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ABSTRACT

Since the 1980’s, the study of nucleon (proton or neutron) spin structure has been an
active field both experimentally and theoretically. One of the primary goals of this work is
to test our understanding of Quantum Chromodynamics (QCD), the fundamental theory
of the strong interaction. In the high energy region of asymptotically free quarks, QCD
has been verified. However, verifiable predictions in the low energy region are harder to
obtain due to the complex interactions between the nucleon’s constituents: quarks and
gluons. In the non-pertubative regime, low-energy effective field theories such as chiral
perturbation theory provide predictions for the spin structure functions in the form of sum
rules.

Spin-dependent sum rules such as the Gerasimov-Drell-Hearn (GDH) sum rule are
important tools available to study nucleon spin structure. Originally derived for real pho-
ton absorption, the Gerasimov-Drell-Hearn (GDH) sum rule was first extended for virtual
photon absorption in 1989. The extension of the sum rule provides a unique relation,
valid at any momentum transfer ((Q?), that can be used to study the nucleon spin structure
and make comparisons between theoretical predictions and experimental data.

Experiment E97-110 was performed at the Thomas Jefferson National Accelerator
Facility (Jefferson Lab) to examine the spin structure of the neutron and *He. The Jeffer-
son Lab longitudinally-polarized electron beam with incident energies between 1.1 and
4.4 GeV was scattered from a longitudinally or transversely polarized *He gas target in the
Hall A end station. Asymmetries and polarized cross-section differences were measured
in the quasielastic and resonance regions to extract the spin structure functions g, (z, Q%)
and g»(z, Q%) at low momentum transfers (0.02 < Q? < 0.3 GeV?). The goal of the
experiment was to perform a precise measurement of the (Q? dependence of the extended
GDH integral and of the moments of the neutron and 3He spin structure functions at low
Q?. This 2 range allows us to test predictions of chiral perturbation theory and check
the GDH sum rule by extrapolating the integral to the real photon point. This thesis will
discuss preliminary results from the E97-110 data analysis.
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THE SPIN STRUCTURE OF 3He AND THE NEUTRON AT LOW Q% A
MEASUREMENT OF THE GENERALIZED GDH INTEGRAND



CHAPTER 1

| ntroduction

The historical background of this thesis begins with the discovery of intrinsic spin by
Stern and Gerlach in the 1920’s. We consider the classical example of a rigid object that
has two types of angular momentum: orbital and spin. The orbital angular momentum is
related to motion of the center of mass about an external point and the spin with rotation
around the object’s center of mass. For a classical body such as a planet, the spin is
associated with the planet’s rotation about its polar axis. In the case of a particle such as
an electron, there are analogous orbital and spin angular momenta. The orbital angular
momentum is due to the electron’s motion around the nucleus. Whereas the spin angular
momentum S cannot be associated with rotation and is an intrinsic property of the particle,

since as far as we know the electron is a point-like particle without structure.

A particle’s spin is related to its magnetic moment by
eQ =
= —9 11
ILL M Y ( )

where e and M are the particle’s charge and mass, respectively. For a structureless

2



spin-% particle, the magnetic moment was predicted by Dirac to be:

(&

—h 1.2
h, 12)

/,L:

which agrees well, but not perfectly with the experimentally measured value for the elec-
tron. In 1933, Estermann and Stern measured the magnetic moment of the proton [1, 2]
and discovered that the proton’s magnetic moment was considerably different compared
with Dirac’s prediction. This was the first indication that the proton and neutron had
composite structure and marked the beginning of hadronic physics, where hadrons are
subatomic particles which interact via the strong force. The difference in the magnetic
moment compared with Dirac’s prediction is referred to as the anomalous part of the
magnetic moment x.

A couple of decades later, electron scattering experiments were used to confirm that
the nucleon has a spatial distribution. Later on, an extensive study of the nucleon’s struc-
ture [3] was performed using deep inelastic scattering experiments at the Stanford Linear
Accelerator Center (SLAC). From these measurements, it was concluded that the nucleon
is composed of point-like particles known as partons, which are now associated with
quarks and gluons. Quantum Chromodynamics (QCD) has emerged as the theory that
describes the strong interactions of quarks by the exchange of gluons. In the high energy
region, predictions from perturbative QCD have been verified by comparison with exper-
imental results. However, at low energies, QCD calculations become difficult due to the
large coupling constant in this regime. Therefore low-energy effective field theories such
as chiral perturbation theory have been utilized to make predictions.

A key remaining question is how the transition from partonic to hadronic degrees
of freedom occurs. One way to approach this issue is to experimentally investigate the

non-perturbative region. In the 1980’s the nucleon’s spin degrees of freedom were stud-
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ied at SLAC and CERN [4]. The purpose of these measurements was to examine how the
total nucleon spin is distributed among its constituents. The results gave rise to the “spin
crisis”; only ~ 30% of the nucleon’s spin is carried by the quarks. The rest of the spin
is expected to be carried by the gluons and orbital angular momentum of the nucleon’s
constituents. These studies have continued at CERN, DESY and Jefferson Lab. Measure-
ments have been performed specifically at low and intermediate momentum transfers to
study the non-perturbative regime at Jefferson Lab.

Experiment E97-110 has followed these measurements by providing precise data
in the low energy region to test sum rule predictions from chiral perturbation theory.
This thesis describes the theoretical formalism, experimental details, data analysis and

preliminary results from this experiment.



CHAPTER 2

|nclusive Electron Scattering

Lepton scattering provides a powerful tool to probe the internal structure of the nu-
cleon. Lepton interactions are well understood and described by the theory of Quantum
Electrodynamics (QED). In this chapter, the process of inclusive electron-nucleon scat-
tering, where only the scattered electron is detected, will be discussed. The relevant kine-
matic variables, the differential cross section, and the types of inclusive electron scattering

are presented.

2.1 Kinematic Variables
The process of lepton-nucleon scattering is
l(p) + N(P) — I(p)) + X (P'), (2.1)

in which a charged lepton [, in our case an electron, scatters from a nucleon N. In the
Born approximation, the scattering occurs by the exchange of a virtual photon as shown

in Fig. 2.1. The relevant kinematic variables are the incident and scattered electron four-

5



6 CHAPTER 2. INCLUSIVE ELECTRON SCATTERING

To detectors

P=MO—

FIG. 2.1: Lowest order diagram for inclusive electron scattering.

momenta p* = (F, E) and p* = (E', k?’) respectively and the target four-momenta P* =
(Ex, ]3). The scattering angle is given by 6. For inclusive scattering, the final hadronic
system X goes undetected. The exchanged virtual photon carries four-momentum ¢* =
(p — p')* = (v, q) and transfers an energy v = 4 and momentum ¢ to the target.

The scattering process is a function of two Lorentz invariants and the scattering
angle. Typically either the energy transfer, the squared four-momentum transfer )2 or the
invariant mass of the residual hadronic system W are used. These variables are defined

below with P* = (M, 0) in the laboratory system. The electron mass is neglected, since

Eand E' > m,.

v=FE-F (2.2)
Q)? = —¢* ~ 4EF' sin® g (2.3)
W =+/(P+q)?=M?>+2Mv —Q? (2.4)
Two additional scalar invariants are sometimes used:
o @@ (2.5)

2P.q 2Mv’
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the Bjorken scaling variable and

S
s

Ny
I
=3
4
I
&S]S

(2.6)

the fraction of lepton energy loss.

2.2 Differential Cross Section and Structure Functions

The inclusive cross section for electron-nucleon scattering is proportional to the
product of a leptonic and an hadronic tensor, L,,, and W*¥, respectively:

d*c o B .
AQdE @ELWW“ ’ 2.7)

where o ~ 1/137 is the electromagnetic fine structure constant. The formalism includes
the possibility that both the electron and target are polarized.

The lepton tensor is calculable from QED:
Ly = Y as(p) s () (035 (p) (2.8)

=2 [pupl, + P,v — Gub - P+ i€uass™d’] | (2.9)
where u(p) are the Dirac spinors, s, = @y,su is the lepton spin vector, and the Levi-
Civita tensor €123 = +1 uses the convention in [5].

In the inelastic process, one needs to consider all possible transitions of the nucleon
from the ground state |N(P)) to any excited state | X (P’)). In this case, the hadronic
tensor becomes

1

Wi = 17 [ € NPT OIN.(P). 2.10)

where ( is the spatial four-vector, s is the target spin and J,(¢) is the electromagnetic

current. In Eqg. (2.10), completeness of the states | X') was used. The tensor can be further
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split into symmetric and antisymmetric parts W, = ny + W/f},. The most general forms
of these terms are obtained from Lorentz and gauge invariance and parity conservation of

the electromagnetic interaction:

dudv
Wiy = Wl(% Q2) ( ;2 _g/,Ll/)

WQ(V7Q2) Pq Pq
(P e P, - W (2.11)
and
_ N Gs(v, Q?
W2, = i€uwasq {Gl(y, Q*)S" + 72(]\4? ) (S°P-q—P°S- q)} ,

where the hadronic spin vector is given by S* = u(P)y"~su(P)/2M. The internal struc-
ture of the hadron is described by the four response functions: W, » and G ».
Usually the response functions are replaced with dimensionless structure functions

that are dependent on the Bjorken variable = and (Q*:

Fl(vaz) :Mwl(ya Q2)7 (212)
Fy(z, Q%) = vWa(r,Q%), (2.13)
g1 (LL', QQ) = MI/Gl(Vv QQ) ) (214)
ga2(z, Q%) = V2 Ga (v, Q%) . (2.15)

The structure functions are measured experimentally by using different combinations
of the beam and target polarizations. If one averages over the incident electron and target

spins, then the differential cross section for unpolarized scattering in the lab frame is

d%o do 2 0 1
== —F Htan? = + —F 2 2.16
i~ (). (Fhe@e it nee)  ew

where the Mott cross section describes relativistic electron scattering from a point-like

Dirac particle:
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do a?cos? ¢
(d—Q) ot Y sin42_g : (2.17)
The structure functions F; and F, parameterize information about the target’s internal
structure and cannot be separated using different beam and target polarization directions.

The spin-dependent structure functions g; and g, can be measured by using two dif-
ferent target spin orientations with respect to the electron beam polarization: longitudinal
and perpendicular. In the former case, the electron has spin T or | either along or oppo-

site to the beam direction, and the target spin 1} is along the direction of the electron’s

momentum. The cross section difference between the two spin states is

4o® FE'

A= Lot E

[(E + E'cos ) gi(x, Q) — 2Mzgs(z, Q%)] (2.18)
where
d?o 't d?o'h

Aoy = _ .
N~ 4QdE ~ dQdE’

(2.19)

For a transversely polarized target, = denotes that the target spin is perpendicular (while
in the scattering plane) to the electron beam direction. The polarized cross section differ-

ence for this process is

40(2 E/2 ) oF ) ]
Ao, = Wf g1(fc,Q ) + 792(%@ ) sind, (2.20)
with
d2 1= d2 T=
Ao, =27 d (2.21)

T dQdE dQdE"

2.3 Typesof Inclusive Electron Scattering

The inclusive differential cross sections described in Section 2.2 are rather general.

When investigating inclusive scattering, separating the different kinematic regions is often
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useful. In this section, three types of scattering are discussed: elastic, quasi-elastic and
inelastic. The discussion on inelastic scattering includes both resonance production and
deep inelastic scattering. Figure 2.2 from [6] shows a typical cross section spectrum
for inclusive scattering from a light nuclear target. As Q% and v vary, different nucleon
resonances (A, Ny and V) are seen at specific invariant masses W. The mass of the
nucleus and nucleon are given by M, and M. If the target is a nucleon, then there is no

quasi-elastic peak.

Cross section

W =2 GeV
* N; (Deep Inelastic Scattering)

Few (GeV/c)? | N Constant W
(resonances)
wW=M

(quasi—elastic)

Q° (GeVicy?

FIG. 2.2 Inclusive cross section (arbitrary units) versus Q2 and v for scattering off a nuclear
target.
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2.3.1 Elastic Scattering

In elastic scattering, the nucleon (or nucleus) remains in its ground state after the
process, and the energy and momentum transfer are absorbed by the recoil nucleon. For
elastic scattering, the invariant mass W is equal to the mass of the nucleon or nucleus
so that v = %. Conservation of energy and momentum constrain the scattered electron
energy to the following equation:

E
—6 : (2.22)
I+ 57sin” 5

The differential cross section for unpolarized elastic scattering is a special case of
Eqg. 2.16. In the elastic scattering limit, the response functions 175 » reduce to combina-

tions of the Sachs form factors [5]:

V2@, (2.23)

W= pE

and

Gp(@%) + 4M2 u(@)
1 + 4]V[2
Then Eqg. 2.16 can be expressed as the Rosenbluth cross section [7] in terms of the electric

Wy =

(2.24)

and magnetic form factors Gz and G, respectively:

(1) (@@ @), @
-\, I+ 2 HEIVE

G2 (Q%mﬁ%) . (2.25)

The two form factors carry information on the charge and current distributions of the

nucleon and are normalized at Q@ = 0 to the nucleon charges and magnetic moments:
G%(0)=1 and G%(0) = p, =2.793, (2.26)
for the proton and:

Gi(0)=0 and G}(0) = p, = —1.913, (2.27)
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for the neutron. The magnetic moments are given in terms of the nuclear magneton

_ e
UN = oM,

The behavior of the proton and neutron magnetic form factors follow a dipole form
over a sizable range of %, with deviations less than 10% for G%, at Q* < 5 GeV?. The

dipole parameterization is as follows:

Gn(Q?) = (ﬁ) , (229)

where A = 0.84 GeV, so that

QY Gu(@Y)

Hp Hn

= Gp(Q?). (2.29)

The proton electric form factor follows the same dipole fit but only for Q% < 1 GeV2. At
higher Q? significant differences are seen between the proton electric and magnetic form
factors [8, 9]. The transition between the low and high Q? regions provides information on
the non-perturbative structure of the nucleon and where the onset of perturbative behavior

begins.

2.3.2 Quasi-Elastic Scattering

For a nuclear target, quasi-elastic scattering involves the incident electron elastically
scattering from one of the nucleons within the nucleus. In this process, the nucleon is
knocked out of the nucleus and can be considered initially as quasi-free. Compared to
elastic scattering from a free nucleon, the quasi-elastic peak is shifted and broadened due
to the nuclear binding energy and Fermi motion of the nucleons inside the nucleus.

For quasi-elastic scattering, the Rosenbluth cross section [10] becomes

2o do Q*\? 1/Q%\° , 0
= —_— —_— - -y t -
s (30) o L (5) o |3 (%) v

RT} , (2.30)
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where Ry (v,Q?) and Rr(v,Q?) are the longitudinal and transverse virtual photon re-

sponse functions.

2.3.3 Resonances

As the energy transfer increases, we leave the elastic region and enter the process
of inelastic scattering. Inelastic scattering from nucleons has revealed a rich spectrum of
excited states known as the resonances. The existence of these states was further evidence
that the nucleon is a composite system. The resonances have been observed in the invari-
ant mass region between the pion production threshold (W, = M, + m,) 1.072 GeV and
the onset of deep inelastic scattering at 2 GeV. Their properties have been studied using
beams of leptons, photons and hadrons.

Beyond the elastic peak, we typically see three significant resonance features; the
first peak is the A(1232) resonance, the second peak consists of the V*(1520) and N *(1535)
resonances and the third peak contains many resonances with the N*(1680) being the
strongest at low Q2. The N*(1440) resonance also exists between the A and the second
maximum. The A is a dominant spin-% resonance in 7- NV scattering and has only a small
amount of overlap with other states. Table 2.1 summarizes some of the properties of these
resonances: invariant mass, width (I"), total angular momentum and parity (/?) and the
orbital angular momentum (7). The total angular momentum is given by J = |l & §|. The

nomenclature used to denote the resonances is given by Lojo; :
e L=S(for!=0),P (forl=1),D (forl=2), F (for [ =3).
e [ is the isospin, either 1 or 3.

Using this notation the A is expressed as P33. Several other resonances exist that con-

tribute to the cross section; however, these resonances cannot be isolated with inclusive
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electron scattering.

| Resonance | W (MeV) | T (MeV) | J? | [ |
Ps3 1232 120 |37 |1
Py 1440 350 |[17)1
Di3 1520 120 |27 ]2
S 1535 150 |17 ]o
Fis 1680 130 |27 |3

TABLE 2.1: Nucleon resonance properties. Reproduced from [5].

2.3.4 Deep Inelastic Scattering

The deep inelastic scattering (DIS) regime is typically defined as Q? > 1-2 GeV?
and W > 2 GeV. In this region, the resonance peaks become indistinguishable and the
scattering process occurs from an incoherent sum over the nucleon’s constituents. The
phenomenon known as scaling was discovered at the Stanford Linear Accelerator; at large
momentum transfers, the structure functions are independent of )2 and essentially “only”
depend on the dimensionless variable » = Q%/2Mv. Figure 2.3 shows the experimental
Q?-variation of the proton F¥(x, Q?) structure function for a large range of = [11]. For
plotting purposes, a constant® ¢(z) = 0.6(i, — 0.4) is added to F}.

Scaling of the structure functions was predicted by Bjorken [12], and the parton
model of Feynman [13] provides a clear explanation for this phenomenon. Any particle
with a finite size must have a form factor that introduces some Q? dependence. The fact
that the structure functions are independent of the momentum transfer implies that the

nucleon contains point-like objects, which Feynman named partons. The partons are now

1, isthe number of the x bin ranging from i, = 1 (x = 0.32) to i,, = 21 (= = 0.000032).
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FIG. 2.3: The F¥ structure function *-dependence for arange of Bjorken x values. Reproduced
from [11].
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identified as the quarks and gluons of QCD. The parton model is typically formulated in
the infinite momentum frame, where v and Q2 go to infinity while = remains finite. The
scattering process can be treated using the impulse approximation (1A), since there is no
time for interactions to occur between the partons. Hence, the DIS process can be viewed
as the incoherent sum of elastic scattering from non-interacting partons.

In the parton model, the fraction of the nucleon’s momentum carried by the struck
quark can be associated with Bjorken’s scaling variable x [5]. The nucleon cross section
then becomes the sum of the cross sections for scattering from individual partons; the
cross sections are then weighted by their respective number densities. Since the scattering
process occurs through the electromagnetic interaction, the cross sections are additionally

weighted by the parton’s charge squared. The structure functions then take the form:

Fi(a) = 5 3 chasla) = 5 3 [ao) + 0} (@) (231)
f f

Fy(z) = 22 Fy(x) (2.32)

g1(z) = %Z e Aqy(z) = %Ze? [q}(m) - q}(a:)} ; (2.33)
f f

where g;(x) and Agy(x) are the unpolarized and polarized parton distribution functions
with parton flavor f. The distribution functions involve the two cases where the quark
spin is aligned parallel (7) or anti-parallel (]) to the nucleon spin. Eg. (2.32) is known
as the Callan-Gross relation [14]. There is no simple interpretation of g, in the parton
model, but it carries information about the quark-gluon interactions that occur inside the
nucleon.

Bjorken scaling is only an approximation, since quarks can radiate gluons before and
after the scattering process. These processes cannot be separated from electron scattering
off a quark without gluon radiation. This causes the structure functions to develop a loga-

rithmic dependence on %, and hence, Bjorken scaling is only a “a good approximation”.
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This variation of the structure functions with the momentum transfer squared is referred
to as QCD evolution. The DGLAP equations developed by Dokshitzer [15], Gribov, Li-
patov [16], Altarelli and Parisi [17] provide a method to calculate the Q%-evolution of
the parton distributions. Once the parton distributions are know at one scale, they can be

calculated at any other scale where perturbative QCD is applicable.



CHAPTER 3

Sum Rules

In Chapter 2, we have seen that the internal structure of the nucleon is parameterized
by structure functions; however, the available theoretical tools are unable to calculate the
structure functions. Instead, these tools are used to provide predictions of the moments of
the structure functions. In addition to the moments, there are several dispersive sum rules
that link the Compton scattering amplitudes to integrals of the inclusive photoproduction
cross sections of the target under investigation. These sum rules are based on universal
principles such as causality, unitarity and gauge invariance. The interest in sum rules
lies in the fact that they provide a useful testing ground to study the internal degrees of
freedom of the system. The extension from real to virtual photons provides a probe with
variable resolution. At small )2, the long range phenomena are sampled and described
by effective degrees of freedom (hadrons), whereas at large 2, the primary degrees of

freedom (quarks and gluons) become visible.

The first part of this chapter provides an overview of the formalism of virtual pho-

toabsorption cross sections. In the second part, we derive an important spin sum rule

18
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known as the GDH sum rule. In the third part, the GDH sum rule is generalized for virtual
photons along with a few other (Q?-dependent sum rules that are relevant for experiment

E97-110.

3.1 Virtual Photoabsorption Cross Sections

In Section 2.2, we have seen that the inclusive differential cross section can be de-
scribed in terms of four structure functions. The cross section can also be written equiva-
lently as a cross section for the absorption of a virtual photon, which involves four partial

cross sections [18, 19]:

d2
deUE’ =T |or +eop = hPoy/2e(1 = €)orr — hPV1 = EZUTT] . (3

where e and I" are the ratio of the longitudinal to transverse polarization of the virtual

photon and the virtual photon flux factor given by Eq. (3.2) and Eq. (3.3):

v? 911
and
a F K
TR El-¢ (33)

The flux factor I' is proportional to the virtual photon flux K, which is convention depen-

dent. A few of the common conventions follow below:

KA =V (34)
W2 _ M2

Ko =gl = v+ Q2. (3.6)
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The first convention connects the flux to the virtual photon energy v~ [10]. The second
convention is Hand’s convention [20] and associates the flux with the “equivalent photon
energy”. The third convention by Gilman [21] uses the photon momentum in the lab
frame. At the real photon point, all the conventions reduce to v, but at intermediate @2,
the photon flux is strongly convention dependent.

The four partial cross sections consists of the longitudinal (o), transverse (o) and
two interference terms: longitudinal-transverse (o) and transverse-transverse (o) and
are functions of v and Q2. The two interference terms involve a spin-flip and can only
be measured by double-polarization experiments. The longitudinal and transverse terms
involve the absorption of a longitudinal and transverse virtual photon on a nucleon re-
spectively. In the real photon limit (Q? = 0), o, vanishes and the total photoabsorption
cross section is given by o(v) = or(v). In Eq. (3.1), h = +1 refers to the helicity of
the longitudinally polarized electron, and P, (P,) denote that the target polarization is
parallel (perpendicular) to the virtual photon momentum §. The helicity is defined as:

o
7l

where & are the Pauli spin matrices, and p' is the particle’s momentum.

h (3.7)

The partial cross sections o7 and o7 can be expressed in terms of the helicity-
dependent photoabsorption cross sections o1 and 03 The subscripts refer to the total
helicity projections of the photon plus target helicities. The projections are illustrated in
Fig.3.1fora spin-% target. These helicity cross sections are related to the transverse (spin-
averaged) and transverse-transverse (spin-dependent) interference terms via the following
expressions:

200 =01 +03, 2077 =01—03. (3.8)
2 2 2 2

The virtual photoabsorption cross sections are also related to the structure functions
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W@%ﬁ\@m co oy

S=-1/2
- =S Oy
h=+1 S=-1/2

FIG. 3.1: Schematic of the helicity-dependent cross sections o1 and os. The virtual photon
helicity and target spin projections are denoted by h and S respectlvely

Fy, F,, g, and g, which are dependent on v and Q?:

Ao

470 [ F. F
L= 72 (1+47) - Ml (3.10)
A%
oLr = 3= (91 + 92) (3.11)
A
orr = MK (91 - 7292) ) (3.12)

where v = @/v, and the correspondence is dependent on the virtual photon flux K. The

. . o
interference terms can also be defined as o777y = —OLr(rT)"

3.2 TheGDH Sum Rule

The Gerasimov-Drell-Hearn (GDH) Sum Rule [22-25] relates a particle’s anoma-

lous magnetic moment « to an energy-weighted integral over its photoabsorption cross
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section. The sum rule’s significance is that it relates static properties of the particle’s
ground state to dynamic properties of all its excited states. It also divulges that a non-zero
anomalous magnetic moment requires that a particle have a finite size and hence an exci-
tation spectrum [19]. Consequently, the discovery that the nucleon had a large anomalous
magnetic moment provided a strong indication that the nucleon has an intrinsic structure

and is not a point-like particle. The sum rule for spin-3 particles is

> dv , K2
/VO — [aé(u) - O'%(V) =27 a (3.13)

where vy = m; (1 + ;"T}) ~ 150 MeV is the threshold energy for pion production. This
sum rule provides an ideal testing ground to study the nucleon’s internal structure, since
the right hand side is given by the nucleon’s ground state properties that are known rather
precisely. In addition, the sum rule was generalized for virtual photoabsorption on a
nucleon, which allows us to study the Q?-evolution and hence the spatial distribution of

the spin observables. The following discussion provides a derivation of the GDH sum

rule based on dispersion relations, which follows Refs. [23] and [24].

3.2.1 Derivation of the GDH Sum Rule

The general assumptions used in the derivation of the sum rule are Lorentz and
gauge invariance, unitarity and causality. We begin with the forward Compton amplitude

T(v,0 = 0) for real photon scattering from a nucleon:
T(v)=&"-gf(v)+id- (" x&)g(v), (3.14)

where £and & are the incident photon and outgoing photon polarization vectors respec-
tively. Crossing symmetry requires that the 7-matrix is symmetric under exchange of

incoming and outgoing photons, & < &and v — —v, which implies that f is an even
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function and ¢ is an odd function of . The amplitudes can be separately determined by
using circularly polarized photons incident on a nucleon that is polarized either parallel
or anti-parallel with respect to the photon momentum ¢. The polarization vectors can take

the following form for a photon moving along the z-axis:

1
g4 = :Fﬁ (éx + iéy) ) (3.15)

which corresponds to right-handed (+1) and left-handed (-1) circularly polarized light.
For the above description the transverse gauge (¢ - ¢ = 0) was used with the photon four-
momentum and polarization defined as ¢ = (v, ¢) and ¢ = (0,¢) withg - ¢ =0.

Unitarity of the scattering matrix relates the imaginary part of the amplitudes to the

photoabsorption cross sections by the optical theorem:

Imﬂm:§%@4m+agm):£fT (3.16)
and
Img(v) = 8% (O’%(V) — 0g(u)> = iJTT. (3.17)

The helicity-dependent cross sections were defined in Section 3.1.
At small photon energies, the amplitudes can be expanded in powers of v, and the
low energy theorem (LET), of Low [26] and Gell-Mann & Goldberger [27], based on

Lorentz and gauge invariance gives the leading order terms:

Z%e?

) = =2+ (a+ Bt + 00, (3.18)
62/{/2

g(v) = —WV+70V3+O(V5)7 (3.19)

where Z is the target’s charge (1 for the proton and 0 for the neutron). The leading term
£(0) is the classical Thomson scattering result. The O(r?) term describes Rayleigh scat-

tering and introduces the electric («) and magnetic () dipole polarizabilities. For the
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spin-flip amplitude g, the leading term is associated with «, the anomalous magnetic mo-
ment, and the O(v?) term is related to the forward spin polarizability ~,, which contains
information on the spin structure.

The final piece needed to form the sum rule is a dispersion relation. Dispersion
relations can be derived for f(v) and g(v) by using the analytic properties of the forward
Compton scattering amplitudes with unitarity and crossing symmetry. The dispersion
relation for the spin-averaged amplitude f is the Kramers-Kronig relation from optics,

which connects the real part of f with an integral over the imaginary part of f:

Re f(v) = %P/OO dy’l/M : (3.20)

V’2 _ V2
With the optical theorem, the imaginary part is replaced by the total cross section so the

dispersion relation becomes

Re f(v) = f(0) + Y p / g ) (3.21)

272 V2 — 2’
where P denotes the principal value integral. Since the total cross section has a slow
logarithmic increase beyond the resonance region, a subtraction is made at » = 0 to ensure
that the integral converges. The term f(0) is the Thomson limit that was encountered in
the LET above.
Applying the same general principles, an unsubtracted dispersion relation can be

derived for the spin-flip amplitude:

Re g(v) = LP/OO a2 o) (3.22)

Az, U2
where the optical theorem was used to replace the imaginary part of g with the helicity-
dependent cross section difference. In this relation, it is assumed that the cross section
difference decreases fast enough at large »’ so that the integral converges without a sub-

traction. This assumption is called the non-subtraction hypothesis.
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Using the result from the LET from Eg. (3.19) and Eq. (3.22), we can now form the
GDH integral by comparing the O(v) terms such that

I =

BN ”d_v[
o2 T a2 ) L7

0

(v) — a%(y) : (3.23)

where o = e?/47. Sum rules have also been formed for the electric and magnetic polar-
izabilities and the forward spin polarizability. These will not be discussed further in this

document. More information on these sum rules is available in Refs. [5] and [19].

3.2.2 GDH Sum Rule Measurements

The GDH sum rule given by Eq. (3.23) connects a non-zero anomalous magnetic
moment to the excitation spectrum of the target being investigated. This in turn provides
a link to the target’s internal degrees of freedom, which we are attempting to understand
in the context of QCD. We expect that the low energy region including the lower mass
resonances must have a significant contribution to the sum rule because of the »~! weight-
ing. Table 3.1 provides, for selected targets, the anomalous magnetic moment, the GDH
sum rule values for the right hand side Irys and the measured values for the left hand side

I us of Eq. (3.24). All the targets listed except the deuteron have spin = % The sum rule

| Target | s (un) | Irus (ub) | I s (ub) |
Proton 1.793 -204.8 -211 + 15
Neutron | -1.916 -233.2
Deuteron | -0.143 -0.65 —440 + 21(stat) + 25(syst)
3He -8.371 | -497.9

TABLE 3.1: Anomalous magnetic moments and GDH sum rule values for select targets. The
anomal ous moments are given in units of the nuclear magneton, i = e/2M,,.
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can be generalized for a target of spin-S. In this case, the GDH sum rule becomes

/,, d_yy [op(V) —oa(v)] = —47?%(5% , (3.24)

where the helicity-dependent cross sections o p and o 4 are for the photon helicity parallel
or anti-parallel to the target spin. For nuclear targets, the energy threshold begins at the
photo-disintegration threshold, 2.2 MeV and 5.5 MeV for the deuteron and 3He nucleus

respectively [10].

Measurements have been conducted for the proton and neutron GDH sum rules. The
first proton measurement was performed at MAMI (Mainz) [28] for photon energies be-
tween 200 MeV and 800 MeV. The GDH Collaboration extended the measurement up to
2.9 GeV at ELSA (Bonn) [29]. With the two sets of data combined and an estimate for the
unmeasured regions, the proton sum rule was found to be =211 + 15 b [19] implying that
the sum rule is valid for the proton. Results on the deuteron GDH sum rule are available
between 200 MeV and 1800 MeV from MAMI and ELSA [30, 31] with a value of —440
+ 21(stat) + 25(syst) pb. For the deuteron sum rule to hold, these measurements indicate
that the contribution from photo-disintegration has to be significantly large to cancel the
resonance contributions. The neutron sum rule can be evaluated from the measured pro-
ton and deuteron results; however, the neutron extraction has yet to be performed. The
region between the breakup threshold to pion production will be measured at the High
Intensity Gamma Source (HI~S) [32]. There are other measurements planned, which are

discussed in Ref. [19].
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3.3 Dispersive Sum Rulesfor all Q?

Using the framework developed in Section 3.1, we will now discuss the generaliza-
tion of the GDH sum rule for virtual photons. In addition to the GDH sum rule, other
important spin sum rules will be discussed. The extension of the sum rule was originally
proposed to investigate the “spin crisis” of the 1980’s by Anselmino et. al. [33]. The spin
crisis was later resolved by taking into account the gluon spin, the sea quarks (¢-g pairs)
and the angular momentum of the partons. Various methods have been proposed to gen-
eralize the sum rule [34, 35], and we have chosen to follow the generalization discussed
in Refs. [19] and [36].

In addition to the transverse polarization vectors -, the virtual photon has a third

polarization vector £,. The polarization four-vector can be defined as

co — % (11,00, 40) . (3.25)

where the z-axis was chosen to be in the direction of the photon propagation,

q=(4,0,0,|q]) . (3.26)

The three polarization vectors and the photon momentum are orthogonal in the Lorentz
metrics. The forward Compton amplitude of Eq. (3.14) is then generalized for doubly-

virtual Compton scattering (VVCS) by adding the longitudinal polarization vector ¢:

T(v,Q*) = & &fr(v,Q*) + frlv, Q%) +id - (" x &) grr(v, Q%)

+i (& =) (3 % 4) gur(1. Q). (3.27)

For the following, we are only interested in the spin-flip amplitudes g+ and g7

Alternatively the spin-flip amplitudes can be cast into a covariant form involving the am-
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plitudes S (v, Q?) and Sy (v, Q?):

S0.Q) = S |en01@) + Lo, @)
2 M? 2 v 2
So(v, Q%) = YT [QTT<VaQ ) — @gLT(VaQ )} : (3.28)

Under the crossing transformation, the VVVCS amplitude has to be symmetric, which

leads to the following properties:
Sl(yv QQ) = Sl(_V7 Q2)7 S2(”7 Qz) = _52(_V7 Q2) ) (329)

grr(v, Q%) = —grr(—v, Q%),  grr(v, Q%) = grr(—v, Q7). (3.30)

The inelastic contributions can be related to the inclusive electroproduction cross sections

via the optical theorem:

2
Im grr(v,@Q%) = %UTT(%QQ%

2
Im grr(v, Q%) = %JLT(V,QQ). (3.31)

Then the imaginary parts of the covariant spin amplitudes follow from Egs. (3.28) and

Egs. (3.31) so that

2
S0 = g g o @) + Lo
2 2
Im Sy (v, Q%) = —U2JZQ2K<Z’WQ ) {UTT(V, QQ)—%JLT(V,Q%} . (3.32)

Consider the spin-dependent amplitude g,r; assuming it has an appropriate conver-

gence at high energy, we obtain the following unsubtracted dispersion relation:

12 __ 12

Re [gTT(V,Q) g%le(l/ Q2 = / Kl Q2 Jorr(, QQ)dz/, (3.33)
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where the elastic contribution g22° was separated from the inelastic contribution / > vy,
A low energy expansion can then be used

Re [grr(v, @) — 80 Q)] = 2o rr(@ v + 20 (@0 +007), (334

that yields a generalization of the GDH sum rule for the leading term,

M2 > K<V7 Q2> UTT(V7 Q2)

Irp(Q%) = 1% ), > » dv,
M2 zo M2
= 2@2 /0 [91(% Q) — 4622 7% gy (7, QQ)} dz (3.35)

and the second term leads to a generalized form of the forward spin polarizability ,

1 [*K(v,Q ,Q?
7TT(Q2> _ ﬁ i (VV )UTT(VV3 )dV,
2 o 2
- 162;]6\4 / z? [gl(x,QQ) - 42\;2 ngQ(x,Qz)] dr,  (3.36)
0

where z is the Bjorken scaling variable and o = % corresponds to the pion production
threshold. In the real photon limit (Q* — 0), Ir77(0) = —1x2 and y77(0) = 7, i.e., the
real photon sum rules are recovered for GDH and the forward spin polarizability.

With the same assumptions, we can construct an unsubtracted dispersion relation for

the amplitude g;7:

Re (g0 (v, Q%) — 15, Q*)] = =5 QL(Q%) + Qor(@) +0GY) . (337)

The leading term results in a sum rule for I;7(Q?):

B M?* [* K(v,Q*) orr(v,Q?)
]LT(Q2> - 477'20{ /1,0 v Q dV7
2 x0
_ M /0 [91(2, Q%) + ga(2, Q)] d (3.38)

QQ
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The O(v?) term gives the generalized longitudinal-transverse polarizability:

1 > K(V) QQ) O-LT<V7 QZ)

) 2y = d
LT(Q ) 27T2 o V QV2 V?
16aM? [0
= o / x? [gl(aj, Q%) + ga(z, QQ)} dx . (3.39)
0
We can also construct unsubtracted dispersion relations for the covariant amplitudes
Sl and Sg:
ole 2c0
Re Sl(yv QQ) _Si) ! (Va Q2):| = Mll(Q2) +791(Q2)V2+O(V4)7 (340)

where the leading order term leads to the sum rule:
_2M?

and the second term’s coefficient can be expressed as

L(Q%) /0 " g1(z, Q*)dx, (3.41)

2a
MQ?

¥91(Q%) = Mopr(Q) + (Ir7(Q%) — 1(Q%) - (3.42)

A “super-convergence relation” can be formed that is valid at any Q)2 by considering
the S, amplitude, which is odd in v. Assuming the behavior for this amplitude as v — oo
IS given by Sy — 12 with ay < —1, then there should be a dispersion relation for v.S5,

which is even. By subtracting the dispersion relations for .S, and v.S, we obtain:

/ 1 g2(x,Q*)dx = 0. (3.43)
0

This result is known as the Burkhardt-Cottingham (BC) sum rule [37] and indicates that
the sum of all elastic and inelastic contributions should vanish. The elastic and inelastic
contributions can be separated and the sum rule can be written in terms of the Sachs form
factors

2 xo
1(Q?) = Qé; / 4o, Q?)edi =

with 7 = Q?/4M>.

Gu(Q?) Gu(Q?) — Ge(Q?)
4 147

, (3.44)
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3.4 Summary

In this chapter, the formalism of the virtual photoabsorption cross sections and var-
ious spin-dependent sum rules were introduced. The generalization of the sum rules to
Q? > 0 provides a unique tool to test theoretical predictions with experimental data over
the entire range of the four-momentum transfer. In Chapter 3, the theoretical methods
to perform QCD predictions will be discussed and then a comparison will be conducted
with the available data. Finally the motivation for experiment E97-110 will be unveiled
with respect to theoretical calculations in terms of the sum rules discussed in this chapter.
For this dissertation, the measurement of the generalized GDH sum rule of Eq. (3.35) is

the main result.



CHAPTER 4

Theoretical Methods

Over the past couple of decades, the spin structure of the nucleon has been exper-
imentally mapped out for a large range of Q2. Recently, experiments at Jefferson Lab
have contributed to the low and intermediate Q? region between 0.02 and 2 GeV?2. In this
chapter, we will examine some of the more common theoretical methods that are used
to predict the Q2-variation of the structure functions. At low Q?, predictions are calcu-
lated using chiral perturbation theory, whereas the operator product expansion is utilized
at large Q2. The predictions are usually made in regards to the virtual photon-nucleon
amplitudes S; (v, Q?) and S»(v, Q). However experimentally, these amplitudes cannot
be measured for a space-like virtual photon, Q* > 0. This is where the dispersive sum
rules from Chapter 3 become important, since they relate the Compton amplitudes to in-
tegrals of the structure functions. Using the various sum rules, theoretical predictions of
the amplitudes can be tested against measurements of the structure functions, provided

the dispersion integrals converge [35].
In the first part of this chapter, we give an overview of the theoretical methods avail-

32
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able with an emphasis on chiral perturbation theory, since the results of this thesis are in
the low Q2 regime where it is expected to be applicable. In the second half, the current

data will be compared to the different predictions in the low to intermediate ()2 region.

4.1 Chiral Perturbation Theory

4.1.1 Chiral Symmetry

At low energies and four-momenta, Q? < 1 GeV?, the strong interaction’s running
coupling constant a,(Q?) is of order one. This makes expansions in powers of a, no
longer useful. In this region, different techniques are relied upon to make QCD predic-
tions. At low energies, the relevant degrees of freedom in QCD are composite hadrons
instead of the quarks and gluons of the DIS region. One approach to tackle the non-
perturbative region is to make use of basic QCD symmetries and conserved currents.
These serve as guiding principles to construct effective Lagrangians, which approximate
QCD at low energy.

We begin with the QCD Lagrangian [38]:

1 . _
Lqocp = —4—g2GﬁyGZV + @i Dyg — qgMgq, (4.1)

where G is the gluon field strength, ¢ is the quark field, and M is the diagonal quark mass

matrix. The absolute values of the running quark masses m; at the scale of 1 GeV are [5]:
M, (1GeV) = (4 £ 2)MeV , (4.2)

mqa(1GeV) = (8 £ 4)MeV 4.3

These masses are small compared to the characteristic hadronic scales, such as the pro-

ton’s mass, i.e., m,, /M, ~ 5-1073. So we now consider the limit where the m; vanish and
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then treat the light quark masses as perturbations. In this approximation, the ¢, b and ¢
quarks can be treated as infinitely heavy. For massless fermions, chirality or handedness is
identical to the particle’s helicity as defined in Eq. 3.7. This results in an extra symmetry

of the QCD Lagrangian, so we can introduce left and right handed quark fields:

1
qrL,r = 5(1 T )4, (4.4)

which do not interact with each other. The theory admits a SU(3) x SU(3)r symmetry,
and the invariance of the Lagrangian under this group is referred to as chiral symmetry.

The existence of the small but non-zero quark masses explicitly breaks chiral symmetry.

4.1.2 Chiral Symmetry Breaking and Perturbation Theory

In the limit of massless quarks, the theory admits an U(3), x U(3)r Symmetry;
however, the ground state of QCD does not have the full symmetry. Otherwise, all the
known hadrons would have a partner of the same mass but with opposite parity, which is
contrary to the observed hadron spectrum. As a matter of fact, the physical QCD ground
state is asymmetric under chiral symmetry [38]; hence, chiral symmetry is spontaneously
broken down to the flavor group SU(3)y, i.e, the vector charge. Goldstone’s theorem
[39, 40] requires the existence of eight massless pseudoscalar mesons [5]. In nature,
the eight lightest hadrons are the pseudoscalar mesons, which include the pions (7*,7°),
kaons (K*,K° K°) and eta (). The Goldstone bosons have mass, since the non-zero
quark masses explicitly break chiral symmetry.

We can now construct an effective Lagrangian, which replaces Eq. (4.1) in the low

energy limit with two parts:

Lqcp = Lo+ L, (4.5)
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with

st - _qMQa (46)

which can now be regarded as a perturbation to the chiral symmetric part of the La-
grangian £,. The effective Lagrangian still retains the symmetries and symmetry break-
ing patterns of the fundamental theory of QCD. This approach is reasonable because the
light quark masses are small compared to the 1 GeV hadronic gap, which is a consequence
of the spontaneous breaking of chiral symmetry.

A low energy expansion is used to order the energies and momenta (p) of the in-
teracting particles such that any matrix element or amplitude derived from the effective
Lagrangian is organized in a power series, > ¢,p™. The framework for the expansion is
called chiral perturbation theory (xPT) [38]. We note that the radius of convergence is ex-

pected to be quite limited; however within this limit, rigorous statements are possible [5].

4.1.3 Baryon Chiral Perturbation Theory

Over the past 15 years, there has been very productive theoretical activity in re-
gards to xPT calculations. Here we highlight the main theoretical work [41-44] relevant
to this thesis involving the spin-dependent structure functions and their moments. The
theoretical effort is limited to the two flavor case of the up and down quarks. The predic-
tions have typically examined the Q?-dependence of the Compton amplitudes S; (v, Q?)
and Sy(v,@?) in the low energy and momentum regions. In Section 3.3, we saw that
the Compton amplitudes can be connected to integrals of the spin structure functions via
dispersion relations.

As mentioned in the previous section, the low-energy expansion is made in powers

of small momenta and quark (pion) masses, which involves pion loops of the effective
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theory. The introduction of baryons to the theory creates a complication: the baryon
mass is nonvanishing in the chiral limit and adds a new scale to the theory [45]. The
implications of this are that there is no guarantee that all next-to-leading-order corrections
at order p* are given completely by one-loop graphs. Theorists have considered two
main approaches for dealing with these complications: Heavy Baryon yPT (HBxPT) and
Relativistic Baryon yPT (RBxPT).

Heavy Baryon yPT

In the Heavy Baryon approach, the baryons are considered as very heavy and the
theory is expanded in inverse powers of the baryon mass, which results in a consistent
counting scheme. However the authors in Ref. [45] warn that the expansion in the ratio
of pion to nucleon masses m.. /M is not expected to converge very fast. In fact, a signif-
icant Q*-variation was seen for the generalized GDH sum rule when the next-to-leading

(O(p*)) order was calculated in xYPT [41].

Lorentz-invariant Baryon yPT

Recently Bernard et al. [42, 44] have studied the Compton amplitudes for low Q2
in a Lorentz-invariant formulation of baryon yPT. A complete one-loop (fourth order)
calculation was performed that showed significant differences from the previous results
based on HBPT. The underlying method of this approach involves “infrared regulariza-
tion”, where any dimensionally regularized one-loop integral can be split into an infrared
singular and a regular part depending on a particular choice of Feynman parameteriza-
tion. The contributions from the regular part can be absorbed into low-energy constants
of the effective Lagrangian, whereas the chiral expansion of the infrared part leads to the

non-trivial momentum and quark-mass dependences of yPT. Results obtained from this
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approach are compatible with expectations from naive-dimensional analysis, which was

not the case for the HBxPT calculations.

Resonance and Vector Meson Contributions

So far we have only discussed the pion-nucleon contributions. However there are
expected to be reasonably sized resonance contributions to the Compton amplitudes, es-
pecially from the A(1232) resonance. ldeally, the A resonance would be included as
a dynamical degree of freedom in the effective Lagrangian, but an effective field the-
ory of the relativistic pion-nucleon-delta system does not exist. So the A contribution
has only been added systematically in the heavy baryon approach. In this approach, the
nucleon-delta mass difference is treated as an additional small parameter. In RBxPT, the
A contribution is estimated by calculating relativistic Born graphs, which are dependent
on a few experimental parameters that are not well known. The predictions with this con-
tribution included have a band of values due to the uncertainties in these parameters. The
authors of Ref. [44] have also included contributions from the vector mesons.

One possibility to get around the resonance contributions is to consider quantities
involving the difference between proton and neutron observables. In the difference, the
resonance contribution largely cancels out and a reduced Q2 dependence is expected [46],

generating a quantity for which xPT predictions are expected to be more reliable.

4.2 Operator Product Expansion

In 1969, Wilson originally introduced the Operator Product Expansion (OPE) [47] as
an attempt to formulate a substitute for quantum field theory. The expansion can provide

model-independent QCD predictions for the moments of the structure functions via sum
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rules. The OPE method separates the perturbative part of the product of two operators
from the non-perturbative part. The product of the two operators can be written in the

small distance limit d — 0 as

lim 7, (d)y(0) = zkjcabk<d>ak<0>, (4.7)
where C,;; are known as the Wilson coefficients, which contain the perturbative part
and are calculable perturbatively in QCD. The operators o}, contain the non-perturbative
information and hence are not calculable in perturbative QCD. In the DIS region, this for-
malism is used to develop a product of currents on a local operator basis. The contribution

of any operator to the cross section is of the order:

. % T—2
x (Q) (4.8)

where Q = \/@ and 7 = D —n is defined as the “twist”. The dimensionality (in powers
of mass or momentum) and spin of the operator are represented by D and n, respectively.
At large Q?, the leading twist term known as twist-2 dominates, since higher twists are
suppressed by increasing powers of %. For small values of %, higher twist contributions
are expected to be important.

When the parton model was discussed in Section 2.3.4, we claimed that the g»(z, Q?)
structure function had no simple interpretation. Now we will explore the g, structure
function in terms of the twist expansion. This structure function can be separated into

twist-2 and higher twist terms:

QQ(ZL‘, QQ) = gng(xv QQ) + gQ(xv QQ) ) (49)

where giVW (x, Q?) is purely a twist-2 contribution and is entirely determined by g, (z, Q?)
from the Wandzura-Wilczek relation [48]:

1 2
g3 W (2, Q%) = —gi(z, Q%) +/w &;Q)d

Y. (4.10)
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The second term of Eq. (4.9) contains information on higher twist effects which are related

to quark-gluon interactions.

First Moment of g; (x, Q?)

We now consider the first moment of the structure function g, (z, Q?) defined by

1
Fl(QQ)E/ g1(z, Q*)dx . (4.11)
0
Using the OPE leads to the twist expansion for the first moment:
2
=y Al (412)

R NCAEE
with the coefficients p., are a perturbative series in «,. The coefficients are related to
nucleon matrix elements of twist < 7. The application of the OPE requires summation
over all hadronic final states, so the elastic contribution at = = 1 is included [49].
The leading-twist term o can be expressed into flavor triplet (¢g4), octet (ag) and

singlet (AX) axial charges:

@) = (5aa-+ g ) + 5A8 + Ol (@) (4.13)

where +(-) denotes the proton (neutron) and the O(«,) terms are the * evolution due to
QCD radiative effects. These higher order terms are calculable from perturbative QCD.
The g4 axial charge is known precisely from neutron 3-decay and ag can be extracted
from hyperon (3-decay assuming SU(3) flavor symmetry. Within the parton model, A
is the amount of spin carried by quarks. This quantity has been extracted from a global
analysis of the world data from DIS experiments [50].

The difference between the first moments of the proton and neutron g; spin structure
function gives rise to the well-known Bjorken sum rule as Q% — oo:

1

TQY) — TH@?) = 294+ 0(a(Q%) + O(1/@?). (419)
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Bjorken first derived this sum rule using the current algebra method [51], so it provides
a fundamental test of the structure of QCD. With the perturbative QCD corrections in-

cluded, the Bjorken sum rule has been tested and verified to the level of 10%.

4.3 Lattice Gauge Theory

Lattice QCD [5] provides a framework for non-perturbative calculations of hadronic
structure. The difficulties of solving QCD analytically are avoided by discretizing QCD
on a finite space-time lattice. In principle, the technique involves a simulation of QCD;
however, the calculations are numerically intensive. To ensure that the calculation pro-
vides the desired observable, the lattice spacing a needs to be small and the finite volume
needs to be large. However a compromise needs to made, since the calculations are com-
putationally costly. Lattice QCD is a rapidly developing field and important conceptual

and technical progress is being made to improve this method’s current capabilities.

The hope is one day lattice calculations will bridge the gap in the intermediate Q2
regime, where neither OPE or yPT can make predictions. A strong connection between
lattice calculations and xPT has recently developed. The results from lattice QCD have
to be extrapolated to the value of the observable in the limit of infinite volume and as the
lattice spacing becomes infinitesimal. One approach has been to use the predictions from
xPT to make these extrapolations [52, 53]. Hence, lattice QCD results are now tied to

xPT, and the verification of xPT predictions with data is essential.
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4.4 The Phenomenology MAID Model

The unitary isobar model MAID [54] utilizes phenomenological fits to photo- and
electroproduction data on the nucleon from the pion-production threshold to W =2 GeV.
Resonance contributions are included by taking into account unitarity to provide the cor-
rect phases of the pion photoproduction multipoles. The model also assumes the reso-
nance contributions have Breit-Wigner forms with contributions to the helicity-dependent

Ccross sections given by

AM

O'% (%) - WI‘ESFI‘GS

A% B, @), (4.15)

where W, and I',; are the mass and width of the resonance, respectively. The helicity-
dependent amplitudes are given by Aé(%), and B(v, Q?) represents the generalization to
electroproduction of the Breit-Wigner form. The model includes the resonances men-
tioned in Table 2.1 plus the P;;(1440) and D33(1700). Contributions from vector mesons

and a non-resonant background are also included.

With this model, good agreement has been obtained with pion photo- and electropro-
duction data on the nucleon for both polarized observables and differential cross sections
(see [18, 19, 54]). The model validates the proton GDH sum rule; however, the model
does not verify the neutron GDH sum rule at the real photon point. The neutron dis-
crepancy may be caused by neglecting final state interactions for pion production from
deuterium or 3He targets, a larger than expected two-pion contribution for the neutron, or

possible multipole expansion modifications due nuclear binding effects for the neutron.
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4.5 Dataand Theoretical Prediction Comparisons

In the last decade, experimental results have become available in the low and in-
termediate (Q? regions which allows us to test our understanding of QCD in the non-
perturbative and transition regimes. In this region, the effective degrees of freedom are
the hadrons rather than the quarks and gluons of perturbative QCD. In this section, we dis-
cuss the experimental data and make a comparison to the available theoretical predictions.
The discussion will be restricted to measurements of the neutron spin structure from a po-
larized 3He target. However data are also available for the proton [55] and deuteron [56].
An overview of the recent data on sum rules and moments of the nucleon spin structure

functions is available in Ref. [49]

Results for the neutron generalized GDH sum rule (red squares) from Eq. (3.35)
are shown in Fig. 4.1. The results were extracted from JLab experiment E94-010 [57]
from pion threshold to W = 2 GeV. For the virtual photon flux factor, the convention in
Eq. (3.4) was used to make comparisons with the theoretical predictions. The uncertain-
ties on the data are statistical only. The systematic uncertainties are represented by the
green band. The blue squares include an estimate of the unmeasured W > 2 GeV contri-
bution. The data illustrate a smooth ()-variation from large negative values at low ? to
smaller values at higher Q2. The data approach the HERMES neutron results [58], which
only include contributions from the DIS part of the integral. At the real photon point, the
value of the GDH sum rule (—232.8 ub) is represented by the asterisk. Two yPT pre-
dictions are shown for Q% > 0 using HBYPT [41] and RByPT [42]. The band indicates
the RBPT calculation with resonance and vector meson effects included [44], where the
large uncertainty is due to the parameters used as discussed in Section 4.1.3. The lowest

Q? point overlaps the band from the RByPT calculation with resonance contributions.
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Above )? = 0.3 GeV?, the YPT predictions are much more negative than the data. Also
shown is the MAID model calculation, which is more positive than the data and should

only be compared to the red squares.

] <& Hermes (DIS)
>k GDH Ssum Rule
B Resonance
B Resonance+DIS

Bernard et al. (VM+4)
—— Bernard et al.(xPT)
—————— Jietal
—— MAID (Resonance)

GDH Integral (pb)
]
g

0.2 0.4 0.6 0.8 1 1C
Q% (Gev?)

FIG. 4.1: Resultsfor the neutron generalized GDH sum rule I (Q?) from experiment E94-010.

The generalized spin polarizabilities as defined in Section 3.3 provide bench mark
tests for the xPT predictions. The integrands for the polarizabilities are weighted by an
additional factor of v 2, which suppresses the DIS contribution from the unmeasured
region W > 2 GeV2. One of the biggest questions in xPT is how to handle the nucleon
resonance contributions, especially the dominant A resonance. The authors in Refs. [43]
and [44] have pointed out that the &, spin polarizability should be insensitive to the A
resonance, whereas v, is much more sensitive.

In Fig. 4.2, the spin polarizabilities for the neutron [59] are shown between Q? of

0.1 and 0.9 GeV2. The solid squares show the data with statistical uncertainties, and the
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systematic uncertainties are given by the dark band. Predictions from HBxPT [43] and
RBxPT [42] are compared with the experimental data. The calculation with resonance
contributions [44] is indicated by the light gray bands. First we consider the lowest ()2
points at 0.1 and 0.26 GeV2. For the ~, spin polarizability (top, left panel), the RByPT
calculation with resonance contributions agrees well with the data for Q2 = 0.1 GeV?2.
However the HBPT shows significant differences even at this low Q2. The MAID model
shows good agreement with the higher Q2 point, whereas a sizable difference is seen for
the lower point.

The 677 spin polarizability, which is expected to be less sensitive to the resonance
contributions, is shown in the bottom left panel. Surprisingly the data show a significant

disagreement with both predictions even at the lowest Q2 point. The MAID model on the

other hand is in good agreement with these results.
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FIG. 4.2: Results for the neutron spin polarizabilities v (Q?) and §.7(Q?) from experiment
E94-010.

In the right panel of Fig. 4.2, the polarizabilities are shown multiplied by Q°¢. The

MAID and xPT calculations are shown for comparison. The Q%-weighted polarizabilities



4.6. SUMMARY 45

are expected to exhibit scaling (become independent of Q2) at large Q2. Clearly neither
spin polarizability shows this below 1 GeV?2. The world data from Ref. [60] and a lattice
QCD calculation [61] are shown at Q2 = 5 GeV?2.

The above results are only a sample of the quantities that provide comparisons be-
tween the data and theoretical predictions. Comparisons have also been made for the
BC sum rule and the first moment of g, (z, @?). As mentioned previously, data are also
available for the proton and deuteron. From the discussion in this section, it becomes
clear that with the available data at Q2 > 0.1 GeV? that the xPT predictions have some
success as in the extended GDH sum rule and also for the proton results. However the
o1 spin polarizability, which was expected to be a solid testing ground, shows significant
differences with the current calculations for the neutron. The predictions from yPT are
expected to have a limited range, perhaps only up to 0.1 GeV2. At present, the data is at
the limits of this range, and further measurements at very low Q? are required to provide

definitive tests of the xPT predictions.

46 Summary

In this chapter, the theoretical tools that are commonly employed to predict the sum
rules and the moments of the spin structure functions were presented. At high Q?, the
operator product expansion is used to make non-perturbative calculations. Ji and Osborne
[35] have argued that OPE is expected to be a good approximation down to Q? ~ 0.5
GeV?2. In the low Q? region, predictions from low-energy effective field theories such as
xPT have grown into a mature field. However the predictions from yPT are expected to be
valid in a limited range from Q2 = 0 to 0.1 GeV?2. For observables that involve a difference

between proton and neutron observables, the range maybe extended up to 0.2-0.3 GeV2.
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A small gap region exists between the two methods that may possibly be filled by lattice
QCD calculations, which have shown promise in the past decade. Of course, theoretical
predictions are complemented by the experimental data, which help guide the theoretical

process in the transition region between perturbative and non-perturbative QCD.
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The Experiment

Experiment E97-110 was conducted at the Thomas Jefferson National Accelerator
Facility (TINAF) in experimental Hall A in April-May and July-August 2003. TINAF,
also known as Jefferson Lab (JLab), is located in Newport News, VA. The experiment
was performed to provide a precise measurement of the inclusive polarized cross sections
for electron scattering from *He. The data was acquired at low momentum transfers (0.02
< Q* < 0.3 GeV?) in the quasi-elastic and resonance regions. The goal of the experi-
ment was to extract the 3He and neutron spin-dependent structure functions g, (z, Q?) and
go(z, Q%) and their relevant moments. This low-Q? range allows us to make a definitive
test of the xPT predictions presented in the previous chapter. The kinematic coverage is
shown in Fig. 5.1. Longitudinally polarized electrons with nine incident energies between
1.1 and 4.4 GeV were scattered from a high-pressure polarized 3He target. The target was
polarized in both longitudinal and transverse directions, which allows us to extract both
structure functions. The scattered electrons were detected in the right Hall A high resolu-

tion spectrometer (HRS) at angles of 6° and 9°. The small scattering angles were reached
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with the addition of a septum magnet [62] located in front of the spectrometer.

E97-110 Kinematics Coverage
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FIG. 5.1: Kinematic coverage of experiment E97-110.

The experimental data were acquired in two separate run periods denoted as the
first (green regions) and second periods (blue and red regions) in Fig. 5.1. E97-110 was
the first experiment to use the septum magnet, and the magnet was found to be mis-wired
during the commissioning period. In particular, this caused a significant loss in acceptance
but not in statistics due to the forward scattering angle and low beam energies. Between
the two run periods, the magnet was repaired and successfully commissioned during the
second period. However due to the complications of the mis-wired magnet, the analysis
presented in this document is only concerned with the eight incident beam energies shown

in blue and red. The first period analysis is being conducted by other collaborators [63].
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This chapter will discuss the polarized electron beam, the Hall A beamline com-
ponents and the details of the polarized 3He target. Various beamline components are
available to monitor the beam current, position, polarization and energy in the hall. Un-
derstanding the systematics from these components is crucial in performing a precise

measurement of the polarized cross sections.

5.1 TheElectron Accelerator

North Linac
(400 MeV, 20 cryomodules)

I njector
(45MeV, 2 1/4 cryomodules)

heig

refrigerat

South Linac

I njector (400 MeV, 20 cryomodules)

= - elements

FIG. 5.2: Schematic of the Jefferson Lab accelerator and experimental halls.

The accelerator consists of a polarized source, an injector, two linacs, two re-circulation
arcs and extraction elements to send beam into the three experimental halls: A, B and C.
A diagram of the accelerator and its components is shown in Fig. 5.2. The polarized
electron source will be discussed in the next section (Section 5.1.1).

Once the polarized electron beam is generated, the electrons enter into the accelera-

tor. The polarization angle of the electrons is set with a Wien filter so that the electrons are
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longitudinally polarized in the halls. The g — 2 precession through the accelerator is taken
into account when the polarization angle is set. The injector then accelerates the electrons
up to 45 MeV before they enter the first linac. Each linac consists of 20 superconducting
cryomodules that are composed of eight superconducting radio-frequency (RF) cavities.
The cavities produce field gradients of ~ 7 MeV/m. The electrons then enter a recircu-
lation arc and are sent into the second linac where they are accelerated again. After the
second linac, the beam can either enter the second recirculation arc and be accelerated up
to five passes, or it can be extracted and sent into the experimental halls. The extraction

is performed using RF separators and magnets.

Originally the accelerator was designed to accelerate the electrons up to 4 GeV. How-
ever the maximum achieved beam energy is slightly less than 6 GeV due to the high
performance of the cavities. The accelerator can provide beam to all three halls simul-
taneously at three different energies. It is also possible for the accelerator to deliver the
maximum beam energy to all three halls at the same time. The maximum beam current
available among the three halls is 200 pA, which is split arbitrarily between three inter-
leaved 499 MHz bunches. Each of the bunches can then be peeled off to any one of the
halls. Halls A and C are capable of taking beam currents greater than 100 ©A, whereas

Hall B typically runs at less than 100 nA.

5.1.1 Polarized Electron Beam

The polarized electron beam is produced by illuminating a gallium arsenide (GaAs)
photocathode with circularly polarized photons. The photons excite electrons from the
valence band to the conduction band in the photocathode. The electrons are pulled from

the conduction band into the accelerator by holding the crystal at a bias voltage of —100
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kV [64]. The GaAs cathode crystal structure contains a P/, valence band and a S,
conduction band. The degeneracy of the GaAs valence band is broken by introducing
a strain on the crystal. A “strained” GaAs cathode is created by growing a thin layer
of GaAs on a GaAsP substrate. With the degeneracy broken, it becomes (theoretically)
possible to produce a beam of 100% polarized electrons. The energy levels and band gaps
of a strained GaAs cathode is shown in Fig. 5.3. Right (left) circularly polarized light
excites electrons from the valence band into the m; = +(—) 1/2 state of the conduction

band.
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FIG. 5.3: Energy level and bandgap diagram for a strained GaAs cathode. Reproduced from
[64].

To enable the measurement of helicity-dependent observables such as asymmetries
and cross-section differences, the beam helicity is reversed. This process is performed
frequently with the aid of a Pockels cell to minimize the impact of time-dependent sys-
tematic effects. Pockels cells are electro-optic devices that are birefringent. Their bire-
fringence is linearly proportional to the electric field applied. At Jefferson Lab, they are

used to provide fast reversal of the beam helicity and to convert linearly-polarized laser
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light into circularly-polarized light. The beam helicity is pseudorandomly flipped at 30
Hz by switching the sign of the voltage in the Pockels cell. An insertable half-wave plate
(IHWP) located upstream of the Pockels cell also provides a means to reverse the beam
helicity. Insertion of the half-wave plate is done to check and to help cancel helicity-

dependent systematic effects.

5.1.2 Beam Helicity

For experiment E97-110, the “GO helicity scheme” [65] as shown in Fig. 5.4 was

used. The characteristics of this scheme are as follows:

QRT

| O.51ms
MPs|]  33.33ms H

helicity 1

FIG. 5.4: Beam helicity sequence used during experiment E97-110.

e The macro-pulse trigger (MPS signal at 30 Hz) is used as a gate to define periods when

the helicity is valid.

e The helicity sequence has a quartet structure (either + — —+ or — ++—). The helicity

of the first MPS gate is chosen pseudorandomly.
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e Quartet trigger (QRT) defines when a new random sequence of four helicity states has

begun.
e The helicity information sent to the halls are typically delayed by eight MPS.

A blank-off period of approximately 0.5 ms exists for each 33.3 ms gate period. During
this blank-off period, the Pockels cell has time to change and settle. The quartet sequence
provides for exact cancellation of linear drifts over the sequence’s timescale, and the delay
in helicity reporting breaks any correlations with the helicity of the event by suppressing
crosstalk. For the experiment, two different delays were used. For the first period, the
helicity reporting was delayed by 8 MPS; whereas for the second period, the helicity was

reported in-time, i.e., with no delay.

5.1.3 Charge Asymmetry Feedback

Though the Pockels cell produces highly circularly polarized light, the cells con-
tain imperfections that generate a small linear component causing the polarization to be-
come elliptical. When the helicity is reversed, the angle of the ellipse changes creating
an helicity-correlated asymmetry known as Polarization Induced Transport Asymmetry
(PITA) [66].

An helicity feedback system was used to minimize this effect for the physics data.
The Hall A Proton Parity Experiment (HAPPEX) data acquisition system was used to
monitor the charge asymmetry and adjust the Pockels cell voltage accordingly. A rotatable
half-wave plate (RHWP) was also placed downstream of the Pockels cell. This half-wave
plate can rotate the direction of the residual linear polarization to reduce its effect on the
helicity-correlated beam parameters. For this experiment, a charge asymmetry less than

200 ppm was sufficient to suppress this effect as a source of systematic error. Typically
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the charge asymmetry was better than this. However there were a few times when the

feedback system failed. These instances are discussed in Section 7.2.3.

5.2 Hall A Beamline

5.2.1 Beam Current Measurement

The beam current is measured by two beam current monitors (BCMs), which are
located 25 m upstream from the target. The BCMs are stainless steel cylindrical high-Q
(~ 3000) waveguides that are tuned to the beam’s frequency (1497 MHz) [67]. Their
outputs’ voltage levels are proportional to the beam current. The RF output signals from
the cavities are split into two parts: sampled and integrated data. In between the two
BCM cavities is an Unser Monitor (Parametric Current Transformer) which provides an
absolute measurement of the current and can be used to calibrate the cavities. However
since the Unser’s output signal drifts over a time period of several minutes, it is not used
for continuous current monitoring. For this experiment, the Faraday cup was used in the
calibration [68], and the Unser was used as a crosscheck of the calibration.

The sampled data are processed by a high-precision digital AC voltmeter. The digital
output of the voltmeter represents the RMS of the input signal once every second. The
output is then recorded every 1-2 s by the data logging process. The integrated data are
sent to an RMS-to-DC converter and then to a voltage-to-frequency converter. The output
frequency is then sent to the VME scalers and injected into the data stream. The scalers
accumulate during the run and each BCM scaler provides a number proportional to the
time-integrated voltage level, which represents the total beam charge. The RMS-to-DC

output is linear for currents between 5 to 200 pA. A set of amplifiers was introduced with
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gain factors of 1, 3 and 10 to extend the linearity below 5 pA.
The beam current and hence charge, @), = I,t, is obtained from the BCM scaler

reading as follows:

I, =t 1% (5.1)

where a = 1, 3, 10 is the gain factor, t is the time for each run (in seconds) and N, is the
BCM scaler reading for each gain factor. The calibration constants k, and BCM offsets
fa are determined from calibration runs. For E97-110, the calibration was performed
during the experiment in August 2003 [69]. The calibration constants for the upstream
and downstream cavities are given in Table 5.1, and compared to earlier calibrations [68];

these results differ by < 1%.

| Amplification | Upstream Cavity | Downstream Cavity |

1 1338.4 13355
3 4100.7 4140.9
10 12467.5 13015.1

TABLE 5.1: The E97-110 BCM calibration constants [69].

The BCM offsets are determined from the calibration runs during the periods without
beam delivery to the experimental hall. The time dependence of the offsets were checked
by using runs with periods without beam or cosmic runs and were expected to be reason-
ably stable during the experiment. Unfortunately the offsets were not stable during the
experiment, so a careful analysis was conducted to determine the offsets throughout the
second run period. Details of this analysis can be found in Ref. [70].

For experiment E97-110, the data were taken with beam currents between 0.5 and

10 pA. For currents above 5uA, the x3 gain signals were used, and below 5uA, the x10
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gain signals were used. The x1 gain signals were not used in the data analysis.

5.2.2 Beam Position Measurement

Two beam position monitors (BPMs) located 7.524 m and 1.286 m upstream of the
target are used to determine the position and direction of the beam at the target location.
The BPMs provide a non-invasive measurement when beam is present in the hall. Each
BPM consists of four wire antennas contained within a cylinder, which is parallel to the
beam direction. When the beam passes through the BPM system, a signal is induced in
the antennas that is inversely proportional to the distance from the beam.

The absolute position of the beam is determined by calibrating the BPMs with two
superharps (wire scanners) that are located adjacent to the BPMs. The superharps provide
an invasive measurement of the beam position and consist of three wires oriented verti-
cally and at + 45°. The wires are scanned across the electron beam resulting in a shower
of particles that are then detected. The superharps are routinely surveyed with respect to

the Hall A coordinate system. The BPMs have a resolution of 20 um at 10 pA.

5.2.3 Raster

The experiment used high-pressure glass cells with thin glass end windows (100-300
um). The beam position was rastered to avoid overheating the glass windows, since the
electron beam is typically focused to 100-200 ;sm when it enters the hall. For experiment
E97-110, a new triangular raster was used, which copied the Hall C design [71]. The new
raster provides a major improvement over the sinusoidal raster [10] reducing dwell time
at the peaks. A uniform density distribution of beam on the target is achieved by moving

the beam position with a time-varying dipole magnetic field with a triangular waveform.
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The raster contains two dipole magnets, one vertical and one horizontal, which are located
23 m upstream from the target.

In the electronics design, an “H-bridge” is used that allows one pair of switches to
open and another pair to close simultaneously and rapidly at 25 kHz. The current is drawn

by HV supplies and rises according to

I(t) = % (1 - e*%) : (5.2)

where 7 = é is the time constant with resistance R and inductance L. The time and
applied voltage are ¢ and ¢, respectively. In Fig. 5.5, a sample raster pattern using the
triangular waveform is shown. For the experiment, different raster sizes were used. Early
in the experiment a 2 mm x 2 mm raster was used. After one of the target cells ruptured,
the raster size was increased to 3 mm x 3 mm for the 4.209 GeV data, and the majority

of the second period data were taken with a 4 mm x 4 mm raster size.

5.2.4 Beam Energy

There are two independent methods to measure the absolute beam energy in Hall
A. The eP measurement [67] utilizes the elastic *H(e,e’P) reaction. The beam energy is
determined by measuring the scattered electron angle 6. and the recoil proton angle 6,

which are constrained by

cos 0 + Sl ] m2
E =M. i o= 53
P 1 —cosb, * (EQ) ’ (5:3)

where M,, and m, are the proton and electron masses, respectively. The schematic of the
eP system is shown in Fig. 5.6. The eP target consists of a rotating thin film (10—30 pm)
of CH, located about 17 m upstream of the Hall A pivot. The electron and proton are

measured in coincidence by two sets of detectors [72], which are placed symmetrically
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FIG. 5.5: Raster pattern (~ 3mm x 3 mm) showing the horizontal (zyc.m) and vertical beam
(Ybeam) POSitionsin mm.
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FIG. 5.6: Diagram showing the components of the eP energy measurement system. Reproduced
from [67].
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about the beamline. The proton detectors are located at an angle of 60° with respect to
the beamline. On the other hand, the electron detectors are located at a range of angles
from 9° to 41°, which corresponds to an incident energy range of 0.5 to 6.0 GeV. The
proton detectors consists of two scintillator planes and a silicon micro-strip detector. The
electron detector consists of silicon strip detectors, a scintillator plane and a Cerenkov

counter. The achieved uncertainty from the eP method is < 2 x 10~* GeV.

The second method to measure the beam energy is called the Arc energy measure-
ment [72]. The energy is determined by measuring the deflection angle of the beam in the
40 m arc section of the beamline. The momentum of the electron deflected by a magnetic
field is related to the field integral of the eight dipoles and the bend angle ¢ through the

arc section by
[B-dl
9 )

p==k (5.4)

with & = 0.299792 GeV rad T~! m~!/c. The nominal bend angle of the electron beam
in the arc section is 34.3°. Two measurements are performed simultaneously. The field
integral of the eight dipoles in the arc is measured using a 9th identical dipole (reference
magnet) that is connected in series with the others, and the actual bend angle of the arc
is measured using two pairs of wire scanners (superharps), one before and one after the
arc. The Arc energy measurement also provides an absolute measurement to the 2 x 10—*

GeV level.

The beam energy is also monitored continuously online using the Tiefenback mea-
surement [73]. This method is non-invasive and uses the relation between the field integral
value and the set current in the eight dipoles of the arc section. Corrections are made us-
ing the arc BPMs and the transfer functions for the Hall A beamline magnets. The energy

from this method is accurate to the 5 x 10~ GeV level.
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| Angle | Beam Energy (MeV) | Target Cell |

6° 2134.2 Penelope
6° 4208.8 Priapus
6° 2134.9 Priapus
6° 2844.8 Priapus
9° 1147.3 Priapus
9° 2233.9 Priapus
9° 3318.8 Priapus
9° 3775.4 Priapus
9° 4404.2 Priapus

TABLE 5.2: The average beam energy from Tiefenback measurements for the second run period.

Beam Energy for E97-110

During the experiment, only one beam energy measurement was performed using
the eP measurement system. That measurement was performed at the end of running for
the 2.135 GeV beam energy. The result from this measurement was 2135.67 MeV + 0.20
MeV =+ 0.46 MeV, where the first uncertainty is statistical and the second from system-
atics. The Tiefenback measurement is relied on for the remaining energies. Table 5.2
summarizes the average beam energies for the experiment’s second run period. Details
on the energy determination are available in Ref. [74]. Two periods of data taking exists
for the 2.135 GeV beam energy. The first four momentum settings at this energy were
taken with the polarized 3He cell Penelope. After a week of running, the cell ruptured
and was replaced with the cell Priapus. The rest of the data at this energy were taken with
Priapus. Both the Tiefenback and eP energy measurements indicate that beam energy for
the Priapus data was about 0.7 MeV higher than for the Penelope data. Within the total

uncertainty, the eP measurement agrees with the Tiefenback measurement.
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5.2.5 Beam Polarization

The typically electron beam polarization is 75—85%. Two polarimeters exist in Hall
A to measure the beam polarization: the Mgller and Compton polarimeters. The two

polarimeters provide partially overlapping and complementary measurements.

Magaller Polarimeter
The Mgller polarimeter [67] exploits Maller scattering of polarized electrons off

polarized atomic electrons in a magnetized foil:
E+é€—e+te. (5.5)

The Maller scattering cross section depends on the beam P and target polarization
P along the i'" axis:

: (5.6)

0O = 0p

1+ > (A:PR)

i=X,Y,Z

where i defines the polarization projections. The analyzing powers of the polarization

projections are given by A;;, and oy is the unpolarized Mgller cross section:

2 2
oy — [a(l + €08 Oern ) (3 + cos 9cm)} | 5.7)

2mMe SN2 Oy
where 6., is the scattering angle in the center of mass frame.
If we take the beam direction to be along the z-axis and the y-axis is normal to the
scattering plane, then the analyzing powers become:

$in? Qe (7 + 082 Oery )

Agz = — 5.8

77 (34 cos?0cm)? (5:8)
sin? O,

Axx = —Ayy = — 3+ cos20) (5.9

The longitudinal polarization is extracted from Az, and from the knowledge of the target

polarization. The analyzing power has its maximum value of 7/9 for 6., = 90°.
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The polarization measurement is invasive and conducted at very low beam currents.
An asymmetry is measured rather than the cross section, since the asymmetry, which is
a ratio of cross sections, is insensitive to many of the systematics related to cross-section
measurements. The target foil, which is oriented at an angle of + 20° with respect to
the beam in the horizontal plane, provides sensitivity to both longitudinal and transverse
beam polarizations. The transverse component then cancels out when the average is taken.
False asymmetries are also partially canceled by taking measurements with the target foil

polarized in the opposite direction.
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FIG. 5.7: Schematic of the Mdller Polarimeter with the top plot presenting a side view and the
bottom a top view. Reproduced from [67].

Figure 5.7 shows the schematic of the Mgller polarimeter and magnetic spectrometer
that is used to detect two scattered electrons in coincidence. The spectrometer consists of

three quadrupoles and a dipole. The detector system contains two lead-glass calorimeter
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modules that are split into two arms for the coincidence measurement. The statistical ac-
curacy is typically 0.2% [67], whereas the systematic error is dominated by the knowledge

of the foil polarization, which has a 3% relative uncertainty.

Compton Polarimeter

The Compton polarimeter [67] is located at the entrance of Hall A and consists of a
magnetic chicane, polarized photon source, electromagnetic calorimeter and an electron
detector. The polarimeter measures the asymmetry in the scattering of circularly polarized

photons off of the polarized electron beam. The beam polarization P, is extracted from

A
p === 5.10
b PryAth ) ( )

where A.,, is the experimentally measured asymmetry, P, is the photon polarization and
Ay is the Compton analyzing power. The photon polarization has been measured to be
greater than 99%.

The electron beam is deflected vertically by the four dipole magnets in the Compton
chicane so that the beam will cross the photon beam at the Compton interaction point. The
interaction point is located at the center of the chicane. A resonant Fabry-Pérot cavity is
used to increase the photon density. The scattered electrons are detected in the silicon
strip detector, and the backscattered photons are detected by the calorimeter. The data
acquisition system can be triggered either by single electrons, single photons, or with
electrons and photons detected in coincidence.

The polarization measurement is non-invasive, so it can be performed while the pri-
mary beam is delivered on the experimental target. The polarization of the photon beam
can be reversed with a half-wave plate in order to reduce beam helicity-correlated effects.

The figure of merit of the Compton polarimeter is proportional to E7 the electron

beam’
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beam energy squared, which leads to less accurate measurements at low beam energies.
The relative systematic error is approximately 1—1.5%, with the main contribution com-
ing from the detectors’ resolution in the determination of the analyzing power [67]. A
statistical accuracy of 1% has been achieved with an hour of running the polarimeter. For
experiment E97-110, the statistical accuracy from the Compton polarimeter was 3-5%
because of the low beam currents used. Hence, the Mgller polarimeter was the main

source of beam polarimetry for the experiment.

Beam Polarization for E97-110
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FIG. 5.8: The average beam polarization from the Mgller and Compton polarimeters for the
second run period.

The beam polarization measurements from both polarimeters are shown in Fig. 5.8.

The average Magller and Compton polarizations were 74.7% and 74.9%, respectively [69].
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A summary of the beam polarization measurements are available from Ref. [74].

During the first run period, a sizable bleedthrough from the Hall C beam was dis-
covered in the Hall A beamline. Since the Hall C beam polarization has the opposite sign
to the Hall A beam polarization, this bleedthrough can result in a large correction to the
beam polarization. When the Mgller measurements were performed, the bleedthrough
from Hall C was measured and corrected. However typically only one Mgller measure-
ment was performed at each beam energy, whereas several measurements were made with
the Compton polarimeter, which can only measure the polarization of the Hall A beam

and the Hall C bleedthrough together.

The bleedthrough from Hall C in Hall A is dependent on the beam currents from
the two halls and the Hall A slit position. The Hall A slit can be closed to reduce the
bleedthrough from Hall C. Since the Hall A and Hall C currents vary, the bleedthrough
also varies. During the second run period, dedicated measurements were performed to
measure the Hall C bleedthrough. If the Hall C bleedthrough was more than a few percent,

then the Hall A slit was closed to reduce the bleedthrough to an acceptable level.

The corrected beam polarization in Hall A P is determined by

B

P = PRee — (ﬁ) (PR — Po) (5.11)

where Py is the beam polarization in Hall A with the Hall C laser off, and B is the
percentage of the Hall C current in Hall A measured by the Hall A BCM. P¢ is the
polarization in Hall A with the Hall A laser off. The polarizations used in Eq. (5.11) are
taken from the Mgller measurements. The bleedthrough from Hall C was empirically

determined from the Hall A current, the Hall C current and the Hall A slit position [74].

There are two cases that had to be considered: with the Hall A slit out and with the
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| Time Period | HallASlit| o | & |
Before August Maintenance ouT -0.1885 0.431
IN -0.01776 | 10.53x 1075
After August Maintenance ouT 0.0125 0.1902
IN -0.01776 | 8.962 x 1075

TABLE 5.3: The bleedthrough coefficients for Egs. (5.12) and (5.13).

Hall A slit partially inserted. The bleedthrough formulas take the following forms:
B=a+p3 R, (5.12)

for the slit out and

B=a+8-R-S2, (5.13)

for when the slit is partially closed. The ratio of the Hall C to Hall A current is given by R,
and the slit position is denoted by .S. The empirically determined fit coefficients are given
by « and /3, which are listed in Table 5.3. There are two sets of coefficients, since the
bleedthrough’s dependency changed after the accelerator maintenance period in August
2003. These coefficients provide an accuracy for the bleedthrough calculation to better
than 1%. However, the dominant systematic uncertainty comes from the measurement of

the polarizations from the Mgller polarimeter, which is at the 3% level.

5.3 ThePolarized *Hetarget

Ideally, we would use a free polarized neutron target to study the spin-dependence
of the neutron. However the neutron’s short half-life of 886.7 4+ 1.9 s [11] and neutral

charge make the creation of a free neutron target impractical so that precise spin structure
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measurements can be conducted. Instead polarized nuclear targets such as deuterium and
3He have been used as a substitute.

For experiment E97-110, a polarized 3He gas target provides an effective neutron
target, since in the ground state configuration the wave function is dominated by the S-
wave. In this configuration, the two proton spins in the 3He are paired, so the lone neutron
spin is aligned with the spin of the 3He nucleus. This target has been used successfully
for several Jefferson Lab Hall A experiments (E94-010 [57], E95-001 [75], E99-117 [76],
E97-103 [77] and E01-012 [73]) prior to E97-110. The target has demonstrated reason-
able polarizations (35-42%) with electron beam currents up to 15 pA. More details about

the Jeffreson Lab polarized *He target are available in Ref. [78].

5.3.1 Overview of the Polarized Target

A diagram of the polarized 3He target is illustrated in Fig. 5.9. The two chambered
target cell is placed in the center of the target system. The top chamber, known as the
pumping chamber, resides inside an oven heated to 170° C. The lower target chamber is
where the electron beam interacts with the polarized *He and is centered in two orthogonal
sets of Helmholtz coils. The Helmholtz coils produce a 25 Gauss field that can be oriented
in any direction (in-plane).

Rubidium (Rb) alkali vapor is optically pumped inside the pumping chamber using
circularly polarized light from three 30 W diode lasers, which are tuned to a wavelength
of 795 nm. The Rb polarization is then transferred to the *He nuclei via a spin-exchange
process. The laser light is circularly polarized with a series of optical elements, which
include a polarizing beam-splitter and quarter-wave plates.

Two independent polarimetry methods are used to reduce the systematic uncertainty
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FIG. 5.9: Diagram of the polarized 2He Target system. The transverse Helmholtz coils are not
shown to provide clarity.
in the polarization. For the nuclear magnetic resonance (NMR) method, the signal ampli-
tude of 3He nuclei is detected to measure the polarization in the target chamber while the
holding field is swept through resonance. The second method of electron paramagnetic
resonance (EPR) detects the change in the Zeeman frequency of rubidium when the He

polarization direction is flipped.

5.3.2 Target Cell

The target cells used in experiment E97-110 are highly pressurized (10—12 atm un-
der operating conditions) glass cells with 130—140 micron thick end windows. The glass
walls of the cells were approximately 0.7 mm thick. The thin glass walls were needed to

reduce the radiation length of the electrons passing through the glass at scattering angles
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of 6° or 9°. The amount of glass traversed by the scattered electron goes as (sin ) ~*,
where 0. is the scattering angle. The two-chambered cells consists of a pumping chamber
and a target chamber connected by a transfer tube as shown in Fig. 5.10. The spherical
pumping chamber contains the Rb vapor and is where optical pumping occurs. The elec-
tron beam passes through and interacts with the polarized *He in the cylindrical target

chamber. Typical cell dimensions are as follows:

For high beam energy
and at 9 degrees

FIG. 5.10: A standard 40 cm long target cell used during E97-110.

Target chamber diameter: 1.9 cm.

Transfer tube length: 6 cm.

Transfer tube diameter: 1.2 cm.

Pumping chamber diameter: 6.5 cm.

For the low beam energies at 6°, even the thin 0.7 mm walls was not sufficient to
reduce the electron’s energy loss, so a new cell design was developed that consisted of

an asymmetric cone for the downstream part of the target chamber. The “ice cone” cell
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is depicted in Fig. 5.11, where the scattered electrons at 6° pass through the thin end
windows instead of the glass walls. The exit end window is only 200-250 microns thick
suppressing the amount of glass traversed by almost a factor of 30. The length of the new
cells were 35 cm long compared to the standard cells. The “ice cone” cell Proteus was
used for the first period, and the two standard cells Penelope and Priapus were used for

the second period.

Necessary for 6 degrees at Low Beam Energy!

Scatteretl El ectron.s-_

FIG. 5.11: An “ice cone” target cell used during E97-110.

Table 5.4 gives the main characteristics that are crucial in determining the target po-
larization during operation. The three target cells used during the experiment were char-
acterized at the University of Virginia (UVa) [74]. The pumping chamber volume, transfer
tube volume, target chamber volume and total volume of the cell in cm? are represented
by Ve, Vit, Viec and Vi, respectively. The cell density and lifetime (see Section 5.3.4)

are respectively given in units of amagats® and hours. The lifetime uncertainties are large,

11 amagat = 2.6868 x 10'Y atoms per cm3. The unit is dimensionless and is the ratio of the number
density of agasto the number density of anidea gasat 0° C and 1 atm.
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| cell | Ve Vi Vie . Viot | mo | Lifetime |
proteus 89.2 3.1 1399 236.0 | 6.85 74
penelope 1008 4.0 98.6 2044 | 8.90 56
priapus 1099 39 96.3 208.7 | 8.72 54
Uncertainty | 0.7% 0.7% 0.7% 0.5% | 1.5% | 10-20%

TABLE 5.4: Target cell characteristics for experiment E97-110. Cell volumes are given in cm?,
and densities are in amagats at room temperature.

since polarization loss corrections were not applied and the polarization time evolution

was not measured over a full lifetime of the cell.

5.3.3 Optically Pumped Rubidium

The 3He nuclei are polarized using a two step process commonly called spin ex-
change optical pumping (SEOP). The first stage involves optically pumping the rubidium
vapor with circularly polarized light. Neglecting the spin of the rubidium nucleus, the
energy levels of the rubidium atoms placed in an external magnetic field depend on the
quantum numbers of the system and the magnetic field’s magnitude. The presence of the
external field separates the energy levels. The following notation will be used to designate
the different energy levels:

N2SHL, ) (5.14)

where N represents the electron shell, S is the intrinsic electron spin, L is the orbital
angular momentum, and J is the total angular momentum L + S. Other useful quantities
are the angular momentum of the rubidium nucleus, denoted as I, the angular momentum
of the atom F with F' = I + J, and my the z-component of .

At Jefferson Lab, right circularly polarized light tuned to 794.8 nm induces a transi-

tion of the ®°Rb valence electrons from the 5°S; /» (m = —1/2) ground state to the 52P; /
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(m = +1/2) excited state? subject to the selection rule Am = +1. Left circularly polar-
ized light could also be used, but instead the m = +1/2 ground state sublevel would be
excited to the m = —1/2 sublevel. After the electrons are excited, they can decay by emit-
ting photons. These photons are unpolarized and can be reabsorbed by other rubidium
atoms, which would reduce the polarization efficiency. A small amount of nitrogen gas
is added to the system, which allows a non-radiative decay by absorbing the energy into
the nitrogen’s rotational and vibrational degrees of freedom via collisions. The excited
electron will then decay into either the m = +1/2 or m = —1/2 5S, /, state. Since the
m = —1/2 state is continuously being pumped, eventually the majority of the atoms will
collect in the m = +1/2 state causing the rubidium gas to become magnetically aligned.

This process of optical pumping is depicted in Fig. 5.12.

Collisional Mixing

my =+
5P: J 2
2
Nonradiative
Quenching
D, Light

Yo

(]
.:}. m; =+1

Spin Relaxation

FIG. 5.12: Diagram of the optical pumping technique to polarize rubidium (Rb) vapor. Provided
by [79].

2The energy splitting between the S;/2 and Py ), levelsisreferred to asthe D1 line.
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5.3.4 Spin Exchange and Relaxation Rates

The rubidium electrons can transfer their polarization to the *He nuclei by a hyperfine-
like interaction between the Rb electron and *He nucleus. The transfer of polarization

primarily occurs in binary collisions between the Rb atoms and *He nuclei as illustrated

©

in Fig. 5.13.

®

FIG. 5.13: Diagram of spin exchange between a Rb atom and >He nucleus. Provided by [79].

The spin exchange rate with 3He is given by the formula:
vse = kse[Rb], (5.15)

where kg Is the spin exchange coefficient and [Rb] is the rubidium number density. A
factor of two uncertainty has existed for ksg, but recently the spin exchange coefficient
was measured and found to have a value of (6.8 & 0.2) x 10~2° cm?/s [80]. The Rb
density is given by the Killian formula [81], but a more commonly used formula [82]

provides the rubidium density with a 5% accuracy:
[Rb] — (1026.17874040/7’) /T, (516)

where T is the temperature in Kelvin. For the operating temperature of 170 °C, Eq. (5.16)

gives a Rb vapor density of 2.58 x 104 cm~3, and hence a spin-exchange rate of (16h) .
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This slow exchange rate makes the polarization of 3He via spin exchange an inefficient
process.

The time evolution of the 3He polarization is described by

_ JSE —~(yse+D)/t
Piye(t) = (P, 1 — e (e 5.17
3He( ) < Rb> o T [ € } ) ( )

with (Pgp,) the volume averaged Rb polarization with (Pg;,) > 90%. The *He nuclear
spin relaxation is represented by I'. Since the spin exchange rate is small, quite a bit of
effort is made to minimize this quantity. The relaxation rate can be obtained from a spin-
down measurement, where the *He polarization versus time is measured in the absence
of optical pumping and the electron beam. The exponential decay constant 7 is called the
lifetime of the target cell and is related to the spin relaxation by I' = 71, Cell lifetime is

one of the primary characteristics that determines the cell’s maximum polarization.

Spin Relaxation
The spin relaxation rate can be expressed in terms of the main sources of depolariza-
tion:
I'=7""= Taipole + I'vB + Dyal + Dbeam - (5.18)
In Eq. (5.18), Taipole represents the relaxation due to the *He-*He magnetic dipole inter-

action at 23 °C [83] and is expressed as

_ [*He] _,
1_‘dlpole - 744 h

(5.19)

where [*He] is the *He density in amagats. For the typical operating density during E97-
110, the dipole relaxation rate was about (70h)~!. The authors of Ref. [83] did not provide
the analytical form of the temperature dependence. However a parameterization of the
temperature dependence was performed [84], which results in a ~ 14% correction to

Eq (519) at 170 °C, Fdipole ~ (80h)_1
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The second term in Eq. (5.18) represents the depolarization due to magnetic field

gradients:

|VB.|* + [VB,|?
B? ’

where Dsy, = 0.28 cm?/s is the 3He self-diffusion constant, and B, = 25 G is the holding

I'ys = Dspe (5.20)

field. The gradients perpendicular to the holding field are given by VB, and VB,. The
gradients are usually kept below 10 mG/cm, which results in a negligible depolarization
from this source.

Another source of relaxation is *He collisions with the glass cell walls. The walls of
the cell can contain paramagnetic impurities and microscopic fissures. Unfortunately this
aspect of the depolarization is hard to control and depends on the fabrication of the cell,
and I'y,.; has been seen to vary significantly from one cell to another. The typical high
polarization cells at Jefferson Lab have a wall relaxation rate of (90h) .

Finally the electron beam produces another depolarization effect by ionizing the 3He
atoms as it passes through the target. The 3He nucleus can then be depolarized due to a
hyperfine interaction with the remaining atomic electron spin. A study of this effect has

recently been conducted, and details are available in Ref. [84].

5.3.5 Target Polarimetry

NMR Polarimetry

The technique of adiabatic fast passage (AFP) [85] is utilized in both target polarime-
try methods to measure the polarization of the *He nuclei. In the AFP method, the spins
are reversed while keeping the loss in polarization minimal. Nuclear magnetic resonance
(NMR) AFP can be classically described for a free particle with spin I and magnetic mo-

ment A = ~I, where ~ is the particle’s gyromagnetic ratio (27 x 3.243 kHz/G for 3He).
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When the particle is placed into a magnetic field, the magnetic moment experiences a
torque:

The motion precesses around the magnetic field 4, and we can now consider the system
in a rotating frame that rotates at the same frequency & as the precession. The evolution

of the magnetic moment then becomes
SM o .3
OM 3T x (H - f) , (5.22)

and the magnetic field H can be replaced with an effective field H, = H — <.

2

When the NMR measurement is performed, the magnetic field is oriented parallel to
the beamline H = H. k. If the frequency is chosen such that w = vH, the motion of the
magnetic moment will vanish. This frequency in a static field is known as the Larmour
frequency wy. An oscillating RF field H, = H, cos(wt)% + H,; sin(wt)j’ with a frequency
of 91 kHz is then applied perpendicular to the holding field. The effective field can be

expressed as

H, = (Hz . ﬂ) o+ Hyil, (5.23)
Y

and the average *He magnetic moment will align itself with this effective field.

During the NMR measurement, the holding field is swept from 25 G to 32 G through
resonance, % = 28.06 G, and back, and the *He spins follow the effective field. As the
field is swept, the spins go from being aligned to anti-aligned with respect to the main
holding field, i.e, a spin flip occurs. At resonance, the motion of the spins induces an
electromotive force that generates a signal in a pair of pick-up coils placed on both sides of

the target chamber. The amplitude of the detected signal is proportional to the transverse
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magnetization Mr:

() Vi
1L _ Ti11
My \H  /(H({t)— Ho)? + H2' (5.24)

where H, is the holding field at resonance, and H(t) is

S(t) =

H( = at+ 0 ift < tsweep (5.25)
B—at ifteep <t < 2tsweep
with o = 1.2 G/s is the sweep rate, 3 is the starting holding field value (25 G) and tgyeep
(5.83 s) is the length of the sweep through resonance. A typical NMR measurement is
shown in Fig. 5.14.

The NMR signal can be fit to Eq. (5.24) with a linear background included. The sig-
nal amplitude from the fit is extracted and is proportional to the polarization of the *He,
Pye = knvrSue. The constant of proportionality kxyr IS dependent on the cell posi-
tion, density, geometry and the responsiveness of the pick-up coils and related electronics

[86]. The NMR constant is determined by calibrating the 3He signal against the thermal

polarization of protons in water.

AFP Condition
The holding field sweep must satisfy the AFP conditions to limit the polarization
loss during the measurement. The AFP condition requires that the holding field changes
slowly enough (adiabatic) so the *He spins will follow the magnetic field while it is swept,
but fast enough so that the spins will not relax during the sweep. These conditions are
expressed by:
1

1 dH
— L —— H 5.26

where T}, ~ 435 s [86] is the ®He relaxation rate in the rotating frame, and the magnitude

of the RF field is about 90 mG. Hence, the above conditions for 3He are easily met.
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FIG. 5.14: A typical *He NMR AFP spectrum. Provided by [79].

Water Calibration
The 3He NMR signal is calibrated with a water cell that has similar geometry to the
3He cell. The thermal polarization of water follows the Boltzmann distribution:

ppB

Pth = tanh LT s

(5.27)

where i, = 2.793uy is the proton’s magnetic moment in nuclear magnetons (3.152 x
104 MeV T71), B is the magnetic field, & is Boltzmann’s constant (8.617 x 10~!! MeV
K=1) and T is the temperature of the water in Kelvin. At room temperature 295 K and
the resonance field, the thermal polarization of water is only ~ 7.40 x 10—, so hundreds
of measurements are averaged together in order to increase the signal-to-noise ratio. The
average value is then used for the calibration.

For the water NMR measurements, the field is swept from 18 to 25 G with the



5.3. THE POLARIZED *HE TARGET 79

resonance at 21.37 G, since the gyromagnetic ratio for protons is 2rx 4.257 kHz G~ 1.
The RF frequency is the same as that used for the 3He NMR. Since the thermal relaxation
time for water is approximately 3 s, which is the same order of magnitude as the length of
time that the field is swept, the proton spins relax during the sweep. This affects both the
amplitude and shape of the AFP signal, and the signal is now dependent on the speed and
direction of the field sweep. The amplitude of the water signal is extracted based on fits
to the Bloch equations [85] instead of Eq. (5.24). The constant of proportionality is then
related to the ratio of the thermal polarization of protons in water and the water signal
amplitude S,,.

The dominant source of systematic uncertainty in kxyr involves the calculation of
the magnetic flux through the pick-up coils. The uncertainty from the flux is mostly due
to the measurements in the cell and coil positions relative to each other and results in an

uncertainty of ~ 2.0%.

EPR Polarimetry

In the presence of a magnetic field, the Rb F' = 3 ground state splits into seven sub-
levels mp = —3, —2, ..., 2, 3. The Zeeman splittings between the different sublevels are
given by the electron paramagnetic resonance (EPR) frequency vgpr, Which is propor-
tional to the magnetic field:

vepr = k, B, (5-28)

with k, = 0.466 MHz G~!. The presence of the polarized *He nuclei generates an ad-
ditional small magnetic field (100 mG) in addition to the main holding field. The EPR
method of polarimetry measures the small increase in the Zeeman splittings due to the
polarized *He. The EPR frequency can be decomposed into two parts; the first part v is

proportional to the holding field, and the second dvgpg is proportional to the *He polar-
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ization:

VEPR — o + 5VEPR . (529)

The sign indicates that the *He spin is either anti-parallel (+) or parallel (—) to the external
magnetic field.

The small component dvgpr Is measured by applying a small RF field to excite the
mp = —3 to mp = —2 transition of the ground state sublevels. This transition results in
an increase in the number of mpr = —2 Rb atoms that can be pumped by the laser light.
When these atoms decay back to the ground state, a corresponding increase occurs in
the number of photons emitted, which can then be detected in a photodiode. Since the
cell is illuminated with D1 light from the lasers, a D22 filter is used to instead detect the
increase in D2 light. During the EPR measurement, the 3He spins are flipped by sweeping
the frequency through resonance while the resonance frequency is monitored. The change
in EPR frequency is shown in Fig. 5.15 for a typical EPR measurement. Initially the *He
spins will be aligned with the holding field, and after the spin flip, they are anti-aligned
with the field. A precise measurement of the polarization can be obtained by measuring
the frequency, and the polarization Py, is extracted from the change in EPR frequency:

87 fig

dv
Avgpr = 3 1n <—) Kotre | “He] Pe (5.30)

dB
where gy, = 1.155 x 107 MeV T~ is the magnetic moment of *He, and « is a tem-

perature dependent factor measured in Ref. [87]:
Ko = 4.52 4 0.00934T(°C) . (5.31)

The EPR calibration constant kgpr is defined as

8 po (dv(F, Am)
kppr = & — — i

o ) s 1] (532)

3The energy splitting between the ground state S, » and P, levelsis referred to asthe D2 line.
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FIG. 5.15: A typical EPR resonance plotted versus time. Provided by [79].

and the derivative d”(S’BAm) for the mp = —3 to mp = —2 transition was obtained from
Ref. [88]:
d -2 —
/(3. - BH 3) 046714+ 74 x 10748, (5.33)

where B is the magnetic field magnitude in G, and the derivative has units of MHz per
G. The dominant systematic uncertainty from EPR is from «, with a value of 1.5%. Of
course, the EPR measurement provides the polarization in the pumping chamber, so the
polarization gradient between the two chambers needs to be calculated to determine the
target chamber polarization. The details for the determination of the polarization gradient
are described in Ref. [84]. The effect for E97-110, which includes depolarization from
the electron beam, was estimated to be a 5% relative difference between the pumping and

target chamber polarizations using a 10 A beam and a cell lifetime of 40 hr.
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5.3.6 E97-110 Target Performance

During the experiment, NMR and EPR measurements were done back-to-back every
4-6 hours. The target polarimetry analysis is first performed for the individual measure-
ments, and then a polarization for each run is determined by using linear interpolations
between the measurements. In Fig. 5.16, the target polarization (interpolated for each
run) is shown from the average of the NMR and EPR measurements [79]. The vertical
dashed line divides the data between the two target cells used for the second period. The
relative uncertainty on the target polarization is about 7.5%. This uncertainty is about a
factor of two larger than normal due to a discrepancy between the two polarimeters. The
discrepancy may be related to gradient effects at the target from the septum magnet. In
this case, the EPR measurements are more reliable and have a total uncertainty < 4%.

The discrepancy between NMR and EPR is currently under investigation [79].
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FIG. 5.16: The target polarization versus run number for E97-110. The error bars include the
relative 7.5% uncertainty due to the discrepancy between the NMR and EPR results.



CHAPTER 6

TheHall A Spectrometers

In this chapter, the Hall A spectrometers and their detector packages are presented.

The optimization of the spectrometer optics for experiment E97-110 is also discussed.

6.1 High Resolution Spectrometers

Hall A contains a nearly identical pair of magnetic spectrometers known as the high
resolution spectrometers (HRS) [67]. Their main characteristics are summarized in Ta-
ble 6.1. For the reminder of this document, the two spectrometers will be referred to as
HRS-L and HRS-R. The spectrometers transport charged particles in a small range of
momenta and scattering angles to their respective detector packages. Both HRSs contain
three quadrupoles and a dipole magnet in a QQDQ configuration as illustrated in Fig. 6.1.
The three superconducting quadrupoles referred to as Q1, Q2 and Q3 provide focusing:

Q1 focuses in the vertical plane and Q2 and Q3 in the transverse plane.

The superconducting dipole has a vertical bend of 45°, which provides the momen-

83
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tum resolution at the 10~ level. The magnetic field in the dipole magnet determines the
momentum of the electrons that reach the detector package. The spectrometer’s central

momentum is related to the magnetic field of the dipole by

3
Py=) TB;, (6.1)
=1

where T'; are the spectrometer constants, and By is the dipole magnetic field. These
constants were determined for both HRSs over their full momentum range [89]. Table 6.2

provides the constants for the spectrometers.

HRS Design Layout

(design magnet effective lengths displayed) 1st VDC Plane 1
- )\

Dimensions in meters
4 Fim L O\ 38T
—  }—0.80 8.40 k/45° A
33 1.50 ™\
F.eoﬂ ~30°
7/ 10.37
—1.69-
— r—4.42 -
Dipole
1
2
3.05
20.76

FIG. 6.1: Magnet confi guration for the Hall A HRS spectrometers. In the diagram, al units are
in meters, and the effective lengths of the magnets are displayed. Reproduced from [67].
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Bending angle 45°
Optical length 23.4m
Momentum range (HRS-L) 0.3-4.0GeV/c
Momentum range (HRS-R) 0.3-3.2GeV/e
Momentum resolution 1x10~4
Dispersion at the focus (D) 124 m
Radial linear magnification (M) -2.5
Angular Range (HRS-L) 12.5 - 150°
Angular Range (HRS-R) 12.5-130°
Angular acceptance (horizontal) + 30 mrad
Angular acceptance (vertical) + 60 mrad
Angular resolution (horizontal) 0.5 mrad
Angular resolution (vertical) 1.0 mrad
Solidangleat § =0, y0=0 6 msr
Transverse length acceptance +5cm
Transverse position resolution 1 mm

TABLE 6.1: The characteristics [67] of the standard Hall A spectrometers.

| [T, (MeVIT) [ T, (MeV/T?) | T5 (MeV/T?) |
HRS-L | 2702 +1 0 16+04
HRS-R | 2698 + 1 0 1.6+ 0.4

TABLE 6.2: The spectrometer constant coefficients for HRS-L and HRS-R.

6.2 Septum Magnets

A few experimental groups in Hall A were interested in forward angle measurements
between 6° and 12.5°. However, the spectrometers have a minimum achievable lab angle
of 12.5°. The main reason for this limitation is that Q1 cannot be moved closer to the
beamline without hitting the beam pipe. A proposal was approved that added a supercon-
ducting dipole in front of each spectrometer to reach angles down to 6°. The schematic

setup of the HRS with septum is shown in Fig. 6.2
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FIG. 6.2: A schematic diagram of the septum magnet + HRS spectrometer with the target moved
80 cm upstream.

Horizontal-bending septum magnets [62] were designed and fabricated for experi-
ment E94-107, Hypernuclear Spectroscopy [90]. They were designed so that the perfor-
mance of the HRS would not be degraded by the addition of the magnets. The goal was
to have a general purpose device so particles with momenta up to 4 GeV/c and angles be-
tween 6° and 12.5° were detectable in the spectrometers. The HRS + septum spectrometer
would have a 4.7 msr angular acceptance and momentum resolution < 2x10~4.

The target was moved 80.0 cm upstream to accommodate the new magnets. With the
septum magnet + HRS spectrometer the target appears situated on the optical axis of the

two spectrometers. In Table 6.3 the dimensions of the septum magnets are summarized.

Length 88.0cm

Height of the gap 25.0 cm
Width of gap (entrance) | 10.4 cm
Width of gap (exit) 18.4 cm
Angular acceptance 4.7 msr
Magnetic length 84.0cm

TABLE 6.3: Dimensions of the septum magnets [91].

For experiment E97-110, we commissioned the HRS-R septum magnet at central
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scattering angles of 6° and 9°. Since the HRS-L septum was unavailable, the left spec-
trometer instead detected scattered electrons from a carbon foil target. This target was
placed ~ 90.0 cm downstream from the target location for the HRS-R + septum spec-
trometer. The data from HRS-L was used to monitor false asymmetries and the beam

luminosity. The reminder of this document will only address data from HRS-R.

6.3 Detector Package

The detector packages for the two spectrometers were almost identical during E97-
110 and were utilized for electron detection. Here only the HRS-R package will be dis-
cussed. The configuration is shown in Fig. 6.3. A pair of vertical drift chambers determine
the particle trajectory for the target reconstruction and, coupled with the dipole, provides
the momentum resolution. Then the particles pass through a pair of plastic scintillator
planes, which form the trigger for the data acquisition. Particle identification (PID) is
provided by a gas Cerenkov sandwiched between the scintillator planes and a two-layer
electromagnetic calorimeter. The main difference between the HRS-L and HRS-R pack-
ages is that in the second layer of HRS-R calorimeter, the blocks are oriented parallel to
the particle tracks, whereas in the HRS-L calorimeter the blocks in the second layer are

oriented perpendicular to the tracks as shown in Fig. 6.5.

6.3.1 Vertical Drift Chambers

The vertical drift chambers (VDC) [92] provide tracking information that result in
good position and angular resolution. Each spectrometer contains two chambers with two

wire planes in a standard UV configuration, which are inclined at an angle of 45° with
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FIG. 6.3: Detector package for HRS-R. Note the aerogel Cerenkov was not used or present in
the detector stack during E97-110. Reproduced from [67].

respect to the dispersive and non-dispersive directions. In the UV configuration, the wires
of each successive plane are orthogonal to each other [67]. The first wire plane that the
particles traverse is located at the spectrometer focal plane. The distance between like
wire planes is 335 mm as shown in Fig. 6.4, and each plane contains 368 active sense

wires.

For the VDCs, the process of ionization is utilized where the incident particle col-
lides with gas molecules creating electron-ion pairs. An electric field is applied in the
chamber with gold-plated Mylar planes powered at -4.0 kV. The chambers are filled with
a 62/38 gas mixture of argon and ethane. The argon provides the ionizing medium, and
the ethane absorbs the produced photons from ionization. The gas continuously flows at 5
liters per hour per chamber to provide a homogeneous dry gas environment. The ionized

electrons drift along the electric field lines. When the electron is near a wire, the electron
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accelerates due to the radial electric field, which then can produce many secondary ion-
izations. The net result of the avalanche of electrons produces a detectable signal (hit) on
the wire.

By design, electrons that traverse the VDCs with a nominal angle of 45° will fire
between four to six wires (cluster) per plane providing accurate reconstruction of the
electron’s trajectory. At the extreme angle of 52°, three wires will still fire. The trajectory
is extracted by using timing information from the time-to-digital converters (TDCs) to
determine the drift distances for each wire in a cluster. The cross-over point of the track
is then determined by a linear fit of drift distances versus wire position. Finally the track
positions and angles are extracted from the data. The position and angular resolution in

the focal plane are approximately 100 xm and 0.5 mrad, respectively.

U VDC
V2 pper V2 /

d, =26mm
u2 m T i

Side view

d=335mm d,=335mm

V1 )
ut ; d,,=26mm

u
nominal particle trajectory ' Lower VDC

nominal particle trajectory

Top view
N 4
288 mm

2118 mm

FIG. 6.4: Schematic diagram of the Hall A vertical drift chambers. Reproduced from [67].



90 CHAPTER 6. THEHALL A SPECTROMETERS

6.3.2 Scintillators

The HRS-R spectrometer contains two plastic scintillator planes (S; and S,) sepa-
rated by 2 m to trigger the data acquisition. Each plane has six 5 mm thick paddles, and
each paddle is viewed by two photomultipliers (PMT), one at each end. The edges of two
adjacent paddles overlap to avoid gaps between the paddles. The timing resolution for
each plane is about 0.3 ns.

The criteria for the main trigger is as follows:

e The left and right PMTs on a paddle of S; both fire.
e The left and right PMTs on a paddle of S, both fire.

e The track is reasonably close to 45°.

The third requirement implies that if an event triggers paddle n on Sy, then it must trigger
paddle n or n + 1 on Sy. The main trigger for the right spectrometer is referred to as T;.
A secondary trigger, T,, is used to measure the scintillator efficiency. The T, trigger is
exclusive to T, and formed by requiring one of the scintillator planes to have fired and a
signal was detected by the Cerenkov detector. These are possibly good events that one of
the trigger planes failed to detect.

The triggers are then sent to the trigger supervisor (TS), which determines if the data
acquisition (DAQ) should record the event. When the event rate is high, the DAQ system
cannot record all the events. The fraction of events recorded by the DAQ is represented
by a quantity called the livetime LT or deadtime DT = 1 — LT'. Deadtime comes mostly
from computer data processing and can be decreased by prescaling the events with a

prescale factor ps at the TS; for every ps events, only one is sent to the DAQ system.
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Electronic deadtime is also present due to the response of the detectors. However, this is
negligible compared to the computer deadtime.

The livetime is event type and helicity dependent and is determined by dividing the
total number of triggers accepted by the DAQ system 772 by the number of triggers 7;

recorded by scalers:

SiTaCC,:t
LT =P — (6.2)
where i =1 or 2 is the event type, ps; is the prescale factor for event type i and 4+ denotes
the helicity.

The speed of the particles 3 can also be measured by using the time-of-flight between

S, and S,.

6.3.3 Gas Cerenkov Detector

The gas Cerenkov detector [93] is used for particle identification. For E97-110, the
Cerenkov separated electrons from other negatively charged particles such as pions. The
detector is based on the detection of Cerenkov light, which is produced when a particle
is traveling faster than the speed of light in a medium. The threshold for production of

Cerenkov light is

B=-, (6.3)

S|+

where n is the index of refraction of the medium. The threshold’s dependency on the
particle’s velocity, makes this a very effective method to distinguish between particles

with different masses. Since electrons and pions have a sizable mass difference, the index
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of refraction can be chosen so that only electrons will trigger the detector over the desired
momentum range.

The gas Cerenkov is mounted between the two scintillator planes and filled with at-
mospheric pressure CO, with an index of refraction of 1.0004. The threshold momentum

Py, for different particle species can be calculated from:

Pn = —=—, (6.4)

n?—1
where m is the particle’s mass. The electron threshold is 18 MeV/c; whereas, the thresh-
old for pions is 4.87 GeV/c, which is well above the momentum range (0.4 GeV/c to 3.2
GeV/c) for this experiment.

The HRS-R Cerenkov detector has a pathlength of 150 cm and contains ten spherical
mirrors that reflect the Cerenkov radiation onto a set of ten PMTs. The signals from
the PMTs are then sent to analog-to-digital converters (ADC) and summed. The sum
represents the total measured light produced by the particle.

Unfortunately pions can cause a sizable background by knocking out electrons from
material before reaching the detector. These electrons, known as -electrons, may produce
Cerenkov light and hence contribute to the ADC signal. These events are removed with

the aid of a lead-glass calorimeter.

6.3.4 Electromagnetic Calorimeter

The electromagnetic calorimeter utilizes pair production and bremsstrahlung radia-
tion, which is the emission of radiation from scattering in the electric field of a nucleus.
When a high energy particle traverses a dense material, an electromagnetic cascade of

photons and electron-positron pairs is generated. The light emitted from the cascade can
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then be detected by PMTs.

The HRS-L and HRS-R calorimeters consist of two segmented layers as shown in
Fig. 6.5. The particles enter the detector through the bottom of the figure. The first layer
is oriented perpendicular to the particle trajectories and composed of 48 (24 x 2), 10 cm
x 10 cm x 35 cm lead-glass blocks; whereas the second layer is oriented parallel to the
trajectories and composed of 80 (16 x 5), 15 cm x 15cm x 35 cm lead-glass blocks. Each
block is viewed by a PMT. The HRS-R shower detector is a total absorption calorimeter,

since it is sufficiently thick to contain the cascade for the spectrometer’s momentum range.

HRS-L
50 mm 14.5x 14.5x 30 (35) cm
SF-5
|ICICICICICICICICICICICICICIQIC N
XP2050
HRS-R XP2050 145 x 14.5x 35 cm
SF-5
& oy & A
Al 19 mm /
/ Al13 i10x10x35cm
R 3036 = mm TF1

FIG. 6.5: The electromagnetic calorimeter inthe HRS-L (top) and HRS-R (bottom). Reproduced
from [67].
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6.4 Spectrometer Optics

The target coordinates of the detected particles are reconstructed from the focal plane
coordinates with a set of optics matrix elements. These matrix elements have been tested
and shown to be stable over the full momentum range of both spectrometers. The addition
of the septum magnet to HRS-R required a careful study to determine the changes to the
optical properties of the spectrometer. To this end, optics calibration data were acquired
over a large range of the right spectrometer’s momentum range for both angles. This
section describes the calibration procedure used to determine the optics matrix elements

for experiment E97-110.

6.4.1 Coordinate Systems

In this section, an overview of the target and focal plane coordinates will be pre-
sented. For a detailed description of the Hall A coordinate systems refer to Ref. [94].
When an event is detected by the VDCs, two angular and two spatial coordinates are
measured. The particle’s position and the tangent of the angle made by its trajectory
projected onto the dispersive axis are given by xg4.; and g respectively. Analogous
quantities projected onto the non-dispersive axis are given by 14, and ¢q.; respectively.
Focal plane coordinates are calculated by correcting for detector offsets from the ideal
central ray of the spectrometer. These coordinates are then used to determine the target
coordinates and relative momentum (6., ¢1q, yte, and 6) of the particle by using the optics

matrix elements. ¢ is defined as

P—-F
Fy

where P is the particle’s measured momentum and F, is the spectrometer central momen-

5= (6.5)
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tum.

Figure 6.6 shows a diagram of the target coordinate system (TCS) for the left spec-
trometer. The z-axis is defined by a line passing through the midpoint of the central sieve
slit hole. The z-axis is perpendicular to the sieve slit surface and points toward it. The
sieve slit is a 5 mm thick tungsten block used in the calibration of the optics matrix ele-
ments. When the spectrometer and sieve slit offsets are zero, the z-axis passes through
the hall center, and this point is the origin of the TCS. In this ideal case, L is the distance
from the hall center to the midpoint of the sieve slit central hole. D is the horizontal offset
of the spectrometer from the hall center. The y,, axis is parallel to the sieve surface in the
transverse plane, while the x, axis points vertically down in the dispersive plane. The
tangent of the in-plane angle and out-of-plane angle with respect to the central trajectory

are given by ¢, and 6,, respectively, and ©, is the central angle of the spectrometer.

Scattered
electron

Z,

Sieve plane

Spectrometer
central ray

Beam

Hall center

FIG. 6.6 Target coordinate system for electron scattering from a thin foil target. The x, coor-
dinate is not shown, sinceit isthe vertical displacement and points into the page.
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6.4.2 Optimization Method

CHAPTER 6. THEHALL A SPECTROMETERS

The optics matrix elements link the focal plane and target coordinates. The rela-

tionship between the coordinates is shown in Eq. (6.6) for the first-order approximation

without the septum magnet.
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The mid-plane symmetry of the spectrometers requires the null (zero) matrix elements.

However the addition of the septum magnet breaks mid-plane symmetry, and the full

matrix, Eq. (6.7), was optimized up to fourth order for E97-110.
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For each of the target variables, a tensor (a set of matrix elements for a target quan-

tity) exists: Y, T;

kl»

Pjii, Djr. These tensors are polynomials in zg, and relate the two

coordinate systems. For example, the relationship for 6, is given by

th = Z Tyjkleij"pyécpgblfp

m
_ i
T = E Cixg,
i=0

j7k7l

(6.8)

(6.9)
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where the C; are the optics matrix elements for the corresponding target coordinate. Sim-
ilar expressions exist for ¢, yis, and 6. The indices indicate the power of the focal plane
variables. The matrix elements are determined by x? minimization of the aberration func-

tions,

AW) =" {M} 2 : (6.10)

< Loow
where W is 0, ¢1q, Y1, O 6. This process compares the reconstructed events (1) to the
nominal target foil and sieve slit positions (177°), which are known from the experiment’s
surveys.
Egs. (6.11)-(6.13) give the interaction position along the beam, known as z,eact,
and the horizontal and vertical sieve slit positions, yseve aNd Zgeve. These variables are
determined from the reconstructed target quantities and are uniquely determined for a set

of foil targets and a sieve slit.

cos(tan™! ¢yy)
sin(©g + tan! )

Zreact — _<ytg + D) + Tbheam COt(@O + tan_l ¢tg) (611)

Tsieve — Ltg + Letg (612)

Ysieve = Utg + L(btg (613)

The TCS vertical position z, is determined from the vertical beam position (yyeam), Spec-

trometer vertical offset, ;,, and z,eact.
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6.4.3 Experimental Technique

Required Data
The optimization procedure is performed on a set of data that covers the entire ac-

ceptance of the spectrometer in ¢y, 0, 31, and 4. The required data includes:

o A five step scan of the 12C elastic peak that covers the 4= 4.5% spectrometer momentum

acceptance.
e A set of thin '2C foils that cover the v, acceptance.

e A sieve slit collimator with well defined horizontal and vertical positions that cover

the angular acceptance of the spectrometer.

For E97-110, the acceptance of z..... was 4+ 20 cm. Typically nine target foils are
used to acquire optics data, but at 6° and 9°, fewer foils were used (3 and 5) due to the
reduced resolution at small angles. The carbon foils used for E97-110 had a thickness of
10 mils (0.0254 cm). For elastic electron scattering from carbon, a scan (across the focal
plane) of the elastic peak was performed at relative momenta of +3%, +2%, 0%, —2%,
and —4%. Due to the lack of statistics, +4% was not used.

Figure 6.7 shows a diagram of the thin sieve slit used to take collimator data. The
sieve has 49 holes that are arranged in a grid pattern (7 x 7). Two of the holes are 2.7
mm in diameter, and the remaining holes are 1.4 mm in diameter. The large holes are
used to determine the orientation of the image at the spectrometer focal plane. Compared
with the standard spectrometer sieve slit, the horizontal distance between sieve slit holes
increases further away from the beamline. The four columns closest to the beamline are
spaced 0.48 cm apart. The spacing after the fourth column increases so that the columns

are then 0.6 cm apart. The vertical spacing between the holes is 1.3 cm.
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FIG. 6.7: Geometric confi guration of the thin sieve dlit used during E97-110. The labels on the
rows and columns are for convenience during the optimization procedure. Column A is closest
to the beamline.

The beam energies and foil locations are given in Table 6.4 for the optics data ac-
quired at 6° and 9°. The sign convention used for the foil locations is negative for a foil
located upstream from the hall center and positive for a foil located downstream. A 20
cm downstream foil was not used at 6° due to the lack of acceptance at this location. At
9°, data were taken with the = 20 cm foils, however, these foils were not included in
the optimization due to a lack of statistics. The 9°, 3.319 GeV data were not acquired at
the elastic setting due to the momentum limitation of the right spectrometer. Quasielastic
data were acquired with a thicker sieve slit to avoid elastic events that scatter through part
of the collimator and clear the spectrometer acceptance at lower momentum.

Survey Requirements
Determination of the ideal z,...; for each foil, zgcwe, and ysevwe POSitions for each

hole require precise knowledge of the target position, spectrometer displacement from its
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| Angle | Beam Energies (GeV) | Foil Locations (cm) |

6° 1.096, 2.134, 2.844 -20, 0, +10
9° 1.147,2.235,3.319 | -20, -10, 0, +10, +20

TABLE 6.4: Optics data acquired for E97-110.

| Angle | Sieve | L (mm) | Horizontal Offset (mm) | Vertical Offset (mm) |

6° Thin | 799.8 0.1 2.0
9° Thin | 798.9 0.3 1.8
9° Thick | 798.6 -0.4 2.0

TABLE 6.5: Sieve dlit position and horizontal and vertical offsets from the central hole's ideal
position.

ideal position, the position of the sieve slit central hole, and location of the beam position
monitors (BPM). These positions and their offsets from nominal positions are determined

from survey information [95].

Typically the horizontal spectrometer offset is an important correction that needs
to be made in order to determine the nominal sieve slit positions. For the experiment,
the septum magnet was tuned to center the y,, position, so the spectrometer offset was

unimportant.

The sieve slit survey information is used to calculate the offsets in zgcve aNd Ysiove
from their ideal positions for the midpoint of the central hole. The offsets and distance
from the hall center to the central hole, L, are given in Table 6.5. The horizontal and
vertical positions of the sieve slit holes are then determined from these offsets and the

distances between the rows and columns given in the previous section.

During E97-110, there were five target positions: the polarized 3He cell, a single

12C foil, a >C multi-foil, empty, and reference cell. Only the polarized and reference
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| Cell | Target | Az (mm) | Az (mm) |

Penelope | Polarized *He 0.3 -1.0
Single 12C 0.1 -0.7

Multi-foil 12C 0.0 -0.6

Reference Cell -0.3 0.2

Priapus | Polarized *He 0.2 -1.3
Single 2C 0.2 -1.1

Multi-foil 12C 0.2 -1.0

Reference Cell 0.1 -0.4

TABLE 6.6: The target position offsets from the hall center. The carbon foil offsets are deter-
mined by linear interpolation, and the offsets for the target cells are from the target survey.

cell positions were surveyed. The positions of the other targets were determined from the
survey numbers and from the target ladder specifications. After the target positions were
determined, a linear interpolation between the polarized and reference cells was used to
determine the foil position offsets from the hall center. The offsets are given in Table 6.6.
Only the offset along the beamline, Az, is important in the optimization process, since
this offset determines the nominal position for each of the carbon foils. The vertical offset,

Ay, was effectively zeroed during the target survey.

The beam position is determined by the BPMs, which are calibrated with the super-
harps [67]. The superharp and BPM survey information are used in the BPM calibration
procedure. The details of the calibration can be found in Ref. [96]. For each event, the
horizontal and vertical beam positions (zpeam aNd Yueam) are recorded. In the optimiza-

tion, the beam positions are used to calculate the nominal target coordinates.
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6.4.4 Optimization Routine

The optics matrix elements are determined by a C++ optimization routine referred
to as OPTIMIZE++. In this section, | will provide a brief overview of the procedure used

to perform the optics calibration. A more detailed user manual can be found in Ref. [94].

Algorithm
OPTIMIZE++ provides the user the ability to test a current database or to optimize
the matrix elements. The general procedure to perform the optimization involves the

following steps:

e Analyze the raw data with the initial database.

Select events for optimization.

Generate an input data file for the optimization.

Optimize the desired quantity.

Analyze the raw data with the optimized database.

Use the diagnostic tools to test the target reconstruction.

The above procedure usually requires multiple iterations and has to be followed for each
of the quantities requiring optimization. For E97-110, the focal plane offsets, ¢4, Oig, Yte,
and kinematically corrected momentum (dpy;,) were optimized. ESPACE [97] was used
to analyze the raw data, however the new ROOT/C++ Hall A Analyzer [98] can also be

used. The event selection and diagnostic tests were performed with the use of PAW [99].
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Septum Magnet Related Procedural Changes

A few details of the procedure were modified to address specific concerns of opti-
mization with the septum magnet. Since there were only three carbon foils to constrain
the 1, acceptance, the matrix elements dependence on ¢, was kept below fourth order.
This helped to ensure that the target variables were reliably reconstructed within the spec-
trometer acceptance. For this experiment, individual sieve holes were optimized instead
of entire columns, which is what was done in the past. This increased the number of con-
straints from a possible seven columns to 49 holes for each foil. The angular optimization
is typically performed for ¢, and 6,, together. However with the increase in the num-
ber of constraints, their simultaneous optimization was not possible, so the angles were
optimized independently.

Early in the optimization procedure, the z, coordinate calculated within ESPACE
was found to be defective. Though the initial matrix elements reconstructed the target
coordinates reasonably well, z, is more sensitive to discrepancies in the reconstruction
at small angles. Since the nominal 6, angle is calculated from this coordinate in OPTI-
MIZE++, the 6, reconstruction was deficient. In the left hand-side of Fig. 6.8, the z ey
positions are clearly shifted above the horizontal lines. The nominal sieve slit positions
are shown by the grid lines. To improve the out-of-plane angular reconstruction, OPTI-
MIZE++ was modified by adding an x, calculation [100], which is based on the survey

information. This x, calculation is given by Eq. (6.14),

Zreact COS 60
" cos(tan ! g )

— Ybeam) (6 14)

:L‘tg:—

where 6, and ¢, are the nominal angles from a specific sieve slit hole for a given foil.

The calculated values for x, are used by adding a flag when OPTIMIZE++ is run. This
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modification helped resolve the deficient 6, reconstruction. Fig. 6.8 shows the sieve slit
reconstruction for the central foil using ., calculated from ESPACE and from Eq. (6.14)

in OPTIMIZE++. Compared to Fig. 6.7, the sieve images are rotated clock-wise by 180°.

0.06 0.06

0.04 0.04

g i e
0
x
0.02— 0.021—
-0.04— -0.04—
_0'067\\\\‘\\\\‘\\\‘\\\\‘\\\\‘\\\\ _0.067\\\\‘\\\\‘\\\‘\\\\‘\\\\‘\\\\
-0.03 -0.02 -0.01 0 0.01 0.02 0.03 -0.03 -0.02 -0.01 0 0.01 0.02 0.03
@, (rad) 9, (rad)

FIG. 6.8: Reconstructed sieve slit coordinates for the central '2C foil using z, in the optimiza-
tion calculated from ESPACE (left) and Eq. (6.14) (right). The grid lines represent the nominal
sieve dit positions. When z, is used from ESPACE, the zi.. positions are shifted above the
nominal lines. The calculation for x4, using Eq. (6.14) centers the data with respect to the nom-
inal positions.

Typically a tight cut on the elastic peak is used to help eliminate punch-through
events from the sieve slit. However, events from the upstream foils passed through a pair
of NMR coils that were located upstream along z,.c¢. This caused the scattered electrons
to lose enough energy so that their momentum was no longer in the elastic peak. The
xg, distributions for the upstream and central foils with a cut on the sieve slit central
hole are shown in Fig. 6.9. In the first order approximation, xg, is directly related to the
momentum distribution at the target. In order to obtain reasonable reconstruction for the

upstream foil and minimize punch-through events, a tight cut on the sieve holes was used
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with a loose momentum cut. A list of momentum cuts to select events for OPTIMIZE++

is given in Table 6.7.

—— Central Foil
- Upstream Foil
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FIG. 6.9: The z, distribution is shown for the —20.0 cm upstream foil (dashed line) and for the
centra foil (solid line) with a cut on the sieve dlit central hole. Both foils should have a sharp
elastic peak at —0.04 m. However since the events from the upstream foil pass through a pair of
NMR coils, the scattered el ectrons have lost energy so that their momentum appears between the
elastic peak and the '2C fi rst excited state (—0.07 m).

6.4.5 Optimization for E97-110

For each set of optics data in Table 6.4, the focal plane offsets were optimized first,
then the angles, v, and finally 5. After the the optimization was completed, the raw
data were replayed with the new matrix elements, and the target reconstruction was tested
with the aid of PAW. Typically after the first iteration of optimization the target recon-
struction was good. Occasionally a second iteration was performed with improved cuts or

by correcting errors in the identification of sieve slit holes. The target reconstruction for
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| Angle | Beam Energy (GeV) | Momentum Cut (GeV /c) |

6° 1.096 1.050 - 1.100
2.134 2.100 - 2.140
2.844 2.825-2.860
9° 1.147 1.090 - 1.149
2.235 2.216 - 2.240

TABLE 6.7: Momentum cuts used to select events for OPTIMIZE++ for the different beam
energies and angles.

the 2.134 GeV data, after the optimization was completed, is shown in figure 6.10 for all
three 12C foils. The grid lines show the nominal sieve slit and foil positions from the sur-
vey reports. More details about the optimization for E97-110 are available in Ref. [101].

When the 1.096 and 2.844 GeV data were replayed with the new matrix elements,
ye and ¢y, Were shifted with respect to their nominal positions. The septum magnet
saturation effect is the cause of the shifts and is discussed in Appendix A. At these
energies, the shifts were removed by optimizing the optics data.

For the 9° optics data, the same procedure was followed except the order of =, was
kept below fourth order, since data were acquired with only three delta settings. Also the
3.319 GeV, 9° data were not optimized since elastic data could not be acquired at this
energy. After optimization, the target reconstruction for the 9° data was comparable to
the reconstruction at 6°. The optics matrix elements for all the energies at 6° and 9° can
be found in [102].

The optimized momentum spectrum for 2.134 GeV is shown in Fig. 6.11. The design
value of the spectrometer momentum resolution is 1 x 10~* FWHM, and when multiple
scattering from the scattering chamber windows and spectrometer entrance are included
the resolution is 2.5 x 10~ [67]. For E97-110, electrons from the upstream foil passing

through the NMR coils results in significant loss of momentum resolution at low energies
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FIG. 6.10: Reconstructed sieve slit image for 2.134 GeV, 6° data. Upstream '2C foil at z,cact =
—20.0 cm (top left), central foil at 0.0 cm (top right), downstream foil at 10.0 cm (bottom left),
and z,cact for al delta settings (bottom right). The lines represent the nominal sieve it hole and
foil positions.
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and small angles. For example at 2.134 GeV, the upstream foil resolution was ~ 60%
larger compared to the central and downstream foils. In addition, the scattering chamber
was filled with 1 atm of “He gas. The effect of scattering from “He on the momentum
resolution was not studied since it has a negligible effect. In Table 6.8, the average mo-

mentum resolution of the right spectrometer at the optimized energies is shown.
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FIG. 6.11: The momentum of the scattered electron for all three carbon foils with a FWHM of
4.1x 10~ at § =— 0.1%. The beam energy was 2.134 GeV, and the scattering angle was 6°.

| Angle (deg.) | Energy (GeV) | é Resolution (FWHM) |

6 1.096 8.8x 1071
2.134 4.4 x10~*
2.844 4.2x 1074
9 1.147 8.5x 1071
2.235 52x1074

TABLE 6.8: The momentum resolution of the right HRS with the septum magnet for E97-110.
The valueslisted are the averages from the momentum scans for each energy.
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Appendix A discusses the reconstruction issues that were seen after the optimization
was completed. These issues include the ¢, shift for the central sieve-slit row, the 3.319

GeV, 9° data, and the septum magnet saturation effect.

6.5 Spectrometer Angle

From the sieve-slit surveys, the spectrometer central angle passing through the sieve-

slit’s central hole is determined by

tan ©g = f , (6.15)
z

where z is the position along the beamline, and « is the position transverse to the beamline
in the horizontal plane. These positions are measured relative to the center of the target.
Table 6.9 provides the central angles for the 6° and 9° data. There were two surveys for
the 9°: one before (pre) and one after (post) the data taking. The uncertainty on the angles

is due to a 0.5 mm uncertainty on the survey results.

| Nominal Angle | Survey Angle |

6° (pre) 5.99° 4+ 0.04°
9° (pre) 8.98° 4+ 0.04°
9° (post) 9.01° 4+ 0.04°

TABLE 6.9: The spectrometer central angle from sieve-slit surveys.
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6.6 Collimators

For E97-110, a set of collimators were used to block events coming from the target’s
glass windows. Traditionally software cuts on the reconstructed target variables have been
used to remove these events. However due to the small scattering angles, the transverse
position acceptance is about a factor of two smaller and the resolution is a factor of two
worse (compared to 12.5°). The transverse position yiz ~ Zyeact sin O, S0 a 40 cm long
target is only 4 cm long in y;,. In addition, the cross section from scattering off the glass
creates a sizable contamination to the physics of interest. Figure 6.12 Shows a z,¢.c; Nitro-
gen spectrum with and without the target collimators in place. Without the collimators,
a significant contamination from the glass windows penetrates into the nitrogen events,

which cannot be removed by acceptance cuts.
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FIG. 6.12; Comparison of z....t With (black) and without (green) target collimators.

For the experiment, three sets of collimators were used:
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e BRIG6 - 6° data with the ice cone cell.
e BRS6 - 6° data with the standard cell.
e BRS9 - 9° data with the standard cell.

Each set of collimators consisted of an upstream (U) and downstream (D) collimator. The
upstream collimator cuts events from the upstream window and the downstream from the
downstream window. With the collimators in place the effective target length is approx-
imately cut in half to 20 cm. Fig. 6.13 shows the layout of the three sets of collimators
with respect to the center of the target. Table 6.10 provides the positions of the upstream
and downstream collimators for the second run period. The positions are measured from
the center of the target as defined in Section 6.5. Negative x values indicate the collimator
was located to the right of the beamline. For the 9° data, a survey was performed before
and after the data were taken. The two surveys agree with each other to 0.7 mm.

In addition to the target collimators, a collimator was placed around the sieve slit to
shield the septum entrance from stray events. These stray events come from the beam
on its way toward the beam dump. The collimator around the sieve slit was a 3 cm thick
piece of tungsten. Table 6.11 gives the location z of the collimator’s downstream face

along the beamline and the height and width of the collimator aperture for 6° and 9°.
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| Description | z(mm) | z (mm) |
Pre 6° survey
BRS6U upstream beam left corner 29.2 -13.8

BRS6U downstream beam left corner | 59.1 -18.0
BRS6D upstream beam right corner 417.4 -37.0
BRS6D downstream beam left corner | 447.5 -39.4
Pre 9° survey
BRS9U upstream beam left corner 22.3 -13.2
BRS9U downstream beam left corner | 51.8 -18.9
BRS9D upstream beam right corner 301.0 -31.3
BRS9D downstream beam left corner | 330.8 -35.3
Post 9° survey
BRS9U upstream beam left corner 23.0 -12.6
BRS9U downstream beam left corner | 52.5 -18.4
BRS9D upstream beam right corner 301.6 -31.3
BRS9D downstream beam left corner | 331.5 -35.4

TABLE 6.10: The 6° and 9° target collimator positions from survey results.

| Angle | z (mm) | Leon (mm) | Height (mm) | Width (mm) |
6° 828.5 833.1 994 55.1
9° 823.2 833.4 99.7 55.6

TABLE 6.11: Sieve-dlit collimator location and aperture size. L. is the distance from the hall
center to the center of the sieve-dlit aperture’s downstream face along the spectrometer’s central

ray.



CHAPTER 7

Analysis

For experiment E97-110, asymmetries and cross sections were measured for polar-
ized electron scattering from polarized 3He. In this chapter, the inelastic 3He asymmetry
and unpolarized cross-section analyses for the second run period are discussed. The se-
lection of good events and data quality checks are reviewed. Sources of dilution and

corrections to the physics data are also presented.

7.1 Asymmetriesand Cross Sections

The longitudinal and transverse physics asymmetries are calculated by taking the

ratio of the difference in polarized cross sections to their sum. The expressions are given

by
d2gift 2ot
_ dE'dQ ~ dEdQ
A= Poll | dolh (7.1)
dE'dQ T dEdQ
and
d20.1:> dQO'T:>
__ dEdQ ~ dE'dQ
AL = s agi= (7.2)

dE’d$) + dE’d)
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where T and | refer to the electron spin, pointing either parallel or anti-parallel to the
beamline, and {} designates that the target is polarized along the electron beam propaga-
tion. For the transverse case, = indicates that the target is polarized perpendicular to the
beamline.

The physics asymmetries are calculated from the raw experimental asymmetries

given by the following equation:

raw

qo — 4t

=4+ b= 7.3
II,L fptpb’ (7.3)

where f is the dilution factor due to the small amount of nitrogen gas in the target cell and
P; and P, are the target and beam polarizations respectively. The sign on the right hand
side of Eq. (7.3) depends on the configuration of the insertable half-wave plate (IHWP)
and the target spin direction. The raw asymmetries are calculated from the number of

events within the chosen acceptance and detector cuts using the following expression:

Nt N-
LT+Q+ LT—Q~
Ay = 1122 - (7.4)

LT+Q+ + LT-Q—

where N+, Q* and LT+ are the number of accepted events, the total charge and the
correction for the computer deadtime with beam helicity 4+ 1. The “+’ helicity state does
not necessarily represent an electron with spin parallel to the direction of its propagation.
The sign convention for the asymmetries is discussed in Section 8.1.1. The charge and
deadtime corrections are calculated and applied for each run and will be discussed further
in Sections 7.2.3 and 7.2.4.

Finally, the Born asymmetries are calculated by applying external and internal radia-

tive corrections:

A = APP 4+ AARS + AARS. (7.5)
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The unpolarized raw cross sections are determined by the following:

raw A0 psiN 1
70 T UQAE T NypLTeq AQAE'AZ’

(7.6)

where:

N is the number of scattered electrons detected within the chosen acceptance and

detector cuts.
e ps; is the prescale factor for event type 7.

e Ny, = Q/eisthe number of incident electrons determined by the charge measured with

the BCMs.
e p is the target density.
e LT isthe livetime correction for all helicity states.
® ¢4 IS the product of all hardware and software detector efficiencies.

e AQ, AL’ and AZ are the solid angle acceptance, momentum acceptance for each

spectrometer setting and the target length seen by the spectrometer.

The experimental cross section is determined by subtracting the nitrogen contribu-

tion:

ex PN
oo P =0 — ——0on, 7.7
0 0 PHe + PN N ( )

where py and py. are the atomic densities of nitrogen and ®He, respectively, inside the
polarized cell, and the nitrogen cross section is on. The unpolarized Born cross sections

are determined after external and internal radiative corrections have been applied:

B = 08P - AoP + Aot (7.8)
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Then the polarized cross section differences is calculated by taking the product of

the experimental asymmetries and unpolarized cross sections:

Aoyt =2- AT - op™. (7.9)

When the radiative corrections are applied, the cross section difference is expressed

as

Ao = Ao T + 0(Agy )™ + 6(Aoy )™ . (7.10)

Before the radiative corrections are applied, the elastic radiative tail is subtracted, which
has a sizable contribution for our kinematics at 6° and 9°.

For the analysis presented here, radiative corrections were only applied to the cross
section differences. So the presented asymmetry and unpolarized cross sections are not

radiatively corrected.

7.2 Data Analysis Quality Checks

7.2.1 Detectors

For the cross section analysis, the efficiencies of the various detectors are studied in
detail. In these studies, the detector cuts are optimized to distinguish good electrons from
background events. The background is mostly comprised of negatively charged pions and
low-energy electrons. The detector cuts involve the VDCs, scintillators, Cerenkov and
total shower calorimeter, and each cut has a software efficiency associated with it. Since
these efficiencies are in most cases helicity independent, they can be safely ignored in the

asymmetry analysis.
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VDC: One-track Efficiency

The hardware efficiency of the drift chambers is approximately 100% [67], and
hence, its inefficiency is neligible. A good electron should have only one track in the
detector, but multi-track events can occur when several particles pass through the wire
chambers simultaneously or if there are noisy wires. When this occurs, the analysis soft-
ware can find more than one possible trajectory, and distinguishing between a good and
bad event becomes difficult. In the cross section analysis, only events with one-track are
kept, which results in an inefficiency that needs to be corrected. The one-track efficiency

is defined as

Ny
= — 7.11
€1 Zl ]\[Z ) ( )

with =0, 1, 2, ... is the number of tracks®. The efficiency is determined by using the
same cuts that are used in the cross section analysis. For the analysis, only the events from
the main trigger are kept. In addition, PID cuts were chosen to reject greater than 99%
of the background while keeping the electron efficiency higher than 99%. For E97-110,
the total rate was typically between 4 kHz and 250 kHz, which resulted in a large number
of events having multiple tracks for some kinematics. This especially occurred for the
elastic and quasielastic kinematics as well as for the nitrogen data.

The 1-track efficiency is shown if Fig. 7.1. The elastic and quasielastic kinematics
are pointed out, which have typical efficiencies greater than 90%. For the inelastic data,
the efficiency is greater than 95% and 96% for the 6° and 9° data respectively. For this
analysis, we have corrected the cross sections for 75% of events that are removed by the
1-track cut, since there is a good chance at least one of the tracks came from a good

electron. The full amount of the correction is then used for the systematic uncertainty on

1The analysis software is capable of reconstructing several tracks.
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this correction. Analysis is ongoing to determine how many of the multi-track events are

good [103], which will reduce this systematic uncertainty.
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FIG. 7.1: The 1-track efficiency per run for the 6° (left) and 9° (right) data.

Scintillator Efficiency

As discussed in Section 6.3.2, the spectrometer detector package contains two scin-
tillators planes that are used to form the data acquisition system’s trigger. Two trigger
types were used during the experiment that are considered good events: the main 73 and
the secondary triggers 75. Only the main triggers are used in the analysis, whereas the
secondary triggers are used to determine the hardware efficiency of the scintillators. The

scintillator efficiency e, is given by

T

e = ———. 7.12
Culg = T (7.12)

In most cases, the efficiency is greater than 99.4% as shown in Fig. 7.2 and excluding the

T, events has a negligible impact.
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FIG. 7.2: The scintillator efficiency per run for the 6° (left) and 9° (right) data.

PID Efficiency

The Cerenkov and electromagnetic calorimeter detectors are typically referred to as
particle identification detectors (PID). The majority of pions can be removed with a cut
on the Cerenkov, since pions cannot directly trigger this detector. The detector calibration
and efficiency determination are discussed in Refs. [63, 103]. From these analyses, €4.;
> 99.85% (99.67%) and the electron cut efficiency was better than 99.26% (99.66%) for
the 6° (9°) data.

A two-dimensional cut on the shower and preshower from the calorimeter removes
the low-energy knock-out electrons caused by pions. The calibration and efficiency study
are detailed in Ref. [104]. For the total shower calorimeter, detection efficiency was
greater than 99.76% and the cut efficiency was chosen to be larger than 99% for both the
6° and 9° data.

The PID cuts used for the asymmetry analysis are summarized in Ref [105]. Sim-

ilar cuts were chosen for the cross section analysis based on the efficiency study for the
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Cerenkov and electromagnetic calorimeter detectors.

7.2.2 Acceptance Cuts

The geometrical, or acceptance, cuts are placed on the target reconstructed vari-
ables: O, ¢1g, Y1 @and 4, which are the event’s out-of-plane angle, in-plane angle, trans-
verse position and the relative momentum respectively. For the asymmetry analysis, loose
geometrical cuts were used to remove any misreconstructed events on the edge of the ac-
ceptance. For E97-110, a set of collimators were used to block events coming from the
windows; however, this required cuts at the collimator locations to remove events that

passed through the collimators’ edges.

In Appendix B, a summary of the acceptance cuts used in the asymmetry and cross
section analysis is provided. For the cross section analysis, a detailed study of the spec-
trometer acceptance was carried out and is also described in the appendix. For the analysis
presented in this document, only the positive half of the 6, acceptance was kept due to
background issues. A sharp peak is present at —26 mrads in 6, which is easily removed
by subtracting the empty reference cell yield from the *He yield. However a depression is
left in place of the peak after the subtraction has been performed (see Section B.3.1). The
difference between the unpolarized cross sections for the full 6,, acceptance and the pos-
itive half is 4-5% and 2-3% for the 6° and 9° data, respectively. For all kinematics, the

cross section for 6, > 0 mrads is larger than the cross section for the full 6, acceptance.
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7.2.3 Charge Asymmetry

Significantly different amounts of charge can occur in each helicity state, which

results in a charge asymmetry:
+ _ —
4, =99
QT+ Q-

where Q7 is the accumulated charge for each helicity state, and the charge is given by the

(7.13)

beam current monitors (BCM). Charge asymmetry is typically caused by sources in the
accelerator injector, such as imperfections in the Pockels cell or half-wave plate.

When the cross section or asymmetry is calculated, the charge asymmetry is cor-
rected by normalizing the charge for each helicity state independently as applied in Eq. (7.4).
An independent data acquisition system (DAQ) and feedback system was used to to mon-
itor the charge asymmetry and adjust the Pockels cell voltage to minimize the asymmetry
(see Section 5.1.3). The feedback system updated every two minutes during experiment
E97-110.

Before the physics asymmetries were calculated, the helicity-gated charges and the
charge asymmetry were calculated for each run. The 6° and 9° charge asymmetries are
shown in Figures 7.3 and 7.4 respectively. For each energy, the charge asymmetry in
parts per million? (ppm) is plotted versus run number. The runs were also separated by
their target orientation: black open circles for parallel kinematics and red squares for
perpendicular. The average charge asymmetry for each energy was typically less than
200 ppm in both target orientations.

There are a few systematic effects seen in the plots. Usually the first run after the
beam half-waveplate was either inserted or removed has a larger charge asymmetry than

the runs following it from the same setting. For each half-waveplate change, the HAPPEXx

2The unit parts per million denotes one particle of a given substance for every 999,999 other particles.
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FIG. 7.4: Charge asymmetry for 9° data.
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DAQ was restarted. Since the rates were high for the spectrometer DAQ, the duration
of most production runs was less than 15 minutes, whereas the charge asymmetry feed-
back system updated every two minutes. The slow response from the feedback system
compared to the relatively short production run time period is the suspected cause for the
larger charge asymmetry after the half-waveplate change. The charge asymmetry usually
converged below 200 ppm after the first run.

For the second run period, the charge asymmetry feedback system failed to converge
three times: twice at 6° (2.135 GeV and 4.209 GeV), and once at 9° (3.319 GeV). The
feedback was fixed, but about fifteen runs were affected with charge asymmetries between
3000 and 4000 ppm. Since the asymmetry was measured, it can easily be corrected.
The corrected asymmetries were compared to asymmetries with small charge asymmetry
corrections and found to have good agreement after the corrections. A lists of runs for the
second run period where the charge asymmetry was greater than 900 ppm can be found

in [105].

7.2.4 Livetime Correction

Livetime corrections need to be applied when extracting asymmetries and cross sec-
tions from the raw data. This quantity should be helicity independent, and if so, the
livetime is divided out in Eq. (7.4). However there are circumstances where the livetime

can become helicity dependent [106]:

e The physics asymmetry is large and the deadtime increases rapidly with the DAQ rate.

o Large charge asymmetry.

e The event size is different between the two helicity states.
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e The deadtime fluctuates during the run, and the average effect does not cancel out.

The livetime correction was checked by calculating a livetime asymmetry for each

run:
LTt — LT~

App = —— =
W= Trr+ 1 nr-

(7.14)

As in the case of the charge asymmetry, the livetime asymmetries are typically less than
200 ppm. For nine runs, the asymmetry was over 1000 ppm. A few of these runs had
either the DAQ rate too high, which resulted in high deadtime, or the time duration of the
run was only a few minutes long. However there are four runs at 9° that have no apparent
reason for a large livetime asymmetry. For these runs, the event size asymmetry between
the two helicity states was checked and found to be smaller than the livetime asymmetry
by at least an order of magnitude. The neighboring runs from the same kinematics have
much smaller livetime asymmetries. A lists of runs for the second run period where the
livetime asymmetry was greater than 900 ppm is available in Ref. [105]. The four runs

mentioned above were included in the preliminary analysis.

7.2.5 Dilution

When the raw asymmetries and cross sections are formed, they need to be corrected
for contamination from unpolarized material in the target cells. The two main sources
of dilution arise from nitrogen inside the cell and the glass container. The polarized
3He cells contain about 1% nitrogen® mixed with 3He gas, which is used to quench un-
wanted photon emissions that can cause depolarization. The nitrogen, though a small

amount, contributes significantly to the unpolarized cross section and causes a dilution to

3The ratio of the number density of nitrogen to the total number density of nitrogen plus 3He gas is
about 1%.
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the asymmetry. The reason for this is that the nitrogen cross section is larger than the 3He
Cross section at the same kinematic.

In the inelastic scattering region, events from the nitrogen contamination cannot be
isolated from the 3He events using detector or acceptance cuts. The nitrogen dilution is
instead determined with data taken with a reference cell filled with nitrogen gas. For E97-
110, nitrogen data were taken at almost every kinematic. The nitrogen dilution factors
were determined for each kinematic at 6° and 9°. Details of the analysis can be found in
[107]. The same acceptance cuts as discussed in Appendix B were used in the dilution
analysis.

The Ny, dilution factor is defined as:

(7.15)

fN —1_ |:YN2 - }/empty ‘| Ppol

Yspe — Yempty Pref ’
where Yx,, Yempty and Yy, are the yields from the nitrogen reference cell, empty refer-
ence cell and polarized *He runs respectively. The nitrogen densities in the polarized *He
cell and reference cell are given by p,. and p,.r. Here the nitrogen density is the number

of nitrogen atoms per unit volume. The yields for each target are calculated by:

psiN

Y=———
QLTEdet’

(7.16)

where N is the number of events after all cuts have been applied, ps; is the prescale factor
for trigger T'1, Q is the charge, LT is the T'1 livetime, and ¢4 is the combined detector
efficiency from all the detectors. Only the VDC one-track efficiency was corrected in the
yield calculations. This is a reasonable approximation, since all the other detector effi-
ciencies should be similar for different targets at the same momentum setting; hence they
will factorize out of the dilution factor. However, the one-track efficiency is dependent on

which target is in the electron beam.
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Figure 7.5 shows the nitrogen dilution factors for the eight beam energies at 6° and
9°. The dilution factors were found to be between 0.87 and 0.94 with an uncertainty less

than 0.3%.

Since collimators were used to remove the target windows from the acceptance, the
dilution from the glass contamination should be small. However due to a two step pro-
cess, the contamination from the glass actually increases significantly with decreasing
spectrometer momenta. This effect was studied prior to the experimental run period [108]
and involves the beam pipe entrance window to the scattering chamber. When the beam
passes through the window a non-Gaussian halo occurs due to nuclear scattering. The

halo then rescatters off the glass wall of the target cell.

Experiment E97-110 was particularly sensitive to this effect due to the small scatter-
ing angles. The glass contamination was partially reduced by decreasing the thickness of
the beryllium entrance window to 5 mils (0.0127 cm). The remaining effect was measured
by taking empty reference cell runs for most momentum settings. The dilution factor from

the glass is defined as follows:

Y;:m t
folass = 1 — Py —, (7.17)
¢l Y:"’He - (YN2 - Yempty)pI !

Pref

where the yields and densities are defined the same as in Eq. (7.15). Figure 7.6 shows the
contamination from the glass for the eight beam energies at 6° and 9°. The dilution factor
dropped to 0.67 for the lowest momentum settings at 6°; whereas it dropped to 0.45 for
the lowest momentum setting at 9°. If the 1.147 GeV, 9° data are excluded, which were
taken for radiative corrections, then the glass dilution for the 9° data is better than 0.78.

The glass dilution factor is included in Eq. (7.3) as an additional factor in the denominator.
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FIG. 7.5: Nitrogen dilution factors for the 6° (left) and 9° (right) data.
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7.2.6 False Asymmetry

| Energy Label | Kinematic |

1 2.135 GeV, 6°
2.845 GeV, 6°
4.209 GeV, 6°
1.147 GeV, 9°
2.234 GeV, 9°
3.319 GeV, 9°
3.775 GeV, 9°
4.404 GeV, 9°

oO~NO Ol WN

TABLE 7.1: Kinematic correspondence to the energy labels in Figure 7.7.

The false asymmetry from the electron beam was checked by using unpolarized data
from the empty and nitrogen reference cell runs. Additional data from the carbon foils
target were not included in this analysis. For each momentum setting, good electrons were
selected by applying the same PID and acceptance cuts that were used for the polarized
3He data. Figure 7.7 shows the average false asymmetry for the eight beam energies at 6°
and 9°. The energy label correspondence to the kinematic setting is give in Table 7.1. The
average false asymmetry is small and consistent with zero. Since the correction is small,

the total average value will be used as part of the systematic uncertainty on the results.
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CHAPTER 8

Results and Conclusions

In this chapter, preliminary results for the inelastic *He asymmetries, unpolarized
cross sections and polarized cross-section differences are presented. After radiative cor-
rections, the spin-dependent structure functions are extracted, and finally the generalized

GDH integral is discussed.

8.1 Asymmetry Results

8.1.1 Asymmetry Sign Convention

As discussed in Section 7.1, the sign on the right hand side of Eq. (7.3) depends on
the configuration of the IHWP and the target spin direction. The status of the IHWP is
either “IN” if it is inserted or ‘OUT if retracted.” The relative sign of the beam polar-
ization is determined from the Mgller measurements. If during the Mgller measurement
the IHWP is ‘IN’, then the sign from Mgller should be multiplied by —1. Then for each
polarized 2He run, the sign should be multiplied by +1 if the IHWP is ‘OUT’, and —1

132



81. ASYMMETRY RESULTS 133

if the IHWP is ‘IN’. The absolute sign is determined by measuring a known longitudinal
and transverse asymmetry. The longitudinal sign is measured using elastic electron scat-
tering off of polarized 3He, and the transverse sign is determined by using the A(1232)
resonance, which has a large transverse asymmetry.

The target polarization sign depends on the direction that the target spin is pointing.
Since 2He has a negative magnetic moment, the 2He spin points in the opposite direction
to the target holding field. For the most part, the neutron spin points in the same direction
as the 2He nuclear spin. As mentioned previously, the target was either longitudinally or
transversely polarized. This results in four possible target orientations: 0°, 90°, 180°and
270°. For experiment E97-110, the 90° configuration was not used, since the target half-
wave plates could not be aligned for the longitudinal and transverse lasers at the same
time. Based on the above information, we obtain the following sign conventions for the

target polarization:

e 0°: longitudinal field points toward the Hall A beam dump, target spin = —1.

e 90°: transverse field points toward RHRS, target spin = —1.

e 180°: longitudinal field points toward the Mgller polarimeter, target spin = +1.

e 270°: transverse field points toward LHRS, target spin = +1.

8.1.2 Inelastic *He Asymmetries

Following the analysis outlined in Section 7.2, the longitudinal and transverse asym-
metries were formed for the 6° and 9° data. The beam and target polarizations were

obtained from [74, 79]. The physics asymmetries without radiative corrections are shown
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in Figures 8.1 and 8.2 versus the invariant mass W. The parallel configuration is repre-
sented with black open circles and perpendicular with red open squares. The quasielastic
region is located around W =938 MeV. As W approaches the A(1232) region, both asym-
metries cross-over near the pion production threshold. In the A region, the perpendicular
asymmetry is typically smaller than the parallel asymmetry. Beyond the A resonance,
the transverse asymmetries are small and consistent with zero. The parallel asymmetries,
however, appear larger with increasing invariant mass. For incident beam energies near 4
GeV at 9°, the asymmetry continues to grow with W. This behavior could be influenced
by elastic radiative tails that have not been subtracted from the data. The parallel asym-
metries at the A peak appear to have a moderate dependence on the momentum transfer
Q* and increase with smaller Q2. On the other hand, the transverse asymmetries become

larger with increasing Q2.

8.1.3 Target Cell Comparison

For the second run period, the first four momentum settings for the 2.135 GeV, 6°
data were taken with the polarized 3He cell Penelope. After a week of running, the cell
ruptured and was replaced with the cell Priapus. The Penelope data were taken with a W
up to 1400 MeV, then the remaining the data were taken with Priapus. As a check, data
were acquired for two momentum settings that overlapped the data taken with Penelope at
low W. Figure 8.3 shows the 2.135 GeV data where the two cells have overlapping data.
The red triangles represent the data taken with Priapus, whereas the blue circles show
the Penelope data. The Penelope and Priapus data sets agree well within the statistical
uncertainties. In addition, the transition at 1400 MeV between the two cells is smooth.

This agreement helps demonstrate that the various systematics are reasonably understood.
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8.1.4 PID Cut Study
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A systematic study was performed to check the effect of the chosen PID cuts. This

was accomplished by plotting the asymmetries with and without the PID cuts applied.

For the low beam energies at 6°, not many pions are produced, so the PID cuts show

little effect for these energies. For the 4.209 GeV data, the number of pions produced

increased, and a larger effect can be seen in the asymmetries. At 9°, the longitudinal

asymmetries for the 2.234 GeV data already show sizable differences at large W. For the

transverse asymmetries a smaller difference is seen with the various PID cuts. This study

indicates that for some kinematics the pions have a sizable asymmetry. More details on
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the PID cut study are available in [105].

8.1.5 Pion Asymmetry

Unfortunately, even with good PID cuts, a small number of pions remain and con-
taminate the electron asymmetry. The pion contamination can be evaluated by using
Eqg. (7.3). In this analysis, the same cuts are used as applied on the electron asymmetries,
except a cut on events is made that are not detected by the Cerenkov. The pion asymme-
tries are corrected for nitrogen dilution, glass dilution and beam and target polarizations.

The ratio of the number of pions to electrons is an important quantity that can be
used to estimate the pion contamination. At low W or v, the majority of the events are
electrons; hence, this ratio is very small. As the invariant mass increases, the production
of pions substantially increases and the ratio can become greater than one. In the large W
region, the PID cuts typically reduce the pion to electron ratio by a factor of 10%. Using
this factor, the pion contamination to the electron asymmetry can be calculated by the
following [73]:

AA® =10"*A", (8.1)

where A™ is the pion asymmetry and A A€ is the variation of the electron asymmetry due
to pions. The pion asymmetry is suppressed for the maximum pion asymmetry of 20% to
the level of 20 ppm. In the low TV region, the suppression factor is larger than 10 due to

the small number of pions; hence, the pion contamination is small for all kinematics.

8.1.6 Statistical and Systematic Uncertainty

The statistical uncertainty on the asymmetry is discussed in Appendix C for the case

when the data is prescaled. The main sources of systematic uncertainty on the asymme-
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tries are the beam and target polarization, contributing a relative error of ~ 4% and 7.5%
respectively. The measured false asymmetry is small and has a negligible contribution to
the overall uncertainty. Due to the good pion rejection factor, the contribution from pion
contamination is also small. The systematics on the charge and livetime corrections still
need to be determined when these corrections are large.

The uncertainty on the dilution factors is small compared to the polarimetry, since
they are measured directly from our data. The largest source of uncertainty in the nitrogen
yields and cross sections is due to the 1-track efficiency. However the nitrogen cross
section is suppressed in Eq. (7.7) by the density ratio (~ 2%). For most of our kinematics,
the 3He cross section uncertainty due to the 1-track efficiency correction for the nitrogen

data is less than 1%

8.2 Unpolarized Cross sections

The unpolarized He cross sections were generated following the steps in Section 7.1,
and the acceptance cuts discussed in Appendix B were applied in the analysis. For pre-
vious experiments, the extracted cross sections represent an average over the solid angle
defined by the acceptance cuts and spectrometer versus either the invariant mass or en-
ergy transfer. Then a finite acceptance correction is applied afterwards. Typically this
correction is less than 2% in the resonance and DIS regions [10]. For experiment E97-
110, this effect was expected to be larger because of the small angles. The acceptance and
especially the cross section change dramatically over the solid angle.

The particle’s scattering angle is calculated from Eqg. (8.2),

cosf.. — cos Oy + ¢ sin Oy 8.2)

\/ 1+ 0% + oL
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where 6, is the central angle of the spectrometer: 6° or 9°. For this analysis, the variation
of the cross section with solid angle was handled by calculating the cross section for dif-
ferent bins in ¢,, for each bin in v. The scattering angle changes by about 3° across the ¢,
acceptance. The second order dependence for 6, results in a 0.5° variation in the scatter-
ing angle across the ¢,, acceptance. For this analysis, the variation in the acceptance with
respect to ¢y, was neglected but will be checked for the final analysis. The cross section
variation with respect to ¢, is shown in Fig. 8.4 for the 2.135, 6° and 2.234 GeV, 9° data.

Each of the ¢,, bins represents 6 mrad. Clearly the cross section has a strong dependence
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FIG. 8.4: E97-110 unpolarized cross section (v = 1055 MeV) versus ¢, for the 2.135 GeV, 6°

and 2.234 GeV, 9° data.
on the scattering angle at 6°, whereas, the dependence at 9° is less significant. After the
generation of the cross sections, a bin-centering correction was applied to determine the
central value of the cross-section within a given bin [109]. The following assumptions

were used:

e The acceptance’s angular dependence is described locally by a quadratic shape within
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4+ 1 bin.

e The cross section is also assumed to have quadratic dependence within + 1 bin.

The bin centering was a less than 1% correction.

8.3 Experimental Cross Sections

The nitrogen cross sections were determined using the same procedure and then
subtracted from the raw cross sections using Eq. (7.7). The nitrogen cross sections and
3He experimental cross sections are shown in Fig. 8.5 for the 1.147 GeV and 2.234 GeV,
9° data. The nitrogen correction has a 5—12% effect depending on the kinematics, which

is in agreement with nitrogen dilution study discussed in Section 7.2.5.
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FIG. 8.5: E97-110 unpolarized *He cross section for the 1.147 GeV and 2.234 GeV, 9° data.

Before the cross-section differences are formed, the cross sections were interpolated

to the same angle as the asymmetries for each beam energy. In most cases, the scatter-
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ing angle of the asymmetry was between ¢, bins 13 and 15 from Fig. 8.4. The rare
exceptions were for the elastic settings that have a strong dependence on the angle. For
each v bin, a linear interpolation was performed between the relevant ¢, bins to obtain
the cross section that matched the asymmetry at the same angle. The uncertainty on the

interpolation was determined by

Soim, = \/ K2 (050) + M2 (305, (8.3)

where 607 and 005" are the cross-section uncertainties for two adjacent ¢, bins. The

proportionality factors are then defined:

T — T

K= (8.4)
1 — T2
and
M="2"7 (8.5)
1 — T

where the angle being interpolated is = between angles z; and x, of the adjacent ¢y, bins.

The angle interpolated cross sections are shown in Figs. 8.6 and 8.7 versus W for the
eight incident beam energies without radiative corrections. The statistical uncertainties
are shown on the points, and the systematic uncertainties are given by the grey band
below each plot. For energies at 3 GeV and below, the strong quasielastic peak is seen at
938 MeV. The A(1232) is also seen. For the lowest two beam energies, the A is swamped
by the quasielastic peak. Above the A region, the other resonances cannot be seen. For
higher beam energies, the elastic radiative tail begins to grow at W > 2.2 GeV.

The unpolarized cross sections presented show discontinuities between momentum
settings and other structures. These are particularly noticeable for the 4 GeV data sets. A
study was conducted to investigate these 3—15% effects, however, the study was unsuc-

cessful in solving these problems. Except for the 3.775 GeV data set, the discontinuities
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are < 5% but are systematically larger at higher incident energies. For the 3.775 GeV, 9°
data, there is a 15% discrepancy between 1.4 GeV and 1.6 GeV when compared with the
neighboring momentum settings. The large effects for this energy are possibly related to
the septum saturation effect discussed in Section A.3 and need to be investigated further.
The preliminary indication from this study is that these effects may not be acceptance-
related and could be related to spectrometer optics, detector efficiencies, or backgrounds.
Until these issues are resolved a 3—15% systematic uncertainty will be applied on the
cross section results, the actual value depends on the incident energy and momentum
setting.

In Table 8.1, the estimate of the systematic uncertainty on the unpolarized cross sec-
tions is given. The uncertainty on the nitrogen dilution is primarily from the one-track
efficiency; hence, the larger uncertainties correspond to low ¥ and lower incident en-
ergies. The uncertainty from the acceptance is included in the uncertainty due to the

discontinuities and other effects mentioned above. The density, charge and PID detec-

| Source | Systematic Uncertainty |
Target density 2.0%
Acceptance/Effects 5.0% (6°) 5.0% (9°) 15.0% (3.775 GeV, 9°)
VDC efficiency 3.0% (6°) 2.5% (9°)
Charge 1.0%
PID Detector and Cut effs. < 1.0%
00 raw 6.4% (6°) 6.2% (9°) 15.5% (3.775 GeV, 9°)
Nitrogen dilution 0.2-0.5%
d0exp 6.5% (6°) 6.3% (9°) 15.5% (3.775 GeV, 9°)

TABLE 8.1: Systematic uncertainties for the unpolarized cross sections. The 15% acceptance
uncertainty for the 3.775 GeV, 9° only applies between 1.4 GeV and 1.6 GeV at this energy.

tor/cut efficiencies represent global systematic uncertainties for all kinematics. The VDC

efficiency varies between 2% and 5% (4%) for the 6° (9°) data, whereas, the table shows
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representative values for the uncertainty due to the multi-track events. The systematic
uncertainty shown in the figures have this variation included.

The uncertainties presented in Table 8.1 are preliminary and will be improved with
further study. The expected uncertainty for the VDC one-track efficiency will be ~ 1%,
and the acceptance is expected to be known to 3% or better. With these improvements,
the experimental cross section systematic uncertainty will be approximately 4—5% for all

incident energies.

8.4 Radiative Corrections

Before scattering from the target, the incident electron loses energy by passing through
materials. The main processes by which this happens are bremsstrahlung and ionization
(Landau straggling). Hence, the electron energy at the reaction vertex is less than that
of the incident electron that entered the hall. After scattering, the electron also passes
through material that results in energy loss before it is detected. This means that the elec-
tron energy at the vertex is higher than what is actually detected. The external radiative
corrections are calculated to determine the measured cross sections at the true kinemat-
ics of the reaction. Internal radiative corrections are also taken into account for internal
bremsstrahlung, vertex corrections and the vacuum polarization.

In Fig. 8.8 the scattered electron energy (E,) is plotted versus the incident energy
(Fs). The plot depicts where the eight incident energies lie in this plane. The 6° settings
are shown with plus signs; whereas, the 9° are represented by the open circles. For each
of the energies and associated momentum settings, a triangle is formed and bounded by
a line representing elastic scattering. Lines are also shown for the pion threshold and the

major resonances with the yellow band depicting the A region.
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We can consider one of the incident energies such as 2.845 GeV, shown by the ma-
genta plus symbols. The vertical band represents the spectrometer settings where events
are detected. When the electron radiates photons, events fall into these regions from
distant points on the plane. The value of the energy E; (E,) is reduced before (after)
scattering due to radiation and causes events to move horizontally (vertically) into the
detected region. Therefore radiative corrections need to be considered from the entire
triangle area. However, the points nearby the detected region contribute the most to the

radiative corrections.
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FIG. 8.8: Kinematic region that contributes to the radiative corrections. Provided by [79].

For the unpolarized cross section, the external and internal radiative corrections are
determined by using Mo and Tsai’s formalism [110] with the program RADCOR.F [111].

For the external part of the polarized cross-section differences, Mo and Tsai’s formalism



148 CHAPTER 8. RESULTSAND CONCLUSIONS

is also used, since the surrounding materials are unpolarized. The formalism of Aku-
shevich [112] is used for the internal corrections in the program POLRAD [113]. In the
RADCOR.F code, the ‘Energy Peaking Approximation’ is used, since the primary con-
tributions come from the vertical and horizontal contours along constant £, and E\,. This
approximation allows us to reduce the two dimensional integration over all incident beam
energies and over all final electron energies (consistent with a given E; and E,) to two
one dimensional line integrals. In the case of the internal corrections, the full integration

is performed within POLRAD.

The objective of the radiative corrections is to determine the Born cross section o gy
in the first-order diagram of Fig. 2.1. When this cross section is radiated, the experimen-
tal cross section o, is produced. The process to extract op,,, is iterative. Since the
Born cross section is unknown, either cross section models or data are used as an initial
guess. An integral over the energy spectrum is performed and a radiated cross section is
produced. The difference between the radiated and initial experimental cross section is
applied to the input cross section. Then another iteration is performed. Typically after a

handful of cycles the procedure converges to the Born cross section.

Before the radiative corrections are applied, the elastic radiative tail must be sub-
tracted from the experimental cross section. This tail is created when the electron emits a
photon before elastically scattering from the target nucleus. The scattering process occurs
at lower initial energy, which corresponds to a larger cross section. The radiative tail can
result in a large rising tail at large v. These tails can be seen in the 4.209 GeV and 3.775

GeV data in Figs. 8.6 and 8.7.

The final error on the cross sections is determined by combining the error on the
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radiative corrections with the uncertainty from the experimental cross sections o ep:
(60Bom) = (00exp)” + (JorC)” | (8.6)

where dogrc IS the cross-section uncertainty from the error on the radiative corrections.
The systematic uncertainty due to the radiative tail subtraction also needs to be included
in the final cross-section uncertainty.
A summary of the radiation lengths before and after scattering is available in Ref [114].

A first pass extraction of the radiative corrections has been performed [79], though the sys-
tematic uncertainty from the corrections has not been determined. We expect the system-
atic uncertainty on the radiative corrections to be within 10—20% from past experience.
Except for the 2.135 GeV, 6° and 1.147 GeV, 9° data, our own data was used as the initial
guess for the radiative corretions. For the 2.135 GeV data, a model was built by scaling
the the 1.147 GeV cross sections to 6°. However a model was not created to perform
the radiative corrections for the 1.147 GeV data. Eventhough radiative corrections were
extracted for this data, the Born cross-section differences should be viewed as suspect at

best. A thorough systematic study of the radiative corrections is ongoing.

8.5 Polarized Cross-section Differences

The polarized cross-section differences are generated from the experimental cross
sections and parallel and transverse asymmetries by using Eq. (7.9). The systematic un-
certainties come from the uncertainties on the experimental cross sections, beam polar-
ization (3.5%) and target polarization (7.5%). The beam polarization uncertainty also
includes an estimate from the bleedthrough uncertainty. The cross-section differences are

shown in Figs. 8.9 and 8.10 with radiative corrections applied. The inner (outer) error
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bars represent the statistical (total) uncertainties. However, the total uncertainties do not
include the uncertainty from the radiative corrections. The parallel configuration is rep-
resented by the open red squares, while the perpendicular is shown by the solid black
circles. The size of the radiative corrections are shown for the parallel and transverse data
by the dashed red and black curves respectively. For the lowest energies, the large con-
tribution from the quasielastic region is seen. Below an incident energy of 3.3 GeV, the
A resonance can again be seen around 1232 MeV. Beyond the A, the transverse cross-
section difference is small and close to zero; whereas, the parallel cross-section difference
is small but clearly non-zero.

The uncertainty on the target polarization is still preliminary. The final uncertainty is
expected to be ~ 4%, which will improve the systematic uncertainty on the cross-section

differences to the 7% level versus the preliminary value of 10—17%.

8.6 3He Spin Structure Functions g; and ¢»

The spin structure functions are formed from the polarized cross sections differences

from the following expressions:

MQ? y 0
- A SA 7
il 42 (1—y)(2—y) [ U\|+tan2 UJ_:| (8.7)
_ Me” y? 1+ (1—y)cosh
T T2 R R ] (8:8)
where y = %.

The 3He spin structure functions are plotted versus =, as measured at constant en-
ergy, in Figs. 8.11 and 8.12. The error bars depict the total uncertainties. For the Bjorken
variable, the 3He mass was used; hence, = = 1 corresponds to *He elastic scattering. Pro-

ceeding right to left along the horizontal axis, we encounter the quasielastic peak. The
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entire peak is not included in the plots, but from the included data, the quasielastic contri-
bution is significant at these kinematics. Following the quasielastic, there is a crossover
for both structure functions at the pion production threshold. At lower z, we find the
A(1232) resonance and find that g; =~ —g,. The A is primarily an M, transition, and
further, the unpolarized cross section in this region is well described with only a trans-
verse contribution. This implies that the longitudinal-transverse cross section o+ should
be suppressed in the A region. If we refer back to Eq. (3.11), o7 x (g1 + ¢2), and
hence, a zero o would indicate an equal and opposite g; and g,. For experiment E97-
110, this is approximately seen in the data. This behavior was also seen in the E94-010
data between 0.1 GeV? and 0.9 GeV?2,

Beyond the A region, g, is non-zero and approximately flat, whereas, g, is consistent
with zero but with large uncertainty. From Eqgs. (8.7) and (8.8), we see that g, is dominated
by the parallel kinematics, and g, is primarily from the transverse data. The contribution
from Ao, to g; is about 5% (8%) at 6° (9°), whereas, the parallel contribution to g5 is

about 2—5% (3—8%) at 6° (9°).

8.7 Transverse-Transverse Cross Section opr

The spin structure functions can also be expressed in terms of the virtual photoab-
sorption cross sections of Egs. (3.11) and (3.12). Preliminary 3He results for the gener-
alized GDH integrand o7 /v is shown in Figs. 8.13 and 8.14 as measured for the eight
incident beam energies. The inner (outer) error bars represent the statistical (total) uncer-
tainties. The A(1232) resonance has a significant negative contribution, which increases
at lower Q2. However, there is also some hint that the quasielastic contribution, which

has the opposite sign, is sizable. This behavior can be seen for the 2.845 GeV and 3.319
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GeV data. Beyond the A region, the integrand is small and approximately flat within the
error bars.

Before the neutron generalized GDH integral can be extracted, a careful study needs
to be conducted to separate the quasielastic contribution from the A region. This analysis
is ongoing. Once the quasielastic part has been removed, the data will be interpolated to

constant (9% and then the integration will be performed.

8.8 Extraction of Neutron Resultsfrom *He

In the ground state, the 3He nucleus is primarily in an S state wave function, and the
proton contribution to spin-dependent properties cancels due to the pairing of the two pro-
ton spins. This simplistic model is complicated by an admixture of the other states: S’” and
D. The neutron is also subject to binding effects within the nucleus and undergoes Fermi
motion, which dampens out the resonance peaks. The *He wave function components
and their nucleon spin configurations are shown in Fig. 8.15. Since the wave function is
in an S state about 88% of the time, polarized 3*He provides an effective polarized neutron
target.

In the DIS region, the spin structure functions can be extracted by using the effective

polarization approach:
91(5(%) = 2Ppgh ) () + Pugiin) (@) (8.9)
where p, and p, are the effective nucleon polarizations in *He and are given by [115]:
pp = —0.028 + 0.004 (8.10)

Pn = 0.86 +0.02. (8.11)
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FIG. 8.15: The wave function components of the *He Nucleus.

In order to include Fermi motion and binding effects, a convolution approach involving
the proton and neutron structure functions gfg‘)) is used to obtain realistic nuclear structure
functions g{‘@). The formalism for the convolution method is available in Ref. [116]. In
the DIS regime, it has been found that Eq. (8.9), which neglects Fermi motion and binding
effects, shows reasonable agreement with the convolution approach to within 5%.

Scopetta et al. have also found that the same does not hold in the resonance re-
gion. In this region, Fermi motion significantly broadens and dampens out the resonance
peaks compared to the free neutron case. Neither the approximation of Eq. (8.9) or the
convolution approach provide reliable neutron results in the resonance region; hence, an
alternative approach for the extraction of the neutron spin structure functions from *He is
needed.

For experiment E97-110, we are interested in moments of the spin structure functions

and sum rules, which are integrated quantities. Integrating Eq. (8.9) leads to:

Q%) = 2p, IP(Q%) + pu " (Q%) (8.12)

where 1(Q?) represents a sum rule or one of spin structure function moments. The ex-
traction of the neutron integrals is valid in both the resonance and DIS regions [116] with

an accuracy of 10% at Q% = 0.1 GeV?. Above 0.5 GeV?, the approach results in an error
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of 5%. The authors have checked the extraction down to 0.01 GeV? and have concluded
that the extraction from Eq.(8.12) should be reliable to the 10% level [117].

Theoretical work is ongoing [118] to include final state interactions and relativistic
effects. In addition to these effects, meson exchange currents and the A excitation may

play a relevant role.

8.9 Measurement of the GDH Integral

In Fig. 8.16 the expected quality of the results are shown for the neutron extended
GDH integral. The vertical scale is normalized to the GDH sum rule at Q? = 0. The
solid circles show the data from a previous experiment, E94-010 [57]. The statistical
uncertainties are shown on the points, and the systematic uncertainties are given by the
band at the top of the graph. In the magnified region, the open circles show the (?
range, and the dark band at the top of the graph indicates the final expected systematic
uncertainty for the integral. The solid curve shows the phenomenological MAID model
[54], and the dotted and dashed curves are predictions from Chiral Perturbation Theory
[41, 42, 44]. The new data are expected to show a turn-over towards the GDH sum rule
for the neutron. Once the quasielastic contribution has been removed, the neutron integral

will be extracted from our data down to a Q? of 0.035 GeV? for the second run period.

8.10 Summary and Conclusions

Experiment E97-110 was conducted to map out the Q2-evolution of the extended
GDH sum rule for the neutron and 3He at low Q2 between 0.02 and 0.3 GeV?. This

integral is a powerful tool that can be used to study the nucleon spin structure over the full
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FIG. 8.16: The expected statistical and systematic uncertainties for the neutron GDH integral.

@Q? range and provides us with a way to investigate the transition from hadronic to partonic
degrees of freedom. This unique relation, valid at any momentum transfer (Q2), can be
used to make comparisons between theoretical predictions and experimental data. This
experiment was dedicated to provide an important benchmark test of chiral perturbation
theory predictions. From these data, the generalized GDH integral, moments of the spin

structure functions and forward spin polarizabilities will all be extracted.

In this document, the preliminary analysis and results of the E97-110 3He data were
presented. Both the ¢; and g5 spin structure functions were calculated and presented. The
data show that the quasielastic peak and A (1232) resonance have a large contribution for
our kinematics as was also seen in the E94-010 data. The transverse-transverse cross sec-
tion o7 was also extracted from our data. This data again shows that the quasielastic and

A regions will have the largest contribution to the GDH integral. Once the quasielastic
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contribution is removed from the data, the neutron GDH integral will be extracted. The
lowest Q2 point (O.lGeVQ) from E94-010 indicates that the integral falls below the real
photon point. The extraction of the integral from our data is eagerly awaited to see if at
lower (Q? the integral turns around and approaches the GDH value at Q% = 0. Further-
more, the GDH integral and moments of the spin structure functions for *He will also be

extracted.



APPENDIX A

Optics Reconstruction | ssues

When the optimization was completed for the experiment, there were a few outstand-
ing issues that had to be addressed. On close inspection of the sieve slit plots in Fig. 6.10,
the central row is shifted toward positive ¢, (in the direction of the beamline) for the
upstream and central foils. The second issue involves the 3.319 GeV data at 9°. Since
elastic data is not available at this energy, the optimization process cannot be performed
with a clean data set. The final issue is the septum magnet saturation effect. Below we

will discuss solutions to these issues.

A.l Fixingthe ¢, Shift

At first when the ¢, shift in the central row was seen, the optimization was suspected
to need further improvement. However further optimization by including higher order
matrix elements only resulted in minor improvements. The shift might be caused by

a separation between the septum magnet coils on the beamline side [119]. Since the

163
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standard polynomials cannot reproduce the effect, the shift cannot be fixed within the
standard framework of OPTIMIZE++.

A plot of the focal plane distribution for 6, and v, is shown in Fig. A.1. A cut
was placed on the central foil to produce this image. In the first order approximation, the
plot represents an image of 6, and ¢, in the focal plane. At positive yg,, there is small
second order dependence on g, but at negative yy,, there is a much sharper dependence
where the slope of the distribution changes sign at 05, = 0. If the same distribution is
viewed for the downstream and upstream foils, the dependence at negative yg;, changes
such that the effect is weaker for the downstream foil and stronger for the upstream foil.
This behavior is clearly seen in the target reconstruction, and there is almost no shift in

¢4g Tor the downstream foil.

0.03

-0.02

L
-0.02 -0.01 0 0.01 0.02 0.03

Yip (M)

o T T 1T

-0.03
-0.

FIG. A.1: Foca plane distribution of 05, and yg, with acut on z,eace for the central foil. The
beam energy is 2.134 GeV.

Since the y5, dependence on 6y, changes across the focal plane, the standard poly-
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nomials cannot adequately compensate for this effect. Since the shape of the focal plane
distribution is V-shaped, absolute value terms of 5, were added to the ¢, optimization.
Eqg. 6.8 was modified for ¢, by adding the absolute value terms to the standard terms in

OPTIMIZE++, see Egs. (A.1) and (A.2),

Prg = Z PT Aja |0| vk ok, (A.1)
Gkl
Prg = Prg T Py (A2)

where ¢,, is calculated from the standard matrix elements, and PT"A ;,; corresponds to the
tensor for the ¢, absolute value terms. The order of the focal plane variables in Eq. (A.1)
was kept below second order.

For the absolute value terms to be effective, the standard ¢., matrix elements had
to be reoptimized. The procedure followed was to revert to the initial database elements
for ¢, optimize the absolute value terms, and then optimize the standard elements. The
sieve slit image is shown in Fig. A.2 before and after optimization using the absolute
value terms. The reconstruction for 2.844 GeV at 6° is shown in the top plots, and 2.235
GeV at 9° in the bottom plots.

The ¢y, shift for most of the sieve slit holes was fixed, and the shift in the few
remaining holes was reduced by at least a factor of two. A more complicated correction
could be applied, but the effect of the remaining shift is expected to be a small systematic
effect in the final cross section result. A thorough study of this effect on the cross section
will be conducted in the future.

In the case of an extended target (such as the multi-foil target), y,, varies with ¢,

for a foil not located at the origin of the TCS. Due to this connection between the two
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FIG. A.2: Angular reconstruction for the central foil before (left) and after (right) ¢, absolute
value corrections. Top row shows 2.844 GeV, 6° data, and the bottom row shows 2.235, 9° data
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variables, a similar shift is seen in y;, for the central row. This is especially evident in
the z..ct SPectra in Fig. 6.10. In particular the resolution of the central foil is a factor of
two worse than the other foils. A similar correction using absolute value terms in the v,

optimization yielded only minimal improvements in the v, reconstruction.

A.2 Target Reconstruction for 3.319 GeV

Since the 3.319 GeV optics data at 9° are not elastic, a clean data sample does not
exist to do the optimization. In anticipation of this problem, the optics data were taken
with a thicker sieve slit to avoid sieve slit punch-through events. The thick sieve slit
has five columns and hence only 35 holes. The horizontal spacing of the three columns
closest to the beamline is 0.9 cm apart. After the third column, the spacing increases so
the columns are 1.2 cm apart. The vertical spacing between the holes is 1.8 cm and is the
same for all the holes. Even with the thick sieve slit, the data contained punch-through

events, so the optimization was not performed at 3.319 GeV.

The target reconstruction for 3.319 GeV was improved by adjusting a few matrix
elements by hand in the 2.235 GeV database. First the spectrometer focal plane offsets
for ¢y, and yg, were changed to center the sieve slit and y, spectra with respect to their
nominal positions. Then the ¢, and ysew. Second order dependence on Zgey. Was re-
moved. The changes to the matrix elements for 3.319 GeV are given in [102]. The sieve
slit image is shown in Fig. A.3 before and after the matrix elements were adjusted. After

the corrections, the target reconstruction was found to be reasonable.
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FIG. A.3: Angular reconstruction for the central foil before (Ieft) and after (right) correctionsto
the matrix elements. The momentum of the spectrometer was at 3.046 GeV /c.

A.3 Septum Saturation Effect

When the 1.096 GeV and 2.844 GeV optics data were replayed with the 2.134 GeV
matrix elements, ¢, and v, were shifted with respect to their nominal positions. As
mentioned in Section 6.4.5, these shifts are attributed to septum magnet saturation effects.

These will be described along with a method to correct for the target coordinate shifts.

A.3.1 The Septum Magnet Tune

The septum bends particles scattered at small angles such as 6° into the spectrometer,
which is located at 12.5°. A linear relationship exists for a dipole magnet’s field and its
bending angle. Additionally the magnet’s current and field should also have a linear
relationship. Since the septum’s current was set independently from the spectrometer

momentum, the determination of the relationship between the current and momentum was
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crucial. At the beginning of the E97-110 summer run period, the septum magnet current
was tuned with the spectrometer momentum. The tune was established by centering the
central hole of the sieve slit at the focal plane. The conversion factor used to scale the
septum magnet current with the spectrometer momentum at 6° was 92.58 A (GeV /c) ™.

The scaling factor at 9° can be determined by scaling the 6° factor by the ratio of
the septum horizontal bending angles at 6° and 9°. The factor calculated for 9° was
128.19 A (GeV/c)~*. When the 9° tune was first established at 3.775 GeV, the conversion
factor was found to be 131.94 A (GeV/c)~!. At this beam energy, the central foil v,
position was monitored as the momentum of the spectrometer was decreased. When the
central foil position deviated from zero by at least 1 mm, the septum magnet current was
adjusted to recenter the foil position. In Fig. A.4, the conversion factor’s dependence
on the spectrometer momentum is plotted only for the points where the central foil’s y,,
position was approximately zero. The data were fit to the exponential function given in

Eqg. (A.3).

C’Fjsep = Do eXp<Pcentp1) + Do (A3)

P...t 1S the central spectrometer momentum, and the fit parameters (po, p1, and p,) are
shown at the top of the figure. The non-linearity of this curve represents the septum
saturation effect. For the other beam energies at 9°, the septum magnet current was set

based on these fit parameters.

A.3.2 Saturation at 6°

During the acquisition of the 6° data, the septum magnet current was believed to

scale linearly with the spectrometer momentum. However this turned out not to be the
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FIG. A.4: Septum magnet conversion factor at 9° based on the central foil's y, position. The
beam energy was 3.777 GeV.

case. When the 2.134 GeV data were optimized, the spectrometer focal plane offsets opti-
mization centered the target coordinates at this energy, but when the tensor elements were
applied to the other optics data sets, the target positions were shifted from their nominal
values. When no major detector configuration changes are made during an experiment,

the offsets in the focal plane variables are expected to be stable.

When the matrix elements were optimized at 1.096 GeV and 2.844 GeV, the focal
plane offsets changed to recenter the target positions. If the matrix elements are used
to reconstruct the target coordinates at momenta between the optimized settings, shifts
occur in yy, and ¢,. When the septum current does not match the required field for the
spectrometer momentum setting, the central scattering angle is either a little too large or
too small compared to the desired central scattering angle of 6°. Due to the connection

between v, and ¢y, discussed in Section A.1, a shift in ¢, leads to a shift in y,,. Only the
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coordinates perpendicular to the dispersive direction are affected, since the septum bends
particles in the horizontal plane. These shifts have to be corrected in order to obtain the

correct target coordinates.

A.3.3 Database Prescription to Correct Shifts

In order to correct the shifts seen in y,, and ¢, between the optimized momenta, a
correction was applied by using the difference in the focal plane offsets. At the optimized
settings, the yg, and ¢y, offsets for 6° and 9° were fit to an exponential. The fit parameters

are listed in Table A.1 and defined in Eq. (A.4),

yﬁf = Cpexp(FPyCh) + Ca, (A.4)

where F, is the central momentum of the spectrometer.

| Angle | Offset | Cy (mm) | Cy (GeV/c)™' | Cy (mm) |

6° | up |-6.3E-02 1.25 —5.69
¢p | —0.82 0.62 0.25
9° | up, |-1.8E-04 2.96 —5.94
¢ | —3.7E-02 1.38 ~1.04

TABLE A.1: Focal plane offset fit parameters for 6° and 9°.

From these coefficients, the focal plane offsets for each momentum setting were
determined. Then the shift in the focal plane offsets between the optimized momentum

and the unoptimized momentum is determined by

Sy = Yo' — i (A.5)
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S = o — SR (A.6)

where yﬁg’t and qb‘f’gt are the optimized offsets from one of the databases. The focal plane
offset shifts are then multiplied by the first order v, and ¢, matrix elements to obtain the

shift corrections at the target.

4] < > < > o
vl o_ yly ylo y A7)
3¢ <ly> <ol¢> | | ¢
tg fp
The corrected target variables are then determined from Egs. (A.8) and (A.9).
ygg = ytg + 5ytg (A8)
Pty = Org + 0rg (A.9)

The data acquired for E97-110 covered the full momentum range of the right spec-
trometer, and for each angle, this range was divided among the optimized databases. The

range of validity for each database was defined in the following manner:

E, — E

Rlim - 9

(A.10)

where E; and E5 are adjacent momenta at which the matrix elements were optimized,
and Ry, is the transition momentum between two databases. Table A.2 gives the valid

ranges for the optimized databases.
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| Angle | Database Energy (GeV) | Lower Limit (GeV/c) | Upper Limit (GeV/c) |

6° 1.096 0.872 1.60
2.134 1.60 2.489
2.844 2.489 3.40
9° 1.147 0.428 1.691
2.235 1.691 2.686
3.319 2.686 3.40

TABLE A.2: Database validity ranges for 6° and 9°.

A module named THaSeptumsShiftCor.cxx was written to implement the shift cor-
rection procedure for the Hall A ROOT/C++ Analyzer. The Hall A User Software Devel-
opment Kit [120] was used to build a library for this module, which can then be loaded
within a ROOT macro. The module requires no additional input other than what is nor-

mally required to run the Analyzer and outputs the shift corrected target coordinates for
Yig aNd Qg

The database module was tested using data that covered the full momentum range of
the spectrometer for all beam energies and at both angles. A comparison for z,..; is made
before and after shift corrections in Fig. A.5 for data taken at beam energies of 2.844 GeV
and 4.208 GeV. Since z....; IS corrected for the beam position, a direct comparison can be
made between different momentum settings. After applying the shift corrections at 6°, the
Zreact POSItiON Was reasonably centered for spectrometer momenta below 2.3 GeV /c. At
the highest momentum settings, above 3.0 GeV /¢, the shifts were over-corrected. For the
4.208 GeV data, this was confirmed by determining the carbon foil central peak position.
Carbon foil data provide a sharp peak at discrete z,...; positions, which can be compared
to the positions from optics data. The shifts between momenta of 2.3 GeV/c and 2.8

GeV /c also appear over-corrected. However, there is no carbon data in this momentum
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range to verify this hypothesis. The shift corrections between 2.5 GeV/c and 3.2 GeV /¢

were scaled to eliminate the excess corrections at these momenta. The plots in Fig. A.5

already have the scaled shift corrections taken into account.

«10° 2.84 GeV, 6 Degrees «10° 2.84 GeV, 6 Degrees
= —P,=2481GeV 24 & — P,=2.481 GeV
wf 7P—22976ev o E 7P—2297Gev
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18 ,L ‘{Iﬂf 18 %
16 I} 1 16 - 1
s il up A
12 ; 12 - IMM
10 - 10 - Lm‘ﬂiﬂj]
8 8L LM
61 = )
4 ; 4
2 : 2
0;»4‘-’“1“\7‘1\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\h O:W \:\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\T
-0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 -0.2 -0.15 -0.1 -0.05 -0 0.05 0.1
Zreact (m) Zreact (m)
“10° 4.2 GeV, 6 Degrees «10° 4.2 GeV, 6 Degrees
7000 [~ —P,=3.16GeV 7000 F — P, =3.16 GeV
g P, =2.915GeV . ﬁ:ﬂ] " P, =2.915 GeV
6000 |- | b Jk,w' P, =1.079 GeV 6000 |— F P =1.079 Gev
g M"M I E Hq' }m
5000 C ﬂuﬂm 5000 O
r ik 4000 |~ L |
4000 | Dﬂ/l‘w | : MmMﬂr
3000 |- 3000 |- ‘1],‘
2000 |- / L 2000 |- J‘
g f ¥ ! ’M
1000 [~ ! 1000 [~ 4
r r i
- " ht
07 \\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\v 07 \\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\7
-0.2 -0.15 -0. -0.05 -0 0.05 -0.2 -0.15 -0.1 -0.05 -0 0.05

Zreact (m)

Zreacl (m)

FIG. A.5: Reconstruction for z,.,. before (Ieft) and after (right) shift corrections. In the top row,
the 2.844 GeV datais shown, and in the bottom row, 4.208 GeV.
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A.3.4 Shift Corrections at 9°

In Section A.3.1, the septum magnet conversion factor for 9° was determined by an
exponential fit to data acquired with a carbon foil. Since the septum current was set based
on the saturation curve, a shift correction at 9° should not be needed. However, the y;,
spectrum was not centered at each momentum setting for the 3.777 GeV energy. Plus
there are a few instances where the magnet current was set incorrectly by an Ampere. So
a separate correction is needed in these cases.

To determine the corrections for the 9° data, the z,...; central foil peak was fit with
a Gaussian function plus a flat background term for the non-elastic carbon runs. The fit
was used to determine the centroid of the peak along z....;. For each of the runs, the
conversion factor was determined from the central spectrometer momentum (F,) and the

septum current (Zgp).

Ise
CFyp = P; (A.11)

In Fig. A.6 the difference between the actual conversion factor and the one from the
exponential fit is shown versus the z....; position. In the left plot, there are a handful of
points below the fit. These points all use the modifications for the 3.319 GeV database
mentioned in Section A.2. In the right plot, the spectrometer focal plane offsets in the
3.319 GeV database were replaced by the offsets in the 2.235 GeV database. With the
replaced offsets, the outlying points now agree with the rest of the data. For the analysis,
the 2.235 GeV offsets will be used for the 3.319 GeV database.

The data were fit to a line without a constant term. This is because when the differ-
ence in the conversion factor (ACF) is zero, z,.act Should also be zero. For each run, the

Zreact COrection is then determined from the slope of the line (p;), and the corrected z;c.c
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FIG. A.6: Central foil 2., positions versus the difference between the conversion factor from
the data and one based on the exponentia fi t to the saturation curve. Only @ non-elastic dataare
included in the plots using the 3.319 GeV spectrometer focal plane offsets (left) and 2.235 GeV
offsets (right).

position is given by Eq. (A.13). A similar set of equations exists for the ¢, corrections

discussed below.

AZreact - ACF (A12)
Y4
Zfeact = Zreact T AZreact (A13)

The shift corrections for ¢, were determined in a similar manner, but without sieve-
slit data, the ¢, distribution does not have a sharp peak. For the 3.777 GeV data, data
exists with the same central momentum but different currents on the septum magnet. By
using the average shift from the left and right edge of the ¢, distribution, ¢,’s depen-
dence on AC'F can be determined. The shift in ¢, versus the difference in the septum

conversion factor is shown in Fig. A.7. As in the z,...; corrections, the data were fit to a
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line without a constant term. Then the ¢, correction is determined for each run based on

the slope of the line.

X2 I ndf 3.718/6
po 0+ O
pl 0.848 + 0.04022

25

15

[

A Conversion Factor (A/GeV)

+

Ol v b b v b by vy Py
0.5 1 15 2 25

A @, (mrad)

FIG. A.7: Shiftin the ¢, distribution versus the difference between the conversion factor from
the data and one based on the exponential fi t to the saturation curve. The shift is determined from
data with the same central momentum but different septum currents.

A database was created that contains the z,e..; and ¢y, shift corrections for each 9°
run. Since the saturation curve is fairly flat below 1.3 GeV /¢, the shift corrections are not
used below this momentum. The module created for the 6° shift corrections mentioned
in Section A.3.3 was modified to read the database and incorporate the 9° corrections by
using Eq. (A.13) and the equivalent equation for ¢.,. The corrections were tested and
found to work extremely well. The ¢, and ze.c, distributions are shown in Fig. A.8
before and after shift corrections were applied. The data are from two runs with the
same central momentum but different septum currents. After corrections, both ¢, and

Zreact OVErlap well between the two runs. For z...., the dashed lines indicate the nominal
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positions for the carbon foils at 9°. The central foil for both runs is centered with respect

to the central line.
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FIG. A.8: The ¢, (top) and zcact (bottom) distributions before (left) and after (right) 9° shift
corrections were applied. The dashed lines represent the nominal z,c..¢ positions.
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Spectrometer Acceptance

B.1 Spectrometer Acceptance

In Chapter 7, the unpolarized cross section was given by

graw _ do™  psiN 1 (B.1)
O T dQAE’  NupLTeqes AQAE'AZ’ '
which is dependent on knowledge of the spectrometer acceptance:
; (B 2)
AQAE'AZ’ '

where AQ is the solid angle acceptance, A E’ the momentum acceptance for each spec-
trometer setting and AZ the target length seen by the spectrometer. Due to the fields
created by the spectrometer magnets, the acceptance may not coincide with the geomet-
rical apertures of the spectrometer. The acceptance instead depends on the particle’s
trajectory, momentum and interaction vertex. Hence, the acceptance is determined from

a monte carlo simulation [121].

179
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In the simulation, random trajectories are generated that cover an illuminated region
that is larger than the actual acceptance in momentum and solid angle. The simulation
uses knowledge of the transport properties of the spectrometer magnets and the physical
location of the apertures to determine if a randomly generated ray passes through to the
spectrometer’s focal plane. The acceptance is then extracted by forming the ratio of total
generated events to those that pass through the spectrometer apertures and analysis cuts.
The acceptance can then be expressed as

1 N 1

_ B.
AQAE'AZ ~ N2& AOncAE L oAZye (B.3)

where N2l js the total number of trial events generated in the simulation. N3 is the
number of events that survive the transport through the spectrometer model and accep-
tance cuts. The illuminated solid angle, momentum and target length are given by AQyc,
AE} - and AZyc, which were chosen to be larger than the actual values.

For experiment E97-110, fifty million random events (Vi) were generated for
each momentum setting covering a solid angle of 14 mSr. The simulated target length
was 40 cm and covered a momentum spread of + 7%. The simulation was updated to
incorporate tranport functions that include the septum magnet and the collimators used

during the experiment.

B.2 Asymmetry Acceptance Cuts

Since the asymmetry is a ratio of cross sections, the acceptance cancels out. This
allows us to use larger acceptance cuts in the asymmetry analysis, which is statistically
limited unlike the cross sections. For the asymmetry analysis, the following cuts were

chosen for the 6° and 9° data:
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|60t < 50 mrad

|pte| < 30 mrad

| Zreact| < 30 €M

16] < 4.5%

The target variables are defined in Section 6.4.1.

Additional cuts were included at the collimator locations to remove events that tra-
versed through part of the collimator. These two-dimensional cuts are based on the col-
limator positions. For the target collimators, the positions were recalculated with respect
to the nominal 6° or 9° central ray. Due to the nature of the cuts, it is useful to define
variables related to the collimators. The vertical and horizontal position at the sieve-slit

collimator aperture are given by zg.con and ys.con respectively:

Tsveoll = Ttg + stcoll : etg > (B4)

and

Ysveoll = Ytg + stcoll : (btg ) (BS)

where Lg..on = 0.833 m from Table 6.11. Two additional variables are related to the

transverse position at the target collimators:

Yucoll = UYtg + Lucoll : ¢tg s (B6)
and
Ydeoll = Ytg + Ldcoll * Ptg » (B.7)

where y..on IS the transverse position at the upstream target collimator, and 4o i the

transverse position at the downstream target collimator. The lengths L .on and Lgcon are
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the distances from the center of the target to the upstream and downstream collimators
respectively. These lengths are related to the upstream (downstream) collimator x4 and

2y(q) Positions given in Table 6.10:
Luconl = 2., = xy cos by + 2, sin by, (B.8)

Laconn = 2 = x4 08y + 24 sin 6y, (B.9)

where 6, is the central angle of the spectrometer: 6° or 9°.
Using the above variables, the following collimator cuts were used in both the asym-

metry and cross section analyses for both angles:

b ‘wsvcoll‘ < 0.049 m
® |ysvc011| < 0.028 m
® Yucoll > UCOL

® Ydcoll < DCOL

where UCOL and DCOL are related to the x and z positions of the upstream and down-

stream collimators respectively and calculated from:
UCOL = x|, = z,cos 6y — x,sin by , (B.10)
DCOL =z} = zq cos 0y — xqsin by, (B.11)

These values are given in Table B.1.

B.3 Cross-Section Acceptance Study

A thorough study of the acceptance was performed testing the reproduction of the

target quantities from the simulation. Since the collimators already reduce the target
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| Angle | Lycon (€M) | Lacon (€m) | UCOL (cm) | DCOL (cm) |
6° 3.04 41.90 -1.01 0.59
9° 2.41 30.22 —0.85 1.52

TABLE B.1: Target collimator parameters used for the collimator cuts.

length by almost a factor of two, we preferred to keep the acceptance cuts as loose as

possible. However two background processes required us to use tighter acceptance cuts.

B.3.1 Background in 6,

The first background produces a sharp peak in the out-of-plane angle (6;,) acceptance
at —26 mrad. This peak dominates the empty reference cell spectrum as shown in Fig. B.1

and is present for all targets. The events from this peak are also well separated in the

Empty Reference Cell, Run # 2831

30000

25000

20000

15000

10000

5000

o

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

FIG. B.1: Empty Reference Cell Spectrum for 6,, showing a peak at —26 mrad.

spectrometer focal plane from the main events. These two facts imply that the background
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is due to some process independent of the target and is also unpolarized. The peak in
the 6;, acceptance is also seen for the 9° data but is approximately two times smaller.
This background can easily removed from the data by subtracting the empty reference
cell yield from the 3He yield. However a depression is left in place of the peak after
subtraction, which is shown in Fig. B.2. The black curve represents the data, and the
simulation, weighted by the Mott cross section, is shown in red. The data were acquired
with an incident beam energy of 4.2 GeV and central spectrometer momentum of 1.7
GeV/c. In this region, the invariant mass W = 2.3 GeV is beyond the resonance region,
and the Mott cross section is expected to approximate the acceptance reasonably well in

this region.

1.709 GeV, Polarized *He

10000 —

8000—

6000—

——1.709 GeV/c Data

4000~

— With O ot

2000

FIG. B.2: Background-subtracted spectrum for 6.

The unpolarized cross sections were determined using the full ;, acceptance within
+ 45 mrad and the positive half (f;, > 0 mrad) of the acceptance. For the 6° data, the

cross section from the full acceptance was smaller by 4-5%. At 9°, the effect was only
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2-3%, which agrees with the factor of two difference seen in the acceptance studies. Since
the simulation reproduces the acceptance reasonably well for 6;, > 0 mrad, we decided
to only use this region in the cross section analysis. The full 6, acceptance was used in
the asymmetry analysis. A thorough study of the effects from this background will be
conducted in the future, and hopefully the negative half of the acceptance can be kept in

the final analysis.

B.3.2 Collimator Background

The collimator cuts are beneficial by removing events from the target cell’s glass end
windows. However the collimators themselves become a source of potential background.
This background results from scattered electrons from the target passing through part of
the collimator without being stopped. Electrons that go through this process will lose en-
ergy and produce a radiative tail. This is expected to be especially important for electrons
scattering elastically, since the elastic cross section is large at 6° and 9°. A study of how
the elastic tails are modified by collimator punch-through was studied in Ref. [122]. For

the second run period kinematics, the size of the effect is summarized in Table B.2. The

| Energy (GeV) | Angle | v1n.x (GeV) | Correction |

2.135 6° 1.25 5.0%
2.845 6° 1.9 3.5%
4.209 6° 3.2 —2%
1.147 9° 0.7 7.0%
2.234 9° 1.9 3.6%
3.319 9° 1.7 0.3%
3.775 9° 3.0 —-2.1%
4.404 9° 3.0 0.9%

TABLE B.2: Collimator punch-through correction from elastic radiative tails.
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size of the correction is given for the maximum value of the energy transfer v for each en-
ergy. The correction also includes finite acceptance and target size effects. For the lowest
energies, the size of the correction is the largest. Above 2 GeV, the correction is typically
< 5%.

The study in [122] did not include an estimation for the inelastic contribution; how-
ever a full simulation is in preparation to investigate the effect from inelastic punch-

through [69].

B.3.3 Acceptance Cuts

Due to the concern about effects from electrons rescattering through the collimators,
a set of conservative acceptance cuts were chosen to reduce these effects. The collimator
cuts discussed in Section B.2 are tighter than the physical collimator locations. For the
cross section analysis, a tighter cut was placed on z,...; for the same reasons. Because of
differences between the 6° and 9° acceptances, slightly different cuts were chosen.

The acceptance cuts for the 6° data are as follows:

0 mrad < 6, < 45 mrad

—30 mrad < ¢y, < 26 mrad

lye| < 1.5cm

Zreact < 6 CM

|0] < 3.5%

(ytg + 1.8¢g) > —0.04 m

(11g + 1.75¢1,) < 0.03 M
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The acceptance cuts used for the 9° data are:

0 mrad < 6, < 45 mrad
o —30 mrad < ¢, < 27 mrad
e —15cm<y, <21cm

® Zreact < 9cm

5] < 3.5%

(g + 1.8¢1,) > —0.04m
o (yig + 1.75¢,) < 0.04 m

These cuts are in addition to the collimator cuts discussed earlier. In Fig. B.3, the 6° data
at W = 2.3 GeV are compared to the simulation weighted by the Mott cross section using

the above cuts with the full 6;, acceptance.
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APPENDIX C

Statistical Uncertainty and Prescale

Factors

The statistical uncertainty on the asymmetry is determined from:

NTN-
~ 20— Cl
OA Nt30t ) ( )

where N (N ™) is the number of events with helicity +1(-1), and Ny, = N* + N~. Here
the uncertainties on Nt and N~ are given by the Poisson distribution. In the case when

the asymmetry is small enough such that N* =~ N—, then the uncertainty on the asym-

[ 1
oA = Ntot . (C2)

For experiment E97-110, the majority of the data were prescaled to reduce the bur-

metry becomes:

den on the DAQ system and keep the deadtime less than 20%. Unfortunately prescaling
complicates the calculation of the statistical uncertainty, so Eq. (C.2) does not give the
correct answer when the prescale factor is greater than one. The uncertainty can be cor-

rected by multiplying the number of events by the prescale factor. However this method
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is not applicable because the deadtime correction and acceptance cuts need to be taken
into account.

A third method was used, instead, that attempts to account for the deadtime and
acceptance cuts [69, 123]. In this method, the unprescaled triggers and detected events are
treated using a binomial distribution. This is a reasonable assumption since the prescaled
events are a subset of the unprescaled triggers. Plus the good events after acceptance cuts
are a subset of the total number of detected events without cuts. The following equation

was derived using a binomial distribution for the three sets of data:

B psigT 1 1 n 1
COQELTENTE = &

(C3)

ON=*

where o=+ IS the uncertainty on the number of accepted events with helicity +1 and ps;
is the prescale factor for 77 events. @, LT and T; are the helicity-dependent charge,
livetime and the number of main triggers, respectively. The total number of detected
events is represented by ¢ and the number of good electron events after acceptance cuts
by g* for the two helicity states. If there is no deadtime and the prescale factor is equal

to one, then o+ = Ql—i\/g} and Eq. (C.2) becomes valid again.
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