussions for the tracer tests conducted more recently at the NC-EWDP Site 22 and ER-6-1 Well 

Cluster and their interpreted dispersivities are presented in the following subsections.  

Additional estimates of longitudinal dispersivity were obtained from evaluating the breakthrough 

curves from convergent-flow tracer tests at the NTS and vicinity using equations derived by Welty 

and Gelhar (1989).  For convergent-flow tracer tests with a pulse input of tracer introduced at the 

tracer-addition well, Welty and Gelhar (1989) provide an expression for calculating longitudinal 

dispersivity (α) based on the distance between wells (R), time tm to peak concentration (Cm), and 

change in time (Δt) between the times t1 and t2 to reach concentration e-1Cm on the rising and falling 

limbs, respectively, of the breakthrough curve (see Figure 9-2 for an illustration of these terms).  

Under the assumption that longitudinal dispersivity divided by the distance between the production 
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Table 9-1
Dispersivity Information Summary from Studies at the Nevada Test Site and Vicinity

 (Page 1 of 2)

Site 
Location

Test Site 
Geology

Scale 
of Test 

(m)

Test 
Method Tracers Analysis 

Method

Longitudinal 
Dispersivity 

(m)
References

CAMBRIC Test, 
Frenchman 

Flat, Nevada

Tuffaceous 
Alluvium 91 Radial 

converging 

Nuclear test 
radionuclides:  3H Sauty, 1980 2.0 Burbey and Wheatcraft, 1986 

Nuclear test 
radionuclides:  3H Sauty, 1980 9.1 Travis et al., 1983

Nuclear test 
radionuclides:  3H Sauty, 1980 15.1 Thompson, 1988;

 Ogard et al., 1988

Nuclear test 
radionuclides:  36Cl, 3H

Welty and 
Gelhar, 1989 3.1 - 9.6 Current Analysis; 

Thompson, 1991

BULLION FGE, 
Pahute Mesa, 

Nevada

Fractured 
Lava-Flow 

Aquifer, 
Calico Hills 
Formation

130.2

Radial 
converging 

PFBA, DFBA, I, CML, 
polystyrene 

microspheres

MODFLOWT 
calibration

10 (horizontal)
3 (horizontal 
transverse)

2 (vertical transverse)

IT, 1998

41.5 - 
130.2

RELAP (Reimus 
and Haga, 1999) 8.7 - 25.3 IT, 1998

88.7 - 
130.2

Welty and 
Gelhar, 1989 3.9 - NA a Current Analysis

C-holes 
Complex, Yucca 

Mountain, 
Nevada

Prow Pass 
Tuff

(fractured)
30 Unbalanced 

dipole

TFBA, I Moench, 1989 0.27 b Bechtel SAIC, 2004c 

PFBA, Br, Cl, Li RELAP (Reimus 
and Haga, 1999) 13.0 Bechtel SAIC, 2004c 

TFBA, PFBA, Cl Welty and 
Gelhar, 1989 1.7 - 8.6 Current Analysis

Bullfrog 
Tuff

(fractured)
30 Unbalanced 

dipole

PFBA, Br, Li RELAP (Reimus 
and Haga, 1999) 3.2 Bechtel SAIC, 2004c

PFBA Welty and 
Gelhar, 1989 0.8 - 2.6 Current Analysis
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Amargosa 
Tracer 

Calibration Site, 
Amargosa 

Desert, Nevada

Cambrian 
Bonanza 

King 
Dolomite 

(fractured)

122.8 Doublet 
recirculating

3H, 25S, Br Grove, 1977 15 - 30.5 Leap and Belmonte, 1992

C-Well Site, 
Yucca Flat, 

Nevada

Fractured 
Limestone 29.3

Radial 
converging 

test at 
WW-C and 

WW-C1

Fluorescein dye Welty and 
Gelhar, 1989 0.6 - 1.4 Winograd and West, 1962 - data; 

Shaw, 2003a - calculation

ER-6-1 Well 
Cluster

Fractured 
Limestone 64 Radial 

converging

2,4,5-TFBA, I
(lower zone)

RELAP (Reimus 
and Haga, 1999) 27 - 29

SNJV, 2006d; 
Current Analysis2,4,5-TFBA, I

 (lower zone)
Welty and 

Gelhar, 1989 3.1 - 10.8

PFBA (upper zone) RELAP (Reimus 
and Haga, 1999) 19 - 22 SNJV, 2006d

PFBA (upper zone) Welty and 
Gelhar, 1989 3.0 - NA a Current Analysis

NC-EWDP
Site 22 Alluvium 18 Radial 

converging 2,4,5-TFBA, DFBA

RELAP (Reimus 
and Haga, 1999) 2.7 - 5 Reimus, 2006 

Moench, 1989 
and 1995 0.3 - 3 Umari et al., 2006

Welty and 
Gelhar, 1989 0.8 - 3.6 Current Analysis

a NA refers to case where falling limb of breakthrough curve was insufficient to allow calculation of dispersivity estimate using the equation from Welty and Gelhar (1989) that 
requires both rising and falling limbs of the breakthrough curve.

b The interpretation accounted for plume spreading by assuming a long, slow release of tracer from the injection well and, therefore, it was not necessary to invoke strong 
dispersion in the aquifer.

CML - Carboxylate-modified latex

Table 9-1
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and tracer-addition wells (α/R) is much less than unity, a simplified equation may be used to estimate 

dispersivity (Welty and Gelhar, 1989):

(9-2)

In some cases, the falling limb of the breakthrough curve may exhibit a strong tailing behavior as a 

result of processes beyond that due to dispersion alone (e.g., matrix diffusion effects in 

double-porosity media as may occur at locations such as the BULLION site, ER-6-1, C-holes 

Complex, and C-Well Site; continued source release from the assumed tracer pulse input zone as may 

be the case at CAMBRIC; or tracer loss not available for capture because of drift caused by natural 

groundwater gradient).  In such cases, it may be better to calculate the dispersivity based just on the 

rising limb of the breakthrough curve using Equation (9-2) where Δt is equal to twice the time period 

from concentration e-1Cm to peak concentration Cm.  This approach was used successfully by Jones 

et al. (1992) for estimating dispersivity during double-porosity model calibration of breakthrough 

curves at three sites in the fractured Culebra Dolomite at the WIPP site in New Mexico.  For the 

Figure 9-2
Schematic of Tracer Breakthrough Curve at the Pumping Well 

of a Convergent-Flow Tracer Test
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convergent-flow tracer tests at the BULLION FGE, CAMBRIC site, ER-6-1, C-holes Complex, and 

C-Well Site, additional analyses were conducted to estimate a range for longitudinal dispersivity 

using both the rising and falling limbs of the breakthrough curve and using only the rising limb of the 

breakthrough curve.  The dispersivities calculated using the rising limb may be slight underestimates 

because they do not take into account the asymmetrical nature of the breakthrough curve, whereas the 

dispersivities calculated using both the rising and falling limbs are overestimates because they 

include the effects of all processes that cause additional spreading such as matrix diffusion and 

continuing source release.  Comparison of the results in Table 9-1 using different interpretation 

methods shows that longitudinal dispersivities estimated using the Welty and Gelhar (1989) method 

tend to be smaller than those using the Reimus and Haga (1999) RELAP method.  A principal 

difference in interpretation approach is that the Welty and Gelhar (1989) method uses the time of 

arrival of peak concentration whereas the Reimus and Haga (1999) method uses the mean tracer 

arrival time.

In the dataset (see Appendix G) and for dispersivity-scale analysis purposes, a geometric average is 

calculated for cases where multiple dispersivities for a particular flow path at a site are available from 

different tests or different interpretation methods.  For the data analysis reported by Schulze-Makuch 

(2005), he states: “If a range in longitudinal dispersivity was provided, the geometric mean was used 

(Table 1).  The geometric mean was thought to represent a more suitable mean for dispersivity 

because the values varied commonly by an order of magnitude.”  Where dispersivities were 

interpreted with RELAP using both radial and linear flow cases, only the values from the radial flow 

interpretation were used unless there was strong evidence of the possibility of linear flow.

9.3.1.1 Nye County Early Warning Drilling Program Site 22

Single-hole and cross-hole tracer tests have been conducted at Site 22 of the NC-EWDP, located in 

the southwestern corner of the NTS, to investigate transport characteristics of the alluvium.  The 

complex consists of four wells arranged in an approximate square with 18-m sides.  One of these 

wells (22S) is screened across multiple intervals and can be pumped at a high rate.  The other three 

wells (22PA, 22PB, and 22PC) are essentially nested piezometers.  A cross-hole tracer test was 

conducted at this site in early 2005, with well 22S as the pumping well and wells 22PA and 22PC as 

the tracer-injection wells.  Injected tracers were TFBA, LiBr, and LiCl into well 22PA and DFBA into 
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well 22PC.  A second cross-hole tracer test was conducted in the late summer/early fall 2005, with 

well 22S as the pumping well and well 22PA as the injection well.  

The TFBA and DFBA breakthrough curves from the first cross-hole tracer test were interpreted by 

Umari et al. (2006) using the Moench (1989 and 1995) analytical solution to the advection-dispersion 

equation.  The observed TFBA breakthrough (22PA to 22S pathway) exhibited three inflection points, 

suggesting three flow paths.  Umari et al. (2006) separated this curve and analyzed each peak 

individually.  They obtained longitudinal dispersivity values of 0.3, 3.0, and 2.4 m for matches to the 

first, second, and third peaks, respectively.  They matched the single peak of the DFBA breakthrough 

curve (22PC to 22S pathway) using a longitudinal dispersivity of 3.0 m.

The breakthrough curves from the cross-hole tracer tests at Site 22 of the NC-EWDP were also 

analyzed by Reimus (2006) using the semi-analytical model RELAP.  The fitting parameters for the 

RELAP analysis were the mean fluid residence time, the Peclet number (equal to the distance 

between the injection and withdrawal wells divided by the longitudinal dispersivity), the tracer mass 

fraction participating in the tracer test, and the mass transfer coefficient for matrix diffusion (equal to 

the square root of the matrix diffusion coefficient times the matrix porosity divided by the fracture 

half aperture). 

Reimus (2006) also analyzed the three inflections observed in the TFBA breakthrough curve from the 

first test (22PA to 22S pathway) separately.  These analyses yielded longitudinal dispersivities of 2.7, 

5, and 3.4 m for the first, second, and third peaks, respectively.  His analysis of the DFBA 

breakthrough curve from the first test (22PC to 22S pathway) yielded a longitudinal dispersivity of 

3.1 m.  Reimus (2006) also analyzed the results from the second cross-hole tracer test conducted at 

the site.  For the second test (22PA to 22S pathway only), the breakthrough curve exhibited two 

inflection points.  Reimus (2006) analyzed those two points separately and obtained dispersivities of 

2.7 and 4.6 m for the first and second peaks, respectively. 

The TFBA and DFBA breakthrough curves from the first cross-hole tracer test were also analyzed 

using the method of Welty and Gelhar (1989), as discussed in Section 9.3.1.  Longitudinal 

dispersivities of 1.8 and 3.6 m were calculated based on the TFBA breakthrough curve, and values of 

0.8 and 2.2 m were calculated based on the DFBA breakthrough curve.
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9.3.1.2 ER-6-1 Well Cluster Tracer Test

An MWAT-TT was conducted in the LCA at the ER-6-1 Well Cluster located in Yucca Flat from late 

April to late July 2004.  The test details discussed here were taken from SNJV (2005e and f).  Well 

ER-6-1#2 was the pumping well, and tracers were injected into upper and lower completion intervals 

in ER-6-1, located 64 m from the pumping well, and into ER-6-1#1, located 51 m from the pumping 

well.  The direction of tracer migration from the injection wells to the pumping well is approximately 

aligned with the dominant local fracture orientation.  The pumping rate in ER-6-1#2 averaged 

33.0 L/s over a 434.3-m-thick interval during the MWAT-TT.  Tracer injection occurred in four 

stages.  The first stage consisted of the injection of microspheres into the upper zone in ER-6-1; the 

second stage consisted of the injection of 2,5-DFBA into ER-6-1#1; the third stage consisted of the 

injection of NaI and 2,4,5-TFBA into the lower zone in ER-6-1; and the fourth stage consisted of the 

injection of LiBr, LiCl, and PFBA into the upper zone in well ER-6-1.  For each stage, tracer injection 

was followed by the injection of chase water to flush the tracer from the borehole.  A complete 

description of tracer breakthrough curves for this test can be found in SNJV (2005f).

The tracer breakthrough curves were analyzed to estimate longitudinal dispersivity using the method 

of Welty and Gelhar (1989), as discussed in Section 9.3.1.  For the flow path that exhibited the most 

rapid breakthrough of tracer at the pumping well (ER-6-1 lower zone to ER-6-1#2), longitudinal 

dispersivities of about 3.1 and 10.8 m were calculated based on analysis of the I and TFBA 

breakthrough curves.  For the flow path that exhibited the slower breakthrough of tracer from ER-6-1 

to the pumping well (ER-6-1 upper zone to ER-6-1#2), a longitudinal dispersivity of about 3.0 m was 

calculated based on analysis of the rising limb of the PFBA breakthrough curve.  The falling limb of 

the breakthrough curve was insufficient to estimate dispersivity using both rising and falling limbs of 

the breakthrough curve.  Dispersivity was not estimated for the flow path from injection well 

ER-6-1#1 to the pumping well ER-6-1#2 because a peak concentration for the breakthrough curve 

was not attained, and measured concentrations at the pumping well were at or near the detection limit.

Observed tracer breakthrough curves from the tracer tests at the ER-6-1 Well Cluster were analyzed 

by SNJV (2006d) using the semi-analytical model RELAP.  The fitting parameters for the RELAP 

analysis were the mean fluid residence times, the Peclet number (equal to the distance between the 

injection and withdrawal wells divided by the longitudinal dispersivity), the tracer mass fraction 
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participating in the tracer test, and the mass transfer coefficient (equal to the square root of the matrix 

diffusion coefficient times the matrix porosity divided by the fracture half aperture).  

Analysis of I and TFBA, injected into the lower zone in ER-6-1, using RELAP was performed using 

both single- and double-porosity conceptualizations.  This analysis yielded longitudinal dispersivities 

of 27 and 29 m for the single- and double-porosity conceptualizations, respectively.  The SNJV 

(2006d) report states that two inflow zones were identified by flow logging in pumping well 

ER-6-1#2 that correspond to the upper injection zone in ER-6-1.  The report analyzed the PFBA 

breakthrough in the upper zone, considering these inflow locations as individual pathways.  Based on 

spinner log results, SNJV (2006d) assumed production rates of 40 and 10 percent of the total rate for 

pathways 1 and 2, respectively.  The RELAP analysis of the PFBA breakthrough curve yielded a 

longitudinal dispersivity of 19 m for pathway 1 (the upper inflow zone), and a value of 22 m for 

pathway 2 (the lower inflow zone) assuming a single-porosity conceptualization.  

The interpreted dispersivity for the pathway from injection well ER-6-1#1 to pumping well ER-6-1#2 

using RELAP is very uncertain and has not been included in the dataset because all of the measured 

tracer concentration data at the pumping well were near the detection limit and a peak concentration 

for the breakthrough curve was not attained.

9.3.2 Non-NTS Dispersivity Data 

Dispersivity data are available for many locations outside the NTS from the scientific literature with 

many cases summarized in Gelhar et al. (1992) and Schulze-Makuch (2005).  These references 

provide detailed tables summarizing dispersivities, scale of transport, and other relevant information 

describing studies for both tracer tests and contaminant or environmental tracer transport modeling 

investigations.  In addition, dispersivity data interpreted and published in the scientific literature from 

other tracer tests and modeling studies have been included in the dataset for use in developing a 

relationship between dispersivity and scale of transport for the Yucca Flat/Climax Mine CAU.

Gelhar et al. (1992) reviewed dispersivity observations from 59 different field sites worldwide.  Their 

review included tabulated information on site location, description of aquifer material, average 

aquifer saturated thickness, hydraulic properties, effective porosity, mean pore velocity, flow 

configuration, dimensionality of monitoring network, tracer type, method of data interpretation, 
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overall scale of observation, and longitudinal and transverse dispersivities from original sources.  

Gelhar et al. (1992) classified the dispersivity data into three reliability classes corresponding to the 

data reliability evaluation flags described in Section 9.3.3.  They found that, at a given scale, 

dispersivity varied over several orders of magnitude, with the higher-reliability data tending to be in 

the lower part of the dispersivity range.  Neuman (1990) noted that part of the large scatter is due to 

experimental and interpretive errors.  An example of an interpretation issue that can lead to apparent 

scaling of dispersivity is discussed by Domenico and Robbins (1985), where they present calculations 

showing that interpreted dispersivity will be scaled larger whenever an (n-1)-dimensional model is 

calibrated to describe transport in an n-dimensional system.

Analyses by various authors indicate a trend of systematic increase in the longitudinal dispersivity 

with increase in the observation scale.  The longitudinal dispersivities reported by Gelhar et al. (1992) 

ranged from 10-2 to 104 m for travel distances ranging from 10-1 to 105 m; however, the largest 

distance with high-reliability data was only 250 m, and the largest high-reliability longitudinal 

dispersivity was only 4 m.  Gelhar et al. (1992) also concluded from the data that, overall, dispersivity 

values tended to scatter over a similar range for both porous and fractured media. 

Schulze-Makuch (2005) gathered data from additional sources and added the data to those presented 

by Gelhar et al. (1992).  Schulze-Makuch (2005) presents 184 additional dispersivity values from 

39 authors in a similar fashion to that of Gelhar et al. (1992).  An evaluation of some of the data 

summarized by Schulze-Makuch (2005) has revealed a number of discrepancies such as:

1. Incorrectly reporting dispersivity (e.g., average dispersivity value referenced from Rivett et al. 
[1994] should be 49 cm, not 49 m; and transverse horizontal dispersivities from Lavenue and 
Domenico [1986] were reported as longitudinal dispersivities).

2. Using two to five dispersivity values for identical flow paths from some reference sources, 
which could lead to overrepresentation and bias if multiple values are included in the dataset 
for the same tested flow path (e.g., Ptak and Teutsch [1994]; D’Alessandro et al. [1997]; and 
Himmelsbach et al. [1998]).

3. Inappropriately selecting transport scale (e.g., use of the total model grid length rather than the 
mean travel distance for regional plumes presented in Avon and Bredehoeft [1989] and 
Chapelle [1986]).

4. Omitting dispersivities reported in sources (e.g., Chiang et al. [1989]; Engesgaard et al. 
[1996]; Mas-Pla et al. [1992]; and D’Alessandro et al. [1997]).
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Because direct inclusion of all of the data reported in Schulze-Makuch (2005) could lead to 

undesirable uncertainty in the combined dataset constructed to support development of a 

dispersivity-scale relation, it was decided to only use data from those original sources that could be 

readily obtained and verified with emphasis on field studies with scales of interest (i.e., greater than 

1 m).  Where multiple dispersivity values where reported for the same flow path (e.g., from multiple 

tests and/or multiple analysis methods) in the original data sources, a geometric mean value was 

calculated for inclusion in the dataset.

9.3.3 Data Quality Evaluation 

The dataset developed for the Yucca Flat/Climax Mine CAU includes a DQE_F that corresponds to 

the levels of reliability defined by Gelhar et al. (1992) and later adopted by Schulze-Makuch (2005).  

The reliability levels were defined using the following criteria: 

• Level 1:  Corresponds to “High Reliability,” Level I of Gelhar et al. (1992).  The tracer study 
meets the following criteria: (1) tracer test was either ambient flow, radial diverging flow, or 
two-well instantaneous pulse test without recirculation; (2) tracer input was well defined; 
(3) tracer was conservative; (4) spatial dimensionality of the tracer concentration 
measurements was appropriate; and (5) analysis of the tracer concentration data was 
appropriate and consistent with the measurements. 

• Level 2:  Corresponds to “Intermediate Reliability,” Level II of Gelhar et al. (1992).  The 
tracer study does not meet the criteria for high or low reliability. 

• Level 3:  Corresponds to “Low Reliability,” Level III of Gelhar et al. (1992).  The tracer study 
meets the following criteria: (1) two-well recirculating test with step input was used; 
(2) single-well, injection-withdrawal test where tracer monitoring at the single well was used; 
(3) tracer input was not clearly defined; (4) tracer breakthrough curve was assumed to be the 
superposition of breakthrough curves in separate layers; (5) measurement of tracer 
concentration in space was inadequate; and (6) equation used to obtain dispersivity was not 
appropriate for the data collected. 

The “high-reliability” dispersivity values were considered to be accurate within a factor of two, and 

the “low-reliability” values were considered to be no more accurate than one to two orders of 

magnitude.

9.3.4 General Description of Dispersivity-Scale Dataset

9.3.4.1 Longitudinal Dispersivity

A log-log plot of the longitudinal dispersivity versus scale data developed from the NTS and 

non-NTS sources discussed above, including the reliability information (Levels 1, 2, or 3), is shown 
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in Figure 9-3.  The longitudinal dispersivity values in the dataset range from 5 x 10-3 to 2.2 x 104 m 

for field transport distances ranging from 1 to 9 x 104 m.  Longitudinal dispersivity varies from two to 

three orders of magnitude for a given scale of transport.  The data show a systematic increase in 

longitudinal dispersivity with increasing transport scale which is consistent with findings by previous 

authors (e.g., Gelhar et al., 1992).  The largest scale with high-reliability data (Level 1) was only 

266 m, with a longitudinal dispersivity of 0.55 m.  The high-reliability dispersivity data tend to be 

somewhat smaller in magnitude than other data at any particular scale.  This was also observed by 

Gelhar et al. (1992), who noted that dispersivities in the lower half of the range are favored for a 

given scale.  At the larger transport scales (e.g., greater than 300 m), only lower-reliability data are 

available, which could lead to greater uncertainty in longitudinal dispersivity for large plumes or 

longer transport distances.  

The longitudinal dispersivity values determined from the NTS region are compared with the 

worldwide values in Figure 9-4.  The longitudinal dispersivities from the NTS region range from 

0.9 to 23.2 m (average values for individual flow paths) with transport scales ranging from 18 to 

130 m.  It can be seen that the longitudinal dispersivities determined from the contaminant migration 

experiment and the tracer tests conducted in the NTS and vicinity are consistent with those obtained 

from other studies in the literature at similar scales.   

There are insufficient data across all transport scales for various rock types to allow for a meaningful 

assessment of whether the dispersivity-scale relationship is a function of rock type.  Hence, the 

analysis to determine a dispersivity-scale relationship used the entire dataset lumped together using 

all rock types.

Cumulative probability distribution functions for scale and longitudinal dispersivity are shown in 

Figures 9-5 and 9-6, respectively.  The median scale is about 30 m, and the median longitudinal 

dispersivity is 2 m.  For the scale data, 95 percent of the data fall between 3 and 19,650 m, and 

75 percent are less than 100 m.  For the longitudinal dispersivity data, 95 percent of the data fall 

between 0.03 and about 174 m, and 75 percent is less than 8 m.  These figures show that the majority 

of the data are at a scale much less than that for the Yucca Flat/Climax Mine CAU model and that the 

majority of the determined longitudinal dispersivities are less than 10 m.
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9.3.4.2 Transverse Dispersivities

The data available for transverse horizontal dispersivity, or the spreading of solutes at right angles to 

the direction of horizontal groundwater flow, are shown in Figure 9-7(a).  Transverse horizontal 

dispersivities up to 1,370 m have been reported.  Although the data are much more sparse compared 

to that available for longitudinal dispersivity, the transverse horizontal dispersivity data exhibit the 

same pattern of increasing value with transport scale as does the longitudinal dispersivity.  Although 

Figure 9-3
Log-Log Plot of Longitudinal Dispersivity as a Function 

of Measurement Scale for All Rock Types
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the low-reliability data show an increasing trend at larger scales, the intermediate- and high-reliability 

data show a trend of more constant transverse horizontal dispersivity values with scale.  The ratio of 

longitudinal to transverse horizontal dispersivity is shown in Figure 9-7(b).  The transverse horizontal 

dispersivity is, in general, a factor of 3 to 30 less than the longitudinal dispersivity.  Gelhar et al. 

(1992) reported that, based on two high-reliability data points, transverse horizontal dispersivity is 

one order of magnitude less than longitudinal dispersivity.  Ratios of longitudinal to transverse 

Figure 9-4
Comparison of NTS and Non-NTS Dispersivity-Scale Data 



Section 9.0

Phase I Contaminant Transport Parameters for CAU 97: Yucca Flat/Climax Mine, Nye County, Nevada

9-20

horizontal dispersivity of about 10 are typically chosen when developing appropriate values of 

horizontal transverse dispersivity for use in regional transport models.

Figure 9-8(a) depicts the sparse data for transverse vertical dispersivity.  Transverse vertical 

dispersivities up to 2 m have been observed.  No trend of transverse vertical dispersivity with 

transport scale is apparent.  The ratio of longitudinal to transverse vertical dispersivity is shown in 

Figure 9-8(b).  The only significant observation is that the transverse vertical dispersivity is much less 

than either the longitudinal or horizontal transverse dispersivity.  Gelhar et al. (1992) found that in all 

Figure 9-5
Cumulative Distribution Function for Scale for the Dispersivity-Scale Dataset
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cases where both horizontal and vertical transverse dispersivities were measured, the values of 

vertical transverse dispersivity were one to two orders of magnitude less than those of the horizontal 

transverse dispersivity.  This reduction in spreading may be controlled mainly by the layering of the 

geologic materials, where less permeable layers will significantly reduce the ability of the tracer to 

disperse upward or downward.  

Figure 9-6
Cumulative Distribution Function for Longitudinal Dispersivity 

for the Dispersivity-Scale Dataset
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f

Figure 9-7
(a) Transverse Horizontal Dispersivity versus Transport Scale and (b) Ratio of 

Longitudinal to Transverse Horizontal Dispersivity versus Transport Scale
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Figure 9-8
(a) Transverse Vertical Dispersivity versus Transport Scale and 

(b) Ratio of Longitudinal to Transverse Vertical Dispersivity versus Transport Scale
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9.3.4.3 Summary of Observations from Dispersivity Dataset Assessment

Several important observations related to the evaluation of dispersivity data in the literature were 

summarized in SNJV (2004d and 2005b) based on the available information.  These observations 

generally are corroborated with the more recent data presented in this document and have been 

modified to reflect new information.  The major observations are:

• Longitudinal dispersivity apparently increases with scale (distance from the contaminant 
source or the spacing between tracer-injection and monitoring wells). 

• The ratio of longitudinal dispersivity to transverse horizontal dispersivity is generally in the 
range of 3 to 30, and the ratio of longitudinal dispersivity to transverse vertical dispersivity is 
generally in the range of 10 to 800.  The transverse vertical dispersivity is typically one to two 
orders of magnitude smaller than the transverse horizontal dispersivity. 

• As the density of information on hydraulic conductivity increases, the effect of dispersivity 
increasing with scale may be reduced.  Dispersivity accounts for unmeasured and unspecified 
variability in the variations in hydraulic properties within the flow and transport model.  As 
more of the variability is modeled explicitly, the appropriate dispersivity becomes smaller in 
magnitude. 

• Whether the geologic media is porous or fractured appears to have no significant effect on 
dispersivity.  In other words, dispersivities used for porous media can also be used in fractured 
media at similar scales. 

• The longitudinal dispersivity data from NTS and vicinity studies fall within the range of 
values published in the scientific literature for other locations. 

9.3.5 Evaluation of Scale Dependency of Dispersivity

9.3.5.1 Background and Previous Investigations of Scale Dependency

The scientific literature documents that longitudinal dispersivity representative of field conditions 

typically increases with the scale of measurement (Lallemand-Barres and Peaudecerf, 1978; Pickens 

and Grisak, 1981a and b; Gelhar et al., 1992; Neuman, 1990 and 1995; Neuman and Di Federico, 

2003; and Schulze-Makuch, 2005). 

Pickens and Grisak (1981a) developed a simple linear relationship between dispersivity and scale for 

transport in a stratified aquifer using a theoretical relationship based on the statistical properties of the 

aquifer.  For a stratified sandy aquifer, they developed a simple linear relationship where dispersivity 
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equals 0.1 times the mean transport distance, and they found it to be consistent with results for a 

two-well tracer test conducted on a scale of 8 m.  The authors recognized that dispersivity is unlikely 

to increase continually with scale but instead likely approaches some asymptotic value.  They 

proposed a range of functional relationships between dispersivity and transport distance, including 

linear, exponential, and asymptotic.

Two studies (Neuman, 1990; Schulze-Makuch, 2005) graphically display large datasets of 

longitudinal dispersivity versus transport scale and fit dispersivity-scale power-law relationships 

(linear on a log-log graphical presentation of the dispersivity-scale data) of the form:

(9-3)

where α is the longitudinal dispersivity (L), c is a coefficient, L is the transport scale of interest or 

mean travel distance (L), and m is the scaling exponent (slope of the straight line fit on a log-log plot 

of the dispersivity-scale data).  These authors fit this relationship to the databases they had assembled 

for longitudinal dispersivity versus transport scales.  

Neuman (1990) developed expressions using Equation (9-3) from regression of the dispersivity-scale 

data excluding the large-scale contaminant-transport model calibration cases and determined two 

linear regions on the log-log plot corresponding to scales less than 100 m (c =  0.0169 and slope 

m = 1.53) and greater than 100 m (c = 0.32 and slope m = 0.83).  When he included the 

dispersivity-scale data corresponding to the large-scale contaminant-transport model calibrations, he 

determined the slope m to be about 0.5.  Gelhar et al. (1992) caution against routinely adopting 

dispersivities from a linear regression through the data because examination of the underlying data 

favors the use of dispersivities from the lower half of the dispersivity range at any given scale.

Neuman (1990) concluded that dispersivities interpreted from calibration of numerical models to both 

hydraulic and concentration data tend to increase more slowly with increasing scale than those that 

are calibrated to concentration data alone.  This appears to occur because calibration often provides 

information about the spatial variation of hydraulic conductivities on scales exceeding the dimensions 

of model subregions (called “zones”) within which they are kept constant or allowed to vary at a 

relatively slow rate.  The calibrated dispersivities are associated with a reduced length scale Lr that 

depends on the dimensions of the zones rather than on the mean travel distance Ls of the plume.  The 

mcL=α
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regression analysis suggested that Lr increased with the mean travel distance at an average rate 

proportional to Ls
0.5.  Neuman (1990) concluded that the scale parameter that controls dispersivity in a 

transport model diminishes as the amount of detail on hydraulic heterogeneity increases.

Xu and Eckstein (1995) developed dispersivity-scale relationships from the data presented in Gelhar 

et al. (1992) using a weighted least-squares method where weights could be assigned to data points in 

accordance with their reliability.  They presented results for three weighting schemes (1:1:1, 1:1.5:2, 

and 1:2:3) that were assigned according to weight value for the lowest-reliability, 

intermediate-reliability, and highest-reliability data, respectively.  They also presented a graphical 

presentation of the data that shows greater linearization when the data are plotted as log α versus log 

(log L) where α is longitudinal dispersivity and L is the transport scale of interest or mean travel 

distance.  Using the Gelhar et al. (1992) data, Xu and Eckstein (1995) developed the following 

relationships for the three weighting schemes:

α = 1.20 (log L)2.958 for 1:1:1 weighting scheme (9-4)

α = 0.94 (log L)2.693 for 1:1.5:2 weighting scheme (9-5)

α = 0.83 (log L)2.414 for 1:2:3 weighting scheme (9-6)

As expected, these relationships exhibit a declining rate of change in dispersivity as transport scale 

increases.

Schulze-Makuch (2005) developed relationships for unconsolidated media and for various rock types 

(sandstones, carbonates, basalts, and granites) using Equation (9-3).  The parameter c varied between 

approximately 0.01 and 0.8, and the scaling exponent m varied between 0.4 and 0.94.  He obtained a 

mean scaling exponent of about 0.5 for his entire dataset, with no statistical difference between 

geologic media.  This exponent of 0.5 is similar to that obtained by Neuman (1990) for his dataset 

when he included large scale plumes.  Because of the limited amount of data for each rock type and 

the problems found when evaluating his summary table of dispersivity-scale data, the parameters 

from Schulze-Makuch (2005) are given here for comparison purposes only and should be considered 

with caution.  The relationships that he developed for the various rock types should not be used 

because of the limited amount of data available across the range of scales for each rock type and the 

general large scatter in the data.  
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9.3.5.2 Determination of Dispersivity-Scale Relationships 

For the dispersivity-scale analyses performed for the Frenchman Flat CAU (SNJV, 2005b), it was 

concluded that the nonweighted least squares analysis was deemed most appropriate for determining 

a dispersivity-scale relationship over the full range of transport scales because of the lack of any 

high-reliability data for scales greater than about 300 m.  The dataset developed to support the Yucca 

Flat/Climax Mine CAU has the same limitation on data reliability at scales greater than 300 m.  

Therefore, a nonweighted least squares approach was adopted for the current analyses.

The log-log plot of longitudinal dispersivity versus scale for all rock types is shown in Figure 9-3 and 

demonstrates a consistent trend of increasing longitudinal dispersivity with transport scale.  In 

addition, it is observed that the rate of increase in longitudinal dispersivity tends to decrease at larger 

transport scales (e.g., greater than 300 m).  Regression analysis was performed using several types of 

dispersivity-scale relationships:

• Log-log linear (equivalent to relationship given in Equation [9-3])

• Log-log piecewise linear (1 line for less than 300-m scale and 1 line for greater than or equal 
to 300-m scale)

• Log-log quadratic

• Log-log asymptotic

The results of the regression analyses for the four dispersivity-scale relationships are summarized in 

Table 9-2. 

Table 9-2
Dispersivity-Scale Relationships Determined from Regression Analyses

Relationship Type Equation 
Coefficient of 
Determination 

(R2)

Equation 
Number

Log-log linear log α = 0.73 log L - 0.91 0.48 (9-7)

Log-log piecewise linear 
(1 line for <300 m scale and 

1 line for ≥300 m scale)

log α = 0.81 log L – 1.02 (for L<300 m)
log α = 0.61 log L – 0.52 (for L ≥300 m) 0.49 (9-8)

Log-log quadratic log α = -0.065 (log L)2 + 1.03 log L – 1.18 0.49 (9-9)

Log-log asymptotic log α = log L – log (L + 1710.32) + 1.95 0.47 (9-10)

Note:  α is longitudinal dispersivity and L is scale.
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All four relationships provide reasonable and similar quality of fit with nearly identical coefficients of 

determination.  The dispersivity-scale data and the fitted regression lines for each of the relationships 

are shown in Figure 9-9.  Any of these relationships could be used to provide estimates of 

longitudinal dispersivity for expected transport scales within the Yucca Flat/Climax Mine CAU.  The 

latter three types of relationships (log-log piecewise linear, log-log quadratic, and log-log asymptotic) 

offer the advantage of being able to capture the behavior of decreasing rate of dispersivity increase for 

larger transport scales.   

The log-log linear relationship is equivalent to the power law shown in Equation (9-3), where 

coefficient c is 0.12 (inverse log of -0.91) and the scaling exponent m is 0.73.  For the piecewise 

linear relationship, the scaling exponents are 0.81 and 0.61 for scales less than 300 m and greater than 

300 m, respectively.  The exponent of 0.61 for the scales greater than 300 m is relatively consistent 

with Neuman (1990), who obtained a scaling exponent of about 0.5 when he performed a regression 

on all data with scales greater than 100 m.

9.4 Data Limitations 

Dispersivity is not an intrinsic property of the medium in the way that porosity and hydraulic 

conductivity are thought to be.  In order to have a basis for predicting dispersivity from statistical 

distributions, its dependence on the scale of the measurement and on the type of test and method of 

analysis must be known.  The data available from the NTS region are scarce and mostly consist of 

quantitative values only for longitudinal dispersivity.  None of the NTS tracer tests produced good 

estimates of transverse dispersivities.  The trends in dispersivity with transport distance are compiled 

from data obtained from locations around the world.  As a result, the appropriate longitudinal 

dispersivity to apply at large scales for the Yucca Flat/Climax Mine CAU model has uncertainty 

associated with the range and distribution of data.  This uncertainty should be addressed using 

sensitivity analyses during the application of the Yucca Flat/Climax Mine CAU flow and transport 

model.

9.5 Summary

As presented in Section 9.3, the dispersivity values tend to be scale dependent.  As a result, it is 

helpful to know the expected distances of contaminant transport a priori to best assess the range of 
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Figure 9-9
Dispersivity-Scale Relationships Determined from Regression Analyses: 

(a) Log-Log Linear, (b) Log-Log Piecewise Linear, (c) Log-Log Quadratic, and 
(d) Log-Log Asymptotic
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dispersivity values that would be most appropriate for modeling efforts.  For the Yucca Flat/Climax 

Mine CAU, flow modeling is required to enable assessment of the expected pathways and distances 

of contaminant transport.  Flow model calibration and particle-tracking activities (using initial 

estimates of effective porosity) will be conducted in the future.  These studies will provide insight 

into the expected advective transport distances for contaminants from the underground nuclear test 

locations. 

The value selected for dispersivity is somewhat dependent on the degree to which the heterogeneity 

of the groundwater system is defined.  Because of the large areal and vertical extent, the complex 

hydrostratigraphic and faulted nature, and the relatively sparse well data for heads and hydraulic 

properties for calibrating the groundwater flow model within the Yucca Flat/Climax Mine CAU, the 

calibrated groundwater flow model will likely only be moderately constrained.  Dispersivity is a 

modeling parameter that accounts for unmeasured and unspecified variability in the hydraulic 

properties within the flow and transport model domain.  As more of the variability of the groundwater 

flow regime is modeled explicitly, the appropriate dispersivity to use becomes smaller in magnitude.  

Longitudinal dispersivities estimated from the derived regression lines for ranges of transport scale 

(see Section 9.3.5.2) are considered reasonable.  

An approach being used for transport modeling of the Pahute Mesa and Frenchman Flat CAUs is to 

select appropriate longitudinal dispersivities that will be representative for several transport scales of 

interest determined from groundwater flow modeling and particle tracking from locations of interest.  

As an example, using the log-log piecewise linear fit to the dispersivity-scale data (Equation [9-8] in 

Table 9-2), one could select a longitudinal dispersivity of about 4 m for scales of 30 to 300 m, 20 m 

for scales of 300 to 3,000 m, and 80 m for scales of 3,000 to 30,000 m.  Uncertainty in the selected 

values can be addressed through sensitivity analyses.

It is recommended that transverse horizontal and vertical dispersivities should be selected based on a 

ratio of longitudinal to transverse horizontal dispersivity of about 3 to 30 and a ratio of longitudinal to 

transverse vertical dispersivity of about 10 to 800, respectively.  The transverse vertical dispersivity is 

typically one to two orders of magnitude smaller than the transverse horizontal dispersivity. 
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10.0 MATRIX DIFFUSION PARAMETERS

This section includes descriptions of the role of matrix diffusion in contaminant transport in 

groundwater, the data available from matrix diffusion experiments, and the data analysis and 

associated results.  The objective is to evaluate data from the NTS laboratory and field tracer 

experiments and from the literature to develop a matrix diffusion coefficient distribution for the HSUs 

in Yucca Flat.  Matrix diffusion coefficients for solutes in a porous medium are smaller in magnitude 

than free water diffusion coefficients because of restriction due to the presence of the solid phase of 

the porous medium.  It was found that a relationship could be developed between the ratio of matrix 

diffusion to free water diffusion coefficients (termed tortuosity) and porosity.  The use of a 

tortuosity-porosity functional relationship is useful because porosity data are more readily available 

than experimentally derived matrix diffusion coefficient data.

10.1 Role of Matrix Diffusion in Contaminant Transport

Solute transport in high-permeability zones is typically dominated by advective-dispersive processes, 

while transport in low-permeability zones is dominated by diffusion.  In fractured media, a 

double-porosity conceptualization is typically assumed with matrix diffusion between the fractures 

and the adjacent matrix having the effect of attenuating both the concentration and travel time of 

aqueous-phase contaminants moving through fractures.  This process involves the diffusion of 

contaminants from groundwater flowing in rock fractures into and out of the relatively stagnant water 

in the pores of the surrounding rock matrix. 

The importance of the diffusion of solutes from fractures into the adjacent matrix has been studied 

and reported extensively in the literature, and has been established as an important process for 

retarding the transport distance of solutes introduced into fractured geologic systems.  Numerical 

models and analytical solutions presenting analyses of the effect of matrix diffusion during transport 

in fractured geologic media have been reported by Neretnieks (1980), Grisak and Pickens (1980 and 

1981), Tang et al. (1981), Noorishad and Mehran (1982), Huyakorn et al. (1983a and b), Feenstra 
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et al. (1984), and others.  Examples of investigation of double-porosity transport with matrix 

diffusion for laboratory experiments has been presented by Grisak et al. (1980), Grisak and Pickens 

(1981), Neretnieks et al. (1982), Moreno et al. (1985), Hershey et al. (2003), and Reimus et al. (2006a 

and b); and for field tracer tests by Jones et al. (1992), Novakowski and Lapcevic (1994), IT (1998), 

Reimus and Haga (1999), and Reimus et al. (1999 and 2003b).

As discussed in SNJV (2004c), mass transfer can also occur in unfractured media, including 

alluvium, by diffusion between the more permeable zones and lower-permeability zones.  The 

low-permeability zones may consist of layers of fine-grained sediments.  Diffusion, however, would 

be expected to be of less importance for alluvium, compared to fractured media, because the ratio of 

stagnant to flowing water volume in unconsolidated media is usually much smaller than in fractured 

media.  Additionally, the contrast in permeability between the stagnant and flowing zones is typically 

much less for alluvium than for fractured rocks.  For these reasons, matrix diffusion is not expected to 

be a significant source of reduction in transport distances for alluvium when compared to fractured 

media.

10.1.1 Diffusion Process 

The molecular diffusion conceptualization is based on Fick’s second law of diffusion (Crank, 1975) 

which, for a one-dimensional system in a porous medium, may be expressed as:

(10-1)

where C is the species concentration (m/L3), Dm is the effective matrix diffusion coefficient for solutes 

in the pores (L2/T), z is the coordinate position (L), and t is time.  This form of Fick’s second law is 

seen in many standard hydrogeology texts, including Bear (1972) and Freeze and Cherry (1979).  The 

diffusion in the porous medium is restricted because of the presence of the solid phase.  The matrix 

diffusion coefficient in porous media, Dm, is directly related to the solute free water diffusion 

coefficient, Do, by the tortuosity of the porous media, ω, using the relationship (Bear, 1972; Freeze 

and Cherry, 1979):

 (10-2)
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Tortuosity can be defined as a bulk measure of the constrictivity and tortuous nature of the 

interconnected pore space through which diffusion is occurring.  These factors result in variation in 

pore channel diameters and path lengths as the diffusing solute migrates through the interconnected 

porosity.  Tortuosity has a magnitude greater than zero and less than one when defined in the form 

presented in Equation (10-2).  Smaller tortuosities are indicative of longer diffusional path lengths 

and greater resistance to diffusion through the medium.  There are several alternate forms to 

Equation (10-2) in the scientific literature (e.g., Dm = Do φκ/τ2  [Neretnieks, 1980]), so it is important 

to note which formulation was used for experimentally-derived or calculated parameters.  In this 

alternative formulation, τ is the tortuosity factor (greater than one), φ is the porosity, and κ is the 

constrictivity factor.  In this section, unless otherwise noted, tortuosity is of the “ω” form as expressed 

in Equation (10-2).

Tortuosity can be determined using Equation (10-2) with values for the matrix diffusion coefficient 

from experiments and free water diffusion coefficient from the literature.  Its magnitude must be less 

than one because diffusion is restricted in the porous medium as compared to in water alone.  Bear 

(1972) defines tortuosity as:

(10-3)

where L is the straight-line path length and Le is the actual tortuous path length that a particle would 

take passing through a sample of length L.  Freeze and Cherry (1979) state typical laboratory values 

for tortuosity range up to 0.5.  De Marsily (1986) provides an upper limit of 0.7 for sands.  Bear 

(1972) provides a review and gives an upper bounding value of 0.8 for L/Le, which would correspond 

to ω equal to 0.64.  Tortuosity values exceeding 0.7 reported from laboratory or field experiments are 

not considered to be representative and are likely the result of uncertainties from other factors such as 

sorption, precipitation, and inability to derive tortuosity from a tracer response that is represented by a 

lumped parameter. 

10.2 Data Compilation and Data Transfer 

Data from the Yucca Flat/Climax Mine HFM area and data from other NTS CAUs, YMP, and some 

literature values from other locations (specifically for granites, for which there were no NTS area 

data) were used for this analysis due to the unavailability of comprehensive data from the Yucca 

  ω = (L/Le)2 
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Flat/Climax Mine HFM area for all HGUs.  All data locations used in quantitative analyses are 

identified in Appendix H and the associated dataset referenced in Section H.4.0.  Individual 

discussions of the applicability of the transferred data are provided for each HGU.  There are limited 

data for the NTS area to determine a distribution for matrix diffusion values directly.  The data were 

used to determine functional relationships with other parameters (see Section 10.4.6), for which there 

are more comprehensive data.  A quantitative assessment of the sensitivity of transport modeling to 

the uncertainty in this parameter cannot be provided before the transport model development.  The 

parameter description discusses the importance of this parameter.

10.3 Data Types and Sources for Matrix Diffusion Coefficient

Values of tortuosity or the matrix diffusion coefficient can be determined through several approaches 

including laboratory diffusion-cell experiments, field tracer tests, and rock-property measurements of 

formation factor and porosity.

10.3.1 Laboratory Tracer Diffusion Experiments

Laboratory Experimental Methods To Determine Matrix Diffusion 

Matrix diffusion coefficients can be determined from several different types of laboratory 

experiments, including diffusion cell, rock beaker, and hollow core cylinder methods (SNJV, 2004c).  

The diffusion cell method, the most common method, has several variations, described as follows.

In the diffusion cell method, a disk or “wafer” is cut from the rock core, typically with the wafer 

thickness less than its diameter.  In the diffusion cell apparatus, the groundwater saturated rock wafer 

is placed between two liquid reservoirs, as illustrated in Figure 10-1.  One of these liquid reservoirs is 

the tracer reservoir and the other is the collection reservoir.  The liquid levels of the reservoirs should 

be maintained as similar as possible to eliminate or minimize advective effects within the rock wafer.  

Initially, both reservoirs are filled with groundwater.  Then tracer is introduced into the tracer 

reservoir, and matrix diffusion is determined by measuring over time the increasing tracer 

concentration in the collection reservoir, and/or the decreasing tracer concentration in the tracer 

reservoir.  To achieve as high a concentration gradient as possible (to maximize diffusion), tracer may 

be added to the tracer reservoir over time to replace diffused tracer, and the collection reservoir may 

be flushed continually with “clean” groundwater. 
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A variation of the diffusion cell method is to use only one reservoir rather than two.  For this 

approach, an impermeable boundary is placed on all but one face of the sample, and diffusion occurs 

only into the rock wafer, not through it. 

Rather than one single tracer, a suite of tracers is typically used to increase the quality and quantity of 

data produced from each single experiment, and to allow for detection of nondiffusive processes that 

may also affect the reservoir tracer concentrations (e.g., adsorption, cation exchange).

The porosity can be determined directly on the diffusion cell wafer (the preferred method), before or 

after the experiment, or using a rock sample from an adjacent core.  However, determining porosity 

on adjacent core wafers will introduce additional uncertainty due to rock heterogeneity.  The 

permeability, likewise, can be measured directly from the wafer or from an adjacent core, which 

typically would introduce even more uncertainty than for porosity, due to higher expected variability 

in permeability compared to porosity.  It is preferable to obtain porosity and permeability 

Figure 10-1
Typical Design for a Diffusion Cell Experiment 

Source: SNJV, 2004c
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measurements on the same wafers that are being used to perform the diffusion experiments.  

Obtaining porosity and permeability measurements on all samples facilitates evaluations to determine 

correlations between matrix diffusion coefficient or tortuosity and these parameters.

The “rock beaker” matrix diffusion method is a variation of the diffusion cell method.  For this 

method, a hollow “cup” or cylinder is bored into the flat surface of a rock core.  The outside of the 

core is made a no-flow boundary (typically with epoxy), and the core is then saturated with 

groundwater.  A tracer solution is introduced in the “cup,” and the decrease in tracer concentration 

(due to diffusion into the rock matrix over time) is measured.

A variation on the “rock beaker” method is the hollow core cylinder method, where a hollow inner 

cylinder is drilled through the core (and no-flow boundaries are established on the outside and top and 

bottom of the core) and diffusion takes place only through this inner cylindrical surface.  Stirrers are 

typically used within the rock cavities and within the reservoirs to eliminate concentration variations 

within the free liquid volumes.

These different methodologies result in slightly different forms of the Fickian diffusion equation 

solution needed to analyze the change in tracer concentration over time for determining the matrix 

diffusion coefficient.  Analyses can also be applied to more complicated geometries (e.g., core holes 

drilled into rectangular or irregular-shaped blocks), but a more complex set of boundary conditions 

and possibly a 3-D solution to the diffusion equation will be required.  The diffusion cell method 

using two reservoirs is the conventional and most commonly used method because it allows for data 

acquisition in a shorter time period due to the greater concentration gradient achieved and maintained 

throughout the experiment.

Laboratory tracer diffusion experiments have been performed to support the UGTA and Yucca 

Mountain projects (denoted as NTS samples in the remaining discussion) using the above 

experimental methods.  Data points from experiments that did not use rock core (e.g., Papelis and Um 

[2003a], which used pulverized and sieved rock particles) or where the calculated tortuosity is greater 

than 0.7 (see discussion on representative tortuosity values in Section 10.1.1) were eliminated as 

unrepresentative.  The data sources for the laboratory diffusion coefficient experiments are discussed 

below.
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Laboratory Data Sources 

The matrix diffusion coefficients derived from laboratory experiments were obtained from 

11 different references (listed below) plus the matrix diffusion coefficient databases developed for 

Pahute Mesa (Shaw, 2003a) and Frenchman Flat (SNJV, 2005b).  A wide range of data and 

information from these experiments (e.g., sample location, lithology, temperature, depth, mineralogy, 

tracer species, matrix diffusion coefficient, tortuosity, author comments on experiment quality and 

results, porosity, permeability) were entered into one worksheet of a large Excel spreadsheet, with 

other worksheets containing analyses, original source data, graphics, and tables; this is referred to as 

the NTS matrix diffusion database.  All of the reported results from the experiments were from NTS 

rock samples, with the exception of 10 granite/crystalline measurements from non-NTS rock.  The 

latter were included because laboratory diffusion cell experimental measurements are not available 

for crystalline rock using NTS source rocks.  Key data sources are listed in order of number of data 

points (n) in the NTS matrix diffusion database as follows:  

1. Reimus et al. (2002c):  Diffusive and Advective Transport of 3H, 14C, and 99Tc in Saturated, 
Fractured Volcanic Rocks from Pahute Mesa, Nevada.  n = 75

2. Reimus et al. (2006b):  Matrix Diffusion Coefficients in Volcanic Rocks at the Nevada Test 
Site:  Influence of Matrix Porosity, Matrix Permeability, and Fracture Coating Minerals.  
n = 64

3. Walter (1982):  Theoretical and Experimental Determination of Matrix Diffusion and 
Related Solute Transport Properties of Fractured Tuffs from the Nevada Test Site.  n = 24

4. Reimus et al. (2006c):  Tracer Transport Properties in the Lower Carbonate Aquifer of Yucca 
Flat.  n = 16

5. Triay et al. (1997):  Summary and Synthesis Report on Radionuclide Retardation for the 
Yucca Mountain Site Characterization Project:  Yucca Mountain Site Characterization 
Program Milestone 3784M.  n = 11

6. Various sources of non-NTS data for granite rock type:  Mazurek and Jakob (2002); Jakob 
(2004); Skagius and Neretnieks (1986); and Gustavsson and Gunnarsson (2005).  n = 10 

7. Papelis and Um (2003b):  Evaluation of Cesium, Strontium, and Lead Sorption, Desorption, 
and Diffusion in Cores from Western Pahute Mesa, Nevada Test Site, Based on Macroscopic 
and Spectroscopic Investigations.  n = 8



Section 10.0

Phase I Contaminant Transport Parameters for CAU 97: Yucca Flat/Climax Mine, Nye County, Nevada

10-8

8. Zavarin et al. (2005):  Radionuclide Transport in Tuff and Carbonate Fractures from Yucca 
Flat, Nevada Test Site.  n = 5

9. Hershey et al. (2003):  Laboratory Experiments to Evaluate Diffusion of 14C into Nevada Test 
Site Carbonate Aquifer Matrix.  n = 4

10. Callahan et al. (2000):  “Using Multiple Experimental Methods to Determine 
Fracture/Matrix Interactions and Dispersion of Nonreactive Solutes in Saturated Volcanic 
Tuff.”  In Water Resources Research.  n = 4

11. IT (1998):  Report and Analysis of the BULLION Forced-Gradient Experiment.  n = 3

For evaluation and discussion purposes, tortuosities were calculated using Equation (10-2) with 

matrix diffusion coefficients determined from the laboratory experiments and solute free water 

diffusion coefficients from the literature.  The general trend of increasing tortuosity with increasing 

porosity in the data from the different sources may be seen in Figures 10-2 and 10-3 for log-linear and 

log-log tortuosity-porosity data presentations, respectively.  The data trends and the experimental 

methods, rock types studied, and other information for the data sources are described below.  

Considerable scatter is shown for some of the data.  The impact of the data scatter is reduced 

somewhat through the data quality analyses presented and discussed in Section 10.4.    

Discussion of Laboratory Data Sources

Reimus et al. (2002c) derived matrix diffusion coefficients from diffusion cell experiments for a wide 

range of saturated volcanic rock samples from Pahute Mesa, including zeolitic tuff, basalt flow, and 

welded ash-flow tuff, many with mineral-coated fractures.  The experimental setup was similar to that 

shown in Figure 10-1, with a synthetic groundwater saturated rock “wafer” separating two reservoirs.  

The larger reservoir contained tracer, and the smaller reservoir was flushed continuously with 

tracer-free water to maintain a concentration gradient.  The fluid level was kept the same in the two 

reservoirs to minimize advective flow and maximize diffusive transport.  Sixty-six matrix diffusion 

experiments were conducted on 23 different wafers from 8 different Pahute Mesa matrix lithologies.  

Up to 3 different tracers were used resulting in 111 reported data points (solid red squares plotted in 

Figure 10-2).  Some of these experiments were “replicates,” where wafers were cut in adjacent rock 

to assess the effect of near-scale heterogeneities, and some of the experiments were “repeats,” where 

an experiment was repeated on the same wafer to assess experimental errors and repeatability.  The 

surface area of the wafers varied from 19.9 to 62.1 square centimeters (cm2), and the thickness varied 
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Figure 10-2
Log Tortuosity versus Linear Porosity from Different Reference Sources

The same graph plotted using the log scale for porosity is shown in Figure 10-3 for comparison purposes.

Figure 10-3
Log Tortuosity versus Log Porosity from Different Reference Sources
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from 0.60 to 2.54 cm.  Permeabilities were directly measured on each diffusion cell “wafer,” but 

porosities were measured on an “intact rock sample” taken from the rock core adjacent to the 

diffusion cell wafer.  Some uncertainty in developing a tortuosity-porosity relationship is introduced 

because porosities were not measured on the rock wafers used in the diffusion experiments.  

“Replicate” wafers were assigned the same porosity as the wafer adjacent to the sample for which the 

porosity was determined.  This approach results in the “columns” of red squares seen in Figure 10-2 

for the porosities corresponding to the samples that had porosity determinations.  These columns of 

data points indicate several different tortuosities for a single measured porosity representing different 

wafers, different tracers, and “repeat” experiments.  The three radioactive tracers used were tritiated 

water (HTO), H14CO-
3, and 99TcO-

4.  Matrix diffusion coefficients ranged from 5 x 10-12 to 2 x 10-9 

m2/s (equivalent tortuosity from 0.002 to 0.13).  The porosities for cores used in these measurements 

ranged from 0.09 to 0.37, and the permeabilities ranged from 1.1 x 10-18 to 5.6 x 10-17 m2.  

Experimental replicates were included in the study to gain insight into experimental errors, 

reproducibility, and variability.  Documentation of the diffusion cell experiment in Reimus et al. 

(2002c) was clear, from experimental methodology to the discussion of results, including possible 

causes for anomalous results and suggestions for improving future measurements.  The authors found 

that the matrix diffusion coefficients determined for the same wafer using three different tracers 

(HTO, H14CO-
3 and 99TcO-

4) did not vary as expected.  The matrix diffusion coefficients should have 

varied by the ratio of the solute free water diffusion coefficients of the three tracers (i.e., same 

tortuosity was not calculated for a rock sample using the three different tracers).  This result suggests 

that both the H14CO-
3 and 99TcO-

4 anions may have had access to less porosity than the HTO molecule, 

possibly due to anion exclusion or retardation by sorption or ion exchange.  For this reason, matrix 

diffusion coefficients using the H14CO-
3 and 99TcO-

4 tracers were assigned a lower quality score 

weighting (see Section 10.4.2).

Reimus et al. (2006a) conducted diffusion wafer and fracture transport experiments in 2004 and 2005 

to determine solute matrix diffusion in the low-porosity LCA carbonate rocks, as an aid in the 

analysis of the multiple-well tracer tests conducted at the ER-6-1 Well Cluster in Yucca Flat.  

Diffusion wafer experiments were chosen instead of the generally preferable diffusion cell 

experiment type because some of these carbonate rocks had large voids that could have resulted in 

short circuiting and erroneously high apparent diffusion coefficients in a diffusion cell experiment, 

and because of the extremely low diffusion coefficients anticipated.  The tracers in a diffusion cell 
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experiment must pass both into and out of a rock sample, but only into the sample during a diffusion 

wafer experiment.  The diffusion wafer experiments indicated that solute matrix diffusion coefficients 

in the low-porosity LCA rocks are quite small, as expected for this low-porosity, low-permeability 

carbonate rock,  ranging from 0.85 x 10-7 to 23 x 10-7 cm2/s.  A “loose positive correlation” was 

observed between the reported matrix diffusion coefficients and matrix porosities.  A large suite of 

different types of tracers were used in the experiments, including fluorinated benzoate (FBA) tracers 

(PFBA, DFBA, TFBA), halide tracers (Br and I), 14C, and Li.  The ratio of halide to FBA matrix 

diffusion coefficients determined in LCA rocks was around two, which is smaller than the 

factor-of-three ratio expected (and encountered in previous matrix diffusion experiments with higher 

porosity rock), corresponding to the factor-of-three difference in the free water molecular diffusion 

coefficients for these different tracers.  The reason for this unexpected result in this experiment could 

not be determined definitively, but the authors suggest it may be related to errors and uncertainties in 

the measurements and analysis.  Batch experiments were also conducted to confirm non-sorption or 

to measure sorption for the tracers.  These experiments indicated negligible sorption of the halides 

and FBAs, confirming their suitability for use as nonsorbing tracers in matrix diffusion experiments 

and in ER-6-1 field tracer tests.  The 14C tracer was somewhat retarded by an unidentified sorption 

mechanism or by isotopic exchange, with the authors considering the latter the most likely.  

Calculated tortuosities based on the ratio of matrix diffusion coefficients to free water diffusion 

coefficients (Dm/Do) for the benzoate and halide tracers ranged from 0.008 to 0.153, and the measured 

porosities ranged from 0.009 to 0.060.  In the fracture transport experiments, the normalized 

breakthrough curves of tracers with different diffusion coefficients showed little or no separation, 

suggesting an apparent lack of matrix diffusion occurring in these experiments.  However, when the 

ratio of the two tracers’ normalized concentrations versus time was plotted, rather than the 

concentrations themselves, these figures indicated that matrix diffusion was occurring in the fracture 

experiments.  The authors conclude that “although matrix diffusion is much slower in the LCA than 

in fractured volcanic aquifers because of the much lower matrix porosities of the LCA, it is still a 

potentially important process over long time and distance scales” (Reimus et al., 2006a).

Reimus et al. (2006b) analyzed data obtained from laboratory diffusion cell experiments conducted 

over the past 10 years on NTS rock from four sources: Callahan et al. (2000), Reimus et al. (2002b), 

Reimus et al. (2002c), and Bechtel SAIC (2004c).  The Reimus et al. (2006b) data were screened so 

that they were not duplicated in the database.  These experiments used 47 different volcanic rock 
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samples from 8 different NTS locations, primarily from Pahute Mesa.  Ten of the samples represented 

“parallel” samples where one sample consisted only of rock matrix and the other sample from the 

same interval contained a fracture surface with natural mineral coatings.  Measured porosities ranged 

from 0.06 to 0.37 and measured permeabilities ranged from 7.8 x 10-19 to 4.7 x 10-15 m2.  Calculated 

tortuosities based on the ratio of matrix diffusion coefficients to free water diffusion coefficients 

(Dm/Do) ranged from 0.002 to 0.31.  Tracers used in the experiments included Br, I, and PFBA.  

Permeabilities were measured directly on the diffusion cell wafers but porosities were measured on 

other pieces of core assumed to be representative.  For this reason, a number of experiments (different 

wafers, different tracers, and repeat experiments) have the same reported porosity, resulting in 

“columns” of green diamonds in Figures 10-2 and 10-3; exhibiting as much as an order of magnitude 

difference in the tortuosity for the same reported porosity.  The authors found that, for this dataset, 

Dm/Do (or tortuosity, ω, using Equation [10-2]) correlated to porosity, φ, by:

log ω = 3.068 φ – 1.979 (10-4)

with a coefficient of determination (R2) value of 0.37; tortuosity correlated to permeability, k, by: 

log ω = 0.254 log k + 2.91 (10-5)

with an R2 value of 0.49; and tortuosity correlated to permeability and porosity by: 

log ω = (1.91 ± 1.29)φ + (0.19 ± 0.089)log k + (1.42 ± 1.60) (10-6)

with an R2 value of 0.54.  The ranges in Equation (10-6) represent the 95 percent confidence 

interval (CI).  The evaluations suggest that tortuosity correlates to permeability better than to porosity 

alone, and including both porosity and permeability improves the ability to predict tortuosity.  A 

detailed presentation and discussion of the results for tortuosity as a function of porosity and 

permeability is presented in Reimus et al. (2006b).  Including a correlation of tortuosity to 

permeability is not proposed for Yucca Flat/Climax Mine transport modeling because of the more 

limited data available for permeability as compared to the data available for porosity.

Walter (1982) derived matrix diffusion coefficients by diffusion cell experiments with fractured tuff 

samples from Yucca Mountain and also determined constrictivity and tortuosity from electrical 
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resistivity experiments (approach is discussed in Section 10.3.3).  He found a high correlation 

between total porosity and matrix diffusion coefficient (correlation coefficient [r] = 0.9), and a “fair” 

correlation between tortuosity and median pore diameter (r = 0.75).  Duplicate tracer samples were 

collected, and the mean concentration value was used in the data analysis.  The concentration in the 

tracer cell was replaced every 24 hours to keep the concentration constant.  This is one of the few 

experimental reports that documented experiment temperature and provided comments on the quality 

of each measurement.  Walter (1982) also included calibration process information.  Porosities of the 

tuff samples ranged from about 10 to 40 percent.  Matrix diffusion coefficients ranged from 2 x 10-11 

to 2 x 10-10 m2/s.  Tortuosities calculated using Equation (10-2) ranged from 0.009 to 0.083.

Papelis and Um (2003a) studied adsorption and diffusion and also conducted spectroscopic analysis 

of Frenchman Flat rock samples (welded ash-flow and zeolitic volcanic tuffs) using pulverized, 

sieved particles.  The matrix diffusion values were determined by batch experiments, measuring the 

change in tracer concentration over time for a test tube containing spherical volcanic tuff particles, in 

a tracer solution, using three different tracers: Sr, Cs, and Pb.  Matrix diffusion coefficients ranged 

from 2 x 10-14 to 9 x 10-9 m2/s, corresponding to tortuosities of 0.0003 to 17.  They studied adsorption 

and diffusion and also conducted spectroscopic analysis of Frenchman Flat rock samples using 

pulverized, sieved particles (welded ash-flow and zeolitic volcanic tuffs).  The diffusion experiments 

(“rate of uptake”) were conducted with batch experiments, measuring the change in tracer 

concentration over time for a test tube containing spherical volcanic tuff particles in a tracer solution.  

Three different tracers were used: Sr, Cs, and Pb.  This batch type of experiment on substantially 

altered core fragments and using tracers that exhibited sorption effects resulted in the largest scatter 

for this dataset of any of the others reported here, with many tortuosities greater than one.  As such, 

experimental difficulties and uncertainty in determining tortuosity are evident.  For the above 

discussed reasons, the experimental data from this source were not included in the database for 

development of a tortuosity-porosity correlation.

Triay et al. (1997) derived matrix diffusion coefficients by diffusion cell experiments with volcanic 

tuff samples from Yucca Mountain, using two different tracers: HTO and 99TcO-
4.  The experimental 

results yielded matrix diffusion coefficients ranging from 1 x 10-11 to 3.5 x 10-10 m2/s (equivalent 

tortuosities from 0.005 to 0.15).  The porosities for cores used in these measurements ranged from 

0.06 to 0.10.  The permeability was not reported for the samples.
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Papelis and Um (2003b) derived matrix diffusion coefficients by diffusion cell experiments using 

welded tuffs, nonwelded tuff, and devitrified lava samples from Pahute Mesa.  The experiments used 

Br, Cs, Sr, and Pb as tracers.  The Cs, Sr, and Pb all exhibited varying degrees of sorption.  Thus, the 

matrix diffusion coefficients from the experiments using these tracers are more uncertain than those 

from experiments using Br.  Therefore, only the matrix diffusion coefficients for Br are used for 

calculating tortuosity for each core sample reported.  Both “matrix” and “fracture” slabs (2 cm x 2 cm 

x 0.5 cm thick) were used, where the “fracture” slabs had a natural fracture surface as one of the slab 

sides, to allow for study of diffusion through the surface coatings as well as the matrix, to see whether 

this resulted in substantially different matrix diffusion responses.  No consistent trend was observed 

between “matrix” slabs and “fracture” slabs, with the diffusion coefficients determined for both types 

showing similar ranges.

Hershey et al. (2003) performed and evaluated laboratory diffusion experiments with Br and 14C 

through three LCA cores obtained from two NTS wells.  The diffusion experiments assessed 

diffusion from a core piece saturated with tracer solution into a reservoir in contact with one surface 

of the core sample.  The diffusion cells were set on a vibrating platform that was operated daily for 

15 min to keep the reservoir solution mixed.  They determined tortuosities using the Br data only 

using a relation equivalent to Equation (10-2).  The effective matrix diffusion coefficient for Br 

ranged from 5.2 x 10-10 to 6.9 x 10-10 m2/s.  The reported effective porosities ranged from 0.0170 to 

0.0256, and the calculated tortuosities ranged from 0.25 to 0.33.  These tortuosities appear to be 

uncharacteristically large for such low-porosity rock samples in comparison to other diffusion cell 

experiments on NTS samples and from other published diffusion experiments in the literature.

Laboratory diffusion data for NTS granite/crystalline rock were not available.  Therefore, 

measurements for granite/crystalline rock were obtained from a number of sources around the world.  

These include samples from fractured granite rock in Sweden (Mazurek and Jakob, 2002; Jakob, 

2004), crystalline rocks in Sweden (Skagius and Neretnieks, 1986), and a number of measurements 

on granite rock samples from the Swedish Askarshamn site investigation (Gustavsson and 

Gunnarsson, 2005).  A wide variety of sample selection techniques, tracer types, and experimental 

methodologies were used in the experiments and will not be summarized here; these measurements 

are included for complete coverage of the lithologies that could be encountered in Yucca Flat 

transport modeling.
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10.3.2 Field Tracer Diffusion Experiments

Field tracer experiments have been performed at several locations at or near the NTS to determine 

double-porosity transport parameters.  Typically, data from the tracer tests are interpreted to evaluate 

transport conceptual models (e.g., single-porosity or double-porosity transport) and to yield transport 

parameters such as dispersivity, fracture spacing or aperture, effective porosity, and matrix diffusion 

coefficient.  Because of the multiple parameters involved and the nonuniqueness of interpretations of 

field tracer tests, matrix diffusion coefficients determined from field tracer tests are more uncertain 

than those determined through laboratory experiments.  Reimus and Haga (1999) recognized this 

uncertainty and defined a lumped parameter called the mass transfer coefficient, which is defined in 

terms of the matrix diffusion coefficient, matrix porosity, and fracture half aperture.  Because the 

effects of the magnitude of each parameter are lumped together in the mass transfer coefficient, any 

estimate of matrix diffusion coefficient is quite uncertain.  In fractured geologic media, tracer tests are 

most valuable for determining transport pathways, effective porosities, and mass transfer coefficients 

for matrix diffusion (the lumped parameter), and in confirming the presence or absence of matrix 

diffusion, but not for determining estimates of matrix diffusion coefficients.

Reimus et al. (2003a) determined diffusion coefficients from tracer experiments, conducted in 

alluvium at Well NC-EWDP-19D1, located 18 km south of Yucca Mountain.  In the alluvium at this 

well, the diffusive mass transfer was found to be inconsequential.  The field test involved several sets 

of two tracers with different free water molecular diffusion coefficients (pairs of halides and 

fluorinated benzoates) that were simultaneously injected.  Each tracer in the pair had essentially an 

identical response, “consistent with little diffusive mass transfer between flowing and stagnant water 

in the aquifer over the time scales of the test” (Reimus et al., 2003a).  The nearly identical responses 

of the tracers with different diffusion coefficients in the tests provided strong evidence that diffusion 

did not play an important role in solute transport in the AA (Reimus et al., 2003a).  

The BULLION FGE (IT, 1998) was conducted within the lava-flow aquifer, composed of fractured 

Tertiary rhyolite lava flows, at Pahute Mesa.  Three wells, aligned consistent with the orientation of 

the major fracture system and downgradient of the BULLION underground nuclear test, were used.  

Tracers 2,6-DFBA and I were injected into one well; PFBA was injected into a second well; and 

concentrations were measured from water samples from a third well, which was pumped.  Maximum 

interwell distance was 131.5 m.  The experiment duration was 87 days, at which point the peaks of all 
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tracer breakthrough curves had been captured.  A range of alternative calibrations with different 

combinations of parameters (matrix diffusion coefficient, fracture spacing, matrix porosity, fracture 

porosity, dispersivity, and proportion of tracer mass injected) were developed that adequately 

matched these tracer breakthrough curves (IT, 1998).  They concluded that these calibrations suggest 

that the uncertainty in the matrix diffusion coefficient is “at least one order of magnitude” (IT, 1998).  

It was concluded that the mechanism of matrix diffusion was demonstrated by the tracer test results 

because “the observed breakthrough curves cannot be explained without invoking matrix diffusion” 

(IT, 1998).  Reimus and Haga (1999) presented an analysis of the BULLION tracer test, in which a 

mass transfer coefficient was determined that includes matrix porosity, fracture half aperture, and a 

matrix diffusion coefficient.  The estimated matrix diffusion coefficients contain error because of 

uncertainty in the true value for matrix porosity and fracture half aperture.

Cross-hole, forced-gradient tracer tests were conducted at the C-holes Complex in fractured volcanic 

tuffs for the YMP (Reimus et al., 1999; Bechtel SAIC, 2004c).  The C-holes consist of three wells 

with inter-well distances of about 30 to 80 m.  Tracers were injected into two horizons.  The upper 

horizon consisted of the lower Prow Pass Tuff and the lower horizon consisted of the lower Bullfrog 

Tuff.  Reimus et al. (1999) state that the completion intervals for the Prow Pass Tuff and the Bullfrog 

Tuff consist of variably welded tuffaceous rocks.  Two tracer tests were conducted in the Bullfrog 

Tuff at the C-holes Complex.  The first was a pilot test to determine the fastest flow path at the 

complex.  That path was then used for a subsequent tracer test involving the injection of two 

conservative tracers (PFBA and Br), one reactive tracer (Li), and one microsphere tracer.  The 

experiment duration after initiation of tracer injection was about 40 days.  The thickness of the 

Bullfrog Tuff interval tested was about 100 m.  At the depth of the completion intervals, the distance 

between the wells is about 30 m.  The breakthrough curves observed in the pumping well show a 

bimodal behavior for all tracers (Bechtel SAIC, 2004c).  The tracer responses in the Bullfrog Tuff 

were consistent with double-porosity transport behavior.  This is evidenced by the different first peak 

concentrations for the conservative tracers consistent with their different free water diffusion 

coefficients.  Two phases of tracer testing (conservative and reactive) were conducted in the Prow 

Pass Tuff at the C-holes Complex.  The first phase (the conservative tracer test) consisted of the 

injection of two conservative tracers (2,4,5-TFBA and I).  The second phase (the reactive tracer test) 

consisted of the injection of three conservative tracers (PFBA, Br, and Cl), one sorbing tracer (Li), 

and three microsphere tracers.  The wells are located 29 m apart at the depth of the completion 
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interval.  The average thickness of the completion intervals in the Prow Pass Tuff at the two wells was 

71 m for the conservative tracer test and 74 m for the reactive tracer test.  The tracer responses for 

both phases of testing in the Prow Pass Tuff are consistent with double-porosity transport behavior.  

This is evidenced by the different peak concentrations for the conservative tracers consistent with 

their different molecular diffusion coefficients.

Reimus et al. (2003b) present the results of a multiwell tracer test using multiple tracers in a fractured 

granite formation at the SHOAL underground nuclear test site in west-central Nevada.  Three tracers 

(PFBA, Br, and Li) were injected into one well and concentrations were measured in water samples 

from a second well which was pumped.  Interwell distance was about 30 m, and screened intervals 

were about 35 m.  A small recirculation/injection flow rate from the production well to the injection 

well was maintained during the test.  There was a separation between the nonsorbing tracer 

breakthrough curves obtained for samples from the pumping well discharge, with the tracer with the 

higher free water diffusion coefficient exhibiting a lower peak concentration and a longer tail than the 

tracer with the lower free water diffusion coefficient.  This tracer breakthrough curve response 

confirmed that a double-porosity fracture-matrix conceptualization was appropriate to describe 

transport in the fractured granite.  

A tracer test was conducted in the LCA at the ER-6-1 Well Cluster in southern Yucca Flat in 2004 

(SNJV, 2006d).  Three wells were used with alignment consistent with the orientation of the major 

fracture system.  Tracers 2,4,5-TFBA and I were injected in the lower interval of one well.  Tracers 

PFBA, Li, and Br were injected into the upper interval of that same well.  Tracer 2,5-DFBA was 

injected into a second well.  Tracer concentrations were measured in water samples from a third well, 

which was pumped.  Maximum interwell distance is about 64 m.  The open vertical interval in the 

pumping well and the injection well with separate lower and upper interval injections was about 

1,315 m.  The experiment duration was 84 days, at which point the peaks of all tracer breakthrough 

curves had been captured with the exception of 2,5-DFBA.  Identification of a double-porosity 

conceptualization for transport between injection and pumping wells in the LCA at the ER-6-1 Well 

Cluster was inconclusive.  This can be attributed to the relatively low matrix porosity (some core 

samples show typical matrix porosity of about 0.01) and the similarity in magnitude of apparent 

fracture porosity and matrix porosity.  Because of the relatively low matrix porosities, one would also 

expect corresponding lower tortuosities, which would further reduce the impact of matrix diffusion 
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(less solute transfer from fractures to matrix) at the spatial and temporal scales of the tracer test.  It 

was concluded by SNJV (2006d) that the tracer test time scale, being much smaller than that required 

for deep diffusion into the matrix blocks coupled with the low solute storage capacity in the matrix, 

resulted in insignificant matrix diffusion effects during the tracer test.

10.3.3 Formation Factor-Porosity Approach

Matrix diffusion coefficients of dissolved species can be related to matrix porosity and formation 

factor of rock-core samples.  Klinkenberg (1951a and b) concluded that the factors that impede 

electrical conductance through a porous medium are the same factors that impede diffusion of a 

conservative solute.  Conca and Wright (1992) explain this as follows:  “The reason that electrical 

conductivity can be related to ionic diffusion through the Nernst-Einstein equation is that the ease 

with which a species diffuses through a liquid is exactly analogous to the ease with which the water 

molecules can align their dipoles along the electric field vector.”  Thus, factors that affect the 

diffusive paths also affect the current paths.  For this reason, electrical conductivity can be a useful 

surrogate for the more difficult to measure tortuosity from laboratory diffusion cell experiments.  

The ratio of the resistivity of the formation sample, CS, to the resistivity of the saturating fluid, CW, is 

called the formation factor, f, expressed as (Archie, 1942; Bear, 1972):

f = CS / CW (10-7)

Porosity and tortuosity affect the electrical conductivity of a water-saturated geologic medium in 

almost the same way as they affect the diffusion coefficient.  The tortuosity can be expressed in terms 

of porosity and formation factor using the relation (Bear, 1972):

ω = 1 / fφ (10-8)

Miller (1989) presents an evaluation of diffusion in aquitards used for long-term isolation for 

deep-well injection of liquid hazardous wastes.  He developed expressions for the “geometric 

correction factor G,” which is equivalent to the tortuosity, ω, in Equation (10-2).  Miller (1989) states 

that the geometric correction factor is a function of the matrix porosity and the lithology.  The 

geometric correction factor (or tortuosity) is a function of formation factor and porosity.  In Miller 
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(1989), both graphical illustrations and equations demonstrate the relationship between formation 

factor and porosity for a range of geologic media (e.g., sands, sandstones, carbonates, and clays).  A 

variety of literature sources are summarized that show relationships between formation factor and 

porosity.  For example, Archie (1942) developed a relationship between formation factor and porosity 

of the form:

f = φ-m (10-9)

where m is an exponent found to be about 1.3 for unconsolidated media and varies between 1.8 and 

2.0 for consolidated sandstones.  In some cases, Archie’s equation includes a coefficient, commonly 

assumed to be at or near unity, on the right side of Equation (10-9).  Substituting Equation (10-9) into 

Equation (10-8), tortuosity can be expressed as:

ω = φn (10-10)

where n = m-1.  Based on well-defined trends from extensive experimental investigations, Miller 

(1989) concludes that the exponent n normally varies as a function of lithology with increases in 

magnitude based on increasing constrictions and tortuousness of the pore channels.  The plotted 

relations between geometric correction factor and porosity presented in Miller (1989) went to 

porosities as low as 0.1, but it is expected that these relationships would be valid for even lower 

porosities.  The summarized results from Miller (1989), for the exponent n for various geologic 

media, is as follows:

Keller and Ibrahim (1982) conducted electrical resistivity measurements on volcanic core samples 

(basalt to tuff).  Values of the exponent m in Equation (10-9) ranging from 1.5 to 1.88 were obtained.  

Lower m values were reported in comparison to other studies for limestones and crystalline igneous 

Geologic Media Exponent n
Unconsolidated sand 0.5

Consolidated sandstone 0.9
Tight unfractured limestones and dolomites 1.0

Clays and shales 2.0
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rocks.  The range for m yields corresponding values of exponent n in Equation (10-10) for volcanics 

from 0.5 to 0.88.  

Formation factors determined from resistivity measurements on 15 Culebra Dolomite core samples 

from the DOE WIPP site in New Mexico varied from 13 to 407, with porosity varying from 0.07 to 

0.26, and calculated tortuosity varying from 0.03 to 0.33 (average = 0.141) (Jones et al., 1992).  

Laboratory diffusion cell experiments were also performed on Culebra core samples.  The tortuosities 

determined by both the diffusion cell and formation factor-porosity methods were reasonably 

consistent.  The formation factor-porosity data from the 15 core samples were analyzed to yield an 

exponent m of 2.1 in Equation (10-9) and an exponent n in Equation (10-10) of 1.1 with an R2 of 

greater than 0.96.  The exponent n of 1.1 from the Culebra Dolomite core samples is consistent with 

the value of 1.0 from Miller (1989) for limestones and dolomites.

Because formation factor and porosity are relatively straightforward and inexpensive to measure on 

core samples, this provides a simple approach to estimate tortuosity or matrix diffusion coefficients 

for a large number of core samples, and may be particularly useful for determining the range of 

variation in matrix diffusion coefficients for different locations and lithologies.  Because porosity 

measurements are often more readily available than formation factor measurements, the use of simple 

relationships like Equation (10-10) to estimate tortuosities could be a useful approach to augment the 

limited data that may be available from laboratory diffusion cell and field tracer experiments.  

The evaluation of NTS-specific data to examine the relationship between tortuosity from laboratory 

diffusion cell experiments as a function of porosity is presented in Section 10.4.6 as well as a 

discussion of the comparison to the literature values above based on the formation factor-porosity 

approach.

10.4 Data Analysis

10.4.1 Data Evaluation Approach

The matrix diffusion data quality evaluation, data review, and data analysis process is described in the 

remaining sections of this section.  The process consisted of the following primary steps:
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1. Update the matrix diffusion database from the previous Frenchman Flat matrix diffusion 
parameter analysis adding newly available NTS data and literature data for crystalline rocks 
that may be representative of the granite confining unit.

2. Determine the data quality of each matrix diffusion measurement using the data transfer 
protocol outlined in SNJV (2004c). 

3. For those experiments where tortuosity is not reported, calculate the tortuosity from the free 
water diffusion coefficient and the reported matrix diffusion measurements.

4. Review and analyze the data and determine the most appropriate correlation between tortuosity 
and porosity.

5. Develop a recommended statistical model for tortuosity values, based on a correlation with 
porosity and the uncertainty range of the data.

These steps are discussed in detail in the following sections.

10.4.2 Data Quality/Transferability Protocol

A detailed explanation of the data documentation and data transfer protocol used for this analysis is 

included in Attachment B of SNJV (2004d).  The scoring protocol used to assign weights and 

multipliers to the matrix diffusion data is reported in Table 10-1 and discussed in the following text.  

The overall multiplier factor is a product of the multiplier factors for the three criteria presented in 

Table 10-1.  The overall “score” of the data is the product of the weight and multiplier factors.

Because no clear trends in the tortuosity-porosity data were found to be representative of individual 

HSUs, no benefit was found to group the data into HSU-specific subsets (Figure 10-4).  For this 

analysis, the data were considered as a whole to capture the full range and variability of the matrix 

diffusion dataset.  For this reason, the weight factors W1 and W2 discussed in Table 10-1, related to 

permeability and porosity similarity to the HSU of interest, were all set to 1.0 for this analysis.  

Therefore, the total quality score of the data is equal to the product of the multiplier factors M1, M2, 

and M3 for measurement method, quality of the analysis, and quality of the documentation, 

respectively.  The scoring is calculated for each measurement in the matrix diffusion dataset.  The 

total scores for the NTS matrix diffusion data points range from 0.05 to 2.8



Section 10.0

Phase I Contaminant Transport Parameters for CAU 97: Yucca Flat/Climax Mine, Nye County, Nevada

10-22

Table 10-1
Summary of Data Transfer Protocol for Yucca Flat Matrix Diffusion Coefficient Dataset

 (Page 1 of 2)

Total score = W x M (for both data quality and transferability) - see each dataset entry for specific values

WEIGHT FACTORS W = W1 x W2 for geologic similarity of the data to the HSU of interest 

W1. Determine Weight Factor for Permeability Similarity

1 If permeability of measured sample is within 1 order of magnitude of Yucca Flat HSU 
permeability

0.6 If permeability of measured sample is within 1-2 orders of magnitude of Yucca Flat HSU 
permeability

0.3 If permeability of measured sample is within 2-3 orders of magnitude of Yucca Flat HSU 
permeability

0 If permeability of measured sample is greater than 3 orders of magnitude different from 
Yucca Flat HSU permeability

0.5 If permeability of sample is not measured and reported

1 If mean permeability of Yucca Flat HSU is not yet available

W2. Adjust Weight Factor for Porosity Similarity by multiplying above by:

1 If porosity of measured sample is less than 25% different from Yucca Flat HSU porosity

0.7 If porosity of larger value (between measured and Yucca Flat HSU) is within 25 to 90% 
of small value

0.4 If porosity of larger value (between measured and Yucca Flat HSU) is greater than 90% 
different than smaller value

0.5 If porosity of Dm sample is not measured and reported

MULTIPLIER FACTORS M = M1 x M2 x M3 for measurement method and quality of the analysis and 
documentation

M1. Measurement Method: M1a x M1b x M1c

1 Laboratory Diffusion Cell Experiments (DCEs) (M1a)

0.5
If Dm determined by a method other than DCE, such as x-ray or neutron imaging, 
electrical conductivity, batch experiments using pulverized particles, etc. (non-DCE) 
(M1a)

2 If sample includes natural fracture surface, which may have mineral coatings that affect 
diffusion (Frac) (M1b)

0.6 If sample thickness is 80% smaller than average and, therefore, less representative of 
field-scale diffusive path lengths: < 0.27 cm (M1c)

1.4

If sample thickness is 80% larger than average and, therefore, more representative of 
field-scale diffusive path lengths: > 2.5 cm (M1c) (1.4 cm, average sample thickness of 
all samples (arithmetic average of dataset sample thicknesses, 
“avg_sample_thickness”)

1.5 If both increasing and decreasing concentrations are measured (no such experiments 
were identified in study reports for this analysis)
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10.4.3 Data Review and Statistics

Tortuosity, grouped by core lithology type, is shown in Figure 10-4.  There were no clear divisions or 

patterns, except:

• The crystalline/granite rock type (the light blue squares) have low porosities, as expected, and 
the matrix diffusion coefficients trend lower than the low porosity values for all other rock 
types in the dataset. 

• The four LCA data points from Hershey et al. (2003) show relatively high tortuosity for the 
relatively low porosity cores.

• Tuff data tend to be represented in the middle of the tortuosity dataset, with more outliers in 
the zeolitic tuff rock type, perhaps indicative of more variation in this more altered rock type.

Figure 10-5 shows the full matrix diffusion dataset with the data point size indicative of the total 

quality score for that data point.  Higher quality data have a larger symbol size; lower quality data 

have smaller symbols.   

There are no clear patterns or trends of data quality with tortuosity, porosity, or lithology.  Also, there 

are no tortuosity data for many of the HSUs and there are generally no clear differences in tortuosities 

M2. Data Reduction and Analysis Method: = M2a x M2b

1 Current

0.5 Good method, but calibration information is suspect or not possible to verify (M2a)

0.5 Based on older or less-widely accepted methods but calibration information is good 
(M2a)

0.2 Both method and calibration information are suspect (M2a)

0.1 - 2.0
Variable, author’s evaluation of measurement’s quality, fit of the data to the 
experimental model, etc., noted in the “Multiplier_Comments” column of the dataset 
(M2b)

M3. Quality of the Documentation

1 Good (thorough, easy to follow, traceable)

0.6 Appearing in a reputable or peer-reviewed report, but otherwise lacking in 
thoroughness

0.3 Poor

Table 10-1
Summary of Data Transfer Protocol for Yucca Flat Matrix Diffusion Coefficient Dataset

 (Page 2 of 2)
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Figure 10-4
Tortuosity Data by Rock Type

Figure 10-5
Tortuosity Data by Rock Type, Including Data Quality Score
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for the individual HSUs with data.  Therefore, the decision was made to not divide the data into 

HSU-specific subsets.

Figure 10-6 shows tortuosity versus depth of the core sample where depth was reported.  There are no 

apparent trends of tortuosity with depth for this dataset.

Permeability data are unavailable for about half of the data points but, where measured and reported, 

show a general trend of increasing tortuosity with increasing permeability, as well as considerable 

variability in tortuosity for the lower-permeability cores (Figure 10-7).

Figures 10-8, 10-9, and 10-10 show the cumulative probability distribution functions for porosity, 

tortuosity, and permeability, respectively, for the matrix diffusion database.  The median porosity is 

0.173 and ranges from 0.002 to 0.369.  For tortuosity (Figure 10-9), the entire database of tortuosities 

ranges over four orders of magnitude; it is important that any modeling recommendations capture this 

large variation appropriately.  The median tortuosity is 0.072.  Even the 75th percentile value is low, 

with 75 percent of all tortuosities less than 0.15.  This suggests that even for rock with a relatively 

large porosity, the connectivity is low, and the rock pores are connected in a “tortuous” manner.  This 

is supported by the generally low permeabilities, where they were measured and reported for the 

matrix diffusion experiments.  The median permeability is only 2.4 x 10-17 m2 (Figure 10-10).  Ninety 

percent of the cores have permeabilities less than 1.0 x 10-15 m2, indicating tight rock with poorly 

connected, very tortuous pore geometry.  The highest permeability reported was less than 

1.0 x 10-14 m2.       

10.4.4 Free Water Diffusion Coefficients

The free water diffusion coefficients (Do) of most species range from 10-10 to 10-9 m2/s (Drever, 1988).  

Free water diffusion coefficients are generally lower for larger molecules or ions with higher charges.  

A discussion of the various laboratory experimental methods for determining free water diffusion 

coefficients is presented in Mills and Lobo (1989).  Because matrix diffusion coefficients (Dm) are a 

property of both the rock (through tortuosity ω) and the tracer species (through Do), it is important 

that the best estimates of both are known, particularly when analyzing large sets of measurements 

from disparate sources.  Calculated values of Dm (a property of the rock and the fluid) for any tracer 

may be determined by multiplying the tortuosity (a property of the rock alone) by the Do value 
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Figure 10-6
Tortuosity Data by Sample Depth and Rock Type

Figure 10-7
Tortuosity versus Permeability



Section 10.0

Phase I Contaminant Transport Parameters for CAU 97: Yucca Flat/Climax Mine, Nye County, Nevada

10-27

Figure 10-8
Cumulative Distribution Function for Porosities of the Matrix Diffusion Samples

Figure 10-9
Cumulative Distribution Function for Tortuosities of the Matrix Diffusion Samples
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(a property of the fluid alone).  This relationship assumes that the only factor affecting the matrix 

diffusion coefficient other than porous media properties is the free water diffusion coefficient for the 

particular tracer species (i.e., no other processes other than diffusion are affecting the “apparent” 

diffusion coefficient [e.g., cation exchange, unaccounted sorption, complexation, anion exclusion, 

lowering of effective porosity for large molecules excluded from small pores]) and all tracer solutions 

are dilute (less than 1 molar [M]).  Multi-component diffusion effects have also been excluded in this 

analysis.  

A summary table of the unclassified radionuclide inventory relevant to the Yucca Flat/Climax Mine 

CAU is provided in Bowen et al. (2001).  Tritium, as HTO, is the radionuclide with the largest free 

water diffusion coefficient (2.236 x 10-9 m2/s at 25 °C [Mills, 1973]).  The radionuclide with the 

lowest free water diffusion coefficient is Am (3 x 10-10 m2/s [DOE/WIPP, 2004]).  Thus, these two 

values bound the range for free water diffusion coefficient for species relevant to the NTS.  

Various sources are available that provide free water diffusion coefficients for various species 

including Lerman (1979), Drever (1988), Mills and Lobo (1989), and Newman (1991).  For 

Figure 10-10
Cumulative Distribution Function for Permeabilities of the Matrix Diffusion Samples
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radionuclides where free water diffusion coefficients are not readily available in the literature, they 

can be calculated using the Nernst or Stokes-Einstein equations (Lerman, 1979; Mills and Lobo, 

1989).

10.4.5 Effects of Temperature and Ionic Strength 

The Stokes-Einstein equation predicts that free water diffusion coefficients (Do) will be directly 
proportional to absolute temperature and inversely proportional to fluid viscosity, which decreases 
nonlinearly as temperature increases.  Free water diffusion coefficient is directly related to 
temperature; therefore, temperature may be an important parameter if there is a large range in 
temperature in the laboratory diffusion experiments or throughout the groundwater flow system.  If 
temperature is increased from 20 to 30 °C, the free water diffusion coefficient increases by 
30 percent, as shown in Table 10-2.  Temperatures are seldom reported for the matrix diffusion 
experiments discussed in Section 10.3.1, but those that were reported ranged from 25 to 30.5 °C.  
Because experimental temperatures are seldom reported, and when reported the range is small 
(typically laboratory ambient temperatures), laboratory matrix diffusion coefficient values were not 
corrected in this analysis for temperature.  All laboratory measurements were assumed for the 
purposes of this analysis to be conducted at a temperature of 25 °C.  The error introduced by this 
assumption is likely to be small, as the range of ambient indoor laboratory temperatures is small, 
especially compared to the range in temperatures expected in the HSUs over their lateral and vertical 
extent.  

Table 10-2
Factor by Which Free Water Diffusion Coefficients Change 

as a Function of Water Temperature

Temperature
 (°C)

Free water diffusion coefficient 
should be multiplied by:

20 1

25 1.14

30 1.3

40 1.64

50 2.14

60 2.58

Source: Shaw, 2003a
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The relationship between temperature and free water diffusion coefficients and the relative 
adjustment needed is presented in Shaw (2003a) and shown in Table 10-2 and Figure 10-11.  These 
data, developed from the Stokes-Einstein equation, were fit to the polynomial shown in Figure 10-11 
where the data in Table 10-2 are plotted as open circles and the polynomial relationship is shown as 
the red curve.  

Temperature conditions logged in the deeper HSUs in Yucca Flat are relevant if solutes should ever 

reach depths substantially below the ground surface.  Temperatures measured from logging at the 

ER-6-1 Well Cluster and in wells ER-7-1 and ER-12-2 range up to 42, 53, and 63 °C, respectively.  

Correction of the free water diffusion coefficients for temperature effects is recommended for the 

CAU transport model as temperatures in the HSUs of Yucca Flat range from about 20 °C to more than 

60 °C.  The higher temperature ranges will result in about a factor of two increase in free water 

diffusion coefficient.

Figure 10-11
Free Water Diffusion Adjustment (Multiplier) for Increasing Temperature
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Alternatively, the value of the free water diffusion coefficient from one temperature to another can be 

estimated using a relation presented in Lerman (1979):

      DT1 / DT2 = (η1/T1) / (η2/T2) (10-11)

where T is temperature in degrees Kelvin, DT1 and DT2 are the free water molecular diffusion 

coefficients at temperatures T1 and T2, respectively, and η1 and η2 are the water viscosities at 

temperatures T1 and T2, respectively.  Thus, correcting for the change in the viscosity of water is 

sufficient to estimate the new free water diffusion coefficient.  Lerman (1979) also presents 

expressions similar to Equation (10-11) for calculating free water diffusion coefficients as a function 

of modified water viscosity resulting from changes in total solutes concentration or pressure.  Both of 

these effects are of minor importance in comparison to temperature for matrix diffusion in fractured 

media in Yucca Flat.

Diffusion coefficients are a relatively weak function of ionic strength until ionic strengths become 

greater than about 1 M (Newman, 1991).  As ionic strengths greater than 1 M are unlikely to occur at 

the NTS (even in cavities), the effect of ionic strength on diffusion coefficients is considered to be 

relatively minor compared to the effect of rock properties and temperature (SNJV, 2004c).  The 

concentration of the tracer species was not reported in all experiments discussed here; however, when 

reported, the concentrations were much less than 1 M.

10.4.6 Tortuosity-Porosity Correlations from Laboratory Diffusion Experimental Data

Various matrix diffusion formulations were considered in developing the tortuosity-porosity 

correlations for the NTS matrix diffusion database.  The exponential type regression showed a better 

quality of fit (as measured by the R2 value) compared to a log-linear type regression or a linear-linear 

type regression.  An exponential formulation is of the type (same as Equation [10-10]): 

ω =  φn (10-12)

where n is an exponent determined by lithology or by the best fit to the dataset.  This can also be 

rearranged to allow use of a linear regression:

log ω = n log  φ (10-13)

where n is now the slope of the line and the intercept is set to zero.  
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Other laboratory diffusion investigations that develop tortuosity-porosity functional relationships are 

presented in the literature.  For example, Boving and Grathwohl (2001) conducted laboratory tracer 

diffusion experiments on sandstone and limestone cores.  The sandstone and limestone porosity 

ranges were 11.0 to 24.5 percent and 3.3 to 43.0 percent, respectively.  They obtained tortuosities 

(using Equation [10-2]) for the sandstones and limestone samples that ranged from 9.1 x 10-3 to 

3.8 x 10-2 and 3.6 x 10-4 to 0.16, respectively.  The exponent n in Equation (10-10) that best fit both 

the sandstone and limestone data was 2.2.  The larger exponent determined by Boving and Grathwohl 

(2001) as compared to Miller (1989) for sandstones (n = 0.9) and limestones (n = 1.04) indicates 

much smaller tortuosities for these authors even when investigating similar lithologies.  These 

differences in exponent n for similar lithologies provide some measure of uncertainty and the need for 

site-specific data. 

Zavarin (2002) adopts a similar relationship for relating matrix diffusion coefficients as a function of 

porosity expressed as:

Dm = Do φm (10-14)

where he defines m as the cementation factor, ranging from 1.3 to 2.5 (citing Dullien [1979] as the 

reference for the exponent m).  (Note that this m is equivalent to n in Equation [10-2]).  Rearranging 

with Dm/Do = ω, this equation is equivalent to the relation for tortuosity given in Equation (10-10).  

Zavarin (2002) analyzed the experimental data from 33 diffusion cell experiments using 3H in a 

project report by Reimus and others (the data were later published as Reimus et al. [2002c]) with 

optimization of the value of m and minimization of the difference between experimentally determined 

and predicted Dm.  He obtained a least squares fit with m = 1.7 but found the correlation to be weak 

noted by the spread in the data about the line representing the functional relationship.  He also 

interpreted the best fit to the entire Dm dataset and determined m = 1.3 with the correlation between 

experimentally determined and predicted Dm being poor for the 14C and 99Tc tracers.  It is likely that 

not performing porosity measurements on the same wafers used in the diffusion experiments 

(discussed further in Section 10.3.1) caused some of the scatter and thus the weaker correlation.

Lerman (1979) provides an extensive review of diffusion processes in sediments.  He presented a 

log-log plot of matrix diffusion coefficient versus porosity and determined that matrix diffusion 

coefficient (or tortuosity) is approximately directly proportional to porosity raised to power of two 

(equivalent to n = 2 in Equation [10-10]).
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Exponential type correlations (see Equation [10-12]) based upon lithology available from the 

literature are shown in Figure 10-12 in comparison to the NTS database measurements and regression 

line (n = 1.33).   

Figure 10-13 shows a comparison of the exponential type formulations to the log-linear type 

correlation of Reimus et al. (2006b) given in Equation (10-4).  The log-linear type correlation (the red 

curve in Figure 10-13) is much flatter at low porosities.  Over the full range of porosities, the log-log 

or exponential type tortuosity correlations appear to track the general average trend of the data better 

than the log-linear type correlation.

The NTS database was fit to an exponential formulation by a least squares regression, as shown in 

Figures 10-14 through 10-16.  The least squares regression-determined exponent is 1.33.  The 

exponent for the upper limit of the 95 percent CI is 0.4.  The exponent for the lower limit of the 

95 percent CI is 3.2.  The R2 equals 0.82 for the exponential type equation regression for the NTS 

database.

Figure 10-12
Log-Log Relationships Between Tortuosity and Porosity from Various Published 

Studies Compared with the NTS Database Measurements
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The subset of measurements conducted upon carbonate samples within the NTS database consists of 

20 datapoints, from Hershey et al. (2003) and Reimus et al. (2006a).  The carbonate measurements 

appear to form a distinct subset in the measured data (the solid blue diamonds in Figure 10-4), with 

typically higher tortuosities at a given porosity than those observed for the database considered as a 

whole.  The least squares regression-determined exponent for this carbonate subset is 0.7.  This is in 

contrast with typical behavior for carbonates reported for Miller (1989) and Jones et al. (1992) where 

carbonate tortuosities are lower than other rock types considered, for a given porosity.  These are 

shown in Figure 10-12, where the result from Miller (1989) is shown as the lime green line, with an 

exponent of 1.04, and the result from Jones et al. (1992) is shown as the purple line, with an exponent 

of 1.1.  For the NTS carbonate subset, the exponent for the upper limit of the 95 percent CI is 0.3.  

The exponent for the lower limit of the 95 percent CI is 1.1.        

10.5 Scaling Considerations

Liu et al. (2006) compiled values of effective matrix diffusion coefficients estimated from field tracer 

tests for a variety of different rock types.  His analysis demonstrated that the effective matrix 

Figure 10-13
Comparison of Log-Log and Log-Linear Relationships 

Between Tortuosity and Porosity
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Figure 10-14
Correlation of Tortuosity and Porosity (Log-Log Axes) for the Matrix Diffusion Dataset 

Figure 10-15
Correlation of Tortuosity and Porosity (Log-Log Axes) for the Matrix Diffusion 

Dataset, Including the 95% Confidence Interval (Log Scale for Porosity)
The same graph plotted using the linear scale for porosity is shown in Figure 10-16 for comparison purposes.
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diffusion coefficient generally increases with test scale and concluded that simulated travel times may 

be significantly underestimated when this scale-dependent behavior is not considered.  Reimus and 

Callahan (2006) evaluated scaling considerations in fractured volcanic rocks at the NTS from matrix 

diffusion studies from field tracer tests at two locations and laboratory experiments using core 

samples.  The interpreted lumped parameter mass transfer coefficient (includes matrix diffusion 

coefficient, matrix porosity, and fracture half aperture) appeared to decrease as time and length scales 

of observation increased.  They concluded that this is most likely the result of larger effective 

apertures as distance increases.  

Interpretation of field tracer tests to determine matrix diffusion coefficients is inherently uncertain 

because of factors including non-ideal tracer test operating conditions, heterogeneity of the geologic 

media being investigated by the tracer test, simplifications in the tracer test interpretation approaches, 

and inability to isolate the effect of matrix diffusion alone in the tracer breakthrough response.  For 

these reasons, inclusion of a scale effect in transport modeling for Yucca Flat/Climax Mine CAU 

would require further justification.

Figure 10-16
Correlation of Tortuosity and Porosity (Log-Linear Axes) for the Matrix Diffusion 

Dataset, Including the 95% Confidence Interval (Linear Scale for Porosity)
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10.6 Data Limitations 

This analysis assumes that all nondiffusive processes encountered during matrix diffusion 

experimental measurements can be neglected or are otherwise explicitly accounted for before matrix 

diffusion values are reported.  Some of the nondiffusive processes that may have affected laboratory 

diffusion experiments include adsorption, cation exchange, complexation, anion exclusion, lowering 

of effective porosity for large molecules excluded from small pores, and inadvertent advective 

transport because of unintentional pressure gradients caused by barometric effects or tracer solution 

density contrasts.  This analysis also assumes that all experimental tracer solutions are dilute 

(less than 1 M).  Multi-component diffusion effects have not been included in this analysis.  

The importance of the matrix diffusion coefficient is expected to be greater for transport in fractured 

media than in alluvial media.  Therefore, it will be of more importance in transport model realizations 

where there is significant movement of contaminants in the volcanic aquifers or LCA.  

10.7 Summary 

Solute transport in high-permeability zones is typically dominated by advective-dispersive processes, 

while transport in low-permeability zones is dominated by diffusion.  In fractured media, a 

double-porosity conceptualization is typically assumed with matrix diffusion between the fractures 

and the adjacent matrix having the effect of attenuating both the concentration and travel time of 

aqueous-phase contaminants moving through fractures.  This process involves the diffusion of 

contaminants from groundwater flowing in rock fractures into and out of the relatively stagnant water 

in the pores of the surrounding rock matrix.  The importance of diffusion of solutes from fractures 

into the adjacent matrix has been studied and reported extensively in the literature and has been 

established as an important process for retarding the transport distance of solutes introduced into 

fractured geologic systems.  

Laboratory and field tracer experiments at NTS and additional experiments reported from the 

literature for other sites were synthesized to develop a matrix diffusion coefficient distribution for the 

HSUs in Yucca Flat.  It was found that a relationship could be developed between tortuosity and 

porosity.  Tortuosity is the ratio of the matrix diffusion coefficient to the free water diffusion 

coefficient.  The use of a tortuosity-porosity functional relationship is useful because porosity data are 
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more often measured and more readily available than tortuosities or matrix diffusion coefficients.  

Using tortuosity rather than matrix diffusion in the analyses is useful because it allows for the 

separation of the effects of the individual tracer chemical from the effects intrinsic to the rock itself.  

The matrix diffusion value is always specific to a specific chemical tracer, whereas tortuosity is a rock 

property independent of the chemical tracer used to conduct the measurement.  If matrix diffusion is 

needed for a specific chemical constituent, it can easily be calculated as the product of tortuosity for 

the rock and free water diffusion coefficient for that specific chemical.

Tortuosity can be defined as a bulk measure of the constrictivity and tortuous nature of the 

interconnected pore space through which diffusion is occurring.  These factors result in variation in 

pore channel diameters and path lengths as the diffusing solute migrates through the interconnected 

porosity.  Tortuosity has a magnitude 0 < ω < 1 when defined in the form presented here.  Smaller 

tortuosities are indicative of longer diffusional path lengths and greater resistance to diffusion through 

the medium. 

The entire dataset of tortuosities ranges over four orders of magnitude – it is important that any 

transport modeling approach captures this large variation appropriately.  The score-weighted median 

tortuosity is 0.072.  Even the 75th percentile tortuosity value is low, with 75 percent of all tortuosities 

less than 0.15.  This suggests that, even for rock with a relatively large porosity, the connectivity is 

low – the rock pores are connected in a “tortuous” manner.  This is supported by the generally low 

permeabilities, where they were measured and reported for the matrix diffusion experiments.

Permeability data were available for about half the datapoints, and these data indicated a general trend 

of increasing tortuosity with increasing permeability as well as more variation in tortuosity for the 

lower permeability cores.  There were no apparent trends of tortuosity with lithology nor tortuosity 

with depth.  

Because no clear trends in the tortuosity-porosity data by HSU were found, there is no benefit in 

grouping the data into HSU-specific subsets.  Additionally, considering the dataset as a whole allows 

for the full range and variability of the matrix diffusion dataset to be captured, which would be 

difficult in a sparser subset of the data.  
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The exponential formulation recommended for developing tortuosities for the Yucca Flat/Climax 

Mine CAU is of the form: 

 ω =  φn (10-15)

where ω = tortuosity, φ = porosity, and n = 1.33, an exponent determined by regression on the entire 

dataset of matrix diffusion coefficient experiments.  The 95 percent upper CI is n = 0.4 and the 

95 percent lower CI is n = 3.2.

This exponential correlation is recommended because it (1) honors the NTS data, (2) results in a 

realistically wide 95 percent CI, (3) has a theoretical basis, rather than a simple empirical correlation 

of the available data, and (4) shows a better quality of fit (as measured by the R2 value) compared to 

log-linear type regression or linear-linear type regression correlations. 

Matrix diffusion for any radionuclide can be simply calculated by multiplying the tortuosity 

determined from Equation (10-15) by the free water diffusion coefficient for that radionuclide: 

(10-16)

where matrix diffusion, Dm, is a property of the rock and the radionuclide; tortuosity, ω, is a property 

of the rock alone; and the free water diffusion coefficient, Do, is a property of the radionuclide alone 

(and temperature).  This relationship assumes that no processes other than diffusion are affecting the 

“apparent” diffusion coefficient (e.g., cation exchange, unaccounted sorption, complexation, anion 

exclusion, lowering of effective porosity for large molecules excluded from small pores) and all tracer 

solutions are dilute (less than 1 M).  Multi-component diffusion effects have also been excluded in 

this analysis.  

The importance of the matrix diffusion coefficient is expected to be greater for transport in fractured 

media than in alluvial media.  Therefore, it will be of more importance in transport model realizations 

where there is significant movement of contaminants in the volcanic aquifers or the LCA.  

Free water diffusion coefficients are temperature dependent, and temperature conditions logged in the 

deeper HSUs in Yucca Flat are relevant if solutes should ever reach depths substantially below the 

om DD ω=
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ground surface, on the order of 600 m bgs.  Temperatures measured from logging at the ER-6-1 Well 

Cluster and in wells ER-7-1 and ER-12-2 range up to 42, 53, and 63 °C, respectively.  Correction of 

the free water diffusion coefficients (and matrix diffusion coefficients) in the model for temperature 

effects is recommended as temperatures in the HSUs of Yucca Flat range from about 20 °C to more 

than 60 °C.  The higher temperature ranges will result in about a factor of two increase in the free 

water diffusion coefficients.  If temperature corrections are needed, they can be applied by the simple 

free water diffusion coefficient multiplier factor relationship shown in Figure 10-11 and Table 10-2.
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11.0 MATRIX SORPTION PARAMETERS

11.1 The Role of Matrix Sorption in Contaminant Transport Models

Matrix sorption is a physiochemical process at mineral-water interfaces that controls solute mobility 

and solute retardation within the pore spaces of the immobile rock matrix.  Similar physiochemical 

processes may occur on minerals coating fractures.  Fracture sorption is treated separately in 

Section 12.0 because the conceptual and numerical models differentiate between the sorption process 

within the matrix pore space and along the surface of the fracture walls.  There are multiple methods 

for mathematically representing the matrix sorption process in parameterized groundwater transport 

models.  These methods include, but are not limited to: (a) mechanistic pore-scale models that 

represent the sorption process on each immobile mineral grain with thermodynamic relationships for 

each type of reactive surface; (b) mechanistic complexation and exchange models representing 

average processes on integrated volumes represented with discretized continuum models; and 

(c) isotherms that seek to describe or abstract, on a laboratory scale, the integrated behavior of the 

smaller-scale mechanistic processes.  

The objective of this section is to compile and present the available, applicable, and representative 

data for matrix sorption that can be applied to transport modeling for the Yucca Flat/Climax Mine 

CAU.  A reactive mineral model for the Yucca Flat/Climax Mine CAU will be developed to 

parameterize matrix sorption for the transport model, planned for FY 2008.  The focus of this 

document is to compile and present the mineralogical and chemical data that will be needed for the 

mechanistic model that will be used for developing matrix sorption parameter values for the transport 

model.  

11.2 Data Compilation and Data Transfer

Data from the Yucca Flat/Climax Mine HFM area and data from other NTS CAUs, YMP, and a 

nearby location (see note) were used for this analysis due to the unavailability of comprehensive data 

from the Yucca Flat/Climax Mine HFM area for all HGUs.  (Note: The nearby location was the 
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low-level radioactive waste disposal facility in Beatty, Nevada.  There were no NTS area data for 

some radionuclides for alluvium).  All data locations used in quantitative analyses are identified in 

Appendix I and the associated dataset referenced in Section I.2.0.  Individual discussions of the 

applicability of the transferred data are provided for each HGU.  A quantitative assessment of the 

sensitivity of transport modeling to the uncertainty in this parameter cannot be provided before the 

transport model development.  The parameter description discusses the importance of this parameter.

11.3 Radionuclides of Potential Concern

The unclassified radiologic inventory for the Yucca Flat/Climax Mine CAU is reported by Bowen 

et al. (2001) and summarized in Section 6.1.  A total of 43 source-term radionuclides were included in 

the list prepared by Bowen et al. (2001).  Available data for matrix sorption for these radionuclides 

are presented in this section.  Laboratory sorption data are available for representative alluvium 

(Cs, Sr, Am, Eu, Sm, Np, U, Pu, Ni, Tc, and I), for volcanic rocks (Cs, Sr, Am, Np, U, and Pu), and 

for carbonate rocks (Cs, Sr, Eu, Pu, Am, U, Np).  The matrix sorption parameter values can also be 

estimated based on data collected for other materials, elemental properties of the radionuclides, or 

mechanistic simulation estimates, and available data/estimates are also included.  

11.4 The Kd Parameter

A commonly used isotherm is the linear distribution coefficient, Kd.  In fact, most isotherms at low 

solute concentrations, or over a narrow range of concentrations, simplify to a linear model.  Modeling 

solute transport using Kd is attractive due to the simplicity with which models are implemented and 

because the models represent an average behavior, thus decreasing the number of molecular-scale 

processes that need to be quantified and explicitly accounted for in transport models.  For the 

purposes of this document, it is assumed that the Kd values will be used to parameterize 

radionuclide-rock interactions for use in the CAU transport model. 

 The Kd value is defined as: 

(11-1)

This approach assumes that the sorbent (radionuclide) has a uniform affinity for the rock surface that 

is independent of the mass of sorbent already adsorbed.  Put simply, this means that there are many 

Kd
Moles of solute per gram of solid phase
Moles of solute per milliliter of solution
-----------------------------------------------------------------------------------------------=
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more places for sorption to occur than radionuclides sorbing.  Another assumption inherent in the use 

of this parameter is instantaneous equilibrium between the aqueous and sorbed phase.  Although 

laboratory measurements rarely guarantee that experiments have reached equilibrium conditions, 

measurement of sorption and desorption frequently confirm that little error has been introduced by 

assuming these measurements are in equilibrium.  The use of Kd values in the CAU-scale model 

requires the assumption of local equilibrium conditions because contact times between radionuclides 

and rocks may not be the same for the laboratory experiments as the rate of groundwater flow through 

the reactive rocks in the CAU model.

Grid cells in the Yucca Flat CAU transport model may be large relative to sub-block heterogeneities 

(non-uniform mineral distributions, fluctuations in aqueous chemistry) that affect water and solute 

flow and mineral-solute contact.  Thus, averaging of the specific processes that occur at each mineral 

reaction site is necessary and appropriate for CAU-scale simulations.  Although measured on a small 

sample, the Kd begins to provide such averaging.  Additionally, modeling transport of sorbing solutes 

at the CAU scale presents a computational challenge when mechanistic-transport models are fully 

integrated.  Distribution coefficients, however, are easy to include in large-scale transport models.

The Kd parameter may be developed either by direct measurement on aquifer material samples or 

computed by upscaling mechanistic processes.  Both approaches are discussed in the following 

sections.

11.5 Direct Measurement of Kd

Laboratory sorption experiments measure Kd values directly.  The experiments are generally designed 

with knowledge of the mechanistic processes that affect the Kd, but with the goal of simply measuring 

it given a set of environmental controls.  Measurements of Kd values for several radionuclides on 

multiple types of minerals and rock material have been collected in support of UGTA and YMP 

transport studies.  Such studies generally provide information on the rock type (rock mineralogy) and 

the conditions under which the experiment was performed.  Such conditions include:

• Aqueous ion concentrations
• Temperature
• pH
• Eh (and/or other indicators of oxidation/reduction state such as oxygen fugacity)
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• Solute concentration
• Rock characteristics
• Experimental atmospheric conditions (e.g., air, nitrogen gas [N2], or CO2 to control pH)

Thus, each measured Kd corresponds to a specific set of environmental conditions, albeit generally 

designed to represent in situ conditions.  

Although the experiments used to obtain Kd parameters are relatively fast and simple, there are 

important limitations associated with the use of such parameters in transport models.  Whereas 

transport processes are dynamic, the measurements from which the parameter values are obtained 

from tests with static conditions.  Likewise, the contact time between the radionuclides and aquifer 

materials is considerably different between the laboratory experiments and the CAU-scale model.  

The representativeness of Kd batch experiments to in situ rocks may be hard to assess because these 

experiments are usually performed on freshly created surfaces from crushed or sieved rocks.  

Experimentally determined Kd values that are very small or very large contain the greatest 

uncertainties, even for the static conditions in which they are measured, due to the subtraction of two 

large numbers necessary for the calculation.  The Kd simply represents the total mass of the element 

of interest and thus does not describe the behavior of any particular species.  However, if more 

detailed mechanistic understanding is desired, it is possible to derive the speciation given the 

environmental conditions of the experiment.  Finally, although the Kd parameter represents an 

integrated response of a sample brought in contact with the aqueous solute of interest, the sample size 

is still far smaller than the rock volume in the CAU-scale model that will be parameterized for flow 

and transport simulations.

The following sections provide a summary of the laboratory experiments used to measure Kd values 

for alluvium and volcanic rocks representative of those of the Yucca Flat/Climax Mine CAU.  

Because all of the data presented are for samples from Yucca Flat, these data will be labeled as Yucca 

Flat data. 

11.5.1 Alluvium

Primary sources of alluvium sorption data included Kd values measured from Yucca Flat-specific 

experiments reported in Wolfsberg et al. (1983) and Zavarin et al. (2002).  In addition, laboratory 

values for Frenchman Flat alluvial experiments are reported in Wolfsberg (1978a) and a 
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memorandum written by Wolfsberg (1978b); however, mineralogy of the rock samples and water 

chemistries used during these experiments were not included in the documentation, making these 

values difficult to interpret.  Additional data were available from the Beatty low-level radioactive 

waste disposal facility (Wolfsberg et al., 1983), and from the YMP as described in Triay et al. (1997) 

and DOE/ORD (2001 and 2004) and stored in the YMP Technical Data Management System 

(TDMS) (YMP, 2004).  The whole rock mineralogy and radionuclides tested for each series of 

samples are listed in Table 11-1.  Note that the listed value for percent mass of smectite for location 

U-1a is significantly higher than for typical Yucca Flat alluvium.  A summary of the Kd values for 

each of the locations described above is presented using box and whisker plots (Figure 11-1).  Details 

for the specific radionuclides shown in this figure are provided in the following sections.  Box and 

whisker plots provide an integrated presentation of parametric data including the 25th and 75th 

percentiles (upper and lower limits of the box), the median (interior crossbar of the box), the data 

range (upper and lower limits shown by the whiskers), and outliers (data points beyond the data 

range).       

Table 11-1
Whole Rock Mineralogy from Alluvium Kd Experiments

Sample 
Location Sample Site Mass % 

Smectite
Mass % 

Mica
Mass % 
Zeolite

Mass % 
Hematite

Mass % 
Calcite

Radionuclides 
Tested

U-1a Yucca Flat 30 3.4 1.3 NA 18.2
137Cs, 152Eu, Sm, 

85Sr, U,  237Np

Trench 22

Beatty 1 low-level 
radioactive waste 

disposal facility, Nye 
County

3 1 3 NA NA
241Am, 137Cs, 131I, 63Ni, 
239Pu, 85Sr, 95mTc, 235U

Trench 22

Beatty 5 low-level 
radioactive waste 

disposal facility, Nye 
County

5.5 1 3 NA NA
241Am, 137Cs, 131I, 63Ni, 
239Pu, 85Sr, 95mTc, 235U

Trench 22

Beatty 2 low-level 
radioactive waste 
disposal facility, 

Nye County

3 1 3 NA NA
241Am, 137Cs, 131I, 63Ni, 
239Pu, 85Sr, 95mTc, 235U

U-3hr Yucca Flat 0 2.5 3 NA NA
241Am, 137Cs, 131I, 63Ni, 
239Pu, 85Sr, 95mTc, 235U

Ue-5n Frenchman Flat 11.6 3.3 19.7 0.3 2.6
137Cs, Sm, 85Sr, 

U,  237Np 

Source: Modified from SNJV, 2005b 

NA - Not available
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Figure 11-1
Laboratory Measured Distribution Coefficients for Alluvium Samples
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Zavarin (2002) also conducted four flowthrough experiments using Frenchman Flat alluvium, and 

subsequently determined Kd values from the experimental results for two of the experiments.  These 

Kd values are summarized in Table 11-2.   

11.5.1.1 Americium and Samarium

Americium batch-sorption experiments were conducted on alluvium samples collected from U-3hr at 

Yucca Flat and from Trench 22 at the Beatty low-level radioactive waste disposal facility.  The whole 

rock samples all had mineralogy within the range of observed values for Yucca Flat alluvium 

(see Appendix D); however, sieved fractions of the samples frequently altered the distribution of the 

sample mineralogy. 

Table 11-2
Log Kds (mL/g) Calculated from Flowthrough Experiments Reported in Zavarin, 2002

U-1a Flowthrough Experiments

Element Breakthrough 
Front

Breakthrough 
Back

Breakthrough 
Peak SIMS? Effluent? Underestimate? Average

U 0.4 0.2 X 0.3
Sr 1.9 2 X 1.9
Cs 2.4 2.7 2.4 X 2.5
Sm 2.8 3.3 X X 3.1
Np 1.1 0.7 1.1 X 1.0

UE-5n Flowthrough Experiments

Element Breakthrough 
Front

Breakthrough 
Back

Breakthrough 
Peak SIMS? Effluent? Underestimate? Average

U -0.3 -0.1 X -0.2
Sr a 2.7 3.2 X X 3.0
Cs 2.5 3.2 X X 2.9
Sm 2.5 3.2 X X 2.9
Np 0.7 0.3 X 0.5

a Sr data for UE-5n alluvium flowthrough is a best estimate of transport.  However, unorthodox data manipulation was necessary to 
estimate Kd.  Use result with caution.

Definitions:
Breakthrough Front - Based on 0.5*C/Cmax at the breakthrough front
Breakthrough Back - Based on 0.5*C/Cmax at the breakthrough back
Breakthrough Peak  - Based on peak breakthrough
SIMS? - Kds based on data from secondary ion mass spectrometry of sliced column after flowthrough experiment was completed 
Effluent? - Kds based on analysis of effluent
Underestimate? - Kds likely to be somewhat underestimated due to resolution issues with the SIMS data
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Samarium batch-sorption experiments were conducted by Zavarin et al. (2002) on alluvium samples 

collected from an exposed section of the C alcove of the U-1a.102 drift on Yucca Flat.  Sorption 

experiments were conducted with pH values ranging from 7.41 to 9.42.  A plot of Sm sorption 

coefficients as a function of pH reveals that Sm sorption is dependent on pH and has a maximum Kd 

at pH 8.4 under these experimental conditions (Figure 11-2).  These changes in Sm sorption are likely 

to be the result of Sm-CO3
2- complex formation, which tends to increase as pH increases.  For the 

Yucca Flat basin, changes in pH within the alluvial aquifer may lead to considerable differences in 

Sm sorption, thus increasing the uncertainty in Sm transport predictions.  The pH of groundwater of 

the Yucca Flat alluvial aquifer has been measured at values ranging from 7.4 to 8.3 (see Appendix E), 

values within the range of those examined in the Sm sorption experiments.   

Given the similar chemistry of Sm and Am, better agreement between the Kd values for these two 

radionuclides was expected.  The Kd values ranged from 1.39 x 104 to 1.04 x 105 milliliters per gram 

(mL/g) for Sm compared to 3.20 x 103 to 1.30 x 104 mL/g for Am.  Although the Sm sorption 

experiments included a greater variety of ion concentrations for the water chemistry used in the 

Figure 11-2
Samarium Kd as a Function of pH for Alluvium Samples Collected at Yucca Flat
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experiments, there was considerably more variability in rock mineralogy of the samples in the Am 

experiments.  This may indicate that Am and Sm sorption are more sensitive to rock chemistry than 

water chemistry (see Appendix I). 

11.5.1.2 Cesium and Strontium

Fifty-six measurements of Cs sorption and 74 measurements of Sr sorption have been completed for 

alluvium collected from multiple Yucca Flat wells (U-1a, U-3hr, and U-3bu); the Frenchman Flat 

well RNM-1; and the Beatty low-level radioactive waste disposal facility.  The Kd values for Cs 

ranged from 1,460 to 9,274 mL/g and from 1 to 781 mL/g for Sr for the alluvial materials represented 

in this dataset. 

Neither Cs nor Sr changes oxidation states under the solution compositions expected for Yucca Flat 

groundwaters.  Cesium and Sr should occur as cations with single and double positive charges, 

respectively.  Behavior in the system will be predominantly ion exchange reactions with little 

dependence on pH but a large dependence on the concentration of competing ions in solution 

(e.g., Ca).  Most ion exchange reactions will occur with clays and zeolites.  Ion exchange reactions 

for Cs are dominated by illite and mica, while these reactions are dominated by zeolite and smectite 

for Sr.    

11.5.1.3 Neptunium

Distribution coefficients for Np have been measured in batch experiments from core samples 

obtained from three wells drilled into the alluvium near Yucca Mountain (NC-EWDP-10SA, -22SA, 

and -19IM1A) (DOE/ORD, 2004).  Samples were collected from below the water table at 5-ft 

intervals at two depths in wells NC-EWDP-19IM1A and -10SA, and at six depths in 

well NC-EWDP-22SA (DOE/ORD, 2004).  For each core sample, batch experiments were run on 

three particle sizes:  500 to 2,000 μm, 75 to 500 μm, and less than 75 μm.  The greatest Kd values 

were observed on the smallest particle size fraction, most likely due to one or more of the following 

reasons:  mineral sorting effects (however, no sample mineralogy data were reported with these Kd 

values), increased surface areas of the particles, and increased cation-exchange capacity.  The pH of 

the experiments (8.10 to 8.68) overlapped with the pH range observed within the groundwaters of the 

alluvium in Yucca Flat (7.4 to 8.3).  The Kd values for Np ranged from 1.8 to 22.0 mL/g.
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Under oxidizing conditions, Np tends to exhibit limited sorption on alluvium.  Under reducing 

conditions, Np is expected to exhibit greater sorption and lower solubility.  Yucca Flat groundwater in 

the alluvial aquifer is thought to be oxidizing (see Section 5.0); however, if pockets of reducing 

conditions are present, these may result in greater sorption and less transport in the subsurface.

11.5.1.4 Uranium

Forty-seven measurements of U sorption have been completed for alluvium collected from a Yucca 

Flat well (U-3hr); a Frenchman Flat well (RNM-1); the Beatty low-level radioactive waste disposal 

facility; and three wells near Yucca Mountain (NC-EWDP-10SA, -22SA, and -19IM1A).  The 

Kd values for U ranged from 0.9 to 22.7 mL/g.  Wolfsberg (1978a) reported Kd values of 

approximately 7 mL/g for alluvium samples collected at RNM-1 in the presence of RNM-2s 

groundwater.  When Wolfsberg (1978a) measured sorption of U on Frenchman Flat alluvium in the 

presence of deionized water, the Kd was approximately 60 mL/g.  Clearly, the presence of ions in the 

RNM-2s groundwater resulted in a net reduction in the total sorption of U.  

Based on the expected redox potential of Yucca Flat alluvial groundwaters, U should be in the 

+6 oxidation state.  In this oxidation state, U will occur as a variety of carbonate (CO3
2- and HCO3

-) 

complexes and, to a lesser extent, PO4
3-, F-, and SO4

2- complexes because these anions have a 

relatively low abundance in Yucca Flat groundwaters (Triay et al., 1997).  The complexation of U 

with carbonate species is dependent on the pH of the solution, where decreasing pH results in less 

complex formation, thus increasing U sorption (Triay et al., 1997; DOE/ORD, 2001).

Although U sorption is expected to be pH dependent, this was not apparent in the dataset 

(see Appendix I).  It is likely that two competing processes are occurring: (1) pH changes resulting in 

changes in the net charge on the mineral surfaces, and (2) carbonate complex formation.  Increasing 

pH will tend to increase sorption and carbonate complexation, while decreasing pH will tend to 

decrease sorption and carbonate complexation.  Depending on the solution conditions (i.e., the 

balance between hydrogen ion availability and aqueous carbonate species), an increase or decrease in 

sorption may occur (however, at a very low pH, sorption will always decrease). 
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11.5.1.5 Europium

Thirty-four measurements of Eu sorption have been completed for alluvium collected from Yucca 

Flat wells U-1a (Zavarin et al., 2002) and U3bv (Wolfsberg, 1978a), and Frenchman Flat well RNM-1 

(Wolfsberg, 1978a).  Wolfsberg (1978b) reports a recommended Kd for alluvium of greater than 

5,000 mL/g.  Zavarin et al. (2002) report that the sorption of Eu on U-1a alluvium samples was 

dominated by sorption to calcite.  As Zavarin et al. (2002) varied the pH of the solution, Eu sorption 

was reduced at low pH due to competition with Ca for calcite surfaces and at high pH due to 

Eu-carbonate complex formation in solution.  

Europium is a member of the lanthanide series of transition metals and is expected to behave 

similarly to Sm by occurring in the +3 oxidation state in Yucca Flat groundwaters.  The +2 oxidation 

state for Eu is more stable than the +2 oxidation state for Sm; however, the +2 oxidation state is 

limited to very reducing conditions at near neutral pH values (Krupka and Serne, 2002).  Europium 

III tends to form strong aqueous complexes with dissolved hydroxide, CO3
2-, HCO3

-, PO4
3-, F-, and 

SO4
2-, and weak complexes with Cl-, and NO3

- (Krupka and Serne, 2002).  The majority of these 

ligands occur in low concentrations in the Yucca Flat alluvial aquifer.

Given the similar chemistry of Eu and Sm, better agreement between the Kd values are expected for 

these two radionuclides.  The Kd values for Sm ranged from 1.39 x 104 to 1.04 x 105 mL/g compared 

to 2.52 x 103 to 9.59 x 104 mL/g for Eu.  The Sm sorption experiments incorporated a greater variety 

of water and rock chemistries in the laboratory experiments, thus providing a greater range in 

measured Kd values.  The sorption experiments for Eu, although more limited in number and scope, 

provide a more conservative estimate of transport. 

11.5.1.6 Plutonium

In near neutral environments like Yucca Flat groundwater, the solution behavior of Pu is complicated 

(Triay et al., 1997).  Plutonium may occur in many oxidation states in solution, and may also undergo 

complex formation with a variety of ligands.  Plutonium sorption onto alluvium samples from U-3hr 

at Yucca Flat (Wolfsberg et al., 1983) and from Trench 22 at the Beatty low-level radioactive waste 

disposal facility were measured in the presence of an ambient air atmosphere and water collected 

from the alluvial aquifer at Frenchman Flat (U-5b) and the Waste Disposal Site, respectively.  
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Additional data such as the oxidation state of the Pu in the aqueous solution and the initial Pu 

concentration were not reported.  The Pu Kd values ranged from 230 to 21,000 (Figure 11-1).   

11.5.1.7 Nickel

Nickel batch-sorption experiments were conducted using 4 samples from Yucca Flat (U-3hr) and 

20 samples collected from Trench 22 at the Beatty low-level radioactive waste disposal facility 

(Wolfsberg et al., 1983).  The whole rock samples all had mineralogy within the range of observed 

values for Yucca Flat alluvium; however, sieved fractions of the samples frequently altered the 

distribution of the sample mineralogy.  The Ni Kd values ranged from 672 to 4,960 mL/g.  

Wolfsberg et al. (1983) reports that Ni sorption occurs mostly on clays and zeolites (such as kaolinite, 

smectite, or clinoptilolite), which are minerals present in Yucca Flat alluvium in significant 

abundances (see Appendix D).  

11.5.1.8 Iodine and Technetium

Wolfsberg et al. (1983) measured both I and Tc sorption onto alluvium collected from U-3hr at Yucca 

Flat and from Trench 22 at the Beatty low-level radioactive waste disposal facility.  The reported 

Kd values for these experiments ranged from -9.1 to 24.5 mL/g for I, and from -2.5 to 12.0 mL/g for 

Tc.  The negative values of Kd indicate the high variability associated with the measurements when 

low to zero sorption is observed.  

For both of these radionuclides, Tompson et al. (2004) approximate sorption of zero, suggesting that 

they are modeled as conservative tracers.  Given the very small measured Kd values, and the fact that 

neither of these radionuclides result in ingrowth of radioactive daughter products (Tompson 

et al., 2003), treating these radionuclides as non-reactive tracers is a reasonable and conservative 

simplification that should be considered during CAU transport modeling.

11.5.2 Volcanic Rocks

Zavarin et al. (2007) summarize two studies that investigated radionuclide transport in fractures of the 

TCU performed in support of the UGTA Project (Zavarin et al., 2005; Ware et al., 2005).  The 

experiments included radionuclide transport through synthetic parallel-plate fractured tuff samples 

(Zavarin et al., 2007).  These simplified fracture transport experiments isolated matrix diffusion and 
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sorption effects from all other fracture transport processes (e.g., fracture lining mineral sorption, 

heterogeneous flow).  Additional fracture transport complexity was added by performing 

iron-oxide-coated parallel-plate TCU flowthrough experiments (effect of fracture lining minerals.)  

Finally, naturally fractured tuff and carbonate cores were examined.  The models RELAP or 

RETRAN (a transient version of RELAP) were used to simulate the breakthroughs, and estimate 

retardation factors both in fractures (see Section 12.0) and for the matrix material.  Zavarin 

et al. (2007) report the retardation factor, R, which is related to Kd as follows:

(11-2)

where bulk density for tuff [ρb = 2.13*(1-φ)] is calculated using the rock porosity (φ) and mineral 

densities of zeolite.  Porosity values are reported in Zavarin et al. (2007) and summarized in 

Section 7.0 of this report.

A limited number of studies have also been performed at DRI in support of the UGTA Project, 

primarily involving sorption of Pb, Sr, and Cs on a select number of rocks (tuff and devitrified lava) 

from Pahute Mesa and Rainier Mesa, and Frenchman Flat boreholes (Papelis and Um, 2003a and b; 

Decker et al., 2003).  Based on sorption data with different solid and metal concentrations, linear 

sorption isotherms were derived for sorption at pH 8.3, representing a common NTS groundwater pH.  

Batch sorption experiments were conducted on crushed rock, and diffusion/sorption experiments 

were conducted on intact core. 

11.5.2.1 YMP Sorption Data

The YMP has studied sorption of radionuclides (Pu, Np, U, Sr, and Cs) on minerals and volcanic 

rocks for more than two decades.  The data are discussed by Triay et al. (1997) and DOE/ORD (2001 

and 2004) and stored in the YMP TDMS (YMP, 2004).  All of these reports provide reviews of the 

mechanistic processes governing sorption of radionuclides and describe the experiments that were 

conducted by YMP.  As more data become available, one finds an evolving understanding and 

interpretation of sorption of radionuclides on minerals and volcanic rocks.  Thus, DOE/ORD (2004) 

provides the most current data and interpretations for the YMP.  However, Triay et al. (1997) provide 

greater detail for some experiments and background material not found in DOE/ORD (2004).  As a 

result, the two reports provide complementary sets of information and analyses.  Measurements of Kd, 

R 1
Kdρb

φ
------------+=
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maintained in the YMP TDMS (YMP, 2004), were collected under a stringent QA environment and 

are fully traceable with laboratory notebooks and data-tracking numbers.  The analyses presented in 

this report incorporate data that meet all YMP QA requirements as of summer 2004.   

11.5.2.1.1 YMP Sorption Data History

YMP Laboratory Sorption Data Obtained Before 1993.  In 1993, the YMP conducted an expert 

elicitation regarding Kd values and distributions for various radionuclides and rock types 

(Wilson et al., 1994).  The distributions developed in the elicitation are based substantially on the 

summary report by Thomas (1987), which summarizes sorption experiment results performed by the 

YMP before the QA procedures that were required for the analysis and model report by DOE/ORD 

(2004).  

YMP Laboratory Sorption Data Obtained After 1993.  With new data collected after 1993, 

Triay et al. (1997) developed improved Kd distributions for multiple radionuclides on devitrified, 

vitric, zeolitic, and iron-oxide rock types (iron oxides are important to YMP for assessing sorption in 

the vicinity of waste packages).  These distributions were modified again by DOE/ORD (2004); 

during this modification, distributions of Kd values for vitric tuffs were eliminated.  The data cited in 

DOE/ORD (2004) are available in the YMP TDMS (YMP, 2004), with appropriate data-tracking 

numbers and QA pedigrees linking to raw data and laboratory notebooks.  These data provide most of 

the input to the distributions developed in the next sections.

11.5.2.1.2 YMP Sorption Data Transfer

Generally, volcanic rocks are classified by mineralogy and texture.  The HSUs developed for CAU 

geologic models emphasize the stratigraphic and hydrologic significance of a unit as opposed to the 

mineralogy.  To account for this, the Yucca Flat/Climax Mine CAU transport model will identify 

volcanic rocks based on mineralogy as defined by reactive mineral class (RMC) and reactive mineral 

units (RMUs).  Class definitions for the volcanic rocks were selected to be consistent with the class 

definitions used for the YMP so that YMP data could be readily incorporated into the analysis for 

Yucca Flat, where appropriate.  These classes are defined in Table 11-3. 

Nearly all of the YMP Kd experiments involving rock samples taken from the field were conducted 

with water from, or similar in composition to, groundwaters of J-13 or UE-25 p#1.  Well J-13 samples 
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the Topopah Spring aquifer, a volcanic hydrologic unit also present in parts of Yucca Flat.  Well 

UE-25 p#1 samples the carbonate aquifer below the volcanic tuffs at Yucca Mountain.  The 

groundwater compositions of these two wells are listed in Table 11-4.  The mean groundwater 

compositions for three wells in Yucca Flat are also presented in Table 11-4.  These groundwater 

samples were selected as the most similar to UE-25 p#1 (UE-10 ITS #3), and J-13 (U-2bs and TW-B) 

groundwaters (see Appendix E).  Waters in the volcanic-rock aquifers and confining units of the 

Yucca Flat testing area tend to more calcium poor than J-13 well water.  Well J-13 water is most 

similar to Yucca Flat water samples from TW-B (LTCU), but is more enriched in Ca and depleted in 

Na (Table 11-4).  The pH of J-13 and UE-25 p#1 groundwaters is lower than those found in the 

majority of the Yucca Flat wells.  Many YMP sorption experiments using water with J-13 and 

UE-25 p#1 compositions were conducted with atmospheric conditions (generally labeled as “air” or 

“bench” conditions) to obtain higher pH values between 8.5 and 9 (closer to the pH values observed 

in Yucca Flat groundwater samples).  Some YMP sorption experiments were also conducted with 

CO2 overpressure inside of glove boxes to obtain pH values of about 7 or using an N2 atmosphere to 

stabilize pH during sorption experiments. 

In the next several subsections, measured Kd data collected by LLNL, DRI, and the YMP are 

presented.  For each of the radionuclides, sorption measurements were conducted on multiple 

pure-phase minerals as well as on tuffs classified as vitric, devitrified, and zeolitic.  Whereas the 

pure-phase mineral studies could serve to inform future mechanistic modeling studies, in this 

analysis, only the tuffs are considered because they can be correlated with Yucca Flat HSUs.  

Experiments on tuff samples were conducted with J-13 water and often with the higher ionic-strength 

UE-25 p#1 water (Table 11-4).  Additionally, pH was often controlled by either conducting 

Table 11-3
Class Definition for Volcanic Rocks Used by the Yucca Mountain Project

Class Description
Glass Clay Zeolite

Abundance (%)

Vitric Tuff High percentage of original 
glass in samples >40 <10 <10

Devitrified Tuff Composed primarily of quartz 
and feldspar <40 <10 <10

Zeolitic Tuff Dominated by alteration 
assemblages of zeolites <10 <10 >20



Section 11.0

Phase I Contaminant Transport Parameters for CAU 97: Yucca Flat/Climax Mine, Nye County, Nevada

11-16

experiments with an air environment to achieve pH between 8 and 9, or with CO2 overpressure to 

force the pH closer to 7.  Finally, most experiments were conducted at 20 to 25 oC, but many were 

conducted at temperatures up to 90 oC.  These different environmental conditions may or may not 

affect the Kd data.  Therefore, in the discussion that follow, the roles of the different environmental 

conditions are highlighted when necessary. 

11.5.2.2 Americium

Americium sorption data for vitric tuffs, devitrified tuffs, and zeolitic tuffs in the presence of J-13 

water are reported in the YMP TDMS (YMP, 2004).  Triay et al. (1997) report results from Am 

sorption in the presence of UE-25 p#1 water.  These results suggest that all rocks in the presence of 

water saturated with calcite (like UE-25 p#1 water) showed very large distribution coefficients.  Triay 

et al. (1997) conclude that Am coprecipitated with carbonates or formed solid solutions on the 

surfaces of existing carbonates.  Given that UE-25 p#1 water is not similar to the water present in the 

Table 11-4
Chemical Composition (mg/L) of Groundwater in J-13, UE-25 p#1, 

and Three Locations in Yucca Flat

Constituent J-13 a, b UE-25 p#1 a, b UE-10 ITS #3 c, d U-2bs c, d TW-B c, e

Na 45 171 209 79.0 74.9

K 5.3 13.4 21.5 6.0 3.3

Mg 1.8 31.9 0.4 0.5 0.5

Ca 11.5 87.8 7.8 3.1 5.5

SiO2 30 30 62 53 18.6

F 2.1 3.5 N/A 1.3 N/A

Cl 6.4 37 10.2 7.5 17

SO4
2- 18.1 129 42.8 24.5 23

HCO3
- 143 698 543 198 164

pH 6.9 6.7 8.3 7.1 8.1

Source: Modified from SNJV, 2005b

a YMP, 1997 (DTN: LAIT831361AQ95.003 [SEP Table S98491.002]) 
b Ogard and Kerrisk,1984 (in Meijer, 1992)
c Concentrations are the mean concentration presented in Appendix E
d Example LTCU water chemistry
e Example TSA water chemistry

N/A - Not applicable
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volcanic aquifers of Yucca Flat due to the high Ca content of this water, sorption experiments in this 

water would likely overpredict the sorption of Am onto Yucca Flat rocks.  Therefore, only Am 

experiments conducted with J-13 water are considered here.

Vitric Tuff.  Eight Am sorption experiments onto vitric-tuff rocks were reported in the YMP TDMS 

(YMP, 2004).  All of these rocks were crushed and sieved before analysis, and the 75- to 500-μm 

sieve fraction was used for the experiments.  The Am Kd values ranged from 860 to 2,050 mL/g 

(Figure 11-3).   

Devitrified Tuff.    Thirty-five Am sorption experiments onto devitrified-tuff rocks were reported in 

the YMP TDMS (YMP, 2004).  All of these rocks were crushed and sieved before analysis, and four 

different sieve fractions were used for the experiments.  Most experiments were conducted in the 

presence of an ambient air atmosphere; however, several experiments were conducted in an N2 

atmosphere with less than 0.2 parts per million (ppm) oxygen gas (O2) and less than 20 ppm CO2 to 

increase the pH from approximately 8.5 to 9.5 during the experiments.  The measured Kd values 

Figure 11-3
Laboratory Measured Distribution Coefficients for Vitric-Tuff Samples
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showed no trend with respect to pH.  The Am Kd values ranged from 79 to 5,300 mL/g; one outlier 

(12,000 mL/g) is identified in the box and whisker plot (Figure 11-4).   

Zeolitic Tuff.  Twenty-five Am sorption experiments onto zeolitic tuff rocks were reported in the 

YMP TDMS (YMP, 2004).  All of these rocks were crushed and sieved before analysis, and the 75- to 

500-μm and 106- to 250-μm sieve fractions were used for these experiments.  The Am Kd values 

ranged from 470 to 15,000 mL/g; two outliers (31,000 and 33,000 mL/g) are identified in the box and 

whisker plot (Figure 11-5).  

11.5.2.3 Cesium and Strontium

These two elements are grouped together, as in Triay et al. (1997) and DOE/ORD (2001 and 2004), 

because they show fairly simple solution behavior in typical groundwaters.  Just as they are not 

subject to oxidation-state changes in the groundwater compositions of Yucca Mountain, one can 

expect the same simplicity in Yucca Flat groundwaters.  Their sorption is primarily controlled by 

ion-exchange reactions, where the selectivity of most clays and zeolites for these elements should be 

Figure 11-4
Laboratory Measured Distribution Coefficients for Devitrified-Tuff Samples
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larger than for major cations in solution.  Distribution coefficients should be lower in higher 

ionic-strength water (e.g., UE-25 p#1) and should decrease with increasing solution concentrations.  

Sorption of these two elements has been extensively studied and reviewed by Daniels et al. (1983), 

Thomas (1987), and Meijer (1990), and summarized by Triay et al. (1997) and DOE/ORD (2001 

and 2004).  A limited number of DRI studies were conducted by Papelis and Um (2003a and 2003b) 

and Decker et al. (2003) to measure Kd values for Cs, and Sr on tuff and devitrified lava samples from 

Pahute Mesa, Rainier Mesa, and Frenchman Flat.   

Cesium

Vitric Tuff. Sorption experiments using vitric-tuff samples and predominantly J-13 water were 

reported in the YMP TDMS (YMP, 2004).  All rock samples were crushed and sieved before analysis, 

and the 75- to 500-μm and less-than-500-μm sieve fractions were used for the experiments.  The Cs 

Kd values ranged from 50 to 1,061 mL/g (Figure 11-3). 

Figure 11-5
Laboratory Measured Distribution Coefficients for Zeolitic-Tuff Samples
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Devitrified Tuff.  Among all of the data sources, a total of 159 experiments measuring Cs sorption on 

devitrified tuff rocks are reported.  All the rock samples were crushed and sieved before analysis, and 

several different sieve fractions were used for the experiments (see Appendix I).  Most experiments 

were conducted in the presence of an ambient air atmosphere; however, several experiments were 

conducted in an N2 atmosphere with less than 0.2 ppm O2 and less than 20 ppm CO2 to increase the 

pH during the experiments.  The measured Kd values showed no trend with respect to pH.  The Cs Kd 

values ranged from 10 to 2,000 mL/g; several outliers (ranging from 2,400 to 3,800 mL/g) are 

identified in the box and whisker plot (Figure 11-4).  The Kd values were measured with essentially 

the same initial concentrations for all experiments.  If field concentrations are greater than those used 

in the experiments, then Cs Kd values will likely be lower. 

Zeolitic Tuff.    Eighty-six Cs sorption experiments with zeolitic tuff rocks were reported in the YMP 

TDMS (YMP, 2004).  All of these rocks were crushed and sieved before analysis.  Particles sized 

from 75 to 500 μm were used for these experiments, but not necessarily all of the particles fell within 

this range.  The Cs Kd values ranged from 2,700 to 37,000 mL/g; several outliers (ranging from 

42,000 to 72,000 mL/g) are identified in the box and whisker plot (Figure 11-5).  Retardation factors 

were reported for Cs (TCU study) as ranging from greater than or equal to 1,000, to greater than or 

equal to 35,000; no recovery of Cs was observed in the experiments (Zavarin et al., 2005).  This 

corresponds to Kd values ranging from greater than or equal to 240 mL/g, to greater than or equal to 

7,300 mL/g. 

Strontium

Vitric Tuff.  Distribution coefficient experiments using vitric-tuff samples and predominantly J-13 

water were reported in the YMP TDMS (YMP, 2004).  All of these rocks were crushed and sieved 

before analysis, and the 75- to 500-μm and less-than-500-μm sieve fractions were used for the 

experiments.  The Sr Kd values ranged from 8 to 220 mL/g (Figure 11-3).   

Devitrified Tuff.  Experiments measuring the sorption of Sr onto devitrified tuffs are reported in the 

YMP TDMS (YMP, 2004) and by Papelis and Um (2003 a and b).  All of these rocks were crushed 

and sieved before analysis, and several different sieve fractions were used for the experiments 

(see Appendix I).  Most experiments were conducted in the presence of an ambient air atmosphere; 

however, several experiments were conducted in an N2 atmosphere with less than 0.2 ppm O2 and less 
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than 20 ppm CO2 to increase the pH.  Papelis and Um (2003a and b) leached the natural Sr out of the 

rock samples before their analyses; this procedure is likely to overestimate the sorption of Sr onto the 

devitrified rocks in situ at Yucca Flat.  The Sr Kd values ranged from 9.2 to 237 mL/g; several outliers 

(ranging from 270 to 1,200 mL/g) are identified in the box and whisker plot (Figure 11-4).  

Zeolitic Tuff.    Eighty-three Sr sorption experiments onto zeolitic-tuff rocks were reported in the 

YMP TDMS (YMP, 2004).  All of these rocks were crushed and sieved before analysis.  Particles 

sized from 75 to 500 μm were used for these experiments, but not necessarily all of the particles fell 

within this range.  The Sr Kd values ranged from 1,200 to 92,000 mL/g; several outliers (ranging from 

142,000 to 246,000 mL/g) are identified in the box and whisker plot (Figure 11-5).  Retardation 

factors were reported for Sr (TCU study) as ranging from 85 to greater than or equal to 3,400; no 

recovery of Sr was observed in some experiments (Zavarin et al., 2007).  This corresponds to Kd 

values ranging from 23 mL/g to greater than or equal to 917 mL/g.   

Several Sr sorption experiments for the YMP were conducted with temperatures ranging from 20 to 

80 °C.  Figure 11-6 shows the relationship between Sr sorption and temperature for the three volcanic 

rock types.  Although there may be an increase in Sr sorption with increasing temperature, the 

Kd values measured at higher temperatures were not outside the range of values measured at 20 °C.  

This result suggests that the variability in rock chemistry or aqueous chemistry creates as much 

uncertainty as temperature for this dataset.   

11.5.2.4 Neptunium

Neptunium has been one the most studied radionuclides by the YMP.  It is important due to its 

abundance in nuclear waste packages, its long half-life, and its relative low affinity for immobile 

minerals.  Yet, the exact mechanisms controlling Np sorption are still only partially understood.  Triay 

et al. (1997) and DOE/ORD (2001) describe in detail the history and results of Np sorption studies for 

YMP.  The sorption behavior of Np on apparently similar rock types varies between samples, 

indicating that minor primary or secondary phases such as calcite, hematite, or trace quantities of 

ferrous iron may govern the exact sorption process.  Thus, mechanistic predictions of Np adsorption 

would require detailed knowledge of the surface areas of these trace minerals in the various 

hydrologic units.
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An unexpected result of the YMP sorption studies involving Np is the relatively low Kd associated 

with zeolitic tuff.  Whereas a strong cation exchange reaction was expected, the low values indicate 

that perhaps the neptunyl cation is too large relative to the zeolite cage sizes to come into contact with 

the exchange sites. 

The complexities of Np sorption observations still present multiple challenges to decipher the precise 

governing mechanisms.  The large number of Kd observations collected by YMP provides input to the 

present process of developing distributions of the parameter.  It is expected that variability in Kd 

values represents variability in the processes controlling sorption (e.g., trace mineral quantities or 

reactive mineral surface area). 

Vitric Tuff.  Distribution coefficient experiments for Np using vitric-tuff samples in both J-13 and 

UE-25 p#1 water were reported in the YMP TDMS (YMP, 2004).  Most experiments were conducted 

Figure 11-6
Strontium Sorption as a Function of Temperature (°C) 

Measured During YMP Distribution Coefficient Experiments
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in the presence of an ambient air atmosphere; however, several experiments were conducted in an N2 

atmosphere with less than 0.2 ppm O2 and less than 20 ppm CO2 to increase the pH during the 

experiments.  Changes in pH between 7 and 9 appear to make no apparent difference in Np sorption 

to vitric tuff, nor do changes in water chemistry between J-13 and UE-25 p#1 water (see Appendix I).  

As stated previously, UE-25 p#1 water is not similar to the water composition of the volcanic-rock 

aquifers present at Yucca Flat; therefore, these data have been excluded from the dataset before the 

development of a Kd distribution.  A total of 400 distribution coefficients have been measured using 

J-13 water and vitric-tuff rocks.  The Np Kd values ranged from 0.1 to 2.5 mL/g; many outliers 

(ranging from 2.7 to 526 mL/g) are identified in the box and whisker plot (Figure 11-3). 

Devitrified Tuff.    As with vitric tuff, Np sorption to devitrified tuff is generally characterized with 

low Kd values.  For the J-13 water experiments, pH and temperature do not appear to exert specific 

influence on the Kd values.  The Np Kd values ranged from 0.1 to 4.3 mL/g; many outliers (ranging 

from 4.6 to 2,353 mL/g) are identified in the box and whisker plot (Figure 11-4).  

Zeolitic Tuff.  There were 578 Np sorption experiments onto zeolitic-tuff rocks reported in the YMP 

TDMS (YMP, 2004).  Most experiments were conducted in the presence of an ambient air 

atmosphere; however, several experiments were conducted in an N2 atmosphere with less than 

0.2 ppm O2 and less than 20 ppm CO2 to increase the pH during the experiments.  Changes in pH 

between 7 and 9 appear to make no apparent difference in Np sorption to zeolitic tuff.  However, the 

presence of high Ca content in UE-25 p#1 causes a decrease in the total sorption to the zeolitic rocks 

(see Appendix I).  As stated previously, UE-25 p#1 water is not similar to the water composition of 

the volcanic-rock aquifers present at Yucca Flat; therefore, these data have been excluded from the 

dataset.  The Np Kd values ranged from 0.1 to 7.1 mL/g; several outliers (ranging from 7.8 to 

3,661 mL/g) are identified in the box and whisker plot (Figure 11-5).  Retardation factors were 

reported for Np (TCU study) as ranging from 4 to 95 (Zavarin et al., 2007).  This corresponds to Kd 

values ranging from 0.8 to 25.9 mL/g.  

11.5.2.5 Uranium

This section provides a summary of the evaluation of YMP U sorption data (Triay et al., 1997; 

DOE/ORD, 2001 and 2004) followed by results of the current analyses of the same dataset.  Triay et 

al. (1997) summarize U sorption analyses, indicating that it will likely be affected by pH, carbonate 
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content, and concentrations of Ca and Mg.  Complexation with carbonate species in solution will 

likely reduce the sorption coefficients for U.  Thus, if pH decreases with carbonate concentration, one 

would expect reduced distribution coefficients.  However, in the presence of zeolite minerals, 

decreasing pH would lead to an increase in uranyl ion concentrations and an increase in distribution 

coefficients.  Data supporting this conclusion are cited in DOE/ORD (2001), in which sorption to 

zeolites in pH 9 water is near zero but increases to approximately 25 mL/g at pH of 6 in J-13 water.  

In UE-25 p#1 water, Kd values are generally smaller than in J-13 water due to increased complexes 

with carbonate and will not be used in this analysis because they are not representative of the water in 

the volcanic aquifers of Yucca Flat.

Vitric Tuff.  Distribution coefficient experiments using vitric tuff samples in both J-13 and UE-25 p#1 

water were reported in the YMP TDMS (YMP, 2004).  Most experiments were conducted in the 

presence of an ambient air atmosphere; however, several experiments were conducted in an N2 

atmosphere with less than 0.2 ppm O2 and less than 20 ppm CO2 to increase the pH during the 

experiments.  Changes in pH between 7 and 9 appear to make no apparent difference in U sorption to 

vitric tuff in the presence of J-13 water (see Appendix I).  A total of 59 Kd values have been measured 

using J-13 water and vitric tuff rocks.  The U Kd values ranged from 0.1 to 5.8 mL/g; two outliers 

(ranging from 11.2 to 12 mL/g) are identified in the box and whisker plot (Figure 11-3). 

Devitrified Tuff.    As with vitric tuff, U sorption to devitrified tuff is generally characterized with low 

Kd values.  For the J-13 water experiments, pH and temperature do not appear to exert specific 

influence on the Kd values.  The U Kd values ranged from 0.1 to 5.4 mL/g; several outliers (10 and 

14.5 mL/g) are identified in the box and whisker plot (Figure 11-4). 

Zeolitic Tuff.  There were 176 U sorption experiments onto zeolitic-tuff rocks reported in the YMP 

TDMS (YMP, 2004).  Most experiments were conducted in the presence of an ambient air 

atmosphere; however, several experiments were conducted in an N2 atmosphere with less than 

0.2 ppm O2 and less than 20 ppm CO2 to increase the pH during the experiments.  Changes in pH 

between 7 and 9 appear to make no apparent difference in U sorption to zeolitic tuff.  The presence of 

high Ca content present in UE-25 p#1, however, causes a decrease in the total sorption to the zeolitic 

rocks (see Appendix I).  The U Kd values ranged from 0.1 to 108 mL/g; several outliers (ranging from 

118 to 9,423 mL/g) are identified in the box and whisker plot (Figure 11-5).  Retardation factors were 
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reported for Np (TCU study) as ranging from 6 to 55 (Zavarin et al., 2007).  This corresponds to 

Kd values ranging from 0.9 to 9.6 mL/g. 

Refinement of the distributions by pH was not specifically conducted for U sorption.  Both Triay 

et al. (1997) and DOE/ORD (2001) indicate that pH may play an important role in controlling uranyl 

species formation.  However, for the specific groundwater types used in these experiments, a clear 

trend in pH dependence was not observed. 

11.5.2.6 Plutonium 

Triay et al. (1997) provide a detailed discussion of the physiochemical processes affecting Pu 

speciation and sorption.  The exact nature of Pu sorption is not well understood.  Most importantly, 

sorption and desorption of Pu on the volcanic rocks is a redox-sensitive process.  A possible 

explanation provided by DOE/ORD (2001) is that Pu+5 must undergo reduction before sorbing as Pu+4.  

A result of this conclusion is that laboratory experiments conducted under oxidizing conditions may 

lead to smaller Kd values than exist in less oxidizing field conditions.  This may not always be the 

case, however, because the use of a particular oxidation state during laboratory experiments may bias 

the results.  The oxidation state of Pu in the field may vary within the same water, resulting in 

sorption of Pu in several other oxidation states that may be more or less sorbing than Pu+5.  It should 

be noted that regardless of what oxidation state is “used” in lab experiments, Pu redox changes with 

time.  Kersting et al. (2002) have recently addressed the question of Pu+5 reduction to Pu+4 during 

sorption.  Further, DOE/ORD (2001) concludes that Kd values derived from laboratory batch 

experiments would likely lead to conservative transport predictions (due to the short time scales 

associated with the laboratory Pu Kd measurements – longer contact with minerals leads to increased 

sorption).

Thomas (1987) found that sorption of Pu onto zeolitic rock samples had lower Kd values than vitric 

and devitrified tuffs due possibly to the lack of reduction sites.  In that study, the largest Kd values 

were measured for samples with calcite and clays.  Thomas (1987) also observed the strong 

dependence of Kd values on water composition, but not on pH.  It was observed that the high 

bicarbonate concentration in UE-25 p#1 water might actually lead to coprecipitation of Pu rather than 

surface complexation or ion exchange.
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For Pu sorption on various rock and mineral types, DOE/ORD (2001) discusses results for both 

J-13 and UE-25 p#1 water.  Modifying the conclusions of Thomas (1987) and Wilson et al. (1994), 

DOE/ORD (2001) analysis indicates that the most important factors controlling Pu sorption in 

oxidizing water are the abundance of montmorillonite clays, zeolite minerals, and possibly calcite.  

Comparison of Figures 11-5 and 11-3 for Pu indicates that zeolitic tuffs sorb Pu similarly to vitric 

tuffs.  Figure 11-4 shows that devitrified tuffs sorb Pu less strongly for both types of water, but the 

values are non-negligible.  The data discussion provided by DOE/ORD (2001, Section 6.4.4) is not 

consistent with the distribution of Kd values provided in DOE/ORD (2004).  A likely explanation for 

this discrepancy is that the ion radius of Pu is too large to enter the sorption sites on zeolitic materials, 

thus decreasing the total possible sorption of Pu onto zeolitic rocks.  Additionally, the higher sorption 

of Pu on some volcanic rocks may be driven by the presence of secondary metal-oxide minerals; 

however, neither DOE/ORD (2001) nor (2004) addresses this issue. 

Thomas (1987) and DOE/ORD (2001) note that water composition has a significant impact on Pu Kd 

distributions.  That conclusion was used to support the decision to eliminate experiments in the 

presence of UE-25 p#1 in the following analyses because UE-25 p#1 is not similar to groundwater 

chemistries observed in Yucca Flat volcanic aquifers.  Atmospheric conditions affecting pH in the 

experiments are included in this analysis.  DOE/ORD (2001) points out that the pH of J-13 and 

UE-25 p#1 groundwater in contact with atmospheric CO2 levels is generally in the range of 8.2 to 8.5.  

Therefore, in some experiments, the pH was adjusted down to near 7.0 by imposing an overpressure 

of CO2 to address lower pH values observed among some saturated zone waters in the Yucca 

Mountain flow system.    

Vitric Tuff.  Seventy-one YMP sorption experiments were conducted with Pu, J-13 water, and 

vitric-tuff material.  The Pu Kd values ranged from 21.5 to 1,174 mL/g; several outliers (ranging from 

1,293 to 1,810 mL/g) are identified in the box and whisker plot (Figure 11-3).  

Shaw (2003a) demonstrated a clear relationship between pH and Kd from data from a series of 

experiments that have been subsequently archived and removed from the current YMP database.  The 

three values reported for the lower pH conditions were associated three lowest Kd values in the 

distribution.  However, the next set of Kd values in the distribution were only a factor of two larger 

and they were obtained with pH values of 8.4 (Shaw, 2003a).  The current dataset has a limited 
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number of samples with reported pH values and a more narrow range of pH values, between 8.28 and 

9.26, and no obvious trend in Kd as a function of pH (see Appendix I).

Devitrified Tuff.  Most experiments were conducted in the presence of an ambient air atmosphere; 

however, several experiments were conducted in an N2 atmosphere with less than 0.2 ppm O2 and less 

than 20 ppm CO2 to increase the pH from approximately 8.5 to 9.5 during the experiments.  However, 

there is an overlap between the air and N2 experiments, and the values are weakly correlated to the 

duration of the experiments, so separate distributions are not established.  Figure 11-7 shows the 

relationship between the experiment duration and Kd for air atmosphere experiments.  This 

disequilibrium behavior for Pu sorption highlights the need for special care in parameter assignment 

and interpretation of results.  If more data are collected for small duration experiments, the 

distribution is skewed to lower Kd values, which will lead to conservative Pu mobility estimates.   

Figure 11-7
Distribution Coefficient (mL/g) for Plutonium Sorption onto 

Devitrified Tuff as a Function of Experiment Duration
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There were 118 YMP sorption experiments conducted with Pu, J-13 water, and devitrified tuff 

material.  The Pu Kd values ranged from 6 to 200 mL/g; several outliers (ranging from 210 to 

1,900 mL/g) are identified in the box and whisker plot (Figure 11-4).  

Zeolitic Tuff.  The relative affinities for Pu on specific minerals are, in decreasing order, 

hematite > montmorillonite > clinoptilolite > calcite > gibbsite > albite ≥ quartz (DOE/ORD, 2001).  

Although this generalization does not take into account water chemistry, it is expected that rocks 

containing large abundances of secondary metal-oxide minerals should also show relatively strong 

affinities for Pu.  The Pu Kd values ranged from 4.9 to 760 mL/g; several outliers (ranging from 

1,000 to 2,000 mL/g) are identified in the box and whisker plot (Figure 11-5).  Retardation factors 

were reported for Pu (TCU study) as ranging from greater than or equal to 600 to greater than or equal 

to 15,000; no recovery of Pu was observed in the experiments (Zavarin et al., 2005).  This 

corresponds to Kd values ranging from greater than or equal to 240 mL/g to greater than or equal to 

7,300 mL/g.   

The large values in the data range are not as large as those for Pu sorption to vitric tuff, indicating that 

such sorption reactions may be dominated by the presence or absence of a few key minerals such as 

clay, which may determine the overall sorption capacity of a particular rock.  There does not appear to 

be a strong correlation between pH and Kd values for Pu sorption to zeolitic tuffs.  

11.5.3 Carbonate Rocks

Zavarin et al. (2007) summarize two studies that investigated radionuclide transport in fractures of the 

carbonate core performed in support of the UGTA Project (Zavarin et al., 2005; Ware et al., 2005).  

These experiments, also performed for the TCU,  were described earlier.  Retardation factors are 

related to Kd using Equation (11-2), and a bulk density for carbonate [ρb = 2.85*(1-φ)] calculated 

using the rock porosity (φ) and mineral densities of dolomite.  Porosity values are reported in Zavarin 

et al. (2007) and summarized in Section 7.0 of this report.  Conclusions, regarding matrix sorption, 

from these studies are described below.
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11.5.3.1 Carbon-14

Migration of 14C was nearly unretarded through the fractured carbonate experiments.  However, the 

retardation of 14C as a result of isotope exchange on calcite surfaces may play a role over longer time 

and larger scales (i.e., field scales). 

11.5.3.2 Strontium and Cesium

Essentially no matrix retardation of Sr and Cs was observed when only the carbonate matrix is 

present.  It is apparent from the natural fracture experiments conducted by LANL that retardation 

associated with fracture lining minerals occurred.  Because both Sr and Cs have high affinities for 

clays and zeolites, these minerals are expected to represent a significant fraction of the fracture lining 

mineralogy.  Thus, Cs and Sr retardation in the LCA will be controlled primarily by fracture lining 

mineralogy.

11.5.3.3 Uranium 

Transport of U in LCA is nearly unretarded.  Fracture retardation factors from all experiments ranged 

from 1 to 3.8 (matrix retardation factors were set to 1).  The highest fracture retardation factor was 

found in the synthetic induced fracture experiment conducted by LLNL.  Because this fracture 

experiment is devoid of fracture lining minerals, the retardation may be interpreted as matrix 

retardation.  Zavarin et al. (2005) reported fracture matrix retardation factors ranging from 6 to 20.  

The difference in modeling results underscores the problem of distinguishing between fracture and 

matrix retardation.  In many cases, the difference between fracture retardation and matrix retardation 

was subtle and could not be clearly distinguished.

11.5.3.4 Neptunium

In general, Np transport is similar to that of U.  However, higher retardation factors were observed on 

occasion.  Np transport was interpreted as fracture retardation only.  It appears that the high fracture 

retardation factors may be the result of fracture lining minerals; very low retardation was observed in 

fracture experiments that were free of fracture lining minerals.
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11.5.3.5 Plutonium

From the fracture transport experiments, it appears that Pu can migrate for at least some time and 

distance in fractured carbonate as an aqueous phase.  Matrix retardation factors of approximately 

100 and 50 are reported in Zavarin et al. (2005).  However, neither modeling exercise could 

accurately reproduce the Pu breakthrough profile.  Thus, it is apparent that relevant processes 

controlling Pu transport were not included in the modeling exercises.  The processes are likely to be a 

combination of colloid facilitated transport, rate-limited sorption/desorption, rate limited redox 

transformation, and possibly non-linear sorption.

Sorption data for radionuclides on carbonate material developed elsewhere, primarily in support of 

the WIPP Project, have been reported and summarized by Dosch and Lynch (1980), Stout and 

Carroll (1992), and Perkins et al. (1998).  These studies provide primarily qualitative insight into the 

affinity of radionuclides for carbonate material; they do not represent specific NTS material or water 

chemistry.  Dosch and Lynch (1980) report dolomite Kd values for Cs, Sr, Eu, Pu, and Am, examining 

differences in initial solute concentration and groundwater composition.  Stout and Carroll (1992) 

summarize several studies from the literature up to 1992, and Perkins et al. (1998) provide Kd 

estimates for Pu and Am determined from a flowing column experiment.  Table 11-5 summarizes the 

measured carbonate Kd values from these studies.  (With regard to these studies, note that carbonate 

rock tends to have very low porosity and, as a result, very low reactive surface area.  Crushed 

carbonate is likely to result in much higher Kds than would be observed in the field.)   

Table 11-5
Carbonate Sorption Kd (mL/g) Ranges

Radionuclide Dosch and 
Lynch (1980)

Stout and 
Carroll (1992)

Perkins et al. 
(1998) Total Range

Cs 4 - 101 - - 4 - 101

Sr 5 - 16 - - 5 - 16

Eu 1x104 - 4x105 - - 1x104 - 4x105

Pu 2x103 - 7x103 1x102 - 1x104 275 1x102 - 1x104

Am 2x103 - 2x104 2x103 - 3x105 150 -  350 150 - 3x105

U 2 - 132 1x10-5 - 0.3 - 0 -  132

Np - <1x102 - 5x103 - <1x102 -  5x103

Source: Modified from SNJV, 2005b
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11.5.4  Kd Derived from Upscaled Mechanistic Sorption Models

Reactions of solutes with immobile minerals involve a host of processes.  Triay et al. (1997) and 

Zavarin and Bruton (2004a and b) provide descriptions of the reactive processes and controls 

affecting solute sorption to immobile minerals associated with the groundwater systems of the NTS.  

Mechanistic modeling approaches seek to represent the fundamental reactions between the solutes 

and the specific surfaces with which they come into contact.  Using thermodynamic reaction-constant 

databases, mechanistic approaches represent processes including surface complexation, ion 

exchange, and precipitation.  Additionally, the mechanistic modeling approach seeks to incorporate 

all aqueous-aqueous and aqueous-solid reactions.  These include speciation reactions such as those 

involving carbonate complexes, oxidation/reduction reactions, and rock-water reactions that may 

control the concentration of surface sites with which radionuclides come into contact.  Values of Kd 

can be developed from mechanistic models by simulating the effective distribution of a solute 

between its aqueous phase and sorbed phase by considering all relevant reactions, listed above, for a 

sample of aquifer material and specified geochemical conditions.

A benefit of the mechanistic modeling approach is its ability to specifically represent the reactions 

that control and affect radionuclide mobility.  Due to the representation of all expected reactions, the 

mechanistic modeling approach describes how groundwater chemistry changes (e.g., pH), affect 

sorption reactions, as well as how sorption reactions may affect groundwater chemistry.

A limitation of the mechanistic modeling approach is that, although a detailed set of reactions may be 

simulated, parameters for those reactions may not be available, particularly at the CAU scale.  For 

example, a mechanistic transport model requires the concentration of available reactive surface sites 

(often represented as percent mass of various minerals for which total reactive surface sites are 

known) be specified.  Characterization of surfaces that a solute may come in contact with is generally 

not known and must be inferred.  Further, coatings of reactive mineral sites with other compounds 

may serve to modify the available reactive surface sites for a given mineral.  Another limitation of 

mechanistic models is that they require large amounts of computer resources due to the complexity 

and nonlinearity of the processes that they attempt to capture when used in a fully coupled flow and 

transport model.  Although mechanistic models are faced with some limitations in their application 

for large-scale systems, they remain attractive due to their ability to capture heterogeneity.  By doing 

so, they provide technical credibility to scaled or abstracted methods.  
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Until recently, mechanistic sorption modeling has been primarily focused on small-scale systems 

where detailed characterization of mineral composition is available.  Recognizing the need to extend 

such models to CAU-scale problems, Zavarin et al. (2004) developed a methodology that upscales 

mechanistic sorption models to prescribe Kd values.  This approach formalizes concepts for Pahute 

Mesa presented by Pawloski et al. (2001) and Wolfsberg et al. (2002, Appendix B), as well as by 

Davis et al. (1998) and others too numerous to fully review for other hydrogeologic systems.  Only a 

brief summary of the method, results, and limitations of the mechanistic scaling approach are 

presented here.  Further detail on the methods and results is provided in Zavarin et al. (2004).

Upscaled mechanistic sorption accounts for aqueous speciation, surface complexation, ion exchange, 

and precipitation reactions.  Such processes for one radionuclide may be codependent upon the 

similar reactions associated with other radionuclides, thus leading to a large set of coupled reactions 

that must be considered simultaneously.  The methods for solving such systems of equations are well 

documented.  Zavarin et al. (2004) recognized that such methods are well suited for small or 

well-constrained problems, but that simplification is necessary for applicability at larger scales 

(e.g., CAU scale).  Thus, following a set of assumptions, Kd values are developed based upon the 

mechanistic modeling approach.  The assumptions include time-invariant solution groundwater 

chemistry and sorbing mineral abundances, far greater abundance of available sorption sites than 

sorbing radionuclides in solution, and conditions in which precipitation of minerals with the 

radionuclides can be neglected.  Wolfsberg et al. (2002) made similar assumptions to justify 

simplifications in mechanistic models of fracture sorption Kd values (see Section 12.0).

Following the assumptions listed above, a set of numerical experiments can be performed to compute 

Kd values for a material.  The information needed for such calculations include the initial radionuclide 

concentrations in solution, groundwater chemistry; thermodynamic reactions for all aqueous 

speciation and sorption reactions (e.g., Zavarin and Bruton, 2004a and b); and, most importantly, 

concentrations or available reactive surface sites (surface complexation and ion-exchange) at which 

sorption reactions occur.

Zavarin et al. (2004) calculated matrix Kd values for Ca, Sr, Cs, Am, Eu, Sm, Np, Pu, and U for 

Frenchman Flat alluvium in the presence of water consistent with groundwater ion concentrations 

near the CAMBRIC test.  In addition, the Kd values for several regional HSUs were reported.  The 
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Kd values estimated by Zavarin et al. (2004) for alluvium match measured values much better than the 

tuff estimates for Pahute Mesa because the speciation-reaction database used to calculate the alluvium 

Kd values was validated against direct Kd measurements (Zavarin et al., 2002).  Further details about 

the validation procedure can be found in Zavarin et al. (2004).  

The mechanistic scaling study of Zavarin et al. (2004) is dependent upon multiple other data sources.  

The modeling is conducted in accordance with LLNL procedures.  The information used as model 

input to predict the Kd values are available in LLNL reports.

11.6 Kd Derived from Scaled Mechanistic Models

Using component additivity, Zavarin et al. (2004) computed Kd for a radionuclide for given bulk 

material as follows: 

(11-3)

where: 

Kd, i = is the specific Kd for individual mineral i  

φm, i = mass fraction of mineral i with respect to the total bulk medium

Using mineralogic characterizations by several authors on multiple samples from core from five 

Frenchman Flat alluvial wells, Zavarin et al. (2004) predicted bulk Kd values for each rock chemistry 

sample using one aqueous chemistry.  Table 11-6 reports the calculated mean and SD based on a 

log-normal distribution from each dataset for nine different radionuclides.  The mean Kd predicted 

using the datasets is similar considering that there were differences among the mineralogic analyses 

with respect to detection limit, sampling method, sample interval, and sample area (Zavarin 

et al., 2004).  Zavarin et al. (2004) report that the datasets suggest that heterogeneous distributions of 

sorbing mineral phases give rise to a large range in Kd variability for Frenchman Flat alluvium.    

Table 11-7 lists the matrix Kd value reported in Zavarin et al. (2004) for vitric tuff HSUs from the 

regional NTS model (DOE/NV, 1997a).  These HSUs include several CAU-specific HSUs in the 

Yucca Flat model area (Table 4-3).  The minimum and maximum values represent variations due to 

differences in mineral composition.  Water chemistry (consistent with samples from the CHESHIRE 

Kd Kd i, φm, i
i 1=

n

∑=
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Table 11-6 
Predicted Average Radionuclide Distribution Coefficients (Log Kd , mL/g)

 for Frenchman Flat Alluvium Using Reported Radionuclide Sorbing Mineral Abundances

Drill Hole

Ramspott and 
McArthur 
(1977) and 

Beiriger (1977)

Warren et al. 
(2002)

Jones 
(1982)

Warren et al. 
(2002)

Daniels and 
Thompson 

(1984)

Warren et al. 
(2002)

Warren et al. 
(2002)

Sum of 
All Data

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Log Kd (mL/g) a−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

UE-5n UE-5n U-11g-1 U-11g-1 RNM-1 ER-5-3 ER-5-4 All Drill 
Holes

Ca 2.74±0.57 2.28±0.28 2.93±0.24 2.94±0.05 2.18±0.47 2.79±0.26 2.28±0.31 2.54±0.45

Cs 3.93±0.12 3.91±0.12 2.91±0.22 3.86±0.04 3.56±0.22 3.80±0.27 4.03±0.21 3.82±0.39

Sr 2.52±0.58 2.01±0.30 2.70±0.25 2.71±0.06 1.93±0.48 2.56±0.28 2.00±0.34 2.29±0.47

Am 3.39±0.22 3.84±0.09 4.02±0.18 3.79±0.04 3.45±0.35 3.79±0.23 3.91±0.22 3.78±0.30

Eu 2.83±0.23 2.23±0.09 3.52±0.19 3.24±0.07 2.88±0.34 3.27±0.23 3.32±0.23 3.22±0.30

Sm 3.14±0.25 3.45±0.09 3.89±0.21 3.54±0.15 3.16±0.33 3.62±0.25 3.56±0.26 3.50±0.33

Np 0.18±0.30 0.51±0.08 0.90±0.22 0.61±0.13 0.21±0.36 0.65±0.23 0.61±0.24 0.54±0.32

U -0.52±0.39 0.06±0.07 -0.07±0.19 0.03±0.12 -0.42±0.48 -0.14±0.21 0.09±0.16 -0.11±0.33

Pu (O2 = 10-5) 0.44±0.25 0.91±0.08 1.02±0.18 0.86±0.06 0.52±0.37 0.82±0.22 0.97±0.20 0.83±0.30

Pu (O2 = 10-10) 0.84±0.26 1.30±0.08 1.43±0.18 1.26±0.06 0.92±0.37 1.23±0.21 1.37±0.20 1.23±0.30

Pu (O2 = 10-15) 1.33±0.27 1.77±0.08 1.93±0.18 1.76±0.06 1.40±0.38 1.73±0.20 1.84±0.20 1.71±0.30

Source: SNJV, 2005b

a Log Kd values reported are mean ± one standard deviation.
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Table 11-7
Predicted Average Log Kd (mL/g) for Selected Regional Hydrostratigraphic Units 

from Zavarin et al. (2004) a, b

TMA TC TCB TBA BCU BAQ

E(x) Min Max E(x) Min Max E(x) Min Max E(x) Min Max E(x) Min Max E(x) Min Max

Ca 3.44 3.37 3.57 2.99 2.94 3.74

Cs 4.15 3.24 4.28 3.34 4.38 3.46 4.43 3.44 4.24 3.25 4.70 3.74

Sr 3.22 3.14 3.35 2.73 2.67 3.50

Am 4.05 3.77 4.40 4.19 3.90 4.54 3.47 3.18 3.81 4.62 4.35 4.96 4.62 4.35 4.97 5.08 4.81 5.42

Eu 3.60 3.14 4.06 3.73 3.27 4.20 3.04 2.56 3.52 4.18 3.72 4.65 4.18 3.72 4.65 4.65 4.19 5.12

Sm 3.79 3.32 4.26 3.92 3.46 4.39 3.23 2.76 3.72 4.41 3.94 4.89 4.41 3.94 4.88 4.90 4.43 5.38

Np 0.77 0.57 1.07 0.83 0.62 1.14 0.64 0.48 0.93 1.21 0.91 1.58 1.18 0.89 1.54 1.69 1.37 2.08

U 1.20 0.87 1.59 1.26 0.93 1.65 1.17 0.84 1.56 1.45 1.11 1.85 1.37 1.05 1.77 1.85 1.51 2.25

Pu (O2=10-5) 1.16 0.77 1.62 1.27 0.85 1.74 0.89 0.59 1.31 1.64 1.17 2.12 1.62 1.16 2.11 2.09 1.62 2.58

Pu (O2=10-10) 1.50 1.06 1.98 1.61 1.16 2.09 1.24 0.84 1.70 1.98 1.51 2.47 1.97 1.49 2.45 2.44 1.96 2.93

Pu (O2=10-15) 2.21 1.73 2.69 2.31 1.84 2.79 1.96 1.49 2.44 2.68 2.21 3.16 2.66 2.19 3.14 3.14 2.66 3.62

Source: SNJV, 2005b

a Min and Max based on variations in mineral abundances.
b See Table 4-3 for descriptions of the regional HSUs.
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test site conducted on Pahute Mesa), surface site density on individual minerals, and mineral densities 

are assumed constant.

11.6.1 Calculation of Distribution Coefficients Using Yucca Flat/Climax Mine 
Mineralogy and Water Chemistry Data 

To obtain Kd values representative of the HSUs (see Table 4-2 for a description) and RMCs 

(see Tables 4-4 and 4-5 for descriptions) of the Yucca Flat/Climax Mine CAU, the mechanistic model 

was applied to mineralogy and water chemistry data specific to this CAU.  The groundwater 

chemistry data are provided in Appendix E and discussed in Section 5.0.  The extensive set of 

mineralogy (XRD) data is described in Appendix D.  Distribution coefficients were modeled using 

the CRUNCH code (an updated version of the GIMRT code [Steefel and Yabusaki, 1995]) combined 

with the LLNL surface complexation and ion exchange sorption database (Zavarin and Bruton, 

2004a and b).

As described in Table 4-4, the mineralogy of the Yucca Flat/Climax Mine is classified into nine 

RMCs.  Estimation of Kd values for five of these (DMP, DMR, VMP, VMR, ZEOL) are presented 

within this section.  The RMCs were assigned to each XRD (see Appendix D) and water chemistry 

(see Appendix E) sample.  Groundwater chemistry data from ER-2-1, TW-B, and UE-14b were 

assigned to the DMP category and were used in the estimation of Kd values for both DMR and DMP 

RMCs because no water chemistry data are presently available for the DMR RMC.  Similarly, no 

water chemistry data are presently available for the VMR category, so water chemistry data 

associated with the VMP (UE-1a, UE-6d, WW-3, and WW-A) were used for the calculations of Kd 

values for both the VMR and VMP RMCs.  The resulting Kd values and histograms of these Kd values 

are presented in Appendix I.  In addition, Kd values were also estimated based on the Yucca 

Flat/Climax Mine HSU.  The resulting Kd values along with the associated histograms are presented 

in Appendix I.  The CCUs were not considered in this analysis because they constitute very low 

permeability rocks through which there is little or no flow.    

11.7 Summary of Kd Data

The Kd data described in this section are from both direct laboratory measurements and mechanistic 

model predictions.  A comparison between these two types of data, labeled “Mechanistic Model 
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(Laboratory Studies)” and “Laboratory Studies,” is shown in Figures 11-8 through 11-11.  The 

alluvium data for these two datasets are from the Frenchman Flat alluvium dataset, and the volcanic 

datasets are primarily YMP data.  To compare the direct measurements of radionuclide sorption with 

the mechanistic model of Zavarin et al. (2004), the mineralogy of the laboratory samples was 

substituted for the mineralogies reported in Zavarin et al. (2004), and the Kd values were calculated 

for each rock sample for which a mineralogy was reported.  Although the mechanistic model 

conditions are similar to those of the laboratory experiments, they are not identical.  The mechanistic 

model calculations are dependent on the quality of the rock mineralogical analysis because many 

trace minerals are important for radionuclide sorption.  Therefore, poor quality mineralogical 

analyses may result in poor agreement between the laboratory Kd values and those calculated using 

the mechanistic model.  Additionally, better comparison between the laboratory values and 

mechanistic model would be accomplished if the exact chemistry of the aqueous solution used during 

the experiment were used for the mechanistic model calculations; however, the aqueous chemistry 

often is not reported with the Kd.  These comparisons show that the mechanistic model predictions 

(mean and 95 percent CI) are similar to the laboratory data, providing confidence that the mechanistic 

model values can be appropriately incorporated into the CAU transport model.              

Figure 11-8
Comparison of Distribution Coefficients for Laboratory Studies 

and Mechanistic Model Calculations for the Alluvium
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Figure 11-9
Comparison of Distribution Coefficients for Laboratory Studies 

and Mechanistic Model Calculations for Vitric Tuffs

Figure 11-10
Comparison of Distribution Coefficients for Laboratory Studies 

and Mechanistic Model Calculations for Devitrified Tuffs
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The comparison for the alluvium includes laboratory measurements from U-1a samples that have an 

identical water chemistry to the one used in the mechanistic model.  For Cs, Sr, Am, Eu, Sm, Np, and 

U, the mechanistic model provides values for Kd that generally encompass the entire distribution 

calculated for the direct measurements; however, the mechanistic model tends to overpredict the 

uncertainty in these values.  This is likely because the number of experiments for which complete 

mineralogies were reported is relatively small compared to the entire set of laboratory measurements.  

For Pu, the mechanistic model tends to underpredict the Kd; this will result in conservative transport 

simulations, but may need to be further examined during transport model sensitivity analyses.  

A likely interpretation is that Pu in the mechanistic model is being simulated at an oxygen fugacity 

that is too oxidizing (mechanistic model oxygen fugacity ranged from 10-5 to 10-15); adjusting this 

fugacity to be more reducing may result in improved agreement between the mechanistic model and 

laboratory experiments. 

The Kd values determined from the mechanistic model using the Yucca Flat/Climax Mine mineralogy 

(alluvium, vitric tuff [VMP and VMR RMCs], devitrified tuff [DMP and DMR RMCs], and zeolitic 

Figure 11-11
Comparison of Distribution Coefficients for Laboratory Studies 

and Mechanistic Model Calculations for Zeolitic Tuffs
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tuffs [ZEOL RMC]) and water chemistry data are also presented in Figures 11-8 through 11-11 for 

comparison.  The mechanistic model Kd ranges (95 percent CI) are calculated for the range of rock 

mineralogy found in Yucca Flat as well as the range of water chemistry.  Note that the Yucca Flat 

mechanistic model was computed at an oxygen fugacity of 10-20.  Consequently the resulting Kd 

ranges may be different from the previous results due to differences in mineralogy and water 

chemistry between the sources of the samples for the Frenchman Flat alluvium and YMP volcanic 

datasets and for Yucca Flat.  Also, the data available for Yucca Flat characterize the variability of the 

mineralogy and water chemistry more completely, accounting for the larger ranges.  This comparison 

emphasizes the importance of the specific mineralogy and water chemistry, which vary spatially.  

These calculations of Kd for Yucca Flat are at the reconnaissance level for evaluating application of 

the mechanistic model to characterization of Kd for Yucca Flat, and do not constitute final input to 

transport modeling.

11.8 Scaling Considerations

Yucca Flat CAU transport simulations for contaminant boundary assessment will be conducted over 

various spatial scales.  Volumes in the computational model represented with a single set of transport 

parameters will be much larger than sample volumes used for laboratory measurements.  Scaling 

considerations for Kds must address how well measurements conducted at the laboratory-scale 

represents the integrated sorptive behavior of a much larger volume in the CAU-scale model.  Factors 

include representativeness of the samples used for laboratory measurements relative to variability of 

the formation characterized, and larger-scale longer-term processes that may not be 

well-characterized in the laboratory.  One method for addressing this would be to use the data 

presented in this documentation report as representative of the small-scale system behavior.  Scaling 

simulations could be designed to identify the effective Kd of a CAU-scale model grid block using 

multiple realizations of spatially distributed values from this study. 
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12.0 FRACTURE SORPTION PARAMETER

This section describes the fracture sorption process and possible methods for parameterizing it in the 

CAU models.

12.1 The Role of Fracture Sorption in Contaminant Transport 

As with matrix sorption, fracture sorption is the physiochemical process at mineral-water interfaces 

that controls solute retardation on the surface of fractures, and hence solute mobility within flowing 

groundwater systems.  Fracture sorption is treated separately from matrix sorption because it strictly 

involves the sorption of radionuclides to fracture surfaces, before diffusion into the matrix material or 

the fracture coating minerals, where matrix sorption may occur.   

12.2 Data Types and Sources for Fracture Sorption 

The simplest method to represent fracture sorption is to use retardation factors for solutes in fractures.  

Although easily derived from each other, the retardation factor is preferable to Kd because the Kd is 

based upon a volumetric sample of material, as appropriate for matrix material.  In the fracture, all of 

the reactive processes leading to solute retardation are represented per unit length of fracture, rather 

than per unit volume of rock.  As with the Kd, the retardation factor is straightforward to apply in 

transport models.

The use of a fracture retardation factor requires the assumption of local equilibrium.  Reactions that 

are kinetic in nature must be assumed to occur fast enough that the retardation factor captures the 

process either adequately or conservatively in CAU-scale simulations.  Further, the use of a fixed 

retardation factor does not allow for changing sorption behavior due to changes in water chemistry or 

mineral surfaces.  It can vary spatially but is not capable of representing dynamic system changes 

during the course of a simulation. 
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12.2.1 Data Types

The modeling studies seeking to upscale mechanistic processes to larger-scale retardation factors are 

based upon the same processes as those described for mechanistic models of matrix Kd 

(see Section 11.0).  The key components to estimating reactions with fracture coatings are as follows:

• The effective reactive surface area of fracture-coating minerals available to solutes flowing in 
the fracture

• The mineralogic composition of the fracture coatings

• The distribution (existence) of fracture-coating minerals in fractures

Once estimated, these three factors can be used to parameterize mechanistic models, which ultimately 

provide effective fracture retardation factors.

A benefit of the mechanistic modeling approach is that it specifically represents reactions that control 

and affect sorption to fracture-coating minerals.  Due to the complete representation of all reactions, 

the mechanistic modeling approach can also describe how groundwater chemistry changes such as 

pH affect sorption reactions, as well as how sorption reactions may affect groundwater chemistry. 

A limitation of the mechanistic modeling approach is that, although a detailed set of reactions may be 

simulated, parameters for those reactions may not be available, particularly at the CAU scale.  This is 

important for estimating fracture retardation factors where spatial variation of fracture-coating 

materials will have first-order effects on the estimated parameters.   

12.2.2 Data Sources

Three recent approaches within the UGTA Project have been used to assess fracture retardation.  

Wolfsberg et al. (2002, Chapter 7 and Appendix F) used estimates of fracture-coating thickness, 

distribution, mineral content, and availability in conjunction with surface complexation 

thermodynamic data reported by Pawloski et al. (2001) to predict fracture retardation factors.  They 

found that the primary factor controlling fracture retardation is how much of the fracture coating is 

accessible to solutes migrating in the fracture.  Zavarin et al. (2004) expand on developments made 

by Pawloski et al. (2001) with estimates of fracture retardation using mechanistic process models.
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Wolfsberg et al. (2002) and Zavarin et al. (2004) have provided estimates of fracture retardation 

factors for various rock types on Pahute Mesa.  Pahute Mesa volcanic aquifers have reasonably 

similar water composition to those observed in Yucca Flat volcanic aquifers; therefore, when HSUs 

from Pahute Mesa crosswalk to Yucca Flat HSUs, these data can be used directly (see Table 4-3 for 

the crosswalk).  Fracture transport experiments were conducted by LLNL and LANL and the results 

summarized in Zavarin et al. (2007).  The laboratory fracture transport experiments consisted of 

passing sorption solutions through TCU and LCA core as well as synthetic slotted fractures and 

measuring the breakthrough curves for specific radionuclides.  Once the radionuclide breakthrough 

curves were determined, the models RELAP or RETRAN (a transient version of RELAP) were used 

to simulate the breakthroughs.  Zavarin et al. (2007) summarized the rationale, methods, and results 

of both experiments as well as presented a summary interpretation of the data using mathematical 

models.  Additional information regarding these experiments is provided in the original reports by 

Zavarin et al. (2005) (LLNL), and Ware et al. (2005) (LANL). 

12.2.3 Data Transfer

Data from the Yucca Flat/Climax Mine HFM area and data from another NTS CAU, Central and 

Western Pahute Mesa, were used for this analysis due to the unavailability of comprehensive data 

from the Yucca Flat/Climax Mine HFM area for all HGUs.  Specific discussion of the applicability of 

the transferred data is provided.  A quantitative assessment of the sensitivity of transport modeling to 

the uncertainty in this parameter cannot be provided before the transport model development.  The 

parameter description discusses the importance of this parameter.

12.3 Data Evaluation

The Wolfsberg et al. (2002) and Zavarin et al. (2004) modeling studies seek to incorporate 

information regarding specific reactions and estimates of fracture-coating properties.  Coupled with 

other processes of matrix diffusion, matrix reaction, and colloid-facilitated transport, the expected 

values of fracture retardation factors were used by Wolfsberg et al. (2002) in predicting radionuclide 

concentrations in wells ER-20-5 #1 and ER-20-5 #3.  In those simulations, the radionuclides with 

large retardation factors in fractures were shown to have minimal mobility in the absence of colloids.  

Zavarin et al. (2004) also demonstrate the increased predicted mobility when colloids are present and 

compete with immobile reactive minerals for radionuclide sorption.
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12.3.1  Derivation by Wolfsberg et al. (2002)

Wolfsberg et al. (2002, Chapter 7 and Appendix F) apply a semi-mechanistic approach for estimating 

fracture retardation factors.  They assume invariant water chemistry representative of Pahute Mesa 

groundwater and group radionuclides into the classes shown in Table 12-1.  The derivation shows 

dependence of the fracture retardation factor on the uncertain fracture-coating properties listed in 

Section 12.2.1.  The approach is based on three major assumptions:  (1) a fixed percent coverage of 

fractures with coatings, (2) a fixed coating thickness where they exist, and (3) a fixed availability of 

reactive minerals within the coatings.  Wolfsberg et al. (2002) ignored ion exchange reactions with 

fracture coatings, which are significant contributors to fracture sorption for Sr2+  and Cs+.  Variability 

in fracture retardation factors associated with variability in mineral content in the coatings calculated 

using this method are presented in Table 12-1 as the low, base, and high cases.  Wolfsberg et al. 

(2002, Appendix F) noted that uncertainty in percent fracture-coating coverage and the percent of the 

coatings available for reactions can add up to three orders of magnitude of uncertainty on these 

values.    

Table 12-1
Fracture Retardation Factors from Wolfsberg et al. (2002)

Radionuclide
Class a Range

Rock Type b

Welded Lava Altered c Fractured 
Non-welded

Class II
(151Sm, 241Am, 152Eu, 154Eu)

low 63 163 22 192
base 195 207 25 223
high 837 231 129 265

Class III
(90Sr, 137Cs)

low 1.01 1.04 1 1.04
base 1.07 1.05 1 1.05
high 1.23 1.06 1.01 1.07

Class IV
(234U, 238U, 237Np)

low 1.13 1.35 1.03 1.43
base 3.5 2.7 1.43 2.7
high 13.5 4.9 2.5 5.5

Class V
(239Pu, 240Pu)

low 2.7 9.2 1 8.4
base 13.6 10.3 3.9 9.6
high 39 13 6.8 15

a The fracture retardation factor is one for Class I radionuclides (3H, 14C, 36Cl, 85Kr, 99Tc, 129I).
b Fracture porosity is not applicable for the bedded, altered, and bedded-altered rock zones described in Wolfsberg et al. (2002).
c Alteration of vitric rocks at the NTS has produced zeolites, cristobalite, quartz, K-feldspars, and various clay minerals.



Section 12.0

Phase I Contaminant Transport Parameters for CAU 97: Yucca Flat/Climax Mine, Nye County, Nevada

12-5

12.3.2 Derivation by Zavarin et al. (2004)

Zavarin et al. (2004) apply a mechanistic model using the thermodynamic reaction databases of 

Zavarin et al. (2002) to predict fracture retardation factors for several regional model HSUs.  The 

potential link among effective porosity, fracture density, and aperture measurements with a 

mechanistic conceptual model is evaluated by requiring a relationship between the effective porosity 

and the volume of reactive minerals in contact with the flowing fluid.  Thus, if the effective porosity 

is 1 percent and the porosity associated with open fractures in less than 1 percent, some of the flowing 

fluid was required to be associated with flow within the matrix.  Diffusion between fractures and 

matrix material is not explicitly modeled.  Rather, this method seeks to capture the effect of some 

diffusion into the matrix near the fracture wall with the increased effective porosity.  Thus, the 

method also combines the effects of sorption to matrix material and fracture minerals with a single set 

of parameters.  If matrix sorption and fracture retardation need to be separated for the CAU-scale 

flow and transport model, this method can be modified.  Additional diffusion into the matrix beyond 

the matrix reactive zone can be simulated, understanding that the first portion of reactive matrix 

minerals is wrapped up in the fracture effective porosity abstraction with this method.  Table 12-2 

provides the estimated retardation factors from that study under the assumption that the primary metal 

oxide present in the rocks is an iron oxide.  The reported range of uncertainty is only related to 

uncertainty in mineralogic composition of the fracture coatings, not of abundance or accessibility of 

those minerals to solutes in the fracture water.        

12.3.3 Reactive Transport Experiments by Zavarin et al. (2007)

The simplest LLNL experiments included radionuclide transport through synthetic parallel-plate 

fractured tuff and carbonate cores (Zavarin et al., 2007).  Because of the complex nature of reactive 

transport in fractures, a stepwise approach to identifying mechanisms controlling radionuclide 

transport was used.  These simplified fracture transport experiments isolated matrix diffusion and 

sorption effects from all other fracture transport processes (e.g., fracture lining mineral sorption, 

heterogeneous flow).  Additional fracture transport complexity was added by performing induced 

fractured LCA flowthrough experiments (effect of aperture heterogeneity) or iron-oxide-coated 

parallel-plate TCU flowthrough experiments (effect of fracture lining minerals.)  Finally, naturally 

fractured tuff and carbonate cores were examined at LLNL and LANL.  All tuff and carbonate core 

used in the experiments were obtained from the USGS Core Library, Mercury, Nevada.  
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Once the radionuclide breakthrough curves were determined, the models RELAP or RETRAN 

(a transient version of RELAP) were used to simulate the breakthroughs.  RELAP provides a 

simultaneous least-squares fit of up to four species (sorbing and/or non-sorbing) by automatically 

adjusting the following model parameters:

• Mean fluid residence time in the fractures
• Peclet number
• Matrix diffusion mass-transfer coefficient
• Characteristic fracture spacing
• Fracture retardation factor
• Matrix retardation factor
• Fracture and matrix sorption rate constants

Although RELAP was the computer model used for the majority of the interpretations, RETRAN was 

used for the LANL experiments in which there were significant flow rate changes early enough in an 

experiment to affect the shape of the breakthrough curves.  The results of the analyses are estimates of 

the parameters listed above with the advantage of matching empirical rather than theoretical data.  

Table 12-3 provides the estimated retardation factors from this work.  

Table 12-2
Fracture Retardation Factors, Log (R), from Zavarin et al. (2004)

Regional 
HSU a

Timber Mountain 
Aquifer (TMA)

Tuff Cone 
(TC)

Belted Range Aquifer
(TBA)

Basal Aquifer
(BAQ)

Nuclide E(x) b Min c Max E(x) Min Max E(x) Min Max E(x) Min Max

Ca 3.34 2.95 3.24 3.36

Cs 4.04 3.13 3.19 2.4 4.30 3.34 3.27 2.66

Sr 3.12 2.72 2.99 3.14

Am 2.03 1.99 2.06 1.92 1.88 1.94 2.64 2.61 2.65 2.26 1.94 2.50

Eu 2.06 1.98 2.08 1.98 2.03 1.89 2.69 2.59 2.73 2.60 2.49 2.65

Sm 2.14 2.11 2.16 2.06 2.02 2.11 2.74 2.70 2.78 2.98 2.92 3.02

Np 0.80 0.57 1.13 1.08 0.74 1.49 1.72 1.35 2.15 1.61 1.15 2.09

U 1.18 0.85 1.54 1.77 1.37 2.17 2.46 2.05 2.86 0.19 0.19 0.20

Pu (O2=10-5) 1.12 0.74 1.51 1.36 0.93 1.77 2.04 1.57 2.46 1.46 1.03 1.87

Pu (O2=10-10) 1.43 1.03 1.79 1.74 1.31 2.11 2.43 1.98 2.80 1.81 1.37 2.18

Pu (O2=10-15) 1.94 1.62 2.12 2.31 1.97 2.50 3.00 2.66 3.20 2.34 2.00 2.54

Note:  Assumes fracture coating iron-manganese oxides dominated by iron.
a Fracture retardation factors were categorized by regional HSUs.  
b E(x) is the mean Log (R) for each HSU-radionuclide pair.
c Min and Max values incorporate the uncertainty associated with the mechanistic model reaction constants.
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Table 12-3
Summary of Fracture Retardation Factors Developed Through LLNL and LANL Fracture Retardation Experiments

 (Page 1 of 2)

LLNL Fracture Experiments a HGU Sr Cs U 237Np 238/242Pu 14C

UE-7az 1799, Synthetic slot TCU No rec (1) No rec (1) 2.2 (2) 1 (1) ND  (1) NA

UE-7az 1679, Natural TCU No rec (1) No rec (1) 1.4 (2) 1 (1) ND  (1) NA

UE-7az 1780, Natural TCU No rec (1) No rec (1) 2.2 (2) 1.4 (1) ND  (1) NA

UE-7ba 1627, Synthetic slot with colloids TCU NA NA 3.5 (1) 1 (1) 60, 0.4† (1) NA

UE-7az 1679, Synthetic slot with FeOH coating TCU No rec (1) No rec (1) 12 (5) 1 (1) 1 ND (1) NA

ER-6-1 2605, Synthetic slot LCA 1 (1) 1 (1) 2.3 (1) 2.1 (1) ND (1) NA

ER-6-1 2733, Synthetic slot LCA 1.1 (1) 1 (1) 1.5 (1) 2.6 (1) 3.5 (1) NA

ER-6-1 2553, Synthetic included LCA No rec (1) No rec (1) 3.5 (2) 3.5 (2) 2.5 (1) NA

LANL Fracture Experiments a HGU 90Sr 137Cs 233U 237Np 239Pu  14C

UE-4a 2029, High flow TCU 1 0-0.5† 1 1 0-0.75† 1

UE-4a 2029, Low flow TCU 1 0-0.24† 1 1 0-0.2† 1

UE-7az 1770, High flow TCU 1 0-3.0† 1 1 0-2.3† 1

UE-7az 1770, Low flow TCU 1 0-1.6† 1 1 0-0.5† 1

UE-7ba 1823, High flow TCU 1 0-0.58† 1 1 0-0.75† 1

UE-7ba 1823, Low flow TCU 1 0-0.3† 1 1 0-0.12† 1

UE-7ba 1863, High flow TCU 1 0-0.39† 1 1 0-1.2† 1

UE-7ba 1863, Low flow TCU 1 0-0.35† 1 1 0-0.3† 1

ER-6-1 2400, High flow LCA 2 68 1.2 5.7 0-0.28† 1.5

ER-6-1 2400, Low flow LCA 4.25 >100 1.4 6 0-0.36† 1

ER-6-1 2400, Low flow #2 LCA NA >100 NA a 7 NA NA

ER-6-1 2512, High flow LCA 20 58 1.5 5 0-0.18† 1.2

ER-6-1 2512, Low flow LCA >30 50 1.6 3 40, 0-0.14† 1

ER-6-1 2512, Low flow #2 LCA NA >50 NA 2.6 NA NA

ER-6-1 2675, High flow LCA 1 2.8 1.3 3.5 19, 0-0.64† 2.5
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LANL Fracture Experiments HGU 90Sr 137Cs 233U 237Np 239Pu  14C

ER-6-1 2675, Low flow LCA 2.5 3.5 1.3 8 33, 0-0.24† 1.5

ER-6-1 2675, Low flow #2 LCA NA 4 NA 8 NA NA

ER-6-1 2847, High flow LCA 1 2.2 1 4 2.4 1.5

ER-6-1 2847, Low flow LCA 1.5 2.8 1.3 5.2 42, 0.2† 1

ER-6-1 2847, Low flow #2 LCA NA 3 NA 4.8 NA NA

ER-6-1 2915, High flow LCA 1.4 1.8 1.2 >50 0-0.17† 1.5

ER-6-1 2915, Low flow LCA 2 2 1.2 5 0-0.08† 1.1

ER-6-1 2915, Low flow #2 LCA NA 2.3 NA 5 NA NA

ER-6-1 3028, High flow LCA 1.5 280 1.5 5 16 1.5

ER-6-1 3028, Low flow LCA NA >140 1.6 8 NA 1

ER-6-1 3028, Low flow #2 LCA NA >100 NA 9 NA NA

ER-6-2 2730, High flow LCA 33 320 1.6 22 50 5

ER-6-2 2730, Low flow LCA NA 280 2.7 32 NA 1

ER-6-2 2730, Low flow #2 LCA NA 160 NA 28 NA NA

ER-6-2 2750, High flow LCA 2 33 1.5 8.5 18 1.8

ER-6-2 2750, Low flow LCA NA 42 1.5 5 NA 1

ER-6-2 2750, Low flow #2 LCA NA 40 NA 6 NA NA

Source: Tang et al., 1981; Zavarin et al., 2005

Note:  Data in parentheses indicate previous LLNL model fit parameters.
a Fracture experiment name reflects the source of the core used, the depth from which the core was extracted (ft), and the type of slot or flow rate.

> - Indicates that the value is a minimum.
Colloid - Colloid-facilitated transport strongly suspected; matrix retardation factors not applicable.
† - Colloid filtration rate constant range; breakthrough fitted assuming rate-limited and irreversible colloid filtration in fracture.
NA - Not available - element not in sorption solution.
ND - Not determined (very low, but early recovery; suspected of being colloid-facilitated).
No rec - No recovery of radionuclide; matrix retardation factors not estimated.

Table 12-3
Summary of Fracture Retardation Factors Developed Through LLNL and LANL Fracture Retardation Experiments

 (Page 2 of 2)



Section 12.0

Phase I Contaminant Transport Parameters for CAU 97: Yucca Flat/Climax Mine, Nye County, Nevada

12-9

12.3.4 Fracture Retardation Factor Summary and Integration

Wolfsberg et al. (2002) and Zavarin et al. (2004) present approaches for estimating retardation in 

fractures due to reactions with fracture-coating minerals.  Although methodologies to account for 

processes that may affect migration rates and groundwater concentration of reactive radionuclides are 

highlighted, these approaches are theoretical.  The two approaches yield different results, in some 

cases, because of differences in the conceptual model and the assumptions about processes that lead 

to fracture retardation.  

One of the largest differences is that Zavarin et al. (2004) include reactions with matrix minerals as 

well as with fracture-coating minerals, which leads to increased estimated retardation factors.  

Wolfsberg et al. (2002) only consider reactions with the minerals coating the fracture; reactions with 

matrix minerals are considered in conjunction with the matrix diffusion component of their model.  

The Zavarin et al. (2004) results may require modification to be implemented in the Yucca 

Flat/Climax Mine CAU transport model because fracture and matrix sorption may be treated 

independently in the model.  Another difference between the two approaches is that Wolfsberg et al. 

(2002) do not consider ion exchange reactions, which are the primary reaction responsible for 

retardation of Sr2+  and Cs+.

Zavarin et al. (2007) present estimates of retardation in fractures based on the analysis and matching 

of empirical data.  In general, matrix sorption accounted for the observed retardation of radionuclides 

in the TCU (unless a radionuclide was transported as a colloid).  Fracture sorption accounted for most 

of the observed retardation in the LCA.  Fracture sorption was shown to play a significant role in the 

TCU for both U and Np, and was not significant for 14C, Sr, Pu, and Cs.  In the LCA, fracture sorption 

was shown to play a significant role for Sr, Cs, Np, and Pu and was not significant for either 14C or U.

The results from the two mechanistic modeling approaches (Wolfsberg et al., 2002; Zavarin et al., 

2004) as well as the empirical approach (Zavarin et al., 2007) for determining fraction sorption 

parameters are summarized in Table 12-4.  Only the data for the HGUs that are considered to have 

fracture porosity (LFA, WTA, and CA) are shown (see Section 8.0 for further discussion).  The results 

are correlated with HSUs in the Yucca Flat/Climax Mine CAU groundwater flow and transport model 

domain.  Considering the mechanistic modeling approaches, the range of uncertainty is large due to 

the strictly theoretical nature of the estimation methods.  With the exception of Sr2+ and Cs+, the 
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retardation factors from Zavarin et al. (2007) are generally similar to those developed through the 

mechanistic modeling approach of Wolfsberg et al. (2002).  However, the results from 

Zavarin et al. (2007) offer the advantage of empirical testing and provide results for the LCA.  
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Table 12-4
Summary of Fracture Retardation Factors for Yucca Flat HSUs 

HGUs HSUs Alteration Ca Cs Sr Am Eu Sm Np U Pu(10-5)   Pu(10-10) a 

Pu(10-15) Pu b 14C

LFA c
BLFA

PRETBG
PRETBG1

Lava
NA

(2,188)
NA

(1.04, 1.06) d
(1,349, 10,965) e

NA f, g

(1.04, 1.06)
(1,318)

NA

(163, 231)
(98, 115)

NA

(163, 231)
(95, 120)

NA

(163, 231)
(129, 145)

NA

(1.35, 4.9)
(3.7, 13)

NA

(1.35, 4.9)
(7.1, 35)

NA

(9.2, 13)
(5.5, 32)

NA

(11, 62)
(42, 132)

NA
NA NA

WTA c
TM-WTA

TSA
BRA

TUBA

Welded, 
vitric to 

devitrified

NA
(2,188)

NA

(1.01, 1.23)
(1,349, 10,965)

NA

(1.01, 1.23)
(1,318)

NA

(63, 837)
(98, 115)

NA

(63, 837)
(95, 120)

NA

(63, 837)
(129, 145)

NA

(1.13, 13.5)
(3.7, 13)

NA

(1.13, 13.5)
(7.1, 35)

NA

(2.7, 39)
(5.5, 32)

NA

(11, 62)
(42, 132)

NA
NA NA

CA LCA Fractured
NA
NA
NA

NA
NA

(1.0, 320.0)

NA
NA

(1.0, 33.0)

NA
NA
NA

NA
NA
NA

NA
NA
NA

NA
NA

(2.1, > 50)

NA
NA

(1.0, 3.5)

NA
NA
NA

NA
NA
NA

0.00, 50 1.0, 5.0

a Retardation factors Pu for oxygen fugacities of 10-10 and 10-15 are reported in Zavarin et al., 2004.
b Retardation factors for Pu and 14C are measured from laboratory experiments reported in Zavarin et al., 2007.
c The LFA and WTA HGUs are associated with the TMA regional HSU reported in Zavarin et al., 2004.
d Upper range in each cell represents retardation to fracture minerals only from Table 12-1 (Wolfsberg et al., 2002).
e Middle range in each cell represents retardation due to sorption to fracture minerals and matrix minerals from Table 12-2 (Zavarin et al., 2004)
f Lower range in each cell represents fracture retardation factors from Table 12-3 (Zavarin et al., 2007).
g Radionuclides shown include analysis of multiple isotopes in some cases.

NA - Not available
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13.0 COLLOID-FACILITATED TRANSPORT PARAMETERS

This section presents a brief description of the current understanding of the role of colloid particles in 

the transport of radionuclides in groundwater and identifies parameters for colloid occurrence, 

movement in groundwater, and interaction with radionuclides for context.  Documents characterizing 

colloids in groundwater, colloid-facilitated transport experiments, and radionuclide associations with 

colloids at the NTS are reviewed.  Available data for the parameters are summarized and evaluated to 

assess the state of knowledge for each parameter, and the datasets are characterized as parameter 

value distributions.  The objective of this compilation and analysis is to provide an overview of 

available information to support contaminant transport modeling regarding colloid-facilitated 

transport.

Data compilation and analysis builds directly upon the analysis presented in SNJV (2005b) and 

includes all colloid data available (through January 2007) for the NTS and vicinity.  The focus is on 

available data relevant to the Yucca Flat/Climax Mine CAU.  However, because colloid data specific 

to this CAU are limited, transfer of data from other UGTA CAUs (Frenchman Flat, Pahute Mesa, and 

Rainier Mesa/Shoshone Mountain) and from the YMP was necessary for the analysis.  Colloid studies 

for UGTA CAUs provide data for the alluvium in Frenchman Flat; fractured volcanic rocks in Yucca 

Flat, Pahute Mesa, and Rainier Mesa; and fractured carbonate rocks in Yucca Flat.  Studies performed 

in support of the YMP focused on colloids in the alluvium and volcanic tuffs.    

Colloid data have been organized into five major categories: (1) colloid mineralogy, (2) colloid 

concentration and size data, (3) colloid transport parameters (colloid filtration [attachment and 

detachment] rate constants and the resultant retardation factors), (4) radionuclide distribution 

coefficients and sorption rates, and (5) radionuclide associations with colloids at source locations near 

cavities.  These types of data are used for modeling colloid-facilitated transport.  

Note that the distributions for colloid transport parameters presented here may not be appropriate for 

input distributions to colloid-facilitated transport modeling.  Distributions are calculated in this 
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analysis for the purpose of characterizing the data.  Lognormal distribution of parameters is common 

in physical systems and is used where it provides reasonable fit to the data distribution.  The required 

form for modeling colloid-facilitated transport may be dependent upon model assumptions, and 

reinterpretation of the data within the context of the transport model may be required.  The specific 

format for the transport model has not yet been determined, and the input parameter values and 

distributions would be dependent upon the model and assumptions.  This section also does not 

address the subject of source term embodied in colloid form (i.e., how much of any radionuclide in a 

source region can become associated with the colloidal form and how that might occur).  This would 

include estimates of colloid formation during glass dissolution in which Pu, for example, could either 

become an intrinsic colloid through hydrolysis, sorbed onto other colloids present in the source 

region, or embedded physically within a clay or glass colloid.  Such data are not available.

13.1 Data Compilation and Data Transfer 

Data from the Yucca Flat/Climax Mine HFM area and data from other NTS CAUs, YMP, and from 

another location (specifically data for alluvium, for which these data provided an expanded time 

scale) were used for this analysis due to the unavailability of comprehensive data from the Yucca 

Flat/Climax Mine HFM area for all HGUs.  All data locations used in quantitative analyses are 

identified in Appendix J and the associated dataset referenced in Section J.7.0.  Individual discussions 

of the applicability of the transferred data are provided for each HGU.  A quantitative assessment of 

the sensitivity of transport modeling to the uncertainty in this parameter cannot be provided before 

the transport model development.  The parameter description discusses the importance of this 

parameter.

13.2 Role of Colloids in Contaminant Transport 

Colloids are small particles (less than 1 μm) that can facilitate the migration of contaminants in 

groundwater flow systems.  Colloids are composed of either organic matter or inorganic mineral 

material from the host rock, herein referred to as “types,” associated with the mineralogic 

composition.  Oxides and hydroxides of actinide elements (e.g., Pu) can also form colloids 

(Kersting et al., 1998).  Dissolved solids may be removed from solution by attachment to colloids 

through ion exchange or adsorption.  
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Colloids facilitate the transport of strongly sorbing contaminants by providing mobile particles onto 

which the contaminants can sorb and be transported by the groundwater.  It is generally accepted that 

one of the two following conditions must be met for colloid-facilitated transport to be significant:

• Colloids remain mobile over relatively long distance and time scales AND radionuclides are 
irreversibly or nearly irreversibly sorbed to the colloids, OR 

• The product of the surface-area-based radionuclide partition coefficient onto colloids and the 
mobile colloid surface area is comparable to or greater than the product of the 
surface-area-based radionuclide partition coefficient onto immobile surfaces and the 
immobile surface area.  

Regarding the types of data for colloids presented in this section, colloid filtration rate constants, 

colloid retardation factors, and radionuclide desorption rate constants from colloids are important for 

the factors listed in the first bullet.  The mobile colloid surface area (dictated by colloid 

concentrations, sizes, and shapes) and radionuclide partition coefficients onto both colloids and 

immobile surfaces are important for the factors listed in the second bullet.  Colloid mineralogy and 

size distributions are important because they affect the mobility (i.e., filtration, retardation) of 

colloids and the affinity of radionuclides for colloids.

Further discussions on the role of colloid-facilitated transport with regard to contaminant transport 

modeling are provided in DOE/NV (2000a) and NNSA/NSO (2004a).

13.3 Summary of Colloid Studies  

Concern regarding the increased mobility of radionuclides through colloid-facilitated transport at the 

NTS was raised when Pu, Eu, Co, and Cs, associated with colloids, were detected in groundwater 

samples from the ER-20-5 site.  These radionuclides apparently had been transported from the 

BENHAM site 1.3 km to the north (Kersting et al., 1998).  This finding initiated a considerable 

number of studies regarding colloids at the NTS. 

An investigation of colloids in the Rainier Mesa tunnels was performed by LLNL, and the results 

were published in Kersting et al. (2002).  Reporting of this work was included and updated in 

Kersting and Reimus (2003).  Unsaturated zone water from fractured volcanic tuffs in the Rainier 

Mesa E-, N-, and T-Tunnels was sampled in 1998 by LLNL and the Defense Threat Reduction 
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Agency (DTRA).  In these tunnels, groundwater moving in the unsaturated zone can be accessed 

without the use of pumps.  This is desirable because pumping can increase the mobilization of 

colloids.  Samples were analyzed for colloid mineralogy as well as for groundwater composition, 

gamma-emitting radionuclides, Pu, Am, and 90Sr.  It was found that low-solubility radionuclides 

detected in the unsaturated zone water strongly sorbed to the colloidal fraction of the groundwater, 

and the majority of the radioactivity was associated with the colloidal fraction of the groundwater.  

The results of the mineralogy analysis are presented in Section 13.4 

Kersting and Reimus (2003) comprehensively reviewed the literature and state of knowledge about 

colloid-facilitated transport at the NTS.  The primary conclusions of this study are as follow:  

• Colloids exist and are stable in groundwater at the NTS.

• Plutonium and Am are overwhelmingly associated with the colloidal fraction of groundwater 
in both the unsaturated and saturated fracture flow environments at the NTS.

• Plutonium has a high sorption affinity and concomitant low desorption rate for mineral 
colloids (zeolites, clays, manganese oxides, iron oxides, and silica) found in groundwater at 
the NTS. 

• Plutonium-doped mineral colloids were transported through saturated fractured rock cores 
from Pahute Mesa.

• It is reasonable to expect a small fraction of radionuclide mass from a discrete source to move 
essentially at the rate of water flow through fractures over significant distances while sorbed 
onto colloids.  

• Colloids can facilitate the transport of low levels of low-solubility radionuclides, and this is 
the dominant mechanism for the rapid transport of these radionuclides in groundwater.  

The Bechtel SAIC (2004b) document, which was published for the YMP, contains analyses of data 

regarding colloid retardation factors representing reversible chemical and physical filtration of 

colloids in the saturated zone.  Distributions of retardation factors for alluvium and fractured 

volcanics, and data on the fraction of colloid mass that transports unretarded in the natural system are 

presented.  The document also discusses the validity of using microspheres as a surrogate for colloids 

in laboratory and field experiments.
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Ware et al. (2005) report results of sorption, desorption, and fracture transport experiments conducted 

at LANL using six radionuclides (14C, 137Cs, 237Np, 239Pu, 90Sr, 233U) and numerous geologic samples 

from both the TCU and LCA.  Although the experiments did not intentionally involve colloids as a 

transport mechanism, colloids were thought to have formed by silica or calcite precipitation in the 

synthetic groundwater used for the experiment.  In this study, colloid-facilitated transport was 

implicated for the rapid transport of a fraction of the 137Cs and 239Pu in the TCU fracture experiments.  

The results indicated that the potential for colloid-facilitated transport of 137Cs and 239Pu is far greater 

than the potential for 90Sr, 233U, and 237Np; the latter three radionuclides showed no evidence of 

colloid-facilitated transport in the TCU fractures.  The results also indicated that 137Cs and 239Pu 

probably sorbed very strongly (and preferentially compared to the other radionuclides) to these 

colloids before being introduced to the fractures.

Zavarin et al. (2005) report on laboratory experiments designed to pursue understanding of how 

radionuclides migrate or are retarded in TCU fractures, and the migration behavior of radionuclides 

once they reach the fractured LCA.  For one of the TCU cores used for the experiment, clinoptilolite 

colloids were included both in the radionuclide cocktail and background solution to examine the 

potential role of colloids in facilitating transport of strongly sorbing radionuclides, such as Pu.  

Zavarin et al. (2005) demonstrate that colloid-facilitated transport was not a significant mechanism 

for the transport of Cs, Np, and U.  In contrast, breakthrough of Sm and Pu was significant only in the 

presence of colloids.  The results indicate that Pu migration is likely to occur in the TCU only as a 

result of colloid-facilitated transport, and that any significant transport of Sm in the TCU fractures 

will likely be the result of colloid-facilitated transport.  However, whether the colloid-facilitated 

transport is significant at the field scale will require further examination.  As suggested by the TCU 

experiments, the introduction of colloids in the LCA may significantly enhance transport behavior of 

the strongly sorbing radionuclides.

Abdel-Fattah et al. (2005) report that LANL has been measuring colloid concentrations and size 

distributions in groundwater samples collected from monitoring wells at the NTS for several years, 

and this report presents the results of their analyses.  These data are updated in Reimus et al. (2006a),  

where recent LANL results for measured colloid concentrations and size distributions are presented.  

In addition, new information is introduced regarding the associations of Cs, U, Np, and Pu with 

colloids in groundwater samples collected from eight near-field monitoring wells with very low 
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concentrations of radionuclides in the groundwater.  This information has the practical importance of 

evaluating whether radionuclides are associated with colloids for transport.  Further discussion is 

provided in Section 13.7. 

Reimus et al. (2006c) report on laboratory experiments conducted to determine transport properties of 

tracers used in the ER-6-1 MWAT-TT within fractured core of the LCA, which included CML 

microspheres.  Microsphere filtration and detachment rate constants are reported (see Section 13.6 for 

further discussion).  The fracture transport experiments indicated that significant filtration of the 

microspheres can be expected in LCA fractures, possibly because of the relatively high ionic strength 

and high divalent cation concentrations in the LCA groundwater.  Higher flow velocities and 

hydraulic conductivities in the LCA (compared to fractured volcanics at the NTS) may offset the 

greater tendency for colloid attachment to surfaces in the LCA and make the LCA just as susceptible 

to colloid-facilitated transport as the fractured volcanics.  Further laboratory and field studies over a 

wide range of time scales, flow rates, and flow geometries are needed to fully address these questions.

Zavarin et al. (2006) summarize experiments that evaluated the role of colloids in radionuclide 

transport in fractured carbonate rocks.  These studies indicate that 3H and rhenium behave as 

conservative tracers, and Sm migration in carbonate fractures was only observed as a result of 

colloid-facilitated transport.  Thus, in the absence of colloids, Sm transport is unlikely.  Zavarin et al. 

(2006) state that based on their analogous reaction chemistry, it is likely that the transport of any of 

the trivalent rare earth radionuclides (as well as the Am[III] and Cm[III] actinides) will be attributable 

to colloid-facilitated transport.  Although transport of Pu in carbonate fractures occurred in the 

absence of colloids, it is likely that this transport is attributable to Pu+5.  In the presence of mineral 

surfaces, Pu will tend to reduce to Pu+4 over time.  Migration of Pu+4 as a free aqueous species in 

carbonate fractures is unlikely, although migration by colloid-facilitated transport may occur. 

Zavarin et al. (2007) summarize results of laboratory experiments reported in Zavarin et al. (2005) 

and Ware et al. (2005) that examined radionuclide transport in tuff and carbonate fractures.  In some 

of the LANL and LLNL experiments in volcanic tuff, it was apparent that 137Cs, 239Pu, and Sm did not 

migrate as free solutes, but rather as solutes sorbed to colloids, as a combination of free solutes and 

solutes sorbed to colloids, or as colloidal precipitates (Zavarin et al., 2007).  This behavior was also 

evident for 14C in a few of the tuff experiments, and for 239Pu and Sm in the carbonate fracture 
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experiments.  In LANL experiments, either silicate or calcite colloids (the latter would explain the 

colloidal behavior of 14C) appear to have formed in the synthetic ER-2-1 water unintentionally, and to 

sorb 137Cs and 239Pu quite strongly.  The 239Pu concentrations used in LANL experiments were also 

high enough to have potentially created Pu colloids over time.  The fact that 137Cs and 239Pu were two 

of the more strongly sorbing solutes in the LANL tuff batch sorption and desorption experiments 

(Ware et al., 2005) also suggests that the unretarded transport of these radionuclides is associated with 

colloid-facilitated transport.

Reimus (2007c) presents an evaluation of the CML microspheres used as a surrogate for colloids in 

the MWAT-TT conducted within the LCA at the ER-6-1 well site in southeastern Yucca Flat.  

Significant filtering of the CML microspheres in the LCA was observed during the ER-6-1 

MWAT-TT, and filtration rate constants ranging from 0.002 to 0.004 hr-1 were calculated.  

Interpretations assuming reversible and irreversible filtration yielded equally good matches to the 

data.  The results of this study are further discussed in Section 13.6.2.1.

13.4 Colloid Mineralogy

Kersting et al. (1998) report that groundwater samples from the ER-20-5 site contain Pu, Eu, Co, and 

Cs associated with colloids.  Filtered colloids and particulates from the groundwater samples were 

analyzed by XRD and scanning electron microscopy, and were found to be composed of clays (illite 

and smectite), zeolites (mordenite and clinoptilolite/heulandite), and cristobalite (polymorphous 

silicon dioxide).  These are common secondary minerals in altered rhyolitic tuff and are specifically 

identified in the local rocks.

Groundwater samples collected from pipes through the portals within U-12e, U-12t, and U-12n 

tunnels on Rainier Mesa contained colloids composed of calcite, clinoptilite, and illite, similar to the 

minerals identified in groundwater from ER-20-5 (Kersting et al., 2002).  These samples represent 

groundwater from the unsaturated zone collected in the sealed tunnels.  A sample was also collected 

from surface discharge on the wall of the U-12t tunnel. 

Kersting and Reimus (2003, Chapter 2) report on the mineralogical analysis of colloid samples 

collected from ER-20-5 #1 and #3, and from U20n PS1 DDH (collected in and near the CHESHIRE 
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cavity) in Area 20 of the NTS, both completed in volcanic tuffs.  Conclusions regarding colloid 

mineralogy were:

• The colloids in the NTS groundwater samples are mineralogically similar, although the actual 
abundance of each mineral may vary from aquifer to aquifer.

• The colloidal material is composed primarily of clays and zeolites.  This suggests that the 
potentially important Pu-sorbing minerals are clays and zeolites for groundwater hosted in 
silicic volcanic units.  This does not rule out the importance of minor colloidal minerals, those 
present at less than 10 percent (by mass). 

• The same clays and zeolites identified in the groundwater samples are also present in the host 
rock aquifers at ER-20-5.  The colloid minerals mimic the minor, host rock minerals from 
which they originated, and most likely represent the fracture lining minerals.

Refractory colloids generated at the time of nuclear test detonations or resulting from alteration of the 

resulting melt glass (probably mostly clays) cannot be ruled out as a potentially significant 

contributor to colloid-facilitated transport at the NTS.  Kersting et al. (1998) specifically mentions 

smectite as an alteration product of melt glass from nuclear test cavities.

13.5 Colloid Concentrations and Size Distributions

Colloid concentrations and size distributions have been measured in groundwater samples from wells 

within the Yucca Flat/Climax Mine CAU, within other UGTA CAUs, and near Yucca Mountain.  

Samples from wells just to the south-southwest of the NTS (NC-EWDP wells) have also been 

analyzed for colloids; however, the results of those analyses are not included in this data compilation 

because the data have not yet been formally reported.  These samples are primarily from alluvium.  

Because there are substantial colloid concentration and size distribution data available for the 

alluvium from NTS wells in Frenchman Flat, the lack of these data is not a critical problem.  These 

data are compiled in the UGTA GEOCHEM06 database (SNJV, 2006a).  Colloid data, included in the 

analysis, that were obtained following the release of GEOCHEM06 will be included in the next 

release of the database, GEOCHEM07.  All data used for the analyses in this section are presented in 

Appendix J.

The colloid concentration and size data reported in this section have been measured at LANL using 

high-sensitivity liquid in situ particle spectrometry as described in Kung (2000).  Initially, a Particle 
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Measuring Systems HSLIS-50 instrument, with a size-range measurement capability from 50 to 

200 nanometers (nm) diameter and greater than 200 nm, was used to measure concentrations and size 

distributions of colloids.  The system was later upgraded to include an HSLIS-100 spectrometer, with 

a size-range measurement capability from 100 to 1,000 nm and greater than 1,000 nm, to extend the 

analyzed size range up to 1,000 nm diameter.  The reported colloid sizes are for an equivalent 

spherical particle diameter.  This instrumentation provides a count of the total number of colloid 

particles for a standard sample volume within specified size-range bins, and the data for a bin were 

reported under the heading specifying the lower size of the bin range.  For samples only analyzed on 

the HSLIS-50, only data for the 50- to 200-nm range and greater than 200 nm are available.  For other 

samples also analyzed with the HSLIS-100, data for the 50- to 1,000-nm range and greater than 

1,000 nm are available.

Colloids less than 50 nm diameter may also be significant but could not be characterized with the 

available instrumentation.  There are a few incidental measurements of colloid mass for samples that 

differentiate mass between greater than 10 nm and some larger size, but colloids less than 50 nm have 

not been systematically characterized.  The following analyses do not account for colloids less than 

50 nm.

13.5.1 Colloid Concentration and Size Data

Colloid concentration and size distribution data are available from 131 unfiltered samples collected 

from 45 different wells/completion intervals.  Although the GEOCHEM06 database (SNJV, 2006a) 

contains additional results for filtered samples, filtered samples are not considered representative of 

the natural colloids in groundwater and were not included in the analysis.  Multiple analyses of 

groundwater samples from the same completion interval of the well reflecting various stages of well 

development, amounts of purging, or sampling pumping rates are reported.  The most representative 

sample for concentration and size distribution for each well was selected as the sample having the 

lowest total colloid concentration (50- to 1,000-nm size range).  This criterion was based on the 

general dependence of the colloid content of a sample upon cleanout and purging of the well before 

sampling.  Colloid content decreases with development and purging as colloidal materials left from 

well construction and present from corrosion products of well materials are removed.  It is also 

recognized that purging using higher pumping rates (resulting in high in situ groundwater flow 
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velocities) may mobilize colloids that are not mobile at natural groundwater flow velocities, but it is 

thought that extended purging may diminish this effect and the colloid content would become more 

representative.  In one case, results for two duplicate samples were averaged.  

Table 13-1 lists the wells for which there are colloid concentration and size data.  The table lists the 

well name, the Master ID (National Water Information System [NWIS ID]), the sample ID for the 

selected representative sample, the CAU in which the well is located, the HSU(s) that the completion 

interval of the well accesses, the HGU group to which the sample was assigned for colloid 

concentration and size distribution analysis, and the total colloid concentration in the sample.  

Complete colloid concentration and size data for the all samples for wells listed in Table 13-1 are 

provided in Appendix J.  Figure 13-1 shows the locations of these wells with different symbols for 

each CAU and with color codes for the HGU group to which the sample is assigned.          

The samples represent a wide variety of HSUs from all UGTA CAUs as well as the Yucca Mountain 

area.  The samples were assigned to seven functional HGU data groups (AA, VA, TCU, LCA3, 

UCCU, LCA, and GCU) for analysis.  This was accomplished by determining the HSUs within the 

completion interval (assumed sampled formation) for each well, and then cross-referencing the HSUs 

to HGUs for grouping (see Tables 4-2 and 4-3 for the HSU/HGU crosswalk).  The three volcanic 

aquifer HGUs (WTA, VTA, LFA) were combined into a single volcanic aquifer group (referred to as 

VA in Table 13-1).  This was done because many completion intervals contained proportions of more 

than one of the volcanic aquifer HGUs, and there was no basis for specific HGU assignment.  Also, 

there were insufficient data for analysis of each volcanic aquifer HGU separately.  The LCA and 

LCA3 were separated due to substantial hydrologic differences between these two HSUs that may 

affect the colloid content as well as the hydrology of transport.  Samples from nine wells within 

Yucca Flat were available, representing five of the seven HGU groups, although only two of the 

groups were represented by more than one sample.

13.5.2 Colloid Concentration Distribution

Table 13-1 presented the colloid concentration data (50- to 1,000-nm range) for all selected samples 

on a CAU and HGU-group basis.  An empirical cumulative distribution function (ECDF) was 

calculated for the colloid concentration data and evaluated to fit a distribution.  A lognormal 

distribution, shown in Figure 13-2, was optimal.  The K-S statistic, measuring the goodness-of-fit 
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Table 13-1
Representative Colloid Samples and Concentrations

 (Page 1 of 2)

SITE_ID MASTER_ID Sample_ID CAU Sampled HSU a HGU 
Group

Colloids/mL
(log10)

U-3cn PS #2 370338116011901 14377.71 YFCM LTCU TCU 9.78
U-4u PS #2A 370513116025101 14384.7 YFCM LTCU TCU 11.74

ER-12-2 371019116072101 14231.7 YFCM UCCU UCCU 6.58
ER-6-1 #2 365901115593501 14250.7 YFCM LCA LCA 7.05

ER-7-1 370424115594301 14251.7 YFCM LCA LCA 6.57
UE-7nS 370556116000900 14391.7 YFCM LCA LCA 7.42

Water Well 2 (USGS HTH #2) (3,422 ft) 370958116051512 14399.72 YFCM LCA LCA 8.40
Water Well 5A 364635115572901 7445.74 FF AA AA 8.04
Water Well 5C 364708115574401 7447.73 FF AA AA 6.11
Water Well 5B 364805115580801 7446.72 FF AA AA 6.97

UE-5n 364915115574101 14396.7 FF AA AA 6.91
RNM-2S 364922115580101 14395.7 FF AA AA 5.45
RNM-1 364928115580101 14394.7 FF AA AA 5.92

UE-5c Water Well 365011115584702 7443.74 FF AA/LTCU AA 8.20
UE-5 PW-3 365201115581601 7442.73 FF TM-WTA VA 5.93

Water Well 4A 365412116013901 7444.74 FF TM-WTA VA 5.20
ER-5-4 #2 364927115574801 14247.7 FF LTCU TCU 8.61

UE-2ce 370831116080701 14390.71 RMSM LCA3 LCA3 8.06
ER-12-3 371142116125102 14236.71 RMSM LCA3 LCA3 8.11
ER-12-4 371311116105902 14240.7 RMSM LCA3 LCA3 7.59

U-12s Well 371342116125102 14402.7 RMSM MGCU GCU 8.13
ER-EC-7 365910116284401 7435.7 PMOV FCCM VA 6.66
ER-EC-5 370504116335201 7433.7 PMOV TMCM VA 6.30
ER-EC-8 370610116375301 7465.72 PMOV FCCM/TMCM VA 7.61
ER-18-2 370615116222401 7430.7 PMOV TMCM VA 7.68
UE-18r 370806116264001 6629.7 PMOV TMCM VA 8.44

ER-EC-2A (1,635-4,973 ft) 370852116340501 7466.7 PMOV FCCM/TMCM VA 6.57
ER-EC-4 370935116375301 7432.72 PMOV TMA/FCCM/TCVA VA 6.14
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ER-EC-6 (1,581-5,000 ft) 371120116294801 7468.7 PMOV BA/UPCU/TCA/LPCU/TSA/CHCU/CFCM VA 7.53
ER-EC-1 371223116314701 7469.7 PMOV BA/UPCU/TCA/LPCU/TSA/CHCU/CFCM VA 7.61

ER-20-5 #3 371311116283801 14246.71 PMOV CHZCM VA 11.08
ER-20-5 #1 371312116283801 5164.7 PMOV TSA/CHZCM VA 10.10

U-20n PS#1 DD-H (3,025 ft) 371425116252401 5187.7 PMOV CHZCM VA 8.41
UE-20bh #1 371442116243301 6627.7 PMOV CHZCM VA 8.72

U-19ad PS 1A 371613116211701 14361.7 PMOV PLFA VA 10.57
UE-19h 372034116222501 7470.7 PMOV BRA VA 8.49

U-19v PS #1D 371453116205700 14366.71, 14366.72 b PMOV BFCU TCU 8.72
U-19q PS#1d 371649116215401 5246.7 PMOV BFCU TCU 10.43
UE-25 WT #3 364757116245801 7453.7 YMP TM-LVTA/TM-WTA/UTCU/TSA/LVTA VA 6.87

UE-25 WT #17 364822116262601 7455.7 YMP TM-LVTA/TM-WTA/UTCU/TSA/LVTA VA 9.16
J-13 Water Well 364828116234001 7459.7 YMP TSA VA 6.01

UE-25c #2 364947116254401 7471.71 YMP CHVTA/YMCFCM VA 6.66
UE-29a #1 HTH 365629116222601 4922.7 YMP PCM VA 6.86
UE-29a #2 HTH 365629116222602 4925.7 YMP YMCFCM VA 7.56
USW SD-6 ST1 365040116275901 7461.7 YMP Unknown VA 8.02

a HSU for respective geologic model; see geologic model documentation for key
b Duplicate samples

Table 13-1
Representative Colloid Samples and Concentrations

 (Page 2 of 2)

SITE_ID MASTER_ID Sample_ID CAU Sampled HSU a HGU 
Group

Colloids/mL
(log10)
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Figure 13-1 
Location Map for Colloid Samples
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across the entire scale of observations, indicates that the ECDF conforms to a lognormal distribution 

at the 95 percent confidence level.  The data points in this figure are coded to indicate the HSU and 

the CAU for each.  Table 13-2 presents a summary of the colloid concentration data (50- to 1,000-nm 

range) available for Yucca Flat and the NTS area on an HGU-group basis.  Table 13-3 provides 

information on the lognormal CDF distribution fitted to the ECDF of the colloid concentrations.         

As shown in Tables 13-1 and 13-2, there is great variability in colloid concentrations for the 

groundwaters of the NTS.  For example, concentrations in the volcanic aquifers range almost six 

orders of magnitude (from 105.20 to 1011.08 colloids per milliliter).  Concentrations for HGU groups 

appear to vary between CAUs where there are data for an HGU group from more than one CAU.  

This variability was also reported and discussed in Abdel-Fattah et al. (2005) and Reimus et al. 

(2006a).  Groundwaters were sampled by LANL in FY 2004 from a single well completed in the 

alluvial aquifer (RNM-1), two wells completed in a volcanic aquifer (U-20n PS#1 DD-H and 

U4u PS #2A), and one in a tuff confining unit (U-19ad PS 1A).  Additional sampling took place in 

FY 2005 representing groundwaters associated with volcanic tuffs (ER-20-5 #3 and U-3cn PS#2) and 

the LCA3 (UE-2ce).  Colloid concentrations in the well waters sampled in FY 2005 spanned a range 

Figure 13-2 
Cumulative Distribution Function of Log10 Colloid Concentrations for All NTS Data
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of about three orders of magnitude, and the range in colloid concentrations for the FY 2004 wells was 

even larger, spanning approximately five orders of magnitude.  Abdel-Fattah et al. (2005) stated that 

the lower concentrations for the FY 2004 samples were measured in wells that had been more 

extensively pumped, more frequently sampled, or both (RNM-1 and U-20n PS#1 DD-H), and higher 

concentrations were measured in wells that had been pumped or developed to a lesser extent 

(U4u PS #2A and U-19ad PS 1A).  Reimus et al. (2006a) reported that although well conditions and 

pumping history undoubtedly have a significant influence on colloid concentrations in the wells, 

Table 13-2
Summary of Colloid Concentrations (Log10) for HGU Groups

HGU 
Group

Yucca Flat/Climax Mine Colloid Samples NTS Area Samples

Number of 
Observations

Min Max Mean a
Number of 

Observations

Min Max Mean a

Log10 colloids/mL Log10 colloids/mL

AA NA N/A N/A N/A 7 5.45 8.20 6.80

VA NA N/A N/A N/A 24 5.20 11.08 7.67

TCU 2 9.78 11.74 10.76 5 8.61 11.74 9.85

LCA3 1 N/A N/A 8.06 3 7.59 8.11 7.92

UCCU 1 N/A N/A 6.58 1 N/A N/A 6.58

LCA 4 6.57 8.40 7.36 4 6.57 8.40 7.36

GCU NA N/A N/A N/A 1 N/A N/A 8.13

All HGUs 8 6.57 11.74 8.20 45 5.21 11.74 7.76

a Mean of the Log10 concentration (geometric mean)

N/A - Not applicable
NA - Not available

Table 13-3
Lognormal CDF Shape Parameters for Colloid Concentration

Parameter Value (Log10 #colloids/mL)

Mean 7.73

SD 1.45

Lower 95% CI 5.3

Upper 95% CI 11.0
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lower colloid concentrations tended to be observed in groundwater that had higher concentrations of 

dissolved multivalent cations. 

13.5.3 Colloid Concentration Relationship to Water Chemistry

The chemistry of the water plays a major role in determining the stability of colloids (Kersting and 

Reimus, 2003, Chapter 1).  The stability of colloids in a given aquifer setting is a function of pH, 

redox potential, water chemistry, and status of the hydrogeochemical system.  Most field and 

laboratory experimental studies have demonstrated that lowering the ionic strength of groundwater 

results in the generation and stability of existing colloids, whereas increasing the ionic strength tends 

to decrease colloid concentration by promoting coagulation.  In addition, the presence of organic 

material has a strong stabilizing effect on the inorganic colloids. 

Alkaline element (Na+, K+) concentrations below 10-2 M and alkaline earth element (Mg2+, Ca2+) 

concentrations below 10-4 M increase colloid stability.  Work on the YMP by Reimus and Kung, 

summarized in Kersting and Reimus (2003, Chapter 1), demonstrates such dependence of colloid 

concentration on cation concentration in groundwater.  Colloid concentrations in wells completed in 

saturated alluvium south and southwest of Yucca Mountain are shown to vary as a function of 

divalent cation concentrations in the groundwater.  There is significant variability in the divalent 

cation concentrations, and colloid concentrations from these wells were best correlated with divalent 

cation concentrations represented as Log([Ca2+] + [Mg2+]).  A similar relationship of decreased 

colloid concentrations with higher concentrations of divalent cations was observed by Reimus et al. 

(2006a) for samples collected and analyzed from the AA, LCA3, TCU, and VA HGU groups, as 

described earlier.  This result is consistent with colloid stability theory and the Shulze-Hardy rule 

(Hiemenz, 1986).    

This relationship may be applicable to groundwater in the Yucca Flat HSUs to the extent that the 

colloid concentrations may be estimated based on concentrations observed for groundwater within 

the same HSU or an HSU with similar mineralogy and with similar total concentrations of the 

divalent cations, [Ca2+] + [Mg2+].  Additional studies are needed to determine whether a relationship 

similar to that reported for the alluvium near Yucca Mountain (i.e., Log {[Ca2+] + [Mg2+]} versus 

colloid concentrations) is observed for the Yucca Flat HSUs.  
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13.5.4 Colloid Size Distributions

The distribution of colloid sizes in groundwaters of the Yucca Flat/Climax Mine CAU is important 

because it impacts the mobility of colloids.  Reimus et al. (2006a) report that most of the colloid 

surface area and mass is associated with smaller colloids (less than 200 nm diameter) that are 

probably more likely to transport over significant distances than larger colloids.  

Normalized colloid size distributions were determined for the 45 samples taken from wells both in 

Yucca Flat and wells completed in units comparable to Yucca Flat HSUs.  The size distributions were 

normalized by dividing the number of colloids in each size “bin” by the total number of colloids in all 

bins, allowing the shapes of the distributions to be compared.  The proportion of colloids in each size 

bin is determined by “C,” the number of colloids per milliliter measured within the “bin,” divided by  

“CT” the total number of colloids (per milliliter) for all size bins.  The data have been placed on the 

graph according to the upper size for the bin range, which conforms to subsequent graphs of 

cumulative density.  For the entire sample set, 99.9 percent of the colloids (by number) were less than 

200 nm in diameter; however, only 97 percent of the normalized size distribution is below 200 nm.

Figure 13-3 shows the individual distributions for all 45 selected samples over the measured size 

range of 50 to 1,000 nm.  There are, in fact, only 35 datasets for the entire range.  For 10 datasets, the 

measured range is only 50 to 200 nm, and greater than 200 nm.  Most of the size distributions are 

qualitatively similar in shape.  As indicated by the two colored reference lines (the average 

normalized size distribution and the normalized average size distribution, which is weighted by the 

concentration distribution), samples with higher concentrations of colloids tend to have concentration 

distributions with greater proportion of smaller sizes.  Figure 13-4 shows the size distributions for the 

50- to 200-nm size range in greater detail.  Because colloids were defined as particles up to 1,000 nm, 

the distributions were defined as 100 percent at 1,000 nm, and measured particles greater than 

1,000 nm, which were 0.01 percent of the total, were excluded.  For datasets of up to 200 nm and 

greater than 200 nm, the data greater than 200 nm were considered to be less than 1,000 nm.     

For parameterization of the size distributions, all of the normalized colloid size distributions for an 

HGU group were averaged and an ECDF was calculated.  CDFs were fitted using BestFit 4.5 

distribution-fitting software (Palisade Corporation, 2002).  Exponential or lognormal CDFs provided 

the best fits for all of the HGU groups, as identified in Table 13-4.  Lognormal distributions provided 

fits almost as good as the exponential function in the cases where an exponential function provided 
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Figure 13-3
Normalized Size Distributions of Colloids for Samples Selected for Each Well

Figure 13-4
Normalized Size Distributions of Colloids in the 50- to 200-nm Range
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the best fit.  For consistency, the fitted lognormal CDFs are shown in Figure 13-5.  The fitted 

distributions have a nominal shift of 50 nm to account for the lack of data less than 50 nm, and do not 

provide any information on the amount of colloids smaller than the lowest measured size of 50 nm.  

Colloids less than 50 nm represent an uncertainty for determining the total colloid sorption capacity.  

Note that sorption capacity is related to the colloid surface area, which varies as the square of the 

colloid particle radius (characterized as spherical), and that the proportion of smaller sizes would 

represent less uncertainty than the proportion by size.    

Also shown on Figure 13-5 are the average normalized size distribution and the normalized average 

size distributions.  The average normalized distribution includes all samples for all HGU groups, 

averaged after normalization.  The normalized average distribution is a normalized distribution of the 

average concentration for each size bin.  The latter reflects weighting by the concentration of colloids, 

and is consistent with the earlier statement that the samples with higher concentrations had 

proportionally more colloids of smaller sizes.    

Table 13-4 contains the lognormal fit statistics describing the CDF distributions for each HGU group.     

13.5.5 Data Limitations

The first limitation is the quality of the samples used to determine colloid concentrations and size 

distributions.  As previously mentioned, samples obtained from pumped wells for colloid analysis are 

potentially impacted by the necessary stressing of the aquifer to obtain the samples.  Colloids in the 

Table 13-4
Shape Parameters for Colloid Size Lognormal Distributions

HGU Groups AveNorm a AA VA TCU LCA LCA3 UCCU GCU

Mean (nm) 98 100 97 79 120 89 85 110

SD (nm) 65 68 61 31 87 42 55 92

+shift (nm) b 50 50 50 50 50 50 50 50

2.5% CI (nm) 54 54 54 53 57 55 52 54

97.5% CI (nm) 260 269 251 160 341 197 218 333

a Average normalized size distribution for all HGU groups.
b A more general 3-parameter form of the lognormal distribution includes an additional location parameter, +shift, which specifies a 

minimum value other than 0. 
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formation that are mobilized under pumping conditions may not necessarily be mobile under 

nonpumping, natural flow conditions.  Also, the samples may contain residual foreign materials that 

were introduced during drilling (e.g., drilling muds, polymer additives) or result from corrosion of 

well construction materials (e.g., metallic casing, concrete) mobilized by the increased groundwater 

velocity around the well resulting from pumping.   

It is considered best practice to purge a borehole before sampling for colloids.  Unfortunately, well 

purging was not done in a consistent manner for the samples used for this analysis.  Some of the 

samples came from wells that had produced large volumes of water at high flow rates for years before 

they were sampled (e.g., J-13 Water Well); others were pumped at medium to high rates for short 

periods of time; and some could only be pumped minimally or bailed before sampling.  When 

sampling for colloids, it is best to pump the well at low flow rates to minimize the perturbations to the 

ambient flow system.  High flow rates during sampling may lead to concentrations that are higher in 

Figure 13-5
Cumulative Distribution Function of Colloid Diameter 

for All NTS Data and HGU Groups
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the samples than in the formation under ambient conditions.  Pumped samples from the ER wells 

were collected at pumping rates that are considered high for representative colloid sampling.  

Consequently, colloid concentrations reported for the ER well samples may be greater than ambient 

concentrations in the groundwater.  The impact of these sampling inconsistencies on the colloid data 

cannot be quantified and has not been incorporated in the data analysis.

Another significant data limitation is the lack of information on colloids less than 50 nm.  There is 

only some miscellaneous measurements for colloid mass less than 50 nm, and no counting 

measurements of colloid concentrations (by number).  It is not known how significant colloids in this 

size range may be.  It has been observed that Pu forms colloids in this size range, as mentioned in 

Sections 13.3 and 13.7.

Further, it has been observed that there is significant variation in the colloid concentrations between 

CAUs, but there are insufficient data for most HGU groups within any one CAU to characterize the 

variability.  Because it appears that samples with overall higher concentrations have proportionally 

more colloids of lower sizes, mixing data from different CAUs may result in size distributions for 

HGU groups that are not accurate for any particular CAU.

13.5.6 Representativeness and Scaling Considerations

With respect to colloid concentrations and size distributions, scaling considerations (measurement of 

values at a scale different from the application of the value) equate to the representativeness of the 

samples relative to the colloids moving through the CAU-scale system.  As previously discussed, 

collection of representative samples from wells for colloid analysis has inherent problems due to 

effects of pumping on the colloid content of the sample and possible contributions of colloid-like 

material from the well.  There has not been definitive investigation of such effects for NTS samples.  

Colloid concentrations and size distributions appropriate to CAU-scale transport modeling would not 

be expected to vary appreciably from those measured in representative groundwater samples that 

characterize the variability in the groundwater well, but the data for individual HGUs are limited.  

The data reported here are believed to be generally representative.  Scaling of colloid transport 

parameters from measurement scales ranging from laboratory to approximately 100 m transport 

experiments to the CAU scale is probably much more uncertain.
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13.6  Colloid Transport Parameters

Colloid-facilitated transport is subject to retardation resulting from reversible attachment and 

detachment of colloids from immobile surfaces by physical and/or chemical processes and 

irreversible removal as a result of size exclusion in pore throats, physical attachment to rough 

surfaces, and coagulation and settling.  These processes are referred to in aggregate as filtration.  

Filtration rate constants (attachment and detachment rate constants) have been determined from 

analyses of tracer transport experiments conducted at both the laboratory and field scales using 

inorganic colloids and surrogates for colloids.  These rate constants determine the retardation factor.  

Retardation factors represent the effect of reversible chemical and physical filtration of colloids.  

Within transport models, large retardation factors effectively result in irreversible or permanent 

filtration over the times scales of interest.  The basis for determining transport parameter values is 

discussed in Section 13.6.1.

Bechtel SAIC (2004b) describes the determination of the colloid transport parameter values upon 

which the following data are based.  In application to YMP performance assessment models, several 

shortcomings have been identified with the present YMP approach to determining the parameter 

distributions used for transport modeling, and revisions are being developed (see Section 13.6.3.3 for 

discussion concerning limitations of the data analysis).  This does not affect the raw data, but rather 

affects the use of the data in transport modeling.

This section describes the data for attachment and detachment rate constants for colloids and the 

associated retardation factors.  The data are presented and analyzed within three categories: alluvium, 

fractured volcanic rocks, and fractured carbonate rocks.  The alluvium data are entirely from YMP 

(YMP-specific data and the outside field experiment data they have included), while the fractured 

volcanic rocks data include results from both YMP and UGTA experiments.  The data for fractured 

carbonate rocks are entirely from the UGTA ER-6-1 MWAT-TT and associated laboratory 

experiments.  A limited number of both field and laboratory tracer experiments have been conducted, 

producing a limited amount of data. 

13.6.1 Basis for Transport Parameter Values

Colloid filtration (attachment and detachment) rate constants have been derived from colloid 

responses in tracer tests using the advection-dispersion equation with appropriate terms for a single 
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reversible first-order reaction to account for mass transfer between mobile water and immobile 

surfaces (attachment and detachment) to fit the data.  Note that the attachment parameter is herein 

referred to as the filtration rate constant (kfil) and the detachment parameter referred to as the 

detachment rate constant (kdet) to maintain consistency with the source YMP document 

(Bechtel SAIC, 2004b).  In one-dimensional form, the transport equation for colloids may be written 

as:

(13-1)

(13-2)

Where:
C = Colloid concentration in solution, number of colloids/L3

S = Colloid concentration on rock or fracture surfaces, number of colloids/L2

V = Flow velocity in pores or fractures, L/T
D = Dispersion coefficient, L2/T
kfil = Filtration rate constant (1/T) = λV, where λ = filtration coefficient (1/L)
kdet = Detachment rate constant, 1/L-T
x, t = Independent variables for distance and time, respectively.
b    =   Water volume to rock surface area ratio (L) in the flow domain.  For a parallel plate fracture 

model, b is equivalent to the fracture half-aperture

Values for V and D in Equation (13-1) and Equation (13-2) are obtained from interpretations of 

nonsorbing solute tracer responses included in the tests.  Therefore, the filtration and detachment rate 

constants are the only parameters used to match the colloid responses.  The filtration rate constant 

(kfil) reflects the fraction of colloids that were not filtered during the tests (i.e., the filtration rate 

constant is constrained by the peak normalized concentration of the breakthrough curve representing 

colloids that arrive without any apparent retardation).  The detachment rate constant (kdet) is 

constrained primarily by the tail of the response.  Note that bkdet is the actual fitted value during 

analyses of colloid tracer tests, and kdet values implicitly include b.

The colloid retardation factor, Rcol, is calculated from colloid filtration and detachment rate constants 

using the following expression:

(13-3)

Symbols for Equation (13-3) are the same as those described in Equation (13-2).

∂C
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In application, the tail of the response is fit with a retardation factor, and the detachment rate constant 

is calculated using Equation (13-2).  This approach does not explicitly account for any permanent 

filtration.  However, the associated retardation factors effectively embody permanent filtration over 

the time scales of the experiments.  There is no practical approach to determining permanent filtration 

independently.  Details of the interpretation procedure are provided in Bechtel SAIC (2004b). 

13.6.2  Data Evaluation

Colloid filtration parameter values and retardation factors for NTS formations have been determined 

from a number of laboratory and field experiments conducted for YMP and the UGTA Project.  To 

bolster the dataset, data from an outside field experiment in alluvium judged applicable have also 

been included.  The data presented here are the same as the YMP data (Bechtel SAIC, 2004b) with 

the addition of more recently available data.  However, the data are presented here without the 

manipulations incorporated in the YMP analysis for determining input distributions to the YMP 

performance assessment models, such as weighting of certain data and truncation of distributions.

Laboratory column experiments with alluvium and fractured volcanic and carbonates cores have been 

conducted using silica, montmorillonite, and clinoptilolite colloids in addition to CML microspheres.  

All field measurements used CML microspheres ranging in sizes from approximately 200 to 640 nm 

diameter as colloid analog.  The use of CML microspheres as a surrogate for inorganic colloids is 

discussed in detail in Bechtel SAIC (2004b).  Results of comparisons of transport in laboratory 

studies indicate that CML microspheres behaved as conservative surrogates for natural colloids in 

fractured volcanic rock, but that CML microspheres transported with somewhat greater attenuation 

than natural colloids in alluvium.  

13.6.2.1  Colloid Filtration Rate Constants

Alluvium.   Colloid filtration and detachment rate constants and retardation factors for NTS-area 

alluvium have been estimated in a number of laboratory experiments for the YMP.  Only one field test 

of colloid transport in alluvium in the NTS area has been conducted, yielding field-scale filtration rate 

and detachment rates.  This test was conducted at NC-EWDP Site 22 (see Figure 9-1 for location), 

and the test analysis is reported in Reimus (2007b).  The analysis of this tracer test indicated two flow 
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pathways; colloid filtration and detachment rate constants were estimated for both pathways 

(Table 13-5).  

Data taken from Schijven et al. (1999) for a field experiment investigating virus removal conducted in 

a dune area in Castricum, Netherlands, were also used to estimate colloid filtration and detachment 

rates at the field scale (Bechtel SAIC, 2004b).  Filtration (referred to as attachment in Schijven 

et al.,  1999) and detachment rates for bacteriophages were measured in alluvial material under 

natural gradient conditions.  Two bacteriophages, denoted as MS-2 and PRD-1, were used in the 

field-scale test.  These bacteriophages were chosen because they attach less than most pathogenic 

viruses and are relatively persistent during transport through the subsurface (Schijven et al., 1999).  

The size of these bacteriophages, 26 and 62 nm respectively, is near the lower end of the size range 

characterized for colloids.

The groundwater at the site studied by Schijven et al. (1999) had somewhat higher divalent cation 

concentrations than the alluvium in Yucca Flat (90 to 100 mg/L Ca2+ and 10 to 15 mg/L Mg2+ 

compared to 20.2 to 41.1 mg/L Ca2+ and 6.6 to 32.4 mg/L Mg2+ in Yucca Flat).  Based on these data, 

colloids would be expected to be less stable at their site (see Section 13.5.3 for further discussion).  

The alluvium material at their study site was a bit coarser, with more sand, less clay, and more organic 

carbon than the alluvium of Yucca Flat, all of which would tend to result in enhanced transport 

relative to Yucca Flat conditions.  Thus, the combination of colloid surrogate, groundwater chemistry, 

and alluvium characteristics at the site studied by Schijven et al. (1999) is judged sufficiently similar 

to natural colloids moving through Yucca Flat alluvium that there are no obvious reasons why their 

reported filtration and detachment rate constants would not be conservative (i.e., not reflecting greater 

retardation) when applied to Yucca Flat alluvium, recognizing there are uncertainties associated with 

Table 13-5
Results of the Field-Scale Alluvial Tracer Test

Parameter Pathway 1 Pathway 2

Mass fraction, f 0.05 0.58-0.68

kfil (hr-1) 0.16 0.048

kdet (1/cm-hr) 0.0011 0.00034

Source: Reimus, 2007b
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using these data.  The two filtration rate constants determined for the NC-EWDP Site 22 field test are 

near the endpoints of the range of values determined from Schijven data (see Figure 13-6), suggesting 

that the datasets are consistent.      

Filtration rate constants in the alluvium dataset are plotted in Figure 13-6 as a function of the mean 

residence time for the corresponding test.  Natural colloids had the smallest filtration rate constants of 

any of the colloids in this figure.  These natural colloids were approximately 96 percent by weight 

smectite clay.  For all data, there is an apparent trend of decreasing filtration rate constant with 

residence time even though different sizes and types of colloids were used in the different tests.  In 

particular, the field data (both from Schijven and NC-EWDP Site 22) support the time dependence 

trend.  A reference line (not a distribution fit) with a slope of -1 is provided. 

Figure 13-6
Colloid Filtration Rate Constants as a Function of 

Mean Residence Time in Alluvium
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As previously stated, filtration rate constants reflect the fraction of colloids that were not filtered 

during the tests.  The trend shown in Figure 13-6 suggests that some fraction of colloids may always 

transport through a fracture flow system regardless of the time or length scale of the observations.  

While this graph can be interpreted to indicate that filtration rate constants will continually decrease 

with increasing time scales, it also suggests that while the majority of colloids would be filtered 

quickly, a small fraction would be resistant to filtration and capable of traveling large distances over 

long time periods.  This small fraction of unretarded colloids is referred to as the “fast fraction” in 

YMP documents (Bechtel SAIC, 2004b).  This statement implies that there may be a distribution of 

colloid filtration rate constants rather than a fixed rate constant that applies to all colloids.  The 

appearance of a small fraction of colloids at about the same time as nonsorbing solutes in tracer tests, 

regardless of the overall time scale of the test, forces filtration rate constants to decrease with time 

when a single-rate constant is assumed to apply to all colloids.

Figure 13-7 shows the ECDF of colloid filtration rate constants for alluvium determined from both 

laboratory and field-scale transport experiments.  The ECDF is plotted with a logarithmic scale for 

the filtration rate constants to show the range of values clearly.  Values from field-scale experiments 

are indicated, and in particular, the values for the NTS-area field experiment previously mentioned.  

Values from field-scale experiments only range across about one order of magnitude versus the four 

orders of magnitude range for all values.  

Fractured Volcanic Rocks.  Data were obtained from several field and laboratory tracer tests 

conducted in saturated, fractured volcanic rocks.  These tracer tests include:

• The BULLION FGE (Reimus and Haga, 1999), referred to as “ER-20-6” in Figure 13-8

• Tracer tests in the Bullfrog Tuff (members of the Crater Flat Group) at the C-holes Complex 
near Yucca Mountain (Reimus et al., 1999), referred to as “C-Wells Bullfrog” in Figure 13-8

• Tracer tests in the Prow Pass Tuff (members of the Crater Flat Group) at the C-holes Complex 
near Yucca Mountain (Reimus et al., 1999), referred to as “C-Wells, Prow Pass” in 
Figure 13-8  

• Laboratory experiments conducted at LANL using fractured cores from Pahute Mesa on the 
NTS (Kersting and Reimus, 2003, Chapter 5)
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It is important to recognize that different CML microspheres were used in different field tests, and 

also that groundwater chemistry varied slightly from site to site and test to test. 

Figure 13-8 shows a plot of filtration rate constants obtained from interpretations of the field and 

laboratory tracer tests conducted in saturated fractured volcanic rocks as a function of the time to 

reach peak nonsorbing tracer concentrations in the tests.  This plot shows an apparent trend of 

decreasing filtration rate constant with residence time even though different sizes and types of 

colloids were used in the different tests.  A reference line with a slope of -1 (not a fit) is provided, the 

same as for the alluvium data.  Similar to the discussion for alluvium filtration, the trend shown in 

Figure 13-8 suggests that some small fraction of colloids transporting through a fracture flow system 

would be resistant to filtration and capable of traveling large distances over long time periods.  This 

statement implies that there may be a distribution of colloid filtration rate constants rather than a fixed 

rate constant that applies to all colloids. 

Figure 13-7
Cumulative Probability Distribution of Colloid Filtration Rate Constants for Alluvium
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An ECDF for the volcanic rocks filtration rate constants, shown in Figure 13-9, was constructed from 

the data presented in Figure 13-8 without any adjustment for the possible scale effect, with the 

filtration rate constant values plotted on a logarithmic scale.  Also included is an estimate of the 

filtration rate constant determined for observed radionuclide transport from the BENHAM nuclear 

test to ER-20-5, discussed below.  There is no other information available for characterizing the 

apparent scale effect at the CAU scale.  Values from field-scale experiments are indicated.  The values 

for field-scale experiments only range across about two orders of magnitude versus the almost five 

orders of magnitude range for all values, and the estimated value from the BENHAM observation is 

almost two orders of magnitude lower than the next higher values (from field-scale experiments).    

An additional data point was added to the dataset that did not come from a tracer test, but rather from 

the observation of colloid-facilitated Pu transport to the ER-20-5 wells that originated from the 

BENHAM nuclear test cavity (Kersting et al., 1998).  The method used to estimate a filtration rate 

constant for the observed transport is outlined here and discussed in Bechtel SAIC (2004b).  To 

Figure 13-8
CML Microsphere and Colloid Filtration Rate Constants as a Function 

of Mean Residence Time in Fractured Volcanics
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estimate a filtration rate constant for this observation, several assumptions were made.  First, it was 

assumed that the Pu in the ER-20-5 wells was irreversibly sorbed to colloids, which means that Pu 

concentrations in the wells reflect colloid transport parameters reasonably well.  Second, it was 

assumed that the concentrations measured in ER-20-5 #1 (on the order of 10-13 M Pu) represent a five 

orders of magnitude decrease from concentrations at the source.  Thus, colloid filtration is assumed to 

result in a five orders of magnitude decrease in colloid concentrations.  Third, it was assumed that any 

colloids that were filtered would never make it to the observation wells (i.e., effectively irreversibly 

filtered).  Finally, the time from the BENHAM test until the measurement of Pu at the ER-20-5 well 

site was approximately 30 years, which represents an upper bound estimate for travel time.  These 

assumptions result in a filtration rate constant estimate of 4.4 x 10-5 hr-1.  This estimate is not very 

sensitive to the assumed fraction of Pu-bearing colloids that travel from the source to the ER-20-5  

wells; when this fraction is decreased from 1 x 10-5 to 1 x 10-8, the estimated rate constant becomes 

7 x 10-5 hr-1.  The filtration rate constant is inversely proportional to the assumed travel time, so if the 

Figure 13-9
Cumulative Probability Distribution of Colloid Filtration Rate 
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0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00001 0.0001 0.001 0.01 0.1 1
Filtration Rate Constant (kfil,1/hr)

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty

All Data

Field Experiment

Benham Estimate



Section 13.0

Phase I Contaminant Transport Parameters for CAU 97: Yucca Flat/Climax Mine, Nye County, Nevada

13-31

travel time is decreased by a factor of 3 (to 10) years, the filtration rate constant increases by a factor 

of 3 (to 1.3 x 10-4 hr-1). 

Detachment rates were also estimated from analyses of the C-Hole tracer tests in the Bullfrog and 

Prow Pass Formations.  The colloid detachment rate constants reported in Bechtel SAIC (2004b) are 

0.00015 (lower bound) and 0.00025 1/cm-hr (upper bound) for the Prow Pass Tuff, and 0.0002 and 

1.08 1/cm-hr respectively for the Bullfrog Tuff, with this large range reflecting the different colloid 

transport behavior observed in the different transport pathways in this test.

Fractured Carbonate Rocks.  Information on colloid filtration in fractured carbonate rocks at the 

field scale was obtained from the analysis of the ER-6-1 MWAT-TT conducted in FY 2004, which 

included CML microspheres as a colloid surrogate.  Laboratory experiments on fractured carbonate 

core were also conducted in association with the tracer test to evaluate transport parameters for the 

LCA.  

A semi-analytical analysis of the ER-6-1 MWAT-TT is presented in Reimus (2007c).  The 

microsphere tracers were filtered significantly in the LCA, yielding filtration rate constants ranging 

from 0.002 to 0.004 hr-1.  Interpretations assuming reversible and irreversible filtration yielded 

equally good matches to the data.  The results of the semi-analytical analysis of the CML microsphere 

transport were reported in Table 7 of Reimus (2007c), and the relevant results are shown in 

Table 13-6.    

Reimus et al. (2006b) reports CML microsphere transport parameter estimates for laboratory 

experiments in five different LCA fractures in ER-6-1 core.  The results reported in Table 17 of 

Reimus et al. (2006b) are excerpted in Table 13-7.  The results of the laboratory experiments were 

consistent with the results of the ER-6-1 field tracer test in that the microsphere recoveries in the field 

Table 13-6 
ER-6-1 MWAT-TT Transport Analysis Results (Reimus, 2007c) for the LCA 

Transport Parameter Pathway 1 Pathway 2

Irreversible Filtration Rate Constant (hr-1) 0.004 0.002

Reversible Filtration Rate Constant (hr-1) 0.0035 0.0035

Reversible Detachment Rate Constant Times Fracture Half-Aperture (hr-1) 0.00027 0.00027
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test were at least an order of magnitude lower than the nonsorbing solute tracers.  In addition, very 

little difference in the breakthrough curves of the two different-sized microspheres was observed in 

both the field and laboratory experiments.  The microsphere filtration rate constants in the field tracer 

test were an average of 0.0035 hr-1 for both microspheres (Reimus, 2007c), which is about an order of 

magnitude lower than the filtration rate constants in the laboratory fractures.  This apparent trend of a 

decreasing filtration rate constant as a function of time or distance is consistent with that described 

previously for volcanic tuffs and the alluvium.  

13.6.2.2 Colloid Retardation Factors

Alluvium.  Colloid retardation factors, Rcol, were calculated using Equation (13-3) using the filtration 

rate values reported in Figure 13-6.  An ECDF for the alluvium retardation factors was determined, 

shown in Figure 13-10.  Note that the retardation factors are plotted on a logarithmic scale.  The 

values for field-scale experiments, the NC-EWDP Site 22 field test and Schijven et al., 1999, are 

indicated.  These values occupy the middle two orders of magnitude of the total range of four orders 

of magnitude.    

Fractured Volcanic Rocks.    An ECDF for Rcol for volcanic rocks, shown in Figure 13-11, was 

generated using the interpretive results from all of the tests represented in Figure 13-8.  Retardation 

factors are plotted on a logarithmic scale.  The values for field-scale experiments are indicated and 

range across the full range of the data.    

Note that values determined for two of the three microsphere responses from the BULLION FGE 

were excluded.  The ER-20-5 observations were included by assigning a probability of 0.00001 to a 

Table 13-7
Results of LCA Core Fracture Experiments (Reimus et al., 2006b)

Parameter
Fracture

2,400 ft 2,512 ft 2,675 ft 2,847 ft bgs 2,915 ft

Average Fracture Aperture (mm) 1.26 1.26 0.92 0.62 1.58

Microsphere Filtration Rate Constant (hr-1) 0.16/0.18 0.045/0.06 0.2/0.24 0.05/0.055 0.055/0.07

Fracture Half-Aperture Times Microsphere 
Detachment Rate Constant (hr-1) 0.0033/0.0026 <0.0001 0.0059/0.013 <0.0001 <0.0001

Note:  Where two numbers are provided, the first is for the 500-nm microspheres, and the second is for the 200-nm microspheres.
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Figure 13-10
Cumulative Probability Distribution of Colloid Retardation Factors for Alluvium

Figure 13-11
Cumulative Probability Distribution of Colloid 
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Rcol of 1.0, which assumes that 0.001 percent of the colloids from the source cavity moved unretarded 

to the ER-20-5 wells (consistent with the analysis of kfil).  The results from two of the microsphere 

responses in the BULLION FGE production well were omitted because there was a significant 

increase in microsphere concentrations in the tails of the responses that apparently resulted from a 

transient flow in the production well (this increase prevented an unbiased estimate of bkdet).  The 

maximum Rcol assumed for any of the colloid datasets was 1,001, which could not effectively be 

distinguished from an infinite retardation factor (because the colloid responses could be fitted equally 

well assuming no detachment at all).  Thus, the distribution shown in Figure 13-11 is probably 

conservative at the upper end because of this somewhat arbitrary maximum value.

13.6.2.3 Additional Filtration and Retardation Analyses

Laboratory experiments to quantify reactive transport of radionuclides in fractured tuff and carbonate 

rocks were conducted by LANL and LLNL (Zavarin et al., 2007).  As stated in Zavarin et al. (2007):

In some of the LANL and LLNL TCU fracture experiments, it was apparent that 137Cs,  239Pu, 
and Sm did not migrate as free solutes, but rather as solutes sorbed to colloids, as a 
combination of free solutes and solutes sorbed to colloids, or as colloidal precipitates.  This 
behavior was also evident for 14C in a few of the TCU experiments and for 239Pu and Sm in the 
LCA fracture experiments.  One of LLNL’s experiments was designed to include zeolite 
colloids and evaluate the role of colloid-facilitated transport.  In LANL experiments, either 
silicate or calcite colloids (the latter would explain the colloidal behavior of 14C) appear to 
have formed in the synthetic ER-2-1 water unintentionally and to sorb 137Cs and 239Pu quite 
strongly.  The 239Pu concentrations used in LANL experiments were also high enough to have 
potentially created Pu colloids over time. . . .

The RELAP/RETRAN interpretive approach for 137Cs and 239Pu in the TCU fractures was 
modified to account for the fact that they appeared to be transported by colloids. . . .  The 
rate-limited colloid filtration constant (or fracture sorption constant) was fitted while diffusion 
or sorption in the matrix was not allowed.  Colloid filtration was assumed to be irreversible 
(i.e., an infinite sink), and the colloid desorption rate was set to zero.

A combination of fracture retardation and sorption/colloid filtration rates constants was used 
for modeling 239Pu in carbonates when it appeared that colloid-facilitated transport may better 
describe the breakthrough results. . . .

The results of experiments interpreted as colloid-facilitated transport are reported in Table 13-8, 

which identifies each experiment by rock type, well that the core came from, depth of the fracture, 

and experiment flow rate.  
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Table 13-8
Retardation Factors and Transport Parameters for Fracture Flowthrough Experiments

Tuff Confining Unit

Experiment 
Identifier

UE-7ba, 1627, 
Synthetic slot 
with colloids 

UE-4a, 2029, 
high flow 

UE-4a, 2029, 
low flow 

UE-7az, 1770,
high flow 

UE-7az, 1770, 
low flow 

UE-7b, 1823, 
high flow 

UE-7ba, 1823, 
low flow 

UE-7ba, 1863, 
high flow 

UE-7ba, 1863,
low flow 

kfil
137Cs (hr-1) NA 0.5 b 0.24 b 3.0 b 1.6 b 0.58 b 0.3 b 0.39 b 0.35 b

Rcol 
238/242Pu 60 NA NA NA NA NA NA NA NA

 kfil
238/242Pu 0.4 a 0.75 b 0.2 b 2.3 b 0.5 b 0.75 b 0.12 b 1.2 b 0.3 b

Aperture, cm 0.05 0.058 0.062 0.048, 0.086 0.048 0.102, 0.132 0.096, 0.112 0.06 0.06, 0.08

Lower Carbonate Aquifer
Experiment 

Identifier
ER-6-1,2400, 

high flow 
ER-6-1, 2400, 

low flow 
ER-6-1, 2512, 

high flow 
ER-6-1, 2512, 

low flow
ER-6-1, 2675, 

high flow
ER-6-1, 2675, 

low flow 
ER-6-1, 2847, 

low flow 
ER-6-1, 2915, 

high flow
ER-6-1, 2915, 

low flow 
Rcol 

238/242Pu NA NA NA 40 19 33 42 NA NA
kfil

238/242Pu (hr-1) 0.28 b 0.36 b 0.18 b 0.14 b 0.64 b 0.24 b 0.2 a 0.17 a, b 0.08 b

Aperture, cm 0.198 0.128, 0.154 0.158 0.140, 0.156 0.122, 0.162 0.092 0.072, 0.086 0.37, 0.404 0.192, 0.362 

Data table excerpted from Zavarin et al. (2007); format modified per Reimus (original source of data). 
Estimates assume that ALL of the radionuclide mass entering the fractures was associated with colloids and that none of the radionuclide mass desorbed from the colloids 

while in the fractures.

a Breakthrough fitted assuming rate-limited sorption/colloid filtration in fracture; modeled as reversible, one value is reported.  
b Breakthrough fitted assuming rate-limited sorption/colloid filtration in fracture; modeled as irreversible, reported value is upper bound.

kfil - Filtration Rate constant
NA - Not available
Rcol - Retardation factor
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These filtration rate constants were not included in the distribution analysis of Figure 13-9 because 

they were not estimated directly from colloid breakthrough curves, but rather were estimated from 

radionuclide breakthrough curves assuming that all the radionuclide mass entering the fractures was 

associated with colloids.  If the radionuclide mass entering the fractures was only partially associated 

with colloids, the filtration rate constants would be smaller than the estimates of Table 13-8.  

13.6.3  Limitations of the Colloid Transport Parameter Data and Analysis

There are several types of limitations for the colloid transport parameter analysis.  These include data 

quality limitations, scaling considerations, and matching the available data to the parameters required 

for colloid-facilitated transport modeling.  The analysis may require revision as more data become 

available and as colloid-facilitated transport understanding, theory, and modeling evolves.

13.6.3.1 Data Quality Limitations

There are few field-scale transport experiments for the HSUs in the NTS CAUs, and none of these 

actually involve colloid-facilitated radionuclide transport; rather, they involve surrogates for colloids.  

Much of the data are laboratory scale, and laboratory tests have been conducted on formation samples 

from only a few locations.  Colloid transport parameters determined for transport media with different 

lithology and chemistry, as well as those derived from transport of colloid surrogates (bacteriophage 

and CML microspheres), must be used with caution and qualified.  There may be important 

unidentified physical and chemical factors when compared to site-specific conditions and 

radionuclide transport.

Secondly, the transport parameter data are derived from interpretation of transport experiments rather 

than direct measurement, and the parameter values are determined within the context of evolving 

experimental and analysis methodology.  There is also an inherent uncertainty associated with the 

colloid retardation factors because of the high degree of uncertainty associated with estimating 

detachment rate constants based on fitting the truncated tails of colloid breakthrough curves.  In many 

cases, the detachment rate constants are poorly constrained by the breakthrough curves, and they 

could change significantly if the tests had been conducted longer so that the tails were longer. 
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The quality of the data varies and is difficult to assess.  No weighting scheme has been used for the 

analysis because the basis for such weighting is so poorly known.

13.6.3.2 Scaling Considerations

The results of field and laboratory studies suggest that there may be important scale dependence (for 

time or distance) of colloid filtration rate constants and retardation factors.  However, the available 

data are mostly from small-scale laboratory experiments and a few relatively small-scale field 

experiments.  Filtration rates have been shown to be time-dependent.  Determining the 

scale-dependency for CAU-scale modeling requires determining time scales for the predictions of 

colloid-facilitated transport at the CAU scale.  There is no information at the CAU scale for 

colloid-facilitated transport other than the estimate for transport from the BENHAM test based on 

incidental data, which required several assumptions unsupported by data.  

Rather than an explicit scale dependence, it is possible that there may be a wide distribution of colloid 

filtration rate constants associated with any colloid population and fracture flow system.  As a result 

of this distribution, there may always be a small percentage of colloids that are resistant to filtration 

and capable of traveling over large distances at essentially the rate of water flow in any given 

groundwater flow system.  

13.6.3.3 Colloid Retardation Transport Modeling Approach

There are several concerns with the current approach to parameter distributions to be used for colloid 

transport modeling as described in Bechtel SAIC (2004b).  First, it does not account for scale 

dependence of filtration rate constants or retardation factors.  Second, modeling of colloid-facilitated 

transport using their current approach results in a double-humped breakthrough that is inconsistent 

with observations in most colloid transport experiments.  The double hump is produced as a result of 

a small fraction of unretarded colloids (fast fraction) based on the filtration rate constant distribution, 

and a second pulse of retarded colloids at a later time based on a single retardation factor for all 

non-fast-fraction colloids.  Also, the use of a single retardation factor results in complete colloid 

recovery, also inconsistent with experimental observations.  
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A revised approach to colloid retardation is being developed for the YMP to more explicitly account 

for scale effects and address the modeling problem.  The present data for filtration parameters and 

retardation factors would be used with a new approach to develop filtration and retardation factor 

distributions for use in modeling that incorporate scale dependence.  The colloid-facilitated transport 

model would use the retardation factor distribution.  It is recommended that the revision of the YMP 

approach be reviewed, and that the transport parameter analysis be updated before use of the transport 

parameters for contaminant transport modeling.

13.7  Radionuclide Associations with Colloids

Radionuclide associations with colloids have been evaluated in samples collected from near-field 

wells on the NTS known to contain radionuclides.  Groundwaters are generally analyzed for 

radionuclide content without specific regard to whether the radionuclides are dissolved or associated 

with colloids.  Two documents (Kersting et al., 1998; Kersting and Reimus, 2003) discuss the 

association of radionuclides with colloids in groundwater samples from the NTS.

The source of Pu in groundwater samples at the ER-20-5 (TYBO) site was traced to the BENHAM 

test 1.3 km to the north.  In analyses performed by Kersting et al. (1998), it was found that greater 

than 99 percent of the Pu and Eu isotopes, approximately 91 percent of the Co, and 95 percent of the 

Cs were associated with the colloidal and particulate fractions filtered from the groundwater.  This 

implies, but does not prove, that the radionuclides migrated associated with colloids. 

Groundwater samples were collected from Rainier Mesa Tunnels (U12E, U12N, and U12T) from 

waters impounded in the tunnels behind portal seals, representing radionuclide transport in the 

unsaturated zone.  The samples were analyzed for Pu concentration and isotopic composition, with 

separate analyses of the dissolved and the filterable solids fractions.  The overwhelming majority of 

the Pu, Am, and 90Sr was detected on the filterable, or colloidal fraction.  For example, greater than 

95 percent of the Pu was found in the colloidal, not the dissolved fraction (Kersting and Reimus, 

2003).

The FY 2004 and FY 2005 near-field well (filtered and unfiltered) samples were analyzed to 

distinguish the fraction of each radionuclide (137Cs, total U, 237Np, and 239Pu) associated with colloids 

in the sample (Reimus et al., 2006a).  In the FY 2005 samples, 137Cs was below the detection limit in 
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the unfiltered sample.  For the FY 2004 samples, the fractional associations of 137Cs with colloids 

correlated well with colloid mass loadings in the waters.  Calculated Kd values of 137Cs onto colloids 

were similar in all the wells, despite the large differences in colloid mass loadings in the waters.  This 

result suggests that 137Cs, when present in sufficient concentrations to measure, sorbs rather 

indiscriminately to colloid surfaces in the well waters based on available colloid mass and surface 

area.  It also suggests that some sort of equilibrium or steady-state exists between the 137Cs on the 

colloids and in solution.  It is well known the Cs sorbs primarily to illite >> clay > zeolite via ion 

exchange, which is independent of surface area.

A significant fraction of total U was associated with colloids in groundwaters of three wells, but the 

colloid-associated U was naturally occurring.  Samples from the remaining wells had little apparent 

partitioning, suggesting that U does not selectively partition to colloids to any significant degree.  

Both 237Np, and 239Pu were found in both solution and with colloids.  Partitioning of 237Np between 

solution and colloids is highly variable, with a maximum of about 30 percent associated with colloids.  

The variability is likely related to differences in colloid mineralogy.  Greater than 80 percent of Pu 

was associated with colloids in all near-field samples (except RNM-1, which did not yield definitive 

results because of very low colloid and Pu concentrations), and is higher at higher concentrations of 

Pu, with greater than 90 percent above a threshold of 109 colloids per milliliter.  In some cases 

colloid-bound Pu is found on the 10- to 50-nm colloids, which could affect the analysis because this 

size range is not always included in the analyses.  The results suggest there is a high degree of 

variability in Pu associations with colloids, probably the result of variability in colloid mineralogy or 

groundwater redox conditions.

13.8 Actinide Distribution Coefficients and Sorption Rates onto Colloids

Actinide Kd values, sorption (forward) rates, and desorption (reverse) rates onto colloids were 

obtained from batch sorption and desorption experiments as well as fracture transport experiments 

conducted at both LANL and LLNL.  Batch experiments have been conducted for both the UGTA 

Project (Pu) and the YMP (Pu, Am, Np, and U), and fracture-transport experiments have been 

conducted for the UGTA Project (Pu).  The dataset for actinide Kd values onto colloids are presented 

in Appendix J; values of kf and kb are presented in Table 13-9.    
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Table 13-9
Ranges of Rate Constants for Sorption and Desorption of Actinides onto Colloids 
(Assuming Only a Single Type of Sorption Site) from UGTA and YMP Experiments

Colloids/Actinides Batch kf (hr-1) Batch kb (hr-1) Fracture kf (hr-1) Fracture kb (hr-1)

Montmorillonite

Pu+4 0.2-0.5 0.0001-0.01

Pu+5 0.005-0.04 0.0001-0.01 0.005-0.04 0.1-2

Np+5 0.02-0.1 ND

Am+3 0.04-0.1 ND

U+6 0.02-0.1 ND

Silica

Pu+4 0.2-0.5 0.01-0.2

Pu+5 0.01-0.06 0.01-0.2 0.01-0.06 0.5-1.5

Np+5 0.02-0.1 ND

Am+3 0.04-0.1 ND

U+6 0.02-0.1 ND

Hematite

Pu+4 1-50 0.00001-0.0001

Pu+5 0.04-0.1 0.00001-0.0001

Np+5 0.02-0.1 ND

Am+3 1-5 ND

U+6 0.02-0.1 ND

Goethite

Pu+4 1-50 0.00001-0.001

Pu+5 0.06-0.1 0.00001-0.001

Clinoptilolite

Pu+4 1-50 0.001-0.03 1-50 0.001-0.03

Pu+5 0.001-0.01 ND

Birnessite

Pu+5 1-50 ND

kf - Sorption rate constant
kb - Desorption rate constant
ND - Not determined
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Table 13-9 provides ranges of actinide sorption and desorption rate constants onto colloids from batch 

experiments and fracture transport experiments (Pu only) conducted for the UGTA Project and the 

YMP.  It is apparent that the Pu desorption rate constants for montmorillonite and silica colloids are 

significantly greater in the fracture experiments than in the batch experiments, as discussed in the 

previous section. 

Data for Pu+5 sorption and desorption onto “natural” smectite colloids have recently been collected 

from NC-EWDP-19D and are reported in the YMP TDMS (YMP, 2004).  These data show that 

Pu sorption was very strong, and desorption was essentially negligible in batch experiments.  Note 

that Pu+5 is typically reduced to Pu+4 during sorption.  Column experiments using saturated alluvium 

from the same location were also conducted using Pu-tagged smectite colloids, and there was low but 

measurable desorption of the Pu from the colloids.  However, while the significant facilitation of 

Pu transport in alluvium by “natural” colloids is noteworthy, the results should have negligible impact 

on the broad ranges of sorption parameters presented in this section (Reimus, 2007a). 

13.8.1 Development of Parameter Distributions

The available data were assessed to derive Kd values and radionuclide desorption rates from colloids.

13.8.1.1 Distribution Coefficients 

Between 1997 and 2000, Lu et al. (1998a and b, 2000) conducted several batch sorption and 

desorption experiments to measure the sorption of Pu+4, Pu+5, Am+3, Np+5, and U+6 onto hematite, 

goethite, montmorillonite, and silica colloids using filtered waters from Well J-13 located in Area 25 

at the NTS (near Yucca Mountain) and synthetic J-13 water.  The Pu+4 was always introduced as a 

polymeric colloid (less than or equal to 10 nm diameter) because Pu+4 is not stable as a solute at 

near-neutral pH, except at very low concentrations.  The solubility of Pu+4 at near-neutral pH is less 

than 10-8 M.  The measurements of Pu+4 polymeric colloid sorption are, therefore, likely to be valid 

because the concentrations of Pu in solution were very low after equilibration, even though the 

kinetics of precipitation, colloid formation, and oxidation are not well known.  The hematite and 

goethite were selected to represent colloids that could form as a result of the corrosion of 

iron-containing waste package materials in the potential Yucca Mountain repository.  Experiments 
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were conducted at different colloid concentrations, temperatures, and ionic strengths.  The reader is 

referred to the Lu et al. (1998a and b, 2000) for details of the experiments.

Figure 13-12 depicts the ranges of radionuclide Kd values measured for the various 

radionuclide-colloid combinations at colloid concentrations of 200 mg/L at 20 °C in natural J-13 

water under an ambient laboratory temperature of about 20 °C (Lu et al., 1998a and b, 2000; 

Reimus et al., 2002a; Kersting and Reimus, 2003).  The results for Pu+5 Kd values onto silica and 

montmorillonite colloids in well water from U-20WW (Reimus et al., 2002a) and for Pu+5 Kd values 

onto goethite colloids in a synthetic J-13 well water (Kersting and Reimus, 2003) are shown as 

extensions of the bars for the J-13 Kd values in Figure 13-12.  Again, note that Pu+5 is typically 

reduced to Pu+4 during sorption.  Some of the key observations in the J-13 experiments, including the 

effects of changing the temperature, ionic strength, and colloid concentrations, are listed in brief 

summary fashion for each radionuclide and each colloid below.    

Figure 13-12
Ranges of Kd Values Measured for Actinide Sorption onto Colloids 

(Kersting and Reimus, 2003)
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Pu+4 and Pu+5 Sorption to Hematite Colloids:

• Pu+4 sorption is much faster than Pu+5 sorption, although final Kd values were quite similar. 
(Note that Pu+5 is typically reduced to Pu+4 during sorption.)

• Kd ranges from 2 x 104 to 2 x 105 mL/g at 20 °C, J-13 water, 200 mg/L colloid concentration.
• Kd increases to 5 x 106 mL/g as temperature increases to 80 °C.
• Kd increases to 1 x 107 mL/g as ionic strength increases to 0.07 M or greater.
• Kd increases slightly (about a factor of 2) at low colloid concentrations (down to 10 mg/L).
• Desorption Kd is comparable to sorption Kd, so tests appear to indicate reversibility.

Pu+4 and Pu+5 Sorption to Goethite Colloids:

• Pu+4 sorption is much faster than Pu+5 sorption, although final Kd values were quite similar.
• No significant effect of ionic strength on Kd values; Kd increases to 3 x 104 mL/g at low 

colloid concentrations.
• Desorption Kd is comparable to sorption Kd, so tests appear to indicate reversibility.

Pu+4 and Pu+5 Sorption to Silica Colloids:

• Pu+4 sorption is much faster than Pu+5 sorption, although final Kd values were quite similar.
• Kd ranges from 103 to 104 mL/g at 20 °C, J-13 water, 200 mg/L colloid concentration.
• Kd upper limit of 104 mL/g as temperature increases to 80 °C.
• Kd lower limit of 103 mL/g as ionic strength increases to 0.1 M.
• Kd increases to 3 x 104 mL/g at low colloid concentrations.
• Desorption Kd is comparable to sorption Kd, so tests appear to indicate reversibility.

Am+3 Sorption to Hematite Colloids:

• Kd ranges from 105 to 107 mL/g at 20 °C, J-13 water, 200 mg/L colloid concentration.
• No significant effect of temperature, although slightly higher Kd values at higher 

temperatures.
• Kd approaches the lower end of the Kd range as ionic strength increases to 0.1 M.
• Upper end of Kd range is approached at low colloid concentrations.
• Desorption Kd is at lower end of range of sorption Kd, so tests appear to indicate reversibility.

Am+3 Sorption to Montmorillonite Colloids:

• Kd ranges from 104 to 105 mL/g at 20 °C, J-13 water, 200 mg/L colloid concentration.
• Kd increases to 3 x 105 mL/g as temperature increases to 80 °C.
• Kd values approach lower end of Kd range as ionic strength increases to 0.1 M.
• Kd increases to 106 mL/g at low colloid concentrations (10 mg/L).
• Desorption Kd is within range of sorption Kd, so tests appear to indicate reversibility.

Am+3 Sorption to Silica Colloids:

• Kd range from 2 x 103 to 2 x 104 mL/g at 20 °C, J-13 water, 200 mg/L colloid concentration.
• Kd increases to 6 x 104 mL/g as temperature increases to 80 °C.
• Kd values approach lower end of Kd range as ionic strength increases to 0.1 M.
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• Kd increases to 105 mL/g at low colloid concentrations (10 mg/L).
• Desorption Kd is comparable to sorption Kd, so tests appear to indicate reversibility.

Np+5 Sorption to Hematite Colloids:

• Kd ranges from 102 to 103 mL/g at 20 °C, J-13 water, 200 mg/L colloid concentration.
• Kd increases to 4 x 103 mL/g as temperature increases to 80 °C.
• Kd values approach upper end of Kd range as ionic strength increases to 0.1 M.
• Desorption was not measurable, but this is not conclusive because of low amount of sorption.

Np+5 Sorption to Montmorillonite Colloids:

• Kd ranges from 10 to 200 mL/g at 20 °C, J-13 water, 200 mg/L colloid concentration.
• Kd increases to 3 x 103 mL/g as temperature increases to 80 °C.
• No significant effect of ionic strength on Kd values.
• Desorption was not measurable, but this is not conclusive because of low amount of sorption.

Np+5 Sorption to Silica Colloids:

• Kd ranges from 30 to 1,000 mL/g at 20 °C, J-13 water, 200 mg/L colloid concentration.
• Kd increases to 2 x 103 mL/g as temperature increases to 80 °C.
• Kd values approach lower end of Kd range as ionic strength increases to 0.1 M.
• Desorption was not measurable, but this is not conclusive because of low amount of sorption.

U+6 Sorption to Hematite Colloids:

• Kd ranges from 100 to 500 mL/g at 20 °C, J-13 water, 200 mg/L colloid concentration.
• Kd increases to upper end of Kd range as temperature increases to 80 °C.
• U precipitated at higher ionic strengths.
• Desorption was not measurable, but this is not conclusive because of low amount of sorption.

U+6 Sorption to Montmorillonite Colloids:

• Kd ranges from 30 to 200 mL/g at 20 °C, J-13 water, 200 mg/L colloid concentration.
• Kd increases to 700 mL/g as temperature increases to 80 °C.
• U precipitated at higher ionic strengths.
• Desorption was not measurable, but this is not conclusive because of low amount of sorption.

U+6 Sorption to Silica Colloids:

• Kd ranges from 300 to 600 mL/g at 20 °C, J-13 water, 200 mg/L colloid concentration.
• Kd increases to 2 x 103 mL/g as temperature increases to 80 °C.
• U precipitated at higher ionic strengths.
• Desorption was not measurable, but this is not conclusive because of low amount of sorption.

The results of the Pu+4 and Pu+5 experiments are consistent with at least partial reversibility of 

sorption, but the results would also be consistent with very slow desorption kinetics or irreversible 
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sorption of only a fraction of the Pu.  Definitive results cannot be observed in the time frame of the 

experiments.

Separate Pu+4 and Pu+5 sorption experiments onto colloids were recently conducted at LLNL 

(Kersting and Reimus, 2003).  The Pu+4 sorption onto clinoptilolite colloids was very fast and 

exhibited Kd values of 15,000 to 25,000 mL/g at 20 °C over a pH range of 7 to 9.5 (Kersting and 

Reimus, 2003).  The Pu+5 experiments were conducted using seven different colloids.  Note that Pu+5 

is typically reduced to Pu+4 during sorption.  The resulting Kd values for manganese oxide, birnessite 

and pyrolusite; calcite; zeolite, clinoptilolite; iron oxide and goethite; clay, montmorillonite; and 

silica are depicted in Figure 13-13 (Kersting and Reimus, 2003).  The data in Figure 13-13 are in 

good agreement with the Pu Kd values from LANL experiments shown in Figure 13-12.  The Kd 

values for goethite are slightly higher in the LLNL experiments compared to the range in LANL 

experiments, although both datasets indicate very strong sorption of Pu+5 to goethite.  These are the 

only types of mineral colloids for which comparisons are possible.

Figure 13-13
Distribution Coefficient Calculated for Pu+5 Sorbed 

onto Various Mineral Colloids (Kersting and Reimus, 2003)
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13.8.1.2 Radionuclide Sorption Rates onto Colloids

Sorption rates of Pu+4 and Pu+5 onto colloids have been measured in experiments at both LANL and 

LLNL.  Colloid sorption rates for polymeric Pu+4 onto colloids are typically very rapid, with 

maximum (or equilibrium) sorption levels being attained within a few hours to at most a day.  In 

experiments conducted at LANL for the UGTA Project, Pu+5 sorption rates onto silica colloids were 

initially faster than rates onto montmorillonite colloids, although final sorption Kd values tended to be 

somewhat higher on montmorillonite colloids.  Maximum sorption levels were attained within a day 

or so on silica colloids, while they took 5 to 10 days on montmorillonite colloids.  In sorption 

experiments conducted at LLNL, the sorption rates of Pu+5 onto birnessite and goethite colloids were 

very rapid (on the order of hours), but rates of Pu+5 sorption onto clinoptilolite colloids were 

extremely slow.  In the latter case, it did not appear that equilibrium sorption levels were attained 

even after 50 days (Kersting and Reimus, 2003).  These experiments were conducted in a synthetic 

water mimicking J-13 well water from near Yucca Mountain.  The results were attributed to the 

ability of the birnessite and goethite surfaces to reduce Pu+5 to Pu+4, followed by rapid subsequent 

sorption of the Pu+4 onto the colloids.  In contrast, Pu+5 reduction to Pu+4 in the presence of 

clinoptilolite colloids was interpreted to occur only in the solution phase, a much slower process that 

was considered to be a necessary precursor to sorption onto the colloids.  An alternative interpretation 

is that surface reduction was occurring, but at a much slower rate due to less effective reductants on 

the surfaces of the colloids.  Spectroscopic methods confirmed that Pu+4, not Pu+5, was sorbed to the 

surfaces of all the colloids studied (Kersting and Reimus, 2003).

Sorption rates of U+6, Np+5, Pu+4, Pu+5, and Am+3 onto various types of inorganic colloids have been 

measured in experiments conducted at LANL for the YMP (Lu et al., 1998a and b, 2000).  The results 

are summarized as follows (all at approximately 20 °C, 200 mg/L colloids, and ambient LANL 

atmosphere):

• The Pu+4 (colloidal) sorbed very quickly (hours) to hematite, goethite, montmorillonite, and 
silica colloids in J-13 well water.

• The Pu+5 sorbed more slowly to all of these colloids, taking one to three days to reach 
maximum sorption levels in J-13 water.  Sorption tended to be somewhat faster (just a few 
hours) onto hematite and goethite colloids in a synthetic J-13 water that consisted of only 
sodium bicarbonate in solution.
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• The Am+3 sorbed rapidly (within a few hours) and quite strongly onto hematite, 
montmorillonite, and silica colloids.

• The Np+5 sorbed relatively slowly onto hematite, montmorillonite, and silica colloids, taking a 
day or two to reach maximum sorption levels.  Sorption of Np+5 onto these colloids was also 
much lower (lower Kd values) than for Pu and Am.

• The U+6 sorbed relatively weakly to hematite, montmorillonite, and silica colloids, although 
maximum sorption levels were reached within a day or so.

The Pu+5 sorption rates onto montmorillonite colloids in Well U-20WW water were significantly 

slower (5 to 10 days) than sorption rates onto these same types of colloids in Well J-13 water (one to 

three days).  This was not explained; the two well waters are quite similar in composition.  There may 

be a significant influence of a minor constituent present in one of the waters that is not present in the 

other, or there could be some differences in the montmorillonite colloids used in the different 

experiments.

From a practical standpoint, radionuclide sorption rates onto colloids are probably less important for 

CAU-scale modeling than distribution coefficients (Kd values) and desorption rates.  Transport 

predictions will be relatively insensitive to whether sorption occurs over a matter of hours or a matter 

of weeks when time scales of interest are many years.  However, relative sorption rates onto different 

colloids may be important from the standpoint of determining which types of colloids radionuclides 

tend to be associated with.  If several different types of colloids are present, radionuclides will, for a 

while, tend to be preferentially sorbed onto the colloids that they sorb onto fastest, even if there are 

other colloids present that ultimately have larger distribution coefficients (because of slower 

desorption rates).

13.8.1.3 Radionuclide Desorption Rates from Colloids

Fewer studies have been conducted to determine radionuclide desorption rates from colloids than 

sorption rates onto colloids.  There have been discrepancies in results of various experiments 

concerning the reversibility of sorption and desorption rates, and the reason(s) for the discrepancies 

are controversial.  Results are reported according to the source document.

Studies conducted for the UGTA Project and the YMP exist only for Pu starting as either Pu+4 or Pu+5.  

Kersting and Reimus (2003) report very slow desorption rates of Pu+4 from clinoptilolite colloids at 



Section 13.0

Phase I Contaminant Transport Parameters for CAU 97: Yucca Flat/Climax Mine, Nye County, Nevada

13-48

pHs ranging from 4 to 10.  Total desorption over a seven-month period was 2 to 8 percent of the Pu 

that had sorbed.  

In UGTA experiments at LANL, desorption rates were measured for Pu+5 sorbed onto montmorillonite 

and silica colloids, and also for Pu+4 sorbed onto clinoptilolite colloids (obtained from LLNL).  These 

experiments were conducted at approximately 20 °C in water from U-20WW.  In all cases, desorption 

rates were slow, although the results were mixed as to exactly how slow for the montmorillonite 

colloids (Reimus et al., 2002a).  In some experiments, approximately 25 percent of the sorbed Pu 

desorbed in 7 to 11 months, and in other experiments only approximately 1 to 2 percent desorbed in 

1 to 4 months.  Desorption of Pu from silica colloids ranged from 20 to 30 percent in 7 to 11 months.  

Desorption of Pu+4 from clinoptilolite was slow, consistent with the LLNL results, with only 3 to 

4 percent of the Pu desorbing in approximately 4 months.  The inconsistencies in the montmorillonite 

results may be the result of using several different batches of montmorillonite colloids that were 

prepared from two different sources.  Some of the differences might also be the result of starting 

desorption after different time periods of sorption in different experiments.  Montmorillonite 

desorption experiments started after longer sorption time periods tended to have lower amounts and 

rates of desorption.

Montmorillonite, silica, and clinoptilolite colloids with Pu sorbed onto them were injected into 

naturally fractured cores from Pahute Mesa in experiments at LANL between 1999 and 2001 

(Reimus et al., 2002a).  Apparent Pu desorption rates from both montmorillonite and silica colloids 

were one to two orders of magnitude faster in the fractures than in the batch experiments described in 

the previous paragraph (the same Pu-colloid solutions were used in both experiments) 

(Reimus et al., 2002a).  The Pu desorption from the clinoptilolite colloids, on the other hand, was 

essentially undetectable, consistent with the batch experimental results.  The enhanced desorption 

rates for the montmorillonite and silica colloids were interpreted as the result of collisions between 

the colloids and the fracture surfaces, which offered opportunities for direct transfer of Pu from the 

colloids to the fracture surfaces, a process that was absent in the batch experiments (Reimus et al., 

2002a).  The fracture surfaces, which were coated with manganese oxides in two of the four fractures 

and had other mineral coatings in the other two, apparently had a greater affinity for the Pu than the 

montmorillonite and silica colloids.  However, in the case of the clinoptilolite colloids, the Pu 

apparently had a greater affinity for the colloids than the fracture surfaces.  These results indicate that 
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results from batch sorption and desorption experiments may not necessarily be directly transferable to 

modeling of colloid-facilitated transport in real fracture systems.

In YMP experiments, desorption rates have been measured for Pu+5 and Pu+4 (colloidal) from 

hematite, goethite, montmorillonite, and silica colloids over a 268-day period (Lu et al., 1998a).  

These experiments were conducted at approximately 20 °C, with 200 mg/L colloids in J-13 well 

water, and in ambient LANL atmosphere.  The experiments were also conducted with sequential 

additions of fresh Pu-free water to the colloids at 2, 15, 50, 86, 107, 128, 150, 212, and 268 days 

(with removal and analyses of the solutions that had been in contact with the colloids at each of these 

times).  This experimental method is in contrast to the methods used for the UGTA batch experiments 

where fresh solution was never added to the colloids after extracting water for a desorption 

measurement (i.e., only one desorption step, although measurements were made for several different 

contact periods).  Figure 13-14 presents the results of YMP Pu desorption experiments in which Pu+5 

was sorbed onto smectite and silica colloids for six days, the Pu was then desorbed in multiple batch 

steps in which Pu-free water was placed in contact with the colloids.  The experiments were 

conducted at room temperature in J-13 well water (Lu et al., 1998b), and Pu was initially introduced 

as Pu+5 in solution.  

The YMP results are summarized as follows:  

• Less than 0.02 percent of the sorbed Pu+5 and Pu+4 desorbed from the hematite colloids.

• Less than 1 percent of the sorbed Pu+5 and Pu+4 desorbed from the goethite colloids.

• The Pu+5 desorption from montmorillonite colloids was less than 1 percent after 268 days, but 
Pu+4 desorption from these colloids exceeded 10 percent after 150 days.

• Much of the desorption of Pu+5 and Pu+4 from silica and smectite colloids occurred early in the 
experiments, with a tendency to reach a desorption plateau later in the experiments 
(Figure 13-14).  Extrapolation of the results could lead one to conclude that some of the Pu 
sorption may be irreversible, even onto silica colloids that have relatively low measured 
Kd values.      

The last bullet suggests that a multiple sorption site model may be appropriate for Pu sorption onto 

colloids.  Some of the sites appear to be associated with relatively rapid desorption, while others may 

essentially behave as irreversible or very slowly reversible sites.  The time-scale of transport should 
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dictate whether the reverse rate is treated as effectively irreversible or slowly reversible.  A two-site 

sorption model resulted in significantly improved model fits to the sorption and desorption data from 

the UGTA batch experiments, particularly in the case of the montmorillonite and silica colloids 

(Reimus et al., 2002b).  Desorption experiments reported by Lu and Reimus (2003) indicate that 

long-term desorption rates of 0.35 yr-1 for smectite colloids and 0.12 yr-1 for silica colloids would be 

appropriate for systems with relatively long transport time scales.

The data of Lu et al. (1998a and b) are consistent with at least partial reversibility of actinide sorption 

onto colloids.  However, the data of Figure 13-14 suggest that much of the sorbed Pu may either be 

irreversibly sorbed or have very slow desorption kinetics.  The fracture data are probably more 

applicable than the batch data because of the presence of minerals that can compete with the colloids 

for sorption, which is consistent with the real system. 

Figure 13-14
Yucca Mountain Project Pu Desorption Experiments Using Smectite 

and Silica Colloids (Lu et al., 1998b)
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13.8.2 Data Limitations

It is important to recognize that the data in Figure 13-12 and Table 13-9 reflect only general trends 

observed in sorption and transport experiments; they do not account for the possibility of multiple 

types of sorption sites with different sorption strengths on colloids.  The desorption rate constants in 

Table 13-9 should be considered upper bounds because some sites may behave as essentially 

irreversible sites with very low or zero desorption rates.  The majority of batch experiments 

conducted to date have not been designed to explicitly investigate this possibility, although the 

desorption results shown in Figure 13-14 clearly suggest it.  A small amount of desorption occurring 

early in a batch test will tend to skew estimates of desorption rate constants to large values that may 

apply to only a small percentage of sorption sites.

Also, batch experiments conducted to date also do not account for potential desorption that may occur 

when other natural mineral surfaces are present to compete with the colloid surfaces for actinides 

(as in the fracture transport experiments or a real fracture system).  Sensitivity studies conducted with 

CAU-scale models using desorption rate constants that extend well beyond the ranges in Table 13-9 

would be important to evaluate the potential impact of the situation. 

13.8.3  Scaling Considerations

One important scaling consideration for actinide distribution coefficients and sorption/desorption 

rates onto colloids is how the desorption rate constants scale with time (or, alternatively, how 

reversible is the actinide sorbtion onto colloids).  The experimental results shown in Figure 13-14 

suggest that there may be a significant fraction of Pu that desorbs much more slowly from colloids 

than the initial desorbing mass fraction.  In effect, the Pu desorption rates appear to decrease with 

time, although the observed behavior could also be explained by multiple sorption sites with different 

sorption strengths or degrees of reversibility.  Such desorption behavior could have a profound impact 

on predictions of colloid-facilitated transport at CAU scales.

Another important “scaling” consideration is actinide sorption and desorption behavior on colloids in 

the presence of sorbing fracture surfaces (as opposed to being in the presence of only non-reactive 

test tube walls in batch sorption/ desorption experiments).  The significant differences between the 

batch and fracture transport experimental results indicated in Table 13-9 clearly suggest that batch 



Section 13.0

Phase I Contaminant Transport Parameters for CAU 97: Yucca Flat/Climax Mine, Nye County, Nevada

13-52

sorption/desorption test results should be cautiously applied in field-scale fracture transport modeling 

exercises.

13.9 Summary

This section presents a summary of the available data for colloid-facilitated transport specifically 

applied to NTS CAUs.  The data have been analyzed to the extent possible to provide parameter 

values and distribution parameter values that can be used for modeling colloid-facilitated transport.  

However, the data are not comprehensive or even complete for all rock types, much less individual 

HSUs.  The data are most complete for alluvium and fractured volcanic rocks (in general), and there 

is a limited dataset for fractured carbonate rocks.  There are only miscellaneous data for other rock 

types.  As was discussed in Section 13.6, the approach used to determine colloid transport parameters 

has some problems that will be resolved with a revised approach currently in development by YMP.  

The analyst should review the current YMP approach to colloid-facilitated transport and update the 

transport parameter analysis before using the parameter values presented in this section for 

contaminant transport modeling.  In general, it is recommended to conduct sensitivity studies with the 

CAU-scale transport model to determine what uncertainties regarding colloid-facilitated transport 

may be significant.
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A.1.0 UNDERGROUND NUCLEAR TESTS IN THE YUCCA 
FLAT/CLIMAX MINE CORRECTIVE ACTION UNIT

A total of 747 underground nuclear detonations were conducted in shafts and tunnels in the Yucca 

Flat/Climax Mine CAU.  This included 744 detonations in Yucca Flat proper and three detonations in 

the Climax Mine tunnel complex (DOE/NV, 2000).  Underground nuclear tests are designated 

(either individually or as groups) as CASs in the FFACO (1996; as amended, August 2006).  In some 

cases, multiple detonations were conducted simultaneously in the same emplacement hole and 

therefore comprise a single CAS (FFACO, 1996; as amended, August 2006).  Plate 1 shows the 

locations of the CASs.  A variety of test-related surface effects — including collapse craters and 

associated radial and circumferential surface fractures, along with normal faults within the area 

(e.g., Yucca, Topgallant, and Carpetbag faults) — are also shown in Plate 1. 

Yucca Flat is unique among the NTS CAUs in that it hosted nuclear tests with simultaneous 

detonations.  A test is defined in the Threshold Test Ban Treaty as either a single underground nuclear 

explosion conducted at a test site, or two or more underground nuclear explosions conducted within 

an area delineated by a circle having a diameter of 2 km and conducted within a total period of time 

not to exceed 0.1 seconds.  A total of 62 tests with simultaneous detonations took place on the NTS 

between 1963 and 1992 (DOE/NV, 2000).  Sixty of these tests took place within the Yucca Flat area.  

From 1963 to 1988, 40 tests comprising 103 detonations are considered simultaneous, separate hole; 

and from 1964 to 1992, 20 tests comprising 45 detonations are considered simultaneous, same hole.    

Unclassified information related to the underground nuclear tests conducted within the Yucca 

Flat/Climax Mine CAU is compiled primarily in two reports, United States Nuclear Tests, July 1945 

through September 1992 (DOE/NV, 2000) and Shaft and Tunnel Nuclear Detonations at the Nevada 

Test Site:  Development of a Primary Database for the Estimation of Potential Interactions with the 

Regional Groundwater System (DOE/NV, 1997).  These data — including the name and date of each 

detonation, name and location of the emplacement holes, announced yields, depths of burial, 
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estimated depths to the water table, and the HSU associated with the working point — are 

summarized in Table A.1-1. 

The term “yield” refers to the total effective energy released in a nuclear explosion and is usually 

expressed in terms of equivalent tonnage of TNT required to produce the same energy release in an 

explosion.  Announced yield ranges are reported in DOE/NV (2000); the specific yields for many 

tests remain classified.  The announced yields for some Yucca Flat tests were termed low, 

intermediate, or slight (Table A.1-1).  Between 1945 and 1963, a less-than-20-kt yield was defined as 

“low,” while a 20-to-200-kt-yield range was referred to as “intermediate.”  In a few cases, the term 

“slight” was used without amplification (DOE/NV, 2000).  The maximum upper limit of the 

announced yield range for Yucca Flat is 500 kt, whereas that of the Climax Mine tests is 62 kt.  A zero 

yield was reported for three tests, SAN JUAN (Operation Hardtack II), COURSER 

(Operation Whetstone), and TRANSOM (Operation Cresset).  The TRANSOM nuclear device did 

not detonate and was later destroyed, as planned, by the HEARTS detonation (Operation Quicksilver) 

approximately 16 months later (DOE/NV, 2000). 

Nuclear devices were emplaced in one of four types of geologic medium in Yucca Flat and Climax 

Mine: alluvial deposits, Tertiary volcanics, carbonate rocks, or intrusives.  The location of their 

emplacement is called the working point and the vertical depth to the device primary center line is 

referred to as the depth of burial (Table A.1-1).  An estimate of the depth to the water table is also 

provided in Table A.1-1.  These estimates were determined by interpolating regional and local 

(Yucca Flat and Pahute Mesa) water table surfaces and were selected as being the most representative 

estimate of the regional water table based on the data available at the time (DOE/NV, 1997).  These 

data represent the only published compilation of water table data for the emplacement holes within 

the Yucca Flat/Climax Mine CAU and is all that is available until the groundwater flow modeling 

efforts have been completed.  A detonation is considered as potentially interacting with the regional 

groundwater system if the elevation of the working point is 100 m above the water table or deeper 

(DOE/NV, 1997).  Based on the data in Table A.1-1, less than 25 percent of the detonations (170) are 

considered to have impacted the water table.  The HSUs associated with each working point are also 

presented in Table A.1-1.  Hydrostratigraphic units are described in Section 4.1 and BN (2006).
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Table A.1-1
Shaft and Tunnel Nuclear Detonations in the Yucca Flat/Climax Mine Corrective Action Unit 

 (Page 1 of 24)

Detonation Name CAS 
Number

Date
Expended

Emplacement 
Hole Name

UTM
Easting

UTM
Northing

Land 
Surface 

Elevation a

(m amsl)

Announced 
Yield(kt)

Hole
Depth

(m)

Estimated
Depth to 
Water (m) 

Depth 
of 

Burial
(m)

Working 
Point
HSU

AARDVARK 03-57-013 05/12/1962 U-3am(s) 586202.6 4102340.7 1,240.8 40 494 503 434 LTCU
ABEYTAS 03-57-162 11/05/1970 U-3gx 587894.0 4098394.1 1,215.2 20 to 200 407 481 393 TM-LVTA
ABILENE 03-57-270 04/07/1988 U-3mn 585020.7 4096555.6 1,214.6 < 20 290 481 244 TM-WTA
ABO 03-57-263 10/30/1985 U-3mc 585707.0 4100717.6 1,229.0 < 20 213 495 198 AA
ABSINTHE 03-57-110 05/26/1967 U-3ep 587232.8 4100113.5 1,225.9 < 20 244 492 119 AA
ACE 02-57-145 06/11/1964 U-2n 582057.1 4111553.6 1,326.8 3 271 579 263 AA
ACUSHI 03-57-033 02/08/1963 U-3bg 587049.5 4100234.7 1,225.9 Low 329 492 261 AA
ADZE 03-57-137 05/28/1968 U-3fw 589379.6 4096098.6 1,215.2 < 20 253 475 240 TSA
AGILE 02-57-151 02/23/1967 U-2v 582934.9 4109148.8 1,297.2 20 to 200 771 543 733 TM-LVTA
AGOUTI 03-57-015 01/18/1962 U-3ao 585868.6 4100346.4 1,227.4 6.4 269 494 261 AA
AGRINI 02-57-122 03/31/1984 U-2ev 581343.1 4111306.7 1,330.8 < 20 429 584 320 AA
AHTANUM 02-57-143 09/13/1963 U-2l 581628.7 4113187.9 1,346.9 Low 233 604 226 AA
AJAX 09-57-035 11/11/1966 U-9al 584394.3 4110007.1 1,280.8 < 20 245 537 239 AA
AJO 03-57-144 01/30/1970 U-3gd 585851.5 4098524.0 1,218.6 < 20 320 486 304 AA
AKAVI 02-57-119 12/03/1981 U-2es 582515.1 4111539.4 1,320.4 20 to 150 518 576 494 TM-LVTA
AKBAR 10-57-028 11/09/1972 U-10ax 585846.5 4113082.3 1,321.9 < 20 305 588 267 TM-LVTA
ALEMAN 03-57-240 09/11/1986 U-3kz 584481.3 4102754.6 1,245.1 < 20 686 475 503 TM-LVTA
ALGODONES 03-57-208 08/18/1971 U-3jn 585682.5 4101447.6 1,233.2 20 to 200 549 497 528 TM-UVTA
ALIGOTE 07-57-028 05/29/1981 U-7bg 588499.6 4106431.8 1,337.5 < 20 396 606 320 LTCU
ALIMENT 03-57-150 05/15/1969 U-3gj 590293.1 4096467.7 1,234.1 < 20 254 503 241 OSBCU
ALLEGHENY 09-57-113 09/29/1962 U-9x 585931.2 4108050.1 1,297.8 Low 264 564 211 TM-WTA
ALPACA 02-57-001 02/12/1965 U-2a 581991.1 4113320.2 1,341.7 0.33 232 604 225 AA
ALUMROOT 09-57-081 02/14/1973 U-9cj 584359.2 4111408.7 1,291.4 < 20 206 546 183 AA
ALVA 02-57-142 08/19/1964 U-2j 581415.3 4112702.6 1,347.2 4.4 168 602 166 AA
ALVISO 02-57-099 06/11/1975 U-2du 582300.9 4107470.5 1,287.8 < 20 221 523 183 AA
ANACOSTIA 09-57-098 11/27/1962 U-9i 586258.2 4108733.8 1,300.9 5.2 296 569 227 TM-LVTA
ANCHOVY 03-57-042 11/14/1963 U-3bq 587295.9 4099504.2 1,221.3 Low 272 488 260 AA
ANGUS 03-57-201 04/25/1973 U-3jg 586440.9 4095646.4 1,207.6 < 20 503 472 453 AA
APODACA 03-57-158 07/21/1971 U-3gs 589680.9 4096739.6 1,221.9 < 20 253 487 241 LTCU
APSHAPA 09-57-031 06/06/1963 U-9ai 585282.1 4108928.5 1,281.4 Low 96 544 89 AA
ARABIS-BLUE 09-57-018 03/06/1970 U-9itsz26 586037.8 4110591.9 1,303.0 < 20 116 571 101 TM-LVTA
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ARABIS-GREEN 09-57-011 03/06/1970 U-9itsx28 585793.4 4110834.8 1,297.2 < 20 264 565 259 TM-LVTA
ARABIS-RED 09-57-003 03/06/1970 U-9itsv26 585550.2 4110590.2 1,291.7 < 20 265 558 250 TM-LVTA
ARIKAREE 09-57-108 05/10/1962 U-9r 584540.2 4109246.4 1,281.4 Low 181 538 166 AA
ARMADA 09-57-089 04/22/1983 U-9cs 586856.5 4107486.5 1,322.5 < 20 366 590 265 LTCU
ARMADILLO 03-57-018 02/09/1962 U-3ar 585464.2 4099935.1 1,225.0 7.1 309 492 240 AA
ARNICA-VIOLET 02-57-081 06/26/1970 U-2dd3 581366.4 4108055.4 1,298.8 < 20 279 558 264 AA
ARNICA-YELLOW 02-57-080 06/26/1970 U-2dd2 581193.9 4107698.2 1,296.9 < 20 325 554 309 TM-LVTA
ARSENATE 09-57-080 11/09/1972 U-9ci 585965.9 4108579.5 1,295.1 < 20 259 562 250 TM-LVTA
ARTESIA 07-57-060 12/16/1970 U-7x 588155.6 4106241.4 1,328.9 20 to 200 533 595 485 LTCU
ASCO 10-57-033 04/25/1978 U-10bc 585712.3 4112251.5 1,312.2 < 20 292 579 183 TM-LVTA
ASIAGO 02-57-016 12/21/1976 U-2ar 582842.2 4108821.8 1,292.0 < 20 701 545 331 AA
ATARQUE 03-57-188 07/25/1972 U-3ht 587626.0 4096508.4 1,209.1 < 20 309 474 294 AA
ATRISCO 07-57-035 08/05/1982 U-7bp 588299.3 4104471.7 1,294.8 138 686 538 640 OSBCU
AUGER 03-57-138 11/15/1968 U-3fx 588938.2 4100424.2 1,248.8 < 20 253 507 241 TM-LVTA
AUK 07-57-024 10/02/1964 U-7b 588134.1 4103773.3 1,281.1 < 20 471 529 452 LTCU
AUSTIN 06-57-003 06/21/1990 U-6e 588587.7 4094337.5 1,201.5 < 20 457 458 351 TM-LVTA
AVENS-ALKERMES 09-57-002 12/16/1970 U-9itsu24 585429.5 4110346.3 1,288.4 < 20 326 554 306 TM-LVTA
AVENS-ANDORRE 09-57-001 12/16/1970 U-9itst28 585305.9 4110833.1 1,291.1 < 20 395 555 379 LTCU
AVENS-ASAMLTE 09-57-006 12/16/1970 U-9itsw21 585674.2 4109981.4 1,290.5 < 20 319 557 306 LTCU
AVENS-CREAM 09-57-012 12/16/1970 U-9itsx29 585793.3 4110956.4 1,298.4 < 20 310 566 294 LTCU
AZUL 02-57-113 12/14/1979 U-2em 583216.9 4110319.0 1,302.4 < 20 221 556 205 AA
BACCARAT 07-57-022 01/24/1979 U-7ax 587818.7 4106819.5 1,337.8 < 20 381 606 326 OSBCU
BACKGAMMON 03-57-202 11/29/1979 U-3jh 586841.3 4094444.2 1,203.4 < 20 434 466 229 AA
BACKSWING 09-57-043 05/14/1964 U-9aw 585382.4 4108119.5 1,284.1 < 20 235 547 160 AA
BALTIC 09-57-099 08/06/1971 U-9itss25 585185.3 4110467.0 1,286.9 < 20 504 547 411 TM-LVTA
BANDICOOT 03-57-035 10/19/1962 U-3bj 587052.7 4099503.4 1,221.6 12.5 247 489 241 AA
BANEBERRY 08-57-010 12/18/1970 U-8d 580000.4 4114255.1 1,394.2 10 299 649 278 TM-LVTA
BANON 02-57-103 08/26/1976 U-2dz 581549.5 4108930.9 1,302.4 20 to 150 579 544 536 AA
BARBEL 03-57-049 10/16/1964 U-3bx 587539.6 4099505.1 1,221.3 < 20 282 488 259 AA
BARRACUDA 03-57-061 12/04/1963 U-3cr 587842.7 4099993.7 1,228.6 Low 282 495 263 AA
BARRANCA 03-57-168 08/04/1971 U-3he 587209.7 4098010.8 1,214.3 < 20 290 481 271 AA
BARSAC 03-57-143 03/20/1969 U-3gc 586266.6 4097550.4 1,213.7 < 20 314 480 304 AA
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BASEBALL 07-57-025 01/15/1981 U-7ba 584900.6 4104756.9 1,258.5 20 to 150 610 458 564 LTCU
BAY LEAF 03-57-156 12/12/1968 U-3gq 586238.9 4100326.6 1,226.2 < 20 139 493 130 AA
BEEBALM 03-57-131 05/01/1970 U-3fn 586404.5 4101679.9 1,235.7 < 20 411 503 390 TM-WTA
BELEN 03-57-043 02/04/1970 U-3br 585461.5 4101204.6 1,232.9 20 to 200 438 497 421 AA
BELLOW 04-57-004 05/16/1984 U-4ac 580586.7 4105316.2 1,292.7 < 20 244 418 207 TM-LVTA
BERNAL 03-57-218 11/28/1973 U-3jy 586788.9 4096333.3 1,209.8 < 20 308 475 283 AA
BERNALILLO 03-57-272 09/17/1958 U-3n 585974.7 4100603.9 1,227.7 0.015 160 495 140 AA
BEVEL 03-57-135 04/04/1968 U-3fu 587062.4 4100920.4 1,232.3 < 20 253 498 241 AA
BIGGIN 09-57-072 01/30/1969 U-9bz 585248.2 4109887.9 1,283.8 < 20 251 545 244 TM-LVTA
BILBY 03-57-058 09/13/1963 U-3cn 586983.0 4101819.0 1,241.8 249 785 509 714 OSBCU
BILGE 03-57-221 02/19/1975 U-3kc 586791.4 4095358.2 1,206.1 < 20 339 470 319 AA
BILLET 07-57-015 07/27/1976 U-7an 584996.6 4103457.6 1,249.7 20 to 150 963 487 636 LTCU
BIT-A 03-57-159 10/31/1968 U-3gt 586304.5 4100326.9 1,225.9 < 20 158 493 148 AA
BIT-B 03-57-159 10/31/1968 U-3gt 586304.5 4100326.9 1,225.9 < 20 158 493 118 AA
BITTERLING 03-57-063 06/12/1964 U-3cu 587844.3 4099445.5 1,231.1 < 20 320 497 193 AA
BLACK 09-57-106 04/27/1962 U-9p 585485.6 4108243.2 1,285.3 Low 224 549 218 AA
BLENTON 07-57-053 04/30/1969 U-7p 587645.2 4104167.5 1,281.7 20 to 200 579 536 558 LTCU
BOBAC 03-57-037 08/24/1962 U-3bl 586805.8 4100233.5 1,225.6 Low 211 492 206 AA
BOBSTAY 03-57-196 10/26/1977 U-3jb 587484.4 4095964.3 1,207.3 < 20 415 471 381 TM-WTA
BOGEY 09-57-041 04/17/1964 U-9au 585828.9 4108360.5 1,291.7 < 20 131 557 119 AA
BONARDA 03-57-161 09/25/1980 U-3gv 584638.4 4101323.3 1,236.6 20 to 150 450 490 381 TM-WTA
BONEFISH 03-57-045 02/18/1964 U-3bt 585947.4 4101693.8 1,234.4 < 20 483 498 301 AA
BOOMER 03-57-001 10/01/1961 U-3aa 585854.2 4100467.6 1,227.7 Low 164 495 101 AA
BORATE 02-57-137 10/23/1987 U-2ge 581824.2 4110807.4 1,321.3 20 to 150 585 573 543 AA
BORDEAUX 03-57-086 08/18/1967 U-3dr 585721.7 4096451.4 1,210.1 < 20 344 477 332 AA
BORREGO 07-57-036 09/29/1982 U-7br 584883.7 4105224.3 1,261.0 < 150 610 493 564 LTCU
BOURBON 07-57-051 01/20/1967 U-7n 588521.7 4106212.5 1,333.2 20 to 200 578 601 560 LCA
BOUSCHET 03-57-241 05/07/1982 U-3la 584857.3 4102756.2 1,244.5 20 to 150 686 479 564 LTCU
BOWIE 03-57-268 04/06/1990 U-3mk 589600.8 4102651.0 1,297.5 < 20 381 568 213 TM-LVTA
BOWL-1 02-57-041 06/26/1969 U-2bo1 581808.8 4113091.3 1,343.3 < 20 206 603 198 AA
BOWL-2 02-57-154 06/26/1969 U-2bo2 581763.8 4112901.9 1,341.7 < 20 236 600 229 AA
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BRACKEN 10-57-022 07/09/1971 U-10aq 585881.2 4113350.0 1,323.4 < 20 336 585 305 LTCU
BRANCO 02-57-123 09/21/1983 U-2ew 583900.0 4108548.8 1,282.9 < 20 457 520 293 AA
BRANCO-HERKIMER 02-57-123 09/21/1983 U-2ew 583900.0 4108548.8 1,282.9 < 20 457 520 427 TM-WTA
BRAZOS 09-57-092 03/08/1962 U-9d 584494.4 4108644.4 1,280.5 8.4 340 535 256 AA
BRETON 04-57-013 09/13/1984 U-4ar 582552.3 4104689.0 1,264.6 20 to 150 503 503 483 TM-LVTA
BRIE 10-57-042 06/18/1987 U-10cc 585645.9 4116576.5 1,345.1 < 20 230 326 203 LTCU
BRISTOL 04-57-017 11/26/1991 U-4av 582680.7 4105777.6 1,273.1 < 20 518 482 457 LTCU
BRONZE 07-57-044 07/23/1965 U-7f 585932.4 4105959.3 1,284.1 20 to 200 576 548 531 LTCU
BRUSH 03-57-111 01/24/1968 U-3eq 587690.7 4099871.0 1,225.6 < 20 221 492 118 AA
BUFF 03-57-077 12/16/1965 U-3dh 586307.9 4103157.5 1,250.3 20 to 200 507 515 500 LTCU
BULKHEAD 07-57-014 04/27/1977 U-7am 586391.0 4105626.1 1,286.0 20 to 150 625 551 594 OSBCU
BULLFROG 04-57-016 08/30/1988 U-4au 582789.3 4104607.5 1,263.4 < 150 533 500 489 TM-WTA
BUNKER 09-57-050 02/13/1964 U-9bb 585952.6 4109752.0 1,296.6 < 20 237 564 227 TM-LVTA
BURZET 04-57-007 08/03/1979 U-4ai 582669.8 4104386.5 1,262.5 20 to 150 489 501 450 AA
BYE 10-57-048 07/16/1964 U-10i 584741.3 4115308.7 1,321.3 20 to 200 532 566 391 LTCU
CABOC 02-57-067 12/16/1981 U-2cp 577928.4 4107733.7 1,374.6 < 20 381 522 335 TM-LVTA
CABRESTO 07-57-046 05/24/1973 U-7h 586153.4 4103766.4 1,255.2 < 20 470 519 198 AA
CABRILLO 02-57-096 03/07/1975 U-2dr 581340.0 4109927.8 1,314.6 20 to 200 616 566 601 AA
CALABASH 02-57-020 10/29/1969 U-2av 583141.8 4110977.8 1,310.0 110 668 569 625 LTCU
CAMPOS 09-57-086 02/13/1978 U-9cp 586012.8 4109098.3 1,296.3 < 20 335 564 320 TM-LVTA
CANFIELD 03-57-238 05/02/1980 U-3kx 587228.5 4101332.3 1,237.5 < 20 442 504 351 TM-LVTA
CAN-GREEN 03-57-072 04/21/1970 U-2dd1 581554.1 4107528.9 1,293.3 20 to 200 290 554 274 AA
CANJILON 03-57-132 12/16/1970 U-3fq 586673.3 4103158.8 1,254.6 < 20 411 522 302 TM-LVTA
CANNA-LIMOGES 09-57-100 11/17/1972 U-9itsyz26 585942.1 4110591.5 1,300.0 < 20 221 568 213 TM-LVTA
CANNA-UMBRINUS 09-57-100 11/17/1972 U-9itsyz26 585942.1 4110591.5 1,300.0 < 20 221 568 183 TM-LVTA
CAN-RED 03-57-073 04/21/1970 U-2dd4 581725.0 4107886.6 1,295.1 20 to 200 464 554 399 LTCU
CANVASBACK 03-57-060 08/22/1964 U-3cp 587529.6 4102369.5 1,253.6 < 20 454 515 448 LTCU
CAPITAN 03-57-204 06/28/1972 U-3jj 587017.0 4094295.5 1,202.7 < 20 175 465 134 AA
CAPROCK 04-57-031 05/31/1984 U-4q 584589.6 4106533.9 1,263.7 20 to 150 637 493 600 LTCU
CARMEL 02-57-141 02/21/1963 U-2h 581705.2 4112238.6 1,338.1 Low 171 599 164 AA
CARNELIAN 04-57-005 07/28/1977 U-4af 580782.8 4105880.6 1,291.7 < 20 305 492 208 AA
CARP 03-57-052 09/27/1963 U-3cb 587540.2 4099261.3 1,219.8 Low 344 486 330 AA
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CARPETBAG 02-57-084 12/17/1970 U-2dg 581456.2 4109387.3 1,311.2 220 692 552 662 TM-LVTA
CARRIZOZO 03-57-186 12/03/1970 U-3hr 585419.6 4095780.0 1,210.1 < 20 287 477 279 TM-WTA
CASHMERE 02-57-004 02/04/1965 U-2ad 583355.4 4109585.1 1,297.2 < 20 268 550 233 AA
CASSELMAN 10-57-047 02/08/1963 U-10g 584198.8 4111604.7 1,294.5 Low 309 549 303 AA
CASSOWARY 03-57-039 12/16/1964 U-3bn 586808.3 4099502.8 1,220.7 < 20 161 488 150 AA
CATHAY 09-57-079 10/08/1971 U-9ch 585530.1 4107725.7 1,288.1 < 20 421 552 378 TM-LVTA
CEBOLLA 03-57-197 08/09/1972 U-3jc 587278.0 4095916.3 1,207.6 < 20 309 472 287 AA
CEBRERO 09-57-091 08/14/1985 U-9cw 587572.4 4107446.1 1,342.6 < 20 213 611 183 TM-LVTA
CENTAUR 02-57-009 08/27/1965 U-2ak 582595.3 4110305.5 1,310.3 < 20 192 561 173 AA
CERISE 03-57-115 11/18/1966 U-3eu 588010.7 4099872.1 1,228.6 < 20 223 494 211 AA
CERNADA 03-57-227 09/24/1981 U-3kk 586852.1 4096059.6 1,208.2 < 20 442 473 213 AA
CERRO 03-57-245 09/02/1982 U-3lf 587562.6 4097311.1 1,211.6 < 20 341 478 229 AA
CHAENACTIS 02-57-090 12/14/1971 U-2dl 580879.2 4108806.6 1,307.9 20 to 200 347 565 331 AA
CHAMITA 03-57-261 08/17/1985 U-3lz 585146.9 4095352.4 1,208.2 < 20 457 475 335 TM-UVTA
CHANTILLY 02-57-087 09/29/1971 U-2di 581107.5 4108868.1 1,307.0 < 20 366 562 331 AA
CHARCOAL 07-57-045 09/10/1965 U-7g 587402.8 4103770.5 1,271.6 20 to 200 471 533 455 LTCU
CHATTY 02-57-040 03/18/1969 U-2bn 582052.4 4113070.5 1,339.3 < 20 212 601 195 AA
CHEEDAM 02-57-120 02/17/1983 U-2et 583164.7 4113141.5 1,320.4 < 20 427 585 343 TM-LVTA
CHENILLE 09-57-055 04/22/1965 U-9bg 586140.4 4107469.1 1,303.3 < 20 229 569 141 TM-WTA
CHESS 07-57-019 06/20/1979 U-7at 587513.1 4107062.2 1,336.2 < 20 460 604 335 LTCU
CHEVRE 10-57-029 11/23/1976 U-10ay 584102.8 4114137.0 1,304.8 < 20 335 572 317 AA
CHIBERTA 02-57-111 12/20/1975 U-2ek 583361.2 4109241.7 1,291.4 20 to 200 761 540 716 LTCU
CHINCHILLA 03-57-007 02/19/1962 U-3ag 586296.4 4100551.1 1,228.3 1.9 166 495 150 AA
CHINCHILLA II 03-57-019 03/31/1962 U-3as 585643.3 4100306.6 1,227.1 Low 172 494 137 AA
CHIPMUNK 03-57-025 02/15/1963 U-3ay 586098.9 4100544.6 1,227.7 Low 64 495 59 AA
CHOCOLATE 03-57-113 04/21/1967 U-3es 585627.5 4097243.7 1,21,2.8 < 20 253 480 240 AA
CIMARRON 09-57-096 02/23/1962 U-9h 584537.9 4109387.2 1,282.6 11.9 370 539 305 AA
CINNAMON 03-57-082 03/07/1966 U-3dm 586200.5 4098951.9 1,219.2 < 20 191 487 120 AA
CLAIRETTE 03-57-232 02/05/1981 U-3kr 586103.7 4096315.6 1,209.4 < 20 445 475 354 AA
CLARKSMOBILE 02-57-017 05/17/1968 U-2as 583612.8 4108400.9 1,285.6 20 to 200 518 515 472 TM-LVTA
CLUB 02-57-002 01/30/1964 U-2aa 582544.6 4110183.5 1,309.4 < 20 190 559 181 AA
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CLYMER 09-57-076 03/12/1966 U-9ce 584147.2 4111027.4 1,293.0 < 20 684 546 398 AA
COALORA 03-57-253 02/11/1983 U-3lo 584882.1 4101324.1 1,236.9 < 20 305 492 274 TM-UVTA
COBBLER 07-57-057 11/08/1967 U-7u 585690.7 4105288.4 1,269.2 < 20 686 531 667 LTCU
CODSAW 09-57-095 02/19/1962 U-9g 585533.3 4109241.7 1,285.3 Low 218 550 212 TM-WTA
COFFER 02-57-082 03/21/1969 U-2de 581126.4 4109837.8 1,317.7 < 100 479 569 465 AA
COGNAC 03-57-130 10/25/1967 U-3fm 585402.3 4100624.5 1,229.6 < 20 253 495 240 AA
COLFAX 03-57-219 10/05/1958 U-3k 585883.8 4100523.5 1,228.0 0.0055 168 495 107 AA
COLMOR 03-57-190 04/26/1973 U-3hv 587188.9 4096465.7 1,209.4 < 20 260 475 246 AA
COMMODORE 02-57-011 05/20/1967 U-2am 583146.8 4109545.6 1,297.8 250 779 549 745 LTCU
CONCENTRATION 03-57-229 12/01/1978 U-3kn 586798.4 4098405.5 1,216.5 < 20 274 483 243 AA
CORAZON 03-57-164 12/03/1970 U-3ha 585604.0 4095323.5 1,207.3 < 20 253 474 241 AA
CORDUROY 10-57-049 12/03/1965 U-10k 584139.0 4113364.3 1,302.4 20 to 200 729 568 679 OSBCU
CORMORANT 03-57-075 07/17/1964 U-3df 586329.3 4097063.0 1,211.6 < 20 279 478 272 AA
CORNICE-GREEN 10-57-021 05/15/1970 U-10ap3 585340.7 4113063.8 1,31,2.5 20 to 200 457 580 443 LTCU
CORNICE-YELLOW 10-57-020 05/15/1970 U-10ap1 585634.7 4113511.3 1,319.5 20 to 200 402 584 390 OSBCU
CORNUCOPIA 02-57-135 07/24/1986 U-2ga(s) 582496.6 4110908.2 1,314.3 < 20 548 566 381 AA
CORREO 03-57-260 08/02/1984 U-3lw 588279.8 4096993.7 1,209.1 < 20 427 475 335 TM-LVTA
COSO-BRONZE 04-57-012 03/08/1991 U-4an 582279.4 4106647.7 1,281.4 < 20 488 500 333 TM-WTA
COSO-GRAY 04-57-012 03/08/1991 U-4an 582279.4 4106647.7 1,281.4 < 20 488 500 442 LTCU
COSO-SILVER 04-57-012 03/08/1991 U-4an 582279.4 4106647.7 1,281.4 < 20 488 500 475 LTCU
COTTAGE 08-57-005 03/23/1985 U-8j 580872.6 4115022.7 1,388.7 20 to 150 610 627 515 OSBCU
COULOMMIERS 02-57-110 09/27/1977 U-2ei 582803.6 4111845.1 1,318.9 20 to 150 640 579 530 TM-LVTA
COURSER 03-57-084 09/25/1964 U-3do 587526.8 4103161.8 1,264.3 0 370 523 359 LTCU
COVE 03-57-225 02/16/1977 U-3ki 586180.9 4095843.9 1,207.9 < 20 351 474 335 AA
COWLES 03-57-191 02/03/1972 U-3hx 587249.9 4095237.9 1,205.5 < 20 321 468 302 AA
COYPU 03-57-006 04/10/1963 U-3af 586227.0 4100523.4 1,227.7 Low 81 495 75 AA
CREMINO 08-57-004 09/27/1978 U-8e 581041.3 4114029.9 1,367.9 < 20 610 588 210 AA
CREMINO-CAERPHILLY 08-57-004 09/27/1978 U-8e 581041.3 4114029.9 1,367.9 < 20 610 588 420 TM-LVTA
CREPE 02-57-147 12/05/1964 U-2q 584097.7 4107781.6 1,278.6 20 to 200 415 498 404 TM-LVTA
CRESTLAKE-BRIAR 02-57-101 07/18/1974 U-2dw 581277.2 4108289.7 1,301.2 < 20 381 560 374 AA
CRESTLAKE-TANSAN 02-57-101 07/18/1974 U-2dw 581277.2 4108289.7 1,301.2 < 20 381 560 272 AA
CREW 02-57-073 11/04/1968 U-2db 581142.7 4109533.4 1,314.3 20 to 200 632 561 359 AA
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CREW-2ND 02-57-073 11/04/1968 U-2db 581142.7 4109533.4 1,314.3 < 20 632 561 360 AA
CREW-3RD 02-57-073 11/04/1968 U-2db 581142.7 4109533.4 1,314.3 < 20 632 561 604 TM-LVTA
CREWLINE 07-57-017 05/25/1977 U-7ap 584882.5 4105559.8 1,264.3 20 to 150 625 498 564 LTCU
CROCK 10-57-014 05/08/1968 U-10ak 585695.3 4112557.4 1,315.8 < 20 207 583 182 AA
CROWDIE 02-57-132 05/05/1983 U-2fe 580886.0 4111213.7 1,335.9 < 20 450 590 390 AA
CRUET 02-57-065 10/29/1969 U-2cn 577488.7 4108504.9 1,398.7 11 472 523 264 TM-WTA
CUCHILLO 03-57-213 08/09/1972 U-3jt 587279.6 4095535.1 1,206.1 < 20 223 469 198 AA
CULANTRO-A 03-57-172 12/10/1969 U-3hia 588707.2 4096766.6 1,208.2 < 20 143 472 134 AA
CULANTRO-B 03-57-173 12/10/1969 U-3hib 588859.5 4096789.7 1,209.1 < 20 158 473 149 AA
CUMARIN 03-57-163 02/25/1970 U-3gz 588972.9 4099205.4 1,232.9 20 to 200 422 498 409 LTCU
CUMBERLAND 02-57-104 04/11/1963 U-2e 582495.2 4112453.8 1,326.5 Low 248 588 226 AA
CUP 09-57-074 03/26/1965 U-9cb 584998.0 4111471.6 1,293.9 20 to 200 558 554 538 LTCU
CYATHUS 08-57-002 03/06/1970 U-8b 580631.5 4114259.8 1,379.8 8.7 314 611 294 TM-LVTA
CYCLAMEN 03-57-065 05/05/1966 U-3cx 585554.7 4100717.3 1,230.2 12 343 496 305 AA
DAIQUIRI 07-57-052 09/23/1966 U-7o 585686.5 4106568.5 1,287.2 < 20 579 550 561 LTCU
DALHART 04-57-035 10/13/1988 U-4u 584497.3 4104964.6 1,255.8 < 150 671 477 640 LTCU
DAMAN I 03-57-031 06/21/1962 U-3be 586238.7 4099886.0 1,224.1 Low 268 491 260 AA
DANABLU 02-57-121 06/09/1983 U-2eu 580872.2 4112542.3 1,353.6 < 20 432 607 320 AA
DAUPHIN 09-57-087 11/14/1980 U-9cq 587191.7 4107487.7 1,332.6 < 20 336 600 320 LTCU
DEAD 09-57-102 04/21/1962 U-9k 586040.0 4108309.5 1,298.8 Low 238 566 194 AA
DECK 03-57-222 11/18/1975 U-3kd 587120.5 4097370.5 1,206.4 < 20 399 472 326 AA
DELPHINIUM 02-57-094 09/26/1972 U-2dp 581221.5 4108524.1 1,303.3 15 335 562 296 AA
DEXTER 03-57-187 06/23/1971 U-3hs 587503.6 4096587.2 1,209.4 < 20 130 475 120 AA
DIANTHUS 10-57-025 02/17/1972 U-10at 583792.8 4113467.9 1,306.1 < 20 335 572 305 AA
DISCUS THROWER 08-57-001 05/27/1966 U-8a 580092.9 4114839.3 1,406.7 22 360 661 337 TM-LVTA
DIVIDER 03-57-269 09/23/1992 U-3ml 590030.7 4097442.0 1,234.7 < 20 396 503 340 LTCU
DOFINO 10-57-031 03/08/1977 U-10ba 584072.7 4114634.8 1,309.4 < 20 290 575 183 AA
DOFINO-LAWTON 10-57-031 03/08/1977 U-10ba 584072.7 4114634.8 1,309.4 < 20 290 575 282 AA
DOLCETTO 07-57-030 08/30/1984 U-7bi 588930.9 4105098.7 1,318.0 < 20 457 568 366 LTCU
DORMOUSE 03-57-017 01/30/1962 U-3aq 585413.8 4100297.2 1,227.1 Low 370 493 363 AA
DORMOUSE PRIME 03-57-026 04/05/1962 U-3az 586834.7 4100052.0 1,224.1 10.6 269 490 261 AA
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DOVEKIE 03-57-053 01/21/1966 U-3cd 587542.6 4098651.5 1,216.5 < 20 345 483 333 AA
DRAUGHTS 07-57-013 09/27/1978 U-7al 587130.2 4103312.7 1,261.6 20 to 150 460 526 442 OSBCU
DRILL (SOURCE-LOWER) 02-57-008 12/05/1964 U-2ai 582627.0 4109970.4 1,306.4 3.4 226 557 219 AA
DRILL (TARGET-UPPER) 02-57-008 12/05/1964 U-2ai 582627.0 4109970.4 1,306.4 < 20 226 557 188 AA
DRIVER 09-57-039 05/07/1964 U-9ar 585259.1 4108440.8 1,280.2 < 20 160 543 150 AA
DUB 10-57-001 06/30/1964 U-10a 583769.3 4114435.6 1,308.5 11.7 430 575 259 AA
DUFFER 10-57-043 06/18/1964 U-10ds 585375.1 4113516.1 1,314.3 < 20 455 580 447 LTCU
DUMONT 02-57-149 05/19/1966 U-2t 583702.8 4107414.5 1,278.6 20 to 200 696 486 671 LTCU
DUORO 03-57-259 06/20/1984 U-3lv 585147.6 4095139.1 1,207.3 20 to 150 457 474 381 TM-UVTA
DUTCHESS 07-57-033 10/24/1980 U-7bm 588957.9 4103410.3 1,291.7 < 20 472 534 427 LTCU
EAGLE 09-57-042 12/12/1963 U-9av 584928.9 4109631.1 1,281.1 5.3 174 541 165 AA
EBBTIDE 03-57-234 09/15/1977 U-3kt 585104.5 4098734.7 1,220.7 < 20 460 487 381 AA
EDAM 02-57-102 04/24/1975 U-2dy 581080.2 4107892.3 1,299.4 20 to 200 427 556 412 TM-LVTA
EEL 09-57-104 05/19/1962 U-9m 584642.4 4108698.3 1,280.2 4.5 224 536 218 AA
EFFENDI 02-57-015 04/27/1967 U-2ap 583203.9 4110475.3 1,305.8 < 20 235 560 221 AA
ELIDA 03-57-192 12/19/1973 U-3hy 586183.3 4095234.1 1,205.5 < 20 399 471 381 AA
ELKHART 09-57-066 09/17/1965 U-9bs 585774.9 4107421.8 1,293.9 < 20 340 558 220 TM-WTA
EMBUDO 03-57-167 06/16/1971 U-3hd 587724.9 4098804.8 1,218.0 < 20 312 484 303 AA
EMERSON 02-57-010 12/16/1965 U-2al 583203.7 4110703.5 1,307.3 < 20 294 564 261 AA
ERMINE 03-57-002 03/06/1962 U-3ab 585930.0 4100474.6 1,227.7 Low 81 495 73 AA
ESCABOSA 07-57-004 07/10/1974 U-7ac 586063.2 4103430.9 1,250.3 20 to 200 675 513 640 LTCU
ESROM 07-57-012 02/04/1976 U-7ak 585529.5 4106927.3 1,285.0 20 to 200 686 548 655 LTCU
ESTACA 03-57-195 10/17/1974 U-3ja 587650.3 4095832.9 1,206.7 < 20 341 470 320 TM-UVTA
FADE 09-57-053 06/25/1964 U-9be 586292.9 4107438.8 1,307.0 < 20 235 574 205 TM-LVTA
FAHADA 07-57-029 05/26/1983 U-7bh 588352.9 4106547.1 1,338.7 < 20 396 606 384 OSBCU
FAJY 02-57-130 06/28/1979 U-2fc 581039.6 4110940.3 1,330.1 20 to 150 571 584 536 AA
FALLON 02-57-100 05/23/1974 U-2dv 581826.7 4108876.7 1,302.7 20 to 200 488 548 466 AA
FARALLONES 02-57-128 12/14/1977 U-2fa 581179.6 4110132.3 1,317.3 20 to 150 732 570 668 AA
FAWN 03-57-109 04/07/1967 U-3eo 586939.7 4101148.2 1,233.5 < 20 282 500 271 AA
FENTON 02-57-144 04/23/1966 U-2m1 581433.6 4112871.8 1,348.1 1.4 169 601 167 AA
FERRET 03-57-032 02/08/1963 U-3bf 586309.5 4101581.4 1,235.0 Low 370 502 326 TM-UVTA
FERRET PRIME 03-57-050 04/05/1963 U-3by 586809.2 4099258.7 1,219.8 Low 256 487 242 AA
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FILE 03-57-142 10/31/1968 U-3gb 585781.0 4097000.1 1,212.2 < 20 253 479 229 AA
FINFOOT 03-57-089 03/07/1966 U-3du 586321.6 4099257.0 1,220.4 < 20 221 488 196 AA
FISHER 03-57-008 12/03/1961 U-3ah 586464.9 4100198.2 1,225.3 13.4 370 492 364 AA
FIZZ 03-57-133 03/10/1967 U-3fr 586277.2 4100363.0 1,225.9 < 20 130 493 118 AA
FLASK-GREEN 02-57-026 05/26/1970 U-2az1 583308.9 4107656.6 1,277.7 105 555 497 529 TM-UVTA
FLASK-RED 02-57-028 05/26/1970 U-2az3 582917.7 4107966.4 1,286.3 0.035 168 518 152 AA
FLASK-YELLOW 02-57-027 05/26/1970 U-2az2 583194.3 4108184.0 1,286.3 0.09 351 516 335 AA
FLAX-BACKUP 02-57-088 12/21/1972 U-2dj 581421.8 4110588.1 1,323.1 < 20 723 577 445 AA
FLAX-SOURCE 02-57-088 12/21/1972 U-2dj 581421.8 4110588.1 1,323.1 < 20 723 577 688 TM-LVTA
FLAX-TEST 02-57-088 12/21/1972 U-2dj 581421.8 4110588.1 1,323.1 20 to 200 723 577 436 AA
FLORA 03-57-246 05/22/1980 U-3lg 586182.6 4095447.4 1,206.4 < 20 396 472 335 AA
FLOTOST 02-57-014 08/16/1977 U-2ao 583203.2 4111355.9 1,310.9 < 20 290 569 275 AA
FLOYDADA 07-57-042 08/15/1991 U-7cb 588718.6 4104823.3 1,306.7 < 20 564 545 503 OSBCU
FOB-BLUE 09-57-013 01/23/1970 U-9itsy27 585916.0 4110713.0 1,299.7 < 20 112 567 101 TM-LVTA
FOB-GREEN 09-57-005 01/23/1970 U-9iv27 585549.8 4110712.0 1,293.0 < 20 264 560 244 TM-LVTA
FOB-RED 09-57-004 01/23/1970 U-9iv24 585551.0 4110346.7 1,289.9 < 20 282 556 266 TM-LVTA
FORE 09-57-036 01/16/1964 U-9ao 584452.2 4110875.8 1,289.6 20 to 200 504 545 491 TM-LVTA
FOREFOOT 03-57-223 06/02/1977 U-3kf 586695.7 4101208.6 1,233.5 < 20 201 500 194 AA
FOREST 07-57-001 10/31/1964 U-7a 585989.4 4107000.2 1,296.9 < 20 823 562 387 LTCU
FREEZEOUT 03-57-237 05/11/1979 U-3kw 587403.4 4094918.5 1,204.3 < 20 415 466 335 AA
FRIJOLES-DEMING 03-57-216 09/22/1971 U-3jw 587513.1 4097518.2 1,212.2 < 20 169 478 150 AA
FRIJOLES-ESPUELA 03-57-214 09/22/1971 U-3ju 587500.5 4097640.0 1,212.8 < 20 169 479 149 AA
FRIJOLES-GUAJE 03-57-169 09/22/1971 U-3hf 587591.2 4097829.3 1,213.1 < 20 274 479 257 AA
FRIJOLES-PETACA 03-57-193 09/22/1971 U-3hz 587272.2 4097553.9 1,213.1 < 20 396 479 229 AA
FRISCO 08-57-008 09/23/1982 U-8m 580981.3 4114444.1 1,373.7 20 to 150 518 583 451 OSBCU
FUNNEL 03-57-141 06/25/1968 U-3ga 586239.2 4100250.4 1,226.2 < 20 131 493 119 AA
FUTTOCK 03-57-102 06/18/1975 U-3eh 586950.5 4102397.9 1,247.9 < 20 472 514 186 AA
GALENA-GREEN 09-57-090 06/23/1992 U-9cv 586059.4 4108855.0 1,295.7 < 20 457 563 401 OSBCU
GALENA-ORANGE 09-57-090 06/23/1992 U-9cv 586059.4 4108855.0 1,295.7 < 20 457 563 381 OSBCU
GALENA-YELLOW 09-57-090 06/23/1992 U-9cv 586059.4 4108855.0 1,295.7 < 20 457 563 290 LTCU
GARDEN 09-57-032 10/23/1964 U-9aj 586075.5 4108091.1 1,301.2 < 20 158 568 150 TM-LVTA
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GASCON 04-57-034 11/14/1986 U-4t 584590.7 4106233.8 1,263.1 20 to 150 616 490 593 LTCU
GAZOOK 02-57-093 03/23/1973 U-2do 581110.4 4108068.2 1,300.9 < 20 343 558 326 AA
GERBIL 03-57-041 03/29/1963 U-3bp 587294.7 4099748.0 1,222.9 Low 291 489 280 AA
GIBSON 03-57-117 08/04/1967 U-3ew 587850.6 4097830.2 1,213.1 < 20 253 479 241 AA
GILROY 03-57-118 09/15/1967 U-3ex 587084.7 4098985.4 1,218.6 < 20 253 485 241 AA
GLENCOE 04-57-025 03/22/1986 U-4i 583012.9 4104285.0 1,260.7 29 671 493 610 OSBCU
GORBEA 02-57-068 01/31/1984 U-2cq 578034.8 4107531.7 1,371.3 20 to 150 442 521 388 TM-LVTA
GOUDA 02-57-107 10/06/1976 U-2ef 583290.9 4110007.8 1,298.4 < 20 335 552 200 AA
GOURD-AMBER 02-57-033 04/24/1969 U-2bf 581716.8 4113255.2 1,346.6 < 20 187 606 181 AA
GOURD-BROWN 02-57-038 04/24/1969 U-2bl 581611.7 4112809.7 1,343.9 < 20 238 600 227 AA
GRAPE A 07-57-055 12/17/1969 U-7s 588741.4 4104384.9 1,300.9 20 to 200 579 539 551 OSBCU
GRAPE B 07-57-058 02/04/1970 U-7v 586511.3 4105992.2 1,296.3 20 to 200 579 563 554 LTCU
GREYS 09-57-044 11/22/1963 U-9ax 584827.1 4108332.3 1,274.7 Intermediate 328 533 301 AA
GROVE 02-57-097 05/22/1974 U-2ds 582208.3 4107805.4 1,291.1 < 20 379 537 314 TM-LVTA
GRUNION 03-57-051 10/11/1963 U-3bz 587052.9 4099259.6 1,219.8 Low 284 487 261 AA
GRUYERE 09-57-078 08/16/1977 U-9cg 584451.4 4111195.7 1,289.9 < 20 335 545 207 AA
GRUYERE-GRADINO 09-57-078 08/16/1977 U-9cg 584451.4 4111195.7 1,289.9 < 20 335 545 320 AA
GUANAY 03-57-078 09/04/1964 U-3di 586939.0 4097065.2 1,211.6 < 20 268 478 261 AA
GUNDI 03-57-038 11/15/1962 U-3bm 586807.8 4099746.3 1,222.2 Low 248 489 241 AA
GUNDI PRIME 03-57-070 05/09/1963 U-3db 587535.8 4100602.1 1,232.3 Low 282 498 272 AA
HADDOCK 03-57-081 08/28/1964 U-3dl 586920.1 4102550.5 1,248.8 < 20 370 515 364 LTCU
HANDCAR 10-57-030 11/05/1964 U-10b 582825.0 4114420.1 1,333.5 12 458 598 403 LCA
HANDICAP 09-57-049 03/12/1964 U-9ba 585600.0 4109517.7 1,287.8 < 20 189 554 144 AA
HAPLOPAPPUS 09-57-021 06/28/1972 U-9itsw22 585689.3 4110103.1 1,291.4 < 20 223 558 184 TM-LVTA
HARD HAT 15-57-001 02/15/1962 U-15a 583452.9 4120183.5 1,558.7 5.7 294 222 287 MGCU
HAREBELL 02-57-046 06/24/1971 U-2br 582872.3 4111349.9 1,314.3 20 to 200 557 572 519 TM-LVTA
HARKEE 03-57-047 05/17/1963 U-3bv 587537.9 4099992.9 1,225.9 Low 256 492 241 AA
HARLINGEN-A 06-57-004 08/23/1988 U-6g 587387.5 4094141.3 1,202.4 < 20 320 463 290 AA
HARLINGEN-B 06-57-005 08/23/1988 U-6h 587388.8 4093867.1 1,201.8 < 20 320 462 290 AA
HATCHET 03-57-140 05/03/1968 U-3fz 587178.3 4098284.9 1,215.2 < 20 253 482 241 AA
HATCHIE 09-57-093 02/08/1963 U-9e 585399.2 4109074.5 1,282.6 Low 66 546 61 AA
HAVARTI 10-57-037 08/05/1981 U-10bg 585685.2 4112160.0 1,310.0 < 20 221 578 200 TM-LVTA
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HAYMAKER 03-57-021 06/27/1962 U-3au(s) 586022.4 4099759.4 1,223.5 67 463 491 408 AA
HAZEBROOK-APRICOT 10-57-038 02/03/1987 U-10bh 584467.8 4115187.7 1,317.3 < 20 297 571 262 AA
HAZEBROOK-CHECKERBERRY 10-57-038 02/03/1987 U-10bh 584467.8 4115187.7 1,317.3 < 20 297 571 226 AA
HAZEBROOK-EMERALD 10-57-038 02/03/1987 U-10bh 584467.8 4115187.7 1,317.3 < 20 297 571 186 AA
HEARTS 04-57-028 09/06/1979 U-4n 584185.3 4104863.2 1,258.8 140 671 473 640 LTCU
HEILMAN 02-57-059 04/06/1967 U-2cg 577034.6 4110254.9 1432.3 < 20 190 531 153 AA
HERMOSA 07-57-037 04/02/1985 U-7bs 585994.6 4105624.7 1,277.7 20 to 150 677 541 640 LTCU
HOD-A (GREEN) 09-57-008 05/01/1970 U-9itsx23 585795.6 4110225.6 1,294.8 < 20 256 562 241 TM-LVTA
HOD-B (RED) 09-57-007 05/01/1970 U-9itsx20 585797.2 4109859.7 1,293.0 < 20 280 560 265 TM-LVTA
HOD-C (BLUE) 09-57-017 05/01/1970 U-9iz25 586038.5 4110470.0 1,302.4 < 20 116 570 101 TM-LVTA
HOGNOSE 03-57-009 03/15/1962 U-3ai 586168.2 4099984.8 1,225.0 Low 370 492 240 AA
HOOK 09-57-051 04/14/1964 U-9bc 586179.3 4109411.5 1,302.7 < 20 233 571 204 TM-LVTA
HOOPOE 03-57-054 12/16/1964 U-3cf 585968.1 4100478.0 1,227.1 < 20 81 494 70 AA
HOOSIC 09-57-101 03/28/1962 U-9j 585824.9 4108896.8 1,290.8 3.4 202 557 187 TM-LVTA
HOREHOUND 03-57-153 08/27/1969 U-3gm 589385.8 4094331.2 1,201.5 < 20 351 460 332 LTCU
HOSPAH 03-57-199 12/14/1971 U-3je 586356.6 4097977.3 1,215.2 < 20 321 482 302 AA
HUDSON 09-57-105 04/12/1962 U-9n 584845.4 4109204.2 1,280.2 Low 181 539 151 AA
HULA 09-57-068 10/29/1968 U-9bu 585210.3 4107663.6 1,280.8 < 20 375 543 200 AA
HULSEA 02-57-051 03/14/1974 U-2bx 583106.7 4112288.0 1,316.4 < 20 229 577 195 AA
HUPMOBILE 02-57-153 01/18/1968 U-2y 582976.7 4111227.4 1,313.7 7.4 280 573 247 AA
HURON KING 03-57-239 06/24/1980 U-3ky 585915.7 4097689.3 1,214.6 < 20 354 481 320 AA
HUTCH 02-57-083 07/16/1969 U-2df 581050.2 4110535.3 1,327.1 20 to 200 568 581 549 AA
HUTIA 03-57-029 06/06/1963 U-3bc 585694.3 4100015.7 1,225.0 Low 142 492 135 AA
HYRAX 03-57-034 09/14/1962 U-3bh 587050.7 4099990.9 1,224.4 Low 329 491 217 AA
ICEBERG 04-57-023 03/23/1978 U-4g 584315.6 4106380.6 1,265.5 20 to 150 744 485 640 LTCU
ILDRIM 02-57-019 07/16/1969 U-2au 583943.4 4108335.6 1,282.9 20 to 200 428 514 410 TM-WTA
IMP 02-57-037 08/09/1968 U-2bj 581937.1 4113015.3 1,340.8 < 20 187 602 182 AA
INGOT 02-57-139 03/09/1989 U-2gg 582867.7 4110922.0 1,307.3 20 to 150 555 564 500 TM-WTA
IPECAC-A 03-57-175 05/27/1969 U-3hka 588768.4 4096797.3 1,208.5 < 20 134 472 124 AA
IPECAC-B 03-57-176 05/27/1969 U-3hkb 588950.9 4096782.7 1,209.4 < 20 134 473 124 AA
ISLAY 02-57-118 08/27/1981 U-2er 582885.3 4112872.3 1,323.4 < 20 335 587 294 TM-LVTA
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IZZER 09-57-064 07/16/1965 U-9bp 585682.0 4107863.3 1,299.7 < 20 239 565 164 AA
JACKPOTS 03-57-226 06/01/1978 U-3kj 586113.6 4097397.5 1,212.8 < 20 351 479 305 AA
JAL 03-57-171 03/19/1970 U-3hh 586945.1 4095236.8 1,205.5 < 20 311 469 301 AA
JARA 03-57-099 06/06/1974 U-3hp 586883.1 4095541.3 1,207.0 < 20 396 471 378 AA
JARLSBERG 10-57-040 08/27/1983 U-10ca 585732.9 4116509.2 1,344.5 < 20 265 325 200 TM--LVTA
JERBOA 03-57-020 03/01/1963 U-3at 586571.4 4100049.9 1,224.1 Low 309 491 301 AA
JIB 03-57-165 05/08/1974 U-3hb 588834.1 4095243.7 1,204.3 < 20 253 463 180 TM-UVTA
JICARILLA 03-57-207 04/19/1972 U-3jm 587494.2 4095854.9 1,207.0 < 20 168 470 148 AA
JORNADA 04-57-026 01/28/1982 U-4j 584319.7 4105223.0 1,260.0 139 686 477 640 LTCU
KANKAKEE 10-57-052 06/15/1966 U-10p 584440.2 4114121.4 1,308.2 20 to 200 462 575 455 LCA
KARA 02-57-086 05/11/1972 U-2dh3 581340.7 4107540.3 1,294.5 < 20 290 554 259 AA
KARAB 04-57-006 03/16/1978 U-4ah 581625.6 4104512.0 1,274.7 < 20 351 525 331 LTCU
KASHAN 10-57-026 05/24/1973 U-10av 583820.0 4113082.8 1,303.9 < 20 320 567 265 AA
KAWEAH 09-57-025 02/21/1963 U-9ab 584777.9 4108442.2 1,276.2 3 233 534 227 AA
KAWICH A-BLUE 08-57-009 12/09/1988 U-8n 580630.7 4114503.8 1,384.4 < 20 577 540 384 OSBCU
KAWICH A-WHITE 08-57-009 12/09/1988 U-8n 580630.7 4114503.8 1,384.4 < 20 577 540 369 LTCU
KAWICH-BLACK 02-57-072 02/24/1989 U-2cu 577996.1 4109283.8 1,379.5 < 20 462 551 431 TM-LVTA
KAWICH-RED 02-57-072 02/24/1989 U-2cu 577996.1 4109283.8 1,379.5 < 20 462 551 370 TM-LVTA
KEEL 03-57-189 12/16/1974 U-3hu 587398.0 4096373.8 1,208.8 < 20 329 473 305 AA
KEELSON 07-57-010 02/04/1976 U-7ai 586217.5 4102791.8 1,244.8 20 to 200 664 508 640 LTCU
KENNEBEC 02-57-005 06/25/1963 U-2af 582780.2 4109651.9 1,303.0 Low 238 554 226 AA
KERMET 02-57-054 11/23/1965 U-2c 582493.4 4113032.5 1,331.4 < 20 233 594 196 AA
KESTI 09-57-085 06/16/1982 U-9cn 587373.1 4107793.1 1,338.4 < 20 336 606 289 LTCU
KESTREL 03-57-071 04/05/1965 U-3dd 586935.2 4097979.3 1,214.6 < 20 454 481 447 AA
KHAKI 03-57-114 10/15/1966 U-3et 587414.8 4100342.9 1,228.6 < 20 244 495 233 AA
KINIBITO 03-57-264 12/05/1985 U-3me 584883.3 4101004.2 1,235.0 20 to 150 686 496 579 LTCU
KLICKITAT 10-57-045 02/20/1964 U-10e 585241.1 4111838.4 1,300.3 70 511 568 493 LTCU
KLOSTER 02-57-115 02/15/1979 U-2eo 582422.6 4111935.2 1,324.1 20 to 150 558 584 536 TM-LVTA
KNIFE A 03-57-122 09/12/1968 U-3fb 587908.0 4098653.1 1,217.4 < 20 344 483 332 TM-LVTA
KNIFE B 03-57-093 11/15/1968 U-3dz 585990.5 4098006.5 1,215.2 < 20 375 482 363 AA
KNIFE C 03-57-112 10/03/1968 U-3er 589586.5 4098019.1 1,228.3 < 20 314 495 301 LTCU
KNOX 02-57-018 02/21/1968 U-2at 584072.8 4108017.9 1,279.9 20 to 200 669 504 645 LTCU
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KOHOCTON 09-57-034 08/23/1963 U-9ak 585690.0 4108966.8 1,300.6 Low 262 566 255 TM-LVTA
KOOTANAI 09-57-111 04/24/1963 U-9w 585615.8 4108481.7 1,287.8 Low 186 552 182 AA
KRYDDOST 02-57-066 05/06/1982 U-2co 577568.2 4107987.2 1,390.5 < 20 357 516 335 TM-LVTA
KYACK-A 02-57-044 09/20/1969 U-2bq1 582780.2 4112686.1 1,323.4 < 20 199 586 185 AA
KYACK-B 02-57-045 09/20/1969 U-2bq2 582920.0 4112540.3 1,320.1 < 20 206 582 192 AA
LABAN 02-57-133 08/03/1983 U-2ff 580942.1 4108258.1 1,303.0 < 20 366 561 326 AA
LABIS 10-57-019 02/05/1970 U-10an 585340.2 4113290.2 1,313.1 25 480 580 442 LTCU
LAGOON 10-57-023 10/14/1971 U-10ar 584056.7 4115032.4 1,312.8 < 20 369 575 305 AA
LAGUNA 03-57-124 06/23/1971 U-3fd 586937.0 4097552.4 1,213.4 20 to 200 469 480 455 TM-WTA
LAMPBLACK 07-57-049 01/18/1966 U-7i 587212.2 4105292.2 1,294.2 20 to 200 579 560 561 OSBCU
LANPHER 02-57-152 10/18/1967 U-2x 583723.9 4107906.7 1,282.0 20 to 200 782 498 715 LTCU
LAREDO 03-57-267 05/21/1988 U-3mh 590070.9 4098752.1 1,247.2 < 150 531 515 351 LTCU
LATIR 04-57-020 02/27/1974 U-4d 584162.6 4106654.3 1,270.1 20 to 200 686 486 641 LTCU
LEDOUX 01-57-001 09/27/1990 U-1a.01 583791.1 4095876.4 1,217.7 < 20 NA 479 291 AA
LEXINGTON 02-57-039 08/24/1967 U-2bm 582204.5 4113122.6 1,336.9 < 20 233 599 226 AA
LEYDEN 09-57-084 11/26/1975 U-9cm 587165.1 4108127.5 1,329.8 < 20 355 597 326 LTCU
LIME 07-57-047 04/01/1966 U-7j 587088.1 4106511.9 1,318.6 < 20 578 585 561 OSBCU
LINKS 09-57-054 07/23/1964 U-9bf 586002.4 4107727.0 1,300.0 < 20 127 566 120 AA
LIPTAUER 02-57-109 04/03/1980 U-2eh 581499.3 4111689.4 1,331.4 20 to 150 686 585 417 AA
LONGCHAMPS 02-57-091 04/19/1972 U-2dm 581388.9 4108588.7 1,303.0 < 20 344 560 326 AA
LOVAGE 03-57-125 12/17/1969 U-3fe 586942.7 4095846.3 1,207.9 < 20 396 472 378 AA
LOWBALL 07-57-021 07/12/1978 U-7av 584995.6 4103823.6 1,252.4 20 to 150 591 490 564 LTCU
LUBBOCK 03-57-271 10/18/1991 U-3mt 584879.0 4102131.9 1,239.6 20 to 150 472 468 457 LTCU
LUNA 03-57-262 09/21/1958 U-3m 585925.1 4100568.1 1,227.7 0.0015 160 495 148 AA
MACKEREL 04-57-018 02/18/1964 U-4b 584360.3 4105698.8 1,263.4 < 20 500 484 334 TM-LVTA
MAD 09-57-023 12/13/1961 U-9a 584500.3 4109136.9 1,281.4 0.5 187 537 182 AA
MALLET 03-57-136 01/31/1968 U-3fv 588164.0 4095241.4 1,204.3 < 20 253 465 240 AA
MANATEE 09-57-029 12/14/1962 U-9af 585284.7 4108882.8 1,280.8 Low 67 543 60 AA
MANTECA 04-57-010 12/10/1982 U-4al 582496.0 4103966.9 1,263.1 20 to 150 488 505 413 AA
MANZANAS 03-57-157 05/21/1970 U-3gr 589681.8 4096496.1 1,221.6 < 20 253 485 241 TSA
MARIBO 02-57-070 06/26/1985 U-2cs 577997.8 4108796.2 1,379.5 < 20 457 547 381 TM-LVTA
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MARSH 03-57-220 09/06/1975 U-3kb 586433.6 4097734.1 1,214.0 < 20 460 480 427 AA
MARSILLY 02-57-112 04/05/1977 U-2el 583306.2 4108418.4 1,286.3 20 to 150 732 520 690 LTCU
MARVEL 10-57-044 09/21/1967 U-10ds1 585381.5 4113496.4 1,314.3 2.2 626 580 176 AA
MATACO 03-57-036 06/14/1963 U-3bk 587293.9 4100235.9 1,227.1 Low 201 493 196 AA
MAUVE 03-57-085 08/06/1965 U-3dp 585415.1 4097059.5 1,21,2.5 < 20 348 479 321 AA
MAXWELL 09-57-065 01/13/1966 U-9br 586397.6 4108003.3 1,310.0 < 20 308 578 183 TM-LVTA
MEMORY 03-57-231 03/14/1979 U-3kq 585411.2 4098187.3 1,217.7 < 20 443 485 366 AA
MERIDA 02-57-092 06/07/1972 U-2dn 581263.2 4107916.4 1,297.8 < 20 232 556 204 AA
MERLIN 03-57-062 02/16/1965 U-3ct 586803.3 4100843.3 1,230.8 10.1 317 497 296 AA
MERRIMAC 03-57-030 07/13/1962 U-3bd 585946.0 4101214.5 1,231.7 Intermediate 422 498 413 AA
MESCALERO 03-57-160 01/05/1972 U-3gu 586298.9 4100174.2 1,225.3 < 20 128 492 120 AA
MESITA 03-57-198 05/09/1973 U-3jd 587541.9 4095817.0 1,207.0 < 20 162 470 149 AA
METROPOLIS 02-57-140 03/10/1990 U-2gh 583945.8 4107567.1 1,273.1 20 to 150 549 479 469 TM-LVTA
MICKEY 07-57-050 05/10/1967 U-7m 589307.3 4103777.5 1,304.5 20 to 200 518 573 500 LTCU
MIDLAND 07-57-040 07/16/1987 U-7by 586783.4 4106602.6 1,310.6 20 to 150 549 577 488 OSBCU
MIERA 07-57-005 03/08/1973 U-7ad 586483.2 4106603.9 1,306.1 20 to 200 599 573 569 OSBCU
MINERO 03-57-257 12/20/1984 U-3lt 584988.3 4096420.8 1,214.6 < 20 274 481 244 TM-UVTA
MINIATA 02-57-048 07/08/1971 U-2bu 584282.2 4107306.5 1,273.8 83 564 494 529 LTCU
MINK 03-57-005 10/29/1961 U-3ae 586157.6 4100495.8 1,227.7 Low 210 495 192 AA
MINNOW 03-57-064 05/15/1964 U-3cv 587843.5 4099749.6 1,225.9 < 20 274 492 241 AA
MISSISSIPPI 09-57-027 10/05/1962 U-9ad 584347.0 4110555.5 1,290.5 115 553 546 494 TM-LVTA
MIZZEN 07-57-009 06/03/1975 U-7ah 585660.0 4105623.5 1,274.1 20 to 200 978 536 637 LTCU
MOA 03-57-097 09/01/1965 U-3ed 587692.9 4099261.8 1,220.7 < 20 206 487 194 AA
MOGOLLON 03-57-248 04/20/1986 U-3li 584869.0 4096387.5 1,214.6 < 20 274 481 259 TM-UVTA
MONAHANS-A 03-57-250 11/09/1988 U-3lk 587113.8 4094139.8 1,202.1 < 20 396 463 290 AA
MONAHANS-B 06-57-006 11/09/1988 U-6i 587114.5 4093866.1 1,201.5 < 20 320 462 290 AA
MONERO 03-57-210 05/19/1972 U-3jq 588748.7 4102312.8 1,272.5 < 20 580 522 537 OSBCU
MONTEREY 04-57-008 07/29/1982 U-4aj 582197.9 4106418.6 1,280.2 20 to 150 488 495 400 TM-LVTA
MORRONES 03-57-103 05/21/1970 U-3ei 587740.8 4102979.7 1,264.3 20 to 200 533 518 483 LTCU
MUDPACK 10-57-051 12/16/1964 U-10n 582823.3 4114801.0 1,336.9 2.7 160 602 152 TM-LVTA
MUGGINS 03-57-256 12/09/1983 U-3ls 584899.0 4096509.5 1,215.2 < 20 305 482 244 TM-UVTA
MULESHOE 07-57-031 11/15/1989 U-7bk 587666.5 4106940.6 1,338.4 < 20 376 606 244 LTCU
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MULLET 02-57-006 10/17/1963 U-2ag 582878.8 4109587.4 1,301.5 Low 63 552 60 AA
MUNDO 07-57-034 05/01/1984 U-7bo 586866.8 4106899.7 1,319.2 20 to 150 610 586 567 OSBCU
MUSCOVY 03-57-091 04/23/1965 U-3dx 589376.5 4097073.4 1,216.5 < 20 191 482 180 TM-WTA
MUSHROOM 03-57-100 03/03/1967 U-3ef 588026.9 4099506.8 1,225.0 < 20 191 491 180 AA
MUSTANG 09-57-040 11/15/1963 U-9at 584660.2 4109770.1 1,283.8 Low 174 542 166 AA
NAMA-AMARYLIS 09-57-020 08/05/1971 U-9itsxy31 585853.1 4111200.7 1,300.3 < 20 305 568 273 LTCU
NAMA-MEPHISTO 09-57-019 08/05/1971 U-9itsz27 586037.6 4110713.8 1,303.0 < 20 264 571 244 TM-LVTA
NARRAGUAGUS 02-57-127 09/27/1963 U-2f 582284.4 4112241.0 1,328.9 Low 156 589 150 AA
NASH 02-57-058 01/19/1967 U-2ce 576803.9 4110955.3 1,452.1 39 370 527 365 LCA3
NATCHES 09-57-033 08/23/1963 U-9ak1 585702.2 4108966.8 1,288.4 Low 64 554 59 AA
NATOMA 10-57-027 04/05/1973 U-10aw 583987.3 4114820.4 1,309.7 < 20 416 574 244 AA
NAVATA 03-57-242 09/29/1983 U-3lb 587107.3 4101042.4 1,233.8 < 20 244 500 183 AA
NESSEL 02-57-116 08/29/1979 U-2ep 582922.5 4108524.0 1,286.6 20 to 150 543 532 464 AA
NEWARK 10-57-057 09/29/1966 U-10u 584694.2 4113804.8 1,306.1 < 20 233 573 229 AA
NIGHTINGALE 02-57-125 06/22/1988 U-2ey 582371.1 4113504.4 1,336.2 < 150 279 600 238 AA
NIPPER 03-57-152 02/04/1969 U-3gl 588163.4 4095423.9 1,204.9 < 20 253 466 241 AA
NIZA 09-57-088 07/10/1981 U-9cr 585829.0 4109372.2 1,293.0 < 20 369 560 341 LTCU
NOGGIN 09-57-070 09/06/1968 U-9bx 584631.9 4110188.0 1,286.3 20 to 200 640 543 582 TM-LVTA
NOOR 02-57-032 04/10/1968 U-2be 581797.0 4112191.7 1,336.5 20 to 200 399 596 381 AA
NORBO 08-57-003 03/08/1980 U-8c 581390.6 4115024.5 1,376.2 < 20 279 639 271 OSBCU
NORMANNA 10-57-041 07/12/1984 U-10cb 585704.1 4116403.1 1,342.3 < 20 230 350 200 LTCU
NUMBAT 03-57-046 12/12/1962 U-3bu 587537.7 4100236.7 1,228.3 Low 256 494 232 AA
OAKLAND 02-57-036 04/04/1967 U-2bi 581489.4 4113032.0 1,348.1 < 20 171 601 166 AA
OARLOCK 03-57-228 02/16/1977 U-3km 586422.3 4096606.3 1,210.1 < 20 343 476 320 AA
OBAR 07-57-008 04/30/1975 U-7ag 586293.8 4107185.6 1,306.4 20 to 200 602 573 569 OSBCU
OCATE 03-57-209 03/30/1972 U-3jp 587651.1 4095621.1 1,206.4 < 20 229 469 210 AA
OCHRE 03-57-096 04/29/1966 U-3ec 586928.6 4099960.0 1,223.2 < 20 136 490 126 AA
OCONTO 09-57-045 01/23/1964 U-9ay 585607.7 4109127.7 1,286.6 10.5 277 552 265 TM-LVTA
OFFSHORE 03-57-233 08/08/1979 U-3ks 588250.1 4096765.0 1,208.8 20 to 150 492 472 396 LTCU
ONAJA 03-57-212 03/30/1972 U-3js 587187.2 4095725.2 1,207.0 < 20 321 471 279 AA
ORGANDY 09-57-063 06/11/1965 U-9bo 586778.3 4107958.6 1,320.4 < 20 191 588 168 TM-LVTA
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ORKNEY 10-57-035 05/02/1984 U-10be 583958.3 4117105.7 1,378.3 < 20 229 606 210 AA
OSCURO 07-57-062 09/21/1972 U-7z 585633.6 4104206.1 1,252.1 20 to 200 581 513 560 LTCU
OTERO 03-57-274 09/12/1958 U-3q 586089.4 4100642.4 1,229.0 0.038 157 496 146 AA
PACA 03-57-024 05/07/1962 U-3ax 586701.4 4100279.2 1,225.6 Low 267 492 258 AA
PACKARD 02-57-150 01/15/1969 U-2u 582975.8 4111486.5 1,315.2 10 311 575 247 AA
PACKRAT 03-57-023 06/06/1962 U-3aw 585432.6 4100172.0 1,225.9 Low 270 492 262 AA
PAISANO 09-57-112 04/24/1963 U-9w1 585625.0 4108474.1 1,287.8 Low 62 553 57 AA
PAJARA 03-57-203 12/12/1973 U-3ji 586842.2 4094169.9 1,202.4 < 20 297 465 278 AA
PALISADE-1 04-57-015 05/15/1989 U-4at 578112.7 4106968.3 1,365.2 < 20 464 490 335 TM-LVTA
PALISADE-2 04-57-015 05/15/1989 U-4at 578112.7 4106968.3 1,365.2 < 20 464 490 390 TM-LVTA
PALISADE-3 04-57-015 05/15/1989 U-4at 578112.7 4106968.3 1,365.2 < 20 464 490 404 TM-LVTA
PALIZA 07-57-026 10/01/1981 U-7bd 588106.2 4104182.8 1,287.5 20 to 150 610 533 472 LTCU
PAMPAS 03-57-012 03/01/1962 U-3al 586380.7 4099687.8 1,222.9 9.5 370 490 363 AA
PANAMINT 02-57-136 05/21/1986 U-2gb 583468.9 4108952.6 1,286.0 < 20 573 529 480 TM-WTA
PANCHUELA 03-57-266 06/30/1987 U-3mg 585148.3 4094941.0 1,206.1 < 20 457 473 320 AA
PAR 02-57-146 10/09/1964 U-2p 581965.5 4111857.4 1,331.4 38 416 586 406 AA
PARNASSIA 02-57-030 11/30/1971 U-2bc 582555.9 4112872.7 1,328.9 < 20 346 592 331 TM-LVTA
PARROT 03-57-080 12/16/1964 U-3dk 587846.5 4098988.1 1,219.5 1.3 187 486 180 AA
PASCAL-A 03-57-194 07/26/1957 U-3j 585947.3 4100848.8 1,229.3 Slight 152 496 152 AA
PASCAL-B 03-57-068 08/27/1957 U-3d 585902.7 4100547.6 1,227.7 Slight 152 495 152 AA
PASCAL-C 03-57-094 12/06/1957 U-3e 586176.6 4100648.5 1,228.6 Slight 158 496 76 AA
PASSAIC 09-57-103 04/06/1962 U-9l 584931.9 4108150.8 1,275.0 Low 270 536 233 AA
PEBA 03-57-028 09/20/1962 U-3bb 586311.4 4101215.8 1,232.3 Low 283 499 241 AA
PEDERNAL 03-57-170 09/29/1971 U-3hg 588312.5 4096353.9 1,207.3 < 20 396 470 379 TM-LVTA
PEKAN 03-57-048 08/12/1963 U-3bw 587539.1 4099748.9 1,223.8 Low 311 490 302 AA
PENASCO 03-57-181 11/19/1970 U-3hl 587549.3 4096762.6 1,209.8 < 20 282 475 271 AA
PERA 10-57-034 09/08/1979 U-10bd 585407.4 4112296.1 1,307.3 < 20 335 575 200 TM-LVTA
PERSIMMON 03-57-083 02/23/1967 U-3dn 587548.2 4097067.6 1,210.7 < 20 309 476 299 AA
PETREL 03-57-092 06/11/1965 U-3dy 587416.2 4099870.0 1,224.1 1.3 192 490 181 AA
PICCALILLI 03-57-123 11/21/1969 U-3fc 588761.4 4098595.2 1,222.2 20 to 200 407 489 394 LTCU
PIKE 03-57-066 03/13/1964 U-3cy 587901.4 4100724.6 1,237.5 < 20 289 501 115 AA
PILE DRIVER 15-57-002 06/02/1966 U-15.01 583511.6 4119950.0 1,551.4 62 NA 185 463 MGCU
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PINEAU 07-57-016 07/16/1981 U-7ao 587154.5 4104958.3 1,286.3 < 20 460 552 204 TM-UVTA
PINEDROPS-BAYOU 10-57-024 01/10/1974 U-10as 584266.4 4114406.9 1,310.0 < 20 366 576 343 TM-LVTA
PINEDROPS-SLOAT 10-57-024 01/10/1974 U-10as 584266.4 4114406.9 1,310.0 < 20 366 576 213 AA
PINEDROPS-TAWNY 10-57-024 01/10/1974 U-10as 584266.4 4114406.9 1,310.0 < 20 366 576 282 TM-LVTA
PIPEFISH 03-57-059 04/29/1964 U-3co 586564.5 4099501.4 1,221.0 < 20 274 488 262 AA
PIRANHA 07-57-043 05/13/1966 U-7e 585905.9 4104740.6 1,263.7 20 to 200 587 526 549 LTCU
PITON-A 09-57-014 05/28/1970 U-9itsy30 585914.5 4111079.0 1,300.9 < 20 251 568 236 TM-LVTA
PITON-B 09-57-010 05/28/1970 U-9itsx27 585794.5 4110712.6 1,296.9 < 20 244 564 229 TM-LVTA
PITON-C 09-57-116 05/28/1970 U-9itsaa25 586160.7 4110470.4 1,305.8 < 20 122 573 101 TM-LVTA
PLAID II 02-57-148 02/03/1966 U-2r 582660.9 4109086.8 1,298.4 < 20 500 546 269 AA
PLANER 03-57-106 11/21/1969 U-3el 586939.8 4096760.4 1,210.4 < 20 396 476 378 AA
PLATYPUS 03-57-004 02/24/1962 U-3ad 586086.1 4100469.3 1,227.1 Low 66 494 58 AA
PLAYER 09-57-075 08/27/1964 U-9cc 585230.1 4108118.6 1,280.5 < 20 94 543 90 AA
PLEASANT 09-57-030 05/29/1963 U-9ah 584973.0 4109304.9 1,279.6 Low 219 540 211 AA
PLIERS 03-57-154 08/27/1969 U-3gn 585566.0 4097487.0 1,214.3 < 20 253 481 239 AA
PLOMO 03-57-126 05/01/1974 U-3ff 590224.1 4098600.6 1,253.9 < 20 283 522 149 TM-LVTA
POD-A 02-57-063 10/29/1969 U-2ch 577225.1 4110576.5 1,424.0

16.7
(total) 

285 540 267 TM-LVTA
POD-B 02-57-060 10/29/1969 U-2ci 576218.3 4110593.9 1,491.7 267 444 249 TM-LVTA
POD-C 02-57-061 10/29/1969 U-2cj 576388.4 4110138.7 1,474.9 265 466 171 AA
POD-D 02-57-062 10/29/1969 U-2ck 576745.9 4110032.1 1,451.2 334 512 312 TM-LVTA
POLKA 10-57-008 12/06/1967 U-10ai 584091.8 4112756.8 1,299.4 < 20 207 558 190 AA
POLYGONUM 02-57-052 10/02/1973 U-2by 582313.0 4112686.0 1,330.8 < 20 244 592 213 AA
POMMARD 03-57-098 03/14/1968 U-3ee 587962.8 4100420.7 1,235.4 1.5 223 501 209 AA
PONGEE 02-57-007 07/22/1965 U-2ah 582887.3 4109696.8 1,301.5 < 20 142 553 135 AA
PONIL 07-57-039 09/27/1985 U-7bv 588717.6 4105097.9 1,310.6 < 20 396 556 366 LTCU
PORTMANTEAU 02-57-022 08/30/1974 U-2ax 581401.3 4111977.3 1,340.2 20 to 200 701 600 655 TM-LVTA
PORTOLA 10-57-032 02/06/1975 U-10bb 584194.6 4114881.4 1,31,2.2 < 20 290 575 198 AA
PORTOLA-LARKIN 10-57-032 02/06/1975 U-10bb 584194.6 4114881.4 1,312.2 < 20 290 575 274 AA
PORTULACA 02-57-049 06/28/1973 U-2bv 581181.7 4111525.2 1,337.5 20 to 200 518 591 466 AA
POTRERO 02-57-106 04/23/1974 U-2eb 582007.9 4112814.4 1,337.2 < 20 274 597 210 AA
POTRILLO 07-57-007 06/21/1973 U-7af 586452.7 4105321.5 1,282.3 20 to 200 606 548 568 OSBCU
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PRATT 03-57-185 09/25/1974 U-3hq 586270.5 4096453.4 1,210.1 < 20 335 476 313 AA
PRESIDIO 06-57-002 04/22/1987 U-6d 588591.5 4093261.8 1,198.5 < 20 396 458 320 TM-LVTA
PUCE 03-57-044 06/10/1966 U-3bs 585459.2 4101692.1 1,235.4 < 20 492 493 486 AA
PUDDLE 03-57-224 11/26/1974 U-3kg 587981.2 4095240.4 1,219.8 < 20 203 481 183 AA
PURPLE 03-57-087 03/18/1966 U-3ds 588160.5 4096154.9 1,206.7 < 20 346 469 333 TM-WTA
PUYE 03-57-206 08/14/1974 U-3jl 585717.6 4097700.5 1,215.2 < 20 460 482 430 AA
PYRAMID 07-57-027 04/16/1980 U-7be 586148.4 4106326.1 1,292.7 20 to 150 610 557 579 OSBCU
QUARGEL 02-57-129 11/18/1978 U-2fb 581380.9 4109135.7 1,301.8 20 to 150 567 539 542 TM-LVTA
QUESO 10-57-036 08/11/1982 U-10bf 584525.4 4116147.8 1,337.2 < 20 555 571 216 AA
QUINELLA 04-57-027 02/08/1979 U-4l 583986.5 4106455.6 1,267.7 20 to 150 710 484 579 LTCU
RACCOON 03-57-010 06/01/1962 U-3ajs 585861.6 4100165.0 1,225.6 Low 172 493 164 AA
RACK 09-57-037 08/15/1968 U-9ap 584551.1 4108818.9 1,280.5 < 20 236 536 200 AA
RARITAN 09-57-109 09/06/1962 U-9u 584853.6 4109551.9 1,281.4 Low 181 540 157 AA
REBLOCHON 02-57-114 02/23/1978 U-2en 583164.7 4108799.1 1,288.1 20 to 150 747 534 658 LTCU
REDMUD 07-57-003 12/08/1976 U-7ab 588743.0 4103928.1 1,295.7 < 20 519 533 427 LTCU
REO 10-57-050 01/22/1966 U-10m 585360.5 4112541.0 1,309.4 < 20 328 577 208 AA
RHYOLITE 02-57-126 06/22/1988 U-2ey 582371.1 4113504.4 1,336.2 < 150 279 600 207 AA
RIB 03-57-215 12/14/1977 U-3jv 587365.7 4097067.0 1,211.0 < 20 232 477 213 AA
RINGTAIL 03-57-011 12/17/1961 U-3ak 586678.0 4099901.2 1,223.5 Low 370 490 363 AA
RIOLA 02-57-117 09/25/1980 U-2eq 583107.7 4107931.4 1,281.1 1.07 520 508 424 AA
RIVET I 10-57-002 01/18/1967 U-10aa 584653.8 4113411.8 1,302.4 < 20 206 567 152 AA
RIVET II 10-57-061 01/26/1967 U-10z 584519.9 4113374.8 1,300.6 < 20 223 563 198 AA
RIVET III 10-57-060 03/02/1967 U-10y 584461.9 4113493.1 1,301.5 < 20 308 567 274 AA
RIVOLI 02-57-108 05/20/1976 U-2eg 582905.9 4110296.9 1,305.8 < 20 297 559 200 AA
ROANOKE 09-57-107 10/12/1962 U-9q 584322.4 4108706.0 1,279.6 Low 218 530 177 AA
ROMANO 02-57-124 12/16/1983 U-2ex 582414.6 4110652.3 1,314.0 20 to 150 612 561 515 TM-UVTA
ROQUEFORT 04-57-014 10/16/1985 U-4as 578066.1 4107227.1 1,367.9 20 to 150 442 508 415 TM-LVTA
ROUSANNE 04-57-030 11/12/1981 U-4p 584501.4 4107089.7 1,269.8 20 to 150 564 499 518 LTCU
ROVENA 10-57-055 08/10/1966 U-10s 584541.8 4113804.2 1,304.8 < 20 198 572 195 AA
RUDDER 07-57-011 12/28/1976 U-7aj(s) 585622.1 4106251.4 1,281.7 20 to 150 698 544 640 OSBCU
RUMMY 07-57-020 09/27/1978 U-7au 584324.5 4103942.8 1,253.0 20 to 150 744 489 640 LTCU
RUSSET 06-57-001 03/05/1968 U-6a 584046.3 4091762.8 1,197.9 < 20 130 459 120 PCUT
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SABADO 03-57-243 08/11/1983 U-3lc 588744.6 4094877.4 1,202.7 < 20 335 461 320 UTCU
SACRAMENTO 09-57-110 06/30/1962 U-9v 584629.8 4108118.6 1,273.1 Low 267 527 149 AA
SAN JUAN 03-57-273 10/20/1958 U-3p 586030.1 4100629.1 1,228.0 Zero 160 495 71 AA
SANDREEF 07-57-018 11/09/1977 U-7aq 584449.6 4103090.0 1,247.9 20 to 150 1103 479 701 LTCU
SANTEE 10-57-046 10/27/1962 U-10f 584053.6 4111651.4 1,296.6 Low 323 551 319 AA
SAPELLO 03-57-145 04/12/1974 U-3ge 585035.3 4096753.8 1,215.8 < 20 283 482 181 AA
SAPPHO 02-57-085 03/23/1972 U-2dh2 581666.9 4107605.1 1,292.7 < 20 282 552 198 AA
SARDINE 03-57-056 12/04/1963 U-3ch 586320.5 4099500.8 1,221.3 Low 273 489 262 AA
SATSOP 02-57-134 08/15/1963 U-2g 581994.9 4112161.9 1,332.9 Low 232 590 226 AA
SATZ 02-57-095 07/07/1978 U-2dq 581995.9 4107469.5 1,289.9 < 20 404 536 315 TM-LVTA
SAXON 02-57-056 07/28/1966 U-2cc 576988.3 4110605.5 1,438.4 1.2 189 536 154 TM-LVTA
SAZERAC 03-57-121 10/25/1967 U-3fa 586598.4 4098618.4 1,217.7 < 20 314 485 301 AA
SCANTLING 04-57-024 08/19/1977 U-4h 584008.0 4107293.7 1,272.5 20 to 150 732 482 701 OSBCU
SCAUP 03-57-069 05/14/1965 U-3da(s) 587973.7 4101654.6 1,249.1 < 20 454 507 427 LTCU
SCHELLBOURNE 02-57-138 05/13/1988 U-2gf 582427.0 4108875.8 1,295.1 < 150 552 541 463 AA
SCISSORS 03-57-148 12/12/1968 U-3gh 585481.1 4095536.4 1,208.5 < 20 253 475 241 AA
SCREAMER 03-57-076 09/01/1965 U-3dg 588155.5 4097678.9 1,211.6 < 20 309 478 302 TM-WTA
SCREE-ACAJOU 09-57-009 10/13/1970 U-9itsx24 585795.1 4110353.3 1,296.0 < 20 268 563 250 TM-LVTA
SCREE-ALHAMBRA 09-57-015 10/13/1970 U-9itsz21 586040.2 4109982.7 1,300.0 < 20 211 568 192 TM-LVTA
SCREE-CHAMOIS 09-57-016 10/13/1970 U-9itsz24 586038.9 4110344.7 1,301.8 < 20 207 569 101 TM-LVTA
SCUPPER 03-57-174 08/19/1977 U-3hj 586146.5 4097062.4 1,211.9 < 20 477 478 450 AA
SCUTTLE 02-57-035 11/13/1969 U-2bh 582143.2 4113332.6 1,339.3 1.7 183 602 165 AA
SEAFOAM 02-57-105 12/13/1973 U-2ea 582304.4 4112975.4 1,333.2 < 20 229 595 198 AA
SEAMOUNT 03-57-230 11/17/1977 U-3kp 586724.9 4097399.0 1,212.8 < 20 430 479 371 AA
SEAWEED B 03-57-177 10/16/1969 U-3hkd 589119.4 4096533.4 1,211.9 < 20 128 474 119 AA
SEAWEED-C 03-57-179 10/01/1969 U-3hke 589089.1 4096405.3 1,211.6 < 20 128 473 119 AA
SEAWEED-D 03-57-180 10/01/1969 U-3hkf 589005.6 4096302.6 1,210.4 < 20 128 472 118 AA
SEAWEED-E 03-57-178 10/01/1969 U-3hkc 589088.2 4096661.3 1,211.3 < 20 134 474 124 AA
SECO 08-57-007 02/25/1981 U-8l 581288.4 4115240.2 1,383.2 < 20 233 646 200 OSBCU
SEERSUCKER 09-57-061 02/19/1965 U-9bm 586089.7 4108118.3 1,301.2 < 20 152 568 144 TM-LVTA
SEPIA 03-57-108 11/12/1965 U-3en 586956.6 4100661.0 1,229.3 < 20 253 496 241 AA
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SEVILLA 03-57-129 06/25/1968 U-3fk 589611.2 4099756.1 1,253.0 < 20 411 516 359 TM-LVTA
SEYVAL 03-57-252 11/12/1982 U-3lm 586098.4 4097732.6 1,214.3 < 20 427 481 366 AA
SHALLOWS 03-57-200 02/26/1976 U-3jf 587543.9 4098286.2 1,215.2 < 20 260 481 244 AA
SHAPER 07-57-054 03/23/1970 U-7r 587003.8 4104683.3 1,278.6 20 to 200 579 545 560 OSBCU
SHAVE 03-57-151 01/22/1969 U-3gk 589468.7 4096860.4 1,218.0 < 20 254 483 241 UTCU
SHREW 03-57-003 09/16/1961 U-3ac 586005.9 4100481.8 1,227.4 Low 162 494 98 AA
SHUFFLE 10-57-056 04/18/1968 U-10t 585514.7 4112021.9 1,306.1 20 to 200 543 574 493 ATCU
SIDECAR 03-57-120 12/13/1966 U-3ez 588334.1 4098989.5 1,222.2 < 20 253 489 240 TM-WTA
SIENNA 03-57-057 01/18/1966 U-3cj 587296.4 4099260.1 1,220.1 < 20 310 487 275 AA
SILENE 09-57-082 06/28/1973 U-9ck 585209.7 4107846.4 1,280.8 < 20 336 543 198 AA
SIMMS 10-57-058 11/05/1966 U-10w 584589.5 4113947.6 1,306.4 2.3 201 573 199 AA
SNUBBER 03-57-116 04/21/1970 U-3ev2s 589971.4 4101236.8 1,279.9 12.7 358 551 344 LTCU
SOLANO 03-57-217 08/09/1972 U-3jx 587489.8 4095476.1 1,206.1 < 20 153 468 134 AA
SOLANUM 09-57-022 12/14/1972 U-9itsw24.5 585733.9 4110423.2 1,294.2 < 20 221 561 201 TM-LVTA
SOLENDON 03-57-067 02/12/1964 U-3cz 586313.5 4101389.8 1,233.2 < 20 161 500 150 AA
SPAR 03-57-211 12/19/1973 U-3jr 587291.6 4095759.1 1,207.0 < 20 163 471 149 AA
SPIDER-A 02-57-042 08/14/1969 U-2bp1 583144.6 4112855.9 1,318.6 < 20 221 582 213 AA
SPIDER-B 02-57-043 08/14/1969 U-2bp2 583130.8 4112627.6 1,318.3 < 20 236 581 228 AA
SPOON 09-57-052 09/11/1964 U-9bd 586581.4 4107729.0 1,315.5 < 20 189 583 180 TM-LVTA
SPRIT 03-57-166 11/10/1976 U-3hc 587388.7 4099108.4 1,219.2 < 20 202 486 183 AA
SPUD 03-57-139 07/17/1968 U-3fy 589078.2 4095244.0 1,205.8 < 20 253 464 240 TM-LVTA
ST. LAWRENCE 02-57-029 11/09/1962 U-2b 582280.6 4113243.5 1,336.2 Low 171 599 167 AA
STACCATO 10-57-007 01/19/1968 U-10ah 584012.5 4112436.3 1,298.8 20 to 200 462 559 443 AA
STANLEY 10-57-053 07/27/1967 U-10q 584495.7 4111592.0 1,291.4 20 to 200 512 547 484 TM-LVTA
STANYAN 02-57-021 09/26/1974 U-2aw 582749.8 4109788.0 1,301.8 20 to 200 660 554 573 TM-WTA
STARWORT 02-57-047 04/26/1973 U-2bs 583637.5 4108733.7 1,288.1 90 610 525 564 LTCU
STILLWATER 09-57-073 02/08/1962 U-9c 584153.6 4109205.1 1,282.9 3.07 194 537 181 AA
STILT 03-57-127 12/15/1967 U-3fh 588759.6 4099204.6 1,230.8 < 20 344 497 333 TM-LVTA
STOAT 03-57-016 01/09/1962 U-3ap 585809.3 4100056.4 1,225.6 5.1 309 493 302 AA
STODDARD 02-57-064 09/17/1968 U-2cms 577514.9 4108322.2 1,396.9 31 480 522 468 TM-LVTA
STONES 09-57-028 05/22/1963 U-9ae 585378.8 4107420.1 1,284.1 Intermediate 403 547 393 TM-LVTA
STRAIT 04-57-001 03/17/1976 U-4a 584191.6 4106990.5 1,270.7 200 to 500 961 484 780 OSBCU
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STRAKE 07-57-006 08/04/1977 U-7ae 588267.9 4104733.7 1,300.3 20 to 150 870 546 518 LTCU
STURGEON 03-57-040 04/15/1964 U-3bo 587294.8 4099991.8 1,225.0 < 20 156 491 150 AA
STUTZ 02-57-055 04/06/1966 U-2ca 576304.6 4110491.9 1,485.0 < 20 233 466 226 TM-LVTA
SUEDE 09-57-060 03/20/1965 U-9bk 586490.8 4107916.7 1,312.8 < 20 152 581 143 TM-LVTA
SUNDOWN-A 01-57-003 09/20/1990 U-1d 583883.6 4099324.7 1,233.5 < 20 457 495 270 AA
SUNDOWN-B 01-57-003 09/20/1990 U-1d 583883.6 4099324.7 1,233.5 < 20 457 495 256 AA
SUTTER 02-57-050 12/21/1976 U-2bw 583168.9 4111930.2 1,314.3 < 20 229 573 200 AA
SWITCH 09-57-069 06/22/1967 U-9bv 586287.3 4109038.6 1,303.6 3.1 312 572 302 LTCU
TAHOKA 03-57-265 08/13/1987 U-3mf 584880.3 4101857.7 1,239.6 20 to 150 671 487 640 LTCU
TAJIQUE 07-57-002 06/28/1972 U-7aa 589600.0 4102864.3 1,300.6 < 20 587 571 332 LTCU
TAJO 07-57-032 06/05/1986 U-7bl 587486.3 4106026.0 1,315.8 20 to 150 552 582 518 LTCU
TAN 07-57-048 06/03/1966 U-7k 585761.0 4102698.5 1,240.5 20 to 200 579 499 561 TM-LVTA
TANGERINE 03-57-095 08/12/1966 U-3eb 586318.1 4100247.1 1,225.6 < 20 95 492 88 AA
TANYA 02-57-098 07/30/1968 U-2dt 581536.8 4108016.4 1,297.5 20 to 200 559 558 381 AA
TAPESTRY 02-57-013 05/12/1966 U-2an 582505.7 4109969.7 1,307.9 < 20 279 557 249 AA
TAPPER 03-57-155 06/12/1969 U-3go 586271.8 4096087.7 1,208.5 < 20 319 475 303 AA
TARKO 02-57-131 02/28/1980 U-2fd 580969.6 4109096.1 1,306.7 < 20 465 561 369 AA
TAUNTON 09-57-024 12/04/1962 U-9aa 584387.9 4109300.1 1,282.9 Low 232 539 227 AA
TECHADO 04-57-029 09/22/1983 U-4o 584466.8 4106807.4 1,267.7 < 150 579 493 533 LTCU
TEE 02-57-003 05/07/1965 U-2ab 582895.8 4110647.9 1,309.7 7 233 564 184 AA
TEJON 03-57-055 05/17/1963 U-3cg 586045.8 4100469.2 1,227.1 Low 79 494 75 AA
TELEME 09-57-083 02/06/1975 U-9cl 586977.4 4107776.4 1,327.1 < 20 355 594 305 LTCU
TEMESCAL 04-57-003 11/02/1974 U-4ab 580723.6 4105392.9 1,290.5 < 20 299 445 263 AA
TEMPLAR 09-57-067 03/24/1966 U-9bt 586061.7 4107680.9 1,301.8 0.37 233 568 150 TM-WTA
TENAJA 03-57-247 04/17/1982 U-3lh 588082.0 4096993.0 1,204.6 < 20 427 470 357 TM-LVTA
TENDRAC 03-57-027 12/07/1962 U-3ba 586313.0 4100849.8 1,229.3 Low 337 496 303 AA
TERN 03-57-090 01/29/1965 U-3dw 587750.8 4100115.3 1,229.0 < 20 225 495 211 AA
TERRINE-WHITE 09-57-057 12/18/1969 U-9bi1 585749.6 4108470.0 1,290.8 20 to 200 480 556 457 TM-LVTA
TERRINE-YELLOW 09-57-058 12/18/1969 U-9bi2 586297.1 4108498.7 1,303.9 20 to 200 442 572 418 LTCU
TEXARKANA 07-57-041 02/10/1989 U-7ca 588835.4 4103653.9 1,293.6 20 to 150 549 519 503 OSBCU
THISTLE 07-57-056 04/30/1969 U-7t 588372.8 4105145.1 1,307.9 20 to 200 579 556 560 OSBCU
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THROW 02-57-034 04/10/1968 U-2bg 581491.1 4112444.2 1,343.6 < 20 236 601 228 AA
TICKING 09-57-059 08/21/1965 U-9bj 586536.1 4107607.3 1,314.9 < 20 236 582 208 TM-LVTA
TIJERAS 07-57-061 10/14/1970 U-7y 588441.4 4102969.9 1,276.2 20 to 200 579 523 561 OSBCU
TILCI 04-57-009 11/11/1981 U-4ak 582802.2 4103541.3 1,259.1 20 to 150 497 492 445 AA
TINDERBOX 09-57-046 11/22/1968 U-9az 585062.8 4110618.9 1,287.8 < 20 472 547 442 LTCU
TINY TOT 15-57-003 06/17/1965 U-15e 583635.8 4119815.4 1,530.7 < 20 NA 228 111 MGCU
TIOGA 09-57-094 10/18/1962 U-9f 585254.4 4109360.5 1,281.1 Low 66 543 59 AA
TOMATO 03-57-105 04/07/1966 U-3ek 589650.8 4097075.0 1,222.2 < 20 236 489 226 TM-LVTA
TOPGALLANT 04-57-021 02/28/1975 U-4e 583857.1 4106866.9 1,271.9 20 to 200 1022 483 713 LTCU
TOPMAST 07-57-023 03/23/1978 U-7ay 587120.4 4106085.7 1,309.4 < 20 488 576 457 OSBCU
TORCH 03-57-128 02/21/1968 U-3fj 588757.4 4099753.1 1,237.2 < 20 253 501 241 TM-WTA
TORNERO 03-57-251 02/11/1987 U-3ll 584991.2 4096281.3 1,213.4 < 20 396 480 298 TM-WTA
TORNILLO 09-57-038 10/11/1963 U-9aq 585832.6 4108278.0 1,293.6 0.38 157 559 150 AA
TORRIDO 07-57-059 05/27/1969 U-7w 589308.4 4103472.4 1,297.2 20 to 200 533 566 515 OSBCU
TORTUGAS 03-57-147 03/01/1984 U-3gg 584787.0 4102390.0 1,243.3 20 to 150 686 474 640 LTCU
TOYAH 09-57-026 03/15/1963 U-9ac 584855.0 4109054.6 1,279.2 Low 137 538 130 AA
TRANSOM 04-57-022 05/10/1978 U-4f 584199.5 4104826.1 1,258.5 Zero 713 472 640 LTCU
TRAVELER 02-57-057 05/04/1966 U-2cd 576639.2 4110223.7 1,457.2 < 20 233 497 198 AA
TREBBIANO 03-57-249 09/04/1981 U-3lj 584637.3 4101536.6 1,238.1 < 20 335 486 305 TM-UVTA
TROGON 03-57-079 07/24/1964 U-3dj 587842.1 4100237.5 1,231.1 < 20 200 497 193 AA
TRUCHAS-CHACON 03-57-184 10/28/1970 U-3hn 587366.7 4096674.8 1,209.4 < 20 128 475 118 AA
TRUCHAS-CHAMISAL 03-57-182 10/28/1970 U-3ho 587427.7 4096675.3 1,209.4 < 20 130 475 118 AA
TRUCHAS-RODARTE 03-57-183 10/28/1970 U-3hm 587244.5 4096761.5 1,210.1 < 20 282 476 266 AA
TRUMBULL 04-57-002 09/26/1974 U-4aa 580449.3 4105391.9 1,295.7 < 20 299 400 263 TM-LVTA
TUB-A 10-57-011 06/06/1968 U-10ajc 585011.6 4113677.3 1,308.8 < 20 207 575 189 AA
TUB-B 10-57-010 06/06/1968 U-10ajb 584929.5 4113446.3 1,306.1 < 20 200 573 189 AA
TUB-C 10-57-013 06/06/1968 U-10ajf 585174.5 4113447.5 1,310.0 < 20 198 577 189 AA
TUB-D 10-57-012 06/06/1968 U-10ajd 584806.4 4113620.2 1,305.2 < 20 286 572 273 TM-LVTA
TUB-F 10-57-009 06/06/1968 U-10aja 585051.1 4113621.3 1,308.8 < 20 209 575 189 AA
TULIA 04-57-033 05/26/1989 U-4s 583979.3 4104612.0 1,257.3 < 20 610 471 396 TM-UVTA
TULOSO 03-57-149 12/12/1972 U-3gi 587055.0 4098589.2 1,216.5 < 20 285 483 271 AA
TUNA 03-57-074 12/20/1963 U-3de 585950.0 4100962.2 1,229.9 Low 427 497 414 AA
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TUN-A 10-57-015 12/10/1969 U-10am1 581745.5 4113669.8 1,350.0 < 20 213 611 200 AA
TUN-B 10-57-016 12/10/1969 U-10am2 581744.8 4113867.8 1,351.5 < 20 206 613 194 AA
TUN-C 10-57-017 12/10/1969 U-10am3 581943.6 4113670.1 1,345.7 < 20 214 608 194 TM-LVTA
TUN-D 10-57-018 12/10/1969 U-10am4 581943.5 4113868.2 1,347.2 < 20 275 610 256 OSBCU
TURF 10-57-039 04/24/1964 U-10c 583885.9 4111681.3 1,298.4 20 to 200 588 553 506 TM-LVTA
TURNSTONE 03-57-088 10/16/1964 U-3dt 586734.5 4098831.9 1,218.0 < 20 136 485 126 AA
TURQUOISE 07-57-038 04/14/1983 U-7bu 584809.2 4103174.8 1,246.0 < 150 610 480 533 LTCU
TWEED 09-57-062 05/21/1965 U-9bn 586381.4 4108261.9 1,308.2 < 20 322 576 284 TM-LVTA
TYG-A 02-57-074 12/12/1968 U-2dc1e 581681.5 4108467.9 1,300.0 < 20 244 556 228 AA
TYG-B 02-57-075 12/12/1968 U-2dc2d 581773.6 4108110.1 1,296.6 < 20 270 555 251 AA
TYG-C 02-57-076 12/12/1968 U-2dc3c 581980.0 4108163.0 1,295.1 < 20 244 551 228 AA
TYG-D 02-57-077 12/12/1968 U-2dc4a 581887.9 4108520.7 1,298.8 < 20 223 553 207 AA
TYG-E 02-57-078 12/12/1968 U-2dc5b 582037.2 4108368.6 1,296.6 < 20 213 551 198 AA
TYG-F 02-57-079 12/12/1968 U-2dc6f 581579.9 4108250.8 1,299.7 < 20 282 559 265 AA
UMBER 03-57-107 06/29/1967 U-3em 586934.2 4098284.7 1,215.5 10 344 482 310 AA
VALENCIA 03-57-275 09/26/1958 U-3r 586269.3 4100609.8 1,228.0 0.002 160 495 148 AA
VALISE 09-57-071 03/18/1969 U-9by 585189.3 4110534.6 1,287.8 < 20 107 548 91 AA
VAT 09-57-077 10/10/1968 U-9cf 585065.4 4109887.0 1,282.6 < 20 213 543 192 AA
VAUGHN 03-57-255 03/15/1985 U-3lr 584881.4 4101537.4 1,238.1 20 to 150 457 489 427 TM-LVTA
VELARDE 03-57-205 04/25/1973 U-3jk 587114.1 4094413.1 1,203.4 < 20 297 465 277 AA
VERDELLO 03-57-235 07/31/1980 U-3ku 586940.5 4096562.4 1,210.1 < 20 411 476 366 AA
VERMEJO 04-57-032 10/02/1984 U-4r 584186.7 4104543.2 1,255.5 < 20 686 467 351 TM-UVTA
VICTORIA 03-57-236 06/19/1992 U-3kv 588070.9 4095728.3 1,205.8 < 20 488 468 244 AA
VIDE 08-57-006 04/30/1981 U-8k 581247.8 4114733.3 1,373.4 < 20 367 635 323 OSBCU
VIGIL 10-57-004 11/22/1966 U-10ad 584492.2 4113883.3 1,304.8 < 20 96 572 91 AA
VILLE 04-57-011 06/12/1985 U-4am 581416.3 4104858.4 1,276.8 < 20 335 520 293 TM-LVTA
VILLITA 03-57-244 11/10/1984 U-3ld 587433.1 4095131.9 1,204.6 < 20 457 467 373 AA
VISE 03-57-104 01/30/1969 U-3ej 586315.4 4101024.4 1,230.8 20 to 200 472 498 454 TM-LVTA
VITO 10-57-003 07/14/1967 U-10ab 584797.3 4113427.6 1,304.5 < 20 98 571 97 AA
VULCAN 02-57-031 06/25/1966 U-2bd 582390.6 4112300.5 1,327.1 25 370 588 323 AA
WACO 03-57-258 12/01/1987 U-3lu 588586.3 4094734.0 1,202.7 < 20 335 461 183 AA

Table A.1-1
Shaft and Tunnel Nuclear Detonations in the Yucca Flat/Climax Mine Corrective Action Unit 

 (Page 23 of 24)

Detonation Name CAS 
Number

Date
Expended

Emplacement 
Hole Name

UTM
Easting

UTM
Northing

Land 
Surface 

Elevation a

(m amsl)

Announced 
Yield(kt)

Hole
Depth

(m)

Estimated
Depth to 
Water (m) 

Depth 
of 

Burial
(m)

Working 
Point
HSU



Phase I C
ontam

inant Transport Param
eters for C

A
U

 97: Yucca Flat/C
lim

ax M
ine, N

ye C
ounty, N

evada 

A
ppendix A

A
-26

WAGTAIL 03-57-014 03/03/1965 U-3an 585598.6 4102259.1 1,237.5 20 to 200 767 492 750 LTCU
WALLER 02-57-053 10/02/1973 U-2bz 582787.2 4112149.8 1,320.7 < 20 408 582 311 AA
WARD 10-57-059 02/08/1967 U-10x 584599.3 4113678.0 1,303.9 < 20 265 571 260 AA
WASHER 10-57-054 08/10/1967 U-10r 584598.9 4112476.1 1,297.5 < 20 509 553 466 LTCU
WELDER 03-57-134 10/03/1968 U-3fs 586280.6 4100270.4 1,225.9 < 20 131 493 118 AA
WEMBLEY 03-57-119 06/05/1968 U-3ey 587511.0 4098986.9 1,218.6 < 20 253 485 238 AA
WEXFORD 02-57-069 08/30/1984 U-2cr 577687.2 4110989.1 1,403.3 < 20 417 558 314 TM-LVTA
WHITE 09-57-048 05/25/1962 U-9b 584215.2 4108940.6 1,280.5 Low 200 534 193 AA
WHITEFACE-A 03-57-254 12/20/1989 U-3lp 586173.7 4097976.7 1,214.6 < 20 411 481 197 AA
WHITEFACE-B 03-57-254 12/20/1989 U-3lp 586173.7 4097976.7 1,214.6 < 20 411 481 183 AA
WICHITA 09-57-114 07/27/1962 U-9y 583810.8 4109475.1 1,292.0 Low 224 547 150 AA
WINCH 03-57-146 02/04/1969 U-3gf 585205.0 4096144.9 1,212.2 < 20 254 479 241 TM-WTA
WOLVERINE 03-57-022 10/12/1962 U-3av 586027.4 4100518.2 1,227.4 Low 81 494 73 AA
WOOL 09-57-056 01/14/1965 U-9bh 586640.0 4108317.7 1,313.7 < 20 304 582 216 TM-LVTA
WORTH 10-57-006 10/25/1967 U-10ag 584481.7 4112435.8 1,295.7 < 20 206 548 187 AA
YANNIGAN-BLUE 02-57-025 02/26/1970 U-2ay3 583000.6 4107701.8 1,284.4 20 to 200 366 510 364 AA
YANNIGAN-RED 02-57-023 02/26/1970 U-2ay1 583384.8 4107989.6 1,284.4 20 to 200 402 508 392 AA
YANNIGAN-WHITE 02-57-024 02/26/1970 U-2ay2 582938.3 4108172.4 1,288.4 20 to 200 397 523 395 AA
YARD 10-57-005 09/07/1967 U-10af 584113.4 4112079.2 1,297.5 20 to 200 533 555 521 TM-LVTA
YERBA 01-57-002 12/14/1971 U-1c 583737.0 4097663.4 1,228.6 < 20 335 490 332 AA
YORK 09-57-115 08/24/1962 U-9z 585333.2 4108261.3 1,282.6 Low 233 546 226 AA
ZAZA 04-57-019 09/27/1967 U-4c 584134.2 4106044.8 1,267.4 20 to 200 686 488 667 LTCU
ZINNIA 02-57-089 05/17/1972 U-2dk 581030.2 4108432.1 1,304.2 < 20 366 563 323 AA

Source: DOE/NV, 1997 and 2000; FFACO, 1996, as amended, August 2006; BN, 2006
a Modified from information in DOE/NV, 2000
AA - Alluvial aquifer
amsl - Above mean sea level
ATCU - Argillic tuff confining unit 
HSU - Hydrostratigraphic unit
kt - Kiloton
LCA - Lower carbonate aquifer
LCA3 - Lower carbonate aquifer - Yucca Flat upper plate

LCCU - Lower clastic confining unit
LTCU - Lower tuff confining unit
m - Meter
MGCU - Mesozoic granite confining unit
NA - Not available
OSBCU - Oak Spring Butte confining unit
PBRCM - Pre-Belted Range composite unit

PCUT - Playa confining unit
TM-WTA - Timber Mountain welded-tuff aquifer
TSA - Topopah Spring aquifer
TUBA - Tub Spring aquifer
UCCU - Upper clastic confining unit
UTCU - Upper tuff confining unit
UTM - Universal Transverse Mercator

Table A.1-1
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B.1.0 SUMMARY OF DATA COLLECTION FOR THE YUCCA 
FLAT/CLIMAX MINE CORRECTIVE ACTION UNIT

Data collection is defined to encompass all activities conducted to characterize groundwater 

contamination that may have resulted from underground nuclear testing and support groundwater 

flow and transport modeling of radionuclide transport.  At its inception in 1992, the characterization 

program was initially known as the Groundwater Characterization Project (GCP); it became the 

UGTA Project in 1992.  The Yucca Flat/Climax Mine CAIP (DOE/NV, 2000a) discussed in detail the 

notable data collection developed during the GCP and the UGTA Project before calendar year 2000 

and specified Yucca Flat/Climax Mine CAU-specific Phase I data collection and analysis activities to 

address identified data gaps.  This appendix identifies and summarizes key UGTA Project data 

collection activities and documentation to date for the Yucca Flat/Climax Mine CAU.  This 

compilation was originally developed for the Phase I Hydrologic Data for the Groundwater Flow and 

Contaminant Transport Model of Corrective Action Unit 97:  Yucca Flat/Climax Mine, Nevada Test 

Site, Nye County, Nevada (SNJV, 2006b).  The compilation has been updated with newly published 

work and relevant information on transport parameter data, and includes activities that have been 

conducted in or for other CAUs that provide information that supports analyses for the Yucca 

Flat/Climax Mine CAU.
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B.2.0 YUCCA FLAT/CLIMAX MINE CAU-SPECIFIC WELL 
DRILLING AND TESTING

A total of 10 UGTA Project wells have been drilled, completed, and tested within the Yucca 

Flat/Climax Mine CAU for geologic and hydrologic characterization.  Table B.2-1 lists the wells and 

their coordinates, and identifies the data documentation associated with these wells.  The locations for 

these wells are shown in Figure B.2-1.  Several other wells have been recompleted to use for 

groundwater sampling and testing.  These are listed in Table B.2-2, and the limited available 

documentation is identified.  

In addition, UGTA has supported joint work with other NTS programs (specifically, the HRMP, the 

RNM Program, and Defense Programs) on several wells that were installed as drillbacks and/or are 

sampled for the HRMP Hot Well Program.  This work provides information on radionuclides in the 

groundwater associated with nuclear tests, which is used for determining locations of contaminated 

groundwater, for evaluating transport of radionuclides in situ, and for use in developing source term 

models.  These wells are listed in Table B.2-3.  Information gained from these wells specifically for 

Yucca Flat is discussed at greater length in Section 6.0.  Data from the Hot Well sampling program for 

all of the CAUs support a variety of data collection and analyses tasks that generally support Yucca 

Flat data analysis, in particular radionuclide transport data for NTS formations and source term 

evaluation.  Sampling of groundwater impounded behind tunnel portals in Rainier Mesa tunnels 

(U-12n and U-12t) has also been performed.  Reports on tunnel sampling are listed in Table B.2-4.
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Table B.2-1 
Yucca Flat/Climax Mine Phase I Well Drilling and Testing 

 (Page 1 of 2)

Well 
Name Criteria Document

Location
UTM, NAD 27, Zone 11 (m) Completion 

Date Completion Report Testing/Analysis Report

Easting Northing

ER-2-1

Yucca Flat Hydrogeologic 
Investigation Wells Drilling 

and Completion Criteria 
(IT,  2002)

583,334.49 4,108,978.33 03/07/2003
Completion Report for 

Well ER-2-1
(NNSA/NSO, 2004b)

Letter Report: Analysis of Well 
ER-2-1 Hydraulic Testing, 

Yucca Flat FY 2003, Nevada 
Test Site, Nevada 

(SNJV, 2004d)

ER-3-1

Drilling/Completion 
Criteria for Underground 
Test Area Operable Unit 

Well ER-3-1
(DOE/NV, 1994)

594,658.28 4,097,338.98 05/20/1994
Completion Report for

 Well ER-3-1 
(DOE/NV, 1995a)

N/A

ER-3-2

Drilling/Completion 
Criteria for Underground 

Test Area Remedial 
Investigation and 

Feasibility Study Well 
ER-3-2

 (DOE/NV, 1993)

585,716.38 4,099,227.75 02/18/1994
Completion Report for 

Well ER-3-2
(DOE/NV, 1995b)

N/A

ER-6-1 N/A 589,632.69 4,093,418.70 05/25/1995

Completion Report for Well 
Cluster ER-6-1

(NNSA/NSO, 2004a)

Analysis of Hydraulic 
Responses from the ER-6-1 
Multiple-Well Aquifer Test, 

Yucca Flat FY 2004 Testing 
Program, Nevada Test Site, 

Nye County, Nevada
(SNJV, 2005a)

ER-6-1#1 N/A 589,635.80 4,093,403.75 07/16/1993

ER-6-1#2

Underground Test Area 
Project, ER-6-1 Multi-Well 

Aquifer Test - Tracer 
Test Plan, Rev. 0

(SNJV, 2004f)

589,616.49 4,093,356.86 10/05/2002
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ER-6-2 N/A 582,235.73 4,090,745,00 07/21/1994 Completion Report for Well 
ER-6-2, (DOE/NV, 1997)

Analysis of Well ER-6-2 
Testing, Yucca Flat FY 2004 

Testing Program, Nevada Test 
Site, Nye County, Nevada 

(SNJV, 2005b)

ER-7-1

Yucca Flat Hydrogeologic 
Investigation Wells Drilling 

and Completion Criteria 
(IT, 2002)

589,315.09 4,103,275.35 02/09/2003 Completion Report for Well 
ER-7-1 (NNSA/NSO 2004c)

Analysis of Well ER-7-1 
Testing, Yucca Flat FY 2003 

Testing Program, Nevada Test 
Site, Nevada (SNJV, 2004a)

ER-8-1

Yucca Flat Hydrogeologic 
Investigation Wells Drilling 

and Completion Criteria 
(IT, 2002)

583,790.62 4,118,738.19 11/17/2002
Completion Report for 

Well ER-8-1
(NNSA/NSO, 2004d)

N/A

ER-12-2

Yucca Flat Hydrogeologic 
Investigation Wells Drilling 

and Completion Criteria 
(IT, 2002)

577,902.59 4,114,057.67 04/17/2003
Completion Report for Well 

ER-12-2 
(NNSA/NSO, 2004e)

Analysis of Well ER-12-2 
Testing, Yucca Flat FY 2003 

Testing Program, Nevada Test 
Site, Nevada (SNJV, 2004b)

Table B.2-1 
Yucca Flat/Climax Mine Phase I Well Drilling and Testing 

 (Page 2 of 2)

Well 
Name Criteria Document

Location
UTM, NAD 27, Zone 11 (m) Completion 

Date Completion Report Testing/Analysis Report

Easting Northing
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Figure B.2-1
Yucca Flat/Climax Mine CAU-Specific Investigation 

and Recompletion Well Locations 
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Table B.2-2 
Yucca Flat/Climax Mine Phase I Well Recompletions and Testing 

Well 
Name

Location
UTM, NAD 27, Zone 11 (m) Recompletion 

Date
Recompletion

Report
Testing/Analysis

Report
Easting Northing

UE-10j 581,526.63 4,115,644.86 02/24/1993
Recompletion Report for 

Well UE-10j 
(DOE/NV, 1995c) 

Pre-Completion 
Hydrologic Testing 

Documentation Package 
for Well UE-10j (IT, 1995)

UE-1q 583,722.73 4,101,777.68 05/22/1992
Recompletion Report and 
Summary of Well History 
for Well UE-1q (IT, 1996b) 

Data Report, UE-1q 
Aquifer Test (DRI, 1992)

UE-6e 587,012.48  4,093,408.77 11/11/1992
Recompletion Report and 
Summary of Well History 
for Well UE-6e (IT, 1996c)

N/A

U-3cn #5 586,921.72 4,101,714.46 N/A Recompletion Report for 
BILBY (BN, 1998)

Environmental 
Restoration Program 

Underground Test Area 
Project Data Analysis, 

Hydrologic Testing 
Documentation Package 

for Bilby (U-3cn) 
Hydrologic Test Hole 

U-3cn #5 and Postshot 
Hole U-3cn PS #2 

(IT, 1997)
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Table B.2-3
Near-field Well Activities UGTA Has Supported

Well Name(s) Associated 
Test Name Activity Recompletion Date

UE-2ce NASH Near-field well sampling periodic

U-2gg PSE #3A INGOT Near-field well sampling  periodic

U-3cn PS #2 BILBY Replace pump, pumping, and  
near-field well sampling

01/1997,
periodic

U-3cn #5 BILBY Pumping and sampling 01/1997, 
periodic

UE-3e #4 ALEMAN Near-field well sampling periodic

U-4t PS (#2A) 3A GASCON Near-field well sampling periodic

U-4u PS #2A DALHART Near-field well sampling periodic

RNM-2s, RNM-1,UE-5n CAMBRIC Pumping, sampling 04/26 - 07/10/2003

RNM-2s CAMBRIC Near-field well sampling periodic

U-7ba PS #1AS BASEBALL Install pump and attempt pumping, 
near-field well sampling periodic

UE-7ns BOURBON Near-field well sampling periodic

U-19q PS1 D CAMEMBERT Re-entry, pump installation 1998

U-19ab PS#1A CHANCELLOR Drilling 2004, periodic

U-20n PS1 DD-H CHESHIRE Recompletion, pump installation, 
near-field well sampling

07/1998, 
periodic

Table B.2-4
Reports of Rainier Mesa Tunnel Sampling

Document Title Reference

Hydrologic Resources Management Program and Underground Test Area Project 
FY2000 Progress Report Rose et al., 2002

Letter Report: Evaluation of Monitoring Data From Impounded Water Within U12n and 
U12t Tunnels DRI, 2003

Written Communication: U12n and U12t Tunnels Preliminary Data Report Groundwater 
Sampling SNJV, 2007
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B.3.0 YUCCA FLAT/CLIMAX MINE CAIP-IDENTIFIED 
CHARACTERIZATION ACTIVITIES

Nine specific characterization activities were identified in the Yucca Flat/Climax Mine CAIP 

(DOE/NV, 2000a).  These characterization activities were:

• Mineralogy studies of the TCU
• Geophysical interpretation of the Paleozoic framework
• Analysis of existing seismic data
• Hydrologic investigation of ER-6-1 and ER-6-2
• Isotope/geochemistry mass-balance studies
• Analysis of existing tracer test data
• Laboratory radionuclide transport studies
• Rainier Mesa colloid transport studies
• Analysis of data for phenomenological models

The following subsections discuss data collection and studies that have been conducted under these 

categories of CAIP-specified data collection activities.  A statement of the scope of the investigation 

area and the studies perceived to be needed is provided in the Yucca Flat/Climax Mine CAIP 

(DOE/NV, 2000a). 

Additional activities and studies have been conducted that are related to these specific categories but 

more broadly support transport parameter data and analysis.  These are described in Section B.4.0.

B.3.1 Tuff Confining Unit Mineralogical Studies

The TCU may partition the LCA from the overlying contaminated volcanic tuff aquifers because of 

its position between the underground nuclear tests and the LCA.  Therefore, knowledge of the lateral 

continuity and hydraulic characteristics of the TCU is important in modeling groundwater movement 

from underground nuclear tests through the TCU to the LCA.  Also of importance are the type and 

distribution of alteration minerals in the TCU.  The alteration minerals, which can retard contaminant 
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transport within the TCU, possess a significant range in sorption capacity for radionuclides, which 

will be important to transport modeling.  

The study of the TCU has been in progress for several years, embodied in a number of tasks for BN 

and NSTec (NTS M&O Contractors), SNJV (NTS Environmental Restoration Contractor), LANL, 

and LLNL.  Table B.3-1 contains a list of major reports that have been published reporting on these 

studies.  The most recent document, Mineralogic Zonation Within the Tuff Confining Unit, Yucca 

Flat, Nevada Test Site (Prothro, 2005), reports the analysis of the variation of alteration mineral 

assemblages in the TCU based on mineralogic data from 17 holes and stratigraphic data, lithologic 

descriptions, and geophysical logs from approximately 500 drill holes in Yucca Flat.  A three-layer 

mineralogic model was developed to aid in the development of the HFM for the Yucca Flat/Climax 

Mine CAU.  This model will further support transport modeling for the Yucca Flat/Climax Mine 

CAU.  

A compilation of additional mineralogic data, XRD data, acquired during the weapons testing 

program has been completed.  This compilation process is described in Appendix D.  Geostatistical 

analysis of the mineralogic data for the TCU is presently being performed by LLNL and will be 

published in a future LLNL report. 

Table B.3-1 
Reports of TCU Studies

Document Title Reference

“Examples of Textural and Mineralogical Alteration at the Interface of Vitric and Zeolitic 
Tuff, Yucca Flat, Nevada Test Site,” in Proceedings of the Sixth Symposium on 
Containment of Underground Nuclear Explosions

Krier, 1991

Analysis of Fractures in Cores from the Tuff Confining Unit beneath Yucca Flat,  
Nevada Test Site Prothro, 1998

Letter Report: Underground Test Area Project, Mineralogical and Isotopic Analysis of 
Fracture-Coating and Alteration Minerals in the Yucca Flat Tuff Confining Unit,  
Nevada Test Site

Dickerson et al., 2004

 Mineralogical and Isotopic Analysis of Fracture-Coating and Alteration Minerals in the 
Climax Stock Dickerson and Rose, 2004

Mineralogic Zonation Within the Tuff Confining Unit, Yucca Flat, Nevada Test Site Prothro, 2005
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B.3.2 Geophysical Interpretation of the Paleozoic Framework

A variety of geophysical data-based investigations have been conducted in Yucca Flat to determine 

the geologic structure of the basin.  These activities are identified in the following subsections and 

reports.  The results of these investigations were used for development of the Yucca Flat/Climax Mine 

HFM and are discussed in A Hydrostratigraphic Model and Alternatives for the Groundwater Flow 

and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat-Climax Mine, Lincoln 

and Nye Counties, Nevada (BN, 2006).  

B.3.2.1  Natural-Source Magnetotelluric Survey

An MT survey was conducted by the USGS in Yucca Flat in 2003 to provide data on the pre-Tertiary 

stratigraphy and structure for use in developing the HFM.  The survey included 51 stations variably 

spaced 2 to 3 km apart along seven east-west oriented lines across the basin.  The results of the MT 

survey are published in Deep Resistivity Structures of Yucca Flat, Nevada Test Site, Nevada 

(Asch et al., 2005) and discussed in Appendix D of BN (2006).  The MT method was very successful 

in providing constraints on the thickness and lateral extent of the CCU in the western portion of the 

Yucca Flat basin (BN, 2006).  

B.3.2.2  Gravity and Aeromagnetic Data Interpretation

A variety of work supporting the development of the Yucca Flat/Climax Mine HFM has been based 

on many aeromagnetic surveys in support of the weapons testing program, and additional data 

collected by the USGS in 2003 (Phelps et al., 2005).  Reports of geophysical interpretation studies 

related to the Yucca Flat/Climax Mine CAU area are listed in Table B.3-2.  

Table B.3-2
Reports of Gravity and Aeromagnetic Studies

 (Page 1 of 2)

Document Title Reference

Thickness of Cenozoic Deposits of Yucca Flat Inferred from Gravity Data,  
Nevada Test Site, Nevada Phelps et al., 1999

High-Angle Faults in the Basement of Yucca Flat, Nevada Test Site, Nevada, Based on the 
Analysis of a Constrained Gravity Inversion Surface Phelps and McKee, 1999

Preliminary Model of the Pre-Tertiary Basement Rocks Beneath Yucca Flat, Nevada Test 
Site, Nevada, Based on Analysis of Gravity and Magnetic Data Phelps et al., 2000
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B.3.2.3  Analysis of Existing Seismic Data

Extensive seismic reflection and refraction investigations previously have been conducted in Yucca 

Flat by LLNL and LANL in support of weapons testing and site-characterization activities.  The 

existing seismic data were evaluated for possible contribution to the interpretation of the geologic 

structure and stratigraphy of Yucca Flat.  The object of this activity was to conduct a comprehensive 

reinterpretation of existing 2-D seismic data incorporating current structural understanding to 

provide, at basin-wide scale, an investigation of key features such as fault locations and HSU 

pinchouts or juxtapositions that may influence flow and transport.  Analysis also allows for imaging 

to depths below those previously considered.  In addition, the use of seismic data obtained from local 

arrays, and from regional seismological stations during underground nuclear tests, was evaluated for 

its contribution to the understanding of geologic structure in Yucca Flat.  This work is documented in 

Evaluation of Seismic Data Acquired in Yucca Flat, NTS, by the Lawrence Livermore National 

Laboratory (Pawloski and Wagoner, 2003). 

B.3.3  Hydrologic Investigation of Wells ER-6-1 and ER-6-2

In FY 2004, a large-scale multiple-well aquifer test-tracer test (MWAT-TT) was conducted at the 

ER-6-1 Well Cluster located in southwestern Yucca Flat to characterize the hydraulic and transport 

properties of the LCA in Yucca Flat.  The plan for this test was documented in Underground Test Area 

Project, ER-6-1 Multi-Well Aquifer Test - Tracer Test Plan (SNJV, 2004f).  Included in the program 

were extensive hydraulic testing in and between the pumping well and the primary tracer-injection 

well.

The test involved pumping of ER-6-1 #2 for a period of 90 days.  Water level response was 

continuously monitored in all three ER-6-1 wells, in three other wells completed in the LCA located 

Modeling of the Climax Stock and Related Plutons Based on the Inversion of Magnetic Data, 
Southwest Nevada Phelps et al., 2004

A Preliminary Investigation of the Structure of Southern Yucca Flat, Massachusetts 
Mountain, and CP Basin, Nevada Test Site, Nevada, Based on Geophysical Modeling Phelps et al., 2005

Table B.3-2
Reports of Gravity and Aeromagnetic Studies

 (Page 2 of 2)

Document Title Reference
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up to 11.7 km from the ER-6-1 Well Cluster, and in two nearby wells completed in the overlying 

volcanics.  A suite of tracers were injected into two other wells at the ER-6-1 Well Cluster, ER-6-1 

and ER-6-1 #1, shortly after pumping began.  Tracer breakthrough curves for ER-6-1 #2 were 

determined from analysis of water samples collected from the pump discharge and from downhole 

discrete sampling.  The hydraulic analysis of the test data is documented in Analysis of Hydraulic 

Responses from the ER-6-1 Multiple-Well Aquifer Test, Yucca Flat FY 2004 Testing Program, Nevada 

Test Site, Nye County, Nevada (SNJV, 2005a).  See Section B.3.5 for information on analysis of the 

tracer test.

B.3.4 Isotope/Geochemistry Mass-Balance Studies

The isotope/geochemistry mass-balance studies include field and laboratory activities, compilation of 

existing geochemistry data, and data interpretation including geochemical modeling.  The purpose of 

these studies is to independently verify the origin and groundwater flow paths through the Yucca 

Flat/Climax Mine groundwater flow system, and to provide estimates of the age and travel time for 

groundwater flow.  These studies are published in the report Geochemical and Isotopic Evaluation of 

Groundwater Movement in Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, 

Nevada (SNJV, 2006a) and summarized in Section 5.0 of this report. 

B.3.5 Analysis of Existing Tracer Test Data

Three two-well recirculating tracer tests were previously conducted in the Bonanza King Dolomite, 

which is one member of the group of formations included in the LCA HSU, at the Amargosa tracer 

calibration site in the Amargosa Desert, approximately 24 km southwest of Mercury, Nevada.  This 

site was initially developed to study the velocity of groundwater movement through carbonate rocks 

underlying the NTS and the Amargosa Desert (Johnston, 1968).  Further tests were run to determine 

the effective porosity and apparent longitudinal dispersivity in the carbonate aquifer (Leap and 

Belmonte, 1992).  During the development of the Yucca Flat/Climax Mine CAIP (DOE/NV, 2000a), 

data from these tracer tests were identified for reanalyses using newer techniques to estimate 

transport parameters.  

However, in lieu of reanalysis of the old tracer test data, the analysis effort was focused on results 

from a newly conducted MWAT-TT at the ER-6-1 Well Cluster in Yucca Flat (Section B.3.3).  These 
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data were deemed to be more appropriate for use in transport modeling for the Yucca Flat/Climax 

Mine CAU.  Analysis of the tracer test breakthroughs has been documented in the reports 

Well ER-6-1 Tracer Test Analysis:  Yucca Flat, Nevada Test Site, Nye County, Nevada (SNJV, 2006c), 

and Semi-Analytical Interpretations of ER-6-1 Multiple-Well Tracer Test Results (Reimus, 2007).  

These analyses provide field-scale information on the transport properties of the LCA in Yucca Flat. 

B.3.6 Laboratory Radionuclide Transport Studies

Laboratory transport studies (e.g., diffusion cell experiments, fractured-core column experiments, and 

colloid transport experiments) will help estimate parameters describing solute transport, including 

colloid and colloid-facilitated transport.  Results will be laboratory estimates of radionuclide transport 

parameters (e.g., matrix diffusion, dispersion, and sorption) and the uncertainty associated with these 

parameters.  This information will provide experimental insight into colloid transport processes and 

the parameters describing those processes, and will be used in the CAU-scale transport model.  

Laboratory radionuclide transport studies conducted since the review presented in the Yucca Flat 

CAIP (DOE/NV, 2000a) have been reported in the documents listed in Table B.3-3.  

Table B.3-3 
Reports of Laboratory Radionuclide Transport Studies

 (Page 1 of 2)

Document Title Reference

Reversibility of Sorption of Plutonium-239 onto Colloids of Hematite, Goethite, 
Smectite, and Silica (LA-UR-98-3057) Lu et al., 1998

Adsorption of Actinides onto Colloids as a Function of Time, Temperature, Ionic 
Strength and Colloid Concentration (LA-UR-00-5121) Lu et al., 2000

Diffusive and Advective Transport of 3H, 14C, and 99Tc in Saturated, Fractured Volcanic 
Rocks from Pahute Mesa, Nevada Reimus et al., 2000a

Progress Report on Colloid-Facilitated Plutonium Transport in Fractured Rocks from 
Pahute Mesa, Nevada Test Site Reimus et al., 2000b

Matrix Diffusion and Colloid-Facilitated Transport in Fractured Rocks: Model and 
Parameter Validation (UCRL-ID-149817) Zavarin, 2002

Laboratory Experiments to Evaluate Diffusion of 14C into Nevada Test Site Carbonate 
Aquifer Matrix (DOE/NV/11508-55) Hershey et al., 2003

Plutonium Colloid-Facilitated Transport in the Environment - Experimental and 
Transport Modeling Evidence for Plutonium Migration Mechanisms 
(UCRL-JC-151924)

Zavarin et al., 2003

Colloid-Facilitated Transport of Low-Solubility Radionuclides: A Field, Experimental, 
and Modeling Investigation (UCRL-ID-149688) Kersting and Reimus, 2003
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B.3.7 Rainier Mesa Colloid Transport Studies

From 1957 to 1992, 61 underground nuclear tests were conducted at Rainier Mesa, 59 in tunnels and  

2 in shafts (DOE/NV, 2000b).  These tunnel tests were conducted above the water table in tuffs 

variably fractured by inelastic failure adjacent to the tests.  The resulting fracture system allows 

groundwater recharge from the surface of Rainier Mesa to infiltrate and interact with residual 

radionuclides from the tests.  The tunnels provide access to an evolved hydrologic source term of 

radionuclides transported by groundwater through volcanic tuffs under variably saturated flow 

conditions.  Data from Rainier Mesa tuffs should be applicable to tuff units in Yucca Flat because of 

the similarities with regards to stratigraphy, lithology, and alteration.  Results may also be 

extrapolated to younger tuffs that overlie the older tuffs at Yucca Flat.  The objective of this activity is 

to investigate the geochemical and radiochemical controls on the movement of actinides introduced 

from underground nuclear testing under ambient flow conditions such as those found in the tunnel 

complexes.  This study will provide information on transport of radionuclides under variably 

Radionuclide Transport in Tuff and Carbonate Fractures from Yucca Flat, Nevada Test 
Site, Final Report (UCRL-TR-219836) Zavarin et al., 2005

Colloid Characteristics and Radionuclide Associations with Colloids in Source-Term 
Waters at the Nevada Test Site (LA-UR-05-5312) Abdel-Fattah et al., 2005

 “Errata for Table 1,” in Radionuclide Sorption and Transport in Fractured Rocks of 
Yucca Flat, Nevada Test Site (LA-UR-05-9279) Ware et al., 2005a

 Radionuclide Sorption and Transport in Fractured Rocks of Yucca Flat, Nevada Test 
Site (LA-UR-05-9279) Ware et al., 2005b

Np and Pu Sorption to Manganese Oxide Minerals (UCRL-TR-214984) Zhao et al., 2005

Colloid Characteristics and Radionuclide Associations with Colloids in Near-Field 
Waters at the Nevada Test Site (FY 2005 Progress Report) (LA-UR-05-8612) Reimus et al., 2006a

“Errata for Table 10,” in Tracer Transport Properties in the Lower Carbonate Aquifer of 
Yucca Flat (LA-UR-06-0486) Reimus et al., 2006b

Tracer Transport Properties in the Lower Carbonate Aquifer of Yucca Flat 
(LA-UR-06-0486) Reimus et al., 2006c

Written communication: Colloid-Facilitated Radionuclide Transport in Fractured 
Carbonate Rocks from Yucca Flat, Nevada Test Site Zavarin et al., 2006

Summary of Radionuclide Reactive Transport Experiments in Fractured Tuff and 
Carbonate Rocks from Yucca Flat, Nevada Test Site (UCRL-TR-225271) Zavarin et al., 2007

Table B.3-3 
Reports of Laboratory Radionuclide Transport Studies

 (Page 2 of 2)

Document Title Reference
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saturated conditions and will help to define the range of colloid-facilitated transport that may be 

expected under various groundwater conditions.  The Rainier Mesa colloid transport studies have 

been discussed in the reports listed in Table B.3-4. 

B.3.8 Analysis of Data for Phenomenological Models

Phenomenology describes the effects of the nuclear explosion on the surrounding medium during and 

immediately following the explosion of an underground nuclear test.  Phenomenological models that 

are representative of reality are essential to understanding the sources of groundwater contamination 

present at the underground nuclear test locations.  Therefore, they are essential to the modeling of 

groundwater flow and contaminant transport away from underground nuclear test locations.  Under 

this CAI activity, existing data from drillbacks and minebacks, pre-test, post-test, and calculational 

data will be analyzed to develop phenomenological models of the near-field environment of 

underground nuclear tests in the Yucca Flat/Climax Mine CAU.  A general summary of the available 

for nuclear tests, phenomenologic, and source term data is presented in Section 6.0.  The 

phenomenologic analyses and source term evaluation for the Yucca Flat/Climax Mine CAU will be 

presented in future report(s).  

Table B.3-4
Reports of Rainier Mesa Colloid Transport Studies

Document Title Reference

Hydrologic Resources Management Program and Underground Test Area Project 
FY2000 Progress Report (UCRL-ID-145167) Rose et al., 2002

Colloid-Facilitated Transport of Low-Solubility Radionuclides: A Field, Experimental, and 
Modeling Investigation (UCRL-ID-149688) Kersting and Reimus, 2003
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B.4.0 OTHER STUDIES 

Other studies have been conducted that support the Yucca Flat/Climax Mine CAU characterization.  

Major reports on these studies are summarized in Table B.4-1.    

Table B.4-1
Reports of Other Studies Conducted for the Yucca Flat/Climax Mine 

Phase I Characterization
 (Page 1 of 2)

Document Title Synopsis

Potential for Infiltration Through Fractured 
Alluvium in Yucca Flat of the Nevada Test 

Site: Preliminary Field Investigation 
(McKinnis and Kao, 1993) 

This report evaluates recharge through alluvium and volcanics in Yucca 
Flat.

New Observations of Infiltration through 
Fractured Alluvium in Yucca Flat, Nevada 
Test Site: A Preliminary Field Investigation 

(Kao et al., 1994)

This report evaluates recharge through alluvium and volcanics in Yucca 
Flat.

ER-6-1 and ER-6-2 Core Fracture Analyses 
and Geophysical Log Comparisons 

(IT, 1996a)

This report characterizes fracturing of core samples obtained in wells 
ER-6-1 and ER-6-2.

Estimation of Groundwater Velocities from 
Yucca Flat to the Amargosa Desert 

Using Geochemistry and 
Environmental Isotopes

 (Hershey and Acheampong, 1997)

This report presents the evaluation of groundwater mixing models and 
geochemical evolution models to potential flow from Yucca Flat to 
Amargosa Desert.  The results provide perspective for large-scale flow 
patterns and travel times from Yucca Flat. 

Evaluation of Recharge Potential at 
Subsidence Crater U10i, Northern Yucca 

Flat, Nevada Test Site 
(Hokett et al., 2000)

This report evaluates recharge in a crater area in Yucca Flat.

Temperature Data Evaluation 
(Gillespie, 2003)  

This report evaluates thermal gradient and associated heat flow for 
13 wells on the NTS, 8 of which are in the Yucca Flat/Climax Mine data 
compilation area.  These wells were selected after evaluation of 
145 temperature logs for 63 wells.

Final Report: Depth-Specific Hydraulic 
Testing of Yucca Flat and Frenchman Flat 
Environmental Restoration Wells, FY 2003 

(Oberlander and Russell, 2003)

This report evaluates flow logging data for wells in Yucca Flat and 
Frenchman Flat.  
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Hydrologic Data for the Groundwater Flow 
and Contaminant Transport Model of 

Corrective Action Units 101 and 102: Central 
and Western Pahute Mesa, Nye County, 

Nevada (SNJV, 2004c)

This report documents Pahute Mesa hydrologic data and provides 
peripheral information related to the Yucca Flat/Climax Mine CAU.

Phase II Hydrologic Data for the 
Groundwater Flow and Contaminant 

Transport Model of Corrective Action Unit 98: 
Frenchman Flat, Nye County, Nevada 

(SNJV, 2004e)

This report documents the Frenchman Flat hydrologic data and provides 
peripheral information related to the Yucca Flat/Climax Mine CAU.

Letter Report:  Horizontal Hydraulic 
Conductivity Profile with Depth at Wells 

ER-6-1 and ER-6-1#2 
(Oberlander and Russell, 2004)  

This report documents the flow, temperature, and tracer conductivity 
logging and interpretation specific to the ER-6-1 MWAT-TT for ER-6-1 
and ER-6-1#2.

Phase II Contaminant Transport Parameters 
for the Groundwater Flow and Contaminant 

Transport Model of Corrective Action Unit 98: 
Frenchman Flat, Nye County, Nevada 

(SNJV, 2005c)

This report documents the Frenchman Flat transport parameter data 
compilation and analysis, which includes information on many topics for 
the entire NTS, and provided the basis for the Yucca Flat/Climax Mine 
CAU contaminant transport parameter compilation.

Analysis of Ground-Water Levels and 
Associated Trends in Yucca Flat, Nevada 

Test Site, Nye County, Nevada, 1951-2003 
(Fenelon, 2005)

This report provides a broad overview of water level information for 
Yucca Flat, a compilation of historic records, and an analysis of trends in 
water levels over the historic time period.

Hydraulic Characterization of Overpressured 
Tuffs in Central Yucca Flat, Nevada Test Site, 
Nye County, Nevada  (Halford et al., 2005)

Water levels within bedded tuffs in central Yucca Flat were elevated 
hundreds of meters in response to nuclear testing in the tuffs.  This 
report documents the USGS analysis of anomalous high pore pressures 
in the Yucca Flat Tuff Pile area.  Calibration of cross-sections and 3-D 
groundwater flow models to land subsidence rates yields hydraulic 
conductivity estimates for the tuff units. 

Temperature Profiles and Hydrologic 
Implications from the Nevada Test Site Area 

(Gillespie, 2005)

This report follows the Gillespie (2003) study determining the thermal 
gradient and associated heat flow for an additional 39 wells on the NTS, 
of which 20 are in the Yucca Flat/Climax Mine data compilation area.

Underground Test Area Fracture Analysis 
Report for Yucca Flat Wells ER-2-1, 

ER-6-1#2, ER-7-1, and ER-12-2, Nevada 
Test Site, Nevada (SNJV, 2005d)

This report provides fracture characterization analyses from borehole 
logs obtained in Yucca Flat Wells ER-2-1, ER-6-1 #2, ER-7-1, and 
ER-12-2.

Phase I Hydrologic Data for the Groundwater 
Flow and Contaminant Transport Model of 

Corrective Action Unit 97:  Yucca Flat/Climax 
Mine, Nevada Test Site, Nye County, Nevada 

(SNJV 2006b)  

This report documents the hydrologic data available for the Yucca 
Flat/Climax Mine CAU.

Table B.4-1
Reports of Other Studies Conducted for the Yucca Flat/Climax Mine 

Phase I Characterization
 (Page 2 of 2)

Document Title Synopsis
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C.1.0 INTRODUCTION

The geologic complexity of the Yucca Flat/Climax Mine model area and the non-uniqueness of some 

of the interpretations incorporated into the base HFM made it necessary to formulate alternative 

interpretations for some of the major geologic features in the model.  Each of these alternative HFMs 

honors the data, with differences between the models representing differences in interpretations of 

various features described by the data.  Thus, each alternative HFM is a permissible and viable 

hydrogeologic representation.  These alternatives can be used to explore the sensitivity of the flow 

and transport models to different geologic interpretations.
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C.2.0 PROCESS OF ADDRESSING ALTERNATIVES TO THE 
BASE MODEL

Twenty-seven ideas for alternative interpretations to the Phase I Base HFM were identified, in 

collaboration with the UGTA TWG preemptive review committee, during its construction phase 

(see Table 5-1 in BN, 2006).  Each alternative idea was evaluated and categorized, with the main 

criterion being whether the proposed change or alternative interpretation had the potential to 

significantly affect groundwater flow and transport.  The geological likelihood and amount of 

constraining data were also considered.  Alternative ideas were grouped into four priority categories:  

• Group A alternatives were judged to be significant and viable enough to be included in the 
base model.  Two alternatives were identified as Group A and incorporated directly into the 
base model.  

• Group B alternatives were judged to be significant enough to develop as separate models.  
Five alternative ideas were identified and inserted into separate copies of the base model.  

• Group C alternatives were judged to be potentially significant.  If identified as significant 
during hydrologic modeling, these alternatives would be addressed by varying the assignment 
of model parameters within the base HFM to address the alternative feature(s) of interest.  

• Group D alternatives were deemed not significant or viable enough to warrant development as 
alternative models and were not considered further. 

Following this evaluation of the alternative ideas, the base HFM model was updated using the Group 

A alternatives, and the alternative ideas categorized as Group B were developed into HFMs.  The 

alternative models were constructed after the base model was completed, generally using the same 

model construction techniques.  Each alternative model is equally bound by all the data and 

interpretation methods used for development of the base model.  However, each alternative scenario 

is of limited geographic extent and thus affects only a portion of the base HFM.  The alternative 

HFMs are fully functional replicas of the base model that can be used to test whether the alternative 

interpretations affect flow and transport.
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C.3.0 ALTERNATIVE MODELS

Brief descriptions of the five alternative HFMs developed for the Yucca Flat/Climax Mine model area 

are provided below.  All figures cited in the following sections are from BN (2006).  Additional 

details can be found in the framework model documentation report:  A Hydrostratigraphic Model and 

Alternatives for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 

97: Yucca Flat-Climax Mine, Lincoln and Nye Counties, Nevada (BN, 2006).

C.3.1 CP Thrust Alternative

Based on magnetotellutic (MT) data and regional structural analysis, Mississippian siliciclastic rocks 

that compose the UCCU were shown to occur within the footwall of the CP thrust fault.  This thrust 

fault is modeled as steepening rapidly eastward and forming a ramp structure beneath central Yucca 

Flat coincident with the Carpetbag-Topgallant normal fault system.  As a result, the base model limits 

the UCCU to the western portion of the model area west of the Carpetbag-Topgallant fault system.  

However, MT data are sparse in northern Yucca Flat east of the Carpetbag fault due to the presence of 

power lines that interfere with MT recordings.  The eastern limit of the UCCU is therefore poorly 

constrained east of the Carpetbag fault in northern Yucca Flat. 

The CP thrust alternative scenario models the CP thrust ramp coinciding with the 

Carpetbag-Topgallant fault system in the southern and central portions of Yucca Flat, but shifting to 

the east in northern Yucca Flat to become coincident with the Yucca fault (Figures C.3-1 and C.3-2).  

In this scenario, the UCCU within the footwall rocks of the CP thrust fault extends eastward to the 

Yucca fault, and thus underlies northern Yucca Flat between the Carpetbag and Yucca faults 

(Figure C.3-1).  More extensive UCCU in the subsurface of northern Yucca Flat could have 

significant hydrologic effects, particularly with regard to influx of groundwater into Yucca Flat from 

the north.  
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Figure C.3-1
Comparison of the UCCU Extent and CP Thrust Location in the Base Model with the CP Thrust Alternative 

(Tertiary HSUs Removed for These Views)
(Profiles shown on Figure C.3-2)
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Figure C.3-2
West-East Profiles Through Central and Northern Yucca Flat Comparing

 the Base Model with the CP Thrust (CPT) Alternative
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C.3.2 Hydrologic Barrier in Northern Yucca Flat

The intent of this alternative is to limit inter-basin groundwater flow into Yucca Flat from the north.  

The LCCU, UCCU, and MGCU form a hydrologic barrier immediately north of Yucca Flat.  If this 

barrier is too low, the model may allow too much water to flow into Yucca Flat; if it is too high, the 

model will not allow enough lateral flow to occur.  This alternative restricts inflow, while the base 

model allows for some flow on the east side over the LCCU at the northwestern end of the Halfpint 

Range anticline.  To restrict flow on the east side of the Climax Stock, the alternative HFM raises the 

LCCU up to the water table at the northwestern end of the Halfpint Range anticline (Figures C.3-3 

and C.3-4).  Flow on the west side of Climax is limited to deeper flow under the UCCU in both cases.  

C.3.3 Contiguous UCCU in Southwestern Yucca Flat

Magnetotellutic data suggest that the UCCU is not continuous within the southwest portion of the 

model area, such as beneath the CP Hills and Mid Valley.  The data seem to indicate that much of the 

area is underlain by thick, highly resistive carbonate rocks, and that the more electrically conductive 

Mississippian siliciclastic rocks that compose the UCCU are structurally broken up in this area and 

thus do not form a thick continuous sheet of clastic confining unit.  This interpretation was 

incorporated into the base model.  However, interpretation of the MT data in this area is difficult due 

to sparse drill-hole data in the area and the possible presence of abundant higher-resistance, 

quartzite-rich units within the UCCU that may make it difficult to distinguish Mississippian 

siliciclastic rocks (i.e., UCCU) from older carbonate rocks (i.e., LCA and LCA3).  In addition, 

foreland imbrication related to the Belted Range thrust fault likely results in complex structural 

geometries in the area, further complicating interpretation of the MT data.

Because of the uncertainty with regard to the occurrence of the UCCU beneath the southwest portion 

of the HFM area and the potential significance to groundwater flow, particularly flow out of the basin 

to the southwest, an alternative model was created that modeled the UCCU as a continuous sheet 

within the subsurface in the southwest portion of the model area (Figures C.3-5 and C.3-6).  

C.3.4 Fault Juxtaposition

Because basin-forming faults typically have large vertical displacements, the juxtaposition of shallow 

aquifers against deeper aquifers could occur, and may be significant with regard to flow and transport 
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Figure C.3-3
Comparison of the LCCU Geometry in the Base Model 

with the Hydrologic Barrier Alternative
(Profiles shown in Figure C.3-4)
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Figure C.3-4
West-East Profiles Through Climax Stock Comparing 

the Base Model with the Hydrologic Barrier Alternative
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Figure C.3-5
Comparison of the UCCU Extent in the Base Model with the Contiguous UCCU Alternative 

(Tertiary HSUs Removed)
(Profiles shown on Figure C.3-6)
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Figure C.3-6
West-East Profile Through the Southwestern Corner of the Yucca Flat/Climax Mine 

HFM Comparing the Base Model with Contiguous UCCU Alternative
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modeling in the Yucca Flat area.  In the base HFM, aquifers may be juxtaposed slightly in some 

places due to faulting along the main basin-forming faults.  However, the locations, orientations and 

amounts of displacement associated with these faults are not precisely constrained.  Therefore, an 

alternative model was developed that juxtaposes shallow volcanic aquifer HSUs with the LCA along 

the major basin-forming faults (Figure C.3-7). 

For this alternative, volcanic aquifers, typically the TM-WTA or TM-LVTA, are positioned against 

the LCA.  This is accomplished by either increasing fault displacements or thinning underlying 

confining units, while still conforming to any existing nearby data.  The target areas for this 

manipulation were the testing areas in central Yucca Flat that are below the water table.  Most 

commonly the larger basin-forming faults are involved (e.g., the Carpetbag, Topgallant, and Yucca 

faults).  The base model does contain such geometries, but this alternative provides more such 

situations, particularly in the testing areas.

C.3.5 Partial Zeolitization

Geologists at NTS have recognized a zone of partial zeolitization above the level of pervasive 

zeolitization in Areas 2 and 9 of north-central Yucca Flat.  The zone of partial zeolitization is defined 

as areas of partial (less than 30 percent) zeolitization as well as areas of sporadic zeolitization where 

beds of zeolitized tuff (more than 30 percent zeolitization) alternate with weakly to nonzeolitized 

rocks.  This has consequences for vertical and horizontal conductivity and transport of radionuclides. 

It is difficult to define an exact boundary for the zone of partial zeolitization because it was not 

consistently identified on older lithologic logs, and because of its sporadic occurrence.  The zone is 

modeled as a separate HSU that includes all partially zeolitized strata below the water table down to 

the top of the LTCU (i.e., top of pervasive zeolitization) in Area 2, Area 9, and the very northeast 

corner of Area 4 (Figure C.3-8).  This zone may exist above the water table.  
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Figure C.3-7
West-East Profiles Through Central Yucca Flat Comparing the Base Model 

with Fault Juxtaposition Alternative
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Figure C.3-8
View of the Base Model Showing Area Affected in the Partial Zeolitization Alternative 

(Alluvium and Volcanic Aquifer HSUs Removed)
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D.1.0 COMPILATION OF X-RAY DIFFRACTION ANALYSES AND 
FORMAL DEFINITIONS FOR ALTERATION 

The results of XRD analysis were compiled in FY 2006 for samples collected primarily from the 

Yucca Flat/Climax Mine CAU within the SWNVF.  The compilation focused specifically on drill 

holes of Yucca Flat to provide a sound basis to model the subsurface mineralogy of this basin.  The 

XRD data include results documented in (1) historical LANL and LLNL files generated for the 

weapons testing program, (2) a BN report describing a study of the tuff confining units of Yucca Flat 

(Prothro, 2005), and (3) an LANL report describing the geologic characterization of the newly drilled 

ER wells (WoldeGabriel et al., 2004).  The latter two studies were performed in support of the UGTA 

Project.  These analyses, along with additional supporting information, are also available within the 

Petrographic, Geochemical, and Geophysical (PGG) database for the SWNVF (Warren et al., 2003) 

or will become available within the next update of this online database.  Further details regarding this 

compilation are provided in Warren (2007).

Included in this compilation are XRD analysis results from Schroeder and Williams (1962) through 

the year 2003, a period spanning 42 years.  During this period, analysts from different organizations 

applied techniques that evolved through four major stages, significantly improving the analytical 

methodology.  Particularly from the year 2000, quantitative methods have greatly improved the 

sensitivity and precision, which has markedly affected results for certain minerals.  In addition, 

different sampling procedures and collection of a variety of sample types have been employed by 

geologists from different organizations.

The goal of this compilation was to obtain a dataset that is representative of the relative mineral 

abundances present within drill holes of Yucca Flat.  Compilation of XRD analyses favored volcanic 

units, which includes underlying paleocolluvium but excludes tephra intercalated with alluvium.  

A larger number of analyses were compiled for the northern Yucca Flat holes (LLNL drill holes) than 
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those in the southern NTS areas of Yucca Flat (LANL drill holes) as described in Warren (2007).  The 

drill holes represented within the dataset are shown in Figures D.2-1 and D.2-2 for the northern and 

southern NTS areas, respectively. 

Geologic information (e.g., stratigraphic unit, stratigraphic bounds, lithology, and alteration, together 

with depth and elevation) is also provided to establish the geologic context for the subsurface 

mineralogy.  Alteration relates directly to mineralogy of volcanic rocks and alluvium within the 

SWNVF.  Definitions for alteration are provided to help recognize and understand lateral variations in 

mineralogy, and to substantially improve accuracy in alteration assignments based on examination of 

hand samples using binocular microscope.
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D.2.0 DATASET SUMMARY 

Location Id - The unique symbol for Location Id represents a specific, usually unique location on the 

surface, or a specific, usually unique location within a tunnel.  Drill-hole locations for testing of 

weapons use “U” (“underground”) as the initial character within the Location Id, followed by “E” for 

exploratory holes, followed by the area within the NTS.  Thus, U4A designates an emplacement hole 

within Area 4, and U7AV designates an exploratory hole within Area 7.  Holes drilled for the 

Environmental Restoration Project use “ER” (e.g., ER7/1).  The only exceptions for this system of 

nomenclature are Water Well C (WWC), located in Area 6 and select holes in NTS Area 6 that are 

identified as U-3 holes (Figure D.2-2).  The dash character (-) is reserved for Sample Ids, and 

therefore dashes in published locations are converted to a foreslash (/).  Location Ids for drill holes are 

matched as closely as possible to those commonly used, but unnecessary characters such as “#” are 

always eliminated, and short, recognizable character strings substitute for extremely long location 

names.  For instance, U3GS2 and ER6/1/2 are the Location Ids for U-3gs Ex. 2/Inst and ER-6-1#2, 

respectively.  All location Ids are converted to capital letters, which is inconsistent with the 

conventional nomenclature.  Conventional nomenclature is presented in Figures D.2-1 and D.2-2.      

Sample Id - This unique symbol represents up to a few kilograms of contiguous material from the 

surface or subsurface.  The dash special character (-) is reserved to designate multiple samples from a 

single location.  Sample Ids for vertical drill holes always contain the Location Id followed by a 

dash (-) and the sample depth (or sample depth interval) in feet.  Often an extension is added that 

identifies the sample type.

Split_Id - This unique symbol represents a split of a sample for analysis.  A split represents analysis 

for one or more element or component that is performed by a single laboratory.  Usually, a few grams 

are split from the sample and specially prepared for the analytical procedure, such as a glass-covered 

thin section for petrographic analysis or pulverized rock for chemical or XRD analysis.  A left 

parenthesis designates each split from a single sample.  Multiple chemical or XRD analyses of the 

same sample by the same laboratory and multiple analyses of the same thin section are considered to 
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Figure D.2-1 
Sampling Locations in the Northern Areas of Yucca Flat Formally Used for Testing 

by Lawrence Livermore National Laboratory
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Figure D.2-2
Sampling Locations in the Southern Areas of Yucca Flat Formally Used for Testing 

by Los Alamos National Laboratory
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represent replicate analyses.  Individual replicate analyses are not stored within the PGG database, 

nor are they provided within the Yucca Flat/Climax Mine XRD dataset.  Three splits from drill-hole 

UE5N of Frenchman Flat (each analyzed in triplicate) and nine splits from U12E tunnel (each 

analyzed in duplicate) provide the only replicate XRD analyses presently known for the SWNVF.  

The published sources for these analyses are provided in the PGG database table, PGG_SPLIT_REF.  

Note that the “PGG” prefix is used to identify tables within the PGG database and is not included in 

the table name within the database.

UTM_e - This value, in meters, is the Easting for location in Zone 11 of Universal Transverse 

Mercator (UTM) projection, 1927 North American Datum (NAD).

UTM_n - This value, in meters, is the Northing for location in Zone 11 of UTM projection, 

1927 NAD.

Sample_Depth_U - This value provides the uppermost bound for the sample depth in meters beneath 

the ground surface, and is applicable only to samples from vertical drill holes, trenches, or pits.  For 

samples that represent rock caved from uphole, sample types DB2 and DB3, this depth represents the 

upper bound for the source of the material.

Sample_Depth_L - This value provides the lowermost bound for the sample depth in meters beneath 

the surface.

Sample_Elev_Av - This value provides the sample elevation in meters above mean sea level, or the 

average from uppermost and lowermost bounding depths if available from drill hole. 

Alteration and Minor Alteration - Virtually all volcanic rocks of the SWNVF are tuff or lava 

erupted as magma that either crystallized to form devitrified rock or quenched to glass that initially 

comprises an average abundance of 80 percent for vitric rocks (Figure D.2-3).  Devitrified rocks are 

resistant to subsequent alteration, but glass within vitric rocks is often progressively transformed into 

characteristic secondary mineral assemblages with increasing temperature by circulating fluids.  

Alteration, simply viewed, attaches ranges in temperature, Eh, and pH that form the observed 

secondary mineral assemblages.  Several types of alteration frequently affect a single sample; for 

example, a rock can be partly vitric and partly devitrified, and minor zeolitic.      
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Precise definitions for alteration are based on abundances for secondary phases (and glass) within 

assemblages that reflect distinctively different conditions controlled by temperature, Eh, and pH 

(Table D.2-1).  Devitrified rocks can be overprinted by quartzofeldspathic or propylitic alteration, but 

cannot be transformed to less highly altered assemblages.  However, devitrified rocks occasionally 

contain veins that lead to co-assignment of minor alteration for less highly altered assemblages.    

Alteration is initially assigned by examination of samples using binocular microscope for depth 

intervals within each drill hole.  Uncertainties in alteration assigned by binocular microscope are 

resolved using petrographic and XRD analyses, which are typically complementary.  Modern XRD 

analysis always quantifies mineral assemblages.  All assignments for the alteration and minor 

alteration columns within the dataset consider available petrographic and XRD analyses, as well as 

assignments from binocular microscope.  In a few cases where the sample is considered 

nonrepresentative, alteration is assigned from the lithologic description for the appropriate depth 

interval (Warren, 2007). 

Figure D.2-3
Schematic Diagram Illustrating Eruption and Subsequent Alteration of Volcanic 

Rocks Within SWNVF
Graphics image by Clayton S. Painter (Warren, 2005)
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Translation of the codes used in the alteration (Altn) and minor alteration (mAlt) fields are also 

provided in the worksheet titled “Strat_Alt_Lith” within the “YF_CM_XRD_Dataset.xls” 

spreadsheet.  A series of tables, providing additional information regarding the assignment of 

alteration, are provided in the PGG database.  These include the tables PGG_ALT_FK (provides a 

complete list of abbreviations for alteration), PGG_ALT_INT (provides the depth intervals for 

alteration assignments of individual sample locations), PGG_SAMPLE_WORKER (identifies the 

Table D.2-1
Definitions for Alteration

Assemblage Member Name Phases Requirement

GL Vitric Glass (GL) GL>20%

CB

Carbonaceous Carbonate (CB) CB>5%

CC Calcareous Calcite (CC) CC>5%

DM Dolomitic Dolomite (DM), Ankerite (AK), Siderite (ST) DM+AK+ST>5%

OP Opaline Opal-CT and Opal-A (OP) OP>20%

AR

Argillic Smectite (SM), Mica, and Illite (MI) SM+MI>20%

KA Kaolinitic Kaolinite (KA) KA>5%

SC Sericitic Mica and Illite (MI), Albite (AB) MI+AB>20%

ZE

Zeolitic Zeolite (ZE) ZE>20%

ZC Clinoptilolite Clinoptilolite (ZC) ZC>20%

ZM Mordenite Mordenite (ZM) ZM>20%

ZA Analcime Analcime (ZA) ZA>20%

QF

Quartzofeldspathic Chalcedony (QC), Adularia (AA), Albite (AB) QC+AA+AB>20%

QZ Silicic Chalcedony (QC), Granophyric Quartz (GQ) QC+GQ >20%

KF Potassic Adularia (AA) AA>20%

AB Albitic Albite (AB) AB>20%

PR

Propylitic Chlorite (CH), Albite, (AB), Epidote (EP), 
Carbonate (CB) CH+AB+EP+CB>20%

PY Pyritic Pyrite (PY) PY>1%

CH Chloritic Chlorite (CH) CH>1%

AE Albite/epidote Albite, (AB), Epidote (EP) AB+EP>20%

DV

Devitrified
Chalcedony (QC), Granophyric Quartz (GQ), 

Groundmass K-spar (GK), 
Groundmass Plagioclase (GP)

QC+GQ+GK+GP>20%

VP Vapor phase Tridymite (TR) TR>5%

GR Granophyric Granophyric Quartz (GQ) GQ>5%

SR Spherulitic Chalcedony (QC), Groundmass K-spar (GK), 
Groundmass plagioclase (GP)

Spherulitic 
(QC+GK+GP)>20% 

Alterations are progressively intense as listed, although minerals from any assemblage extend into adjacent assemblages and a 
few, such as carbonates, can associate with most or all assemblages.  Multiple alterations frequently occur within a single split 
(e.g., partly devitrified, partly zeolitic is represented by DV/ZE).  Minor alterations are assigned when the abundance of the 
appropriate phase occurs below the required value, except that minor argillic alteration also requires SM+MI>10%.  
Abundances apply only to sample matrix (groundmass), excluding lithics and phenocrysts.
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worker responsible for the alteration assignment), PGG_SAMPLE_REF (provides documentation for 

alteration assignments for samples unrepresentative of sampled depth intervals), and 

PGG_GEOL_INT_REF (provides the appropriate source of the assignment documented in 

PGG_SAMPLE_REF).

Strat_Unit - This symbol identifies the stratigraphic unit associated with the sample split.  

Assignments for the Strat Unit column are from petrographic analyses, if available.  Chemical 

analysis is also very useful for the assignment of stratigraphic unit, especially paired together with 

petrographic analysis.  Otherwise, assignments are from binocular microscope (Warren, 2007).  

Except for a few analyses of XRD splits that demonstrate a low phenocryst content or show a 

distinctive content of a characteristic primary mineral, XRD analyses provide no information for 

stratigraphic assignment.  Translation of the codes used in this field are provided in the worksheet 

titled “Strat_Alt_Lith” within the “YF_CM_XRD_Dataset.xls” spreadsheet.  Additional supporting 

data are provided within the PGG database.  For instance, the table PGG_STRAT lists about 300 

volcanic stratigraphic units for the SWNVF.  All of those that erupted within the volcanic field are 

associated within 16 volcanic assemblages (Warren, 2005).  Additional tables include 

PGG_SAMPLE_WORKER (identifies worker responsible for the stratigraphic unit assignment), 

PGG_STRAT_INT (provides the depth interval for each stratigraphic unit for each borehole), 

PGG_SAMPLE_REF (cites the published source for the stratigraphic assignment), and 

PGG_ GEOL_INT_REF (cites the published source of the stratigraphic assignments within drill 

holes).

Strat_T Elev - This value represents the elevation in meters for the top of the stratigraphic unit 

assigned in the Strat Unit column.

Strat_B Elev - This value represents the elevation in meters for base of stratigraphic unit assigned in 

the Strat Unit column.

Strat_Above - This symbol identifies the stratigraphic unit above the sampled unit and provides an 

upper stratigraphic bound for XRD splits where the Strat Unit column is unassigned or unknown.
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Strat_Below - This symbol identifies the stratigraphic unit below the sampled unit.  This column 

provides a lower stratigraphic bound for XRD splits where the Strat Unit column is unassigned or 

unknown.

Lith - This field represents the lithology associated with the XRD split.  Assignments for the 

Lithology column are from petrographic analyses if available.  Otherwise, assignments are from 

binocular microscope.  No information for lithology in provided by XRD analyses.  Translation of the 

codes used in this field are provided in the worksheet titled “Strat_Alt_Lith” within the 

“YF_CM_XRD_Dataset.xls” spreadsheet.  Additional data are provided in the PGG database tables: 

PGG_LITH_INT (provides lithology depth intervals for all sample locations), PGG_LITH_LIST 

(provides a list of all lithologies), PGG_SAMPLE_WORKER (identifies the worker responsible for 

assignment of lithology), PGG_SAMPLE_REF (cites published source of lithology), and 

PGG_GEOL_INT_REF (cites published source of lithology within drill holes).

HSU - This field represents the hydrostratigraphic unit as defined in Table 4-2 of Section 4.0.  In 

most cases, the HSU was assigned using a database developed in support of the development of the 

EV® HFM (Dynamic Graphics, 2002).  When data were not available for a particular well, the data 

were assigned using the EV® HFM.

RMC - This field represents the reactive mineral category as defined in Table 4-4 of Section 4.0. 

RMU - This field represents the reactive mineral unit, which is a preliminary assignment of spatial 

units associated with various reactive mineral categories within select HSUs. 

Sample type - This code translates into the type of sample analyzed by XRD (Table D.2-2).  As 

described in Warren (2007), there are some limitations associated with various sample types.  For 

instance, samples of cuttings are routinely collected within 10-ft intervals throughout a drill hole and 

have frequently lost fine matrix to provide a concentrate of hard components, typically lithic 

fragments and occasionally felsic phenocrysts from vitric rock.  In addition, cuttings are almost 

always contaminated by generally soft rock caved from uphole that must be excluded from the 

analysis.  Contamination is best eliminated by selection of fragments considered to represent the 

borehole wall (hand picking).  Because hand picking is extremely laborious, especially when the 

diameter of fragments are less than 10 mm as is typical, LLNL routinely analyzed unprepared 
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cuttings.  To minimize loss of fine matrix, LLNL collected large buckets of “whole cuttings,” which 

were later dried without the standard practice of washing, better preserving the fine fraction.  Cuttings 

collected in this way are termed “unwashed cuttings,” as noted in the comments column.  Due to their 

fine particle size, unwashed cuttings are not amenable to petrographic analysis, so contamination 

levels cannot be determined for individual samples of unwashed cuttings.  Warren (2007) 

demonstrates that although unwashed cuttings are the most likely sample type to suffer 

contamination, the lowest percentage for glass in zeolitic rock is observed for these samples, 

indicating that contamination of unwashed cuttings is typically insignificant.  Pawloski (1989) 

concluded that unwashed cuttings provide reliable averages for grain densities from a comparison 

with samples by percussion sidewall.  However, as Pawloski (1989) noted, individual examples of 

cuttings that do not represent the borehole wall are well known

With the exception of vitric alluvium of Frenchman Flat, which contains clasts that are invariably 

vapor phase altered (Warren et al., 2002), the presence of the vapor phase index mineral tridymite and 

glass together were not observed during petrographic analysis of several thousand samples in Warren 

et al. (2003).  Given the unique association of tridymite and glass observed within several samples 

within the dataset, it seems likely that the glass represents fragments caved into the cuttings, which 

Table D.2-2
Description of Sample Type Codes

Sample Type
Codes Sample Type Description

C Core

D Drill cuttings

DA Drill cuttings that represent petrographic character of interval

DB1 Drill cuttings enriched in hard components

DB3 Drill cuttings with combined characters of db1

HS Hunt sidewall that represents petrographic character of interval

HSS Particle size fraction separated from Hunt sidewall

O Outcrop

PS Percussion sidewall

SC Sidewall core

T Tunnel wall
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were not entirely removed by hand picking.  Samples obtained by ineffective handpicking are 

identified as such within the dataset and were not used for further analyses.   

Before XRD analysis, mudcake from the borehole wall must be removed from sidewall samples.  

Analysis of two mudcake samples report 45 to 50 percent glass and 15 to 20 percent zeolite.  

Petrographic analyses, a method that is far more sensitive than XRD analyses for glass, demonstrate 

that minor relict glass does not commonly occur within zeolitic rocks of the SWNVF (Warren, 2007).  

An analysis of the zeolitic Hunt sidewall samples represented within the dataset shows a relatively 

large percentage of minor glass (26 percent) when compared to other sample types analyzed by XRD 

(0 to 12 percent) and to petrographic analyses (6.3 percent).  This suggests that mudcake may 

contaminate samples of Hunt sidewall for XRD analyses (Warren, 2007). 

Analysis Date - The split was reported as analyzed on this date.  This date generally represents the 

date that reflection intensities were transformed into abundances, with the reflection intensities 

usually collected at an earlier date.

XRD_Meth - The methodology of XRD analysis has evolved during the span of 42 years when splits 

in this report were analyzed.  Table D.2-3 lists methods encoded in the XRD Meth column that 

reflects increasing refinement of analyses.  Semiquantitative analyses are often represented by values 

in non-numerical form, or in parts per 10.  Quantitative estimates are typically presented for the 

reactive minerals zeolite and smectite when present in relatively high concentrations.  At low 

concentrations, symbols typically proxied for analyte abundances, accompanied by a key to translate 

the symbols into numerical values.  Symbols were translated only when a key was available.  

Table D.2-4 provides such a key used for a series of analyses performed at LLNL, along with the 

corresponding values reported in the XRD dataset.  A slightly different set of symbols were employed 

during a later period at LLNL that referenced no key; these symbols have not been translated 

(see discussion in Warren, 2007) but are provided in the comments column.  An attempt to translate 

the symbols used for these subsequent analyses substituted “very weak” XRD intensities with less 

than 5 and “very very weak” treated the same as “trace” (Table D.2-4).  However, attempts to employ 

such a translation invariably provide totals for all analytes far below 100 percent, typically 60 to 

70 percent, demonstrating that the analyses cannot be reduced to trustworthy numerical values for the 

minerals present at relatively low levels.  Because quantifying the amount of clays (particularly 
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smectite) and zeolite was often the goal of the XRD analyses, these minerals were often estimated 

numerically for semiquantitative analyses; other minerals were simply reported using symbols such 

as those reported in Table D.2-4.    

Analytical sensitivity is lowest for the external standard method (Pawloski, 1983), resulting in a very 

low percentage of splits detecting kaolinite, and none in which analcime or tridymite were reported 

(Warren, 2007).  A detection limit as high as 40 percent is reported for glass using this method.  

Comments - Comments amplify information from an XRD analysis and provide additional 

information not otherwise represented in the database.  Three types of comments are of particular 

value:

1. Description of clay mineralogy such as interlayering between smectite and illite and 
polymorphism between kaolinite and halloysite

2. Terms describing reflection intensities when numerical values are not provided

Table D.2-3
Methods of XRD Analysis for Splits from the SWNVF

Code Type Description Reference

S Semiquantitative

E Quantitative External standard Pawloski, 1983

I Quantitative Internal standard Bish and Chipera, 1989

F Quantitative Full pattern fitting Chipera and Bish, 2002

Note: Analytical totals are a valid test of analytical quality only for methods I and F because totals are normalized to 100% for method E.

Table D.2-4
Translation of Symbols Used During the Early 1970s by LLNL To Represent 

Semiquantitative XRD Analyses
Term Symbol Definition Database Value

Strong S >50 75 + 25

Moderate M 10-50 30 + 20

Weak W <10 5 + 5

Trace Tr or T ~1 0.5 + 0.5

---- Not observed 0

Note: All values are weight percent. 
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3. Definition of unusual minerals

Qualifier Code - Code assigned to a specific sample split.  A code of R is primarily used in this field 

and designates that the sample should be rejected and not included in further analyses.

Qualifier - Qualifiers are used to provide supporting information associated with the qualifier code.

Remarks - This field contains text describing possible anomalies within the dataset.  This field is 

used to describe sample splits that were collected near an HSU contact or had an unusually high 

abundance of a particular mineral.  Many of these sample splits were included in the analyses because 

they often represent the high variability of the minerals within an HSU or RMC.

Analyst Code - This code represents the analyst that performed the XRD analysis.  Each XRD 

analyst applied individual criteria for analyses, resulting in different assignments and different 

nomenclature for some minerals (Warren, 2007).  Reconciling these assignments is described for the 

individual minerals below. 

ZE - This code represents the mineral group zeolite.  Most zeolite within the SWNVF is 

clinoptilolite, but mordenite and analcime are prevalent.  From inception of work for Yucca Mountain 

during the late 1970s, LANL XRD analysts have reported values for all three zeolites (Waters et al., 

1981), emphasizing their individual associations with depth and alteration intensity (Broxton et al., 

1987).  The USGS reported zeolite almost entirely as clinoptilolite, rarely reporting mordenite or 

analcime, so USGS analyses represented as clinoptilolite should be assumed to represent 

clinoptilolite plus mordenite.  Until the latest reports in 1991, LLNL reported zeolite entirely as 

clinoptilolite, neglecting mordenite, which occurs in one-third of the splits analyzed by LANL.  

Therefore, analysis for clinoptilolite by LLNL has been properly translated to represent total zeolite, 

including clinoptilolite, mordenite, and analcime.  Because of the inconsistent assignments of the 

zeolite minerals, only total zeolite is reported within the dataset.  More detailed presentation of 

specific zeolite minerals, as stated above, are provided within the PGG database or within Warren 

(2007).  

It is worth noting that mineral abundances are typically reported only for minerals observed above the 

minimum detection limit; therefore, it is not always clear whether a null value in the dataset indicates 

a mineral that was analyzed for but not detected, or the mineral was simply not analyzed.  Because 
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historical analyses often focused on the reactive minerals, zeolite and smectite, null values can be 

assumed to indicate zeolite was analyzed for but was not detected, or was detected but was reported 

using a symbol as described earlier for the semiquantitative analyses.  The exception to this 

assumption is for those splits for which only smectite was analyzed.      

SM - This code represents the mineral smectite.  A high percentage of argillic and highly argillic 

XRD splits is expected for Area 8 of the NTS, where the BANEBERRY test was located in drill hole 

U8D.  Post-test drilling demonstrated that intense argillic alteration was a primary cause for the 

prompt release of radiation following the test (USGS, 1974), and thereafter determination of clay 

mineral abundance by XRD analysis became routine.  A summary of the percentage of splits with 

high smectite abundances within each of the NTS areas of the Yucca Flat/Climax Mine CAU is 

presented in Table D.2-5.  Area 6 shows a similar percentage of argillic and highly argillic XRD splits 

for a relatively small dataset, but differs from Area 8 by including very few splits with argillic minor 

alteration.  The high argillic content is associated with playa deposits in the extreme southern Yucca 

Flat.  Areas 2, 4, and 20 show the lowest percentages of argillic splits, each showing about 20 percent 

of the XRD splits to contain at least 10 percent smectite.   

Table D.2-5
Percentages of XRD Splits Within NTS Areas in Yucca Flat that Contain 

Moderate to High Abundances of Clay Minerals 

Area n High AR AR mAR
2 619 0.3 8.2 15

3 199 5.5 15 14

4 274 0.7 8.8 18

6 70 10 23 1.4

7 438 0.2 9.1 26

8 335 9.3 30 21

9 240 0.4 10 27

10 148 0.0 25 29

12 14 8 8 8

 
AR - Argillic (>20% smectite plus mica/illite). 
High AR - Highly argillic (>45% smectite).
mAR - Minor argillic (10-20% smectite plus mica/illite).
n - The number of splits analyzed by XRD within each area.
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CC - This code represents calcite.  Note that in some cases, only total carbonate was reported; these 

values were assigned to calcite.

DM - This code represents dolomite.

MI - This code represents the mineral group mica.  Individual micas can be distinguished by XRD 

analysis and were reported separately for muscovite, biotite, and illite by LLNL (Pawloski, 1983).  

Recent analyses by LANL report mica mostly or entirely as biotite, sharply higher compared to 

petrographic analyses for biotite.  The recent XRD results require that secondary mica within 

groundmass of zeolitic rock occur mostly or entirely as biotite, which is inconsistent with its optical 

character unless the secondary mica were highly iron-poor.  Considering their apparent discrepancy 

with petrographic analyses, recent XRD values for biotite are included specifically for biotite only in 

the comments column.  These values for biotite are included within the value for mica/illite.  Because 

of the inconsistencies in determining individual micas (biotite, illite, and muscovite), only total mica 

is reported within the dataset.  More detailed presentation of mica minerals, as stated above, are 

provided within the PGG database or within Warren (2007). 

HM - This code represents the mineral hematite and hydrated iron oxides such as goethite.

GL - This code represents glass.  Some XRD analyses report amorphous rather than glass, as noted in 

the comments column within the dataset.  Two entirely amorphous phases, glass and opal-A, are 

known to occur within the SWNVF.  Glass is widespread, identified optically by petrographic 

analyses and chemically by microprobe analysis for countless splits (Warren et al., 2003), but opal-A 

is uncommon, presently identified by petrographic analysis only within a single sample within the 

PGG database (Warren, 2007).  Due to the known rarity of opal-A, most XRD analysts assume that 

the broad reflection from amorphous material is due entirely to glass, a convention followed during 

this compilation process. 

In some cases, petrographic analyses are available to identify amorphous material as opal-A for some 

XRD splits.  However, petrographic analyses accompany very few XRD splits from Yucca Flat.  

Some XRD splits reveal amorphous material within a mineral assemblage that suggests severe 

alteration, and may well contain opal-A, erroneously assigned as glass.  Examples of such splits are 

sample U7BD-1385S and those deeper within U7BD.
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OP - This code represents the mineral opal.  For this dataset, and the PGG database, opal-CT and 

opal-A are combined, but individual amounts are provided in the comments column.

CR - This code represents the mineral cristobalite.  Most opal within the SWNVF has short-range 

ordering of cristobalite, and so although amorphous, it exhibits weak and diffuse reflections with 

angles identical to cristobalite.  Until the recent application of the full pattern fitting method, 

reflections for cristobalite were analyzed either as opal-CT or as cristobalite (Warren, 2007).  In some 

cases, XRD results were reported as “cristobalite-opaline silica,” which has been arbitrarily translated 

as opal-CT.  During compilation, a choice between phases was followed, almost always made as 

cristobalite.  The most recent XRD analyses indicate that both phases are prevalent and frequently 

occur together, so earlier “one or the other” analyses for opal-CT and cristobalite should be used with 

caution.

TR - This code represents the mineral tridymite.  Tridymite, found only in devitrified rocks, has only 

been reported by one analyst (Warren, 2007).  

QZ - This code represents the mineral quartz.

HN - This code represents the mineral hornblende.  Individual amphiboles can be distinguished by 

XRD analysis, but their abundances within the SWNVF are typically far too low to accomplish this.  

Furthermore, only a single petrographic analysis among several thousands reveals an amphibole other 

than hornblende in amounts detectable by XRD (Warren, 2007).  Both actinolite and anthophyllite 

occur within four petrographic splits, with a maximum abundance of 0.02 percent for anthophyllite.  

Based on the rarity of amphiboles other than hornblende within the SWNVF,  all amphibole is 

assumed to represent hornblende within the PGG database and for this dataset; no other amphibole 

was specifically reported.  

FS - This code represents the total of the felsic minerals.  The daughters of feldspar, alkali feldspar 

(KF) and plagioclase (PL), are analyzed only in a few cases (Warren, 2007).  The daughters of the 

individual feldspars from XRD analyses are adularia (AA), sanidine (SD), and orthoclase (OR) for 

KF; and albite (AB), bytownite (BY), and anorthite (AN) for PL.  More detailed presentation of the 

feldspar minerals, as stated above, are provided within the PGG database or within Warren (2007).
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KA - This code represents the mineral kaolinite.

CH - This code represents the mineral chlorite.

MT - This code represents the mineral magnetite.

PY - This code represents the mineral pyrite.

O1 - This code indicates other minerals that are either uncommon or unspecified in the XRD results.  

Comments associated with values reported within this field are reported in the comments field.

WW - This code represents the total of all mineral abundances.

Total - This field contains the summed total of the abundances of all minerals reported for the 

particular split.  These totals are a valid test of analytical quality only for methods I and F because 

totals are normalized to 100 percent for method E, and abundances estimated using method S often do 

not incorporate the non-reactive minerals.

Note: An additional set of 10 minerals and mineral constituents were analyzed for in a number of 

splits within Yucca Flat, but were uniformly undetectable and therefore were not included in the 

dataset.  These minerals are clinopyroxene (CX), ilmenite (IL), olivine (OL), pyroxene (PX), 

anorthite content of plagioclase (AN), apatite (AP), fluorite (FL), gypsum (GY), halite (HL), and 

garnet (GT).
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D.3.0  HISTOGRAMS OF REACTIVE MINERALS FOR 
HYDROSTRATIGRAPHIC UNITS

Histograms of the five reactive minerals used for calculating matrix distribution coefficients are 

presented in Figures D.4-1 through D.4-5.  The reactive minerals are presented for each of the HSUs 

and specific areas within HSUs as presented in Section 4.0 and summarized in Table 4-6.  These 

include the AA (typical and altered), PCU, IDP, TM-UVTA, TM-WTA (typical and altered), 

TM-LVTA (typical and argillic), UTCU, TSA (typical and zeolitic), TUBA, LTCU, OSBCU (total, 

zeolitic, and ash-flow tuffs), ATCU, MGCU, UCCU (Eleana Formation and Chainman Shale), and 

LCA HSUs.                                          
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Figure D.4-1
Histograms and Percent Cumulative Probability Distributions for Zeolite 

Abundances in Yucca Flat/Climax Mine HSUs (Part 1 of 3)
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Figure D.4-1
Histograms and Percent Cumulative Probability Distributions for Zeolite 

Abundances in Yucca Flat/Climax Mine HSUs (Part 2 of 3)
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5

Figure D.4-1
Histograms and Percent Cumulative Probability Distributions for Zeolite 

Abundances in Yucca Flat/Climax Mine HSUs (Part 3 of 3)

UCCU - Eleana Formation 

0

1

2

3

4

5

6

7

8

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98

M
or

e

Percent ZE Composition

Fr
eq

ue
nc

y

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
um

ul
at

iv
e 

Pe
rc

en
t

UCCU - Chainman Shale

0

1

2

3

4

5

6

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98

M
or

e

Percent ZE Composition
Fr

eq
ue

nc
y

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
um

ul
at

iv
e 

Pe
rc

en
t

LCA

0

2

4

6

8

10

12

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 74 78 82 86 90 94 98

M
or

e

Percent ZE Composition

Fr
eq

ue
nc

y

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
um

ul
at

iv
e 

Pe
rc

en
t



Appendix D

Phase I Contaminant Transport Parameters for CAU 97: Yucca Flat/Climax Mine, Nye County, Nevada

D-23

Figure D.4-2
Histograms and Percent Cumulative Probability Distributions for Smectite 

Abundances in Yucca Flat/Climax Mine HSUs (Part 1 of 3)
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Figure D.4-2
Histograms and Percent Cumulative Probability Distributions for Smectite 

Abundances in Yucca Flat/Climax Mine HSUs (Part 2 of 3)
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Figure D.4-2
Histograms and Percent Cumulative Probability Distributions for Smectite 

Abundances in Yucca Flat/Climax Mine HSUs (Part 3 of 3)

UCCU - Eleana Formation 
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Figure D.4-3
Histograms and Percent Cumulative Probability Distributions for Carbonate 

(Calcite plus Dolomite) Abundances in Yucca Flat/Climax Mine HSUs (Part 1 of 3)
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Figure D.4-3
Histograms and Percent Cumulative Probability Distributions for Carbonate 

(Calcite plus Dolomite) Abundances in Yucca Flat/Climax Mine HSUs (Part 2 of 3)
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Figure D.4-3
Histograms and Percent Cumulative Probability Distributions for Carbonate 

(Calcite plus Dolomite) Abundances in Yucca Flat/Climax Mine HSUs (Part 3 of 3)

UCCU - Eleana Formation 
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Figure D.4-4
Histograms and Percent Cumulative Probability Distributions for Mica 

Abundances in Yucca Flat/Climax Mine HSUs (Part 1 of 3)
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Figure D.4-4
Histograms and Percent Cumulative Probability Distributions for Mica 

Abundances in Yucca Flat/Climax Mine HSUs (Part 2 of 3)
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Figure D.4-4
Histograms and Percent Cumulative Probability Distributions for Mica 

Abundances in Yucca Flat/Climax Mine HSUs (Part 3 of 3)

UCCU - Eleana Formation 
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Figure D.4-5
Histograms and Percent Cumulative Probability Distributions for Hematite 

Abundances in Yucca Flat/Climax Mine HSUs (Part 1 of 2)
Note: No data for hematite are available for PCUT, UTCU, TM-WTA (altered), TSA, TSA (zeolitic), and LCA HSUs.
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Figure D.4-5
Histograms and Percent Cumulative Probability Distributions for Hematite 

Abundances in Yucca Flat/Climax Mine HSUs (Part 2 of 2)
Note: No data for hematite are available for PCUT, UTCU, TM-WTA (altered), TSA, TSA (zeolitic), and LCA HSUs.
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D.4.0 ACCESS TO DATASET

The full XRD mineralogy dataset is provided in an Excel spreadsheet (YF_CM_XRD_Dataset.xls) on 

the compact disc-read-only memory (CD-ROM) accompanying this report.
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E.1.0 INTRODUCTION

The GEOCHEM06.mdb database (SNJV, 2006) contains data for a wide variety of geochemical 

parameters for groundwater of the NTS and the vicinity.  The datasets included in this appendix 

contain a subset of parameters for groundwaters of wells and springs within the Yucca Flat/Climax 

Mine HFM boundaries compiled from this database.  The goal of the data compilation was to acquire 

a dataset that contains representative major (Ca2+, Na+, Mg2+, K+, Cl-, SO4
2-, HCO3

-, and SiO2) and 

minor (CO3
2-, NO3

-, Br-, PO4
3-, and F-) solute data for groundwaters of the HSUs of the Yucca 

Flat/Climax Mine HSUs.  Also of interest are the results of ORP, pH, and water temperature 

measurements.  The SI for both calcite and dolomite are also presented.  Representative samples were 

selected if a full suite of the above parameters were available and if the charge balance was within ±5 

percent.  Samples were removed if multiple outliers (outliers for multiple parameters) were present.
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E.2.0 SUMMARY OF DATASETS

The first dataset is presented in Table E.3-1, parts a and b, and reports the mean and SD for the 

parameters described above.  The number of samples for each sampling location is also presented, 

along with the top and bottom of the formation access interval (FAI) of each well, and the reactive 

mineral category (RMC) assigned to the sample.  In some cases, the top of the FAI is described as the 

top of the water table.

The second dataset is provided electronically as a spreadsheet.  A description of this datasets includes 

the following items:

• MASTER_ID - Location ID, indicating the completion status of the well at the time of 
sampling, as reported in the GEOCHEM06.mdb database (SNJV, 2006); this ID generally is 
the NWIS ID

• BI_ID - Location ID assigned from the UGTA Borehole Index

• SITE_ID - Sample location name as reported in the GEOCHEM06.mdb database 
(SNJV, 2006)

• HSU - Primary hydrostratigraphic unit associated with the groundwater sample (see Table 4-2 
for a description of HSUs)

• RMC - Reactive Mineral Unit associated with the groundwater sample

• SAMPLE_ID - Unique identifier for the sample in the GEOCHEM06.mdb database 
(SNJV, 2006) or subsequent version of the database

• S_Date - Sample collection date

• S_Time - Sample collection time

• S_Depth (m) - Sample collection depth, m

• HCO3 (mg/L) - Concentration of bicarbonate, mg/L

• CO3 (mg/L) - Concentration of carbonate, mg/L

• SO4 (mg/L) - Concentration of sulfate, mg/L

• Cl (mg/L) - Concentration of chloride, mg/L

• Mg (mg/L) - Concentration of magnesium, mg/L
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• Na (mg/L) - Concentration of sodium, mg/LK (mg/L) - Concentration of potassium, mg/L

• Ca (mg/L) - Concentration of calcium, mg/L

• SiO2 (mg/L) - Concentration of silica, mg/L

• pH - pH

• Charge Balance - Charge balance calculated from the major and minor ions

• T (ºC) - Water temperature

• NO3 (mg/L) - Concentration of nitrate, mg/L

• Br (mg/L) - Concentration of bromide, mg/L

• PO4 (mg/L) - Concentration of phosphate, mg/L

• F (mg/L) - Concentration of fluoride, mg/L

• DDF - Data documentation flag indicating level of documentation associated with the sample 

• Reference - Laboratory associated with the sample analysis; additional information is 
provided for each sample in the GEOCHEM06.mdb database (SNJV, 2006)

• Comments - Comments related to any of the parameters associated with a given sample
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E.3.0 ACCESS TO DATASET

The chemistry dataset is provided in an Excel spreadsheet (YF_CM_chemistry_Data.xls) on the 

CD-ROM accompanying this report.A
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Table E.3-1
Groundwater Chemistry Related Parameters for the Yucca Flat/Climax Mine CAU (Part a)

 (Page 1 of 3)

SITE_ID Common
Name

N
um

be
r o

f 
Sa

m
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es

FAI 
(m)

RMC

SI a pH     T (°C) NO3
(mg/L)

Br
(mg/L)

PO4
 (mg/L)

F 
mg/L
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n
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 S
D
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n

 S
D

 M
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SD

Alluvial Aquifer (AA)
USGS Water Well A WW-A 14 488.3 b 570.0 VMP 0.15 0.13 7.8 0.2 25.2 2.4 5.8 2.2 NA N/A 0.1 N/A 0.5 0.1
Well 3 Water Well WW-3 8 466.9 b 548.6 VMP 0.14 0.02 7.9 0.1 22.4 1.1 7.1 2.1 NA N/A 0.1 0.1 0.9 0.1
UE-1a UE-1a 1 166.2 b 291.7 VMP NA NA 8.01 N/A 25.4 N/A 0.04 N/A NA N/A NA N/A NA N/A
UE-6d UE-6d 1 647.7 1,187.5 VMP 2.79 1.43 8.30 N/A NA N/A 7.6 N/A NA N/A NA N/A NA N/A
Lower Carbonate Aquifer (LCA)
ER-3-1 #1, deep ER-3-1 1 772.3 793.1 CC 0.00 -0.03 6.7 N/A 37.8 N/A NA N/A NA N/A NA N/A 1.38 N/A
ER-6-1 ER-6-1 5 554.4 683.7 CC 0.84 -0.06 7.3 0.1 38.1 4.2 0.5 0.2 0.7 0.1 NA N/A 0.72 0.03
ER-6-1 #2 ER-6-1 #2 4 540.9 975.4 CC -0.31 -0.20 7.6 0.1 36.9 5.4 1.1 N/A 0.4 0.3 NA N/A 0.8 N/A
ER-7-1 ER-7-1 4 564.9 b 762.0 CC 1.03 0.11 7.6 0.04 49.0 1.1 0.1 N/A 0.2 0.1 NA N/A 0.8 N/A
U-3cn #5 U-3cn #5 8 863.2 923.5 CC 0.30 0.01 7.5 0.6 44.7 N/A 0.3 0.1 NA N/A 0.2 N/A 0.7 0.3
UE-10j, Zone #1 UE-10j-1 1 759.9 b 796.4 CC -0.53 -0.29 6.4 N/A 32.7 N/A NA N/A NA N/A NA N/A 0.33 N/A
UE-10j, Zone #2 UE-10j-2 1 721.5 b 741.3 CC -0.49 -0.28 6.7 N/A 32.3 N/A NA N/A NA N/A NA N/A 0.33 N/A
UE-10j, Zone #3 UE-10j-3 2 680.3 b 700.1 CC 0.04 -0.02 7.1 0.2 32.1 N/A NA N/A 0.1 N/A NA N/A 0.3 N/A
UE-1q UE-1q 4 749.5 792.5 CC 1.06 NA NA 0.2 28.1 3.8 NA N/A NA N/A NA N/A 0.4 0.1
USGS Test Well D TW-D 7 525.2 b 594.4 CC -0.26 -0.08 8.2 0.2 23.3 0.7 0.2 N/A NA N/A NA N/A 1.3 0.1
USGS Test Well E TW-E 1 769.0 798.6 CC -1.21 -0.16 8.4 N/A NA N/A 0.1 N/A NA N/A NA N/A NA N/A
USGS Water Well C WW-C 15 470.0 b 519.5 CC 0.57 0.24 7.4 0.3 36.7 0.3 0.3 0.2 NA N/A NA N/A 1.1 0.1
Water Well C-1 WW-C1 18 469.2 b 503.8 CC 0.28 0.10 7.4 0.4 36.2 1.3 0.4 0.1 0.2 N/A NA N/A 1.1 0.1
UE-7ns UE-7ns 3 600.2 b 672.1 CC -0.46 -0.08 7.6 0.1 34.6 1.6 NA N/A NA N/A NA N/A 0.9 0.1
WW-2 WW-2 11 781.2 1,043.0 CC 0.05 -0.04 7.8 0.3 33.7 1.2 5.1 0.7 0.06 0.01 NA N/A 0.37 0.03
UE-1h UE-1h 1 650.4 1,023.5 CC 0.72 0.29 8.2 N/A 25.3 N/A NA N/A NA N/A NA N/A NA N/A
Lower Carbonate Aquifer-Thrust Plate (LCA3)
ER-12-1 ER-12-1 2 500.2 562.7 CC 0.97 0.40 7.7 0.3 25.0 N/A 0.1 N/A 0.4 N/A NA N/A 0.3 0.1
ER-6-2 ER-6-2 3 544.1 b 1,038.8 CC 1.08 -0.18 7.3 0.2 35.2 0.5 0.8 0.8 0.4 0.4 NA N/A 1.4 0.1
UE-1c c UE-1c 2 395.4 b 573.0 CC -0.39 -0.17 7.5 0.6 NA N/A 2.4 N/A NA N/A 0.002 N/A 0.5 N/A
UE-2ce d UE-2ce 1 419.6 502.8 CC -0.15 0.06 7.3 N/A 32.4 N/A 1.6 N/A NA N/A NA N/A 0.7 N/A
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Upper Carbonate Aquifer (UCA)
UE-16d (Eleana) UE-16d 11 349.0 592.5 CC 0.29 0.15 7.6 0.2 23.1 1.8 0.2 0.1 NA N/A NA N/A 0.54 0.04
Lower Clastic Confining Unit (LCCU)
UE-15d Water Well UE-15d WW 8 528.8 1,645.9 SC 0.88 0.46 7.4 0.5 35.0 0.4 0.8 N/A NA N/A 0.002 N/A 1.5 0.5
UE-15j UE-15j 1 4.2 380.1 SC -0.37 -0.14 6.6 N/A 45.0 N/A NA N/A NA N/A NA N/A 3.3 N/A
UE-15j A-5 UE-15j A-5 2 2.5 227.1 SC 0.21 0.15 6.7 N/A 44.3 N/A 1.6 2.1 NA N/A NA N/A 3.2 N/A
Upper Clastic Confining Unit (UCCU)
ER-12-2 ER-12-2 4 903.4 2,097.9 ARG -1.08 -0.52 8.3 0.2 35.0 0.9 NA N/A 0.4 0.2 NA N/A 2.3 0.3
UE-16f UE-16f 1 394.1 441.4 ARG 0.46 0.28 9.4 N/A NA N/A 0.01 N/A NA N/A NA N/A NA N/A
UE-17a (Eleana) e UE-17a 1 368.8 370.0 ARG 0.54 0.18 NA N/A 17.5 N/A NA N/A NA N/A NA N/A 1.00 N/A
UE-1b UE-1b 1 196.5 b 382.2 ARG 0.44 0.25 8.1 N/A NA N/A 2.7 N/A NA N/A NA N/A NA N/A
Lower Tuff Confining Unit (LTCU)
ER-2-1 ER-2-1 4 525.8 b 663.5 ZEOL/DMP -0.13 0.26 9.1 0.2 23.3 2.4 2.4 N/A 0.19 0.04 NA N/A 1.9 0.2
Test Well #7 (HTH) TW-7 1 613.9 692.5 ZEOL -2.46 -1.13 7.3 N/A 20.6 N/A NA N/A NA N/A NA N/A 2.4 N/A
U-2bs U-2bs 2 525.2 b 585.2 ZEOL -3.47 -1.52 7.1 0.4 25.8 0.4 0.6 0.3 NA N/A 0.1 0.0 1.3 0.0
U-3cn PS #2 U-3cn PS #2 4 472.4 b 793.4 ZEOL -0.45 -0.13 7.9 0.2 24.6 0.9 5.9 1.0 0.4 0.2 NA N/A 0.9 0.3
U-4u PS #2A U-4u PS #2A 2 472.0 501.0 ZEOL NA NA 7.4 0.2 28.0 N/A 19.3 N/A NA N/A NA N/A 0.5 N/A
UE-10 ITS #3 UE-10 ITS #3 1 563.8 b 587.0 ZEOL -0.17 0.38 8.3 N/A NA N/A 5.5 N/A NA N/A NA N/A NA N/A
Topopah Spring Aquifer (TSA)
UE-14b UE-14b 3 625.1 1,121.7 DMP -0.56 0.15 8.4 0.1 NA N/A 9.6 0.5 NA N/A NA N/A NA N/A
USGS Test Well B TW-B 5 469.1 510.5 DMP -1.32 -0.43 8.1 0.4 NA N/A 0.12 0.13 NA N/A NA N/A NA N/A
Mesozoic Granite Confining Unit (MGCU)
U-15.01 Shaft, C-30 C-30 1 N/A N/A DMR NA NA 8.1 N/A NA N/A NA N/A NA N/A 1.90 N/A NA N/A
U-15.01 Shaft, C-36 C-36 1 N/A N/A DMR NA NA 7.8 N/A NA N/A NA N/A NA N/A 1.20 N/A NA N/A
U-15.01 Shaft, CGW-1 CGW-1 1 N/A N/A DMR NA NA 7.3 N/A NA N/A NA N/A NA N/A NA N/A 0.9 N/A
U-15.01 Shaft, NH-01 NH-01 1 N/A N/A DMR NA NA 8.2 N/A NA N/A NA N/A NA N/A 0.50 N/A NA N/A
U-15.01 Shaft, UG-02 UG-02 1 N/A N/A DMR NA NA 7.5 N/A NA N/A NA N/A NA N/A NA N/A 1.4 N/A

Table E.3-1
Groundwater Chemistry Related Parameters for the Yucca Flat/Climax Mine CAU (Part a)
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Springs
Captain Jack Spring Captain Jack Spring 7 N/A N/A ZEOL -4.12 -1.82 7.3 0.2 NA N/A 1.8 1.4 NA N/A NA N/A NA N/A
Oak Spring Oak Spring 5 N/A N/A ZEOL -2.92 -1.25 7.0 0.6 NA N/A 2.4 2.7 NA N/A NA N/A NA N/A
Whiterock Spring Whiterock Spring 49 N/A N/A ZEOL -3.81 -2.05 6.5 1.5 13.9 2.7 NA N/A NA N/A NA N/A NA N/A

a Saturation Index - Positive SI indicates oversaturation and negative indicates undersaturation.
b Top of formation access interval corresponds to the average water level
c Bailed sample was collected from the LCA3
d The groundwater chemistry for this well has been highly variable over the 30-year sampling period.  Therefore, only data for the most recent sample, collected on  

July 12, 2005, are reported.
e The groundwater chemistry for this well is highly variable; mean concentration represents composite samples collected from different zones that appear to have different 

water chemistries.

N/A - Not applicable
NA - Not available
SD - Standard deviation

Table E.3-1
Groundwater Chemistry Related Parameters for the Yucca Flat/Climax Mine CAU (Part a)
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Table E.3-1
Groundwater Chemistry Related Parameters for the Yucca Flat/Climax Mine CAU (Part b)
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SITE_ID In situ ORP (mV) a

HCO3 
(mg/L) 

CO3 
(mg/L) 

SO4 
(mg/L) 

Cl 
(mg/L) 

Mg  
(mg/L) 

Na   
(mg/L) 

K  
(mg/L) 

Ca
  (mg/L) 

SiO2 
(mg/L) Charge 

Balance 

M
ea

n

SD M
ea

n

SD M
ea

n

SD M
ea

n

SD M
ea

n

SD M
ea

n

SD M
ea

n

SD M
ea

n

SD M
ea

n

SD

Alluvial Aquifer (AA)
USGS Water Well A NA 203 16 NA N/A 17.4 5.2 9.4 7.6 6.6 0.8 50.5 1.9 8.4 0.8 21.7 2.5 63.9 23.1 0.5
Well 3 Water Well 52 to 169 (472-533) 194 3 NA N/A 21.1 1.5 5.8 1.2 12.3 1.0 38.9 1.1 7.6 0.4 20.2 1.3 64.5 16.3 0.6
UE-1a NA 448 N/A NA N/A 1.00 N/A 30.7 N/A 32.4 N/A 59 N/A 12.3 N/A 41.1 N/A 19 N/A 4.0
UE-6d NA 245 N/A 0.50 N/A 18.5 N/A 8.20 N/A 9.6 N/A 58 N/A 11.6 N/A 21.2 N/A 53 N/A 1.0
Lower Carbonate Aquifer (LCA)
ER-3-1 #1, deep NA 741 N/A 0.21 N/A 68.1 N/A 43.40 N/A 35.1 N/A 143 N/A 19.00 N/A 94.9 N/A 37.0 N/A 1.8
ER-6-1 134 to 276 (472-503) 248 8 NA N/A 33.3 0.8 10.9 1.0 12.7 0.5 46.2 2.7 7.7 0.5 33.0 0.8 32.9 1.9 2.2
ER-6-1 #2 NA 244 0.2 0.6 N/A 34.3 0.5 11.0 0.8 13.3 0.5 43.8 2.5 7.5 0.8 32.9 0.7 32.3 2.1 2.7
ER-7-1 NA 241 6 0.6 N/A 34.1 0.2 11.4 1.3 13.6 0.5 46.6 4.1 7.4 1.2 33.8 4.7 37.1 1.4 0.2
U-3cn #5 NA 257 17 NA N/A 36.2 2.4 23.3 2.3 18.4 2.1 55.2 2.1 9.2 0.7 32.6 7.4 54.6 24.3 0.5
UE-10j, Zone #1 NA 504 N/A 0.07 N/A 83.0 N/A 24.00 N/A 42.3 N/A 64 N/A 12.30 N/A 101.0 N/A 42.8 N/A 4.2
UE-10j, Zone #2 NA 403 NA 0.11 N/A 67.0 N/A 16.00 N/A 30.0 N/A 43 N/A 8.30 N/A 68.0 N/A 36.4 N/A 3.2
UE-10j, Zone #3 -439 to -342 (661-710) 322 38 0.2 N/A 58.5 3.3 12.8 0.4 26.8 1.9 36.8 2.5 7.3 0.6 60.0 5.7 32.0 3.2 0.7
UE-1q (2600 ft) NA 206 19 NA N/A 24.5 1.7 10.5 6.0 14.3 0.9 40.7 13.5 7.2 3.0 24.8 5.3 34 23 1.9
USGS Test Well D NA 234 10 2.0 1.1 29.9 8.6 6.6 0.4 5.1 0.5 84.5 2.7 8.5 0.6 12.0 1.4 47.6 2.9 1.3
USGS Test Well E NA 58 N/A 1.80 N/A 1.10 N/A 8.20 N/A 0.6 N/A 17 N/A 1.71 N/A 10.2 N/A 3 N/A 2.1
USGS Water Well C NA 580 9 NA N/A 66.9 3.1 32.8 2.8 28.1 2.8 125 6 14.0 1.0 73.6 3.2 30.6 2.0 0.4
Water Well C-1 NA 573 29 NA N/A 66.1 1.6 33.5 1.9 29.2 1.4 123 3 14.0 0.7 73.1 5.3 30.4 1.9 0.1
UE-7nS NA 193 4 2.4 N/A 4.8 7.5 22.1 3.7 3.2 0.3 55.1 0.4 5.2 1.1 18.9 0.9 21.2 0.1 3.6
WW-2 -149 to -97 (634-732) 205 18 NA N/A 22.8 1.6 6.8 1.0 14.6 1.8 27.3 2.5 6.6 0.6 31.9 4.4 48.9 3.6 1.0
UE-1h NA 270 N/A 1.97 N/A 2.5 N/A 43.6 N/A 7.5 N/A 102 N/A 25.0 N/A 15.3 N/A 12 N/A 5.6
Lower Carbonate Aquifer-Thrust Plate (LCA3)
ER-12-1 -113 to13 (469-762) 224 22 0.3 0.4 355.7 0.4 17.5 0.4 60.0 1.6 37.4 1.3 3.1 0.2 94.0 7.8 23.3 N/A 1.2
ER-6-2 NA 377 25 0.7 N/A 55.6 2.7 19.5 3.8 20.4 1.7 67.4 5.1 10.6 0.4 59.4 7.0 30.8 4.2 1.0
UE-1c b 179 to 183 (399-518) 241 4 NA N/A 33.0 1.5 7.1 0.6 13.6 0.6 34.9 1.6 12.8 0.2 36.5 3.5 91.8 8.8 1.2
UE-2ce c NA 305 N/A 0.3 N/A 16.6 N/A 14.2 N/A 24.9 N/A 38.0 N/A 17.6 N/A 46.0 N/A 27.3 N/A 0.0
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Upper Carbonate Aquifer (UCA)
UE-16d (Eleana) NA 355 15 NA N/A 58.1 1.1 10.9 1.6 24.0 1.1 30.7 3.1 6.7 0.4 77.9 3.1 31.1 2.3 0.0
Lower Clastic Confining Unit (LCCU)
UE-15d Water Well NA 382 29 NA N/A 46.4 5.2 14.8 2.9 15.6 1.5 86.0 7.2 15.3 1.1 45.2 7.7 28.4 13.4 0.4
UE-15j NA 908 N/A NA N/A 123 N/A 39.0 N/A 12.0 N/A 310 N/A 56.0 N/A 46.0 N/A 36 N/A 1.4
UE-15j A-5 NA 870 2 NA N/A 112 2 38.0 N/A 12.0 N/A 286 1 51.5 3.5 46.5 0.7 33.5 0.7 2.2
Upper Clastic Confining Unit (UCCU)
ER-12-2 NA 298 13 3.3 3.1 27.3 0.5 6.8 0.2 1.8 0.3 114 5 3.1 0.7 5.5 0.9 20.3 3.8 3.6
UE-16f NA 799 N/A 132 N/A 1.7 N/A 19.70 N/A 0.4 N/A 412 N/A 1.4 N/A 1.52 N/A 6.0 N/A 0.1
UE-17a (Eleana) d -349 to -159 (195-358) 295 N/A NA N/A 160 N/A 23.00 N/A 21.0 N/A 130 N/A 8.0 N/A 29.0 N/A NA N/A 0.9
UE-1b NA 248 N/A NA N/A 20.3 N/A 7.70 N/A 13.5 N/A 32 N/A 11.5 N/A 37.9 N/A 85 N/A 0.8
Lower Tuff Confining Unit (LTCU)
ER-2-1 NA 130 13 27.2 7.8 16.5 0.6 5.4 0.6 0.3 0.2 75.3 2.6 4.9 0.7 2.8 0.7 76 32 1.9
Test Well #7 (HTH)  -59 to 206 (503-671) 286 N/A NA N/A 2.1 N/A 8.00 N/A 0.2 N/A 113 N/A 4.6 N/A 1.0 N/A 1.4 N/A 0.2
U-2bs NA 198 13 NA N/A 24.5 4.9 7.5 1.6 0.5 0.3 79.0 0.0 6.0 0.6 3.1 0.9 53.0 1.4 3.2
U-3cn PS #2 NA 275 15 1.40 0.70 20.4 1.8 10.50 4.60 3.4 0.1 92.8 5.3 18.1 2.3 13.9 1.4 67.7 22.2 0.4
U-4u PS #2A NA 284 202 0.1 N/A 10.4 1.3 7.5 2.2 2.2 1.1 83 31 17.9 9.5 20 19 50.5 6.4 1.7
UE-10 ITS #3, 1926 ft NA 543 N/A 1.60 N/A 42.8 N/A 10.20 N/A 0.4 N/A 209 N/A 21.5 N/A 7.79 N/A 62 N/A 0.8
Topopah Spring Aquifer (TSA)
UE-14b NA 115 3 3.0 2.0 85.9 6.2 7.3 0.2 0.22 0.04 81.4 1.3 1.1 0.1 11.5 3.4 43.7 0.2 0.2
USGS Test Well B NA 164 15 NA N/A 23.0 3.6 17.0 4.1 0.5 0.2 74.9 3.5 3.3 0.4 5.5 1.0 18.6 2.9 0.3
Mesozoic Granite Confining Unit (MGCU)
U-15.01 Shaft, C-30 NA 167 N/A NA N/A 750.00 N/A 77 N/A 118 N/A 72 N/A 5.5 N/A 161 N/A 29.3 N/A 1.0
U-15.01 Shaft, C-36 NA 316 N/A NA N/A 325.00 N/A 52 N/A 63 N/A 56 N/A 4.8 N/A 126 N/A 33.8 N/A 2.1
U-15.01 Shaft, CGW-1 NA 163 N/A NA N/A 1,060.00 N/A 77 N/A 0.9 N/A 250 N/A 3.4 N/A 283 N/A 15.8 N/A 3.5
U-15.01 Shaft, NH-01 NA 65 N/A NA N/A 850.00 N/A 160 N/A 4.8 N/A 229 N/A 3.8 N/A 240 N/A 22.5 N/A 1.9
U-15.01 Shaft, UG-02 NA 165 N/A NA N/A 480.00 N/A 70 N/A 1.5 N/A 214 N/A 4.7 N/A 114 N/A 23.9 N/A 1.7

Table E.3-1
Groundwater Chemistry Related Parameters for the Yucca Flat/Climax Mine CAU (Part b)
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Springs
Captain Jack Spring NA 78 30 NA N/A 11.7 4.2 6.1 0.9 0.9 0.5 32.4 9.4 2.5 0.9 3.6 1.1 34.6 8.2 0.4
Oak Spring NA 113 2 NA N/A 10.5 1.2 9.2 0.7 4.4 0.2 20.6 0.8 6.2 0.1 17.8 0.6 56.6 0.9 1.4
Whiterock Spring NA 81 4 NA N/A 32.5 4.2 10.9 1.6 0.7 0.4 44.0 3.5 6.4 0.7 5.8 1.2 46.2 2.0 2.3

a Range of depths (m) associated with the in situ ORP measurements are presented in parentheses.  Sources for these measurements are Finnegan et al., 2004 and 2005; and 
Finnegan and Thompson, 2002 and 2003.

b Bailed sample was collected from the LCA3.
c The groundwater chemistry for this well has been highly variable over the 30-year sampling period.  Therefore, only data for the most recent sample, collected on  

July 12, 2005, are reported.
d The groundwater chemistry for this well is highly variable; mean concentration represents composite samples collected from different zones that appear to have different water 

chemistries.

N/A - Not applicable
NA - Not available
SD - Standard deviation

Table E.3-1
Groundwater Chemistry Related Parameters for the Yucca Flat/Climax Mine CAU (Part b)

 (Page 3 of 3)

SITE_ID In situ ORP (mV) a

HCO3 
(mg/L) 

CO3 
(mg/L) 

SO4 
(mg/L) 

Cl 
(mg/L) 

Mg  
(mg/L) 

Na   
(mg/L) 

K  
(mg/L) 

Ca
  (mg/L) 

SiO2 
(mg/L) Charge 

Balance 

M
ea

n

SD M
ea

n

SD M
ea

n

SD M
ea

n

SD M
ea

n

SD M
ea

n

SD M
ea

n

SD M
ea

n

SD M
ea

n

SD



Appendix E

Phase I Contaminant Transport Parameters for CAU 97: Yucca Flat/Climax Mine, Nye County, Nevada

E-11

E.4.0 REFERENCES

Finnegan, D.L., and J.L. Thompson.  2002.  Laboratory and Field Studies Related to Radionuclide 
Migration at the Nevada Test Site in Support of the Underground Test Area and Hydrologic 
Resources Management Projects, LA-13919-MS.  Los Alamos, NM:  Los Alamos National 
Laboratory.

Finnegan, D.L., and J.L. Thompson.  2003.  Laboratory and Field Studies Related to Radionuclide 
Migration at the Nevada Test Site in Support of the Underground Test Area and Hydrologic 
Resources Management Projects October 1, 2001-September 30, 2002, LA-14042-PR.  
Los Alamos, NM:  Los Alamos National Laboratory. 

Finnegan, D.L., J.L. Thompson, and B.A. Martinez.  2004.  Laboratory and Field Studies Related to 
Radionuclide Migration at the Nevada Test Site in Support of the Underground Test Area and 
Hydrologic Resources Management Projects October 1, 2002-September 30, 2003, 
LA-14151-PR.  Los Alamos, NM:  Los Alamos National Laboratory. 

Finnegan, D.L., J.L. Thompson, and B.A. Martinez.  2005.  Laboratory and Field Studies Related to 
Radionuclide Migration in the Nevada Test Site in Support of the Underground Test Area Project 
and Hydrologic Resources Management Project, October 1, 2003-September 30, 2004, 
LA-14238-PR.  Los Alamos, NM:  Los Alamos National Laboratory.

SNJV, see Stoller-Navarro Joint Venture.

Stoller-Navarro Joint Venture.  2006.  Comprehensive Water Quality Database for Groundwater in 
the Vicinity of the Nevada Test Site, Geochem06.mdb, S-N/99205--059-Rev. 1.  Las Vegas, NV. 



Appendix F 
 
Description of Matrix Porosity Data



Appendix F

Phase I Contaminant Transport Parameters for CAU 97: Yucca Flat/Climax Mine, Nye County, Nevada

F-1

F.1.0 INTRODUCTION

Matrix porosity data are derived from laboratory measurements of borehole core samples and from 

the interpretation of borehole geophysical logs (Epithermal Neutron Porosity [ENP] and Sonic 

Porosity).  This section presents the matrix porosity data developed from the geophysical logs 

performed on the ER Wells within Yucca Flat and additional supporting data analyses from the USGS 

Rock-Property Database (USGS, 2006).  In addition, average porosity values measured using ENP 

and Sonic Porosity are contained in Tables F.3-1 through F.3-3.  Figures F.3-1 through F.3-10 show 

histograms and CDFs of HGU matrix porosity from the ER Wells geophysical log data

Section F.2.0 describes the matrix porosity dataset and includes the following items: 

• A summary of the contents of the dataset 
• The structure and fields description of the table containing the dataset 
• Directions on how to access the full dataset 

Section F.3.0 presents statistical fits to the geophysical log data and summary data tables.

Section F.4.0 provides the reference list for this appendix.
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F.2.0 DATASET SUMMARY

There are five datasets.  The first holds matrix porosity values, measured for wells within Yucca Flat, 

that were extracted from the USGS Rock-Property Database (USGS, 2006).  The second and third 

datasets present a summary of the average matrix porosities (obtained from the USGS Rock-Property 

Database) for each well in Yucca Flat; average porosities for each well and for each HGU (and each 

HSU) are presented.  The fourth and fifth datasets contain the ENP and Sonic Porosity geophysical 

log data.  Descriptions of the fields within each of these datasets are provided in Section F.2.1.  

F.2.1 Table Structures

The Yucca Flat matrix porosity table has the following fields: 

• BIN - UGTA Borehole Index Number
• Well Name - Name of the borehole/well 
• Top (m) - The top depth of the sample in units of m bgs 
• Base (m) - The bottom depth of the sample in units of m bgs 
• HGU - Hydrogeologic unit assignment from the HSU
• HSU - Hydrostratigraphic unit assignment from the EV® HFM (Dynamic Graphics, 2002)
• Porosity - Porosity derived from a core sample(s)

The table providing the average matrix porosities from the USGS Rock-Property Database 

(USGS, 2006) for each Yucca Flat well has the following fields (categorized by HGU): 

• BIN - UGTA Borehole Index Number

• Well Name - Name of the borehole/well 

• N - Total number of samples for the respective well

• Max - Maximum reported porosity value for the respective well

• Min - Minimum reported porosity value for the respective well

• SD - Standard deviation for all reported porosity values for the respective well
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• HGU fields - Mean porosity for each HGU (AA, CA, CCU, GCU, LFA, PCU, TCU, 
VTA, WTA,) for each well

• None -  Porosity value for samples that were not assigned to a specific HGU

The table providing the average matrix porosities from the USGS Rock-Property Database 

(USGS, 2006) for each Yucca Flat well has the following fields (categorized by HSU):

• BIN - UGTA Borehole Index Number

• Well Name - Name of the borehole/well 

• N - Total number of samples for the respective well

• Max - Maximum reported porosity value for the respective well

• Min - Minimum reported porosity value for the respective well

• SD - Standard deviation for all reported porosity values for the respective well

• HSU fields - Mean porosity for each HSU (AA2, AA3, ATCU, BLFA, BRCU, LCA, LCA3, 
LCCU, LTCU, MGCU, OSBCU, PCUT, TM-LVTA, TM-UVTA, TM-WTA, TSA, TUBA, 
UCCU, UTCU) for each well

• None -  Porosity value for samples that were not assigned to a specific HSU

The ENP and Sonic Porosity geophysical log data tables have the following fields:

• BIN - UGTA Borehole Index Number
• Well Name - Name of the borehole/well 
• Elev (m) - The elevation of the measurement in units of meters above mean seal level
• HGU - Hydrogeologic unit assignment from the HSU
• HSU - Hydrostratigraphic unit assignment from the EV® HFM (Dynamic Graphics, 2002)

F.2.2 Access to Datasets

The Yucca Flat datasets are provided in Microsoft Excel Spreadsheet (YF_Matrix_Porosity_Data.xls) 

on the CD-ROM accompanying this report.
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F.3.0 GEOPHYSICALLY DERIVED MATRIX POROSITY DATA 
ANALYSIS

This section presents the HGU matrix porosity histograms and CDFs for the ENP and Sonic Porosity 

geophysical data in graphical and tabular format.  Geophysical log data were selected using industry 

standard geophysical interpretation techniques.  Average porosities obtained using ENP and Sonic 

Porosity geophysical logs categorized by HGU and HSU are provided in Tables F.3-1 through F.3-3.  

Figures F.3-1 through F.3-10 show histograms and CDFs of HGU matrix porosity from the ER Wells 

geophysical log data.                                                         

Table F.3-1
Average HGU ENP Porosity by Well

HGU N Max Min SD ER-12-2 ER-2-1 ER-6-1 ER-7-1 ER-8-1

AA 6,191 0.65 0.10 0.08 NA 0.33 NA 0.28 0.50

CA 8,042 1.40 -0.03 0.12 NA NA 0.05 0.06 0.10

CCU 24,277 1.10 -0.05 0.12 0.07 NA NA NA NA

TCU 9,254 1.04 0.08 0.10 NA 0.45 NA 0.31 0.29

VTA 4,325 0.53 0.18 0.07 NA 0.38 NA 0.25 0.27

WTA 580 0.48 0.14 0.06 NA 0.27 NA NA NA

NA - Not available
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Table F.3-2
Average HSU ENP Porosity by Well

HSU N Max Min SD ER-12-2 ER-2-1 ER-6-1 ER-7-1 ER-8-1

AA 6,191 0.65 0.10 0.08 NA 0.33 NA 0.28 0.50

LCA 8,042 1.40 -0.03 0.12 NA NA 0.05 0.06 0.10

LTCU 4,350 0.77 0.23 0.10 NA 0.45 NA 0.31 NA

OSBCU 4,904 1.04 0.08 0.07 NA NA NA 0.30 0.29

TMLVTA 3,524 0.53 0.18 0.05 NA 0.35 NA 0.25 0.27

TMUVTA 801 0.48 0.29 0.03 NA 0.40 NA NA NA

TMWTA 580 0.48 0.14 0.06 NA 0.27 NA NA NA

UCCU 24,277 1.10 -0.05 0.12 0.07 NA NA NA NA

NA - Not available

Table F.3-3
Average HGU Sonic Porosity by Well

HGU N Max Min SD ER-12-2 ER-2-1 ER-7-1

CA 758 0.16 -0.03 0.04 NA NA 0.04

CCU 24,261 0.60 -0.10 0.11 0.28 NA NA

TCU 2,278 0.53 0.33 0.03 NA 0.40 NA

NA - Not available
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Figure F.3-1
AA HGU ENP Matrix Porosity Histogram and CDF

Note:  M + 2SD – Mean plus two standard deviations; Blue curve (darker line) and annotations – Sample data 
CDF; Red curve (lighter line) and annotations – Fitted PDF
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Figure F.3-2
CA HGU ENP Matrix Porosity Histogram and CDF

Note:  M + 2SD – Mean plus two standard deviations; Blue curve (darker line) and annotations – Sample data 
CDF; Red curve (lighter line) and annotations – Fitted PDF
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Figure F.3-3
CCU HGU ENP Matrix Porosity Histogram and CDF

Note:  M + 2SD – Mean plus two standard deviations; Blue curve (darker line) and annotations – Sample data 
CDF; Red curve (lighter line) and annotations – Fitted PDF
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Figure F.3-4
GCU HGU ENP Matrix Porosity Histogram and CDF

Note:  M + 2SD – Mean plus two standard deviations; Blue curve (darker line) and annotations – Sample data 
CDF; Red curve (lighter line) and annotations – Fitted PDF
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Figure F.3-5
TCU HGU ENP Matrix Porosity Histogram and CDF

Note:  M + 2SD – Mean plus two standard deviations; Blue curve (darker line) and annotations – Sample data 
CDF; Red curve (lighter line) and annotations – Fitted PDF
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Figure F.3-6
VTA HGU ENP Matrix Porosity Histogram and CDF

Note:  M + 2SD – Mean plus two standard deviations; Blue curve (darker line) and annotations – Sample data 
CDF; Red curve (lighter line) and annotations – Fitted PDF
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Figure F.3-7
WTA HGU ENP Matrix Porosity Histogram and CDF

Note:  M + 2SD – Mean plus two standard deviations; Blue curve (darker line) and annotations – Sample data 
CDF; Red curve (lighter line) and annotations – Fitted PDF
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Figure F.3-8
CA HGU Sonic Matrix Porosity Histogram and CDF

Note:  M + 2SD – Mean plus two standard deviations; Blue curve (darker line) and annotations – Sample data 
CDF; Red curve (lighter line) and annotations – Fitted PDF
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Figure F.3-9
CCU HGU Sonic Matrix Porosity Histogram and CDF

Note:  M + 2SD – Mean plus two standard deviations; Blue curve (darker line) and annotations – Sample data 
CDF; Red curve (lighter line) and annotations – Fitted PDF
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Figure F.3-10
TCU HGU Sonic Matrix Porosity Histogram and CDF

Note:  M + 2SD – Mean plus two standard deviations; Blue curve (darker line) and annotations – Sample data 
CDF; Red curve (lighter line) and annotations – Fitted PDF
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F.4.0 REFERENCES

Dynamic Graphics, see Dynamic Graphics, Inc.  

Dynamic Graphics, Inc.  2002.  EarthVision 7:  Software for 3-D Modeling and Visualization.  
Alameda, CA.

USGS, see U.S. Geological Survey.

U.S. Geological Survey.  2006.  Mercury Core Library & Data Center Rock-Property Information 
Rock-Property Database.  As accessed at http://nevada.usgs.gov/mercury/rock.html on 
30 October.  Mercury, NV.
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G.1.0 INTRODUCTION

This section provides a road map to the data required to develop the uncertainty model of longitudinal 

dispersivity as a function scale and the original datasets compiled from tracer test sites worldwide.

This description of the dispersivity dataset includes the following items:

• A summary of the contents of the dataset
• The structure of the table containing the dataset
• Directions on how to access the dataset 
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G.2.0 DATASET SUMMARY

Each record of the dispersivity dataset contains information about a given tracer test and the results of 

the data analysis following a specific method of analysis.  The dataset is, therefore, organized 

primarily by the tracer test location and secondarily by the data analysis method.  The dispersivity 

dataset contains data from different sites throughout the world.  The dataset contains information 

about the data source, the method of analysis, the various dispersivity types, and an indication of the 

quality of the data by author reliability.
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G.3.0 TABLE STRUCTURE

The dispersivity dataset contains the following fields: 

• site_name - Name of test, if any, and generalized location of the test

• Rock Types - A uniform naming convention for aquifer material for categorization.

• aquifer_material - Geologic material in which the test was conducted

• min_scale_of_test (m) - The minimum distance of the test in meters; if only one distance is 
given, it is placed in this field

• max_scale_of_test (m) - The maximum distance of the test in meters

• Average_scale_of_test (m) - Average of min_scale_of_test and max_scale_of_test

• dispersivity_longitudinal_min (m) - The minimum longitudinal dispersivity in meters for the 
given test material; if only one value is given, it is placed in this field

• dispersivity_longitudinal_intermediate (m) - The intermediate longitudinal dispersivity in 
meters for the given test material

• dispersivity_longitudinal_max (m) - The maximum longitudinal dispersivity in meters for the 
given test material

• dispersivity_longitudinal_Geometric_Mean (m) - Geometric mean of 
dispersivity_longitudinal_min, dispersivity_longitudinal_intermediate, and 
dispersivity_longitudinal_max

• Percent of Scale (fraction) - Ratio of dispersivity_longitudinal_Geometric_Mean to 
Average_scale_of_test

• dispersivity_transverse - The transverse dispersivity in meters for the given test material

• dispersivity_vertical - The vertical dispersivity in meters for the given test material

• author_reliability - Categorization of reliability assigned by various authors in the original 
numerical form, if available

• author_reliability_Unified - Roman numerals assigned to unify reliability for statistical 
analysis purposes

• data_source - The original source of the data
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G.4.0 ACCESS TO DATASET

The full dispersivity dataset is provided in an Excel spreadsheet (Dispersivity_ Data.xls) on the 

CD-ROM accompanying this report.
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H.1.0 INTRODUCTION

Data relating to matrix diffusion include diffusion values that were obtained from diffusion cell 

experiments and fracture transport experiments.

This description of the matrix diffusion datasets includes the following items:

• A summary of the contents of the dataset
• The structure of the tables containing the dataset
• Directions on how to access the full dataset
• References cited in this appendix



Appendix H

Phase I Contaminant Transport Parameters for CAU 97: Yucca Flat/Climax Mine, Nye County, Nevada

H-2

H.2.0 DATASET SUMMARY

Each record of the dataset for the diffusion cell experiments contains information about a given 

measurement for a porous media sample.  Of the 309 matrix diffusion measurements in the dataset, 

73 measurements are for samples located in Yucca Mountain, 198 measurements are for samples 

located in Pahute Mesa, 24 measurements are for samples in Yucca Flat, 3 measurements are for 

samples in Rainier Mesa, and 11 measurements are obtained in miscellaneous regions.  The matrix 

diffusion dataset includes information on the interval tested for each site, the porosity in the tested 

interval, the various diffusion parameter values and multiplier factors that indicate each 

measurement's quality and transferability to HSUs, comments on the experimental techniques and 

quality, and information on geology and mineralogy of the samples.
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H.3.0 TABLE STRUCTURE

The matrix diffusion table from the diffusion cell experiments contain the following fields:

• SampleID - The number of data entry

• Sample number - The name of the well, unique sample numbers, and typically the depth in 
feet

• Location - Yucca Flat (YF),  Yucca Mountain (YM), Rainier Mesa (RM), or Pahute Mesa 
(PM)

• Porosity - The fraction of void space within the rock, the void volume divided by the bulk 
volume 

• Effective porosity - The fraction of void space within the rock that is interconnected and 
available for fluid flow (only two references reported effective porosity: Hershey et al., 2003; 
Walter, 1982) 

• HSU - Hydrostratigraphic unit for this sample

• Lithology - The type of rock: quartz, carbonate, tuff, zeolitic tuff, or granite/crystalline 

• Depth (m) - The depth below ground surface of the well core from which the rock sample was 
obtained 

• Entry date - The date that the matrix diffusion data were added to this dataset (or substantially 
modified or updated) 

• Diffusion coef (m2/s) - Experimentally derived diffusion coefficient, in m2/s

• Derived diffusion - Matrix diffusion coefficient that is not reported directly in the reference 
source, but rather calculated or derived from the reported tortuosity and the free water 
diffusion coefficient using Equation (10-2)

• Chemical species - Tracer chemical used in the diffusion cell experiment

• Species adj diffusion coefficient (to tritiated water) - Experimentally derived diffusion 
coefficient, in m2/s, adjusted from the actual tracer species used in the measurement to a 
tritiated water basis, to achieve a consistent tracer basis for the entire dataset of measurements
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• Original source - Reference source reporting the diffusion coefficient measurement

• Source page #, Table # - Page and table number, where available, from original source 
reporting diffusion coefficient measurement and other raw data

• Tortuosity - The bulk measure of the constrictivity and tortuous nature of the interconnected 
pore space through which diffusion is occurring; in the form presented in Equation (10-2), 
tortuosity should always have a magnitude greater than zero and less than one 

• Derived tortuosity - Tortuosity that is not reported directly in the reference source, but rather 
calculated or derived from the reported matrix diffusion coefficient and the free water 
diffusion coefficient using Equation (10-2) 

• Permeability m2 - A measure of the ability of a porous material to transmit fluids; related to 
the constrictivity or tortuosity of the rock 

• Temp. ºC - Temperature at which matrix diffusion was measured (rarely reported)

• M2b test series meth - Indicates the quality of the test series experimental method and 
calibration
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H.4.0 ACCESS TO DATASET

The matrix diffusion dataset is provided in an Excel spreadsheet (Matrix_Diffusion_Dataset.xls) on 

the CD-ROM accompanying this report.
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H.5.0 REFERENCES

Hershey, R.L., W. Howcroft, and P.W. Reimus.  2003.  Laboratory Experiments to Evaluate Diffusion 
of 14C into Nevada Test Site Carbonate Aquifer Matrix, Publication No. 45180.  
Las Vegas, NV:  Desert Research Institute.

Walter, G.R.  1982.  Theoretical and Experimental Determination of Matrix Diffusion and Related 
Solute Transport Properties of Fractured Tuffs from the Nevada Test Site, LA-9471-MS, UC-70.  
Los Alamos, NM:  Los Alamos National Laboratory. 
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I.1.0 INTRODUCTION

This section presents data relating to matrix sorption parameters, including matrix sorption 

parameters calculated from laboratory studies and the Yucca Flat/Climax Mine mineralogy and water 

chemistry data.  The laboratory studies were performed at a variety of experimental conditions, 

including different lithologies, groundwater types, temperature, pH, and atmospheric conditions.  A 

description of the data transferability process for developing probability distributions for the data 

derived from the laboratory studies is also presented.
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I.2.0 DATASET SUMMARY

I.2.1 Matrix Distribution Coefficients from Yucca Flat/Climax Mine Mineralogy and 
Water Chemistry Data

The matrix distribution coefficient dataset, developed from the mechanistic model and mineralogy 

and groundwater chemistry data from the Yucca Flat/Climax Mine CAU, contains Kd data as well as 

histograms generated from the Kds.  Two spreadsheets, Mechanistic_Kd_by_RMC.xls and 

Mechanistic_Kd_by_HSU.xls, contain data calculated specifically for RMCs and HSUs, respectively.  

Each spreadsheet contains a series of worksheets that describe the Kd data and the corresponding 

histograms for each RMC or HSU.  These spreadsheets are on the CD-ROM included with this 

document. 

The spreadsheet Mechanistic_Kd_by_RMC.xls contains a total of 948 Kd estimates for the DMP,  

699 Kd estimates for the DMR, 1,484 Kd estimates for the VMP, and 448 Kd estimates for the VMR 

RMCs for a total of 10 radionuclides (Am, Ca, Cs, Eu, Ni, Np, Pu, Sm, Sr, and U).  Histograms for 

each RMC are presented in separate worksheets; histograms for all 10 radionuclides for a given RMC 

are presented in the same worksheet. 

The spreadsheet Mechanistic_Kd_by_HSU.xls contains a total of 1,417 Kd estimates for the AA,  

322 Kd estimates for the ATCU, 3,873 Kd estimates for the LTCU, 2,268 Kd estimates for the 

TM-LVTA, 76 Kd estimates for the TM-UVTA, 223 Kd estimates for the TM-WTA, 57 Kd estimates 

for the TSA, and 54 Kd estimates for the PCUT. 

I.2.1.1 Table Structure

The matrix Kd table contains the following fields:

• XRD_SAMPLE_ID - Unique sample identification number that links the Kd value to a 
specific XRD sample split

• HSU - Hydrostratigraphic unit assigned to the XRD sample split, and thus to the Kd
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• RMC - Reactive mineral category assigned to the XRD sample split, and thus to the Kd

• RMU - Reactive mineral unit assigned to the XRD sample split, and thus to the Kd

• Water_Chemistry - Groundwater chemistry sample used for the Kd calculation

• Am_kd_mL_g - Am Kd for the specified water chemistry and mineralogy sample, mL/g

• Ca41_kd_mL_g - 41Ca Kd for the specified water chemistry and mineralogy sample, mL/g 

• Cs_kd_mL_g - Cs Kd for the specified water chemistry and mineralogy sample, mL/g

• Eu_kd_mL_g - Eu Kd for the specified water chemistry and mineralogy sample, mL/g

• Ni_kd_mL_g - Ni Kd for the specified water chemistry and mineralogy sample, mL/g

• Np_kd_mL_g - Np Kd for the specified water chemistry and mineralogy sample, mL/g

• Pu_kd_mL_g - Pu Kd for the specified water chemistry and mineralogy sample, mL/g

• Sm_kd_mL_g - Sm Kd for the specified water chemistry and mineralogy sample, mL/g

• Sr_kd_mL_g - Sr Kd for the specified water chemistry and mineralogy sample, mL/g

• U_kd_mL_g - U Kd for the specified water chemistry and mineralogy sample, mL/g

I.2.2 Matrix Sorption Parameters from Laboratory Studies

The matrix sorption parameter dataset from laboratory studies is provided as one table containing the 

experimental results for every rock type and species.  There are 7,211 records in the dataset, 

comprising 380 records for alluvial samples; 1,070 records for vitric tuffs; 1,936 records for 

devitrified tuffs; 1,667 records for zeolitic tuffs; and 2,158 records for other tuffs and pure mineral 

samples.  The dataset is included in an Excel spreadsheet (Matrix_Sorption_Lab.xls) on the 

CD-ROM included with this document.  The data are sorted first on the basis of whether the 

experiment is a sorption or desorption experiment, then by the rock type, and finally by the ionic 

species for which the sorption coefficient was measured.

I.2.2.1 Table Structure

The matrix sorption parameter table contains the following fields:

• Chemical_Species - The ionic species for which the distribution coefficient was determined

• Site_Location - General location where the rock sample was acquired

• Sample well - Name of the well from which the rock sample was taken
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• Sample Depth - Depth below ground surface in meters from which the sample was taken

• Rock_type - General rock type of the sample;  includes alluvium, vitric tuff, devitrified tuff, 
zeolitic tuff, and various mineral names (for experiments using pure mineral phases)

• Lithostratigraphic Unit - Stratigraphic unit from which the rock sample was taken

• Mass % Calcite - Weight percent calcite of the rock sample, generally from XRD analysis

• Mass % zeolite - Weight percent zeolite of the rock sample, generally from XRD analysis

• Mass % smectite - Weight percent smectite of the rock sample, generally from XRD analysis

• Mass % hematite - Weight percent hematite of the rock sample, generally from XRD analysis

• Mass % mica - Weight percent mica of the rock sample, generally from XRD analysis

• Sorption/Desorption - Denotes whether the Kd is a sorption or desorption coefficient

• Kd or Rd (mL/g) - Experimentally determined sorption/desorption coefficient for the ionic 
species

• Recommended sorption coefficient - Alternate sorption coefficient recommended by the data 
source to account for experimental limitations

• stnd_dev (+/-) - Standard deviation of the sorption/desorption coefficient

• Water_type - Type of water used in the sorption experiment

• Water - Water sample ID of water used by the lab in the sorption experiment

• Initial pH - pH of water before equilibration

• Final pH - pH of water after equilibration (if available)

• Eh (mV) - The final Eh of the water in millivolts

• Temp (deg C) - The temperature at which the sorption experiment was performed

• aq Cl- (mg/L) - Concentration of Cl- in the water used for the experiment

• aq NO3- (mg/L) - Concentration of NO3
- in the water used for the experiment

• aq SO42- (mg/L) - Concentration of SO4
2- in the water used for the experiment

• aq Na+ (mg/L) - Concentration of Na+ in the water used for the experiment

• aq Mg2+ (mg/L) - Concentration of Mg2+ in the water used for the experiment

• aq K+ (mg/L) - Concentration of K+ in the water used for the experiment

• aq Ca2+ (mg/L) - Concentration of Ca2+ in the water used for the experiment

• aq F- (mg/L) - Concentration of F- in the water used for the experiment

• aq Sr2+ (mg/L) - Concentration of Sr2+ in the water used for the experiment
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• Test_Duration (days) - Length of time in days that the ionic solution was left in contact with 
the rock sample

• Atmosphere - Type of atmosphere in which the sorption experiment was conducted

• Sample_number - Sample number of the rock on which the sorption experiment was 
performed

• Sample_description - Lab designated description of the rock sample.  Generally includes 
water type for experiment, well name and depth of rock sample, and some temperature 
designation

• Experiment - Designator for the experiment

• Initial Species Concentration - Concentration of the sorbed ionic species at the beginning of 
the experiment

• Initial Species Concentration Units - Units of the initial species concentration measurement

• Remarks - Any other pertinent information relating to the experiment or the measurement

• ref_id - Reference number for the source of measurements in the UGTA library

• Source - Reference number of source used by originator of the data

• YMP_ID - Yucca Mountain Data Tracking number containing the data
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I.3.0 DATA TRANSFER AND DATA QUALITY PROTOCOL 
FOR LABORATORY DISTRIBUTION COEFFICIENTS

Data quality flags and transferability weights must be assigned to the laboratory Kd data before 

developing probability distributions for use in the contaminant transport model.  The transferability 

approach is consistent with the general methodology suggested in SNJV (2004), and integrates data 

transfer weights and multipliers during the development of probability functions for the sorption data.  

The following is a detailed description of the data transferability protocol for distribution coefficients. 

I.3.1 Weights

Data weights are applied to describe the geologic context of the data in question.  For Kd data, 

information about the rock type and alteration is not sufficient to categorize the relevance of a data 

point to the appropriate CAU.  To account for this situation, the generalized weighting scheme 

suggested by SNJV (2004) was modified to account for the aqueous chemistry and the mineralogy of 

the rock used during the sorption experiments. 

I.3.2 Rock Type

If the rock type is different from the rocks observed in the CAU, the data should be rejected.  The 

following classification criteria are used provide a weight for rock type definitions.  

I.3.2.1 Alluvium

Generally, alluvium is considered the detrital deposits made by streams, flood plains, and alluvial 

fans.  Alluvium at the NTS is almost exclusively the result of alluvial fan deposition.  The upland 

areas around the alluvial basin should contain similar rocks/rock mineralogy to the CAU of interest.  

Alluvium tends to be highly heterogeneous; therefore, site-specific alluvial mineralogy is necessary 

to evaluate the transferability of other alluvium data.
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I.3.2.2 Volcanic Rocks

Generally, volcanic rocks are classified by mineralogy and texture.  The HSUs developed for CAU 

geologic models tend to emphasize the physical hydrologic significance of a unit, as opposed to the 

mineralogy.  To account for this, the CAU transport model may require refinement to specifically 

identify volcanic rocks based on mineralogy.  Class definitions for the volcanic rocks were selected to 

be consistent with the class definitions used for the YMP so that YMP data can be readily 

incorporated into the analysis, where appropriate.  These classes are defined as:

Vitric Tuff 

Greater than 40 percent glass
Less than 10 percent clay
Less than 10 percent zeolite

Devitrified Tuff

Less than 10 percent clay
Less than 10 percent zeolite

Zeolitic Tuff

Greater than 20 percent zeolite
Less than 10 percent clay
Less than 10 percent glass

I.3.2.3 Scores

1.0 - If the rock classification is the same and all reported minerals are within the 95 percent CI of 
the rock classification.

0.9 - If the rock is the same type and the reported mineral content is within the 95 percent CI of 
the rock classification, but not from the same CAU.  This slightly lower score accounts for the 
unmeasured differences in the rock deposition, pore structure, etc.

0.8 - If the rock type is the same, but the mineral chemistry is within the bounds of the 99 percent 
mineral CI or meets the definition of the typical rock classification.

0.5 - If the rock classification is the same but outside the 99 percent CI for the rock chemistry at 
the CAU, or if the rock mineralogy does not fit within the rock classification scheme above.



Appendix I

Phase I Contaminant Transport Parameters for CAU 97: Yucca Flat/Climax Mine, Nye County, Nevada

I-8

I.3.3 Deposition and Alteration History

Distribution coefficients are dependent on the deposition and alteration history of the rock; therefore, 

they should be the same for all transferred distribution coefficients.  For this analysis, a uniform 

weight of 0.7 is assigned.

I.3.4 Water Chemistry, Especially pH and Major Cation Concentrations

0.3 - pH within 95 percent CI of observed variability within an HSU and major cation chemistry 
within 50 percent of reported values for the CAU.

0.2 - pH within 95 percent CI of observed variability within an HSU, but major cation 
concentrations in experiments appear to be outside 50 percent bounds of cation concentrations 
observed at the CAU (at this point, there are no data to support an evaluation of minor cation 
effects on Kd measurements).

0.1 - pH outside 95 percent CI or suspect cation concentrations that may lead to underestimation 
or overestimation of distribution coefficients.

I.3.5 Multipliers

These values are used to reflect both the quality and uncertainty of the method and scale of the 

measurement.  Ultimately, the use of these parameters allows for the appropriate use of data that are 

highly uncertain or poorly documented without allowing these data to unduly skew a dataset.

I.3.6 Measurement Method Considerations 

The measurement method considerations include the quality and uncertainty of the method as well as 

the scale of the measurement.  

• Reported distribution coefficients less than 0 should be rejected because they reflect an 
unquantifiable level of uncertainty in the measurement and potentially poor data collection 
techniques.

• High-quality measurements that contain multiple concentration values, water-to-solid ratios 
of less than 4, and low detection limits for radionuclides in solution received a 1.2.

• Average-quality values that contain, at minimum, duplicate concentration values and 
detection limits at least an order of magnitude lower than observed concentration changes 
were scored 1.0.
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• Low-quality values that have only one sample or poor detection limits relative to 
concentration changes were scored 0.5.

I.3.7 Data Reduction and Analysis Method 

Data reduction and analysis methods are evaluated independently of the type of measurement being 

evaluated.  However, the analyst must be familiar with state-of-the-art methods in order to make an 

evaluation.  The following multipliers applied:

• Current and widely accepted data reduction and analysis method with reputable and traceable 
calibration information - 1.0

• Good method, but calibration information is suspect or missing - 0.5

• Based on older or less widely accepted methods, but calibration information is good - 0.5

• Both methods and calibration information are suspect or missing - 0.2

I.3.8 Quality Documentation

Documentation quality is also evaluated independently of the type of measurement being evaluated as 

follows:

• Good (thorough, easy to follow, traceable) - 1.0

• Appearing in a reputable journal or peer-reviewed report, but otherwise lacking in 
thoroughness - 0.6

• Poor - 0.3

Note that poor documentation often results in the inability to evaluate the data reduction and analysis 

method (including the calibration information) for a given dataset.  Thus, poorly documented 

estimates can, in effect, be doubly penalized as a result of both poor documentation scores and poor 

data reduction and analysis scores.

I.3.9 Overall Scores

The overall score for a given dataset is taken to be the sum of the weights multiplied by the product of 

the multipliers.  This overall score is then able to be used in downstream analyses to calculate 

probability distribution functions for model sensitivity analyses.
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I.4.0 REFERENCES

SNJV, see Stoller-Navarro Joint Venture. 

Stoller-Navarro Joint Venture.  2004.  Transferability of Data Related to the Underground Test Area 
Project, Nevada Test Site, Nye County, Nevada, S-N/99205-020.  Las Vegas, NV.
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J.1.0 INTRODUCTION

The data on colloids discussed in Section 13.0 is contained in five datasets:

• Colloid Size, Concentration Data
• Alluvium Transport Parameter Data
• Volcanics, Carbonates Transport Parameter Data
• Colloid Kd Range Data
• Colloid Sorption, Desorption Data

Following is a description of the datasets including the following items:

• A summary of the contents of each dataset
• The structure of the table containing each dataset
• Directions for accessing each dataset
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J.2.0 COLLOID SIZE, CONCENTRATION DATA

Each record in the colloid concentrations and size distribution dataset contains information about a 
given measurement of colloid concentrations for a given borehole.  The dataset is organized by the 
borehole name.  The dataset contains colloid concentrations by size range for 45 different boreholes.  
The entire colloid database dataset from the GEOCHEM06 database (SNJV, 2006) is also included.

The colloid concentration and size distribution table contains the following fields:

• Master_ID - NWIS ID for well
• Site_ID - Name of the well sampled
• Sample_ID - GEOCHEM06 database sample ID
• 50-60 nm - Number of colloids in the 50-60 nm size bin
• 60-70 nm - Number of colloids in the 60-70 nm size bin
• 70-80 nm - Number of colloids in the 70-80 nm size bin
• 80-90 nm - Number of colloids in the 80-90 nm size bin
• 90-100 nm - Number of colloids in the 90-100 nm size bin
• 100-110 nm - Number of colloids in the 100-110 nm size bin
• 110-120 nm - Number of colloids in the 110-120 nm size bin
• 120-130 nm - Number of colloids in the 120-130 nm size bin
• 130-140 nm - Number of colloids in the 130-140 nm size bin
• 140-150 nm - Number of colloids in the 140-150 nm size bin
• 150-160 nm - Number of colloids in the 150-160 nm size bin
• 160-170 nm - Number of colloids in the 160-170 nm size bin
• 170-180 nm - Number of colloids in the 170-180 nm size bin
• 180-190 nm - Number of colloids in the 180-190 nm size bin
• 190-200 nm - Number of colloids in the 190-200 nm size bin
• >200 nm - Number of colloids greater than 200 nm size 
• 200-220 nm - Number of colloids in the 200-220 nm size bin
• 220-240 (nm) - Number of colloids in the 220-240 nm size bin
• 240-260 (nm) - Number of colloids in the 240-260 nm size bin
• 260-280 (nm) - Number of colloids in the 260-280 nm size bin
• 280-300 (nm) - Number of colloids in the 280-300 nm size bin
• 300-400 (nm) - Number of colloids in the 300-400 nm size bin
• 400-500 (nm) - Number of colloids in the 400-500 nm size bin
• 500-600 (nm) - Number of colloids in the 500-600 nm size bin
• 600-800 (nm) - Number of colloids in the 600-800 nm size bin
• 800-1000 (nm) - Number of colloids in the 800-1000 nm size bin
• >1000 (nm) - Number of colloids greater than 1000 nm size bin
• Total, Particle Size Range 50 - 200 nm
• Total, Particle Size Range 50 - 1000 nm
• Total, Particle Size Range 50 - >1000 nm
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J.3.0 ALLUVIUM TRANSPORT PARAMETER DATA

The alluvium transport parameter dataset contains information about filtration rate constants, 

detachment rate constants, and retardation factors for various wells.  The data are presented in two 

tables.  The first table contains data for laboratory tracer responses, and the second table contains data 

for field tracer responses.  Both datasets are organized primarily by an experiment/well name.  

The alluvium transport parameter data table for laboratory tracer test responses contains the following 

fields:

• Experiment/Well Name
• Residence Time (hours)
• Filtration Rate Constant (kfil, 1/hour)
• Retardation Factor (Rcol)
• Colloid (or Analog) - Type of colloid used in the experiment
• Source - Source of the information
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Phase I Contaminant Transport Parameters for CAU 97: Yucca Flat/Climax Mine, Nye County, Nevada

J-4

J.4.0 VOLCANICS, CARBONATES TRANSPORT 
PARAMETER DATA

The volcanics, carbonates transport parameter dataset contains information about filtration rate 

constants, detachment rate constants, and retardation factors for various wells/tests.  The data are 

presented in two tables.  The first table contains data for field tracer responses, and the second table 

contains data for laboratory tracer responses.  Both datasets are organized primarily by well name.  

The volcanics, carbonates transport parameter data table for field tracer test responses contains the 

following fields:

• Site Name (of record)
• Mean Residence Time (hour)
• Filtration Rate Constant (kfil, 1/hour)
• Detachment Rate Constant (kdet, 1/cm-hour)
• Retardation Factor (Rcol)
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J-5

J.5.0 COLLOID Kd RANGE DATA

Each record in the colloid distribution coefficients table contains distribution coefficient data for a 

specific actinide and colloid combination.  As a result, the table is organized primarily by the sorbing 

actinide and secondarily by the composition of the colloid.  The dataset contains 13 distribution 

coefficient ranges for 4 different actinides.  The dataset contains information about the colloid type, 

the distribution coefficient range, and the source of the data.

The colloid distribution coefficients table contains the following fields:

• actinide - Actinide
• colloid_type - Type of colloid
• lower_Kd_bound (mL/g) - Lower Kd bound in milliliters per gram
• upper_Kd_bound (mL/g) - Upper Kd bound in milliliters per gram
• UGTA_extension (mL/g) - Extensions to the bounds determined from U-20WW experiments
• comments - Comments on the record
• source - Source of the information
• ref_id - Reference for the record



Appendix J
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J-6

J.6.0 COLLOID SORPTION, DESORPTION DATA

Each record in the actinide sorption and desorption rate constants table contains forward- and 

reverse-rate constants for a given colloid and actinide combination.  As a result, the table is organized 

primarily by the colloid type and secondarily by the sorbing actinide.  The dataset contains 20 records 

of information that document rate constant ranges for both sorption and desorption of actinides onto 

various colloid types.  

The actinide sorption and desorption rate constants table contains the following fields:

• Colloids/Actinides - Colloid and actinide combination
• batch_kf (hr-1) - Batch sorption rate constant per hour
• batch_kb (hr-1) - Batch desorption rate constant per hour
• fracture_kf (hr-1) - Fracture sorption rate constant per hour
• fracture_kb (hr-1) - Fracture desorption rate constant per hour
• comments - Comments regarding the values
• source - Source of the information
• ref_id - Reference for the record
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J-7

J.7.0 ACCESS TO DATASETS

The CD-ROM accompanying this document contains electronic files of the datasets in PDF format 

with the following file names:

• Colloid Size, Concentration Data.xls
• Alluvium Transport Parameter Data.pdf
• Volcanics, Carbonates Transport Parameter Data.pdf
• Colloid Kd Range Data.pdf
• Colloid Sorption, Desorption Data.pdf
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J-8

J.8.0 REFERENCES

SNJV, see Stoller-Navarro Joint Venture.

Stoller-Navarro Joint Venture.  2006.  Comprehensive Water Quality Database for Groundwater in 
the Vicinity of the Nevada Test Site, Geochem06.mdb, S-N/99205--059-Rev. 1.  Las Vegas, NV. 
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1.  Document Title/Number:  Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant 
Transport Model of Corrective Action Unit 97; Yucca Flat/Climax Mine, Nye County, Nevada (Draft Rev. 1) 2.  Document Due Date:  June, 2007 

3.  Revision Number:  Rev. 0  4.  Originator/Organization:   
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12.  Comment 
Number/Location 

13.  Typea 14.  Comment 15.  Comment Response 16.  Accept 

1) General  There are large amounts of data being transferred from 
other areas for the transport model for this CAU. The 
UGTA Transferability of Data document suggests that 
for transferred data an estimated sensitivity of the CAU 
model be included (Data Transfer Protocol Outline item 
B.3) and the disqualification criteria be explained (Data 
Transfer Protocol Outline item B.6). For this CAU/ 
document, and in particular porosity and geochemistry, 
the items are unclear regarding the transferred data 
(except for the uncertainty for dispersivity and the 
uncertainty and disqualification criteria for laboratory 
distribution coefficients). NDEP requests a statement 
clarifying the uncertainty and disqualification criteria 
connected to the use and transfer of data into this CAU.  

(Note corrected citations for the Data Transfer Protocol 
Outline items.) 
 
Sec. 5, Bullet 2 of the Data Transferability document states: 
Consider the sensitivity of predictions of the contaminant 
boundary to variation in the parameter value. Although the 
use of modeling simulations would be ideal for determining 
the parameter sensitivity, informed professional judgment 
is appropriate, especially during the early phases...  
 
No quantitative sensitivity estimate was included, nor can 
be provided, since the transport model has not been 
developed for use in computation.  Consideration was given 
to basic transport processes and factors, e.g. zeolites 
increase sorption, lower matrix porosity decreases matrix 
diffusion, etc., with the focus on data representativeness 
and data quality.   
 
Sec. 5, Bullet 5 of the Data Transferability document states:  
Discuss the important considerations for using data from 
another source, and develop disqualification criteria. The 
criteria should reflect the importance of the parameter to 
the determination of the Contaminant Boundary and the 
reduction of uncertainty that might result from more 
stringent criteria. A general guideline is that the criteria 
should be established to eliminate data of poor quality and 
to eliminate inappropriate use of data.  
 
 

See 
comment 
response. 
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12.  Comment 
Number/Location 

13.  Typea 14.  Comment 15.  Comment Response 16.  Accept 

1) General 
(continued) 

 Continuation of response to Comment 1. Given the variable nature of data and data transfer 
considerations, judgments of uncertainty and 
disqualification were made using informed professional 
judgment suitable to each situation, and the basis for  
judgments are stated, as illustrated in the response to 
comment #4. General criteria are addressed by reference to 
the UGTA Data transferability document. 
 
No geochemistry or porosity data was transferred from 
outside of the YF/CM CAU boundary. 

 

2) Page 2-5, 
Section 
2.2.2.4, 1st 
paragraph, 
1st sentence 

 Explain why the actual groundwater chemistry data are 
not used as input into the Transport Model?   

Page 2-5, Section 2.2.2.4, 1st paragraph, 1st sentence states 
“Groundwater chemistry data are not directly used as input 
in the transport model; rather, interpretations of 
groundwater chemistry data are used to evaluate and verify 
calibration of the groundwater flow and transport models. 
 
As with most parameters used in the transport model,  
discrete values for parameters for specific locations are not 
used in modeling, but rather, values representative of 
spatial scales over which the model operates.  Such values 
are derived from discrete information, which is one 
objective of this document. 
  
Chemistry is simulated by the model, and as such is not a 
direct input.  Chemistry could be an output state variable of 
the model.  However, to date this information has been 
used to help test the goodness of the models.   

See 
comment 
response. 
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12.  Comment 
Number/Location 

13.  Typea 14.  Comment 15.  Comment Response 16.  Accept 

3) Page 3-7, 
Section 3.2.1, 
1st bullet 
point, 3rd 
sentence 

 This statement contradicts the UGTA data transferability 
document and can not be justified. Data transferred under 
this condition should not be used.  

Page 3-7, Section 3.2.1, 1st bullet point, 3rd sentence 
states:  “Under less desirable conditions, data may have to 
be transferred from locations that have no similarities to the 
original study area, other than data collected for the specific 
parameter of interest.”   
 
The UGTA data transferability document recommends the 
“Accept unless Rejected” approach (Sec. 3) for data 
transfer.  The cited statement refers to situations in which 
many criteria for judging the suitability of transferred data 
are unavailable.  However, the statement does not disregard 
judgment of suitability, and statements justifying data 
transfer are required.  There may be concomitant 
uncertainty requiring careful sensitivity analysis during 
modeling.   

See 
comment 
response. 

4) Page 4-40, 
Section 4.2.5, 
4th 
paragraph, 
4th sentence 

 Explain how, if the sample population is small that the 
anomalous samples are anomalous and not representative 
samples.   

The referenced sentence discusses average mineralogical 
composition of the Timber Mountain Welded Tuff Aquifer 
(TM-WTA).  The samples identified as anomalous are 
altered, often related to faults or near formation contacts.  
Thus, the argillic or zeolitic character of the samples is 
derived from cataclasis along faults or other alteration and 
is not representative of average TM-WTA mineralogy.  
Fracture-coating minerals are characterized separately.  The 
discussion in the surrounding sentences states that sampling 
this hard, welded unit via sidewall sampling is difficult, and 
that the dataset is consequently small.  For small datasets, 
the average is sensitive to outliers.  Identification of 
samples judged anomalous provides a more accurate 
characterization of the average mineralogy of the unit.  The 
argument is based on informed professional judgment. 
 
Note that omission of these minerals from the TM-WTA 
assemblage will reduce their ability to sorb reactive 
radionuclides, which is considered conservative with 
respect to transport. 

See 
comment 
response. 

5) Page 6-6. 
Section 6.2. 
2nd 
Paragraph. 
1st sentence 

  "... collected at only 15 locations, shown on Figure 6-2 
.~ Figure 6-2 has more than 15 wells shown. Please 
indicate the appropriate well locations.   

The text refers to ‘test’ locations rather than well locations.  
There is more than one well on some test locations.  The 
text will be clarified to state ‘test’ locations.  

Accept, 
see 
comment 
response. 
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12.  Comment 
Number/Location 

13.  Typea 14.  Comment 15.  Comment Response 16.  Accept 

6) Page 7-12, 
Table 7-3 

 For the AA and AA3 minimum porosity values in the 
table, negative values are given. Please correct these 
values.   

An erroneous data value (-8.38) was mistakenly included 
in the matrix porosity summary statistics for the AA HGU 
and AA3 HSU. This value will be removed and the 
summary statistics corrected.  This value was not used in 
any figure.   

Accept, 
see 
comment 
response. 

7) Page 8-13. 
Section 
8.4.2.1 , 2nd 
paragraph, 1st 
sentence 

 ‘Fracture porosity can also be calculated using Equation 
(8-3) ...", however, Equation (B-3) assumes 
homogeneous isotropic volume and plug flow. How can 
this equation be used for flow in fractures?  

Equation (8-3) assumes a homogeneous isotropic volume.  
Actual field conditions, whether in fractured or porous 
media, will generally be more complex than the 
homogeneous isotropic case.  However, initial estimates of 
fracture porosity using Equation (8-3) have been 
demonstrated to be consistent with final calibrated values 
from the calibration of field tracer tests (e.g., Jones et al., 
1992).  
 

See 
comment 
response. 

8) Page 8-23, 
Section 
8.4.2.6, 
Equations (8-
7) and (8-8) 

 Both equations are missing a minus sign. Please correct 
these equations.  

Page 8-23, Section 8.4.2.6, Equations (8-7) and (8-8):  
These equations do not require a minus sign.  They are 
consistent with Domenico and Schwartz (1990, p. 87) for 
Equation (8-7) and Domenico and Schwartz (1990, p. 75) 
for Equation (8-8).  To address this comment, the text will 
be clarified as follows to indicate that volumetric flow rates 
are being discussed: 
 
Page 8-22:  “The cubic law describing the volumetric flow 
rate between parallel, smooth plates is given by Domenico 
and Schwartz (1990):” 

 
Page 8-23:  “Darcy’s law, which calculates the water 
discharge or flow rate through a porous medium, is given 
by Domenico and Schwartz (1990):” 
 
The underlined phrases above are additions to the original 
text. 

See 
comment 
response. 

9) Page 8-70, 
Figure 8-5 

 The indicator for the range of effective porosity on the 
Current Report-Yucca Flat is not located at the 
appropriate upper value as given in Table 8-21.  Please 
correct this figure.  

Page 8-70, Figure 8-5:  The range for the Current Report-
Yucca Flat case, lowest bar on the graph, will be revised to 
conform to the last entry on Table 8-21.  That is, the high 
end of the bar will be extended to 2X10-2. 
 

Accept, 
see 
comment 
response. 
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12.  Comment 
Number/Location 

13.  Typea 14.  Comment 15.  Comment Response 16.  Accept 

10) Page 9-
11, Section 
9.3.1, 2nd 
paragraph, 
1st sentence 

 Please explain why a geometric average of dispersivities 
is used.  

Either an arithmetic or a geometric mean of dispersivities 
could have been chosen.  We chose to use a geometric 
mean.  For the data analysis reported by Schulze-Makuck 
(2005), he states “If a range in longitudinal dispersivity was 
provided, the geometric mean was used (Table 1).  The 
geometric mean was thought to represent a more suitable 
mean for dispersivity because the values varied commonly 
by an order of magnitude.”  His rationale is reasonable. 
 

See 
comment 
response. 

11) Page 10-
36, Section 
10.5, 3rd 
paragraph, 
1st sentence 

 How will the scaling issue be addressed?  The text will be modified by removing this 
sentence/paragraph.  This sentence discusses a modeling 
issue which is not appropriate to this data document.  This 
issue is an active research area that will be addressed 
during transport analysis.   

Accept, 
see 
comment 
response. 

 
 



NEVADA ENVIRONMENTAL RESTORATION PROJECT 
DOCUMENT REVIEW SHEET 

 

aComment Types:  M = Mandatory,   S = Suggested. Page 1 of 11 September 21, 2007 

1.  Document Title/Number:  Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant 
Transport Model of Corrective Action Unit 97; Yucca Flat/Climax Mine, Nye County, Nevada  (Draft Rev. 1) 2.  Document Date:  June, 2007 

3.  Revision Number:  Rev. 0  4.  Originator/Organization:   

5.  Responsible DOE NNSA/NSO Subproject Mgr.:  Bill Wilborn 6.  Date Comments Due: July, 18, 2007  

7.  Review Criteria:  Complete Document 

8.  Reviewer/Organization Phone No.:   State of Nevada; Mr. John J. Jones (702-486-2850) 9.  Reviewer’s Signature: 

10.  Final Comment Responses as discussed in telecom with NDEP and NNSA/NSO on 9/13/07. 11.  Comment Response Date: September 21, 2007 
 

12.  Comment 
Number/Location 

13.  
Typea 

14.  Comment 15.  Comment Response 16.  Accept 

1) General  There are large amounts of data being transferred from 
other areas for the transport model for this CAU. The 
UGTA Transferability of Data document suggests that 
for transferred data an estimated sensitivity of the CAU 
model be included (Data Transfer Protocol Outline item 
B.3) and the disqualification criteria be explained (Data 
Transfer Protocol Outline item B.6). For this CAU/ 
document, and in particular porosity and geochemistry, 
the items are unclear regarding the transferred data 
(except for the uncertainty for dispersivity and the 
uncertainty and disqualification criteria for laboratory 
distribution coefficients). NDEP requests a statement 
clarifying the uncertainty and disqualification criteria 
connected to the use and transfer of data into this CAU.  

(Note that citations for the Data Transfer Protocol Outline 
items are revised.) 
 
Re: estimated sensitivity  
Sec. 5, Bullet 2 of the Data Transferability document states 
(underline added): Consider the sensitivity of predictions of 
the contaminant boundary to variation in the parameter 
value. Although the use of modeling simulations would be 
ideal for determining the parameter sensitivity, informed 
professional judgment is appropriate, especially during the 
early phases...  
 
No quantitative sensitivity estimate was included, nor can be 
provided, since the transport model has not been developed 
for use in computation.   Since model sensitivity cannot be 
quantitatively evaluated, professional judgment was used to 
comment on the importance of the parameter in general 
relative to the effect on modeling predictions.  Consideration 
was given to basic transport processes and factors, with the 
focus on data representativeness and data quality.   
 
Re: disqualification criteria 
Sec. 5, Bullet 5 of the Data Transferability document states 
(underline added):  Discuss the important considerations for 
using data from another source, and develop disqualification  

Accept, see 
comment 
response. 
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12.  Comment 
Number/Location 

13.  
Typea 

14.  Comment 15.  Comment Response 16.  Accept 

1) General 
(continued) 

 Continuation of response to Comment 1. criteria.  The criteria should reflect the importance of the 
parameter to the determination of the Contaminant Boundary 
and the reduction of uncertainty that might result from more 
stringent criteria. A general guideline is that the criteria 
should be established to eliminate data of poor quality and to 
eliminate inappropriate use of data.  
 
Regarding the first underlined passage, the response is the 
same as for estimated uncertainty.  Regarding the second 
underlined passage, these are the primary, general criteria 
discussed for each data type.  Given the variable nature of 
data for transport parameters, qualification and 
disqualification criteria vary by data type and are based on 
informed professional judgment concerning specific criteria.  
The basis for such judgments is provided in the text, as 
illustrated in the response to comment #4.  Specific criteria 
are developed based on technical considerations.  The Data 
Transferability document primarily addresses the transfer of 
material property value data with specific prescriptions. 
However, a number of data types addressed in this  
document deal with  functional parameters that are not 
measured directly but are interpreted from tests or 
experiments according to transport theory.  The actual 
original data are not transferred, but the derived parameter 
values are the data transferred.  For these parameter values, 
data transfer must be handled somewhat differently.  The 
derived parameter values are judged for consistency with a 
theory or theoretical distribution that can be applied to the 
CAU, and HGU or HSU in question.  Typically few 
parameter values are available, and the theory determining 
the parameter values is generalized.  The data transfer 
process considers application of the derived distribution or 
parameter values through technical arguments and 
professional judgment.  This contrasts with material 
properties values, for which acceptance is based on criteria 
relating to specific similarities of the material measured to 
the CAU, HGU or HSU material and quality of 
measurement, and disqualification is specific to detail 
problems.  For functional parameter values, disqualification 
must be for functional parameter values, disqualification  
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12.  Comment 
Number/Location 

13.  
Typea 

14.  Comment 15.  Comment Response 16.  Accept 

1) General 
(continued) 

 Continuation of response to Comment 1. 
 

 

must be judged within the context of consistency with theory 
and appropriate application of the theory to modeling in the 
CAU, HGU or HSU.     
 
Regarding data transfer, subsections discussing data sources 
and data transfer will be added to each data-type section.  
The text that will be added and location of the addition for 
each section is listed below, with changes in quotes. 
 
Sec. 4  Yucca Flat/Climax Mine Hydrostratigraphic  
Framework 
Sec 4.2  Mineralogy of Hydrostratigraphic Units in the     
Yucca Flat/Climax Mine HFM 
“Sec. 4.2.1 Data Compilation and Data Transfer” 
“All data used in the quantitative analyses are from the 
Yucca Flat/Climax Mine HFM area; see Appendix D and the 
associated dataset referenced in Section D.4.0.” 
 
Sec. 5 Yucca Flat/Cllimx Mine Geochemistry 
Sec. 5.2 “Data Compilation and Data Transfer” 
“Sec. 5.2.2 Data Transfer” 
“All data used in the quantitative analyses in this section are 
from the Yucca Flat/Climax Mine HFM area and 
surrounding springs; see Figure 5-2, Appendix E and the 
associated dataset referenced in Section E.3.0.” 
 
Sec. 6 Contamination Sources and Extent 
“Sec. 6.1 Data Compilation and Data Transfer” 
“All data used in the quantitative analyses in this section are 
from the Yucca Flat/Climax Mine HFM area; see  
Appendix A.” 
 
Sec. 7 Matrix Porosity 
Sec. 7.2. Data Compilation “and Data Transfer” 
 “All data used in the quantitative analyses are from the 
Yucca Flat/Climax Mine HFM area; see Appendix F and 
associated dataset referenced in Section F.2.2.” 
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12.  Comment 
Number/Location 

13.  
Typea 

14.  Comment 15.  Comment Response 16.  Accept 

1) General 
(continued) 

 Continuation of response to Comment 1. Sec. 8 Effective Porosity 
“Sec. 8.2 Data Compilation and Data Transfer” 
“Data from the Yucca Flat/Climax Mine HFM area and data 
from other NTS CAUs and YMP were used for this analysis 
due to the unavailability of comprehensive data from the 
Yucca Flat/Climax Mine HFM area for all HGUs.  Figure  
8-1 shows the source locations for the data used in the 
analysis.  Individual discussions of the applicability of the 
transferred data are provided for each HGU.  The data were 
used to determine a distribution appropriate for the Yucca 
Flat/Climax Mine CAU based on professional judgment.  A 
quantitative assessment of the sensitivity of transport 
modeling to the uncertainty in this parameter cannot be 
provided before the transport model development.  The 
parameter description discusses the importance of this 
parameter.” 
   
Sec. 9 Dispersivity 
Sec. 9.2 Data Compilation “and Data Transfer” 
The dispersivity data types, data sources, and data 
documentation evaluation process are described in this 
section.  “Data from the Yucca Flat/Climax Mine HFM area 
and data from other NTS CAUs, YMP, and Nye County 
were used for this analysis due to the unavailability of 
comprehensive data from the Yucca Flat/Climax Mine HFM 
area for all HGUs.  Figure 9-1 shows the source locations for 
the NTS-area data used in the analysis.  All data locations 
used in quantitative analyses are identified in Appendix G 
and the associated dataset referenced in Section G.4.0.  
Individual discussions of the applicability of the transferred 
data are provided for each HGU.  There are limited data 
from the NTS area to determine a Yucca Flat/Climax Mine 
specific distribution for the parameter values.  Data from 
literature for locations worldwide were used to evaluate the 
NTS area data with respect to the general distribution of 
dispersivity and scale dependence. A quantitative assessment 
of the sensitivity of transport modeling to the uncertainty in 
this parameter cannot be provided before the transport model 
development.  The parameter description discusses the 
importance of this parameter.” 
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12.  Comment 
Number/Location 

13.  
Typea 

14.  Comment 15.  Comment Response 16.  Accept 

1) General 
(continued) 

 Continuation of response to Comment 1. Sec. 10 Matrix Diffusion 
(change the present Sec. 10.2 to Sec. 10.1.1) 
“Sec. 10.2 Data Compilation and Data Transfer “ 
“Data from the Yucca Flat/Climax Mine HFM area and data 
from other NTS CAUs, YMP, and some literature values 
from other locations (specifically for granites, for which 
there were no NTS area data) were used for this analysis due 
to the unavailability of comprehensive data from the Yucca 
Flat/Climax Mine HFM area for all HGUs.  All data 
locations used in quantitative analyses are identified in 
Appendix H and the associated dataset referenced in Section 
H.4.0.  Individual discussions of the applicability of the 
transferred data are provided for each HGU.  There are 
limited data for the NTS area to determine a distribution for 
matrix diffusion values directly.  The data were used to 
determine functional relationships with other parameters (see 
Section 10.4.6), for which there are more comprehensive 
data.  A quantitative assessment of the sensitivity of 
transport modeling to the uncertainty in this parameter 
cannot be provided before the transport model development.  
The parameter description discusses the importance of this 
parameter.” 
 

Sec. 11 Matrix Sorption 
“Sec. 11.2 Data Compilation and Data Transfer “ 
“Data from the Yucca Flat/Climax Mine HFM area and data 
from other NTS CAUs, YMP, and a nearby location (see 
note) were used for this analysis due to the unavailability of 
comprehensive data from the Yucca Flat/Climax Mine HFM 
area for all HGUs.  (Note: The nearby location was the low-
level radioactive waste disposal facility in Beatty, Nevada.  
There were no NTS area data for some radionuclides for 
alluvium).  All data locations used in quantitative analyses 
are identified in Appendix I and the associated dataset 
referenced in Section I.2.0.  Individual discussions of the 
applicability of the transferred data are provided for each 
HGU.  A quantitative assessment of the sensitivity of 
transport modeling to the uncertainty in this parameter 
cannot be provided before the transport model development.  
The parameter description discusses the importance of this 
parameter.” 
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1) General 
(continued) 

 Continuation of response to Comment 1. Sec. 12 Fracture Sorption 
“Sec. 12.2.3 Data Transfer” 
“Data from the Yucca Flat/Climax Mine HFM area and data 
from another NTS CAU, Central and Western Pahute Mesa, 
were used for this analysis due to the unavailability of 
comprehensive data from the Yucca Flat/Climax Mine HFM 
area for all HGUs.  Specific discussion of the applicability of 
the transferred data is provided.  A quantitative assessment 
of the sensitivity of transport modeling to the uncertainty in 
this parameter cannot be provided before the transport model 
development.  The parameter description discusses the 
importance of this parameter.” 
 
Sec. 13 Colloid Facilitated Transport 
“Sec. 13.1 Data Compilation and Data Transfer “ 
“Data from the Yucca Flat/Climax Mine HFM area and data 
from other NTS CAUs, YMP, and from another location 
(specifically data for alluvium, for which these data provided 
an expanded time scale) were used for this analysis due to 
the unavailability of comprehensive data from the Yucca 
Flat/Climax Mine HFM area for all HGUs.  All data 
locations used in quantitative analyses are identified in 
Appendix J and the associated dataset referenced in Section 
J.7.0.  Individual discussions of the applicability of the 
transferred data are provided for each HGU.  A quantitative 
assessment of the sensitivity of transport modeling to the 
uncertainty in this parameter cannot be provided before the 
transport model development.  The parameter description 
discusses the importance of this parameter.” 
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12.  Comment 
Number/Location 

13.  
Typea 

14.  Comment 15.  Comment Response 16.  Accept 

2) Page 2-5, 
Section 2.2.2.4, 
1st paragraph, 1st 
sentence 

 Explain why the actual groundwater chemistry data are 
not used as input into the Transport Model?   

As with most parameters used in the transport model,  
discrete values for parameters for specific locations are not 
used in modeling, but rather, parameter values representative 
of spatial scales over which the model operates.  Such values 
are derived from discrete information, which is the objective 
of this document.  
 
Chemistry is simulated by the model, and as such is not a 
direct input.  Groundwater chemistry is used  for a variety of 
purposes in development of the transport model.  In 
particular, groundwater chemistry analyses provide 
information  used to help test the goodness of the models.   
 
Page 2-5, Section 2.2.2.4, will be revised to read:  
“Groundwater chemistry data are not directly used as input 
in the transport model; rather, representative groundwater 
chemistries are determined from the data and are used for a 
variety of analyses.  Interpretations of groundwater flow 
paths and consequent geochemical mixing of characteristic 
groundwater chemistries are used to evaluate and verify 
groundwater flow and transport models.  These 
interpretations provide independent information on potential 
groundwater flow paths and travel times that may be used in 
developing and calibrating the groundwater flow model for 
the Yucca Flat/Climax Mine CAU.” 

Accept, see 
comment 
response. 
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3) Page 3-7, 
Section 3.2.1, 1st 
bullet point, 3rd 
sentence 

 This statement contradicts the UGTA data transferability 
document and can not be justified. Data transferred under 
this condition should not be used.  

The UGTA data transferability document recommends the 
“Accept unless Rejected” approach (Sec. 3) for data transfer.  
The cited statement refers to situations in which many 
criteria for judging the suitability of transferred data are 
unavailable.  However, the statement does not disregard 
judgment of suitability, and statements justifying data 
transfer are required.  There may be concomitant uncertainty 
requiring careful sensitivity analysis during modeling.   
 
Page 3-7, Section 3.2.1, 1st bullet will be revised to read:  
“For each parameter of interest, sites are identified that 
contain data of the same type.  In an ideal situation, sites 
could be found in the same general area that have roughly 
the same geologic setting.  More likely, sites will be 
identified that are located farther away but have similar rock 
types.  In the least desirable situation, data may be 
transferred from locations that are less similar to the original 
study area but otherwise can be justified as appropriate.”   

Accept, see 
comment 
response. 
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12.  Comment 
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Typea 
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4) Page 4-40, 
Section 4.2.5, 4th 
paragraph, 4th 
sentence 

 Explain how, if the sample population is small that the 
anomalous samples are anomalous and not representative 
samples.   

The referenced sentence discusses average mineralogical 
composition of the Timber Mountain Welded Tuff Aquifer 
(TM-WTA).  The samples identified as anomalous are 
altered, often related to faults or near formation contacts.  
Thus, the argillic or zeolitic character of the samples is 
derived from cataclasis along faults or other alteration and is 
not representative of average TM-WTA mineralogy.  
Fracture-coating minerals are characterized separately.  The 
discussion in the surrounding sentences states that sampling 
this hard, welded unit via sidewall sampling is difficult, and 
that the dataset is consequently small.  For small datasets, the 
average is sensitive to outliers.  Identification of samples 
judged anomalous provides a more accurate characterization 
of the average mineralogy of the unit.  The argument is 
based on informed professional judgment. 
 
Note that omission of these minerals from the TM-WTA 
assemblage will reduce their ability to sorb reactive 
radionuclides, which is considered conservative with respect 
to transport. 
 
Page 4-40, Now Section 4.2.6, 4th paragraph, 4th sentence 
will be revised to read: “The samples identified as 
anomalous are typically from altered zones (ZEOL or ARG) 
often related to faults or near formation contacts (TM WTA-
Altered in Table 4-6) as determined from cuttings, boring 
and geophysical logs, and display mineralogic characteristics 
related to alteration not representative of welded tuffs in 
general.  Sampling bias in the database was discussed in 
Section 4.2.” 

Accept, see 
comment 
response. 

5) Page 6-6. 
Section 6.2. 2nd 
Paragraph. 1st 
sentence 

  "... collected at only 15 locations, shown on Figure 6-2 
.~ Figure 6-2 has more than 15 wells shown. Please 
indicate the appropriate well locations.   

Page 6-6, now Section 6.3, 2nd paragraph: 
The text refers to ‘test’ locations rather than well locations.  
There is more than one well on some test locations.  The text 
will be clarified to state ‘test’ locations.  

Accept, see 
comment 
response. 

6) Page 7-12, 
Table 7-3 

 For the AA and AA3 minimum porosity values in the 
table, negative values are given. Please correct these 
values.   

Page 7-12, Table 7-3: 
An erroneous data value (-8.38) was mistakenly included 
in the matrix porosity summary statistics for the AA HGU 
and AA3 HSU. This value will be removed and the summary 
statistics corrected.  This value was not used in any figure.   

Accept, see 
comment 
response. 
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7) Page 8-13. 
Section 8.4.2.1 , 
2nd paragraph, 1st 
sentence 

 “Fracture porosity can also be calculated using Equation 
(8-3) ...", however, Equation (B-3) assumes 
homogeneous isotropic volume and plug flow. How can 
this equation be used for flow in fractures?  

Page 8-13. Now Section 8.5.2.1 , 3rd paragraph will be 
revised to read: “Fracture porosity can also be calculated 
using Equation (8-3) and the peak-concentration arrival time.  
Equation (8-3) assumes a homogeneous, isotropic volume 
and plug flow.  In application, the total fracture volume is 
treated as homogeneous and isotropic, with no flow in the 
matrix.  While actual field conditions, whether in fractured 
or porous media, are generally more complex, initial 
estimates of fracture porosity using this equation have been 
demonstrated to be consistent with final calibrated values 
from calibration of numeric transport models to field tracer 
tests (Jones et al., 1992).  This time is considered to be 
representative of the time for tracer to travel through the 
fractures from the tracer-injection well to the pumping well.  
Because the mean residence times determined by Bechtel 
SAIC (2004c) are relatively similar to the peak-concentration 
arrival times (see above), fracture porosity was not 
calculated using the peak-concentration arrival times.” 

Accept, see 
comment 
response. 

8) Page 8-23, 
Section 8.4.2.6, 
Equations (8-7) 
and (8-8) 

 Both equations are missing a minus sign. Please correct 
these equations.  

Now Section 8.5.2.6, Page 8-23 and 8-24: 
These equations are consistent with Domenico and Schwartz 
(1990, p. 87) for Equation (8-7) and Domenico and Schwartz 
(1990, p. 75) for Equation (8-8).  To address this comment, 
the text will be clarified as follows to indicate that equation 
gives the volumetric flow rates in the direction of flow.   
 
Page 8-23, Equation 8-7:  “The cubic law describing the 
volumetric flow rate in the direction of flow between 
parallel, smooth plates is given by Domenico and Schwartz 
(1990) as:” 

 
Page 8-24, Equation 8-8:  “Darcy’s law, which calculates the 
water discharge or flow rate through a porous medium in the 
direction of flow, is given by Domenico and Schwartz 
(1990) as:” 

Accept, see 
comment 
response. 

9) Page 8-70, 
Figure 8-5 

 The indicator for the range of effective porosity on the 
Current Report-Yucca Flat is not located at the 
appropriate upper value as given in Table 8-21.  Please 
correct this figure.  

Now Page 8-71, Figure 8-5:  The range for the Current 
Report-Yucca Flat case, lowest bar on the graph, will be 
revised to conform to the last entry on Table 8-21.  That is, 
the high end of the bar will be extended to 2X10-2. 
 

Accept, see 
comment 
response. 
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10) Page 9-11, 
Section 9.3.1, 2nd 
paragraph, 1st 
sentence 

 Please explain why a geometric average of dispersivities 
is used.  

Either an arithmetic or a geometric mean of dispersivities 
could have been chosen.  We chose to use a geometric mean.  
For the data analysis reported by Schulze-Makuch (2005), he 
states “If a range in longitudinal dispersivity was provided, 
the geometric mean was used (Table 1).  The geometric 
mean was thought to represent a more suitable mean for 
dispersivity because the values varied commonly by an order 
of magnitude.”  His rationale is reasonable. 
 
Page 9-11, Section 9.3.1, 2nd paragraph will be revised to 
include the following sentences: “For the data analysis 
reported by Schulze-Makuch (2005), he states: “If a range in 
longitudinal dispersivity was provided, the geometric mean 
was used (Table 1).  The geometric mean was thought to 
represent a more suitable mean for dispersivity because the 
values varied commonly by an order of magnitude.” 

Accept, see 
comment 
response. 

11) Page 10-36, 
Section 10.5, 3rd 
paragraph, 1st 
sentence 

 How will the scaling issue be addressed?  Page 10-36, Section 10-5, 3rd paragraph: 
The text will be modified by removing this 
sentence/paragraph.  This sentence discusses a modeling 
issue which is not appropriate to this data document.  This 
issue is an active research area that will be addressed during 
transport analysis.   

Accept, see 
comment 
response. 
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