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Abstract 

This is the final report describing the evolution of the project “Development and 

Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil 

Recovery” from its conceptual stage in 2002 to the field implementation of the developed 

technology in 2006. This comprehensive report includes all the experimental research, 

models developments, analyses of results, salient conclusions and the technology transfer 

efforts. 

As planned in the original proposal, the project has been conducted in three separate 

and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, 

Task 2 was aimed at further developing the vanishing interfacial tension (VIT) technique 

for gas-oil miscibility determination, and Task 3 was directed at determining multiphase 

gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures 

and temperatures. 

 The project started with the task of recruiting well-qualified graduate research 

assistants. After collecting and reviewing the literature on different aspects of the project 

such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil 

displacement characteristics in porous media, research plans were developed for the 

experimental work to be conducted under each of the three tasks.  

Based on the literature review and dimensional analysis, preliminary criteria were 

developed for the design of the partially-scaled physical model. Additionally, the need for 

a separate transparent model for visual observation and verification of the displacement 

and drainage behavior under gas-assisted gravity drainage was identified. Various 

materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass 

beads) were attempted in order to fabricate a satisfactory visual model. In addition to 

proving the effectiveness of the GAGD process (through measured oil recoveries in the 

range of 65 to 87% IOIP), the visual models demonstrated three possible multiphase 

mechanisms at work, namely, Darcy-type displacement until gas breakthrough, gravity 

drainage after breakthrough and film-drainage in gas-invaded zones throughout the 

duration of the process. The partially-scaled physical model was used in a series of 

experiments to study the effects of wettability, gas-oil miscibility, secondary versus 

tertiary mode gas injection, and the presence of fractures on GAGD oil recovery. In 

addition to yielding recoveries of up to 80% IOIP, even in the immiscible gas injection 

mode, the partially-scaled physical model confirmed the positive influence of fractures 

and oil-wet characteristics in enhancing oil recoveries over those measured in the 

homogeneous (unfractured) water-wet models. An interesting observation was that a 

single logarithmic relationship between the oil recovery and the gravity number was 

obeyed by the physical model, the high-pressure corefloods and the field data.  
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Seeking to derive a sound and strong scientific basis for the new vanishing interfacial 

tension (VIT) technique through careful experimentation was the main objective of Task 

2. This was accomplished by conducting gas-liquid and liquid-liquid interfacial tension 

(IFT) measurements at elevated pressures and temperatures using a high-pressure optical 

cell for two standard gas-oil systems (CO2 + n-Decane and CO2 + n-Decane + methane) 

as well as a standard ternary liquid system (water + ethanol + benzene). Both the pendent 

drop image capture technique and the capillary rise technique were used to measure low 

gas-oil interfacial tensions. The close agreement between the minimum miscibility 

pressure (MMP) obtained from the VIT technique for these standard fluid systems with 

those from slim-tube tests, rising bubble apparatus, phase diagram and analytical model 

predictions clearly validated the miscibility determination capabilities of the VIT 

technique.  

The VIT technique was then applied to the study of miscibility between CO2 and a 

live crude oil from a Louisiana oil field with the aim of examining the influence of the 

compositional path, if any, on the MMP measurements using the VIT technique. In 

various experiments involving a wide range of gas-oil ratios (GOR), detailed 

compositional measurements of both vapor and liquid phases were carried out using a gas 

chromatograph and densities of both phases were measured using a digital densitometer. 

In spite of the large GOR variations in the initial mixture compositions, all the 

extrapolated VIT miscibility pressures agreed well, with a standard deviation of 0.67%, 

thereby clearly establishing the robustness and compositional path independence of the 

VIT technique. 

The Peng-Robinson equation of state (PR-EOS) and commercial phase behavior 

software were used to calculate MMPs for the various fluids systems used in the above 

VIT experiments. The MMP calculated using the untuned PR-EOS matched reasonably 

(within 3-5 MPa) with VIT results. Interestingly, this work also indicated that the 

calculated MMP can vary as much as 10 MPa (nearly 1500 psi) depending upon the 

choice of a tuning parameter for the EOS, raising questions about the utility of such non-

unique results from EOS tuning , especially for MMP determination.  

Another major accomplishment under Task 2 was the development of a new 

mechanistic Parachor model for the prediction of dynamic IFT in multicomponent 

hydrocarbon fluids. The 85-year old Parachor model was modified by incorporating a 

simple ratio of diffusivities (from oil-to-gas to gas-to-oil) raised to an exponent n, the 

value of which was to be determined by fitting the modified Parachor model to 

experimental IFT measurements. This bi-directional diffusivity ratio accounted well for 

the vaporizing- and condensing-type mass transfer interactions between the oil and gas 

phases, and the value and sign of the exponent, n, enabled the determination of the 

dominating mass transfer mechanism for miscibility development. A generalized 

regression model was also developed to determine the mechanistic model exponent (n) by 
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using only the compositional data of reservoir fluids. The modified Parachor model 

enabled the calculation of multicomponent gas-oil IFTs and MMPs, with excellent 

agreement with VIT-based MMPs. 

Reservoir condition displacement tests involving 6-ft long Berea cores and 1-ft long 

reservoir cores were the focus of Task 3. CO2 gas injection was carried out in several 

modes: continuous gas injection (CGI), water-alternating-gas (WAG) injection, Hybrid 

WAG (combination of CGI and WAG) and GAGD in order to develop a comparative 

evaluation of GAGD performance in the laboratory scale displacements at elevated 

pressures and temperatures. The GAGD process outperformed all the other modes of gas 

injection. Comparable oil recovery patterns in widely differing experimental systems, 

ranging from a uniform porous medium (Berea sandstone) to a heterogeneous fractured 

(Yates reservoir dolomite) cores, in both miscible and immiscible modes, clearly 

indicated the insensitivity of the GAGD process to reservoir heterogeneities, which 

remains a major concern in conventional horizontal gas floods. In fact, the presence of 

vertical fractures was found to be beneficial in increasing the rates and recoveries of oil – 

conforming to the findings from visual and physical model GAGD tests. The common 

logarithmic relationship found between recovery and the gravity number for all types of 

experiments conducted in this 4-year study clearly demonstrated the consistency of 

performance of the GAGD process.  

The technology transfer efforts conducted during the course of this project have 

resulted in 15 technical reports, 20 conference presentations, 16 reviewed journal 

publications, 2 patent applications, one commercial license of the process, in addition to 

generating 5 M.S. theses, and 2 Ph.D. dissertations. The first field test of the GAGD 

process is anticipated in a Louisiana oil field during 2007. 
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1. Design and Development of a Scaled Physical Experimental 

GAGD Model 

 

1.1 Dimensional Analysis and Scaling Criteria for Physical Model Design 

 
1.1.1 Literature Review 

In this section, a brief review of literature on the following topics is presented: 

• Dimensional analysis  

• Inspectional analysis 

Buckingham (1914) developed the theory on physically similar systems resulting in 

the development of a general analytical method, called dimensional analysis. His theory 

states that any equation that completely describes a relation among a number of physical 

quantities is reducible to the form φ (π1, π2, ....πn) = 0, in which the π’s are all the 
independent dimensionless products of some form of the original quantities. Thus, the 

effect of dimensionless groups, instead of the individual variables, can be investigated 

experimentally and theoretically resulting in global correlations between groups of 

variables representing different physical phenomena rather than numerous individual 

variables.   

Ruark (1935) introduced the term “inspectional analysis.” In an inspectional analysis, 

it is necessary to write down the differential equations describing the physical process 

and the associating boundary or initial conditions to determine the dimensionless groups 

governing the process. Ruark also compared dimensionless analysis and inspectional 

analysis and although dimensional analysis, based on Buckingham’s PI theorem, 

generates complete and independent dimensionless groups for a specific problem, the 

groups are not unique. Instead, a large number of such dimensionless groups could exist. 

Dimensionless analysis works better if the system is small and the dimensionless groups 

are well understood beforehand. Inspectional analysis, on the other hand, takes the first 

step toward the actual solution of a problem. Dimensionless groups obtained from 

inspectional analysis are likely to bear clearer physical meaning than those from 

dimensional analysis.  

Geertsma et al. (1956) derived dimensionless groups by inspectional analysis for three 

types of displacement processes: cold-water drive, hot-water drive and solvent injection. 

The form of the groups is given in such a way that they can be adapted to suit the various 

boundary conditions that are encountered in practice.  The physical meaning associated 

with the various groups was also discussed. 

By using dimensional and inspectional analysis, a new set of scaling groups for the 

immiscible displacement of heavy oil by CO2 and water was derived by Rojas and Farouq 

Ali (1986). Studying the dynamics of sub-critical CO2/brine floods for heavy oil 
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recovery, Rojas and Farouq Ali (1986) found that the immiscible displacement of viscous 

oils by carbon dioxide was dominated by viscous forces. Therefore, capillary and 

diffusive effects play a much less important role in the displacement process. Thus, in the 

scaled physical model, the following scaling groups were completely satisfied: geometric 

factors, morphologic factors, ratio of gravitational to viscous forces, ratio of viscous 

forces, and water-gas ratio of slug volumes. Other groups, such as ratio of capillary to 

viscous forces and ratio of convection time to transverse dispersion time, were only 

partially satisfied.  

Islam (1995) reviewed emerging technologies in enhanced oil recovery (EOR) and 

pointed out the need for scaled model experiments for EOR applications. The author also 

stated that it is generally difficult to properly scale laboratory test results to field 

conditions, especially if the following conditions are involved: chemical reactions, 

horizontal wells, and unstable displacement fronts. 

 

1.1.2 Inspectional Analysis of the Gravity Drainage Process 

The gravity drainage process is difficult to model theoretically. Here, inspectional 

analysis is used to present the governing equations, derive their dimensionless forms, and 

combine variables into dimensionless groups. Similarity groups are then proposed based 

on these dimensionless groups and other considerations as well.   

 To begin this derivation, the following assumptions are made: 

• One-dimensional downward flow. 

• Isothermal condition. 

• Immiscible gas/oil phases.  

• Incompressible phases and porous media: 

The pressure in this process is not expected to vary in any significant way. 

Therefore, it is still reasonable to assume incompressible phases. 

• Spreading system:  

K = σwg-(σog+σow) > 0, where K is the spreading coefficient, and σ is the 
interfacial tension between the phases. When K is positive, oil spreads on water. 

• Water-wet media: 

Water occupies the smallest pores and coats grain particles; water is immobile 

throughout the process. 

• Three-phase co-existence, that can be simplified as an oil/gas two phase flow problem 

by assuming the connate water saturation for an oil/water system is the same for a 

gas/water system. 

 The problem is reduced to an oil/gas two-phase flow problem under the above 

assumptions. As shown in Figure 1.1, there is a constant production rate at u, which is 



 3 

equal to the sum of u1 (oil) and u2 (gas). There are two regions in the column, one is the 

oil bank at connate water saturation, and the other is the gas-invaded zone.  

 

L

z

u1 u2

u

Oil bank

u
Gas

Oil

Two-phase 

flow region

 
Figure 1.1: Schematic of 1-D Gravity Drainage in Porous Media 

 

The mass conservation equation: 

011 =
∂

∂
+

∂

∂

z

u

t

S
φ …………………………………………………………………..… (1.1)  

, where subscript “1” refers to the oleic phase. 

The flow equation is Darcy’s law applied to the oil and gas phases: 

)(/ 1
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dz
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kku r ρµ += ………………………………………………………..…… (1.2) 

)(/ 2
2

222 g
dz

dp
kku r ρµ += ……………………………………………….…………… (1.3) 

, where k is the absolute permeability, kr is the relative permeability, and µ and ρ are the 
viscosity and the density of the phases respectively. 

From the incompressible assumption and capillary relation, we have 

uuu =+ 21 …………………………………………………………………………… (1.4) 

cppp += 12 ………………………………………………………………….……… (1.5) 

, where: 
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)( 1SJ
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φ
σ= ……………………………………………………………..……….. (1.6) 

J(S1) is the dimensionless capillary pressure Leverett J function, and σ is the interfacial 
tension. 

The initial and boundary conditions are: 

LztatSS i ≤≤== 0,011  

0,001 =>= ztatu  

Lzttatu BT =<= ,02 ……………………………………………..… (1.7) 

, where tBT is the gas breakthrough time. 

Now the above equations are transformed to their dimensionless forms by applying the 

following transformations. 
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, where t* is to be determined. 

Substitute Eq. 1.8 into Eqs. 1.1-1.7 to get the following dimensionless form of the 

equations:  
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In Eqs. 1.1’-1.8’ we have: 
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These dimensionless groups are not unique to the problem; other combinations may have 

a clearer physical meaning. Let us define D5 = D2/D4 = ρ1/ρ2, then we can delete D4 from 

the groups. Similarly, by defining D6 = D1/D3 = µ2/µ1, we can delete D1 from the groups, 

and D7 such that D6/D7 = D2/D3, then D7 =

k

gL

φ
σ

ρ1 .   

Finally, our similarity groups after these transformations are: 

2

1

ρ
ρ

, 
1

2

µ
µ

, 
u

gk

1

1

µ
ρ

, 

k

gL

φ
σ

ρ1  

 Groups 1 and 2 are density and viscosity ratios, group 3 is the ratio of gravity to the 

viscous forces, or a gravity number, and group 4 is the ratio of gravity force to capillary 

forces, also called the Bond number. The reason for these transformations is that the 

gravitational force is considered the most important among the viscous, capillary and 

gravitational forces in the drainage process being considered.  

 The dimensionless relative permeability terms of oil and gas appear in Eqs. 1.2’ and 

1.3’. The initial condition in Eq. 1.7 provides yet another dimensionless group, S1i, the 

initial oil saturation. To ensure the same relative permeability function in the model and 

in the field, it is ideal to use the same reservoir rock material in the physical model. 

However, this is not always possible. If different porous media are used, the pore size 

distribution in the prototype should be matched to that in the porous media of the 

physical model. In other words, the pore size distribution functions should be congruent 

functions as shown in Figure 1.2.   
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γ(Ri)

Ra   Ri' Ri

 
 Figure 1.2: Congruent Pore Throat Size Distribution Functions  

 

 To ensure the same initial saturation condition, let us use Figure 1.2 to illustrate the 

point. The same saturation in the model as in the field means that the same proportion of 

space is occupied by the wetting phase within the same distribution function, represented 

by the dark-colored area. The entry pore throat size, Ri’ that is determined by the 

capillary pressure, should correspond to each other in terms of their relative magnitude, 

that means Ri’/Ra should be the same for the model and field, where Ra can be the 

average pore throat size.  

The initial drainage process in the oil reservoir is a capillary and gravity dominated 

process, i.e., oil migrates due to some force and enters the pores with a certain pore throat 

opening depending on the capillary pressure. The capillary pressure should be equal to 

the gravity force that drives water away, such that: 

Pc = 2σcosθ/Ri’  and 

Ri’ = 2σcosθ/ Pc  ……………………………………………………………….…..… (1.9) 

, where the capillary pressure, Pc, is balanced by the gravity force. Thus the value of Pc 

can be determined by the oil-water contact and the density difference of oil and water in a 

specific reservoir. This quantity can be transformed by dividing it by the average pore 

throat radius, Ra, resulting in: 

2σcosθ/ (Pc Ra) 

 This dimensionless group serves as the dimensionless group for the same initial 

condition.  Thus, the following list constitutes the final similarity groups for the gravity 

drainage process being discussed: 

2

1

ρ
ρ

, 
1

2

µ
µ

, 
u

gk

1

1

µ
ρ

, 

k

gL

φ
σ

ρ1 , 
ac RP

θσ cos2
, γ(Ri) 

1.1.3 Development of a Scaled Physical Model 

According to Stegemeier et al. (1980), a scaled physical model is developed through 

various steps. The governing equations for the process have to be identified in order to 
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adequately scale the process. The similarity groups have to be determined through 

dimensional or inspectional analysis. A prototype field has to be selected, in order to 

match the similarity parameters between the desired model and the selected field. Model 

properties are then determined through calculations, engineering judgment and resource 

availability. It has been attempted to follow this approach for developing a scaled 

physical model of the GAGD process. 

 

1.1.3.1 Identification and Evaluation of the Scaling Parameters 

It becomes necessary to identify the governing phenomena for a gravity drainage process 

in order to scale it. The similarity parameters usually involve the ratio of the various 

forces that govern the process. Viscous, capillary and gravity forces have been identified 

as the crucial forces that govern a gravity drainage process (Leverett, 1940, Craig, 1957, 

Hagoort, 1980, and Meszaros, 1990).  Blunt et al. (1995) report that film flow plays an 

important role in gravity drainage of oil. A fluid property group, α, a function of 
interfacial tension and density difference of fluids was introduced by Kantzas et al. 

(1988). Blunt et al. (1995) used this relationship to show that for α>1, oil only exists as a 

molecular film with negligible oil saturation above a critical height (Zc). This implies that 

complete drainage of oil from the region above the critical height can be achieved, 

yielding very low oil saturations. The critical height Zc is a function of the thickness of 

the oil bank (H) and α, where Zc = αH/(α-1). The similarity parameters for the 

calculation of the preliminary scaled physical model for the GAGD process have been 

adapted from literature while other similarity groups that could play a role in GAGD have 

been identified. Table 1.1, lists the similarity groups that were identified and used in 

calculating the physical model parameters for scaled experiments. 

The relationship presented in equation 1.10 is the governing criterion for scaling the 

process, which is in agreement with the scaling laws presented by Rapoport (1955). 
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Table 1.1: Similarity Groups for the GAGD Process 

 Similarity Groups Formula References 

1. Geometric Aspect Ratio (RL) 
H

V

L
K

K

H

L
R =  Shook et al., 1992 

2. 
Capillary Number (NC) 

Ratio of viscous forces to capillary forces σ
νµ

 Grattoni et al., 2000 

3. 
Bond Number (NB) 

Ratio of Gravity forces to capillary forces 
σ
φ

ρ 







∆

K
g

 
Grattoni et al., 2000 

4. Fluid property group (α) 
( )
( )owgo

gow

ρρσ

ρρσ

−

−0
 Kantzas et al., 1988 

5. 
Gravity Number (NG) 

Ratio of gravity forces to viscous forces do

og gK

νµ

ρ∆
 Shook et al., 1992 

 

Where γ refers to the ratio of the similarity parameter of the prototype field to that of the 

scaled physical model.  A model is said to be completely scaled if the above relationship 

is obeyed. Limitations of physical model arise because of the unavailability of materials 

and fluids having physical properties that will satisfy all scaling requirements 

(Stegemeier et al., 1980). 

This study has investigated the effect of all these forces in addition to the spreading 

coefficient and wettability on GAGD performance. All the experiments conducted in this 

study have attempted to study the effect of the capillary number, the Bond number, the 

spreading coefficient, the mode of injection (secondary/tertiary), the rock wettability and 

the mode of gas injection (constant pressure/constant rate) on the performance of GAGD 

process. 

 

1.1.3.2 The Bond and the Capillary Number 

The Bond number, NB, is defined as the ratio of gravitational forces and the capillary 

forces (Table 1.1). The Bond number is directly proportional to the absolute permeability 

of the sand pack, and the density difference between the fluids in the reservoir. The 

absolute permeability of an unconsolidated porous media is a strong function of the grain 

diameter and is given by the Carman-Kozeny equation (Equation 1.11).  

3

2)1(72

φ
φτ K

DP

−
= ……………………………………………………………… (1.11)  
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Where DP is the grain diameter, τ is the tortuosity and φ is the porosity of the bead pack. 
However, it is out of the scope of this study to measure the tortuosity of the sand pack, 

therefore the typical value of 1.5 for sand packs is used as the tortuosity in the above 

equation. Moreover, the permeability decreases weakly with tortuosity and tortuosity 

does not vary vastly (White, 2004).  In order to obtain favorable and realistic Bond 

numbers, fluid-fluid interaction parameters (interfacial tension) are also important. The 

Bond number ranges obtained from the field (Table 1.2) were the basis of the 

experimental design for studying their effect on GAGD recovery. Experiments were 

conducted by selecting appropriate grain sizes and fluids to simulate the Bond numbers 

obtained from field production data.  

 The capillary number, NC, plays a very important role in deciding the stability of the 

gas displacement process. The importance of the capillary number and the viscosity ratio 

of the displacing and displaced fluid have been mentioned in the literature review section. 

Viscous forces have an effect on the drainage process. In this study the viscous forces 

were quantified with respect to the capillary forces by using the capillary number.  

 

 

 

 

 

 

 

Table 1.2: Field Ranges of the Dimensionless Groups (Kulkarni, 2004) 

Field Ranges 
Capillary 

Number (NC) 

Bond Number 

(NB) 

Gravity Number 

(NG) 

Minimum 1.12E-09 1.21E-05 875 

Maximum 4.18E-08 2.84E-07 0.39 
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1.2. The Physical Model Experiments 

 
1.2.1 Introduction 

The first sections contain the detailed literature review in which the design of the scaled 

model using the dimensional similarity approach will be discussed. Scaled experiments 

on a Hele-Shaw type physical model were carried to study the effect of the following 

parameters on GAGD performance during forced gravity drainage experiments: 

• Bond number. 

• Capillary number. 

• Mode of gas injection. 

• Type of gas injected. 

• Wettability. 

• Fractures. 

 

1.2.1.1 Literature Review 

A field review conducted on nine gravity drainage field projects by Kulkarni (2004), 

indicated that all those field projects in various parts of the world were successfully 

implemented. The oil recovery from these projects has been as high as 90% of the initial 

oil in place (IOIP) in tertiary mode after secondary waterfloods. Although two of the nine 

projects were deemed economically unsuccessful, the others were all lucrative. These 

projects were implemented on a large variety of geological settings, ranging from 

formations that were sandstone (mostly water-wet) to carbonates and dolomites (mostly 

oil-wet). This clearly indicates that gravity drainage can be implemented in a wide variety 

of geological setting.  

However, these projects were implemented on pinnacle reefs type reservoirs. Gravity 

drainage using vertical wells might not yield similar recoveries if these were horizontal 

type reservoirs. Gravity override becomes a problem in conventional horizontal gas 

injection enhanced oil recovery (EOR) processes, where an unfavorable mobility ratio in 

such processes results in early gas breakthrough, lower gas utilization factor and poor oil 

recoveries.  The inclusion of horizontal wells in horizontal type reservoirs to facilitate the 

gravity stable oil drainage appears to be a solution to this problem. 

 

1.2.1.2 Horizontal Wells 

Horizontal wells have long been used in several field applications. The key parameters 

that control the success of horizontal wells are: (i) fracture intensity, (ii) hydrocarbon pay 

zone thickness, (iii) well spacing, (iv) vertical communication, (v) formation damage and 

post drilling cleanup ability, (vi) geological control, (vii) multi-well prospect, and (viii) 

cooperation in geological, reservoir, drilling and completion departments (Lacy et al., 

1992). Horizontal wells result in increased reservoir contact area, increased productivity 
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over vertical wells and reduce coning tendencies in reservoir with bottom water drive and 

top gas cap drive because of a low pressure drawdown around the well bore. The 

application of horizontal wells in GAGD will account for the stable displacement of oil 

from the top of the reservoir to the well, reduce early gas breakthrough and reduce the 

residual oil saturation (Joshi, 2003). However, the applicability of horizontal wells will 

depend on the parameters discussed above.  

 

1.2.1.3 Scaled Model Studies  

Displacement experiments in the laboratory have been extensively used to investigate the 

production behavior of petroleum reservoirs. Stahl et al. (1943) conducted the first scaled 

gravity drainage experiments. Air was used to displace various fluids from a column 

containing Wilcox sand. They reported results showing the dependence of liquid 

saturation on column height at both equilibrium and dynamic conditions. Scaled 

experiments investigating gravity segregation have been studied by Craig et al. (1957) 

and Templeton et al. (1961) in glass bead systems. Meszaros et al. (1990) used a series of 

partially scaled two-dimensional models to study the effect of inert gas injection on 

heavy oil recovery. As much as 70% of the oil in place was recovered in their study. Such 

experiments are representative of the reservoir if they are carried out in models that are 

properly scaled. The performance of oil reservoirs is governed by the value of a number 

of variables, which includes (i) fluid-fluid interfacial tension, (ii) fluid viscosities, (iii) 

wettability, (iv) spreading coefficient, (iv) fluid-fluid density difference, (v) rock 

porosity, (vii) absolute and relative permeability, and (vii) initial water saturation. These 

variables can be combined to form dimensionless groups. The derivation of these groups 

is done using two general methods: 

• Dimensional Analysis (Geertsma et al., 1955). 

• Inspectional Analysis (Ruark, 1935). 

Dimensional analysis is the process of combining two or more variables into a group that 

would be dimensionless. The effect on a certain variable is then studied in terms of the 

group instead of individual variables in the group. Rapoport (1955) suggests that if the 

ratio of dimensionless groups at a larger geometric scale to dimensionless groups at a 

smaller geometric scale were kept equal to one, then the mechanisms occurring on both 

the scale would be similar. However, the above statement is true only if both of the scales 

are geometrically similar. 

Inspectional analysis is a similar method for obtaining dimensionless groups to study 

the mechanistic behavior of a process. However, inspectional analysis is based on the 

underlying physical laws, usually expresses in the form of partial differential equations 

and boundary conditions. Inspectional analysis can be done even with an incomplete set 

of equations and through the analysis; at least some of the dimensionless groups can be 

obtained (Shook, 1992). Inspectional analysis is stronger than dimensional analysis in the 
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sense that it takes into account the underlying physical laws involved in the flow 

behavior. However, dimensional analysis has been found sufficiently useful for processes 

involving similar flow behavior (Hagoort, 1990). 

 

1.2.1.4 Factors Affecting Gravity Drainage 

Along with edge water drive and solution gas drive, gravity drainage has long been 

recognized as one of the three important natural drive mechanism for expelling oil from 

the reservoir rock. However, the quantification of oil recovery due to drainage has long 

been a concern. It has long been a concern to identify the contribution of oil recovery due 

to gravity drainage alone. Calhoun (1953) suggests that if drainage was occurring, those 

wells lowest in the structure should recover the highest amount of cumulative oil. During 

the early life of the reservoir, the reservoir tends to produce by solution gas drive, 

depending upon how much pressure drawdown is available. Although, the primary 

mechanism is solution gas drive, some drainage is still evident in the reservoir during 

production period at the lower part of the reservoir. However, when the reservoir pressure 

depletes, gravity drainage seems to be taking place at greater portions of the reservoir 

(Lewis, 1943).   

Lewis (1943) suggests that the force of gravity provides sufficient mechanical energy 

to drain a large percentage of oil from the sand, but the important concern is not how 

much potential mechanical energy there is in the reservoir but how effective it will be in 

displacing oil. The distribution of oil within the pore space of a porous media plays an 

important role in the viability of the oil being recovered efficiently.  

Oren et al., (1994), suggest that the static pore-scale distribution of three fluids in a 

porous media is determined by a complex interaction involving physical phenomena such 

as wettability (rock-fluid interactions), spreading phenomena, capillary pressure, 

mobility, viscosity and buoyancy.  

Grattoni et al., (2002), reported that wettability in conjunction with the spreading 

characteristics of the oil plays an important role in displacing residual oil from the pores. 

They conducted experiments using large sintered packs, with different matrix wettability 

and with oils having different spreading coefficients for evaluating the performance of a 

depressurization process. Results from these experiment indicates that in a water-wet 

medium, for spreading oils, the physical form of the oil becomes transformed from 

immobile ganglia into mobile oil films, which can be transported by the gas. For non-

spreading oils, oil has to be pushed out by the gas as discontinuous ganglia, so less oil is 

produced. In contrast, in an oil-wet system, the oil phase already exists as continuous film 

on the solid surface so that the generation of gas effectively expands the oil phase, 

enabling the oil to be produced in larger quantities even at lower gas saturations. It can be 

concluded from this work that rock wettability and oil spreading behavior have an 

influence on the performance of gas drives.  
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Moreover, most of the reservoirs have been reported as being mixed wet, in which 

continuous and distinct oil and water-wetting surfaces coexist in the porous media.  

Laboratory and network model studies conducted by Rao et al., (1992), Salatheil, (1973), 

Morrow (1991) and network model studies of Kovscek (1993), indicate that lower 

residual oil saturation can be obtained for a mixed wet porous media as compared to 

water-wet medium.  

The preferential spreading of one fluid over the other in a porous media has been 

quantified using the spreading coefficient, S. Studies conducted by Blunt et al. (1995), 

Oren et al., (1995), Mani et al., (1996) and Grattoni et al., (2000) emphasized the 

importance of film flow behavior in a drainage dominated environment. Mani et al., 

(1996), report that for a spreading oil system where S > 0, the residual oil saturation is far 

less than in a non-spreading oil system. If S > 0, the interfacial energy of a three phase 

fluid system is decreased by having a film of oil between the gas phase and the water 

phase, and thus, oil spreads spontaneously between gas and water. The stability of the oil 

film becomes a crucial factor in facilitating the drainage of the film owing to gravity. 

Blunt et al., (1995) report that the thickness and stability of the oil film can be determined 

using a parameter α. This parameter governs the distribution of oil, water and gas in 

vertical equilibrium for a spreading system. Where: 

)(/)( owgogoow ρρσρρσα −−= ………………………………...……………….. (1.12) 

, and ρo, ρg and ρw are the density of oil, gas and water respectively. Experiments 

conducted by the Blunt (1995) indicate that if α > 1, there is a height above the oil/water 

contact, beyond which oil only exists as molecular film, with negligible saturation. When 

α < 1, large quantities of oil remain in the pore space and gravity drainage is not efficient. 

The author also indicates that a negative spreading coefficient leaves behind large 

quantities of trapped oil in the reservoir, resulting in poor recoveries. Literature on 

spreading coefficient led to study its effect on the gravity drainage of oil assisted by 

invasion of gas into the model.  

The distribution of oil, gas and water in the reservoir pores is controlled by their 

capillary interaction and the wetting characteristics of the reservoir rock. Whenever 

immiscible phases coexist in the porous media as in essentially all processes of interest, 

surface energy related to the fluid interfaces influences the distribution, saturations, and 

the displacement of the phases. Most of the EOR processes tend to reduce the interfacial 

forces existing across the interface of two phases. However, in immiscible processes 

capillary force exists and forces the denser fluid to retain in the pore spaces. Lewis et al., 

(1942) suggest that the self-propulsion of oil downward through sand under the impulse 

of its own weight occurs in two zones. At the top where the liquid is in contact with free 

gas, the sand is only partially oil saturated and capillarity controls the flow. Below the 

base of this capillary zone, which corresponds to a free surface, the sand is saturated or 
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nearly saturated with liquid and flow follows hydraulic laws. Therefore the complete 

knowledge of the capillary action in the porous media is necessary to predict the 

saturations and displacement of the displaced phase. Kantzas et al. (1988) presented 

equations to predict the saturations of each phase inside the capillaries of arbitrary pore 

sizes. Capillary pressure versus saturation plots for the three phase systems in capillaries 

of regular pore geometries were also developed. Li and Horne (2003) developed an 

analytical model based on capillary pressure curves to match and predict the oil 

production by free-fall gravity drainage. The model was able to match the experimental 

and numerical simulation data of oil recovery as well as the oil production data from 

Lakeview pool and Midway sunset field. 

  

1.2.1.5 Summary of Literature Review 

The effect of gravity tends to segregate fluids in the reservoir in order to maintain the 

density equilibrium (Muskat, 1949). Gravity segregation of fluids in horizontal reservoirs 

often leads to gas override and gas coning problems during a gas injection process. 

However, field reviews indicate that gravity stable gas injection is technically successful 

in dipping reservoirs and applicable to large variety of geological settings. Recent 

advances in horizontal well technology have demonstrated that the use of horizontal wells 

could minimize problems such as gas override and gas coning. Moreover, the use of 

horizontal wells in naturally fractured reservoirs often results in higher productivity. 

Horizontal wells could find favorable prospects in gravity stable gas injection processes 

in horizontal reservoirs. 

Film flow characteristics of reservoir fluids are crucial for the implementation of 

gravity drainage processes. Rock wettability in conjunction with spreading coefficient 

determines the residual oil saturation for a drainage process. Capillarity plays an 

important role in the fluid distribution, fluid saturations and the displacement process. 

Viscosity ratio along with capillary number could determine the flow regime during a gas 

injection scheme. This study aims to determine the effect of all these parameters on 

GAGD performance. 

 

1.2.1.6 The Effect of the Operating Mode  

Lewis (1943) suggested the following modes of operating a gravity-stable gas injection 

process:  

1. Gas injection at a constant pressure. 

2. Restore and maintain or partially restore gas pressure after depletion of pressure 

3. Reduce pressure gradually, so that gas and oil can segregate continuously by counter 

flow. 

4. Produce field in two stages, first under solution gas-drive conditions until the gas has 

been practically eliminated from the oil, then by gravity drainage. 
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Methods 1 and 2, mentioned by Lewis (1943) are useful for commercial production 

from primary reservoirs. A thorough comparison between these two modes of gravity 

drainage process was deemed to be useful for the GAGD process. Experiments have been 

conducted to identifying the most favorable operating mode for GAGD.  

Besides the two operating modes of gas injection, the effect of mobile and immobile 

or connate water saturation on GAGD was also investigated, achieved by conducting 

GAGD in primary recovery mode and secondary recovery mode (after waterflooding).  

 

1.2.1.7 Wettability 

Wettability is the term used to describe the relative adhesion of two fluids to a solid 

surface (Tiab et al., 1996). In a porous medium containing two or more immiscible fluids, 

wettability is a measure of the preferential tendency of one of the fluids to adhere to the 

surface. According to Morrow (1990), the reservoir wettability is determined by complex 

interface boundary conditions acting within the pore space of sedimentary rocks. These 

conditions have a dominant effect on interface movement and associated oil 

displacement.  

The GAGD experiments in a 2-D Hele Shaw model also included experiments with 

oil-wet porous media. This experimentation was aimed as an extension of the water-wet 

2-D Hele Shaw GAGD experiments and was designed to investigate the effects of 

reservoir wettability on secondary and tertiary mode GAGD process performance. Since 

the focus of this experimentation was to evaluate the performance of the GAGD process 

in oil-wet media, alteration of the wettability of the glass beads/silica sand from water-

wet to oil-wet was essential for comparison on a similar basis. The wettability of the glass 

beads/silica sand was altered using an organosilane, dimethyldichlorosilane or 

(CH3)2Cl2Si, and the steps involved (from the Fluorochem website) were: 

1. Measure enough glass beads for use in one test run in a large glass vessel. Prepare the 

glass beads for the silylation process by rinsing the glass beads with the sample 

solvent (methylene chloride) to remove any manufacturing residues that might 

interfere with the silylation process.  

2. Dry the glass beads by placing them in an oven and heat them at 180°C for at least 1 

hour.  

3. Cool the oven to approximately 50°C and immediately place the glass beads in a 5% 

solution of dimethyldichlorosilane ((CH
3
)Cl

2
Si), or DMDCS, in methylene chloride 

(CH
2
Cl

2
). Place a piece of laboratory stretch film over the reaction vessel. Soak the 

glass beads in the 5% DMDCS solution for 10 minutes. Use caution when removing 

the glass beads from the reaction vessel because anhydrous hydrochloric acid is 

formed during this reaction, as demonstrated in Figure 1.3.  
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4. Rinse the glass beads with the same solvent used in the DMDCS solution (methylene 

chloride) and then soak the glass beads in methanol for 10 minutes. Once again, cover 

the reaction vessel with laboratory stretch film.  

5. Remove the glass beads from the methanol and allow them to air dry. Once dry, the 

beads are thoroughly deactivated and ready for use.  

6. The described procedure must be performed entirely in the fume hood using gloves, 

an apron, a respirator, and suitable eye protection.  

The interaction of certain silane compounds, in particular the chlorosilanes, with 

silica surfaces has important utility in their use as surface deactivating agents. When 

considering the reaction of dimethyldichlorosilane, or DMDCS ((CH
2
)
2
Cl

2
Si), with the 

silica surface, two possible reactions can be presumed:  

1. S-
s
OH + (CH

2
)
2
Cl

2
Si � Si

s
-O-Si(CH

2
)
2
Cl +HCl  

2. 2 S-
s
OH + (CH

2
)
2
Cl

2
Si � (Si

s
-O)

2
-Si(CH

2
)
2
Cl + 2HCl  

A mixed, 1.6-order reaction has been observed suggesting that both reactions do occur. 

This implies that 40% of the freely vibrating surface hydroxyl groups reacts 

monofunctionally, but 60% must be present in a position sufficiently close to each other 

that they can react in a bifunctional manner (Hair, 1986). For this study it is assumed that 

only the first reaction occurs. 

 

 
Figure 1.3: Reaction Mechanism of the Wettability Alteration Procedure  

 

There are many different ways for measuring the wettability of a system. They include 

quantitative methods, such as contact angle measurement, imbibition/forced displacement 

(the Amott method), the United States Bureau of Mines (USBM) wettability method, and 
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qualitative methods, such as imbibition rates, microscope examination, flotation, glass 

slide method, relative permeability curves, and more. Although no single method is 

accepted by everyone, three quantitative methods are generally used:  

1. Contact angle measurement.  

2. The Amott method.  

3. The USBM method.  

The contact angle is a measure of the wettability of a specific surface, while the Amott 

and the USBM method measure the average wettability of a core.  

The Contact Angle: 

When two immiscible fluids are in contact the fluids are separated by a well-defined 

interface, which is only a few molecular diameters thick. When the interface is in 

intimate contact with a solid surface it intersects the surface at an angle, the contact 

angle, θ, which is a function of the relative adhesive tension of the liquids to the solid. 

The angle is described by Young’s equation:  

12

21cos
σ

σσ
θ ss −
= …………………………………………………………….……. (1.13)  

, where:  

• σ
s1 
= interfacial tension between the solid and fluid 1;  

• σ
s2 
= interfacial tension between the solid and fluid 2;  

• σ
12 

= interfacial tension between the two fluids.  

The contact angle is the best wettability measurement method when pure fluids and 

artificial cores are used because there is no chance of surfactants or other compounds 

altering the wettability (Anderson, 1986). Some of the methods used to measure the 

contact angle include: the tilting plate method, sessile drop or bubbles, vertical rod 

method, tensiometric method, cylinder method, capillary rise method, and the Dual Drop 

Dual Crystal method.  

The Amott Method: 

The Amott method combines imbibition and forced displacement to measure the average 

wettability of a core. In this method both reservoir core and fluids can be used. The 

Amott method is based on the principle that the wetting fluid will generally imbibe 

spontaneously into the core, displacing the non-wetting one. The ratio of spontaneous 

imbibition to forced displacement is used to reduce the influence of other factors, such as 

relative permeability, viscosity, and the initial saturation of the rock.  

Usually the core is prepared by centrifuging under brine until the residual oil saturation is 

reached. The following four steps are then executed in the Amott method:  

1. Immerse the core in oil and measure the volume of water displaced by the spontaneous 

imbibition of oil after 20 hours.  
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2. Centrifuge the core in oil until the irreducible water saturation is reached and measure 

the total amount of water displaced, including the volume displaced by spontaneous 

imbibition.  

3. Immerse the core in brine and measure the volume of oil spontaneously displaced by 

the imbibition of water after 20 hours.  

4. Centrifuge the core in brine until the residual oil saturation is reached and measure the 

total amount of oil displaced.  

Note that the core may be driven to the irreducible water saturation and the residual oil 

saturation by flow rather than using a centrifuge. This is especially necessary for 

unconsolidated material that cannot be centrifuged.  

The test results are generally expressed as follows:  

 1. The displacement-by-oil ratio:  

The ratio of the water displaced by spontaneous oil imbibition alone, V
wsp

, to the total 

volume of water displaced by oil imbibition and forced displacement, V
wt
.  

δo = Vwsp/Vwt …………………………………………………………………... (1.14a) 

2. The displacement-by-water ratio:  

The ratio of the oil volume displaced by spontaneous imbibition of water, V
osp

, to the 

total oil volume displaced by imbibition and forced displacement, V
ot
.  

δw = Vosp/Vot …………………………………………………………………. (1.14b)  

Preferentially water-wet cores have a positive displacement-by-water ratio and a zero 

value for the displacement-by-oil ratio. The displacement-by-water ratio approaches one 

as the water-wetness increases. Similarly, oil-wet cores have a positive displacement-by-

oil ratio and a zero displacement-by-water ratio. Both ratios are zero for neutrally wet 

cores. The time period for the spontaneous oil and water imbibition steps were chosen 

arbitrarily, but it is recommended that the cores be allowed to imbibe until either 

imbibition is complete or a pre-set maximum time limit has been reached. Imbibition can 

take from several hours to more than two months to complete.  

 

1.2.1.8 Fracture Simulation within the GAGD Process  

Darvish et al. (n.d.) conducted a numerical study in order to design oil-CO
2 
gravity 

drainage laboratory experiments of a naturally fractured reservoir. They conducted the 

study using a fully compositional simulation model to investigate the drainage of CO
2 

from a chalk core with artificial fractures. They also included the effects of molecular 

diffusion and interfacial tension. In their experiments, they used a cylindrical chalk core 

as the porous medium with a concentric hole through the middle of the core acting as an 

artificial fracture.  
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The numerical results examined the effects of core geometry, matrix permeability, 

pressure, and gas type in the fracture system on the oil recovery under CO
2
/oil gravity 

drainage. Some of the most interesting results from their study can be summarized as 

follows:  

1. The oil recovery scales up as the matrix permeability increases.  

2. Increasing pressure postpones the oil recovery. The density difference reduces as the 

pressure increases and, consequently, this reduces the gravity force and results in less 

recovery at the early stage. The ultimate recovery for a high-pressure case is higher 

than for a low-pressure case, which is caused by the high extraction capability of CO
2 

at high pressure.  

3. The recovery performance for the injection of hydrocarbon gas versus CO
2 
into the 

matrix is always higher at all stages due to the low hydrocarbon gas density compared 

with the CO
2 
density.  

4. In the case of CO
2 
injection the recovery mechanism can be divided into two stages: 

(i) diffusion and gravity drainage and (ii) the extraction mechanism. In the initial 

stage, transport of the injection gas from the fracture into the matrix occurs primarily 

by lateral liquid-liquid diffusion between the undersaturated oil inside the matrix and 

the saturated oil with CO
2 
at the inner surface of the matrix while at the same time the 

gas enters from the top of the block due to gravity drainage. This can be seen from the 

viscosity reduction of the oil along the core in the diffusion case. The CO
2 
diffusion 

into the core causes the oil to swell followed by viscosity reduction and, 

consequently, less viscous forces and higher drainage rates. In the extraction 

mechanism, most heavy components of the residual oil are vaporized into the gas 

phase.  

In addition to the secondary and tertiary water-wet and oil-wet runs, gas displacement 

runs were conducted in which the presence of a fracture was simulated. This was done by 

placing a mesh box inside the physical model prior to filling it up with glass beads. The 

mesh box consisted of strip metal wrapped in such a way as to form a framework with the 

length of the inside of the physical model and a height equal to the width of the model 

(dimensions: 13 7/8” by 1” by 1/2”). The framework was covered with 400-mesh sieve 

cloth to keep open an internal space that spanned the entire inner height of the model (the 

fracture) and, at the same time, to allow flow through it (see Figure 1.4). 

In addition to the secondary and tertiary water-wet and oil-wet runs, gas displacement 

runs were conducted in which the presence of a fracture was simulated. This was done by 

placing a mesh box inside the physical model prior to filling it up with glass beads. The 

mesh box consisted of strip metal wrapped in such a way as to form a framework with the 

length of the inside of the physical model and a height equal to the width of the model 
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(dimensions: 13 7/8” by 1” by 1/2”). The framework was covered with 400-mesh sieve 

cloth to keep open an internal space that spanned the entire inner height of the model (the 

fracture) and, at the same time, to allow flow through it (see Figure 1.4).  

 

 
Figure 1.4: Physical Model with Vertical Fracture Simulation  

 

1.2.2 Results and Discussion 

 

1.2.2.1 Water-Wet Porous Media 

This section summarizes the secondary and tertiary physical model GAGD experiments 

conducted to investigate the effect of the capillary number on the cumulative oil 

recovery, including three experiments studying the effect of the mobile water saturation, 

and consequently water shielding, on GAGD performance.  

 

1.2.2.2 The Effect of the Capillary Number on GAGD Process Performance 

Two immiscible secondary mode GAGD experiments with similar Bond numbers and 

varying capillary numbers were conducted to characterize the relationship between the 

capillary number and the total oil recovery, shown in Figure 1.5.  It is interesting to note 

that this trend is confirmed by a miscible coreflood data point as well. 

 

1.2.2.3 Tertiary Mode GAGD Experiments 

The important distinction between secondary and tertiary oil recovery processes is the 

presence of mobile water saturation in the reservoir. Mobile water generally leads to 

Fracture 
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increased water shielding effects and water disposal problems in commercial gas 

injection projects.  

Three 2-D physical model experiments to investigate the effects of mobile water on 

GAGD performance were completed. An additional experiment in the tertiary mode, Run 

TF4 with a gas injection rate of 400cc/min, was carried out during this quarter. The 

operational details of these floods, oil recoveries and capillary number variation(s) are 

reported in Table 1.3 and Figure 1.6.   

The experimental results clearly demonstrate that the presence of mobile water in the 

physical model decreases the oil recoveries. Figure 1.7 shows the water production data 

during the GAGD run. The injected gas displaces the mobile water at the bottom of the 

model, mobilizing the residual oil and forming an oil bank at the bottom of the model. An 

average of 28.5% of the residual oil in place was recovered during these tertiary GAGD 

experiments as opposed to 63.5% IOIP during secondary GAGD floods for similar Bond 

and capillary number values. Water blocking effects are clearly noticeable in Figure 1.6 

and Figure 1.7, where only 5% of the oil was recovered during early time. However, after 

the majority of the mobile water was produced, significant production of the residual oil 

was observed.  Figure 1.8 shows the relationship between the oil recovery and the 

capillary number for the tertiary mode GAGD floods. It can be seen that relatively less oil 

is recovered (average of 24% IOIP) during tertiary mode GAGD compared to GAGD 

implemented in secondary mode (average of 63.5% IOIP). This implies that GAGD 

implementation in secondary mode is more beneficial compared to tertiary mode. The 

gravity-stable displacement of oil from the top of the reservoir to the bottom can be 

observed in Figure 1.9. This indicates that the immiscible GAGD process is not only 

capable of mobilizing large volumes of residual oil but is also an effective reservoir 

management tool. 
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Figure 1.5: Variation in Total Oil Recovery with Capillary Numbers for Secondary 

GAGD 

 

Table 1.3: Model Parameters for the Water-Wet Tertiary Mode GAGD Runs 

Model Parameters 
Run TF1 

(20 cc/min) 

Run TF2 (50 

cc/min) 

Run TF3 (5 

cc/min) 

Run TF4 (400 

cc/min) 

INITIAL CONDITIONS 

Connate Water Saturation (Swc(%)) 0.28 0.27 0.3 0.245 

Porosity (%)) 0.44 0.42 0.43 0.45 

Initial Oil in Place, IOIP (cc) 401 405 384.5 430 

WATER FLOOD 

Water Rate (cc/min) 3 3 3 3 

Water Flood Oil Recovery (%IOIP) 45.8 51.7 52.4 49 

Residual Oil Saturation, Sor (%) 39.4 35.2 33.6 36.1 

Mobile Water Saturation, Sw (%) 60.6 64.8 66.4 63.9 

GAS INJECTION 

Gas Rate (cc/min) 20 50 5 400 

Oil Recovery (% ROIP) 21.4 29 27 36.6 

Oil Recovery (% IOIP) 11.6 12.2 15.6 18.2 

Bond Number (NB) 3.9E-05 3.5E-05 3.6E-05 3.61E-05 

Capillary Number (NC) 5.35E-08 1.34E-07 1.6E-08 1.28E-06 
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Figure 1.6: Oil Recoveries Obtained from Tertiary Mode GAGD Runs 

 

 
Figure 1.7: Water Recoveries Obtained from Tertiary Mode GAGD Runs 
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Figure 1.8: NC versus Oil/Total Liquid Recoveries during Tertiary Mode GAGD  

 

 
(A) Model placed horizontally for non-gravity stable water flood 

 
(B) The presence of the oil bank at the top 

of the model at time = 1 min, after the start 

of GAGD in tertiary mode 

 
(C) Movement of the oil bank to the 

bottom of the model at time = 200s 

Figure 1.9: Flood Profile during Tertiary Mode GAGD 
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1.2.2.4 Oil-Wet GAGD Experiments 

The Gas-Assisted Gravity Drainage (GAGD) experiments in a 2-D physical model 

packed were also conducted in oil-wet porous media and can be seen as an extension of 

the water-wet 2-D Hele Shaw physical model experiments of Sharma (2005). The 

experiments were designed to investigate the effect of reservoir wettability and the 

presence of a vertical fracture on secondary GAGD process performance. The procedure 

used to alter the wettability of glass beads from water-wet to oil-wet is described in the 

literature review section.  

 

1.2.2.5 Overview of the Experiments 

A total of six water-wet 2-D GAGD experiments were conducted to establish a baseline 

for comparison: 

1. CP-S-WW-13-1: Constant pressure (4 psig), secondary mode, water-wet glass beads 

with an average diameter of 0.13 mm. Gas: N2. 

2. CF-S-WW-13-1: Constant mass flow rate (300 cc/min), secondary mode, water-wet 

glass beads with an average diameter of 0.13 mm. Gas: N2. 

3. CP-S-WW-15-1: Constant pressure (4 psig), secondary mode, water-wet glass beads 

with an average diameter of 0.15 mm. Gas: N2. 

4. CP-T-WW-13-3: Constant pressure (4 psig), tertiary mode, water-wet glass beads 

with an average diameter of 0.13 mm. Gas: N2. 

5. CP-T-WW-13-4: Constant pressure (4 psig), tertiary mode, water-wet glass beads 

with an average diameter of 0.13 mm. Gas: N2. 

6. CP-T-WW-15-1: Constant pressure (4 psig), tertiary mode, water-wet glass beads 

with an average diameter of 0.15 mm. Gas: N2. 

Eleven oil-wet 2-D GAGD experiments were also conducted during this reporting period, 

seven were run in the secondary mode, and four were conducted in the tertiary recovery 

mode: 

1. CF-S-OW-13-1: Constant mass flow rate (75 cc/min), secondary mode, oil-wet glass 

beads with an average diameter of 0.13 mm. Gas: N2. 

2. CF-S-OW-13-2: Constant mass flow rate (75 cc/min), secondary mode, oil-wet glass 

beads with an average diameter of 0.13 mm. Gas: CO2. 

3. CP-S-OW-13-1: Constant pressure (4 psig), secondary mode, oil-wet glass beads with 

an average diameter of 0.13 mm. Gas: N2. 

4. CP-S-OW-13-2: Constant pressure (4 psig), secondary mode, oil-wet glass beads with 

an average diameter of 0.13 mm. Gas: CO2. 

5. CP-S-OW-13-3: Constant pressure (4 psig), secondary mode, oil-wet glass beads with 

an average diameter of 0.13 mm. Gas: N2. 

6. CP-S-OW-15-1: Constant pressure (4 psig), secondary mode, oil-wet glass beads with 

an average diameter of 0.15 mm. Gas: N2. 
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7. CP-S-OW-15-2: Constant pressure (4 psig), secondary mode, oil-wet glass beads with 

an average diameter of 0.15 mm. Gas: N2. 

8. CF-T-OW-13-1: Constant mass flow rate (300 cc/min), tertiary mode, oil-wet glass 

beads with an average diameter of 0.13 mm. Gas: N2. 

9. CF-T-OW-13-2: Constant mass flow rate (300 cc/min), tertiary mode, oil-wet glass 

beads with an average diameter of 0.13 mm. Gas: N2. 

10. CP-T-OW-13-1: Constant pressure (4 psig), tertiary mode, oil-wet glass beads with 

an average diameter of 0.13 mm. Gas: N2. 

11. CP-T-OW-13-2: Constant pressure (4 psig), tertiary mode, oil-wet glass beads with 

an average diameter of 0.13 mm. Gas: N2. 

A total of five fractured secondary mode GAGD experiments were conducted, two of 

which were done using water-wet porous media and two were done with oil-wet porous 

media. The experiments are briefly described below: 

1. CP-S-WW-13-2-F: Constant pressure (4 psi), secondary mode, water-wet silica sand 

with an average diameter of 0.13 mm. Gas: N2. Fracture simulation. 

2. CP-S-WW-15-1-F: Constant pressure (4 psi), secondary mode, water-wet glass beads 

with an average diameter of 0.15 mm. Gas: N2. Fracture simulation. 

3. CP-S-WW-15-2-F: Constant pressure (4 psi), secondary mode, water-wet glass beads 

with an average diameter of 0.15 mm. Gas: N2. Fracture simulation. 

4. CP-S-OW-13-2-F: Constant pressure (4 psi), secondary mode, oil-wet silica sand with 

an average diameter of 0.13 mm. Gas: N2. Fracture simulation. 

5. CP-S-OW-15-1-F: Constant pressure (4 psi), secondary mode, oil-wet glass beads 

with an average diameter of 0.15 mm. Gas: N2. Fracture simulation. 

The experimental results are summarized in Tables 2.2 to 2.6. 

 

Table 1.4: Model Parameters for the Water-Wet Runs in Secondary Mode 

Model Parameters CP-S-WW-13-1 CF-S-WW-13-1 CP-S-WW-15-1 

Gas N2 N2 N2 

P (psig) 4 N/A 4 

Rate (cc/min) N/A 300 N/A 

Dg(mm) 0.13 0.13 0.15 

INITIAL CONDITIONS 

Pore Volume (cc) 524 528 558 

Oil Flood Water (cc) 362.8 362.8 372.8 

OOIP (cc) 362.8 362.8 372.8 

Porosity φφφφ (%) 36.5 36.5 38.6 

Swc (%) 30.8 31.3 33.2 

Soi (%) 69.2 68.7 66.8 

GAS INJECTION 

k (Darcy) 4.7 4.9 3.8 

Recovery (% OOIP) 66.7 60.1 72.7 
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Table 1.5: Model Parameters for the Tertiary Mode Water-Wet Runs 

Model Parameters CP-T-WW-13-3 CP-T-WW-13-4 CP-T-WW-15-1 

Gas N2 N2 N2 

P (psig) 4 4 4 

Rate (cc/min) N/A N/A N/a 

Dg(mm) 0.13 0.13 0.13 

INITIAL CONDITIONS 

Porosity φφφφ (%) 37.4 36.8 38.7 

OOIP (cc) 381.4 390.5 400.7 

WATER FLOOD 

Water Flood Recovery (%IOIP) 55.5 56.5 63.7 

Sor (%) 31.4 32.0 26.0 

Post-WF Sw (%) 68.6 68.0 74.0 

GAS INJECTION 

k (Darcy) 5.4 5.1 3.9 

Swr (%) 19.5 16.3 16.7 

Recovery (% ROIP) 59.2 44.0 54.2 

Recovery (% IOIP) 26.4 19.2 19.7 

Total Recovery (%IOIP) 81.9 75.7 83.4 

 

 

 

 

Table 1.6: Model Parameters for the Oil-Wet Runs in Secondary Mode 

Model Parameters CP-S-OW-13-1 CP-S-OW-13-2 CF-S-OW-13-1 CF-S-OW-13-2 CF-S-OW-13-3 CP-S-OW-15-1 CP-S-OW-15-2 

Gas N2 CO2 N2 CO2 N2 N2 N2 

P (psig) 4 4 N/A N/A N/A 4 4 

Rate (cc/min) N/A N/A 75 75 300 N/A N/A 

Dg(mm) 0.13 0.13 0.13 0.13 0.13 0.15 0.15 

INITIAL CONDITIONS 

Pore Volume (cc) 528 531 576 535 529 476 516.0 

Oil Flood Water (cc) 357.8 450.5 475.5 415.5 430.5 347.7 433.7 

OOIP (cc) 357.8 450.5 475.5 415.5 430.5 347.7 433.7 

Porosity φφφφ (%) 36.5 36.7 39.9 37.0 36.6 32.9 35.7 

Swc (%) 32.2 15.2 17.4 22.3 18.6 27.0 15.9 

Soi (%) 67.8 84.8 82.6 77.7 81.4 73.0 84.1 

GAS INJECTION 

k (Darcy) 4.9 5.2 7.3 5.2 4.8 2.0 0.8 

NB 6.6E-06 7.4E-06 9.5E-06 7.2E-06 6.9E-06 3.0E-06 6.0E-06 

NC 1.2E-06 3.2E-07 4.7E-06 4.7E-06 1.9E-05 3.0E-07 6.3E-07 

NG 5.5 23.4 2.0 1.5 0.4 10.0 9.6 

Recovery (% OOIP) 77.7 86.7 74.7 92.8 81.5 78.6 81.6 
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Table 1.7: Model Parameters for the Tertiary Mode Oil-Wet Runs 

Model Parameters CF-T-OW-13-1 CF-T-OW-13-2 CP-T-OW-13-1 CP-T-OW-13-2 

Gas N2 N2 N2 N2 

P (psig) N/A N/A 4 4 

Rate (cc/min) 300 300 N/A N/A 

Dg(mm) 0.13 0.13 0.13 0.13 

INITIAL CONDITIONS 

Porosity φφφφ (%) 37.8 39.8 36.2 39.1 

OOIP (cc) 492.8 450.5 400.7 410.5 

WATER FLOOD 

Water Flood 

Recovery (%IOIP) 
37.4 47.6 50.4 46.4 

Sor (%) 56.6 41.0 38.0 38.9 

Post-WF Sw (%) 43.4 59.0 62.0 61.1 

GAS INJECTION 

Swr (%) 41.8 15.3 14.1 14.1 

k (Darcy) 5.6 5.5 4.1 4.1 

NB 7.3E-06 6.8E-06 5.5E-06 8.1E-06 

NC 1.8E-05 1.8E-06 8.2E-07 6.2E-07 

NG 0.4 0.4 6.8 13.0 

Recovery (% ROIP) 26.1 62.8 62.9 74.0 

Recovery (% IOIP) 16.3 32.9 31.2 39.7 

Total Recovery 

(%IOIP) 
53.7 80.5 81.6 86.1 

 

 

Table 1.8: Model Parameters for the Fractured Experiments 

Model Parameters 
CP-S-WW-

13-2-F 

CP-S-WW-

15-1-F 

CP-S-WW-

15-2-F 

CP-S-OW-

13-1-F 

CP-S-OW-

15-1-F 

Gas N2 N2 N2 N2 N2 

Wettability State Water-wet Water-wet Water-wet Oil-wet Oil-wet 

P (psig) 4 4 4 4 4 

Dg(mm) 0.13 0.15 0.15 0.13 0.15 

INITIAL CONDITIONS 

Pore Volume (cc) 587.5 584.0 592.0 545.0 547.0 

Oil Flood Water (cc) 363.7 303.7 338.7 463.7 468.7 

OOIP (cc) 363.7 303.7 338.7 463.7 468.7 

Porosity φφφφ (%) 40.7 40.4 41.0 37.7 37.9 

Swc (%) 38.1 48.0 42.8 14.9 14.3 

Soi (%) 61.9 52.0 57.2 85.1 85.7 

GAS INJECTION 

Recovery 

(% OOIP) 
71.2 68.6 72.0 54.7 91.9 
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1.2.2.6 Confirmation of Wettability Alteration 

During the oil flood the water-wet porous media always displayed a “mottled” 

appearance, i.e. the oil did not displace the water uniformly resulting in a swept red area 

speckled with unswept whiter portions. The oil-wet porous media, however, consistently 

showed a characteristic homogeneously red area indicating that the water was uniformly 

displaced by the injected n-decane (see Figure 1.10). 

The results of the modified Amott test can be summarized as follows: 

1. Oil-wet 0.13 mm silica sand: 

Pore volume = 456 cc 

Oil in cell = 368.7 cc 

Vwsp = 5 cc 

Vwt = 255 cc 

Oil after waterflood = 110.5 cc 

Oil in cell after oil flood = 365.5 cc 

Vosp = 7.3 cc 

Vot = 224.9 cc 

δo = Vwsp/Vwt = 5/255 = 0.0196 

δw = Vosp/Vot = 7.3/224.9 = 0.0325 

2. Oil-wet 0.15 mm glass beads: 

Pore volume = 504 cc 

Oil in cell = 461.7 cc 

Vwsp = 4.4 cc 

Vwt = 225 cc 

Oil after waterflood = 293.9 cc 

Oil in cell after oil flood = 518.9 cc 

Vosp = 1.0 cc 

Vot = 248.6 cc 

δo = Vwsp/Vwt = 4.4/225 = 0.0196 

δw = Vosp/Vot = 1.0/248.6 = 0.0040 

 

 

 

According to the criteria of the Amott test, an oil wet porous medium has a positive 

displacement-by-oil ratio, δo, and zero displacement-by-water ratio, δw. Because of the 

high porosity and permeability of the sand and bead packs used in these tests, the Amott 

tests were inconclusive due to the negligible capillary forces needed for imbibition. The 

confirmation of the wettability state of the porous media used was finally provided by the 

fractional flow curves (see Figures 1.10 and 1.11). They exhibit the characteristic shift to 
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the left of the fractional flow curve of the oil-wet silica sand or glass beads compared to 

the water-wet fractional flow curve. 

 

 

 

 

 
Figure 1.10: Visual Comparison of Water-Wet Porous Medium (Left) with Oil-Wet 

Porous Medium (Right) During Oil Flooding 

 

Unswept 

Areas 
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Figure 1.11: Fractional Flow Curves for the 0.13 mm Silica Sand 
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Figure 1.12: Fractional Flow Curves for the 0.15 mm Glass Beads 
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1.2.2.7 Effect of Wettability 

The change in wettability from water-wet to oil-wet appears to significantly improve the 

oil recovery by N2, as can be seen from Figures 1.13 to 1.17. The average incremental 

production of the oil-wet experiments compared to the water-wet experiments can be 

summarized as follows: 

• Constant pressure secondary runs, 0.13 mm : +10 %OOIP. 

• Constant pressure secondary runs, 0.15 mm : +5.9 %OOIP. 

• Constant rate secondary runs, 0.13 mm  : +18 %OOIP. 

• Constant pressure tertiary runs, 0.13 mm  : +14.8 %ROIP. 

• Constant pressure tertiary runs, 0.15 mm  : +3.9 %ROIP. 

The high oil recoveries obtained in oil-wet systems when compared to water-wet systems 

in this study agree well with the field observations where oil recoveries due to gas 

injection are higher in oil-wet reservoirs. The displacement of fluids in these experiments 

is almost piston like because of appreciable gravity segregation effects. Therefore, the 

length of the two-phase (gas-oil) flow region is negligibly small to enable the application 

of diffuse flow theories and/or the use of relative permeabilities. The lower than expected 

incremental recovery in the constant pressure tertiary runs using the 0.15 mm grains can 

be attributed to deviation from normal experiment methodology (i.e. a hand packing 

method thereby decreasing the porosity and permeability, thus negatively affecting the oil 

recovery). This last experiment will be repeated using similar experimental procedures to 

those used in previous tests. 

 

1.2.2.8 Effect of Gas Injection Mode 

The constant flow rate experimental run CF-S-OW-13-1 demonstrated a lower oil 

recovery compared to the constant pressure run CP-S-OW-13-1 (an incremental 

production of 3%), because constant pressure gravity drainage has generally been 

suggested to be more efficient (Muskat, 1949). A similar phenomenon appears to be 

occurring when CP-T-OW-13-2 and CF-T-OW-13-2 are compared (an increase of 5.6% 

in oil recovery). This is illustrated in Figures 1.18 and 1.19. 

 

1.2.2.9 Effect of Injection Gas 

From the results (Figure 1.20) it appears that the type of injection gas does affect the oil 

recovery: whenever CO2 was used as the displacement gas the oil recoveries were found 

to be higher than when N2 was used; on average an increase in oil recovery of 13.6 % is 

achieved in the CO2 experiments. This difference can probably be attributed to the effect 

of CO2 on oil: the high solubility of CO2 in oil causes the oil to swell thereby increasing 

its saturation and relative permeability, which results in significantly enhancing the oil 

recovery by improving the oil flowability (Darvish, et al., not dated).  
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1.2.2.10 Effect of a Vertical Fracture on GAGD Performance 

The presence of the vertical fracture using water-wet 0.13 mm silica sand improved the 

GAGD recovery as evident from Figure 1.21. The average incremental increase in oil 

recovery is 7.9 %OOIP. The increase in oil recovery is mainly attributed to the presence 

of the fracture, which acts as a low resistance oil flow conduit, thus enhancing the oil 

recovery by gas injection. However, when we examine the water-wet fractured model 

runs using the 0.15 mm glass beads, it is evident that both of the fractured runs performed 

worse than the non-fractured run (Figure 1.22). This appears to be due to an incomplete 

oil flood, as there were parts of the porous medium that were consistently being bypassed 

by the n-decane. This is probably caused by the inherent higher permeability due to the 

use of a larger grain size creating easier flow paths to the fracture. From the results it can 

be seen that the oil-wet fractured cases outperform the non-fractured ones (Figures 1.23 

and 1.24). On average, the incremental oil recovery was 6.7 %OOIP for the experiments 

using the 0.13 mm silica sand and 10.8 %OOIP for the 0.15 mm glass bead packs. 

Effect of wettability on fractured GAGD performance: 

All of the oil-wet experiments showed an increase in the oil recovery compared to the 

water-wet fractured runs (Figures 1.25 and 1.26): 

1. Oil-wet, fractured 0.13 mm silica sand pack: an incremental oil recovery of 9.6 

%OOIP on average. 

2. Oil-wet, fractured 0.15 glass bead pack: an incremental oil production of 21 %OOIP. 
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Figure 1.13: Effect of the Wettability on the Oil Recovery – Secondary Mode, Constant 

Pressure, 0.13 mm Sand Pack 
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Figure 1.14: Effect of the Wettability on the Oil Recovery – Secondary Mode, Constant 

Pressure, 0.15 mm Glass Bead Pack 
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Figure 1.15: Effect of the Wettability on the Oil Recovery – Secondary Mode, Constant 

Rate, 0.13 mm Sand Pack 
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Figure 1.16: Effect of the Wettability on the Oil Recovery – Tertiary Mode, 0.15 mm 

Glass Bead Pack 
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Figure 1.17: Effect of the Wettability on the Oil Recovery – Tertiary Mode, 0.13 mm 

Sand Pack  
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Figure 1.18: Effect of the Gas Injection Method on the Oil Recovery – Secondary Mode 

Runs, Oil-Wet Case, 0.13 mm Sand Pack  
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Figure 1.19: Effect of Gas Injection Method on the Oil Recovery – Tertiary Mode Runs 
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Figure 1.20: Effect of the Injected Gas on the Oil Recovery – Secondary Mode Runs 
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Figure 1.21: Effect of a Vertical Fracture on the Oil Recovery-Water-Wet Case, 0.13 

mm  
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Figure 1.22: Effect of a Vertical Fracture on the Oil Recovery-Water-Wet Case, 0.15 

mm 
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Figure 1.23: Effect of a Vertical Fracture on the Oil Recovery-Oil-Wet Case, 0.13 mm  

 



 39 

  

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

0.0 5.0 10.0 15.0 20.0 25.0

Injection Time (hrs)

R
e
c
o
v
e
r
y
 (
%
O
O
IP
)

Fractured (CP-S-OW-15-1-F)

Non-Fractured - Pack 1 (CP-S-OW-15-1)

Non-FRactured - Pack 2 (CP-S-OW-15-2)

 
Figure 1.24: Effect of a Vertical Fracture on the Oil Recovery-Oil-Wet Case, 0.15 mm  
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Figure 1.25: Effect of the Wettability on Fractured Runs – 0.13 mm Sand Pack 
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Figure 1.26: Effect of the Wettability on Fractured Runs – 0.15 mm Glass Bead Pack 

 

1.2.3 Summary Findings and Conclusions 

 

1.2.3.1 Water-Wet Experimentation 

1. A simple 2-D Hele-Shaw type physical model has been used to study the Gas 

Assisted Gravity Drainage (GAGD) process. Experimental results have indicated the 

usefulness of physical models as a tool to investigate the performance of new 

processes such as GAGD.   

2. The movement of gas-oil interface in the reservoir rock has been captured using this 

visual model. Experiments to study the effect of capillary, viscous and buoyancy 

forces have been conducted by simply using glass beads of different sizes, and 

injecting gas at various flow rates.  

3. The performance of the GAGD process has been characterized using dimensionless 

numbers such as the Bond number, the capillary number and the gravity number. 

Furthermore, the experimental run time can be scaled to real time in the field by the 

use of a dimensionless time expression.  

4. Slightly higher cumulative oil recovery (7-8% greater) as well as a higher rate of 

recovery is obtained during constant pressure gas injection as compared to constant 

rate gas injection.   
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5. A straight-line relationship between the total recovery and the natural log of Bond 

number is obtained from the experiments.  This correlation fits well to both 

immiscible and miscible core flood experiments, which suggest that physical model 

experiments are a useful tool for predicting the GAGD performance at another scale.  

6. A logarithmic relationship of total oil recovery and the capillary number is observed; 

this relationship also stands true for both immiscible and miscible core flood data. 

Therefore, immiscible physical model results could be extrapolated to predict oil 

recoveries during miscible conditions. Faster recoveries are obtained with higher 

values of capillary numbers.   

7. Immiscible GAGD floods can yield recoveries up to 80% of the IOIP in secondary 

mode, as opposed to about 5-10% by the WAG process.   

8. A logarithmic relationship between gravity number and recovery is observed when 

results from the physical model, core floods and field data are compared. It is very 

interesting to note that the recovery data from all the scales of operation corroborate 

well with this relationship.   

9. A multi-variable regression model to fits the experimental and field data has been 

obtained. This analysis suggests that the Bond number has greater influence on 

ultimate GAGD oil recovery compared to the capillary number.  

10. The type of gas injectant (gas composition) does not affect the oil recovery by GAGD 

in immiscible mode; in-fact the rate of recovery is quite identical for different gases. 

This can be attributed to the fact that the capillary number and Bond number for both 

the experiments were similar.   

 

1.2.3.2 Oil-Wet Experimentation 

In this part of the study, physical model experiments were conducted to study the effects 

of the wettability of the porous medium and the presence of a fracture on the performance 

of the GAGD process. The physical model used was a simple Hele-Shaw type model 

incorporating either soda glass beads or silica sand as the porous media and n-decane and 

deionized water as the fluids in the porous medium. The glass beads or silica sand were 

rendered oil-wet by a treatment with the organosilane dimethyldichlorosilane. The gas 

displacement experiments were conducted using nitrogen or carbon dioxide under 

constant pressure or under constant mass flow rate. The gas displacement strategy was 

also varied resulting in a series of experiments in the secondary mode and one in the 

tertiary mode (i.e. the gas displacement followed a water flood). The presence of a 

vertical fracture was simulated by placing a mesh box in the model prior to packing the 

bead or sand pack and conducting gas displacement experiments under the conditions 

described above. 

The important conclusions that can be drawn from the experiments conducted in the 

study are: 



 42 

1. The wettability affects the performance of the GAGD process – on average, the use of 

an oil-wet porous medium improved the performance of the GAGD process by an 

increase of 12.7 % in the recovery of the original oil in place.  

2. The presence of a vertical fracture in the porous medium improves the performance 

of the GAGD process. The average incremental production because of the presence of 

the vertical fracture in the physical model experiments was 7.8 % (%OOIP). 

3. The type of gas injected affects the performance of the GAGD process when using an 

oil-wet porous medium in the physical model experiments: an increase of 10.9 

%OOIP was seen when using CO2.  Sharma (2005) had already shown that the type 

of gas does not affect the GAGD performance when the experiments are conducted in 

a water-wet porous medium. 

4. The constant pressure gas displacement of the oil in the experiments results in a 

slightly higher recovery (2.6-3.0 %OOIP) compared to the constant rate displacement 

experiments. 

 

1.3. A Visualization of the GAGD Process using a Glass Physical Model 

 
1.3.1 Introduction 

The purpose of building the scaled physical model was to incorporate the ability to 

visually very the movement of the gas front under the influence of viscous instability, 

capillary fingering, and stable displacement by trying to duplicate the various multiphase 

mechanics and fluids dynamics operating in the field scale. 

Preliminary experimentation suggested that construction of the 2-D model from 

sintered glass beads was a feasible alternative. To facilitate faster and more precise 

experimental control during the model preparation, a high temperature furnace was used. 

The furnace was employed in the sintering step of construction and testing of multiple 

glass models to achieve the appropriate ranges of permeability and porosity. During the 

experimentation, the packing of physical model was changed from sintered glass beads to 

the traditional sand pack. The sand pack model construction was found to be much easier 

than the sintered glass beads and the model size is not limited to the furnace size. 

The preliminary experimentation was started with mini-models (6” x 6”) instead of a 

full-scale model, since mini-models permitted the construction and testing to be carried 

out at relatively lower costs. They also allowed model optimization and to obtain the 

required permeability to simulate the field conditions. With the new sand pack model, 14 

different experiments have been conducted to evaluate the GAGD process performance 

under different scenarios normally encountered in the field. 
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1.3.2 Model Construction  

 

1.3.2.1 Sintered Glass Bead Model 

In order to prepare the model for sintering, glass plates were cut to specific sizes. The 

mini-models generally consisted of a quarter inch thick glass with plates of 6” by 6”, 3/8” 

inch spacers were glued between the glass plates to create the glass bead chamber. 

However, the least amount of glue was used for this purpose: once the model is sintered, 

most of the glue (if not all) had evaporated. Any excess glue fumes could possibly create 

a coating around the glass beads, and thereby affecting the wettability state. 

During the assembly of most of the mini-models the sharp edges of the glass plates 

resulted in some leaks in the model, especially where two glass plates were joined 

perpendicular to each other. Silicone sealant was added at the joints to prevent any leaks 

from the unsintered glass bead pack. The temporary sealant was found to evaporate out 

during the sintering process. The next step in constructing the mini-model was to fill the 

model with glass beads of uniform or varying grain dimensions. Steel end caps were 

inserted in the model to hold the glass beads in place in the mini-model while it was filled 

with the glass beads, and this helped to minimize glass bead leakages.  

According to the devised experimental protocol the mini-model was sintered at the 

chosen temperature for the selected time period. After the sintering the furnace exhaust 

was opened, and nitrogen, N2, was injected at a low flow rate into the furnace to circulate 

the hot air out, thereby cooling the furnace down, as well as to stop the sintering process. 

The objective of N2 injection was to lower the temperature inside the furnace as fast as 

possible without having to open the furnace, and to prevent any thermal shock to the 

mini-model or the ceramic frame inside the furnace. After the furnace temperature had 

lowered enough to open, usually under 100oC, the mini-model was removed and allowed 

to completely cool in the ambient environment. Later, the steel end caps were removed 

and replaced with a 2” piece of 1/4” plastic line to serve as end caps. The plastic end caps 

were used instead of steel end caps, because plastic end caps could absorb vibrations that 

were introduced during the testing phase better than steel end caps. The plastic end caps 

were attached to the mini-model using high strength epoxy glue. 

The last step before testing the mini-model was to seal the mini-model. Different 

kinds of sealants such as caulking and automotive sealants were attempted. The most 

appropriate sealant was found to be a silicone based automotive one, Permatex 66B ®. 

This sealant was found to cure and gain strength fast, usually within two hours. It 

required multiple coats of the sealant to be applied to the mini-model to create an 

effective seal. If the mini-model did not pass the vacuum seal test, then gas was usually 

injected at low pressure, 2-3 psig, followed by using Snoop® sprayed around the sealant 

to locate the leaks, after which they were sealed. The process of sealing is continued until 

the mini-model passes the vacuum test.  
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1.3.2.2 Sand Pack Model 

The physical model was kept as simple as possible by using materials that were available 

locally and also easy to procure, such as regular window glass from the local glass shop, 

epoxy glue and sealant from the department store, and C clamps from hardware stores 

(Figure 1.27).   

The physical model was constructed from two large glass plates of ¼ ” thickness, 23” 

in length and 13” in width, joined together using 3/8” thick spacers. The spacers were 

obtained by joining two different glass plates that were 0.25” and 0.125” in thickness 

respectively, using epoxy glue. Then, the spacers were glued to one side of the 23” by 

13” glass plate forming the model assembly. Later, a 0.0625” hole drilled and 0.25” 

plastic tubing was attached to the model assembly using the glue. It is important to use 

small spacers, 1” long, 0.5” wide and 0.375” thick, in the middle of the glass model to 

create lateral support to withstand the fluid pressure. It is crucial to always maintain the 

pressure inside the glass model less than 2 PSI, as even this low pressure will exert 440 

pounds of force on the glass plates. 

 

 
Figure 1.27: Photograph of the Fully Constructed Visual Model 

 

Once all the spacers were glued to the glass plate assembly, the second large plate 

was attached to the assembly. Later, the glass model was filled with 50/70 mesh U.S. 

Silica sand to simulate the sand pack, and 0.25” tubing end caps were then attached. The 

last step was to apply automotive sealant to all of the sides and the edges to prevent any 

leaks. Once the sealant had cured, 1.5” or 2” C clamps were attached all around the 

outside of the glass model. The purpose of the clamps was to provide the mechanical 
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fastening that the model requires. However, care was taken while tightening the C clamps 

to avoid breakage. 

 

1.3.3 Experimental Procedure 

 

1.3.3.1 Sintered Glass Bead Model 

After performing the final leak test, the mini-model porosity was measured by injecting 

distilled water in a gravity stable manner using burettes and 1/8” plastic lines. It is crucial 

to measure the exact amount of water injected in the mini-model through the lines. 

Another critical issue for the porosity measurement is calculating the lines’ volume, the 

so-called dead volume. This dead volume needs to be deducted from the total volume of 

water injected. Finally, the porosity of the model is calculated by dividing the net water 

volume injected by bulk volume of the mini-model.  

After the measurement of the mini-model’s porosity, the following steps are 

employed to measure the mini-model’s absolute permeability. This measurement is 

conducted by injecting distilled water into the model using the hydrostatic head from the 

burette to force the distilled water into and through the sintered glass bead pack. The 

distilled water is allowed to circulate inside the model to clean and stabilize the glass 

beads. After a water injection of at least two to three pore volumes, the mini-model is 

completely shut in. The mini-model is then opened to the water gravity feed line and 

injected water volume and time are measured to calculate the flow rate. It is important not 

to allow the water level in the burette to be lowered by more than one or 2”, especially if 

the level of the gravity feed system is not very high. The top of the water in the burette 

that has been used in the testing the mini-models is set to equal 64” above the top of the 

glass beads. If the water level in the burette drops by a more than 2”, the hydrostatic 

pressure will greatly vary between the beginning and the end of the test. In the 

permeability testing, 10 cc’s of water is usually used, which is equal to a height of ½” in 

the burette for high accuracy. Finally, the permeability is calculated using Darcy’s law. 

 

1.3.3.2 Sand Pack Model 

The following experimental protocol was used for the experiments with the sand pack 

model: 

1. Start the experiment by flooding the glass model with distilled water in a gravity 

stable manner to measure the porosity and to check for leaks. Then, distilled water is 

allowed to circulate in the model for a while.  

2. Measure the flow rate and the height of distilled water level to calculate the absolute 

permeability using Darcy’s law. These steps are only performed when the glass 

model is first used. During later experiments it is recommended to check the absolute 

permeability for any changes. 
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3. Flood the model with red dyed N-decane from the top, while collecting the water that 

is produced from the horizontal well. At the end of the flood, the amount of N-decane 

in place is computed to be equal to the amount of the water produced minus the dead 

volume.  

4. Attach the top end cap to the CO2 line that is connected to a rotameter for flow rate 

measurement.  

5. Set the rotameter at the desired flow rate and start the stopwatch.  

6. Finally, open the horizontal well to the separator. The first fluid that flows out will be 

the N-decane, which is collected and measured in the separator, a burette, while the 

gases flow out through a second rotameter after breakthrough. 

 

1.3.4 Results and Discussion 

The research work was aimed at evaluating and characterizing the GAGD process using a 

glass model for visualization in addition to providing matching measurements for 

quantification of the performance. This visual model was found to be very useful in 

studying the GAGD process in the laboratory. Advantages provided by the model were 

the flexibility to test various configurations such as injection depth variation, injection 

location, and the ability to insert a horizontal well. The visual approach also provided the 

flexibility of seeing the results as they took place, rather than just imagining or 

speculating about the mechanisms. The main disadvantage was that the glass model could 

only be operated at ambient conditions of pressure and temperature. Visual experiments 

were conducted to compare the GAGD process with conventionally used processes. The 

visual experiments were divided into two sub groups: experiments conducted in the 

secondary recovery mode and in the tertiary recovery mode.  

In the secondary recovery mode, it is assumed that the primary depletion drive has 

been completed, whether it is gas cap, gas in solution or water drive. Therefore, CO2-

driven GAGD was selected to be the secondary recovery process. In other cases, 

waterflooding was selected to be the secondary recovery, and then CO2-driven GAGD 

was applied as the tertiary recovery method. The effect of following parameters on the 

GAGD performance was investigated during this reporting period:  gas injection rate, 

miscibility, fluid viscosity, wettability of the porous medium, vertical fractures, the gas 

injection location, and the production configuration. The experiments are summarized in 

Table 1.9. 

Effect of Injection Rate on GAGD: 

Gas injection rate is an important factor that needs to be optimized for the GAGD process 

to be successful. The injection flow rate controls the flood front velocity and hence 

dictates whether the gravity force is dominating the process or not. If the injection rate is 

too high, two negative factors will be generated having an adverse effect on the 

performance of the GAGD process:  
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• The pressure will increase rapidly causing the viscous force to gain dominance.  

• Another disadvantage of the high pressure is the increase of in-situ CO2 density that 

could lead to the gravity forces becoming less dominant in the process.  

However, a higher injection rate tends to decrease the time required to complete the 

GAGD process and makes it more economically attractive. Furthermore, increasing the 

CO2 gas pressure in the reservoir is beneficial due to the increased CO2 solubility in the 

oil. Higher CO2 gas in solution lowers the interfacial tension, hence improving the 

microscopic displacement efficiency, ED, and lowers the viscosity of the oil. Therefore, a 

balance between gravity domination, gas in solution and economic factors needs to be 

maintained for successful GAGD field implementation. 

A set of GAGD experiments with three different injection rates were performed. The 

three injection rates used were 2 cc/min, 4 cc/min and 8 cc/min to simulate low, 

intermediate and high injection rates. Interestingly, it was observed that the higher the 

injection rate, the higher the ultimate GAGD oil recovery using the visual model (Figure 

1.28).  
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Figure 1.28: Effect of Injection Rate on GAGD Oil Recovery 

 

The effect of the injection depth on GAGD: 

It had been hypothesized that if the CO2 gas was injected near the horizontal well, the 

production would begin sooner. It was believed that earlier production would be due to 

the formation of a gas chamber near the injection point, essentially draining the oil 

primarily from the gas zone. If the gas zone is close to the horizontal well, production 

would begin with very little time delay after injection. However, the author believes that 

the CO2 gas chamber would rise to the top of the pay zone and form a (semi circular 
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shaped) gas cap that will eventually drain the oil from top to bottom in the entire pay 

zone. 

Therefore, four injection depths were chosen for investigation of the effect of the gas 

injection location, namely the very top of the pay zone, 2.5”, 5” and 7.5” from the top of 

the pay zone. These depths represent 0%, 25%, 50% and 75% of the physical model 

height, respectively. In order to eliminate or minimize any external effects on the 

recovery other than the injection depth, all four injection locations were fitted inside one 

visual model. 

The formation of a CO2 gas chamber was not observed in the experiments: the CO2 

gas always traveled to the top directly without forming a gas chamber around the 

injection point (Figure 1.29). The relatively loose packing of the sand around the outside 

periphery of the injection tube appeared to have been the reason for the gas to rise to the 

top immediately upon entering the model. However, it is believed that the vertical and 

horizontal permeability were nearly equal in the visual model, which is rarely true in real 

reservoirs. Therefore, the absence of this phenomenon could be attributed to permeability 

issues. 

 

 
Figure 1.29: Varying Injection Depth Visual Model 

 

However, it was observed that there were no significant variations in the oil recovery 

among the three the injection depths of 0”, 2.5” and 7.5” from the top of the pay zone 

(Figure 1.30). However, the 5” injection depth recovered a little less oil than the other 

three injection depths and it is believed that the injection well was somehow filled with 

sand creating a flow restriction. The 5” depth injection pressure reached 0.9 psig, while 

the highest recorded injection pressure in the other three experiments was only 0.4 psig. 

This observation clearly indicates that the relatively low oil recovery obtained in the 5” 

injection depth case was due to well-related effects rather than the result of varying the 

gas injection location. 
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Figure 1.30: Effect of Injection Depth Variation on the Ultimate Recovery 

 

Gas breakthrough times in these four experiments were between 39 and 45 minutes. 

The very comparable gas breakthrough times once again suggest that all four runs were 

gravity stable and the dominant force was gravity. The similar gas breakthrough times 

also suggest that the gas will always travel to the top of the zone immediately upon 

injection due to the density contrast. Furthermore, the breakthrough time is governed by 

the gas cap and not by the injection depth. Additionally, the initial overlap of the oil 

recovery plots for all four injection depths as shown in Figure 1.30 suggests that the 

initial process involving drainage and displacement is the same for all four gas injection 

depths.  

The effect of miscible CO2 gas injection on GAGD: 

Miscible CO2 gas injection has been practiced in the field extensively in different forms, 

such as Continuous Gas Injection and Water Alternating Gas injection. According to the 

literature, the microscopic displacement efficiency (ED) of miscible gas injection is at or 

near 100% (Shedid et al., 2005, and Charkravarthy et al., 2006). Miscible 

experimentation was necessary to validate these hypotheses. However, due to the 

limitations of the glass visual model and the necessary high pressure required to achieve 

miscibility, it was not possible to simulate the miscibility conditions in the physical 

model using CO2. Hence, two different miscible liquids were used instead to simulate the 

miscible GAGD tests. The fluids that were chosen for the miscibility simulation were red 

dyed naphtha for oil and clear decane for miscible CO2 gas.  
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The experiment showed that ED indeed approached 100% in miscible flooding 

(Figure 1.31A and B). It was visually verified by observing the complete disappearance 

of the red dye from the flooded area of the visual model. However, as is evident from 

Figure 1.31 the volumetric sweep efficiency (EV) was less than 100%. In fact, initially EV 

was considerably less than the immiscible EV, but two different ways were identified to 

increase EV. The first one is to allow enough time for the miscible injection, which would 

eventually sweep the whole model providing an EV of 100%. However, this may require 

a large volume of the miscible CO2 gas injection. The second way is to inject the miscible 

CO2 gas at a very low rate.  

 

 
Figure 1.31A: Miscible Drainage Simulation (Injection Rate of 8cc/min) 

 

Furthermore, it appears that the miscible injection in the visual model is quite 

sensitive to the injection rate. This can be attributed to the low density difference between 

the two liquids used (0.01655g/cc). This density difference is negligible compared to the 

immiscible case density difference of 0.7176g/cc. Therefore, any increase in rate will 

allow more viscous force domination which might lead to viscous fingering and 

premature gas breakthrough (Figure 1.31), which would lead to gas cycling, thereby 

raising the operational costs.   

It is crucial to mention that the gravity effect on the process of the field miscible 

GAGD is expected to be better than the laboratory gravity domination. In the laboratory, 

the fluid density difference was negligible as was mentioned before. But in the field, the 

density difference would be much larger. The CO2 gas density at 4000 psig and 239°F is 

0.2111g/cc. This density value would result in a density difference of 0.67g/cc for typical 

30 API Gravity oil. Therefore, the gravity force would be much higher than the 

laboratory gravity force which would lead to better GAGD oil recovery. 

Microscopic 
sweep efficiency 
of 100% 

Viscous 
fingering of the 
miscible fluid 



 51 

 

 
Figure 1.31B: Fluid Front Development Miscible Displacement 
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In the laboratory experiment, reliable recovery data could not be obtained from 

miscible injection because the two liquids were miscible with each other even in the 

separator. Unlike the two miscible liquids used, miscible CO2 gas would evolve in the 

separator as soon as the pressure dropped. Therefore, the measurement of the naphtha 

volume in the separator was not recorded after decane breakthrough. Furthermore, the 

breakthrough time could not be observed accurately for the same reason. However, 

measurements of recoveries due to miscible fluid injection were made with some 

reliability up to the breakthrough time. Although limited quantitative results were 

obtained from this experiment, the data could be useful in providing a conceptual 

understanding of miscible injection.  

It seems that the higher the injection rate, the lower the recovery is at breakthrough, 

which is obvious because the higher the injection rate results in a stronger viscous force 

and a lower the gravity number. However, with higher injection rates the oil recovery was 

also much faster (Figure 1.32) and this might be economically attractive as well.  
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Figure 1.32: Miscible GAGD Recoveries 

 

The effect of vertical fractures on GAGD: 

Generally, naturally fractured reservoirs are considered as good candidates for gas EOR 

processes. This is mainly because these processes usually consist of horizontal flooding 

between two vertical wells, and the density contrast between the two fluids (CO2 gas and 

oil), particularly in the immiscible mode, will cause the gas to find an easy path of low  
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Figure 1.33A: Fluid Front Development Fractured Immiscible Displacement 
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Figure 1.33B: Fluid Front Development Fractured Immiscible Displacement 

 
resistance through the fracture to the production well thereby causing premature gas 

breakthrough and low oil recoveries. However, gravity drainage has been hypothesized to 

be an effective method of EOR in naturally fractured reservoirs.  

Therefore, a set of experiments was conducted to investigate the impact of vertical 

fractures on GAGD. One of the visual models was built to simulate a vertically fractured 

reservoir by inserting two cylindrically shaped fine wire meshes inside the model. The 

results were as expected: immiscible GAGD proved to be a successful method of EOR 

even in the presence of fractures. The fractures did not show any detrimental effects on 

the GAGD oil recovery (Figures 1.33A and B). The observations are in good agreement 

with the findings of Wood et al. (2006). In fact, this laboratory study, as shown in Figure 

1.34, clearly indicated that natural fractures would improve GAGD oil recoveries when 

compared to un-fractured ones as explained below.  

When CO2 gas is applied in a gravity stable manner, the gas will naturally try to stay 

on top of the pay zone and then slowly expand. If the gravity force is maintained to be the 

dominant force in place, then the natural fractures will work as an effective additional 

exchange path between the CO2 and the oil contained in the matrix (Figure 1.35). 

However, if the viscous force dominates over the gravity force, then adverse effects are 

expected. These adverse effects include premature gas breakthrough, viscous fingering 

and lower volumetric sweep efficiency as shown in the miscible GAGD run in the 

fractured model (Figure 1.36).  

The effect of oil viscosity on GAGD: 

Thermal methods, especially steam injection, have been used as the primary methods to 

reduce the oil viscosity for heavy oil EOR, but CO2 gas injection has been gaining ground 

in the heavy oil EOR (Luo et al., 2005). Hence, this particular set of experiments was 

conducted to simulate the application of GAGD for higher viscosity oil. Soltrol was 

selected to simulate oil due to its relatively high viscosity (2.93 cp) compared to decane 

with a viscosity of 0.966 cp. The higher viscosity experiments were conducted in both the 

miscible and the immiscible mode. 
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Figure 1.34: Effect of Vertical Fractures on GAGD Oil Recovery for the Immiscible 

Case 

 

 
Figure 1.35: Vertically Fractured Porous Media in Immiscible CO2 Flooding 

 

 
Figure 1.36: Miscible Injection in Vertically Fractured Porous Media 
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The immiscible recovery of Soltrol was lower compared to the experiments where 

decane was used for the oil phase under similar experimental conditions. The recovery of 

Soltrol was around 65% for the best case (Figure 1.37). Higher injection rates seem to 

have a positive influence on the process as was seen in the low viscosity experiments.  

In contrast to the lower viscosity runs, the immiscible CO2 volumetric sweep efficiency 

was significantly lower than 100% because of the adverse mobility ratio effect. The 

difference between the gas phase and liquid phase viscosity increased many folds in this 

case. Viscous fingering was observed very clearly, which lead to premature gas 

breakthrough and the loss of gas pressure, thus ending the displacement prematurely 

(Figure 1.38). 
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Figure 1.37: Immiscible GAGD Oil Recoveries – High versus Low Viscosity 

 

 
Figure 1.38: Immiscible GAGD Process with High Viscosity Oil 
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The miscible Soltrol experiment was conducted using red dyed Soltrol as oil and clear 

decane to represent miscible CO2. The miscible recovery of Soltrol did not seem to be the 

ideal solution for the situation. Severe viscous fingering was observed even more clearly 

than the immiscible case (Figure 1.39) because of losing the gravity advantage of the gas. 

The density difference between fluid phases was 0.0509g/cc, which is relatively low. 

Consequently, the viscous force dominated. Furthermore, the adverse mobility ratio 

effects were present as well. However, it is expected that the gravity force will have more 

domination in field application due to the higher density difference between the fluids. 

 

 
Figure 1.39: Miscible GAGD Process with High Viscosity Oil 

 

The effect of wettability on GAGD: 

Paidin (2006) studied the wettability effects on GAGD oil recovery in oil-wet porous 

media using a physical model. Hence, it was suggested to build a visual model for 

observation of the GAGD behavior in oil-wet porous media. As expected, the recovery 

was higher in oil-wet porous media compared to water-wet porous media (Figure 1.40). 

One advantage of oil-wet reservoirs is that they can utilize the beneficial effects of thin 

film oil flow. Oil flows more effectively in thin film through the reservoir matrix than in 

droplets that have to be pushed through the pore throats. Since the simulated case 

represents light oil with relatively low viscosity, EV will be at or near 100% as proven 

before. Additionally, the thin film flow of oil facilitates a better ED for the rock, which is 

evident from the very light color of the model after the GAGD flood (Figure 1.41 and 

Figure 1.42). 

Single point horizontal well contact effects on GAGD: 

Most of the experiments in this study utilized a horizontal well that was placed flat at the 

bottom throughout the visual model representing the line contact with the porous media 

for GAGD oil recovery. It was thought that this configuration might have had an 

advantageous effect on oil production due to the provision of a large contact area (line 

contact). However, in the field the horizontal well would not have relatively as much  

Viscous fingering 
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Figure 1.40: Recovery Graph Oil-Wet Model vs. Water-Wet Model 

 

 
Figure 1.41: Oil-Wet Porous Media before GAGD 

 

 
Figure 1.42: Oil-Wet Physical Model after Immiscible GAGD 
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contact with the porous media. Therefore, the horizontal well was placed as a point 

contact near the bottom of the visual model to test the influence of the horizontal well 

placement on the GAGD performance. 

A visual model was constructed for this purpose, placing the horizontal well as a 

point contact within the porous media (Figure 1.43). It was decided to perform this 

experiment by injecting CO2 at a rate of 8cc/min at the very top of the pay zone so as to 

compare the results with the other 8cc/min injection rate experiments.  

 

 
Figure 1.43: Diagram Demonstrating the Difference between Single Point and 

Conventional Horizontal Well 

 

At the beginning of the experiment the CO2 gas swept the model with a stable front. 

The gas flood front moved down through the model in a horizontal manner indicating a 

linear flow. However, when the CO2 gas flood front approached the location of the 

production point, a semi circular shaped sweep pattern was observed indicating radial 

flow (Figure 1.44). 

Figure 1.45 indicates that the configuration of the horizontal well placement in the 

visual model does not influence the GAGD oil recovery. Furthermore, it provides an 

additional proof that GAGD is a very effective process when gravity forces are 

predominant in the porous media and when the horizontal well is located at the bottom of 

the pay zone (Figure 1.43). Since two different visual models having unique 

characteristics were used, Figure 1.44 shows some difference between the two oil 

recoveries.  

GAGD in the tertiary mode: 

One of the most common practices in the industry is to perform waterflooding on the 

reservoir after the completion of primary depletion the reservoir. However, waterflooding 

may not always be the most efficient means of oil recovery for all reservoirs. After the 

secondary waterflooding in oil reservoirs, the residual oil could be as high as 70% of  
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Figure 1.44: Point Contact Configuration of the Horizontal Producer 

 

 

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300 350

Time (min)

R
e
c
o
v
e
ry
 (
%
)

Point Contact

Line Contact

 
Figure 1.45: Oil Recovery – Point Contact vs. Line Contact 

 

IOIP (DOE.gov). Therefore, some means of EOR will be required to recover the trapped 

oil from the reservoirs. It is to be expected that the lower density fluids (oil and gas) 

would travel to the top of the pay zone and the heavier density fluid (water) will sink to 
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the bottom of the pay zone. Therefore, a horizontal well can be placed at the bottom of oil 

zone and GAGD can be performed even if there is water in place that might shield the oil 

from coming in contact with CO2 gas. Water shielding is not believed to be a big issue in 

this case because CO2 is very soluble in water (Martin, 1992). Therefore, the CO2 would 

contact the oil even after waterflooding.  

 

 
Figure 1.46: Waterflooding Effect on Porous Media 

 

 
Figure 1.47: Conventional Waterflooding followed by Immiscible GAGD in Water-Wet 

Porous Media 

 

A visual model was built to provide appropriate vertical wells to perform horizontal 

waterflooding first and then to conduct a CO2 GAGD flood. It is important to keep in 

mind that the viscosity of decane is 0.96cp and the viscosity of water is equal to 1cp. 

Thus, the favorable mobility ratio provided a stable flood front during the waterflooding.  

Furthermore, the low density difference between the fluids (0.2809g/cc) and the 

relatively small model size yielded a good waterflood performance. The waterflooding 

experiment at a high injection rate (8cc/min) was dominated by viscous forces. The 

viscous forces allowed the water to be suspended in the matrix for a relatively long time 
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thereby combating the weak gravity force in place.  This was further aided by the 

relatively small size of the visual model. The waterflooding was relatively very efficient 

with an oil recovery of 85.1%. Overall, the gravity force still forced the water to sink 

slightly to the bottom. Figure 1.46 shows that the oil height (red color) in the physical 

model is increasing as the distance increases from the injector. If the model was long 

enough the water height would eventually become very small.   

Gas injection from top was performed on the waterflooded model afterwards. 

Because of the 85% oil recovery in the waterflood, only about 15%IOIP was available for 

CO2 flooding in this case. The GAGD recovery provided an incremental 54.5%ROIP 

over the waterflooding, which is in good agreement with the literature (Martin et al, 

1992). The volumetric sweep efficiency (EV) was again nearly 100% (Figure 1.47), but 

ED was relatively low because the injection pressure was very low in the immiscible 

GAGD test. Thus, the CO2 solubility in water was very low leading to less contact 

between the CO2 and the oil in place resulting in a low ED (Figure 1.47).   

Effect of wettability on waterflooding: 

As mentioned before, waterflooding is a very common practice for secondary oil 

recovery in the field. However, waterflooding is known to be an ineffective oil recovery 

method, especially in oil-wet reservoirs. Therefore, there is a need to test the 

effectiveness of waterflooding in both water-wet and oil-wet porous media and to 

compare the results with secondary GAGD oil recovery.  
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Figure 1.48: Comparison of Waterflood Oil Recovery in Oil-Wet and Water-Wet Porous 

Media 
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A visual model was constructed to perform secondary mode waterflooding in oil-wet 

porous media. The sand grains were treated with dimethyldichlorosilane and methylene 

chloride to render them oil-wet. The final waterflood oil recovery was 35.6%IOIP (Figure 

1.48). Figure 1.48 compares the effectiveness of waterflooding in water-wet and oil-wet 

porous media. The waterflood oil recovery in oil-wet porous media is very poor. 

Furthermore, secondary GAGD is more efficient for oil recovery when compared with 

secondary waterflooding in oil-wet porous media.   

The waterflooding was stopped in the oil-wet visual model after 90 minutes since the 

produced fluids consisted of 100% water. Furthermore, comparing Figure 1.49 to Figure 

1.47 suggests that the oil-wet porous media had a strong resistance to water flow through 

the porous media. Hence, viscous forces lost their domination and as a result the gravity 

force dominated the process. Therefore, water sunk to the bottom of the porous media 

and only the oil at the bottom of the visual model was displaced.  

 

 
Figure 1.49: Oil-Wet Porous Medium after Waterflooding 

 

In order to substantiate the wettability alteration, fractional water flow curves were 

generated for both oil-wet and water-wet porous media and are shown in Figure 1.50. 

There is a clear difference in the performance of both the porous media. As expected, the 

oil-wet fractional water flow lies to the left of water-wet fractional water flow curve. 

Furthermore, the water-wet porous media had much higher waterflood oil recovery than 

the oil-wet porous media, which is clearly evident from the end point water saturations.  

 

Water sinking to the bottom of the oil-

wet porous media 
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Figure 1.50: Comparison of Fractional Water Flow Curves of Oil-Wet and Water-Wet 

Porous Media 

 

 

1.3.5 Summary and Conclusions 

The visual model experimentation has provided conformational support for the GAGD 

theory and the important conclusions are summarized blow: 

• The GAGD process is largely dependent on the domination of the gravity force. 

When the gravity force is dominating the process, no viscous fingering will be present 

thereby eliminating premature gas breakthrough. Furthermore, gravity force 

domination will overcome any permeability heterogeneity in the system and hence 

result in better ultimate oil recovery.  

• Varying the gas injection depth in the pay zone did not have much effect on the 

ultimate GAGD oil recovery. The difference between the oil and CO2 density resulted 

in the gas always traveling to the top of the visual model and forming a gas cap, 

thereby effectively draining the oil to the bottom. 

•  It was consistently observed that increasing the CO2 injection rate tends to increase 

the ultimate GAGD oil recovery and with a faster recovery rate at late time. However, 

increasing the injection rate indefinitely is believed to have negative effects. Too high 

an injection rate may cause the gravity force to lose its domination and thereby 

allowing viscous forces to become stronger. Viscous force domination may lead to oil 

bypassing and premature gas breakthrough, creating the need for gas cycling and 

thereby increasing the operational costs. 

Immiscible CO2 gas injection (as depicted in Figures 1.51A and B) in GAGD has 

resulted in oil recoveries between 65% and 87%IOIP with volumetric sweep 

efficiencies almost equal to 100%. Miscible injection in GAGD provided a nearly 
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perfect (100%) microscopic sweep efficiency. However, due to the low density 

difference and high CO2 gas injection pressure, the viscous force has to be controlled. 

By maintaining the front velocity at low speeds, viscous fingering and oil bypassing 

can be avoided. 

 

 

 
Figure 1.51A: Fluid Front Development Immiscible Displacement 

 

• Wettability effects on GAGD were tested using the visual model. Oil-wet reservoirs 

are expected to have a continuous oil film flow on the matrix rather than droplets in 

between the pore space. The oil recovery in oil-wet porous media during the 

immiscible GAGD model was 83%, which was 10% higher than the corresponding 

water-wet porous media. Performing waterflooding on oil-wet porous media resulted 
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in very low oil recovery. It was observed that the gravity force dominated the process. 

Secondary GAGD oil recovery is much more efficient than the secondary 

waterflooding in oil-wet porous media. 

 

 

 
Figure 1.51B: Fluid Front Development Immiscible Displacement 

 

• Naturally fractured carbonate reservoirs appear to be good candidates for the GAGD 

process. The presence of the fracture can be exploited in the process as an effective 

gas-fluid exchange path between the fracture and the matrix. It is recommended to 

operate in the immiscible mode rather than the miscible mode to maintain gravity 

force domination. GAGD oil recoveries in fractured porous media were consistently 

higher than the non-fractured porous media recoveries by an average of 5%.  

• The GAGD process can also be used to recover even higher viscosity oils. The visual 

model has provided evidence that miscible and immiscible CO2 injections are 

applicable for heavy oil recovery. The most important consideration is to maintain the 

domination of the gravity force. Since the mobility ratio is highly adverse, viscous 

fingering could take place during the gas injection drainage of heavy oil if critical 

rates for gravity stable displacement are exceeded.  

• The GAGD process is viable for both secondary and tertiary oil recovery. The GAGD 

was performed in the tertiary mode after conducting the waterflood. The oil recovery 

was 54.5%ROIP. It is believed that oil recovery would be better in field application 
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since the horizontal well can placed just above the oil-water contact thereby reducing 

the water production significantly. 

 

Table 1.9: Summary of Experiments Performed with the Visual Model 
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1 10 N/A 43 43.0 3.096 30.0 
Free gravity flow was allowed to establish a base 

case. 

2 7.5 2 67 43.0 3.096 30.0  

3 7.5 4 72 43.0 3.096 30.0  

4 7.5 8 83 43.0 3.096 30.0  

5 5 2 71 37.6 4.040 23.2  

6 5 4 88 37.6 1.730 30.0 

The permeability of the visual model was relatively 

low in this experiment, and then it changed to a 

higher value after. Low permeability has shown to 

have a positive effect on recovery. 

7 2.5 2 65 41.2 3.629 55.0  

8 2.5 4 71 41.2 3.629 55.0  

9 2.5 8 74 41.2 3.629 55.0 

The model was shut-in near the end of experiment, 

and then restarted at later time with a jump of 

production due to phase segregation. 

10 0 4 73 41.2 3.629 54.0 

The model was shut-in near the end of experiment, 

and then restarted at later time with a jump of 

production due to phase segregation. 

11 0 8 69 41.2 3.629 53.0 
No shut-in was practiced to demonstrate the effect of 

shut-in time. 

12 0 N/A 65 41.2 3.629 53.0 

Water was used to simulate oil, and red dyed n-

decane was used for gas to simulate a case with low 

density difference between the fluids. 

13 0 2 94 41.2 2.787 30.0 

Naphtha was used for oil and decane for CO2 in the 

miscible mode. 100% microscopic sweep efficiency, 

but with less than 100% vertical sweep efficiency. 
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14 0 6 89 41.2 2.780 30.0 

Naphtha was used for oil and decane for CO2 in the 

miscible mode. Vertical sweep efficiency tends to 

improve with the lower injection rate. 

15 0 8 85 41.2 2.780 30.0 

Naphtha was used to simulate oil and decane for the 

gas phase in the miscible mode. 100% microscopic 

sweep efficiency; vertical sweep efficiency less than 

100%. This experiment proved that recovery 

depends on injection rate in the miscible mode. 

16 10 8 71 41.2 3.629 52.5 
Intermittent injection of CO2 in the horizontal well 

was tested. 

17 0 2 71.9 45.7 2.957 22.4 2 fractures were introduced in the model. 

18 0 4 71.8 45.7 2.957 22.4 2 fractures were introduced in the model. 

19 0 8 74.2 45.7 2.957 20.0 

2 fractures were introduced in the model. It seemed 

that in order to have a positive effect of the fractures 

on the overall recovery, injection rate had to be high. 

20 0 8 85 45.7 2.957 20.0 

2 fractures were used in the model; miscible 

flooding of the model (naphtha for oil, and decane 

for miscible CO2) 

21 0 2 64.1 42.0 2.787 25.7 
Soltrol was used for oil. Soltrol has a higher 

viscosity (2.93 cp) compared to decane (0.92 cp). 

22 0 8 64 42.0 2.787 25.7 Soltrol was used for oil. 

23 0 2 53.5 42.0 2.787 25.7 

Soltrol used for oil and decane for miscible CO2. It 

was observed that just like in any other miscible 

case, microscopic sweep was 100%, but volumetric 

sweep was less 100%. Furthermore, the mobility 

ratio had an adverse effect, however, if the miscible 

fluid was circulated enough, volumetric sweep 

would reach 100%. 

24 0 8 53.5 42.0 2.787 25.7 

Soltrol used for oil and decane for miscible CO2. The 

injection rate is irrelevant in this case: it is believed 

that it is only the effect of the mobility ratio. 

25 0 8 76.6 45.7 2.500 26.0 

This experiment was a repeated run: the previous the 

run had a permeability of 3600 mD and a recovery 

of 69%. It seemed that the permeability had an 

adverse effect up to a point. The purpose of this 

model was to run all four configurations (0”, 2.5”, 

5”, and 7.5” from top) in the same model for better 

comparison. 
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26 2.5 8 75.5 45.7 2.500 26.0 

This experiment was a repeated run: the previous the 

run had a permeability of 3600 mD and a recovery 

of 74.1%. It seemed that the permeability had an 

adverse effect up to a point. The purpose of this 

model was to run all four configurations (0”, 2.5”, 

5”, and 7.5” from top) in the same model for a better 

comparison. 

27 5 8 70.7 45.7 2.500 26.0 

This experiment was a repeated run. The purpose of 

this model was to run all four configurations (0”, 

2.5”, 5”, and 7.5” from top) in the same model to 

have a better comparison. 

28 7.5 8 76.4 45.7 2.500 26.0 

This experiment was a repeated run. The purpose of 

this model was to run all four configurations (0”, 

2.5”, 5”, and 7.5” from top) in the same model to 

have a better comparison. 

30 
Vertical 

Well 
8 85.1 45.7 2.500 26.0 

The injection rate was believed to be too high to 

allow the gravity effect to take place; the viscous 

effect was the dominant effect in the process. 

31 0 8 8.2 45.7 2.500 11.0 

GAGD was performed after the horizontal water 

flooding. The water flooding was very efficient and 

it recovered 85.1% of IOIP. 

32 0 8 83.7 45.7 4.000 26.0 
This model was oil-wet resulting in film flow of the 

oil. 

33 
Vertical 

Well 
2 71 45.7 4.000 26.0 

WAG. The waterflooding part has out-performed the 

gas flooding part. CO2 gas flooding was not effective 

because the gas traveled to the top immediately and 

bypassed the oil. Water injection performed just like 

waterflooding pattern 

34 10 
8 and 

2 
7.2 42.6 3.846 23.8 

Toe to Heel. In this experiment the CO2 gas injection 

was at the same height of production to simulate the 

Toe to Heel process. The outcome is not 

encouraging: it seems that due to the close proximity 

of the injection to the production the gravity force 

was not allowed to dominate the process. It is 

believed that the dominant force in place is the 

viscous. The horizontal production well acted like a 

vacuum attracting the CO2. No gas cap formed. 

35 0 8 82.2 44.7 1.365 20 

Single point production. In this experiment the 

horizontal production well is simulated by a point 

contact outward instead of a horizontal well line 

contact with porous media. 

36 Vertical 8 35.3 35.5 4.000 25 

Oil-wet model. The need for oil- wet fractional flow 

curves arose, and therefore, this test was performed. 

The water sank to the bottom of the visual model 

(gravity force domination in this case). 
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2. Further Development of the Vanishing Interfacial Tension (VIT) 

Technique  

Nearly two-thirds of original oil in place remains unrecovered in the crude oil reservoirs 

after the application of primary (pressure depletion) and secondary (waterflooding) oil 

recovery technologies. This remaining oil amounts to an enormous 377 billion barrels in 

the known oil fields of the United States alone. Hence, more attention is currently being 

paid to Enhanced Oil Recovery (EOR) processes to recover this huge amount of trapped 

oil. 

Presently miscible CO2 gas injection has become the most popular EOR process in 

the United States for light oil reservoirs. In addition to recovering the trapped oil, this 

EOR process has the added advantage of CO2 sequestration for the reduction of 

greenhouse gas emissions into the atmosphere. The trapping of crude oil in oil reservoirs 

after primary and secondary oil recovery processes is mainly due to rock-fluids 

interactions including capillary forces, which prevent the oil from flowing within the 

pores of reservoir rock, thereby leaving huge amounts of residual oil in reservoirs. These 

capillary forces can be reduced to a minimum if the interfacial tension between the 

injected fluid and the trapped crude oil is decreased to zero. Zero interfacial tension is 

nothing but miscibility between the injected gas and crude oil. Thus there is a need for 

miscibility development between injected gas and the crude oil in a gas injection EOR 

process to remobilize the huge amounts of trapped oil and improve the oil recovery. Oil 

recovery in a miscible gas injection process can be maximized by choosing the operating 

conditions such that the injected gas becomes miscible with the crude oil. Hence an 

accurate prior laboratory evaluation of gas-oil miscibility conditions is essential for 

process design and economic success of miscible gas injection field projects. The 

primarily available experimental methods to evaluate gas-oil miscibility under reservoir 

conditions are the Slim-Tube Test (STT), the Rising Bubble Apparatus (RBA) and the 

method of constructing Pressure-Composition Diagrams (PXD). Apart from these 

experimental techniques, several computational models are also available to determine 

gas-oil miscibility. The most important and popular among these models are the equation 

of state (EOS) model and the analytical model. 

In its very definition, fluid-fluid miscibility means the absence of an interface 

between the fluid phases, that is, the value of interfacial tension between the two phases 

is zero. However, none of the presently used conventional experimental techniques 

mentioned above for gas-oil miscibility evaluation satisfy this fundamental definition of 

miscibility. They do not provide direct and quantitative information on interfacial 

tension. Instead, they rely on indirect interpretation of miscibility from the amount of oil-

recovered in a slim-tube test or qualitatively from the appearance of gas bubbles rising in 

a column of oil in the rising-bubble apparatus. Furthermore, some of these techniques are 
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time consuming (e.g. 4-5 weeks for a slim-tube test measurement) and also there exists 

neither a standard design nor a standard set of criteria to determine miscibility in slim-

tube and rising bubble experimental techniques resulting in uncertainty and lack of 

confidence in the results obtained. 

To overcome the disadvantages of the above-mentioned conventional approaches to 

determine gas-oil miscibility, recently a new technique of Vanishing Interfacial Tension 

(VIT) has been developed based on the fundamental definition of zero interfacial tension 

at miscibility (Rao, 1997; Rao et al., 1999; Rao and Lee, 2002; Rao and Lee, 2003). In 

this method, the gas-oil interfacial tension is measured at reservoir temperature and at 

varying pressures or enrichment levels of gas phase. The gas-oil miscibility condition is 

then determined by extrapolating the plot between interfacial tension and pressure or 

enrichment to zero interfacial tension. In addition to being quantitative in nature, this 

method is quite rapid (1-2 days) as well as cost effective. This new technique so far has 

been successfully implemented for optimization of two miscible gas injection field 

projects, namely Rainbow Keg River (RKR) in Alberta and the Canadian Terra Nova 

offshore field. However, this technique remains to be further verified for model fluid 

systems with known phase behavior characteristics and also needs to be compared with 

computational models of miscibility prediction. These concerns need to be addressed in 

further developing this promising new technique for gas-oil miscibility evaluation that 

has already demonstrated its usefulness and cost-effectiveness in two different field 

applications. Further development of the VIT technique is also required to enable its wide 

acceptance by industry and to answer the questions regarding the compositional 

dependence of this technique on mass transfer interactions between the fluids due to 

varying gas-oil ratios in the gas-oil mixture. This section of the report outlines the results 

of laboratory experiments as well as theoretical calculations carried out for further 

development of VIT technique, in the following three sub sections. 

 

• VIT Experiments with Model Fluid Systems with Known Phase Behavior 

Characteristics 

• Experimental Determination of Miscibility Conditions for CO2 with Selected Crude 

Oil(s) 

• Development of Computational Models for Miscibility Prediction 
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2.1 VIT Experiments with Model Fluid Systems with Known Phase Behavior 

Characteristics 

 

2.1.1 VIT Experiments in Standard Gas-Oil Systems 

 

2.1.1.1 Introduction 

Minimum miscibility pressures (MMP) and minimum miscibility enrichments (MME) 

are the two important parameters used for assessing miscibility conditions for 

displacements of oil by gas. The minimum miscibility pressure as the name implies is the 

lowest possible pressure at which the injected gas (CO2 or hydrocarbon) can achieve 

miscibility with reservoir oil at reservoir temperature. The minimum miscibility 

enrichment is the minimum possible enrichment of the injection gas with C2-C4 

components at which miscibility can be attained with reservoir oil at reservoir 

temperature. Operating pressures below MMP or injection gas enrichments below MME 

result in immiscible displacements of oil by gas and, consequently, lower oil recoveries. 

Hence, prior laboratory evaluation of gas-oil miscibility conditions is essential for 

economic success of field miscible gas injection projects. 

The widely used experimental methods to evaluate gas-oil miscibility conditions 

under reservoir conditions are the slim-tube displacement, the rising bubble apparatus, 

method of constructing pressure-composition (P-X) diagrams and the newly developed 

vanishing interfacial tension (VIT) technique. 

Slim-Tube. Slim-tube test is the most common and has been widely accepted as the 

“petroleum industry standard” to determine gas-oil miscibility. The miscibility conditions 

are determined indirectly from oil recovery in this technique. Although the slim-tube is 

widely accepted, there is neither a standard design, nor a standard operating procedure, 

nor a standard set of criteria for determining miscibility conditions using this technique 

(Elsharkawy et al., 1996). Elsharkawy et al. (1996) comprehensively reviewed the 

literature and discussed several non-uniformities observed in the design and operation of 

this experimental technique. Slim tube length, diameter, type of packing, and the 

permeability and porosity of the packing have varied greatly in the designs used in 

industry. There is a considerable difference of opinion reported in literature on the effect 

of packing material and flooding rate on miscibility conditions determined using slim-

tube (Elsharkawy et al., 1996). There exist no fixed criteria for determining miscibility 

within slim-tube and hence individual researchers have defined their own criteria to 

identify slim-tube miscibility. Klins (1987) described in detail these different available 

slim-tube miscibility definitions in the literature. Different oil recovery levels, such as 

80% at gas breakthrough (Holm and Josendal, 1982), or 90-95% ultimate recovery at 1.2 

pore volumes of gas injected (Jacobson, 1972; Graue and Zana, 1981), have been 

reported as miscibility defining criteria in a slim-tube. The miscibility determined from 
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slim-tube displacement might not necessarily represent the true thermodynamic 

miscibility, that is, the attainment of critical state condition. The presence of physical 

dispersion effects in slim-tube can prevent or delay the achievement of thermodynamic 

miscibility (Walsh and Orr, 1990; Johns et al., 1993). Slim-tube experiments can even 

give misleading results depending on the level of physical dispersion present (Johns et 

al., 2000). The actual displacement of fluids in a reservoir is strongly influenced by 

several factors such as viscous fingering, gravity over ride, dispersion and reservoir 

heterogeneity and it is impossible to simulate all these mechanisms in a slim-tube test. 

This technique is also time consuming and it may take several weeks (normally 4 to 5) to 

complete one miscibility measurement and hence is expensive. Thus, the lack of fixed 

design, operating procedure and miscibility defining criteria, inability to account for 

important reservoir scale mechanisms, indirect interpretation of miscibility from oil 

recovery, long times and high costs appear to be the main disadvantages associated with 

this technique. In spite of all these design, operational and conceptual uncertainties 

existing in slim-tube measurements, it is interesting to see that still this technique is most 

widely preferred by industry for miscibility evaluation. This primarily appears to be due 

to the fact that the industry still believes there exists no other effective alternative 

experimental technique that can measure gas-oil miscibility as accurately as slim-tube. 

One of the often mentioned advantages of using the slimtube for miscibility 

determination is its ability to include the interaction of flow with phase behavior thereby 

accommodating the condensing and vaporizing modes of mass transfer that enable the 

development of the so-called multi-contact miscibility. However, the actual gas-oil 

contact occurring in the slimtube is a continuous interaction rather than one involving 

multiple discrete stages of contact. One can easily visualize the flow of injected gas 

(solvent) through a packed bed of sand in the slimtube that is saturated with crude oil. At 

the injection end, the gas contacts the oil for the first time when their mutual interactions 

begin. Depending on the extent of departure of their initial compositions from the 

equilibrium compositions, mass transfer begins to take place from each phase into the 

other. As the gas continues to flow through the slimtube, the previously oil-exposed gas 

contacts fresh oil residing in the unswept areas of the tube and the mutual mass transfer 

rates begin to slow down due to the continual decrease in the driving force as both phases 

approach their mutual equilibrium compositions. Thus the flow of the injected gas 

through the slimtube filled with oil essentially hastens the attainment of mass transfer 

equilibrium. However, this imposed flow does not have any effect on the final 

equilibrium compositions, which are governed by thermodynamics of phase behavior. 

Therefore it appears obvious that any other experimental method that allows for such 

mass transfer between phases to approach equilibrium could also be well suited for 

determining multi-contact miscibility. However, the low velocities used in typical 

slimtube displacements using 40-80 feet long sand-packed tubes render this technique to 
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be tedious and time consuming. Moreover, the definition of miscibility as the breakover 

point in the ultimate recovery curve makes it essential to run several slow rate 

displacement tests adding to the time and cost of miscibility determination using the 

slimtube. Another often mentioned advantage of slim-tubes is that it yields recovery 

factors. However, as Stalkup (1983) cautions, “it does not simulate many aspects of 

reservoir flooding, and the levels of ultimate recovery, both for immiscible and for 

miscible tests, should not be considered as indicative of the unit displacement efficiency 

to expect in reservoir rocks”. 

Rising Bubble. Rising bubble apparatus is another experimental technique, which is 

commonly used for quick and reasonable estimates of gas-oil miscibility. In this method, 

the miscibility is determined from the visual observations of changes in shape and 

appearance of bubbles of injected gas as they rise through in a visual high-pressure cell 

filled with the reservoir crude oil. A series of tests are conducted at different pressures or 

enrichment levels of the injected gas and the bubble shape is continuously monitored to 

determine miscibility. This test is qualitative in nature as miscibility is inferred from 

visual observations. Hence, some subjectivity is associated with the miscibility 

interpretation of this technique. Therefore, the results obtained from this test are 

somewhat arbitrary, but however this test is quite rapid and requires less than 2 hours to 

determine miscibility (Elsharkawy et al., 1996). This method is also cheaper and requires 

smaller quantities of fluids, compared to slim-tube. The subjective interpretations of 

miscibility from visual observations, lack of quantitative information to support the 

results and some arbitrariness associated with miscibility interpretation are the some 

disadvantages of this technique. There also appears to be no strong theoretical 

background associated with this technique and this technique provides only reasonable 

estimates of gas-oil miscibility conditions.  

Pressure Composition Diagrams. The pressure composition (P-X) diagrams for gas-

oil miscibility evaluation are constructed by conducting phase behavior measurements in 

high-pressure visual cells at reservoir temperature. On the diagram, the composition is 

expressed as a mole fraction of injection gas. Different amounts of injection gas are 

added to reservoir crude oil and the loci of bubble point and dew point pressures are 

determined to generate the phase boundaries. A single phase exists outside the phase 

boundaries, while the two phases coexist within the phase boundaries. In other words, 

miscibility develops outside the two-phase envelope, while immiscibility exists inside the 

two-phase envelope. The conditions needed for miscibility development between any 

composition of injection gas and reservoir crude oil at reservoir temperature can be 

determined from the diagram. However, this method is time consuming, quite expensive, 

cumbersome, requires large amounts of fluids and subject to some experimental errors. 

Vanishing Interfacial Tension Technique. In its very definition, fluid-fluid miscibility 

means the absence of an interface between the fluid phases, that is, the value of 
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interfacial tension between the two phases is zero (Benham et al., 1965; Stalkup, 1983; 

Holm, 1987; Lake, 1989). The experimental technique of vanishing interfacial tension 

has been developed based on this fundamental definition of miscibility (Rao, 1997; Rao 

and Lee, 2002; Rao and Lee, 2003). In this method, the gas-oil interfacial tension is 

measured at reservoir temperature and at varying pressures or enrichment levels of gas 

phase. The gas-oil miscibility conditions are then determined by extrapolating the plot of 

interfacial tension against pressure or enrichment to zero interfacial tension. In addition 

to being quantitative in nature, this method is quite rapid (1-2 days) as well as cost 

effective. This technique has been successfully utilized to optimize the injection gas 

compositions for two gas injection projects, one in Rainbow Keg River (RKR) reservoir, 

Alberta and the other in Canadian Terra Nova offshore field. However, in spite of this 

technique being a direct and an easy route to determine miscibility based on the very 

fundamental definition, it has been criticized for certain perceived reasons such as the 

absence of compositional path specification during the laboratory gas-oil interfacial 

tension measurements and lack of calibration of this technique against well-known 

simple standard gas-oil systems. These concerns on the VIT technique are addressed in 

this section so as to enable the adoption of this promising new technique by the industry 

for accurate gas-oil miscibility evaluation in an easy, quick and cost-effective manner. 

 

2.1.1.2 Objectives 

The objectives are: (1) to carry out interfacial tension measurements in standard gas-oil 

systems of known miscibility conditions at elevated pressures and temperatures to 

calibrate the new VIT technique, and (2) to study the effect of compositional path on gas-

oil miscibilities determined from VIT technique by varying gas-oil ratios during the 

interfacial tension measurements. For this purpose, two standard gas-oil systems of 

known miscibility conditions; (i) CO2 against n-decane at 100
oF, and (ii) CO2 against live 

decane consisting of 25 mole% methane, 30 mole% n-butane and 45 mole% n-decane at 

160oF have been chosen. The gas-oil interfacial tension measurements have been carried 

out using the pendent drop shape analysis (Kruss, 2000) and capillary rise techniques in 

the two standard gas-oil systems at elevated pressures and temperatures. 

 

Table 2.1: Comparison between Target and Measured Compositions of Live Decane  

Component

Target 

Composition 

(Mole%)

Measured 

Composition 

(Mole%)

% Dev. from 

Target

methane 25.00 24.57 1.72

n-butane 30.00 29.77 0.77

n-decane 45.00 45.66 1.47
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2.1.1.3 Experimental Reagents, Apparatus, and Procedures Used 

Reagents. Analytical grade reagents were used in the experiments. The cleaning solvents 

(toluene and acetone) and the oil (n-decane) used in the experiments were from Fisher 

Scientific, all having a purity of 99.9%. The pure gases methane and n-butane used in live 

decane preparation, the CO2 gas used in the experiments and the N2 gas used for drying 

and purging the flow lines were from Accurate Gas Products and have a purity of 99.7%, 

99.5%, 99.9% and 99.9%, respectively. The live decane was prepared by adding 

appropriate amounts of light ends, methane and n-butane into n-decane to match the live 

decane composition. The target and the actual compositions of live decane (measured 

using Varian CP-3800 Gas Chromatograph) are shown in Table 2.1. As can be seen, an 

excellent match was obtained between these two compositions with a maximum 

deviation of about 1.7%. 

Apparatus and Experimental Procedure. Figure 2.1 shows the photograph of the 

experimental apparatus used in this study for gas-oil interfacial tension measurements in 

the standard gas-oil systems at elevated pressures and temperatures. Part A in the picture 

is the high-pressure high-temperature optical cell (has a design rating of 400oF and 

20,000 psi), in which the glass capillary tube is stationed. Part B is the transfer vessel 

wound with heating tapes, used to hold the oil at test conditions of temperature and 

pressures. Part C is the centrifugal positive displacement pump used to pump oil into the 

optical cell. Part D is the Ruska pump, which can store and inject the CO2 gas into the 

optical cell.  Part E is the heating oven used to maintain the temperature of the optical cell 

and the fluids at the desired value. Part F is the PAAR DMA-512 density meter wrapped 

with heating tapes, used to measure the densities of equilibrated oil and gas phases during 

the experiments. Part G is the light source and part H is the digital video camera used to 

record the capillary rise observed in the capillary tube, inside the optical cell as well as to 

capture the pendent drops of oil for drop shape analysis (Kruss, 2000). We believe that 

this study may be the first one to adapt the capillary rise technique for interfacial tension 

measurements with complex hydrocarbon fluids at elevated pressures and temperatures. 

A capillary tube of known inside diameter (1.8 mm for n-decane-CO2 system and 1.0 mm 

for live decane-CO2 system) was carefully fitted into one of the crystal holders of the 

optical cell and is placed inside the cell. The cell was first filled with pure CO2 gas using 

the Ruska pump and was heated to desired temperature using the temperature control 

system of the heating oven. Then, the oil (n-decane or live decane) maintained at the 

desired temperature (100o or 160oF) in the transfer vessel was injected into the cell using 

the pump so that the cell was filled with fluids at a fixed initial gas-oil ratio. Nearly about 

an hour was then allowed for the fluid phases to equilibrate in the cell. The capillary rise 

observed in the glass tube was then recorded using the light source, digital camera, which 

was measured precisely, using the magnification system of the camera and a computer. A 

calibration reference object with a magnification factor of about 50 times was used 
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during the capillary rise measurements. The equilibrated liquid and gas phases were 

allowed to flow through the density meter maintained at desired temperature for density 

measurements. These measurements were then repeated for different pressures. The 

pressure in the system was altered either by injecting or withdrawing small amounts of 

liquid or gas phases, while maintaining the initial gas-oil ratio in the cell as close to the 

initial gas-oil ratio.  

 

 
Figure 2.1: Photograph of the Equipment Used for IFT Measurements at Elevated 

Pressures and Temperatures 

 
The measured capillary rise and the densities of equilibrated fluid phases were then 

used to calculate the interfacial tension using the capillary rise technique. A contact angle 

of θ = 0o was used during the capillary rise interfacial tension calculations as it is 

reasonable to assume that the liquids wet the glass completely in preference to a gas 

phase. This procedure was then repeated by varying the initial gas-oil ratio of the fluids in 

the cell to study the effect of gas-oil ratio on interfacial tension. At certain pressures of 

specific gas-oil ratios in decane-CO2 system at 100oF, the pendent drop images of CO2 

gas in n-decane were captured and analyzed for interfacial tension using the drop shape 

analysis technique (Kruss, 2000). This was done to calibrate the newly adapted capillary 

rise technique for interfacial tension measurements at elevated pressures and 
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temperatures by comparing the results of capillary rise technique with those obtained 

using the pendent drop technique. The dynamic variations in capillary rise with time were 

also measured in live decane-CO2 system at 160oF and 1100 psig at different gas-oil 

ratios to study the effect of gas-oil ratio on the dynamic interfacial tension in gas-oil 

systems.  

 

2.1.1.4 Principles and Equations Used 

Pendent Drop Shape Analysis. Mathematically, the force balance between the interfacial 

tension and gravity is well reflected in Laplace equation of capillarity. Hence, this 

equation has been used to fit the experimental drop profiles in pendent drop shape 

analysis technique. This equation represents the mechanical equilibrium between the two 

immiscible fluids. It relates the pressure difference across the interface to the interfacial 

tension and the curvature of the interface and is given by: 
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  Where σ is the interfacial tension, R1 and R2 are the two principal radii of curvature 

and ∆P is the pressure difference across the interface. 
This technique considers several points numbering about 50-100 on the actual 

measured drop profile of the pendent drop and fits a Laplacian curve to the measured 

profile. Then, an objective function is defined as the sum of the squares of the normal 

distances between the experimental points and the calculated curve to describe the 

deviation of the experimental profile from the theoretical profile. The objective function 

is finally minimized using a non-linear regression procedure to yield the interfacial 

tension. However, the major disadvantage of this technique is that it requires a drop shape 

to compute interfacial tension. In situations of low interfacial tension between the fluids, 

it is difficult to form pendent drops. Hence, this technique fails in such situations and 

therefore may not be applicable at conditions close to critical point, where the interfacial 

tension is close to zero. Hence, the capillary rise technique has been used to measure the 

low interfacial tensions occurring in this study, since the VIT technique requires very low 

interfacial tensions, as low a value as can be reliably measured, to accurately predict gas-

oil miscibility. 

Capillary Rise Technique. The equations governing the capillary rise in a circular 

glass tube are well known. The force acting along a vertical capillary due to the upward 

pull of interfacial tension is balanced by the oppositely directed force of gravity acting on 

the mass of liquid in the capillary above the outside level of the liquid. Thus, the force 

balance in a capillary is given by: 
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Solving for interfacial tension (σ) gives, 
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Where σ is the interfacial tension in mN/m, r is the capillary radius in cm, h is 

capillary rise in cm, ρl and ρg are the densities of liquid and gas phases, respectively in 

g/cc, θ is the equilibrium contact angle in degrees, g is the acceleration due to gravity in 

cm/s2 and gc is the conversion factor (1 g.cm/sec2.dyne). 

 

2.1.1.5 Results and Discussion 

n-Decane-CO2 System at 100
o
F. This standard gas-oil system of n-C10/CO2 has a reported 

slim-tube miscibility of 1250 psig (Elsharkawy et al., 1996) and a rising-bubble 

miscibility of 1280 psig (Elsharkawy et al., 1996) at 100oF. The interfacial tension 

measurements in this gas-oil system at 100oF and at various pressures were carried out 

using the capillary rise and pendent drop techniques. Three different molar feed 

compositions of 100 mole% oil, 40/60 mole% gas and oil, and 80/20 mole% gas and oil 

were used during the experiments to study the effect of gas-oil ratio on miscibility. The 

interfacial tension measurements at the feed composition of 100 mole% oil were 

conducted using the pendent drop technique. Both the pendent drop and capillary rise 

techniques were used for IFT measurements at the feed composition of 40/60 mole% gas 

and oil, while only capillary rise technique was used for IFT measurements at the molar 

feed composition of 80/20 mole% gas and oil. The densities of pure as well as 

equilibrated fluid phases and the capillary rise heights measured at molar feed 

compositions of 40/60 mole% gas and oil and 80/20 mole% gas and oil are summarized 

in Table 2.2. The gradual decrease of capillary rise heights with pressure can be seen at 

both the gas-oil ratios used. The summary of all interfacial tensions measured at different 

gas-oil ratios and at various pressures using both the pendent drop and capillary rise 

techniques is given in Table 2.3 and shown in Figure 2.2. The standard deviations in 

interfacial tension values reported for pendent drop technique in Table 2.3 at the gas-oil 

ratios of 100 mole% oil and 40/60 mole% gas and oil were obtained from about 10-20 

separate measurements. 

From Table 2.3, a good match of interfacial tensions between capillary rise and 

pendent drop techniques can be seen at 40/60 gas-oil ratio in the feed. This validates the 

newly adapted capillary rise technique for IFT measurements at elevated pressures and 

temperatures. As can be seen in Table 2.3 and Figure 2.2, almost similar IFT values are 

obtained at each of the pressures for all the three gas-oil ratios used, which clearly 

indicates the absence of gas-oil ratio effects on interfacial tension and hence on 

miscibility. This indicates that interfacial tension becomes independent of gas-oil ratio, as 
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the fluid phases approach equilibrium and hence the miscibility conditions of pressure 

and enrichment determined from the VIT technique do not depend on gas-oil ratio in the 

feed mixture. All the interfacial tensions measured at different gas-oil ratios were fitted 

using linear regression to determine miscibility using the VIT technique as shown in 

Figure 2.2.  

 

Table 2.2: Summary of Fluid Phase Densities and Capillary Rise Heights Measured in n-

Decane-CO2 System at 100oF 

Initial Equilibrium Initial Equilibrium
40/60 Mole%    

Gas and Oil

80/20 Mole%     

Gas and Oil

0 0.7304 0.719 0.0002 0.0091 7.1 7.2

200 0.7320 0.722 0.0264 0.0185 6.4 6.5

400 0.7334 0.720 0.0556 0.0432 5.4 5.4

600 0.7349 0.678 0.0890 0.0698 3.8 3.8

800 0.7363 0.663 0.1294 0.1159 2.5 2.5

1000 0.7381 0.698 0.1820 0.2203 1.8 1.6

1100 0.7392 0.482 0.2010 0.2998 0.4 0.4

Capillary Height (mm)
Pressure 

(psig)
Oil Gas

Fluid Phase Densities (gm/cc)

 
 

Table 2.3: Summary of Interfacial Tensions Measured in n-Decane-CO2 System at 

Various Pressures and Gas-Oil Ratios in the Feed 

100 Mole% Oil 80/20 Mole% Gas and Oil

Pendent Drop Capillary Rise

0 22.29 ± 0.24 21.95 ± 0.054 22.29 22.45

200 19.70 ± 0.17 19.27 ± 0.121 19.86 20.13

400 15.76 ± 0.12 15.36 ± 0.051 16.09 16.24

600 11.29 ± 0.17 10.38 ± 0.098 10.19 10.27

800 8.24 ± 0.14 7.28 ± 0.103 5.97 6.07

1000 3.57 ± 0.14 3.28 ± 0.257 3.75 3.34

1100 0.33 0.33

Capillary Rise IFT         

(mN/m)

Pressure 

(psig) Pendent Drop IFT               

(mN/m)

IFT (mN/m)

40/60 Mole% Gas and Oil

 
 

As can be seen in Figure 2.2, a good linear correlation was obtained between 

interfacial tension and pressure in the standard n-decane-CO2 system at 100oF. The linear 
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regression equation obtained is also shown in Figure 2.2. The coefficient of determination 

(R2) of 98.8% indicates a good fit. The extrapolation of the regression equation to zero 

interfacial tension gives a VIT miscibility of 1150 psig. This VIT miscibility is in good 

agreement with the reported miscibilities from slim-tube (1250 psig) and rising-bubble 

(1280 psig) experimental techniques. Considering the variabilities normally encountered 

in slim-tube and rising-bubble measurements, this can be treated as a good match. Thus, 

this VIT experiment conducted using the standard gas-oil system of n-decane-CO2 at 

100oF calibrates the VIT technique to measure miscibility in gas-oil systems. 
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Figure 2.2: Effect of Gas-Oil Ratio on VIT Miscibility in n-Decane-CO2 System at 

100oF 

 

 Live Decane-CO2 System at 160
o
F. The live decane refers to a composition of 25 

mole% of methane, 30 mole% of n-butane and 45 mole% of n-decane. This standard gas-

oil system has been reported to have a slim-tube minimum miscibility pressure (MMP) of 

1700 psia at 160oF (Metcalfe and Yarborough, 1979). This miscibility pressure is further 

reproduced with phase diagram measurements (Metcalfe and Yarborough, 1979) and 

analytical model predictions (Monroe et al., 1990; Orr et al., 1993). The IFT 

measurements in this gas-oil system at 160oF and at various pressures were carried out 

using the capillary rise technique due to its suitability to measure low gas-oil interfacial 

tensions with good repeatability as judged from our earlier experiments in n-decane-CO2 

system. Two different molar feed compositions of 80/20 mole% gas and oil, and 20/80 
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mole% gas and oil were used during the experiments to examine the effect, if any, of gas-

oil ratio on miscibility in this system as well. The summary of measured densities of pure 

as well as equilibrated fluid phases and capillary rise heights at the two different gas-oil 

ratios used are given in Table 2.4. The steady decline of capillary rise with pressure can 

be seen at both the gas-oil ratios used. The summary of interfacial tensions measured at 

both the gas-oil ratios and at various pressures in this standard gas-oil system at 160oF is 

given in Table 2.5 and shown in Figure 2.3. 

 

 

 

 

 

 

 

Table 2.4: Summary of Fluid Phase Densities and Capillary Rise Heights Measured in 

Live Decane-CO2 System at 160oF  

Initial Equilibrium Initial Equilibrium
20/80 Mole% Gas 

and Oil

80/20 Mole% 

Gas and Oil

1100 0.6509 0.6495 0.1636 0.2743 4.4 4.4

1150 0.6517 0.6509 0.1764 0.3028 4.1 4.1

1200 0.6524 0.6520 0.1892 0.3325 3.4 3.5

1250 0.6531 0.6538 0.2020 0.3543 3.2 3.3

1300 0.6538 0.6553 0.2148 0.3726 2.9 3.0

1350 0.6545 0.6571 0.2276 0.4060 2.9 2.9

1400 0.6552 0.6590 0.2404 0.4276 2.4 2.4

1500 0.6566 0.6630 0.2660 0.4586 2.3 2.2

1550 0.6573 0.6641 0.2788 0.4813 2.0 2.0

1600 0.6580 0.6677 0.2916 0.5186 1.7 1.6

1650 0.6587 0.6703 0.3044 0.5334 1.3 1.3

1700 0.6594 0.6717 0.3172 0.6252 1.1 1.1

1750 0.6601 0.6765 0.3300 0.6502 0.7 0.7

 Fluid Phase Densities (gm/cc)

Pressure 

(psig)
Oil Gas

Capillary Height (mm)
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Table 2.5: Summary of Interfacial Tensions Measured in Live Decane-CO2 System at 

Various Pressures and Gas-Oil Ratios in the Feed Using the Capillary Rise Technique 

20/80 Mole%                    

Gas and Oil

80/20 Mole%                    

Gas and Oil

IFT (mN/m) IFT (mN/m)

1100 4.05 4.06

1150 3.46 3.49

1200 2.67 2.71

1250 2.36 2.44

1300 2.02 2.04

1350 1.79 1.79

1400 1.37 1.37

1500 1.13 1.11

1550 0.88 0.89

1600 0.61 0.57

1650 0.43 0.44

1700 0.12 0.12

1750 0.04 0.04

Pressure 

(psig)

 
 

From Table 2.5 and Figure 2.3, it can be seen that IFT is not changing with gas-oil 

ratio at all the pressures used. This clearly indicates the absence of gas-oil ratio effects on 

IFT and hence on miscibility. This further substantiates the compositional independence 

of miscibilities determined using the VIT technique, due to varying gas-oil ratios in the 

feed mixtures. Since interfacial tensions are found to be independent of gas-oil ratio, all 

the interfacial tensions measured at each pressure for the two gas-oil ratios are fitted 

using linear regression to determine miscibility using the VIT technique. The IFT 

measurements were fitted against pressure using a hyperbolic function in this particular 

gas-oil system as shown in Figure 2.3. This function was used especially to fit the 

curvature to the data due to almost one order of magnitude reduction in IFT observed 

near miscibility. A good linear relationship between IFT and the reciprocal pressure can 

be seen in Figure 2.3 with a determination coefficient (R2) of 98.4%. The regression 

equation obtained is also shown in Figure 3. This regression equation is then extrapolated 

to zero IFT to determine MMP. A miscibility pressure of 1760 psig was obtained with the 

VIT technique, which agrees well with the miscibility pressure of 1700 psia reported 

from the slim-tube, phase diagram and analytical models. Thus, this VIT experiment 

conducted using the standard gas-oil system of live decane-CO2 at 160
oF once again 

validates the VIT technique to measure fluid-fluid miscibility in gas-oil systems. 
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Figure 2.3: Effect of Gas-Oil Ratio on VIT Miscibility in Live Decane-CO2 System at 

160oF 

 

 Effect of Gas-Oil Ratio on Dynamic Interfacial Tension. The effect of gas-oil ratio on 

dynamic interfacial tension was studied by measuring the changes in capillary rise 

heights with time in the live decane-CO2 system at 1100 psig and 160oF. The two gas-oil 

ratios of 20/80 mole% gas and oil and 80/20 mole% gas and oil were used. The densities 

of oil and gas phases required for dynamic interfacial tension calculations were obtained 

by fitting linear trend equations to the initial and equilibrated fluid phase densities as 

shown in Figure 2.4. The initial fluid phase densities are the densities of the pure fluid 

phases, while the equilibrated fluid phase densities are the densities of fluid phases that 

were measured during the previously reported interfacial tension measurements after 

allowing an aging period of about one-hour for saturation of fluid phases. The variations 

in capillary rise heights and fluid phase densities with time and the resulting dynamic 

interfacial tensions at both the gas-oil ratios used are summarized in Table 2.6. From 

Table 2.6, it can be seen that much of the changes in capillary rise heights were observed 

in the first one-hour for both the gas-oil ratios and hence it is reasonable to assume that 

the changes in fluid phase densities after one-hour is also negligible. Therefore, the fluid 

phase densities were assumed to be unchanged after one-hour during the dynamic 

interfacial tension calculations. The effect of gas-oil ratio on dynamic interfacial tension 

is shown in Figure 2.4. 
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Table 2.6: Variations in Fluid Phase Densities, Capillary Rise Heights, Interfacial 

Tensions with Time in Live Decane-CO2 System at 1100 psig and 160oF 

Oil Gas
Capillary Rise                

(mm)

IFT                   

(mN/m)

Capillary Rise                

(mm)

IFT                   

(mN/m)

1.0 0.6509 0.1717 4.92 5.78 4.74 5.57

2.0 0.6509 0.1734 - - 4.65 5.45

3.0 0.6508 0.1751 4.83 5.63 4.64 5.40

4.0 0.6508 0.1768 4.78 5.55 4.60 5.34

5.0 0.6508 0.1785 4.74 5.49 4.58 5.30

5.5 0.6508 0.1794 4.71 5.44 - -

6.0 0.6508 0.1802 4.67 5.39 - -

6.5 0.6508 0.1811 4.65 5.36 - -

7.0 0.6508 0.1819 4.64 5.33 - -

8.0 0.6507 0.1836 4.60 5.27 4.55 5.21

9.0 0.6507 0.1853 4.58 5.23 - -

10.0 0.6507 0.1870 4.57 5.19 4.50 5.11

12.0 0.4478 0.6507 - - 4.48 5.05

13.0 0.6506 0.1921 4.55 5.11 - -

15.0 0.6506 0.1955 4.53 5.05 4.46 4.97

20.0 0.6505 0.2040 4.51 4.94 4.42 4.84

30.0 0.6503 0.2210 4.48 4.71 4.41 4.64

60.0 0.6497 0.2720 4.46 4.13 4.39 4.06

120.0 0.6497 0.2720 4.44 4.11 4.39 4.06

360.0 0.4389 0.6497 - - 4.39 4.06

720.0 0.6497 0.2720 4.42 4.09 4.37 4.05

1440.0 0.6497 0.2720 4.41 4.08 4.37 4.05

2880.0 0.6497 0.2720 4.39 4.06 4.37 4.05

4320.0 0.6497 0.2720 4.39 4.06 4.37 4.05

5760.0 0.6497 0.2720 4.39 4.06 4.37 4.05

Fluid Phase Densities 

(gm/cc)

80/20 Mole%                               

Gas and Oil

20/80 Mole%                               

Gas and Oil
Time (min)
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Figure 2.4: Effect of Gas-Oil Ratio on Dynamic Interfacial Tension in Live Decane-CO2 

System at 160oF and 1100 psig 

 
From Figure 2.4, the dynamic nature of interfacial tension can be clearly seen at both 

the gas-oil ratios used. The interfacial tension is gradually decreasing with time for both 

the gas-oil ratios due to mass transfer interactions taking place between the fluid phases 

to reach the thermodynamic equilibrium. The dynamic nature of interfacial tension in 

multicomponent systems was first discovered experimentally by Plateau about five 

decades ago (Sternling and Scriven, 1959).  

As can be seen in Figure 2.4, the changes in interfacial tension with time are much 

more rapid at 20/80 gas-oil ratio, when compared to 80/20 gas-oil ratio. The influence of 

changes in interfacial tension has more pronounced effects on mass transfer rates than the 

effect of variations in the static properties such as density, viscosity and diffusivity 

(Zuiderweg and Harmens, 1958). Therefore, the rapid changes in interfacial tension 

observed at 20/80 gas-oil ratio can be attributed to higher mass transfer rates between the 

two fluid phases. The possible reasons for the higher mass transfer rates at 20/80 gas-oil 

ratio in the feed mixture are as explained below. 

The live decane contains significant amount of lighter components (55 mole% n-C1 

and n-C4), which more easily tend to diffuse from oil to gas phase. Hence, the 

components n-C1 and n-C4 in oil can be considered as solutes for mass transfer between 
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oil and gas phases. At 20/80 gas-oil ratio, higher amounts of lighter components (solute) 

are available in oil to initiate the mass transfer and hence higher mass transfer rates to 

saturate the low amount of available gas, thereby resulting in quicker thermodynamic 

equilibrium. However, near thermodynamic equilibrium, the interfacial tensions become 

almost similar for both the gas-oil ratios used. This clearly indicates that when both the 

fluid phases approach equilibrium, interfacial tension becomes independent of gas-oil 

ratio. Thus the gas-oil ratio in the feed mixture has little or no effect on near equilibrium 

IFT values, but it determines the rate at which the thermodynamic equilibrium state is 

attained. In other words, gas-oil ratio has an impact on how fast the thermodynamic 

equilibrium can be reached when two immiscible fluid phases containing multiple 

components are brought into contact with each other. The following important 

observations can also be made from the dynamic interfacial tension measurements 

reported in Figure 2.4. 
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      (a) Vaporizing Mode Mass Transfer            (b) Condensing Mode Mass Transfer 

 
Figure 2.5: Concentration Profiles of a Diffusing Component in Gas-Liquid Systems in 

Vaporizing and Condensing Modes 

 

The interfacial tension first decreases rapidly with time up to 60 minutes for both the 

gas-oil ratios used. For 20/80 gas-oil ratio, much smaller changes in IFT were observed 

from 60-700 minutes and then IFT becomes almost constant after 700 minutes. However, 

for 80/20 gas-oil ratio, much smaller changes in IFT were observed until 3000 minutes 

and then it appeared to stay constant. This dynamic behavior of interfacial tension can be 

well understood using the schematic diagram of solute concentration profiles shown in 

Figure 2.5. Figure 2.5 depicts the changes in the concentration profile of a diffusing 

component in the bulk liquid, bulk vapor and at the interface due to mass transfer 

between the liquid and vapor phases in both vaporizing and condensing modes of mass 

transfer in a gas liquid system.  
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The initial concentrations of the diffusing component A in gas and liquid phases are 

CA,gi and CA,li, respectively. In the vaporizing drive mechanism, mass transfer of 

component A takes place from liquid to gas by vaporization and in condensing 

mechanism, mass transfer of component A takes place from gas to liquid by 

condensation. In both these modes of mass transfer, the component A quickly reaches its 

equilibrium composition within the gas-liquid interfacial film due to the large 

concentration gradient of the diffusing component existing in the film on either side of 

the interface. Hence there will be less resistance to mass transfer within this film and 

CA,sge and CA,sle represent the equilibrium compositions of component A in the gas and 

liquid phases, respectively, at the interfacial film. However, the equilibrium compositions 

of the component A within the interfacial film are different from the equilibrium 

compositions of component A in the bulk liquid and vapor phases, CA,ble and CA,bge, 

respectively. As a result, prolonged intra-phase mass transfer of component A takes place 

within the bulk fluid phases due to the small concentration gradient for much longer 

times to attain ultimate thermodynamic equilibrium in gas-liquid systems. The rapid mass 

transfer interactions of the diffusing components occurring within the interfacial film 

have significantly higher degree of influence on interfacial tension at the gas-liquid 

interface when compared to much slower mass transfer interactions taking place in the 

bulk fluid phases. These dynamic effects of interfacial tension will be especially 

significant in the complex hydrocarbon systems consisting of multicomponent crude oil 

and gas phases as crude oils contain thousands of chemical compounds (McCain, 1990). 

The one-hour aging period used during the interfacial tension measurements of standard 

gas-oil systems in this study accounted for nearly 99.5-99.7% of the equilibrium value, as 

shown in Figure 4 and thereby resulting in accurate measurements of gas-oil miscibility.  

 

2.1.1.6 Summary and Conclusions 

Interfacial tensions have been measured in two standard gas-oil systems of n-decane-CO2 

at 100oF and live decane-CO2 at 160
oF to calibrate VIT technique for gas-oil miscibility 

determination, using the pendent drop and capillary rise techniques. We believe that this 

is the first attempt to successfully adapt capillary rise technique for low interfacial 

tension measurements in complex gas-oil systems at elevated pressures and temperatures. 

The use of capillary rise technique in the present study has enabled us to measure low 

gas-oil interfacial tensions down to 0.04 mN/m, while the lowest gas-oil IFT measured 

with the conventional pendent drop shape analysis technique was about 0.6 mN/m. This 

has further enabled better accuracy in miscibility determination using the VIT technique. 

For n-decane-CO2 system at 100oF, the minimum miscibility pressure of 1150 psig 

obtained from VIT experiments matched well with the reported miscibilities from slim-

tube (1250 psig) and rising bubble (1280 psig) measurement techniques. A VIT minimum 

miscibility pressure of 1760 psig has been obtained in live decane-CO2 system at 160oF, 
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which also agreed well with the reported miscibilities of 1700 psia from phase diagram, 

slim-tube and analytical models. The close agreement of VIT miscibilities obtained in 

these two standard gas-oil systems clearly validates the new vanishing interfacial tension 

(VIT) technique to determine miscibility conditions in gas-oil systems. 

As the fluid phases approached equilibrium, the interfacial tension is found to be 

unaffected by gas-oil ratio in both the standard gas-oil systems studied. Though gas-oil 

ratio has no effect on near equilibrium interfacial tension, it is found to have an impact on 

mass transfer rates that determine the duration needed for attaining the mass transfer 

equilibrium between the two phases. This experimental study has also pointed out the 

compositional path independence of the miscibilities determined using the VIT technique 

by varying the ratio of phases in the feed. Thus this experimental study conducted using 

standard gas-oil systems at elevated pressures and temperatures answers all the concerns 

expressed about the VIT technique and thereby strongly encourages the wide use of this 

technique for confident characterization of gas-oil miscibility conditions in an accurate, 

easy, quick and cost-effective manner for improved oil recovery field applications. 

 

2.1.2 VIT Experiment in a Standard Ternary Liquid System 

 

2.1.2.1 Introduction 

The literature reviewed on solubility, miscibility, and their relation to IFT in ternary fluid 

systems are discussed in this section. The terms, miscibility, solubility and interfacial 

tension, are commonly used in phase behavior studies of ternary fluid systems. Review of 

literature shows that zero interfacial tension is a necessary and sufficient condition to 

attain miscibility (Benham et al., 1965; Stalkup, 1983; Holm, 1987; Lake, 1989).   

Blanco et al. (1996) measured vapor-liquid equilibrium data at 141.3 kPa for the 

mixtures of methanol with n-pentane and n-hexane and then determined upper critical 

solubility for methanol, n-hexane mixtures from the measured miscibility data. This 

intuitively suggests the relationship of miscibility with upper critical solubility of a solute 

in solvent for ternary fluid systems. Lee (1999) modified the adsorption model proposed 

by van Oss et al. (1987) by the inclusion of equilibrium spreading pressure to calculate 

the liquid-liquid interfacial tension. This study related equilibrium interfacial film 

pressure and the interfacial tension for prediction of miscibility of liquids and also 

pointed out that the theory of miscibility of liquids can be applicable to the solubility of a 

solute in a solvent. 

Fleming and Vinatieri (1981) explored the role of critical phenomena in oil recovery 

systems using surfactants. They found that for a surfactant system consisting of three 

phases, an aqueous phase, a microemulsion phase, and an oil phase, the interfacial 

tensions occurring in the neighborhood of the optimal salinity are associated with the 

critical end-points of aqueous phase-microemulsion and oil phase-microemulsion. They 
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were able to quantitatively describe the behavior of the other physical properties such as 

electrical conductivities, densities, viscosities, and compositions of the phases in terms of 

these critical-end points. They also concluded that these critical-end points influence the 

low interfacial tensions approaching the point of criticality where the interfacial tensions 

between the two phases vanish. 

Huang and Kim (1985) investigated various thermodynamic paths through which a 

critical point can be reached in a microemulsion consisting of three components. The 

microemulsion studied consisted of 3% sodium di-2-ethyl-hexylsulfosuccinate (AOT), 

5% distilled water and 92% n-decane. The different thermodynamic variables considered 

were temperature, oil composition, alkyl carbon chain length of oil and the salinity. The 

results showed the power law dependence of the thermodynamic singularity (correlation 

length) occurring near the critical point on all the reduced thermodynamic variables with 

a similar power law exponent (≈ 0.75). They called this power law exponent as the 

critical index, which describes the divergence of correlation length near the critical point. 

Based on these results, the authors concluded that the critical point of a microemulsion 

could be approached through different thermodynamic paths, but all of them would result 

in an apparently identical critical index. 

Donahue and Bartell (1952) utilized the data on interfacial tensions and reciprocal 

solubilities for 31 water-organic systems at the same temperature (25oC) to develop an 

empirical correlation between the solubility and the interfacial tension. They defined a 

quantity called “degree of miscibility (DM)”, which is the sum of the mole fraction of 

water in the organic phase and the mole fraction of the organic liquid in the aqueous 

phase. They found an empirical relationship between the interfacial tension and logarithm 

of degree of miscibility. Glinski et al. (1994) later revisited the data of Donhue and 

Bartell (1952) to obtain the following relationship between interfacial tension and degree 

of miscibility (DM). 

83.3log47.16 −−= DMσ ……………………….…………………………………. (2.4) 

Where, σ is the interfacial tension in mN/m. Chavepeyer et al. (1993) evaluated the 

correlation of Donahue and Bartell (1952) for several organic-organic and water-organic 

systems at different temperatures and found poor correlation of interfacial tension with 

degree of miscibility. Hence Glinski et al. (1994) supplemented the data of Donahue and 

Bartell (1952) with more results from their laboratory as well as from the literature and 

found a correlation between calculated reduced density difference and the logarithm of 

interfacial tension. Even though this relationship had an explicit shape, it lacked the 

definite proportionality to develop an empirical correlation.   

Interfacial tension (IFT) being a property of the interface between two fluids is 

strongly dependent on mass transfer interactions occurring between the two fluid phases. 

The effect of molar ratio of the two fluids (solvent-oil ratio) in the feed mixture on fluid-

fluid interfacial tension is rarely studied. Simon et al. (1978) measured the IFT of a 
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reservoir crude oil in CO2 gas at various solvent-oil ratios in the feed using a high-

pressure interfacial tensiometer. The results from this experimental study indicated strong 

dependence of IFT on solvent-oil ratio in the feed, in which an increase of IFT was 

observed with an increase in concentration of CO2 gas in the feed. Such a dependence of 

IFT on solvent-oil ratio in the feed indicates the role of mass transfer effects on IFT. This 

gives raise the need to further explore solvent-oil ratio effects on IFT between fluids so as 

to clarify the role of mass transfer effects in fluid-fluid phase equilibria. 

Thus from the literature reviewed above on solubility, miscibility and their relation to 

IFT, it is evident that the distinction between the terms miscibility and solubility still 

appears to be unclear, the correlation of solubility with interfacial tension is not definitive 

and the role of mass transfer effects on IFT at varying solvent-oil ratios needs to be 

explored. Moreover, further development of VIT technique is required in standard ternary 

liquid systems to enable the wide acceptance of this promising technique by the oil 

industry.  

 

2.1.2.2 Objectives 

The objectives are to correlate miscibility and solubility with interfacial tension, to study 

the solvent-oil ratio effects on IFT, and to investigate the applicability of the new VIT 

technique to determine the miscibility in ternary liquid systems. For this purpose, the 

standard ternary liquid system of ethanol, water and benzene is chosen since their phase 

behavior and solubility data are readily available (Chang and Moulton, 1953; Sidgwick 

and Spurrel, 1920). The IFT measurements were carried out using the drop shape analysis 

(Kruss, 2000) and capillary rise techniques. All the interfacial tension measurements 

reported in this study were conducted at atmospheric pressure and room temperature 

(23oC). 

 

2.1.2.3 Experimental Details 

Reagents. Analytic grade reagents were used in the experiments. Benzene used in the 

experiments was from Fisher Scientific, having a purity of greater than 99%. Ethyl 

alcohol was from Aaper Alcohol and Chemical Company with a purity > 95%. Deionized 

water, from Water Quality Laboratory at Louisiana State University, was used. Acetone 

of purity 99.7%, from Fisher Scientific was used for cleaning the experimental apparatus. 

Experimental Setup and Procedure. The schematic of the experimental setup used for 

IFT measurements using the drop shape analysis (DSA) technique is shown in Figure 2.6.  
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Figure 2.6: Schematic of the Experimental Setup Used for Pendent Drop IFT 

Measurements Using DSA Technique 
 

It consisted of an optical cell, solvent reservoir, injection system to inject oil, light source 

and a camera system connected to a computer for image capture and analysis.  Different 

molar solutions of ethanol and water were prepared using the desired volumetric 

percentages. These solutions were used as the non-equilibrated solvents in the 

experiments. For preparation of solvent solutions pre-equilibrated with benzene to study 

the benzene dissolution effects in aqueous ethanol and for equilibrium contact angle 

measurements, 1000 ml of the non-equilibrated solvent was taken in a glass flask and 

measured volume of benzene, slightly above the solubility limit corresponding to that 

solvent composition, was poured into the flask. The flask was tightly closed and 

rigorously mixed for 12 hours. After mixing, the solution was filtered to remove the 

formed oil-solvent emulsion drop-lets, using hardened ashless Whatman filter paper. 

Then, the filtered solution was allowed to settle for another 12 hours. Afterwards, the pre-

equilibrated benzene and solvent phases of the solution were carefully collected and 

stored. The optical cell is first cleaned with deionized water and then with acetone. The 

non-equilibrated solvent is taken in a container (solvent reservoir), which was kept at a 

sufficient height to allow flow by gravity. The cell was gradually filled up and some 

solvent was allowed to drain from the top to ensure that there were no trapped air bubbles 

in the cell. The benzene is now injected into the cell, using the injection system, drop by 

drop. A few benzene drops, normally 10-20, were allowed to rise through the solvent and 
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rest at the top of the cell to allow for equilibration of the fluid phases. Now, a benzene 

drop was allowed to hang from the capillary tip in the pendent drop mode and the drop 

image is captured on the computer using the camera system. The captured drop image 

was then analyzed for IFT using the drop shape analysis technique. The volumes of 

benzene and the solvent in the cell were varied during the experiments to study the 

solvent-oil ratio effects on interfacial tension measurements. The detailed description of 

calculation procedure and equations used in pendent drop shape analysis technique to 

determine IFT is given in Section 2.1.1.4. 

At molar concentrations above 40% ethanol enrichment in the aqueous phase, 

benzene pendent drops could not be formed as the benzene quickly escaped in streaks 

through the solvent. Therefore, the capillary rise technique was adapted and used to 

measure the low interfacial tensions occurring at these concentrations. The schematic 

diagram of the capillary rise technique used is shown in Figure 2.7. In the Figure 2.7 

schematic, r is the inner radius of the capillary tube, ρo and ρl are the densities of oil and 

solvent phases, respectively, θ is the equilibrium contact angle and h is the capillary rise. 

More details on capillary rise technique can be seen in Section 2.1.1.4. 
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Figure 2.7: Schematic of Capillary Rise Technique Used 

 

At first, certain volume of aqueous ethanol at particular ethanol enrichment above 40 

mole% was taken in a glass beaker. Measured volume of benzene about one and one-half 

times above the solubility limit, was added to the aqueous ethanol. The two fluid phases 

were thoroughly mixed by shaking and allowed to settle for about one hour. Then, the 

solution clearly separated into two phases with less denser fluid phase at the top, while 

the denser fluid phase resting at the bottom. A glass capillary tube (radius r = 0.09 cm) 
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was then carefully inserted into the beaker using an adjustable stand so that it was 

completely immersed in the two fluid phases. Sufficient care was taken to avoid the 

contact of bottom end of the capillary tube with glass beaker. The interface between the 

fluid phases slowly raised through the capillary and stabilized at a definite height within a 

time of about 20 minutes. The capillary rise was then measured using a vernier-equipped 

cathetometer that reads in units of one-tenth of a millimeter. After the capillary rise 

measurements, the equilibrated aqueous ethanol solvent and benzene were allowed to 

flow through a PAAR DMA-512 density meter for density measurements.  
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Figure 2.8: Photograph of the Equipment Used for Contact Angle Measurements 

(A: Optical cell; B: Crystal holder; C: Injection system, D: Light source; E: Goniometer) 

 

The equilibrium contact angles were measured using an ambient optical cell, pre-

equilibrated fluid phases and glass substrates with which the capillary tubes were made. 

The photograph of the equipment used for equilibrium contact angle measurements is 

shown in Figure 2.8 and is described elsewhere (Vijapurapu and Rao, 2003). The 

procedure used for benzene equilibrium contact angle measurements was as followed. 

The glass substrate was first aged in pre-equilibrated aqueous ethanol solvent for about 

24 hours. The aged glass substrate was then placed in a crystal holder and assembled 

carefully into the thoroughly cleaned optical cell. The pre-equilibrated aqueous ethanol 

solvent was taken in a large container kept at a sufficient height and allowed to flow into 

the cell by gravity. After the cell was filled, some solvent was allowed to drain from the 

top to ensure the removal of trapped air bubbles in the cell. Then, the pre-equilibrated 
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benzene drop was placed on the glass crystal using an injection syringe from the bottom 

of the cell. The cell was then set-aside with all the valves closed to age for 24 hours for 

the solvent-oil-crystal interactions to reach equilibrium. After 24 hours of aging, the 

equilibrium contact angle was measured using an eye-piece goniometer and light source. 

The interfacial tension is then calculated using the Eq. (3). 
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Figure 2.9: Phase Diagram of Benzene, Ethanol and Water Ternary System (After Chang 

and Moulton, 1953) 

 

2.1.2.4 Results and Discussion 

Miscibility and Solubility. The ternary phase diagram of the standard system of ethanol, 

water and benzene (Chang and Moulton, 1953) is shown in Figure 2.9. From the ternary 

phase diagram of Figure 2.9, it can be seen that the limiting tie-line passing through the 

oil (benzene) intersects the solvent (aqueous ethanol) at an ethanol enrichment of 83 

mole% in aqueous phase. Hence, this becomes the minimum miscibility ethanol 

enrichment for the system to attain miscibility, since at any ethanol enrichment lower 

than this, the tie-line would pass through the two-phase envelope indicating the presence 

of two phases in equilibrium. The solubility of benzene in aqueous ethanol at various 

ethanol enrichments (Sidgwick and Spurrel, 1920) is given in Table 2.7 and shown in 

Figure 2.10. From the Table 2.7 and Figure 2.10, the following important observations 

can be made.  
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Table 2.7: Solubility of Benzene in Water at Various Ethanol Enrichments (Data from 

Sidgwick and Spurrel, 1920) 

 Benzene Solubility

Ethanol Water (gms/liter)

34.8 65.2 134.3

46.6 53.4 343.2

53.3 46.7 629.1

61.2 38.8 1284.6

70.6 29.4 2351.6

78.0 22.0 5760.1

Solvent (Mole%)
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Figure 2.10: Solubility of Benzene in Water at Various Ethanol Enrichments (Using the 

Data from Sidgwick and Spurrel, 1920) 

 

The solubility of benzene in aqueous ethanol begins at an ethanol enrichment of 35 

mole% and then gradually increases to become completely soluble at about 78 mole% 

ethanol enrichment, exhibiting an exponential relationship between solubility and 

enrichment. As shown in Figure 2.10, the solubility characteristics can be divided into 

three regions: (1) Region 1 exists at ethanol enrichments below 35 mole%, where 

benzene is completely insoluble; (2) Region 2 exists at ethanol enrichments between 35 

mole% and 78 mole%, where benzene is partially soluble. In this region, below the 
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solubility curve, benzene is completely soluble, whereas above the solubility curve, 

benzene is insoluble and (3) Region 3 exists at ethanol enrichments above 78 mole%, 

where benzene is soluble in all proportions and hence this can be called as the miscible 

region. Thus the minimum miscibility ethanol enrichments for this standard ternary fluid 

system by both the phase diagram (83 mole%) and the solubility data (>78 mole%) 

appear to be in good agreement. 

IFT Measurements Using DSA Technique and Solvent-Oil Ratio Effects on IFT. At 

first, a calibration IFT experiment was conducted using the DSA technique for a known 

standard fluid pair of n-decane and water. An IFT value of 49.0 ± 0.15 mN/m was 

obtained, which is in good agreement with the published value of 50.5 mN/m reported by 

Jennings (1967). Then, different molar feed compositions corresponding to 0, 10 and 40 

volume% oil in the solvent were used to study the solvent-oil ratio effects on IFT. The 

interfacial tensions between the fluids could not be measured above 40 mole% ethanol 

enrichment in aqueous phase, using the DSA technique. At these higher ethanol 

enrichments, pendent drops could not be formed as the oil quickly escaped in streaks 

through the solvent. All the measured IFT experimental data between the fluids at 

different ethanol enrichments in aqueous phase and at different solvent-oil ratios in 

aqueous ethanol-benzene feed mixtures are summarized in Table 2.8 and shown in Figure 

2.11. The small standard deviations in the range of 0.03 to 0.11 obtained in measured IFT 

values indicate extremely low variation in the measurements. The summary of important 

observations from Table 2.8 and Figure 2.11 are as followed. 

The IFT gradually decreases as the ethanol enrichment increases in aqueous phase. At 

ethanol enrichments up to 20 mole% in aqueous phase, IFT is found to be independent of 

solvent-oil ratio in the feed. However, at ethanol enrichments above 30 mole% in 

aqueous phase, a small increase in IFT is observed as the solvent-oil ratio in feed is 

decreased. The increase of IFT with decrease in solvent-oil ratio is low at 30 mole% 

ethanol enrichment and then becomes noticeable at 40 mole% ethanol enrichment in 

aqueous phase. The primary reasons responsible for the observed solvent-oil ratio effects 

on IFT are as discussed below. 

As can be seen in Table 2.7 and Figure 2.10, benzene solubility in aqueous ethanol 

starts at 35 mole% ethanol enrichment and then gradually increases to become 

completely soluble at 78 mole% ethanol enrichment in aqueous phase. Hence solubility 

of benzene in aqueous ethanol does not come into picture during the IFT measurements 

in insoluble regions at ethanol enrichments below 35 mole%. Hence, absence of solvent-

oil ratio effects on IFT is observed at ethanol enrichments below 30 mole% in aqueous 

phase. At ethanol enrichments above 30 mole% in aqueous phase, leaving of 10-20 drops 

of benzene in aqueous ethanol as well as different molar percentages of benzene used in  
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Table 2.8: Measured Benzene Interfacial Tensions in Aqueous Ethanol at Various 

Ethanol Enrichments and Feed Compositions using DSA Technique 

Benzene IFT

Ethanol Water Solvent Benzene (mN/m)

100.0 0.0 32.58 ± 0.110

0 100 97.8 2.2 32.59 ± 0.030
88.0 12.0 32.62 ± 0.030
100.0 0.0 12.11 ± 0.110

10 90 97.4 2.6 12.11 ± 0.060
86.2 13.8 12.16 ± 0.045
100.0 0.0 4.85 ± 0.064

20 80 97.0 3.0 4.84 ± 0.080
84.4 15.6 5.00 ± 0.050
100.0 0.0 2.30 ± 0.035

30 70 96.6 3.4 2.31 ± 0.040
82.5 17.5 2.62 ± 0.030
100.0 0.0 1.23 ± 0.052

40 60 96.2 3.8 1.41 ± 0.050
80.7 19.3 1.99 ± 0.048

Solvent (Mole%) Feed Composition (Mole%)
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Figure 2.11: Effect of Solvent-Oil Ratio on IFT in Feed Mixtures of Benzene (Oil) and 

Aqueous Ethanol (Solvent) 
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the feed mixture are not sufficient to provide the complete equilibration of fluid phases so 

as to reach the solubility limit. As a result, the dissolution of benzene in aqueous ethanol 

interferes with IFT measurements due to varying amounts of benzene at different solvent-

oil ratios in the feed mixture. This is probably the reason for small dependence of IFT on 

feed solvent-oil ratio observed in partially soluble regions at ethanol enrichments above 

30 mole% in aqueous phase.  

 

Figure 2.12: Photographs Showing the Effect of Benzene Dissolution in Non-

Equilibrated Aqueous Ethanol Solvent at 30 Mole% Ethanol Enrichment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13: Photographs Showing the Absence of Benzene Dissolution in Pre-

Equilibrated Aqueous Ethanol Solvent at 30 Mole% Ethanol Enrichment 

 

The benzene solubility effects observed in aqueous ethanol in partially soluble 

regions at ethanol enrichments above 30 mole% can be removed by providing complete 

equilibration between benzene and aqueous ethanol solvent during IFT measurements. 

Figures 2.12 and 2.13 demonstrate the effects of benzene solubility on benzene drop size 

in non-equilibrated and pre-equilibrated 30 mole% aqueous ethanol solvent, respectively. 

As can be seen in Figure 2.12, benzene drop gradually reduces in size with time and 

completely vanishes within 4 hours in non-equilibrated aqueous ethanol solvent. This can 

be attributed to benzene dissolution in non-equilibrated aqueous ethanol. However, 

contrarily, absence of benzene solubility effects in aqueous ethanol pre-equilibrated with 

time = 0 time = 1 time = 3 hrs 

time = 0 hr time =1.5 hrs time = 4.5 hrs 
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benzene can be seen in Figure 2.13. The benzene drop is able to retain its original size 

and shape in the solvent even after 4.5 hours. These observations of Figures 2.12 and 

2.13 clearly suggest that compositional effects on IFT in partially soluble regions are due 

to the absence of complete saturation between the fluid phases during the experiments. 

Thus the smaller IFT dependence on feed solvent-oil ratio observed with non-equilibrated 

fluids in partially soluble regions (Table 2.8 and Figure 2.11) appears to be due to 

benzene dissolution in aqueous ethanol. Hence pre-equilibrated solutions must be used in 

the partially soluble regions for IFT measurements to incorporate all the mass transfer 

effects. Equilibrium interfacial tension (which includes all the mass transfer effects) 

being a thermodynamic state property can be reached through several paths due to 

varying solvent-oil ratios in the feed, but all of them would result in a unique value. This 

is somewhat similar to approaching the critical point of a micro-emulsion through 

different thermodynamic paths with an apparently identical critical index (Huang and 

Kim, 1985). 

IFT Measurements Using Capillary Rise Technique. This technique was adapted to 

measure low interfacial tensions that could not be measured using drop shape analysis 

technique at ethanol enrichments above 40 mole% in aqueous phase. At first, this 

technique was calibrated for a known low IFT standard fluid pair of n-butanol and water, 

using two different capillary sizes. IFT values of 1.72 and 1.79 mN/m were obtained for 

inner capillary glass tube radii of 0.09 and 0.025 cm, respectively. These values were in 

good agreement with the value of 1.8 mN/m reported by Mannhardt (1987) for this 

standard fluid system.  

 

Table 2.9: Benzene Interfacial tensions in Aqueous Ethanol Solvent at Ethanol 

Enrichments above 40 Mole% in Aqueous Phase 

Solvent Oil

50 0.8725 0.8597 25 0.53 0.3301

60 0.8641 0.8579 25 0.59 0.1780

70 0.8612 0.8594 25 0.68 0.0596

75 0.8579 0.8576 25 0.98 0.0143

IFT 

(mN/m)

Ethanol 

Enrichment 

(Mole%)

Phase Densities 

(gm/cc)
Contact Angle 

(degrees)

Capillary Rise 

(cm)

 
 

All the measured capillary heights and the densities of the equilibrated fluid phases 

using the capillary rise technique at ethanol enrichments above 40 mole% in benzene, 

ethanol, water standard ternary liquid system are summarized in Table 2.9. From Table 

2.9, it can be seen that as the ethanol enrichment in aqueous phase increases from 50 

mole% to 75 mole%, the density difference between the fluid phases decreases from 

0.0128 gm/cc to 0.0003 gm/cc. Contrarily, an increase in capillary rise from 0.53 cm to 



 101 

0.98 cm can be seen as the ethanol enrichment in aqueous phase is increased. This 

indicates an inverse correlation between the density difference and the capillary rise and 

hence a good precision of IFT measurements can be made even in low IFT regions using 

this technique due to easily measurable heights in the capillary tube. 

 

Table 2.10: Measured Equilibrium Benzene Contact Angles at Various Ethanol 

Enrichments in Aqueous Phase 

Ethanol Enrichment (Mole%) Equilibrium Time (hrs) Benzene Contact Angle ( 
o 
)

0 24 48

10 24 33

20 24 26

30 24 25

40 24 25
 

 

The equilibrium benzene contact angles measured for IFT calculations in capillary 

rise technique at different ethanol enrichments in aqueous phase are given in Table 2.10 

and shown in Figure 2.14. From Table 2.10 and Figure 2.14, it can be seen that, the 

benzene equilibrium contact angles gradually decrease from 48o at 0 mole% ethanol 

enrichment to 26o at 20 mole% ethanol enrichment in aqueous phase and then remains 

unchanged (25o) for ethanol enrichments 30 mole% and 40 mole% in aqueous phase. 

Therefore, it is reasonable to assume that there will be no change in benzene equilibrium 

contact angles from 25o with ethanol enrichment at ethanol enrichments above 30 mole% 

in aqueous phase. Hence, an equilibrium contact angle of 25o was used in capillary rise 

IFT calculations at all ethanol enrichments above 40 mole%, as indicated by the 

extrapolated line in Figure 2.14. The summary of all the measured parameters used in the 

IFT calculations of the capillary rise technique at ethanol enrichments above 40 mole% in 

aqueous phase is shown in Table 2.9. As can be seen in Table 2.9, an IFT value as low as 

0.014 mN/m was measured at 75 mole% ethanol enrichment in aqueous phase using the 

capillary rise technique. 

Correlation of Miscibility and Solubility with IFT. The correlation among all the three 

thermodynamic properties of solubility, miscibility and IFT in the standard ternary liquid 

system of benzene, ethanol and water is shown in Figure 2.15. The measured benzene 

interfacial tensions in aqueous ethanol using both the DSA and capillary rise techniques 

and the reported benzene solubility values are plotted against ethanol enrichment in 

aqueous phase to correlate solubility, miscibility and IFT.  
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Figure 2.14: Benzene Equilibrium Contact Angles Measured Against Ethanol 

Enrichment in Aqueous Phase 
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Figure 2.15: Correlation of Solubility and Miscibility with IFT 
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Since IFT is found to be independent of solvent-oil ratio, the average values of interfacial 

tensions obtained using DSA technique at each molar concentration for the three solvent-

oil ratios are used in the plot. From Figure 2.15, it can be seen that IFT decreases 

exponentially as the ethanol enrichment in aqueous phase is increased and reduces to a 

low value of 0.014 mN/m at 75 mole% enrichment, as miscibility is approached. The 

regression equation obtained is IFT = 32.597 e (-0.0923 * Mole% of Ethanol) with a coefficient of 

determination (R2) = 0.976. 

Solubility of benzene is also exponentially correlated to ethanol enrichment by the 

regression equation, solubility = 6.7004 e (0.0852*Mole% of Ethanol) with a coefficient of 

determination (R2) = 0.995. The positive slope in the exponential relationship between 

the solubility and ethanol enrichment shows an exponential growth. This is contrary to 

the negative slope of exponential decay obtained in the exponential correlation between 

IFT and ethanol enrichment. Furthermore, almost similar absolute values of the slope can 

be seen in both these exponential regression equations. These observations indicate a 

possible perfect inverse correlation between solubility and interfacial tension in ternary 

liquid systems. 
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Figure 2.16: Correlation between IFT and Solubility 

 

In order to determine such an inverse correlation between solubility and IFT, IFT is 

plotted against 1/solubility in Figure 2.16. The IFT values from the exponential 

regression equation of IFT vs. ethanol enrichment are used at ethanol enrichments 
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corresponding to the solubility values in the plot. As can be seen in Figure 2.16, IFT is 

linearly correlated to (1/solubility), indicating a strong mutual relationship between these 

two thermodynamic properties. The relationship obtained is IFT = 172.12 / solubility 

with a determination coefficient (R2) = 0.994. Therefore, the correlation between 

solubility and IFT in ternary liquid systems can be generalized as solubility = C / IFT 

where C is a system dependent constant. Thus solubility is strongly correlated to IFT and 

hence can be used for IFT predictions. 

 

IFT (mN/m) = (133.16 / Mole% Ethanol Enrichment ) - 1.65
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Figure 2.17: Plot of IFT vs. Ethanol Enrichment to Determine Miscibility 

 

Determination of VIT Miscibility. All the IFT measurements obtained in the standard 

ternary liquid system of benzene, ethanol and water at various ethanol enrichments were 

fitted using a hyperbolic function to determine the miscibility using the VIT technique. 

The hyperbolic function was used especially to fit the curvature to the data due to almost 

one order of magnitude reduction in IFT observed near miscibility. The results are 

summarized in Figure 2.17. A good linear relationship between IFT and the reciprocal of 

ethanol enrichment can be seen with a determination coefficient (R2) of 0.991. The 

regression equation obtained is also shown in Figure 2.17. The regression equation is 

then extrapolated to zero IFT, as required in the VIT technique, to determine miscibility 

in this standard ternary liquid system. A miscibility condition of 81 mole% ethanol 

enrichment was obtained with the VIT technique, which matches well with the 

miscibility conditions obtained from the phase diagram (83 mole%) and solubility data 

(>78 mole%). This clearly demonstrates the relationship of interfacial tension with 
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miscibility as the point of zero interfacial tension in phase equilibria. Since miscibility is 

a thermodynamic function associated with critical phase behavior, the observations from 

the study of Fleming and Vinatieri (1981) that relate interfacial tension with critical 

phenomena in surfactant containing systems also support such relationship of interfacial 

tension with miscibility. Thus, the VIT experiment conducted in this standard ternary 

liquid system further validates the VIT technique to determine the fluid-fluid miscibility 

conditions in multicomponent hydrocarbon systems. 

 

2.1.2.5 Summary and Conclusions 

An attempt has been made in this study to clarify the distinction between the terms 

solubility and miscibility and to relate them to interfacial tension. The selection of 

standard ternary liquid system of benzene, ethanol and water for experimentation was 

found to be useful. The distinction between the terms solubility and miscibility lies in 

partially soluble regions and solubility in all proportions implies miscibility. In addition, 

this study has demonstrated different regions of solubility characteristics and their 

relation to interfacial tension. 

In insoluble regions, absence of solvent-oil ratio effects on interfacial tension is 

observed. Contrarily, small IFT dependence on solvent-oil ratio in the feed due to the 

absence of complete saturation between the fluids is observed in partially soluble regions. 

This study has thus identified the need to use pre-equilibrated solutions in the partially 

soluble regions to incorporate all mass transfer effects so as to eliminate the solvent-oil 

ratio effects on interfacial tension. 

The two thermodynamic properties, solubility and miscibility, are strongly correlated 

to interfacial tension in that solubility is linearly related to reciprocal of interfacial 

tension and a condition of zero interfacial tension between the fluid phases implies 

miscibility. The new vanishing interfacial tension (VIT) technique applied so far to 

determine miscibility in gas-oil systems has been found to be applicable to determine 

miscibility even in ternary liquid systems. This once again exposes the sound conceptual 

basis of this new technique to determine fluid-fluid miscibility in multicomponent 

hydrocarbon systems.  
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2.2 Experimental Determination of Miscibility Conditions for CO2 with Selected 

Crude Oil 

 

2.2.1 Introduction 

 

2.2.1.1 Current Status of EOR in United States  

The cumulative production of oil reserves accounts for approximately one-third of the 

original oil in place. The U.S. Department of Energy (DOE) estimates 400 billion barrels 

of oil in place as a stranded resource (2006) and could be the target for EOR processes. 

The U.S. Department of Energy has further reported that the state-of-the-art enhanced oil 

recovery with carbon dioxide gas has now been recognized as a potential way of reducing 

greenhouse gas emissions and this would also help add another 89 billion barrels to the 

recoverable oil resources of the United States. Carbon dioxide flooding which is on the 

verge of an explosive growth due to technology advances, higher oil prices, reduced costs 

and environmental needs have made it a well-established method and the fastest-growing 

enhanced oil recovery technique in the United States. The types of gases injected into the 

reservoir for improved oil recovery are hydrocarbon, nitrogen, carbon dioxide, and flue 

gases. 

Seventy-five active CO2 floods operate in five countries producing 191 million bopd 

of incremental enhanced reserves. Projects in the U.S. comprise about 95% of the current 

worldwide CO2 EOR production. Floods in Canada, Turkey and Trinidad produce the 

remaining CO2 EOR reserves. As stated in SPE’s CO2 Monograph (1992), miscible CO2 

floods in the U.S. are the only EOR projects that have consistently and significantly 

increased annual EOR production. Martin and Taber (1992) reported that gas injection is 

one of the oldest methods used to improve oil recovery and its use has increased 

continuously and is proving to be effective in both carbonate and sandstone reservoirs. 

Ultimate incremental oil recovery from CO2 floods in the U.S. was estimated to be 8 to 

15 billion barrels depending on future oil prices and economic demand which continues 

to grow. On the field scale, incremental recoveries are projected at 7% to 23% of the 

original oil in place. All large CO2 floods are miscible displacements of medium to high 

API gravity oils and are used either as secondary or tertiary injection operations. Most 

large CO2 floods are used as tertiary injection operations in mature oil reservoirs that 

have been water flooded for years. 

Oil and Gas Journal’s exclusive EOR survey (2006) shows that the industry continues 

to increase the number of carbon dioxide injection projects. Table 2.11 shows that EOR 

has contributed 649,000 bpd to the US oil production, which is a 141,000 bopd decrease 

from the previous survey (OGJ, 2004) due the declining production from heavy oil 

projects in California (reached a maximum of 480,000 bopd in 1986 and has reduced to 

the 286,000 bopd in 2006). It can also be inferred from Table 2.11 that CO2 miscible 
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injection increased oil recovery from 4.7% in 1986 to 54% in 2006. Table 2.12 indicated 

that the number of active US CO2 miscible projects increased from 7.4% in 1986 to 52% 

in 2006. 

 

Table 2.11: Summary of US EOR production (Ref.: Oil and Gas Journal, 2006) 

 

Year Thermal Chemical Gas Other Total

Immiscible Miscible

b/d, 1000 b/d, 1000 b/d, 1000 b/d, 1000 b/d, 1000 b/d, 1000

1986 479.67 16.90 108.22 0.00 604.79 1.35 28.44

1988 464.91 22.50 131.00 0.00 618.40 0.42 64.19

1990 454.21 11.86 190.63 0.00 656.70 0.10 95.59

1992 460.69 2.19 298.02 0.00 760.91 0.10 144.97

1994 418.57 1.89 288.63 0.00 709.09 - 161.49

1996 424.08 0.14 299.35 0.00 723.57 - 170.72

1998 445.97 0.14 313.54 0.00 759.65 - 179.02

2000 417.68 1.66 328.76 0.00 748.09 0.07 189.49

2002 371.46 0.06 297.48 0.00 669.00 0.07 187.41

2004 345.51 0.06 317.88 0.00 663.45 0.10 205.78

2006 301.70 0.00 347.62 0.00 649.32 2.70 234.42

Carbon Dioxide Flood

 

 

Table 2.12: Summary of active US projects (Ref.: Oil and Gas Journal, 2006) 

 
Year Thermal Chemical Gas Other Total

Immiscible Miscible

1986 201 206 104 1 512 28 38

1988 152 124 90 0 366 8 49

1990 154 50 91 0 295 4 52

1992 153 49 89 2 293 2 52

1994 116 30 79 1 226 1 54

1996 115 12 84 1 212 1 60

1998 100 11 87 1 199 - 66

2000 92 10 74 0 176 1 63

2002 65 4 78 0 147 1 66

2004 56 4 83 0 143 1 70

2006 55 0 97 0 152 2 80

Carbon Dioxide Flood

 

Occidental Permian Limited initiated a CO2 injection project in the North Hobbs Unit 

at the end of the Permian Basin, NM, in 2003 after a peak water flood resulted in a 

decline in oil production and reported an increase in oil production from 5000 bopd to 

more than 11,000 bopd. Thus it can be inferred from the above discussion that the CO2 

miscible displacement process, which results from multiple-contacts between the injected 

gas and reservoir oil to develop an in-situ composition alteration and generate miscibility, 
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is recognized as an important and the fastest growing enhanced oil recovery process in 

the oil industry. 

 

2.2.1.2 Theory of CO2 EOR 

Carbon Dioxide flooding processes are classified as immiscible or miscible even though 

CO2 and crude oils are not actually miscible upon first contact in the reservoir (Martin 

and Taber, 1992). 

Immiscible CO2 Process. Immiscible CO2 recovery is a technique, which is achieved 

primarily by reducing the oil viscosity, swelling of oil, and dissolved gas drive and is 

capable of sweeping the reservoir oil more effectively than water/polymer flooding. This 

combination of mechanisms enables a portion of the reservoir’s remaining oil to be 

mobilized and produced. The areal sweep efficiency is increased by lowering the 

effective mobility ratio through a large reduction in oil viscosity. 

Reservoirs with low pressures, stock tank oil gravities of 10° to 25°API and 

viscosities less than 100 centipoises are typical candidates for immiscible CO2 

displacements. 

Miscible CO2 Process. A miscible CO2 displacement process is supposed to 

remobilize and reduce the post waterflooding residual oil saturation in the reservoir pore 

space. Miscible CO2 recovery is a technique whereby CO2 dissolves in the crude oil 

resulting in swelling the net oil volume, reducing oil viscosity, eliminating interfacial 

forces between reservoir oil and the displacing gas and achieving miscibility with the 

reservoir oil due to  compositional changes and the mass transfer of hydrocarbon 

components between the reservoir oil and injection gas. These combined mechanisms 

improve the ability of the oil to flow out of the reservoir. Since the residual oil left in the 

reservoir after flooding is inversely proportional to the swelling factor, less oil will be left 

in the reservoir with greater swelling and the swollen oil droplets will force water out of 

the pore spaces thus creating drainage rather than imbibition (Klins, 1953).  

A miscible CO2 displacement process is subdivided into two processes: First-Contact 

Miscible and Multiple-Contact Miscible process. 

In the First-Contact Miscible process (FCM) the injected solvent is directly miscible 

in all proportions and forms a single phase with the reservoir oil on first contact. LPG, 

propane, butane are the solvents used for achieving first contact miscible flooding. For 

first-contact miscibility to occur with the reservoir oil, the displacement pressure must be 

above the cricondenbar, since all solvent-oil mixtures above this pressure are single 

phase. The cricondenbar of CO2 is high for first-contact miscibility to occur and hence at 

pressures lower than the cricondenbar, dynamic miscibility can be achieved with CO2 

(Stalkup, 1984). Thus first-contact miscibility between CO2 and reservoir oil can be 

described as a process in which CO2 first meets fresh reservoir oil and becomes miscible 
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with it on first contact to form a single phase fluid, without mass interaction between CO2 

and the reservoir fluid. 

The advantage of FCM using LPG, propane and butane is that miscibility is 

developed at low pressures with crude oils. The high cost of solvents is a major 

disadvantage for using FCM. Sometimes small volumes of solvent slugs (diluted with oil 

and drive gas) are injected, but this has a disadvantage that the miscibility can to be lost 

and viscous fingering occurs whereby drive gas penetrates as small slugs and come into 

direct contact with oil, resulting in poor sweep efficiencies (Stalkup, 1984). 

In the Multiple-Contact Miscible process, the injected fluid is not miscible with the 

reservoir oil on first contact. The process depends on the modification of the composition 

of the injected phase and oil phase through multiple contacts between phases in the 

reservoir and counter directional mass transfer of components between the fluid-fluid 

phases to such a degree that the fluids become miscible as the injection phase moves 

through the reservoir and the oil enriched CO2 becomes undistinguishable from the CO2 

enriched oil. Under the optimum conditions of pressure, temperature and composition 

this compositional modification will generate miscibility between the displacing and 

displaced phases in the reservoir. Thus multiple-contact miscibility can be described as 

the thermodynamic state of equilibrium between the CO2 and reservoir fluid in which 

there has been a complete mass transfer of components from the reservoir fluid to the 

CO2 gas (vaporizing drive) and from the CO2 gas into the reservoir fluid (condensing 

drive). 

In miscible gas injection where by the oil/gas mixtures remain in single phase, the 

relative permeability between injected gas and oil and the relative wettability of the rock 

to oil and injected gas does not affect the recovery efficiency, as the process is one of 

purely fluid-fluid interaction. A miscible CO2 injection process is effective in oil-wet and 

water-wet rocks and is not affected by mobile water remaining after a waterflood. The 

mechanisms involved in the displacement of oil by CO2 in a dynamic multiple-contact 

miscible gas injection process are vaporizing, condensing or a vaporizing/condensing gas 

drive. 

 

2.2.1.3 Discussion on CO2 Drive Mechanisms 

Klins (1953) suggested that a number of mechanisms take place that may initiate oil 

displacement when CO2 is injected into an oil reservoir. CO2 may create a miscible front 

and hence miscibility is initiated by extraction of significant amounts of heavier 

hydrocarbons from C5 through C30, or at different reservoir conditions, CO2 saturates the 

reservoir fluids to an extent where the swollen crude is miscible with the trailing CO2 and 

may resemble enriched gas drive. This combination of mechanisms enables a portion of 

the remaining trapped oil to be mobilized and produced. 
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Rathmel (1971) proposed that the miscible-like recoveries achieved by CO2 were a 

multiple-contact vaporization drive mechanism in which CO2 strips intermediates from 

the liquid until the composition is rich enough to be miscible with the original oil. 

Metcalfe and Yarborough (1979) have studied the phase behavior by performing 

various experiments on reservoir fluids using CO2 as the displacing phase and have 

concluded that more than one mechanism (vaporizing and condensing) is possible for a 

CO2-reservoir fluid system and that reservoir temperature and displacement pressure 

determine the type of mechanism (vaporization, condensing or vaporizing/condensing) 

that will control the displacement process. 

Holm and Josendal (1982) conducted various displacement experiments by injecting 

CO2 into crude oil to show that the drive mechanism was one of vaporization due to the 

extraction of hydrocarbons (C5 through C30) from the oil. 

Stalkup (1984) and Zick (1986) performed various multiple-contact experiments 

backed by equation of state simulations to show that a combined condensing/vaporizing 

gas drive mechanism was responsible for several laboratory displacements of reservoir 

fluids by enriched gas. 

It can be inferred from the above discussion that generally miscible CO2 EOR 

involving the interaction between the injected CO2 and reservoir fluid is a multiple-

contact process in which CO2 will vaporize the light to intermediate components of oil 

into the injected CO2 phase and the rich CO2 gas will transfer the light intermediates by 

condensing into the oil phase as it moves through the reservoir, thus leading to the CO2 

becoming miscible (mixing in all proportions) with the reservoir fluid. The miscibility 

between CO2 and reservoir fluid is a function of displacement pressure, reservoir 

temperature, and composition of the oil and takes place due to compositional changes of 

the fluid-fluid phases resulting from the simultaneous counter-directional mass transfer of 

hydrocarbon components between fluid phases by the combined vaporization/condensing 

drive mechanism. 

The injection of CO2 into an oil reservoir would reduce the capillary forces to a 

minimum if the interfacial tension between the injected fluid and the trapped oil is 

reduced to zero. Hence, it is important to determine the gas-oil minimum miscibility 

pressure, because this is the lowest pressure at which miscibility is developed between 

the injected gas and reservoir fluid. Miscibility development results in the mobilization 

and the release of the trapped oil from the porous medium, thus improving the overall 

displacement efficiency and oil recovery. Interfacial tension through capillary forces 

plays an important role in the determination the flow behavior of hydrocarbon fluids in 

porous rocks (Asar and Handy, 1987). 

In a miscible displacement process CO2 directly mixes and forms a single phase with 

the reservoir oil when mixed at all proportions with it at the conditions existing at the 

interface between the injected gas and the reservoir oil being displaced. This result in the 
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elimination of interfacial tension forces between the oil and displacing fluid, the capillary 

number (ratio of capillary to viscous forces) becoming infinite (higher the capillary 

number lower the residual oil saturation) and a low residual oil saturation (Stalkup, 

1984). 

Determination of CO2-reservoir fluid MMP is important in screening and selecting 

reservoirs for CO2 injection in order to have economical attainable displacement 

efficiency over a significant volume of reservoir. A low CO2 injection pressure would 

result in low displacement efficiency and a high CO2 injection pressure would result in 

uneconomical high cost of injection pressures. Hence, an optimum miscible CO2 

displacement process can be applied to reservoirs by injecting CO2 at pressures higher 

than the MMP but lower than the average reservoir pressure. 

Minimum miscibility pressure is one of the most important parameters in the 

determination of optimum operating conditions involving miscible CO2 displacement 

processes for evaluation of gas-oil miscibility and this value must be accurately 

determined by performing laboratory experiments. 

 

2.2.1.4 Gas-Oil Minimum Miscibility Pressure (MMP) 

The degree of miscibility is often expressed in terms of the MMP between the reservoir 

fluid and the injection gas. Definitions of multiple-contact miscibility relate to recovery 

performance curves from laboratory displacement tests. Miscible gas displacement is 

characterized by high oil recovery of greater than 90% in slim-tube displacement 

experiments. The following are some definitions of minimum miscibility pressure as 

reported in literature; 

• Minimum Miscibility Pressure for a CO2-reservoir fluid system is defined as the 

pressure at which 80% of the oil in place is recovered at CO2 breakthrough and 94% 

of the oil in place at a production gas/oil ratio (GOR) of 40,000 SCF/BBL is 

ultimately recovered (Holm and Josendal, 1974). At MMP a sufficient volume of the 

extracted hydrocarbons is present at the displacement front to maintain the residual 

oil saturation at a minimum value throughout the flooding path. 

• Minimum Miscibility Pressure is defined as the lowest pressure at which all oil 

available for recovery can be displaced by 1.2 pore volumes of injected solvent 

(Metcalfe, 1982). 

Thus, the criteria used by various researchers for interpreting the displacements have 

included gas breakthrough, ultimate recoveries at a given volume of solvent injection, 

visual observations of core effluents, compositions of produced gases and liquids, shape 

of breakthrough, and ultimate recovery curves versus pressure. MMP is related to 

interfacial tension, thus when two fluids approach miscibility their interfacial tension 

approaches zero (Rao, 1997). Hence at MMP gas and oil must become a single phase. 



 112 

The following conclusions are summarized by Holm and Josendal (1982) related to the 

development of miscibility in CO2 displacements. 

• Dynamic miscibility occurs when the density of CO2 is sufficiently greater than dense 

gaseous CO2, or when liquid CO2 solubilizes the C5 thorough C30 hydrocarbon 

components in the reservoir oil. 

• Reservoir temperature has an effect on the pressure required to achieve the CO2 

density necessary for miscible displacement. As reservoir temperature increases 

MMP increases. 

• MMP is inversely related to the total amount of C5 through C30 hydrocarbon 

components present in the reservoir oil. The more these hydrocarbon components are 

present in the oil, the lower the MMP. 

• MMP is affected by the molecular weight distribution of C5 through C30 hydrocarbon 

components in the reservoir oil. Low molecular weight hydrocarbons in the gasoline 

range promote miscibility and result in a lower MMP. 

• MMP is also affected to a lesser degree by the types of hydrocarbon components 

present in the reservoir oil, e.g. the presence of aromatics results in a lower MMP 

compared to paraffins of the same boiling range. 

• Development of dynamic miscibility does not require the presence of C2 through C4 

hydrocarbons. 

• The presence of methane does not change the MMP appreciably. 

 

2.2.1.5 Previous Work Relating Miscibility with Gas-Oil IFT 

The disadvantages of the conventional miscibility measurement techniques and their 

inability to directly measure gas/oil interfacial tension can overcome by the new 

vanishing interfacial tension technique (VIT) which uses the concept that interfacial 

tension reduces as gas-oil miscibility approach. Rao (1997) first experimentally 

demonstrated the applicability of the VIT technique to determine miscibility in a live 

reservoir crude oil-gas system (Rainbow Keg F Pool reservoir, Canada) at reservoir 

temperature and varying pressures and gas enrichment levels (composition) using the 

drop shape analysis technique. The injection gas composition was successfully optimized 

for miscibility by performing VIT experiments at varying gas compositions at the 

experimental pressure of 30 MPa at the reservoir temperature of 60°C. Rao and Lee 

(2002) later extended VIT technique to an offshore Terra Nova reservoir to optimize the 

injection gas composition for developing miscibility with the crude oil of this reservoir. 

  Ayirala (2005) investigated the applicability of the vanishing interfacial technique to 

determine miscibility and measured dynamic gas-oil interfacial tension by using the 

capillary rise technique at elevated temperatures and pressures for two standard gas-oil 

systems of known phase behavior characteristics. The two standard gas-oil systems used 
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in this study are: CO2-n-decane system at 100°F and CO2-live decane (25 mole% 

methane+30 mole% n-butane+45 mole% n-decane) system at 160°F. The CO2-n-decane 

system at 100°F showed a VIT miscibility of 1150 psi which agreed well with the 

reported minimum miscibility pressures from conventional slim tube (1250 psi) and 

rising bubble apparatus (1280 psi). The CO2-live decane system at 160°F indicated a VIT 

minimum miscibility pressure of 1760 psi, which also agreed well with the reported 

minimum miscibility pressures from the conventional slim tube (1700 psi). This study in 

standard gas-oil systems thus further validated the VIT technique to measure gas-oil 

miscibility and also demonstrated the reliability and accuracy of VIT technique for gas-

oil miscibility determination.  

An attempt has been made in this section to extend these validation studies on VIT 

technique to an actual live crude oil-CO2 system at reservoir conditions. It was also 

aimed to include a detailed compositional analysis to infer information on mass-transfer 

interactions and to determine the controlling mass transfer mechanism (vaporizing, 

condensing or both) that govern the attainment of gas-oil miscibility. Also, compositional 

dependence of VIT technique with varying gas-oil ratios (both molar and volumetric) in 

the feed mixture was planned for investigation in a live crude oil-CO2 system.  

 

2.2.2 Objectives 

The objectives of this study are: 

• To determine the minimum miscibility pressure of a CO2- live reservoir fluid system 

at reservoir temperature by measuring the gas-oil interfacial tension, using the 

vanishing interfacial tension technique (VIT) by the pendant drop and capillary rise 

techniques. 

• To characterize the mass transfer interactions between CO2 and live reservoir fluid by 

carrying out compositional measurements and densities of the fluid-fluid phases at 

varying pressure at reservoir temperature. 

• To investigate the gas-oil ratio effects on fluid phase compositions and interfacial 

tension, and hence on VIT miscibility conditions. 

 

2.2.3 Experimental Apparatus and Procedure 

For the purpose of simulating the fluid-fluid interactions and the variations in physical 

properties of the fluid phases occurring in the subsurface reservoir, all the experiments 

were conducted at reservoir conditions using live reservoir fluid that was prepared in the 

laboratory. The preliminary experimental tasks performed were: determination of 

composition of the stocktank oil, preparation of live reservoir fluid, determination of 

bubble point pressure, compositional analysis, and viscosity measurements of 

recombined reservoir fluid. 
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To investigate the compositional effects of interfacial tension and miscibility on a 

carbon dioxide-live reservoir fluid system at varying pressures from 1500 psig to 6000 

psig at reservoir temperature of 238°F, it was necessary to set up instruments that could 

measure related vapor and liquid properties such as composition, density, molecular 

weight, and interfacial tension. These included the gas chromatograph for compositional 

analysis, densitometer for density measurements at high pressures and high temperatures, 

molecular weight apparatus for measuring the molecular weight of stocktank oils, and an 

optical cell for measuring the interfacial tension of the carbon dioxide-live reservoir fluid 

system provided with sampling ports for capturing fluids under actual test conditions to 

measure compositions and densities of the fluid phases with minimal disturbance. 

This section provides the detailed description for each apparatus used, experimental 

design, and procedure involved in the preparation of the recombined live reservoir fluid, 

interfacial tension (IFT) measurements to determine the minimum miscibility pressure 

using the capillary rise and pendant drop techniques. The gas-oil system used was carbon 

dioxide-recombined reservoir fluid at the reservoir temperature of 238°F and at different 

pressures varying from 1500 psig to 6500 psig. The compositional analysis and density 

measurements of the equilibrated oil and gas phases were also carried out as a part of the 

experimental procedure. 

 

2.2.3.1 Gas Chromatograph 

Figure 2.18 shows the newly acquired Varian gas chromatograph (model CP-3800) along 

with an auto-sampler (model CP-8410) for measuring gas and oil compositions.  

The basis of the gas chromatographic separation is the boiling point distribution of a 

sample between two phases. One of these phases is the stationary phase (high boiling 

liquid) and the other is the mobile (carrier) gas phase which percolates through the 

stationary phase. A non-polar packed or open tubular (capillary glass or ultimetal) gas 

chromatographic column is used to elute the hydrocarbon components of the sample in 

order of increasing boiling point. As the mixture of carrier gas and sample travels through 

this column, its components go back and forth at different rates between the gas phase 

and dissolve in the high-boiling liquid (stationary phase), and thus separating into pure 

components. After each component elutes from the column it passes through the detector. 

The detector sends an electronic message to the recorder, which responds by printing a 

peak. The column temperature is raised at a reproducible linear rate and the area under 

the chromatogram peak is recorded throughout the analysis. This Varian gas 

chromatograph system (CP 3800) has the capability of performing liquid and gas 

compositional analysis in a single setup. 
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Figure 2.18: Varian gas chromatograph with auto-sampler (model CP-3800 and model 

CP-8410) 

2.2.3.2 Densitometer 

Accurate density data are essential for the measurement of fluid-fluid interfacial tension 

as a function of pressure and temperature. For this purpose, a new Anton Paar DMA HP 

connected to the evaluation unit DMA 4500 has been acquired and the photograph of the 

equipment is shown in Fig 2.19. The density measurements of fluid phases in the CO2- 

live reservoir fluid system at elevated pressures and temperatures were performed using 

this instrument. 

 

2.2.3.2.1 Calibration Procedure 

 
A density adjustment determines the apparatus constants ‘A’ and ‘B’. To determine the 

apparatus constants, two samples of known density at the required temperature and 

pressure are required. The fluids used to calibrate the instrument were UHP grade 

nitrogen (99.997%) and de-ionized water. Apparatus constants ‘A’ and ‘B’ are 

determined by measuring the periods of oscillation directly from the DMA 4500 and are 

valid only for the temperature and pressure at which they have been determined. The 

equations 2.1 and 2.2 are used to calculate the apparatus constants A and B from the 

period of oscillations. 
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Figure 2.19: Pressure densitometer and flash separation unit 

A. Heise Digital Pressure Indicator 

B. DMA 4500 Evaluation Unit 

C. DMA HP Density External Cell 

D. Separator 

E. Gas Sampling Cylinder 

F. Ruska Gasometer 

G. Gas Sampling Port 

H. Liquid Sampling Port 

I. Printer 
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Where: 

A = Apparatus Constant 

B = Apparatus Constant 

ρ1 = Density of Standard 1 (Nitrogen) 

ρ1 = Density of Standard 2 (De-Ionized Water) 
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P1 = Period of Oscillation of Standard 1 (Nitrogen) 

P2 = Period of Oscillation of Standard 2 (De-Ionized Water) 

 

The density of the unknown sample was then calculated using equation 2.7.  

BPA −∗= 2ρ …………………………………………………...……………..… (2.7) 

 

Where: 

ρ = Density of Unknown Sample (gms/cc) 

P = Period of Oscillation of Unknown Sample 

A = Apparatus Constant 

B = Apparatus Constant 

 

The apparatus constants A and B and the density of the unknown sample are 

automatically calculated by the evaluation unit DMA 4500. Initially, the external density 

cell is filled with a density standard 1 (Nitrogen) at the temperature and pressure. The 

value of the density of standard 1 obtained from the National Institute of Standards and 

Technology website (NIST) is then inputted into the density adjustment key on the 

evaluation unit. After the density adjustment is completed, the external density cell is 

thoroughly cleaned with toluene and acetone and blow dried with nitrogen. The external 

density cell is then filled with density standard 2 (de-ionized water) at the same 

temperature and pressure that was used for density standard 1. The value of the density of 

standard 2 obtained from the NIST website is then inputted into the density adjustment 

key on the evaluation unit. Once both the density adjustments are saved, the adjustment 

data are stored in the evaluation unit DMA 4500. The unknown sample is then filled in 

the density external cell at the same temperature and pressure that was used for 

calibration. The density of this unknown sample is directly read form the evaluation unit 

DMA 4500. If the density of the unknown sample is to be determined at a different 

pressure and temperature, the calibration procedure has to be repeated with the new 

pressure and temperature. 

 

2.2.3.3 Molecular Weight Apparatus 

The Cryette (Figure 2.20) measures the temperature at which samples freeze. The 

apparatus is a completely automatic system for holding the sample, cooling the sample to 

a definite temperature at a controlled rate, freezing the environment, measuring the 

temperature of the sample during the entire process and finally indicating the temperature 

of the sample automatically. 

The Cryette WR apparatus determines the molecular weight of hydrocarbon samples 

by directly measuring the freezing point depression of the sample since freezing point 
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depression is linearly related to the solute concentration and the freezing point depression 

(Kf) of the solvent (Benzene). 

 

 

Figure 2.20: Molecular weight determination apparatus 

Where: 

A. Molecular Weight Apparatus, Cryette WR (Model 5009) 

B. Dispenser filled with Water Saturated Benzene 

C. High Precision Sartorius Weighing Balance 

 

2.2.3.3.1 Calibration Procedure  

The measurement of the molecular weight of a sample is made by dissolving a known 

weight of the solute in a known weight of solvent. The range control on the apparatus is 

set to 6. The apparatus is calibrated using water saturated benzene (99.99%) and a 

mixture of about 0.2000 grams of n-nonane (99.95%) in 11.0000 grams of water 

saturated benzene. Initially 2.5 ml of water saturated benzene is placed in the glass tube 

that is lowered directly above the cold antifreeze bath by using the operating head. After 

seeding, indicated by the noise of the stirrer hitting against the glass tube, the display 

meter should read zero before the read light comes on. If not, adjust to zero using the zero 

control. Then a 2.5 ml of a mixture of about 0.2000 grams of n-Nonane (99.95%) in 

about 11.0000 grams of water saturated benzene is placed in the glass tube that is lowered 

directly above the cold antifreeze bath by using the operating head. After seeding, which 

is indicated by the noise of the stirrer hitting against the glass tube, set the display meter 
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to read a ∆FP calculated by the equation 2.8 before the read light comes on, using the 

slope control. 

 

solvent

solutef
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F

*
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=∆ …………………………………………………....... (2.8) 

∆Fp = Meter Reading (Freezing Point Depression) 

Kf  = molal freezing point depression of solvent i.e. 5.12°C/m 

Wsolute = weight of solute (oil) in grams 

Wsolvent = weight of solvent (benzene) in grams 

MW = Molecular weight of n-Nonane (128 gm/mole) 

 

After calibration, verification of the instrument is performed by running pure n-

tetradecane (99.95%). The meter display should read a ∆FP which when calculated 

according to equation 2.9 gives a molecular weight of 198 gm/mole (n-tetradecane). 
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After calibration and verification of the instrument, the molecular weight of the 

unknown sample is then determined by placing 2.5 ml from a mixture of about 0.2000 

grams of unknown sample in about 11.0000 grams of water saturated benzene in a glass 

tube, lowering the tube directly above the cold antifreeze bath by using the operating 

head and reading the display meter. The meter display should read a ∆FP which when 

calculated according to equation 2.8 gives the molecular weight of the unknown sample. 

 

2.2.3.4 Determination of Current Depleted Reservoir Fluid Composition Using 

CMG-WinProp 

Initially, the composition of the stocktank crude oil was determined using the Varian gas 

chromatograph shown in Section 2.2.3.1. Then, the compositions of separator gas 

(historical data) and separator oil (measured stocktank crude oil) were used as inputs into 

the CMG-WinProp software. These separator products were then recombined at the 

initial gas oil ratio of 1052 SCF/STB and at a separator pressure and temperature of 268 

psi and 54°F to obtain the original reservoir fluid composition at the initial conditions. 

The equation of state was then tuned to match the known saturation pressure of the 

original reservoir fluid at 238°F (4050 psi). Tuning the equation of state (EOS) is nothing 

more than a calibration of the EOS against the known experimental data by adjusting the 

input values of some uncertain parameters in the EOS to minimize the difference between 

the predicted and the measured values. The Peng-Robinson equation of state was chosen 
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for the bubble point pressure calculations. Tuning of this equation of state was performed 

by adjusting the volume shift parameter of the hexanes plus (C6+) fraction to match the 

bubble point pressure at the initial reservoir conditions. A relatively high weight factor of 

50 was used for the measured saturation pressure value during the tuning calculations, 

since this data was believed to be more accurate. 

Once the equation of state was tuned to match the saturation pressure, the two-phase 

flash calculations were performed on the original reservoir fluid to deplete it down to the 

current reservoir pressure of 1100 psi. The liquid phase composition obtained from the 

two-phase flash calculations can be considered as the representative reservoir fluid 

composition at the current depleted reservoir conditions. 

 

2.2.3.5 Procedure for Preparation of Live Reservoir Fluid by Recombination 

At first, the composition, density, and molecular weight of stocktank crude oil were 

determined using the procedures described in Sections 2.2.3.1, 2.2.3.2, and 2.2.3.3 

respectively. Before beginning the recombination, transfer vessels, stainless steel tubings 

and the PVT cell were thoroughly cleaned with toluene and acetone, and blown dried 

with nitrogen. Stocktank crude oil containing a C6+ mole fraction of about 0.76146 and 

the pure methane gas (99.99%) were physically recombined in a PVT cell to create a 

representative reservoir fluid sample at the current reservoir conditions for interfacial 

tension measurements with CO2. 

In this procedure a known volume of stocktank oil was transferred into a high 

pressure PVT cell at 500 psi and 75°F. Knowing the molecular weight and density of the 

stocktank oil at 500 psi and 75°F, the moles of stocktank oil in place were calculated. 

Pure component methane gas (99.99%) was then added to the known volume of stock 

tank oil at a pressure dictated by the vapor pressure of the pure gas component. The 

volume of pure hydrocarbon gas (methane) to be added was determined from the mole 

fraction of the gas (i.e.C1) present in the live oil, the compressibility factor, density and 

charge pressure of the gas, and the calculated moles of stocktank oil in place at the start. 

After the addition of all components, the recombined reservoir fluid was then pressurized 

to 4000 psig (the reservoir pressure is about 4000 psi). The PVT cell was then inverted at 

that pressure several times to bring the reservoir fluid to single-phase conditions. The 

PVT cell was also rocked for 24 hours to ensure equilibrium single-phase conditions of 

the reservoir fluid. 
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2.2.3.6 Procedure for Determination of Bubble Point of the Recombined Reservoir 

Fluid 

The PVT cell, consisting of a floating piston, separates water from live reservoir fluid. 

Initially the live reservoir fluid was pressurized with water to 4000 psig and ambient 

temperature to keep the fluid in single phase. About 1 to 2 cm3 of water was drained 

through the valve from the waterside of the PVT cell to bring the pressure down to a 

fixed value. The PVT cell was then agitated several times until a constant pressure 

reading was obtained indicating equilibrium. The exact volumes of the water collected as 

well as the stabilized pressure reading obtained were recorded. This procedure was 

repeated until the live reservoir fluid went into a two-phase region. All these 

measurements represent the region above bubble point pressure. Similarly pressure-

volume readings were taken in the two-phase region, below the bubble point pressure. A 

plot of cumulative volume of water collected versus pressure was then prepared and the 

bubble point pressure is indicated by the intersection of two distinct linear portions of the 

plot i.e. one above the bubble point region and one below the bubble point region. 

 

2.2.3.7 Composition Measurement of Recombined Reservoir Fluid 

The composition of the recombined reservoir fluid was determined by flashing the fluid 

from 4000 psig and ambient temperature to atmospheric conditions. This enabled the 

fluid to separate (glass flask) into stable gas and liquid phases. Figure 2.19 shows the 

separator (glass flask denoted by ‘D’) that was used to perform the flash separation for 

the recombined reservoir fluid. The flashed oil was collected in the separator (glass flask 

‘D’) and the flashed gas was allowed to flow through the gas collection cylinder (denoted 

‘E’) and then eventually into the gasometer. The volume of flashed gas was measured 

using the Ruska gasometer and the weight of oil was measured using the Sartorius 

weighing balance. The resultant properties measured for the flashed oil and flashed gas 

were: 

• The molecular weight of the flashed oil  

• The composition of the gas sample collected in the cylinder  

• The composition of the flashed oil collected in the separator  

The resultant composition of the recombined fluid was then determined using the 

measured gas-oil ratio at ambient conditions (i.e. volume of flashed gas and weight of oil) 

for the flash separation performed, composition of the flashed oil, composition of the 

flashed gas, molecular weight of the flashed oil and the calculated average molecular 

weight from the flashed gas composition. 
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2.2.3.8 Experimental Procedure for the IFT Measurements 

Figure 2.21 shows the setup of the equipment used to conduct the interfacial tension 

measurements using the capillary rise technique and the pendant drop technique at 

elevated pressures and reservoir temperature of 238°F. The different components are 

described below: 

A. Optical Cell  

The optical cell is placed in an insulated oven. The optical cell houses a traveling 

injector tube N of 1.5875 mm I.D. (Figure 2.22). The injector tube is made of 

Hastelloy. The optical cell also houses the glass capillary tube O of 1.000 mm I.D and 

2.000 mm O.D (Figure 2.22). The design rating of the optical cell is 20,000 psig at 

392°F. 

 

 
Figure 2.21: Various equipments used for measuring interfacial tension at different 

experimental pressures at 238°F 
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Figure 2.22: Inside of the optical cell 

 
B. Anton Paar Densitometer (DMA HP and DMA 4500) 

The apparatus is capable of measuring densities at high pressures and high 

temperatures. The design rating of the densitometer is 10,000 psig at 392°F. 

C. Ruska Positive Displacement Pump (Model 2014) 

This pump is a high pressure precision metering and volumetric pump capable of 

delivering accurate fluid rates at elevated pressures. The pump consists of a piston 

and a cylinder. The piston is injected into the cylinder thereby displacing an accurate 

and equivalent volume of fluid. The design rating of the pump is 10,000 psig at 80°F. 

The pump was filled with 99.997% carbon dioxide and was used to charge accurate 

amounts into the optical cell.  

D. Ruska Positive Displacement Pump (Model 2014) 

The pump specifications are the same as described in C. The pump was filled with the 

recombined reservoir fluid and was used to charge accurate amounts into the optical 

cell.  

E. Sensotec Digital Pressure Indicator (Model No. SC 3004) 

The Sensotec digital pressure indicator has a design rating of 10,000 psig at 105°F. 

The two positive displacement pumps are connected to the Sensotec digital pressure 

indicator via pressure transducers.  

F. Heise Digital Pressure Indicator (Model No. 901A) 

The pressure in the optical cell was continuously monitored using the Heise digital 

pressure gauge. The digital pressure gauge has a design rating of 25,000 psig at 72°F.  

G. Floating Piston Transfer Vessel (CFT-50-400) 

The recombined reservoir fluid was prepared in the floating piston 316 stainless steel 

transfer vessel. The design rating of the transfer vessel was 5000 psig at 250°F. 

H. Temperature Indicator 

Temperature on the optical cell is displayed by the temperature indicator, which is 

connected to the optical cell by a thermocouple. 
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I. Heating Oven 

The heating oven provides and maintains a stable temperature of 238°F to the fluid 

phases in the optical cell. 

J. Digital Camera 

The drop shapes and the heights of the fluid phases was recorded using a Sony digital 

video camera provide with a zoom lens (Model DXC-190) which was connected to a 

video cassette recorder.  

K. Gas Sampling Outlet 

The top of the optical cell was provided with a sampling port for collection of gas 

samples to be used in pressure density measurements and compositional analysis. 

L. Liquid Sampling Outlet 

The bottom of the optical cell was provided with a sampling port for collection of 

liquid samples to be used in pressure density measurements and compositional 

analysis. 

M. Gas Chromatograph  

Gas and liquid compositional analysis was performed using the new Varian gas 

chromatograph with auto-sampler (Models CP 3800 and CP 8410). 

N. Hastelloy tube (I.D. = 1/16 inches) 

O. Glass capillary tube (I.D. = 1.0 mm) 

The experimental design setup described above and the following detailed 

experimental procedure was devised to conduct the IFT measurements at reservoir 

conditions with compositional analysis and high pressure density measurements in an 

efficient, accurate and safe manner, and to keep the integrity of the equilibrated fluid-

fluid phases thus allowing representative samples to be collected for performing the 

various fluid property measurements throughout the experimental study. 

1. Fill the Ruska pump C with CO2 gas at the experimental pressure of 1500 psig. 

2. Fill the Ruska pump D with live recombined reservoir fluid and stabilize it at the 

experimental pressure of 1500 psig. 

3. Carefully insert a capillary tube of 1.0 mm I.D into the optical cell. 

4. Heat the high-pressure high-temperature optical cell to 238°F. 

5. Connect the heated stainless steel tubing from the laboratory cylinder containing live 

oil to the top of the optical cell. 

6. Evacuate the optical cell using the vacuum pump to remove any traces of 

contaminants. 

7. Using the Ruska pump C, charge an accurate amount of CO2 into the optical cell, 

required for the experimental pressure. Using Ruska pump D, charge an accurate 

amount of the recombined reservoir fluid into the optical cell required for the 

experimental pressure. The amounts of CO2 gas and live reservoir fluid to be charged 
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at the various pressures (1500 to 6000 psig) for the two sets of gas/oil molar ratios 

and two sets of gas/oil volume ratios are described in Section 2.2.3.9. 

8. Capture the image of the first pendant drop of live crude oil at the tip of capillary tube 

in the optical cell as soon as it contacts the gas phase through the digital video camera 

‘J’ that is connected to a computer equipped with the drop shape analysis software. 

Use the densities of the pure fluid phases initially during the first-contact gas-oil 

interfacial tension calculations. 

9. Allow approximately 6 hours for the fluids to reach equilibrium in the cell at the 

experimental pressure and 238°F. 

10. Form a pendant drop of the recombined reservoir fluid at the tip of capillary tube in 

the optical cell in the gas phase that has already interacted with the oil residing at the 

bottom of the cell. Capture this pendant oil drop image using the drop shape analysis 

software program (Kruss, 2000). Repeat the same procedure for about 8-10 pendant 

oil drops. 

11. Allow approximately 24 hours for the fluids to reach equilibrium in the cell at the 

experimental pressure and 238°F. 

12. Record the capillary rise observed in the capillary tube using the digital video camera 

‘J’. 

13. Measure the density of the equilibrated gas phase using the Anton Paar densitometer. 

14. Remove the equilibrated gas sample from the densitometer by flashing the gas to 

ambient conditions and analyze for composition using Varian CP-3800 gas 

chromatograph. 

15. Measure the density of the equilibrated oil phase using the Anton Paar densitometer. 

16. Remove the equilibrated oil sample from the densitometer by flashing the oil to 

ambient conditions and analyze for compositions using the Varian CP-3800 gas 

chromatograph. Measure the molecular weight of the stocktank oil sample using the 

Cryette WR apparatus. 

17. Use the equilibrated gas and oil phase densities, and captured pendant drop images in 

the drop shape analysis software program to calculate the average equilibrium gas-oil 

interfacial tension. Also, use the equilibrated gas and oil phase densities, the capillary 

rise, and the capillary radius in the conventional capillary rise technique equation to 

compute the gas-oil interfacial tension. 

18. Drain the fluids from the optical cell, clean with toluene and acetone and blow dry 

with nitrogen gas. 

19. Evacuate the cell using the vacuum pump to remove any traces of remaining residual 

fluid phases. 

20.  Repeat the steps 7-19 to obtain the first-contact by drop shape analysis technique as 

well as the equilibrium interfacial tensions at different experimental pressure steps till 

the pressure reaches 6000 psig using drop shape as well as capillary rise techniques. 
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21. Steps 1 to 20 were performed for two sets of constant gas-oil molar ratios and two 

sets of constant gas-oil volume ratios. 

The following constant gas-oil molar ratios and constant gas-oil volume ratios and 

variations of the above procedure with respect to pendant drop and capillary rise were 

conducted depending on the practicality of the experiment at each selected pressure: 

• Multiple-contact (equilibrium) miscibility was performed using the pendant drop and 

capillary rise techniques for the 0.893 mole fraction of CO2 and 0.107 mole fraction 

of recombined reservoir fluid (Rm=0.893/0.107=8.346) at each experimental pressure 

of 1500, 2000, 2500, 3000, 3500, 4000, 5000, 5500 and 6000 psig. 

• Multiple-contact (equilibrium) miscibility was performed using the capillary rise 

technique for the 0.700 mole fraction of CO2 and 0.300 mole fraction of recombined 

reservoir fluid in the feed mixture (Rm=0.700/0.300=2.333) at each experimental 

pressure of 2000, 3000, 3500, 4000, 5000 and 6000 psig. 

• First-contact miscibility using the pendant drop and multiple-contact (equilibrium) 

miscibility using the pendant drop and capillary rise techniques were performed for 

the 0.850 volume fraction of CO2 and 0.150 volume fraction of recombined reservoir 

fluid in the feed mixture (Rv=0.850/0.150=5.667) at each experimental pressure of 

2000, 3000, 4000, 5000 and 6000 psig. 

• Multiple-contact (equilibrium) miscibility using the capillary rise technique was 

performed for the 0.450 volume fraction of CO2 and 0.550 volume fraction of 

recombined reservoir fluid in the feed mixture (Rv=0.450/0.550=0.818) at each 

experimental pressure of 2000, 3000, 4000, 5000 and 6000 psig. 

 

2.2.3.9 Calculation Procedure for the Constant Gas-Oil Molar Ratios and the 

Constant Gas-Oil Volume Ratios Used as Feed in the Mixture 

The equations 2.6 and 2.7 given below were used for calculating the charge ratios. 

)/(

)(

molegeightmolecularw

gmsmass
moles = ………………….………………..…………… (2.10) 

)(

)(
)/(

ccvolume

gmsmass
ccgdensity = ……………………………………………….………. (2.11) 

1

22
1 ρ

ρ×
=
V

V .……………………………………………………………..……......... (2.12) 

Where: 

V1 = volume of reservoir oil at pressure at 75°F 

V2 = volume of reservoir fluid at pressure at 238°F 

ρ2 = density of reservoir fluid at pressure at 238°F 

ρ1 = density of reservoir fluid at pressure at 75°F 
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P

znRT
V = ………………………………………………………………....……… (2.13) 

Where: 

V = volume of carbon dioxide gas at pressure at 75°F 

z = compressibility of carbon dioxide at pressure at 75°F 

n = mole fraction of carbon dioxide in the feed mixture 

R = gas constant =1205.91 








°×
×

Kgmole

cmpsia 3

 

T = temperature in Kelvin 

P = charge pressure in psig 

 

Initially the mass in grams was obtained by multiplying the gram moles of each fluid 

(CO2 and reservoir fluid) with the corresponding molecular weight of that fluid. Volume 

in cm3 was obtained by dividing the mass in grams of each fluid by the density of that 

fluid at the experimental pressure at 238°F, from which a volume percent was then 

calculated. Since the measured volume of the optical cell was 80 cm3 at 238°F, the 

volume percent for each fluid was multiplied by the cell volume (80 cm3) to obtain the 

amounts in cm3 of the each fluid phase that would be present at the experimental pressure 

at 238°F. The volume of each reservoir fluid to be charged at the experimental pressure at 

75°F (ambient temperature) was then obtained by using the equation 2.12. The volume of 

CO2 gas to be charged at the experimental pressure at 75°F was similarly obtained by 

using the equation 2.13. 

 

2.2.4 Results and Discussion 

 

2.2.4.1 Calibrations Experiments Performed 

 

2.2.4.1.1 Hydrocarbon Liquid Compositional Analysis 

Before performing liquid composition analysis, the performance of the flame ionization 

detector was checked. This was achieved by injecting 0.3 microliter of certified 

hydrocarbon mixture (n-paraffin mixture) from C6 through C44 of known composition 

diluted with carbon disulphide into the Varian gas chromatograph instrument. The 

procedures and methods used in the calibration were based on methods ASTM D2887 

and ASTM D4626. 

The relative response factors were calculated for each n-paraffin (relative to n-

decane) in accordance with the method ASTM D4626. The method assumes that the 

detector response is proportional to the mass of individual components. Table 2.13 and 

Figure 2.23 indicated that the percent deviation of relative response factor Fn for the n-

paraffin mixture was less than about 1.5% and was much less than ± 10% deviation 



 128 

recommended by ASTM D4626 method. This validates the precision and accuracy with 

which the gas chromatograph can perform hydrocarbon liquid compositional analysis. 

 

 

 

 

 

Table 2.13: Relative response factors of n-paraffin mixture (relative to n-decane) 

Component Carbon Peak Weight% Weight% Relative % Deviation

Number Area Gas (Standard n-Paraffin Mix) Response

Chromatograph ASTM D2887 Fn

n-Hexane nC6 822085 7.784 7.781 1.0 1.2

n-Heptane nC7 622101 5.891 5.957 1.0 1.1

n-Octane nC8 819153 7.756 7.861 1.0 1.3

n-Nonane nC9 838635 7.941 7.822 1.0 -1.5

n-Decane nC10 1264562 11.974 11.831 1.0 -1.2

n-Undecane nC11 1241582 11.756 11.758 1.0 0.0

n-Dodecane nC12 1239986 11.741 11.758 1.0 0.1

n-Tetradecane nC14 1215275 11.507 11.571 1.0 0.6

n-Hexadecane nC16 1042146 9.868 9.824 1.0 -0.4

n-Octadecane nC18 524148 4.963 4.961 1.0 0.0

n-Eicosane nC20 208010 1.970 1.973 1.0 0.2

n-Tetracosane nC24 206168 1.952 1.968 1.0 0.8

n-Octacosane nC28 103525 0.980 0.981 1.0 0.1

n-Dotriacontane nC32 101731 0.963 0.981 1.0 1.8

n-Hexatriacontane nC36 103108 0.976 0.986 1.0 1.0

n-Tetracontane nC40 104630 0.991 1.006 1.0 1.5

n-Tetratetracontane nC44 104124 0.986 0.981 1.0 -0.5

Total 10560969 100.000 100.000  
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Figure 2.23: Linearity plot of relative response factor of n-paraffin mixture 

 

2.2.4.1.2 Gas Composition Analysis 

Components to be determined in the gaseous sample are physically separated by the gas 

chromatograph and compared to calibration data obtained under identical operating 

conditions. The method of calibration GPA2286 was used to calculate the response factor 

from a certified calibration gas reference standard of known composition. The response 

factor of each component determined from the reference gas standard using the thermal 

conductivity detector and the flame ionization detector are presented in Table 2.14. The 

appropriate mole or weight percentage of each component was used depending on 

whether the peak was taken from the thermal conductivity detector or the flame 

ionization detector.  
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Table 2.14: Response factor of components in the reference gas standard 

Reference Peak Response

Gas Standard Area Factors

(From GC)

Nitrogen N2 5.002 24686 0.0002026

Methane C1 67.994 276869 0.0002456

Nitrogen N2 5.002 19508 0.0002564

Methane C1 67.994 223557 0.0003041

Carbon Dioxide CO2 4.995 22666 0.0002204

Ethane C2 7.985 39660 0.0002013

Propane C3 6.025 37539 0.0001605

i-Butane iC4 3.000 21775 0.0001378

n-Butane nC4 3.001 22121 0.0001357

i-Pentane iC5 0.999 8307 0.0001203

n-Pentane nC5 0.999 8201 0.0001218

Methane C1 67.994 386195 0.0001761

Ethane C2 7.985 90380 0.0000883

Propane C3 6.025 101325 0.0000595

i-Butane iC4 3.000 66525 0.0000451

n-Butane nC4 3.001 66155 0.0000454

i-Pentane iC5 0.999 26864 0.0000372

n-Pentane nC5 0.999 26253 0.0000381

Column 1 (Porous Polymer Column) - Thermal Conductivity Detector

Column 3 (Partition Column) - Thermal Conductivity Detector

Column 4 (Glass Capillary Column) - Flame Ionization Detector

Component Carbon No.

 
 

Validation checks for the gas compositions were performed for each analysis by 

comparing the percent of component eluted from one column with the percent of the 

same component eluted out from another column. For example the %C1 component 

eluted from column 1 can be compared with the %C1 component eluted out from column 

3 and column 4. 

 

2.2.4.1.3 Densitometer 

The newly acquired Anton Paar densitometer DMA HP was calibrated using pure 

standard fluids UHP grade Nitrogen (99.997%) and de-ionized water covering a range of 

pressures from 1500 psig to 6000 psig at the reservoir temperature of 238°F. Densities of 

pure methane (99.999%) were then measured to validate the precision of the instrument 

covering a range of pressures from 1500 psig to 6500 psig at 238°F and the results are 

presented in Table 2.15. 
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Table 2.15: Measured densities of pure methane from DMA HP 

Pressure Temperature Measured NIST %Deviation

Density Density

(psig) (°F) (g/cc) (g/cc)

1500 238 0.0538 0.0541 -0.5

2000 238 0.0720 0.0721 -0.2

2500 238 0.0893 0.0898 -0.5

3000 238 0.1065 0.1067 -0.2

3500 238 0.1225 0.1226 -0.1

4000 238 0.1374 0.1376 -0.1

4500 238 0.1511 0.1514 -0.2

5000 238 0.1638 0.1642 -0.2

5500 238 0.1755 0.1760 -0.3

6000 238 0.1865 0.1868 -0.2

6500 238 0.1960 0.1968 -0.4

NIST: National Institute of Standards and Testing  
 

These measured density data showed excellent agreement with the published values 

from NIST (average absolute deviation less than 0.13%). This proves the accuracy with 

which this new instrument can be used to measure densities of unknown samples at 

elevated pressure at 238°F. 

  

2.2.4.2 Preliminary Experimental Tasks Performed 

 

2.2.4.2.1 Stocktank Crude Oil Composition 
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Figure 2.24: Chromatogram of the stocktank crude oil 
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The composition of the stocktank crude oil sample obtained from the depleted oil 

reservoir was analyzed using the newly acquired Varian gas chromatograph (Model CP-

3800). The results of the compositional analysis performed are presented in Table 2.16. 

The chromatogram obtained from this compositional analysis is shown in Figure 2.24. 

A portion of the stocktank crude oil sample was also sent to a commercial laboratory 

to verify the precision and accuracy of the results obtained from the newly acquired 

Varian gas chromatographic system. It can be seen from Table 2.16 that the results of the 

compositional analysis provided by the commercial laboratory was in good agreement 

with the results of the compositional analysis obtained by performing a compositional 

analysis of duplicate samples (STO 1 and STO 2) of the stocktank crude oil using the 

newly acquired Varian gas chromatograph 

Figure 2.25 shows the excellent match between the results provided by the 

commercial laboratory to that obtained from the new gas chromatograph in which the 

hydrocarbon component mole% of the stocktank crude oil approximately falls on a 45o 

straight line. This confirms the validity check of the instrument and the precision and 

accuracy with which compositional analysis can be performed on oil samples in our 

reservoir fluids laboratory at the Louisiana State University. 
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Table 2.16: Compositional analysis of stocktank crude oil 

STO 1 STO 2 Comm. Lab

Mole% Mole% Mole%

Methane C1 0.003 0.004 0.002

Ethane C2 0.030 0.025 0.042

Propane C3 0.514 0.486 0.566

i-Butane iC4 0.451 0.434 0.440

n-Butane nC4 1.132 1.115 1.160

i-Pentane iC5 1.610 1.574 1.502

n-Pentane nC5 1.359 1.331 1.447

Hexanes C6 3.753 3.735 3.830

Benzene C6 0.000 0.000 0.000

Heptanes C7 8.510 8.621 8.677

Toluene C7 1.100 1.118 0.095

Octanes C8 10.877 11.169 12.067

M/P-Xylene C8 1.580 1.620 1.066

O-Xylene C8 0.528 0.545 0.936

Nonanes C9 6.115 6.312 5.785

Decanes C10 7.003 7.153 7.567

Undecanes C11 5.777 5.846 5.765

Dodecanes C12 5.033 5.058 4.659

Tridecanes C13 4.997 4.976 4.938

Tetradecanes C14 4.674 4.637 4.309

Pentadecanes C15 3.717 3.670 3.918

Hexadecanes C16 3.436 3.409 3.266

Heptdecanes C17 3.006 2.965 2.950

Octadecanes C18 2.960 2.920 2.865

Nonadecanes C19 2.876 2.831 2.467

Eicosanes C20 2.051 2.092 2.012

Heneicosanes C21 1.776 1.470 1.751

Docosanes C22 1.468 1.611 1.520

Tricosanes C23 1.469 1.425 1.416

Tetracosanes C24 1.326 1.302 1.282

Pentacosanes C25 1.183 1.154 1.168

Hexacosanes C26 1.024 0.991 0.990

Heptacosanes C27 0.945 0.909 0.864

Octacosanes C28 0.822 0.798 0.823

Nonacosanes C29 0.769 0.743 0.738

Triacontanes C30 0.702 0.674 0.667

Hentriacontanes C31 0.615 0.597 0.610

Dotriacontanes C32 0.535 0.515 0.522

Tritriacontanes C33 0.479 0.458 0.463

Tetratriacontanes C34 0.419 0.415 0.394

Pentatriacontanes C35 0.396 0.367 0.378

Hexatriacontanes Plus C36+ 2.980 2.925 4.083

Total 100.000 100.000 100.000

Properties of Stocktank Oil

Average Molecular Weight 201.1 201.1 203.1

Specific Gravity @ 60/60°F 0.8261 0.8261 0.8321

Properties of Hexanes Plus (C6+) Stocktank Oil

Mole% 95.031

Molecular Weight 208.3

Specific Gravity @ 60/60°F 0.8311

Properties of Heptanes Plus (C7+) Stocktank Oil

Mole% 91.296

Molecular Weight 213.3

Specific Gravity @ 60/60°F 0.8346

Components Carbon No.
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Figure 2.25: Comparison plot of carbon number mole% between commercial lab and 

newly acquired Varian gas chromatograph 

 

2.2.4.2.2 Current Depleted Reservoir Fluid Composition Obtained by Using 

WinProp 

Since the reservoir fluid sample at the current reservoir conditions was not available and 

only the stocktank crude oil of the depleted reservoir was provided, it was necessary to 

perform a compositional tuning using the CMG-WinProp software from previous 

available historical data in order to obtain the reservoir fluid composition at the current 

depleted reservoir pressure of 1100 psi and 238°F. The data used as input into the CMG 

WinProp software were separator gas composition, separator liquid composition 

(stocktank crude oil), gas-oil ratio (SCF/STB), separator pressure and temperature. 

The separator gas composition, separator liquid composition (stocktank crude oil) and 

the recombined reservoir fluid composition are presented in Tables 2.17, 2.18, and 2.19 

respectively. The Peng Robinson equation of state was used in order to match the bubble 

point pressure of this resultant recombined reservoir fluid composition to the initial 

bubble point pressure of 4050 psi at 238°F of the reservoir by using various tuning 

parameters. 
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Table 2.17: Separator gas composition 

Separator Gas

Mole %

Hydrogen Sulphide H2S 0.000

Carbon Dioxide CO2 2.355

Nitrogen N2 1.134

Methane C1 83.351

Ethane C2 6.878

Propane C3 2.797

i-Butane iC4 0.599

n-Butane nC4 1.009

i-Pentane iC5 0.543

n-Pentane nC5 0.397

Hexanes Plus C6+ 0.939

Total 100.000

Average Molecular Weight 20.45

Properties of Hexanes Plus (C6+ ) Separtor Gas

Mole % 0.939

Molecular Weight 86.20

Specific Gravity @ 60/60°F 0.7084

Gas Compressibility Factor, Z (14.73 psia @ 60°F) 0.997

Components Carbon No.

 

 

Table 2.18: Separator liquid composition 

Separator Oil

Mole %

Hydrogen Sulphide H2S 0.000

Carbon Dioxide CO2 0.000

Nitrogen N2 0.000

Methane C1 0.004

Ethane C2 0.025

Propane C3 0.486

i-Butane iC4 0.434

n-Butane nC4 1.115

i-Pentane iC5 1.574

n-Pentane nC5 1.331

Hexanes Plus C6+ 95.031

Total 100.000

Average Molecular Weight 201.1

Properties of Hexanes Plus (C6+ ) Separtor Oil

Mole % 95.031

Molecular Weight 208.3

Specific Gravity @ 60/60°F 0.8311

Components Carbon No.
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Table 2.19: Recombined reservoir fluid composition at original reservoir conditions 

Separator Pressure (psi) 268

Separator Temperature (°F) 54

Recombination Gas/Oil Ratio (SCF/STB) 1052

Separator Gas Separator Oil Recombined Fluid

Mole % Mole % Mole %

Hydrogen Sulphide H2S 0.000 0.000 0.000

Carbon Dioxide CO2 2.355 0.000 1.550

Nitrogen N2 1.134 0.000 0.747

Methane C1 83.351 0.004 54.883

Ethane C2 6.878 0.025 4.537

Propane C3 2.797 0.486 2.007

i-Butane iC4 0.599 0.434 0.543

n-Butane nC4 1.009 1.115 1.045

i-Pentane iC5 0.543 1.574 0.895

n-Pentane nC5 0.397 1.331 0.716

Hexanes Plus C6+ 0.939 95.031 33.077

Total 100.000 100.000 100.000

Average Molecular Weight 20.5 201.1 82.93

Properties of Hexanes Plus (C6+ )

Mole % 0.939 95.031 33.077

Molecular Weight 86.2 208.3 -

Specific Gravity @ 60/60°F 0.7084 0.8311 -

Gas Compressibility Factor, Z (14.73 psia @ 60°F) 0.997 - -

Components Carbon No.

 
 

A two-phase flash was then preformed on this tuned reservoir fluid composition to 

obtain current reservoir composition of the depleted reservoir at reservoir conditions of 

1100 psi (bubble point pressure) and 238°F (Table 2.20). The liquid phase composition 

from this two-phase flash was then used to prepare a recombined live reservoir fluid in 

the laboratory. 
 

Table 2.20: Reservoir fluid composition at current depleted reservoir conditions 

Flash Conditions at Bubble Point (psi) 1100

Weight Shift 50

Recombined Fluid Liquid Phase Vapor Phase

Hydrogen Sulphide H2S 0.000 0.000 0.000

Carbon Dioxide CO2 1.550 0.762 2.247

Nitrogen N2 0.747 0.147 1.278

Methane C1 54.883 18.691 86.870

Ethane C2 4.537 3.093 5.813

Propane C3 2.007 2.069 1.952

i-Butane iC4 0.543 0.704 0.401

n-Butane nC4 1.045 1.448 0.689

i-Pentane iC5 0.895 1.444 0.410

n-Pentane nC5 0.716 1.191 0.296

Hexanes Plus C6+ 33.077 70.451 0.045

Total 100.000 100.000 100.000

Average Molecular Weight 82.9 155.1 19.13

Mole %
Components Carbon No.
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2.2.4.2.3 Preparation of Recombined Reservoir Fluid 

While preparing the recombined live reservoir fluid using the liquid phase composition 

obtained from the two-phase flash calculations, the ethane and propane components were 

lumped into the methane portion. This can be considered reasonable, since there were no 

significant amounts of ethane and propane components present in the liquid phase 

composition obtained from the two-phase flash, as the reservoir was depleted from the 

original pressure of 4050 psi at 238°F to the current depleted pressure of 1100 psi at 

238°F. The remaining components N2, CO2, i-C4 and n-C4 were lumped into the hexanes 

plus fraction to simplify the live recombined reservoir fluid preparation procedure. Also, 

these components were present in small quantities in the liquid phase composition 

obtained from the two-phase flash as the reservoir was depleted, thus would not 

significantly affect the minimum miscibility pressure determinations after the preparation 

of the recombined reservoir fluid. Furthermore, various miscibility correlations provided 

by Holm and Josendal (1974), Yellig and Metcalf (1980), and Cronquist (1978) predict 

that the light ends in oils such as methane and nitrogen, and the intermediate molecular 

weight hydrocarbons in oil, such as ethane, propane and butane, have a small effect on 

CO2 miscibility pressure (Stalkup, 1984). The results of the calculation spreadsheet used 

for obtaining the volume of methane (cc) to be added per mole of live fluid are described 

in Table 2.21. 

 

Table 2.21: The composition of live reservoir fluid used in all the experiments 

Molecular Live Fluid Live Fluid Pressure Density at P Volume Added

Weight (C1 lumped) and 75°F

gm/mole Mole% Mole% psig gm/cc cc gas/mol Live Oil

Hydrogen Sulphide H2S 34.08 0.000 0.000 - - 0.000

Carbon Dioxide CO2 44.01 0.762 0.000 - - 0.000

Nitrogen N2 28.01 0.147 0.000 - - 0.000

Methane C1 16.04 18.691 23.854 2000 0.1129 33.894

Ethane C2 30.07 3.093 0.000 - - 0.000

Propane C3 44.10 2.069 0.000 - - 0.000

i-Butane iC4 58.12 0.704 0.000 - - 0.000

n-Butane nC4 58.12 1.448 0.000 - - 0.000

i-Pentane iC5 72.15 1.444 0.000 - - 0.000

n-Pentane nC5 72.15 1.191 0.000 - - 0.000

Hexanes Plus C6+ 208.30 70.451 76.146 500 0.8270 191.794*

Total 100.000 100.000 225.688

Properties of Hexanes Plus (C6+) Stocktank Oil 

Molecular Weight 208.30

Specific Gravity @ 60/60°F 0.8311

* Volume of Stocktank Oil per Mole of Live Fluid.

Components Carbon No.
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Figure 2.26: Bubble point pressure of live reservoir fluid at ambient temperature 

 

2.2.4.2.4 Bubble Point Pressure Determination of the Recombined Reservoir Fluid  

Figure 2.26 shows a plot of the cumulative volume of water collected versus the pressure 

obtained during the determination of the bubble point pressure of the live reservoir fluid 

at ambient conditions. Two different linear sections were identified, one above the bubble 

point and one below the bubble point. Values of above 99% of the coefficient of 

determination (R2) were obtained when these two identified different linear sections were 

fitted separately using linear regression, thus indicating excellent fits. These two linear 

regression equations were then solved to obtain the point of their intersection, which was 

the bubble point pressure of the recombined reservoir fluid. 

  The experimentally measured bubble point pressure value of 904 psig at 75°F was in 

good agreement with the value of the bubble point pressure obtained using the CMG-

WinProp software (927 psig at 75°F). The recombined live reservoir fluid was 

pressurized to 4000 psig and was kept at that pressure in order to maintain single-phase 

conditions of the fluid at all times. 

 

2.2.4.2.5 Compositional Analysis of Recombined Reservoir Fluid 

The composition of the recombined live reservoir fluid prepared in the laboratory was 

determined by flashing a portion of the sample to ambient conditions, and analyzing the 

compositions of the flashed separated products using gas chromatography. The results of 

the flashed gas, flashed oil and recombined oil are presented in Table 2.22. An excellent 
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match was obtained between the target and measured live reservoir fluid composition, 

thus confirming the use of a representative recombined reservoir fluid for conducting IFT 

experiments using the drop shape analysis and capillary rise techniques. 

A compositional analysis was again performed later to check the stability of the 

prepared live oil sample. The compositional analysis results presented in Table 2.23 

indicated that the composition measured on January 7, 2006 was approximately identical 

to that measured on June 3, 2006, thus confirming the integrity of the sample. 

A new batch of recombined reservoir fluid was prepared and the compositional 

analysis was performed on this batch (August 5, 2006). The compositional analysis of 

this new batch presented in Table 2.23 was almost identical to the compositions 

performed on the previous batch. This confirms that true representative fluids were used 

throughout the experimental study. 
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Table 2.22: Composition of prepared recombined reservoir fluid 

Flashed Gas Flashed Oil Recombined Fluid

Mole % Mole % Mole %

Hydrogen Sulphide H2S 0.000 0.000 0.000

Carbon Dioxide CO2 0.026 0.000 0.006

Nitrogen N2 0.047 0.000 0.011

Methane C1 95.610 0.039 23.141

Ethane C2 0.000 0.001 0.000

Propane C3 0.275 0.026 0.085

i-Butane iC4 0.331 0.089 0.148

n-Butane nC4 0.782 0.336 0.444

i-Pentane iC5 0.850 0.973 0.943

n-Pentane nC5 0.625 1.000 0.908

Hexanes C6 0.790 3.488 2.835

Benzene C6 0.000 0.000 0.000

Heptanes C7 0.619 7.815 6.076

Toluene C7 0.000 1.151 0.873

Octanes C8 0.021 10.835 8.220

M/P-Xylene C8 0.000 1.727 1.309

O-Xylene C8 0.000 0.545 0.414

Nonanes C9 0.024 6.053 4.595

Decanes C10 7.118 5.397

Undecanes C11 6.007 4.555

Dodecanes C12 5.347 4.055

Tridecanes C13 5.340 4.049

Tetradecanes C14 5.041 3.823

Pentadecanes C15 4.013 3.043

Hexadecanes C16 3.725 2.825

Heptadecanes C17 3.260 2.472

Octadecanes C18 3.217 2.440

Nonadecanes C19 3.140 2.381

Eicosanes C20 2.325 1.763

Heneicosanes C21 1.852 1.404

Docosanes C22 1.598 1.212

Tricosanes C23 1.600 1.213

Tetracosanes C24 1.448 1.098

Pentacosanes C25 1.292 0.980

Hexacosanes C26 1.126 0.854

Heptacosanes C27 1.021 0.774

Octacosanes C28 0.901 0.683

Nonacosanes C29 0.821 0.622

Triacontanes C30 0.748 0.568

Hentriacontanes C31 0.659 0.500

Dotriacontanes C32 0.565 0.428

Tritriacontanes C33 0.507 0.385

Tetratriacontanes C34 0.432 0.328

Pentatriacontanes C35 0.408 0.309

Hexatriacontanes Plus C36+ 2.411 1.831

Total 100.000 100.000 100.000

Average Molecular Weight 18.55 210.0 163.7

Flash Gas-Oil Ratio, SCF/STB 166.9

Properties of Hexanes Plus (C6+) Recombined Reservoir Fluid

Mole % 74.314

Molecular Weight 213.0

Specific Gravity @ 60/60°F 0.8325

Properties of Heptanes Plus (C7+) Recombined Reservoir Fluid

Mole % 71.479

Molecular Weight 218.0

Specific Gravity @ 60/60°F 0.8359

Components Carbon No.
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Table 2.23: Composition of recombined reservoir fluid 

January 7, 2006 June 3, 2006 August 5, 2006

Mole % Mole % Mole %

Hydrogen Sulphide H2S 0.000 0.000 0.000

Carbon Dioxide CO2 0.006 0.038 0.063

Nitrogen N2 0.011 0.051 0.005

Methane C1 23.141 22.984 24.216

Ethane C2 0.000 0.015 0.011

Propane C3 0.085 0.083 0.021

i-Butane iC4 0.148 0.131 0.068

n-Butane nC4 0.444 0.380 0.190

i-Pentane iC5 0.943 0.854 0.638

n-Pentane nC5 0.908 0.823 0.597

Hexanes C6 2.835 2.647 2.353

Benzene C6 0.000 0.000 0.000

Heptanes C7 6.076 5.868 5.378

Toluene C7 0.873 0.807 0.188

Octanes C8 8.220 7.404 7.658

M/P-Xylene C8 1.309 1.303 1.248

O-Xylene C8 0.414 0.404 0.382

Nonanes C9 4.595 4.765 4.693

Decanes C10 5.397 5.508 5.451

Undecanes C11 4.555 4.621 4.636

Dodecanes C12 4.055 4.197 4.179

Tridecanes C13 4.049 4.108 4.232

Tetradecanes C14 3.823 4.000 4.024

Pentadecanes C15 3.043 3.006 3.163

Hexadecanes C16 2.825 2.878 2.949

Heptadecanes C17 2.472 2.537 2.592

Octadecanes C18 2.440 2.492 2.557

Nonadecanes C19 2.381 2.515 2.498

Eicosanes C20 1.763 1.427 1.680

Heneicosanes C21 1.404 1.726 1.590

Docosanes C22 1.212 1.258 1.321

Tricosanes C23 1.213 1.253 1.285

Tetracosanes C24 1.098 1.145 1.170

Pentacosanes C25 0.980 1.004 1.020

Hexacosanes C26 0.854 0.891 0.913

Heptacosanes C27 0.774 0.786 0.817

Octacosanes C28 0.683 0.713 0.733

Nonacosanes C29 0.622 0.649 0.663

Triacontanes C30 0.568 0.595 0.610

Hentriacontanes C31 0.500 0.516 0.533

Dotriacontanes C32 0.428 0.437 0.463

Tritriacontanes C33 0.385 0.395 0.412

Tetratriacontanes C34 0.328 0.340 0.359

Pentatriacontanes C35 0.309 0.302 0.337

Hexatriacontanes Plus C36+ 1.831 2.144 2.104

Total 100.000 100.000 100.000

Average Molecular Weight 163.7 164.2 165.6

Flash Gas-Oil Ratio, SCF/STB 166.9 167.1 165.6

Properties of Hexanes Plus (C6+) Recombined Reservoir Fluid

Mole % 74.314 74.641 74.191

Molecular Weight 213.0 212.9 216.5

Specific Gravity @ 60/60°F 0.8325 0.8320 0.8362

Properties of Heptanes Plus (C7+) Recombined Reservoir Fluid

Mole % 71.479 71.994 71.838

Molecular Weight 218.0 217.5 220.7

Specific Gravity @ 60/60°F 0.8359 0.8351 0.839

Components Carbon No.

Recombined Reservoir Fluid
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2.2.4.2.6 Density Measurements of the Recombined Reservoir Fluid 

Densities of the recombined reservoir fluid sample were measured at a wide range of 

pressures at 75°F and 238°F using an old DMA 512P and the newly acquired DMA HP 

densitometers. These measurements of densities over a wide range of pressures at 75°F 

and 238°F are summarized in Tables 2.24 and 2.25, respectively. Two sets of 

experiments were performed using constant gas-oil molar ratios and two sets of more 

experiments were performed using constant gas-oil volume ratios over a wide range of 

pressures at 238°F. Densities of the fluid-fluid phases were measured for one set of 

constant gas-oil molar ratio (Rm=0.893/0.107=8.346) experiments using the old DMA 

512P. Densities of the fluid-fluid phases for gas-oil molar ratio Rm=0.700/0.300=2.333, 

gas-oil volume ratio Rv=0.850/0.150=5.667 and gas-oil volume ratio 

Rv=0.450/0.550=0.818 were performed using the new DMA HP. 

 

Table 2.24: Measured densities of recombined reservoir fluid at 75°F 

Pressure Temperature Measured Measured Comm. Lab %Deviation %Deviation

 Density  Density Density DMA 512P DMA HP

DMA 512P DMA HP

psig °F gm/cc gm/cc gms/cc

1500 75.0 0.8687 0.8060 0.810 7.8 -0.5

2000 75.0 0.8721 0.8087

2500 75.0 0.8752 0.8114

3000 75.0 0.8786 0.8140 0.818 7.9 -0.5

3500 75.0 0.8817 0.8166

4000 75.0 0.8850 0.8187

4500 75.0 0.8881 0.8216 0.825 8.1 -0.4

5000 75.0 0.8237

5500 75.0 0.8265

6000 75.0 0.8287

6500 75.0 0.8313  
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Table 2.25: Measured densities of recombined reservoir fluid at 238°F 

Pressure Temperature Measured Measured Comm. Lab %Deviation %Deviation

 Density  Density Density DMA 512P DMA HP

DMA 512P DMA HP

psig °F gm/cc gm/cc gms/cc

1500 238.0 0.8404 0.7416 0.744 13.3 -0.3

2000 238.0 0.8450 0.7455

2500 238.0 0.8497 0.7487

3000 238.0 0.8543 0.7525 0.755 13.5 -0.3

3500 238.0 0.8586 0.7562

4000 238.0 0.8630 0.7595

4500 238.0 0.8673 0.7632 0.765 13.6 -0.2

5000 238.0 0.7665

5500 238.0 0.7696

6000 238.0 0.7735

6500 238.0 0.7758  
 

A portion of the recombined reservoir fluid was also sent to a commercial laboratory 

for density measurements at 75°F and 238°F, to verify the accuracy and precision of the 

instruments. The linear curve fit equations were obtained by plotting the densities of the 

recombined reservoir fluid versus pressure for all the measurements of DMA 512P, DMA 

HP and the values obtained from the commercial laboratory. They are shown in Figures 

2.27 and 2.28, respectively. The coefficients of determination (R2) values of above 99% 

obtained for all the equations indicate good correlations. 
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Figure 2.27: Measured pressure densities of recombined reservoir fluid at 75°F 

 
It can be seen from Figures 2.27 and 2.28 that there was a noticeable deviation of 

about 13.5% between the oil densities measured using the old DMA 515P and that 

obtained from the commercial laboratory. Since the experimental study for the first set of 

constant gas-oil molar ratio (Rm=0.893/0.107=8.346) had already started, a correction 

factor of 0.0955 was applied to all the equilibrated oil phase densities obtained while 

performing the gas-oil IFT measurements using the old DMA 512P. However, an 

excellent agreement was obtained for the recombined oil densities measured using the 

new DMA HP to that obtained from the commercial laboratory, needing no correction. 
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Figure 2.28: Measured pressure densities of recombined reservoir fluid at 238°F 

 
Table 2.26: Fluid properties at 75°F 

Pressure Recombined

(psig) Reservoir Fluid

Compressibility, z Density, (g/cc) Measured Density

(CMG-WinProp) (NIST) (g/cc)

1500 0.232 0.8337 0.8060

2000 0.288 0.8727 0.8087

2500 0.342 0.9013 0.8114

3000 0.396 0.9243 0.8140

3500 0.448 0.9436 0.8166

4000 0.499 0.9604 0.8187

4500 0.550 0.9753 0.8216

5000 0.600 0.9888 0.8237

5500 0.649 1.0011 0.8265

6000 0.697 1.0125 0.8287

6500 0.745 1.0230 0.8313

Molecular Weight of Carbon Dioxide = 44.01 g/mole

Molecular Weight of Recombined Reservoir Fluid = 163.72 g/mole

NIST - National Institute of Standards and Technology

Injection Gas

Carbon Dioxide (CO2)

 

The properties of carbon dioxide and recombined reservoir fluid at 75°F and 

238°F are summarized in the Tables 2.16 and 2.17, respectively. 
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Table 2.27: Fluid properties at 238°F 

Pressure Recombined

(psig) Reservoir Fluid

Compressibility, z Density, (g/cc) Measured Density

(CMG-WinProp) (NIST) (g/cc)

1500 0.774 0.1822 0.7416

2000 0.720 0.2641 0.7455

2500 0.685 0.3531 0.7487

3000 0.670 0.4388 0.7525

3500 0.671 0.5123 0.7562

4000 0.684 0.5720 0.7595

4500 0.705 0.6202 0.7632

5000 0.729 0.6599 0.7665

5500 0.757 0.6933 0.7696

6000 0.786 0.7219 0.7735

6500 0.817 0.7469 0.7758

Molecular Weight of Carbon Dioxide = 44.01 g/mole

Molecular Weight of Recombined Reservoir Fluid = 163.72 g/mole

NIST - National Institute of Standards and Technology

Injection Gas

Carbon Dioxide (CO2)

 
 

2.2.4.3 IFT Measurements of CO2-Reservoir Fluid System at 238°F 

Gas-oil interfacial tension (IFT) measurements, densities of the equilibrated fluid phases 

and compositional analysis of the equilibrated fluid-fluid phases were performed with the 

recombined reservoir fluid as the liquid phase and carbon dioxide as the gas phase after 

equilibrating them in the high pressure optical cell. First two sets of experiments were 

carried out using constant gas-oil molar ratios and the later two sets of experiments using 

constant gas-oil volume ratios at the reservoir temperature of 238°F and varying 

experimental pressures from 1500 psig to 6000 psig. This was done to investigate the 

compositional effects on interfacial tension and gas-oil miscibility. 

The densities of the equilibrated fluid phases at the different pressures for the 

constant gas/oil molar ratio Rm=8.346 at 238°F were performed using the old DMA 

512P densitometer and a correction factor of 0.0955 was subtracted from each liquid 

phase density to correct for the consistent deviations observed. The densities of the 

equilibrated fluid phases at different pressures for the constant gas/oil molar ratio 

Rm=2.333, constant gas-oil volume ratio Rv=5.667 and constant gas/oil volume ratio 

Rv=0.818 were performed using the new DMA HP densitometer. The compositions of 

the equilibrated gas and liquid phases at each experimental pressure were measured using 

the gas chromatograph. 

The optical cell was thoroughly cleaned at the end of each pressure test, evacuated 

and reloaded with fresh recombined reservoir fluid and CO2 to the start the test at the next 

pressure. This was to avoid compositional interference from the previous experiment. 

This procedure is distinctly different from previously conducted tests (Ayirala, 2005) 

wherein all IFT measurements were made at varying pressures but with the same initial 

load of live oil and gas phases.  
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One batch of prepared recombined reservoir fluid was used in performing the IFT 

measurements at the constant gas/oil molar ratio Rm=8.346 and a second batch of 

prepared recombined reservoir fluid was used in performing the IFT measurements at the 

constant gas/oil molar ratio Rm=2.333, constant gas/oil volume ratio Rv=5.667 and 

constant gas/oil volume ratio Rv=0.818. However as described previously in Subsection 

2.2.4.2.5 (Table 2.23), this recombined reservoir fluid composition in all cases were quite 

similar. 

 

2.2.4.3.1 Constant Gas/Oil Molar Ratio Experiments 

Gas-oil IFT measurements were carried out at various pressures using a constant gas-oil 

molar ratio of 0.893 mole fraction of carbon dioxide gas and 0.107 mole fraction of 

recombined reservoir fluid as feed in the mixture (Rm=0.893/0.107=8.346). Gas-Oil IFT 

measurements were also carried out using a constant gas-oil molar ratio of 0.700 mole 

fraction of carbon dioxide gas and 0.300 mole fraction of recombined reservoir fluid as 

feed in the mixture (Rm=0.700/0.300=2.333). The measured densities of the equilibrated 

gas and liquid phases at 238°F and equilibrium interfacial tension values obtained from 

the drop shape and the capillary rise techniques for the constant gas-oil molar ratio of 

Rm=8.346 are summarized in the Table 2.28. The compositional analysis of the 

equilibrated gas and liquid phases at 238°F for the constant gas/oil molar ratio Rm=8.346 

are summarized in the Tables 2.29 and 2.30 respectively.  

 

Table 2.28: Summary of the equilibrated fluid densities and gas-oil IFT measurements at 

constant gas/oil molar ratio of 0.893 mole fraction of CO2 and 0.107 mole fraction of 

recombined reservoir fluid (Rm=0.893/0.107=8.346) at 238°F 

Gas Mole Fraction 0.893

Oil Mole Fraction 0.107

Pressure Density Diff. Capillary

Oil Gas ∆ρ Height Capillary Rise Pendant Drop

(psig) (g/cc) (g/cc) (cm) (dyne/cm) (dyne/cm) Gas Oil

1500 0.7660 0.1670 0.5990 0.475 6.97 7.30 0.901 0.099

2000 0.7665 0.2482 0.5183 0.358 4.54 6.00 0.864 0.136

2500 0.7725 0.3590 0.4135 0.317 3.21 4.85 0.826 0.174

3000 0.7775 0.4170 0.3605 0.237 2.09 3.00 0.794 0.206

3500 0.7975 0.5070 0.2905 0.211 1.50 1.70 0.768 0.232

4000 0.8005 0.5830 0.2175 0.192 1.02 1.35 0.749 0.251

5000 0.8055 0.7020 0.1035 0.133 0.34 0.13 0.723 0.277

5500 0.8115 0.7790 0.0325 0.121 0.10 * 0.714 0.286

6000 0.8145 0.7980 0.0165 0.026 0.01 * 0.706 0.294

* Could not form drop due to approaching miscibility between fluid phases

Equilibrium IFTEquilibrated Phase Densities

Volume Fraction 

Corresponding
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Table 2.29: Compositional analysis of the equilibrated gas phase at constant gas/oil 

molar ratio of 0.893 mole fraction of CO2 and 0.107 mole fraction of recombined 

reservoir fluid (Rm=0.893/0.107=8.346) at 238°F 

Gas Mole Fraction 0.893

Oil Mole Fraction 0.107

1500 2000 2500 3000 3500 4000 5000 5500 6000

Hydrogen Sulphide H2S 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Carbon Dioxide CO2 97.249 97.286 97.125 96.769 96.893 97.300 97.589 96.885 96.900

Nitrogen N2 0.051 0.013 0.014 0.034 0.108 0.048 0.029 0.004 0.128

Methane C1 1.958 2.024 2.066 2.263 2.253 2.269 2.007 2.196 2.236

Ethane C2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Propane C3 0.008 0.014 0.007 0.009 0.008 0.000 0.000 0.007 0.029

i-Butane iC4 0.013 0.019 0.012 0.013 0.012 0.011 0.010 0.013 0.028

n-Butane nC4 0.038 0.044 0.033 0.037 0.033 0.029 0.026 0.035 0.053

i-Pentane iC5 0.069 0.071 0.063 0.069 0.061 0.048 0.044 0.068 0.070

n-Pentane iC5 0.065 0.068 0.059 0.064 0.057 0.042 0.038 0.063 0.074

Hexanes C6 0.157 0.141 0.156 0.170 0.146 0.086 0.082 0.171 0.116

Heptanes Plus C7+ 0.392 0.320 0.465 0.572 0.429 0.167 0.175 0.558 0.366

Total 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000

Density, at Pressure (g/cc) 0.1670 0.2482 0.3590 0.4170 0.5070 0.5830 0.7000 0.7790 0.7980

Molecular Weight 43.81 43.75 43.83 43.86 43.74 43.54 43.62 43.87 43.70

Charged GOR, SCF/STB 16698 12654 9524 7980 7063 6490 5828 5617 5451

Pressure (psig)

Gas Phase Mole%

Component Carbon No.

 
 

Table 2.30: Compositional analysis of the equilibrated liquid phase at constant gas/oil 

molar ratio of 0.893 mole fraction of CO2 and 0.107 mole fraction of recombined 

reservoir fluid (Rm=0.893/0.107=8.346) at 238°F 
Gas Mole Fraction 0.893

Oil Mole Fraction 0.107

1250 1500 2000 2500 3000 3500 4000 5000 5500 6000

Recombined

Reservoir Fluid*

Hydrogen Sulphide H2S 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Carbon Dioxide CO2 0.006 45.015 52.302 58.088 62.244 66.425 69.088 72.756 73.896 75.852

Nitrogen N2 0.011 0.013 0.000 0.002 0.000 0.018 0.017 0.013 0.005 0.016

Methane C1 23.141 0.651 0.829 0.907 1.120 1.236 1.374 1.371 1.601 1.462

Ethane C2 0.000 0.004 0.007 0.006 0.006 0.003 0.002 0.007 0.014 0.006

Propane C3 0.085 0.012 0.013 0.011 0.012 0.011 0.012 0.008 0.013 0.009

i-Butane iC4 0.148 0.026 0.027 0.021 0.021 0.020 0.021 0.016 0.021 0.016

n-Butane nC4 0.444 0.088 0.088 0.067 0.067 0.065 0.061 0.049 0.061 0.049

i-Pentane iC5 0.943 0.247 0.262 0.177 0.169 0.148 0.141 0.102 0.134 0.104

n-Pentane iC5 0.908 0.264 0.230 0.185 0.173 0.151 0.141 0.099 0.129 0.105

Hexanes C6 2.835 1.048 1.152 0.716 0.642 0.561 0.492 0.314 0.386 0.306

Heptanes Plus C7+ 71.479 52.632 45.090 39.820 35.546 31.362 28.651 25.265 23.740 22.075

Total 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000

Density, at Pressure (g/cc) 0.7403 0.7660 0.7665 0.7725 0.7775 0.7975 0.8005 0.8055 0.8115 0.8145

Molecular Weight (Recombined Oil) 163.7 145.2 129.5 122.1 113.8 108.3 105.1 104.4 101.3 98.2

Molecular Weight C7+ (Recombined Oil) 218.0 235.5 232.7 239.6 240.0 248.9 257.5 283.7 286.2 290.6

Flash GOR, SCF/STB 0 410 560 686 825 961 1061 1148 1236 1340

* Bubble Point Pressure

Liquid Phase Mole%

Pressure (psig)

Component Carbon No.
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Table 2.31: Summary of the equilibrated fluid densities and gas-oil IFT measurements at 

constant gas/oil molar ratio of 0.700 mole fraction of CO2 and 0.300 mole fraction of 

recombined reservoir fluid (Rm=0.700/0.300=2.333) at 238°F 

Gas Mole Fraction 0.700

Oil Mole Fraction 0.300

Pressure Density Diff. Capillary

Oil Gas ∆ρ Height Capillary Rise Pendant Drop

(psig) (g/cc) (g/cc) (cm) (dyne/cm) (dyne/cm) Gas Oil

2000 0.7689 0.2362 0.5327 0.112 3.27 * 0.639 0.361

3000 0.7703 0.3749 0.3954 0.160 1.55 * 0.518 0.482

3500 0.7709 0.4326 0.3383 0.105 0.87 * 0.481 0.519

4000 0.7720 0.4965 0.2755 0.080 0.54 * 0.454 0.546

5000 0.7726 0.5807 0.1919 0.040 0.19 * 0.421 0.579

6000 0.7795 0.6781 0.1014 0.004 0.01 * 0.402 0.598

* Equilibrium IFT of the pendant drop could not be calculated as the optical cell was filled with significant amount of reservoir fluid

Equilibrium IFTEquilibrated Phase Densities Corresponding

Volume Fraction 

 
 
Table 2.32: Compositional analysis of the equilibrated gas phase at constant gas/oil 

molar ratio of 0.700 mole fraction of CO2 and 0.300 mole fraction of recombined 

reservoir fluid (Rm=0.700/0.300=2.333) at 238°F 

Gas Mole Fraction 0.700

Oil Mole Fraction 0.300

2000 3000 3500 4000 5000 6000

Hydrogen Sulphide H2S 0.000 0.000 0.000 0.000 0.000 0.000

Carbon Dioxide CO2 81.305 81.419 83.423 84.131 84.269 84.027

Nitrogen N2 0.086 0.050 0.066 0.073 0.073 0.286

Methane C1 18.131 17.609 15.445 14.529 14.324 14.568

Ethane C2 0.000 0.000 0.000 0.000 0.000 0.000

Propane C3 0.014 0.017 0.013 0.017 0.011 0.016

i-Butane iC4 0.025 0.027 0.023 0.027 0.026 0.027

n-Butane nC4 0.055 0.059 0.057 0.062 0.066 0.061

i-Pentane iC5 0.091 0.107 0.116 0.123 0.156 0.123

n-Pentane iC5 0.070 0.098 0.094 0.109 0.134 0.110

Hexanes C6 0.110 0.193 0.241 0.260 0.279 0.258

Heptanes Plus C7+ 0.113 0.421 0.522 0.669 0.662 0.524

Total 100.000 100.000 100.000 100.000 100.000 100.000

Density, at Pressure (g/cc) 0.2362 0.3749 0.4326 0.4965 0.5807 0.6781

Molecular Weight 39.10 39.49 40.18 40.54 40.61 40.39

Charged GOR, SCF/STB 3607 2677 2472 2342 2189 2098

Component Carbon No.

Pressure (psig)

Gas Phase Mole%

 

The measured densities of the equilibrated gas and liquid phases and equilibrium 

interfacial tension values obtained from the capillary rise technique for the constant gas-

oil molar ratio Rm=2.333 are summarized in Table 2.31. The compositional analysis of 

the equilibrated gas and liquid phases at 238°F for the constant gas/oil molar ratio 

Rm=5.667 are summarized in the Tables 2.32 and 2.33 respectively.  
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Table 2.33: Compositional analysis of the equilibrated liquid phase at constant gas/oil 

molar ratio of 0.700 mole fraction of CO2 and 0.300 mole fraction of recombined 

reservoir fluid (Rm=0.700/0.300=2.333) at 238°F 
Gas Mole Fraction 0.700

Oil Mole Fraction 0.300

1250 2000 3000 3500 4000 5000 6000

Recombined

Reservoir Fluid*

Hydrogen Sulphide H2S 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Carbon Dioxide CO2 0.063 40.034 59.786 64.775 65.971 69.951 72.702

Nitrogen N2 0.005 0.004 0.000 0.006 0.014 0.010 0.037

Methane C1 24.216 3.073 3.719 3.815 3.948 4.240 5.052

Ethane C2 0.011 0.017 0.008 0.005 0.009 0.004 0.008

Propane C3 0.021 0.015 0.011 0.009 0.010 0.009 0.008

i-Butane iC4 0.068 0.035 0.029 0.025 0.023 0.022 0.022

n-Butane nC4 0.190 0.101 0.083 0.066 0.067 0.062 0.061

i-Pentane iC5 0.638 0.334 0.240 0.202 0.186 0.185 0.168

n-Pentane iC5 0.597 0.324 0.234 0.189 0.178 0.176 0.156

Hexanes C6 2.353 1.382 0.873 0.719 0.665 0.177 0.536

Heptanes Plus C7+ 71.838 54.681 35.017 30.189 28.929 24.657 21.250

Total 100.000 100.000 100.000 100.000 100.000 99.493 100.000

Density, at Pressure (g/cc) 0.7403 0.7689 0.7703 0.7709 0.7720 0.7726 0.7795

Molecular Weight (Recombined Oil) 165.7 144.3 110.2 102.1 98.9 89.7 84.0

Molecular Weight C7+ (Recombined Oil) 220.7 227.6 234.6 240.0 236.2 232.4 237.3

Flash GOR, SCF/STB 0 389 866 1062 1149 1452 1736

* Bubble Point Pressure - New Batch

Component Carbon No.

Pressure (psig)

Liquid Phase Mole%

 
 

Effect of Constant Gas/Oil Molar Ratio on Fluid Phase Compositions, Densities and 

Molecular Weights 

The following observations can be made regarding the effects of the two selected 

constant gas/oil molar ratios on the compositions, densities and molecular weights of the 

equilibrated gas and liquid phases using the Figures 2.29-2.35 and the Tables 2.28 and 

2.31, respectively. 

1. Figure 2.29 shows the plot of gas/oil volume ratio versus pressure for the two selected 

constant gas-oil molar ratios and indicates the decreasing trend of gas/oil volume 

ratios with increasing pressures in the feed mixtures used for conducting the IFT 

experiments at various pressures. It can be seen from Figure 2.29 that the gas/oil 

volume ratio decreases rapidly until a pressure of 4000 psig and then remains 

approximately constant for the constant gas/oil molar ratio Rm=8.346, and is an 

indication of approximately constant volumes of gas and constant volumes of oil in 

the feed mixture at each pressure. The gas/oil volume ratio displays a limited 

variation (3500 psig to 6000 psig) for the constant gas/oil molar ratio Rm=2.333. This 
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is also an indication of approximately of constant volumes of gas and constant 

volumes of oil in the feed mixture at each pressure. 
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Figure 2.29: The dependence of gas/oil volume ratio on pressure at constant gas/oil 

molar ratios 

 
2. Figure 2.30 is a plot of the equilibrated fluid phase densities versus pressure for the 

two selected constant gas/oil molar ratios. As can be seen from Figure 2.30, the 

equilibrated gas phase density increases very rapidly with pressures and the 

equilibrated liquid phase density increases very slowly with pressures. The difference 

in the densities between the equilibrated gas and liquid phase gradually decreases 

with pressure, which provides evidence for CO2 gas approaching the miscibility 

pressure with this particular reservoir fluid. At Rm=2.333 the difference in densities 

of the equilibrated gas and liquid phase large when compared to that at Rm=8.346. 

This was due to the more reservoir fluid in the feed mixture that resulted in more 

extraction of hydrocarbons from the liquid phase by CO2 for Rm=2.333 when 

compared to Rm=8.346 which had less reservoir fluid in the feed mixture that 

resulted in less extraction of hydrocarbons from the liquid phase by CO2. 
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Figure 2.30: The effect of equilibrated gas and liquid phase densities at constant gas/oil 

molar ratios at 238°F 

 
3. Figure 2.31 is a plot of CO2 mole% content in the equilibrated fluid phases versus 

pressure for the two selected gas/oil molar ratios. The equilibrated gas phase 

compositions for the constant gas/oil molar ratio of Rm=8.356 indicated a CO2 

composition of about 97 mole% as shown in Figure 2.31 at various experimental 

pressures at 238°F. This confirms that the extraction of light components from the 

liquid phase into gas phase is quite low. The densities of pure CO2 gas and the 

measured densities of the equilibrated gas phase (shown in Table 2.28) are almost 

similar at all the pressures, which proves that the gas phase is predominantly CO2. It 

can also be seen from Figure 2.31 that the CO2 component from the equilibrated gas 

phase compositions for the second gas/oil molar ratio of Rm=2.333 is approximately 

constant at about 83 mole% for the various experimental pressures at 238°F. This 

once again confirms the interpretations of negligible extraction of light components 

from the liquid phase into the gas phase for this particular reservoir crude oil. 
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Figure 2.31: CO2 content in the equilibrated gas and liquid phases at 238°F 

Thus it can be concluded that mole% of CO2 component in the equilibrated gas phase 

does not change appreciably with increase in pressure for the two selected gas-oil molar 

ratios. The absence of light hydrocarbon components (C2-C5) in this particular depleted 

reservoir fluid seems to be the cause of less vaporization of components from the liquid 

phase into the gas phase. 
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Figure 2.32: C7+ content in the equilibrated gas and liquid phases at 238°F 
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4. Figure 2.32 is a plot of C7+ mole % content in the equilibrated fluid phases versus 

pressure. Figure 2.33 is a plot of molecular weights of the equilibrated fluid phases 

versus pressure. The amount of CO2 dissolving in the reservoir fluid has increased 

rapidly with pressure as indicated by the decline in heptanes plus content and 

molecular weight of the reservoir fluid with increasing experimental pressures at 

238°F as indicated in Figures 2.32 and 2.33, respectively. It can also be seen from 

Figure 2.31 that the CO2 concentration in the liquid phase increases significantly with 

increase in pressure until 4000 psig and then slowly up to 6000 psig. This indicates 

that the recombined reservoir fluid was gradually saturated with CO2 leading to the 

development of miscibility between CO2 and recombined reservoir fluid. 
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Figure 2.33: Equilibrated gas and liquid phase molecular weights as a function of 

pressure at constant initial gas/oil molar ratio at 238°F 

 
Figure 2.34 is a plot of flash GOR of the liquid phase versus pressure. The solubility 

of CO2 in the recombined reservoir fluid was also indicated by the increasing gas-oil 

ratios obtained by performing a flash separation analysis on the equilibrated liquid phases  

with increasing pressures (Figure 2.34). Due to this phenomenon the molecular weights 

of the equilibrated liquid phase decreased quite rapidly up to a pressure of about 3000 

psig and then remained approximately constant for the various pressures from 3500 psig 

to 6000 psig as shown in Figure 2.33. As a result of this, the difference in the molecular 

weights of the equilibrated gas phase and equilibrated liquid phase decreased 

continuously with increasing pressure, due to continuous dissolving of CO2 gas in the 
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liquid phase with increasing pressure. This is an indication of the approaching miscibility 

between the two fluid phases. 
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Figure 2.34: Effect of CO2 dissolution in the liquid phase on GOR at 238°F 

 

0.0

5.0

10.0

15.0

20.0

25.0

30.0

1000 2000 3000 4000 5000 6000 7000

Pressure (psig)

M
o
le
%
 o
f 
C

1

Gas Phase (Rm=0.893/0.107=8.346) Liquid Phase (Rm=0.893/0.107=8.346)
Gas Phase (Rm=0.700/0.300=2.333) Liquid Phase (Rm=0.700/0.300=2.333)

Original Reservoir Fluid

 
Figure 2.35: C1 content in the equilibrated gas and liquid phases at 238°F 
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5. Figure 2.35 is a plot of C1 content in the equilibrated fluid phases versus pressure. 

The amount of C1 extracted by CO2 from the liquid phase into the gas phase as shown 

in Figure 2.35 is less at the constant gas-oil molar ratio Rm=8.346 when compared to 

the case of lower gas-oil molar ratio Rm=2.333. This is due to the less amount of 

reservoir oil present in the feed mixture and hence less C1 available in the feed 

mixture for extraction at the gas-oil molar ratio of Rm=8.346 than the lower gas/oil 

molar ratio of Rm=2.333. 

6. There appears to be less interaction of the CO2 with the liquid phase as can be seen 

from the compositional analysis data shown in Figures 2.31, 2.32 and 2.35 and hence 

there is less transfer of components from the liquid phase into the gas phase. The role 

of CO2 in these experiments was interpreted to be continuous dissolving in the liquid 

phase with increase in pressure. This is due to the absence of C2-C5 components in the 

depleted reservoir fluid. This indicates that a condensing gas drive mechanism is 

mainly responsible for the miscibility development in this type of reservoir system. 

 

Effect of Gas/Oil Molar Ratios on Interfacial Tension 

The following important observations can be made from the gas/oil IFT measurements 

conducted for the two selected constant gas/oil molar ratios at 238°F. 

1. Figure 2.36 are video images of the drop shapes captured by a digital video camera at 

various pressures for the gas/oil molar ratio Rm=8.346. Figure 2.37 are video images 

of the capillary heights of the liquid phase captured using the digital video camera at 

various pressures for the same gas/oil molar ratio Rm=8.346. 

The equilibrium IFT measured from the pendant drop technique is slightly high 

compared to that measured using the capillary rise technique at the constant gas/oil 

ratio Rm=8.346 (Table 2.28 and Figures 2.36 and 2.37). This is due to the less contact 

time of 6 hours between the fluid phases for the pendant drop technique as compared 

to the more equilibration time of 24 hours for the capillary rise technique, at the same 

gas/oil molar ratio Rm=8.346. 
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*Note: The ADSA program was not able to calculate the IFT because of the irregular shapes of the drops

Pressure (psig) = 1500 

Gas/Oil IFT (dyne/cm) = 7.30

Pressure (psig) = 2000 

Gas/Oil IFT (dyne/cm) = 6.00

Pressure (psig) = 3500 

Gas/Oil IFT (dyne/cm) = 1.70

Pressure (psig) = 4000 Pressure (psig) = 5000 Pressure (psig) = 5500 Pressure (psig) = 6000 

Pressure (psig) = 2500 

Gas/Oil IFT (dyne/cm) = 4.85

Pressure (psig) = 3000 

Gas/Oil IFT (dyne/cm) = 3.00

Gas/Oil IFT (dyne/cm) = 1.35 Gas/Oil IFT (dyne/cm) = 0.13 Gas/Oil IFT (dyne/cm) =* Gas/Oil IFT (dyne/cm) = *

 

Figure 2.36: Gas/Oil IFT using the pendant drop shape images at constant initial gas/oil 

molar ratio at 238°F (Rm=0.893/0.107=8.346) 

Gas/Oil IFT (dyne/cm) = 4.54

Pressure (psig) = 3000 

Height (cm) = 0.237

Pressure (psig) = 1500

Height (cm) = 0.475

Pressure (psig) = 2500

Height (cm) = 0.358

Pressure (psig) = 3500 

Height (cm) = 0.211

Pressure (psig) = 5000 

Height (cm) = 0.133

Pressure (psig) = 5500 

Height (cm) = 0.121

Pressure (psig) = 6000 

Height (cm) = 0.026

Pressure (psig) = 2500 

Height (cm) = 0.317

Gas/Oil IFT (dyne/cm) = 3.21 Gas/Oil IFT (dyne/cm) = 2.09 Gas/Oil IFT (dyne/cm) = 1.50

Gas/Oil IFT (dyne/cm) = 1.02 Gas/Oil IFT (dyne/cm) = 0.34 Gas/Oil IFT (dyne/cm) = 0.10 Gas/Oil IFT (dyne/cm) = 0.01

Pressure (psig) = 4000 

Height (cm) = 0.192

Gas/Oil IFT (dyne/cm) = 6.97

 

Figure 2.37: Gas/Oil IFT using the capillary rise at constant initial gas/oil molar ratio at 

238°F (Rm=0.893/0.107=8.346) 

 
2. It can also be seen from Figure 2.36 that the IFT measurements at pressures of 5000, 

5500 and 6000 psig could not be determined using the pendant drop technique due to 

the irregular shapes of the oil drops and the oil drops disappearing into the gas phase 

as the miscibility pressure is approached. This is an indication of the CO2-reservoir 

fluid system approaching miscibility and consequently becoming a single- phase fluid 

system. 
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Figure 2.38: Gas/Oil IFT using the capillary rise at constant initial gas/oil molar ratio at 

238°F (Rm=0.700/0.300=2.333) 

 
3. Figure 2.38 shows capillary height images of the liquid captured using the digital 

video camera at various pressure for the constant gas/oil molar ratio Rm=2.333. The 

measured capillary heights decreased (Figures 2.37 and 2.38) as the experimental 

pressures increased. This is due to the lowering of the IFT between CO2 and the live 

reservoir fluid as pressure increases. The interfacial forces between carbon dioxide 

and recombined reservoir fluid approach zero as fluids approach miscibility. 

4. Figure 2.39 is a plot of gas/oil IFT values versus pressure obtained using the pendant 

drop and capillary rise techniques for the constant gas/oil molar ratio of Rm=8.346. 

From Figure 2.39 it can be seen that the equilibrium IFT values measured using the 

pendant drop and capillary rise techniques agree reasonably well and that an 

exponential curve appears to fit IFT measurements at different pressures. However, 

the exponential curve cannot be extrapolated to zero interfacial tension to determine 

the minimum miscibility pressure. It was also noticed from Figure 2.39 that the last 

seven pressure points could provide a linear fit between the IFT measurements. 
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Figure 2.39: Comparison of IFT measurements using pendant drop and capillary rise 

techniques at constant initial gas/oil molar ratio at 238°F (Rm=0.893/0.107=8.346) 

 
5. Figure 2.40 shows that a good linear fit exists at the constant gas/oil ratio Rm=8.346 

using the capillary rise technique when the equilibrium IFT measurements are plotted 

against the reciprocal of pressure using a hyperbolic function with a coefficient of 

determination (R2) of 0.9952. The linear regression equation when extrapolated to 

zero interfacial tension axis provides a minimum miscibility pressure of 6180 psig for 

the constant gas-oil molar ratio Rm=8.346 and indicates a condition where there is no 

interface between the fluid-fluid phases and CO2 and live reservoir form a single 

phase. 
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Figure 2.40: Effect of initial gas/oil molar ratio on gas-oil IFT and equilibrium MMP 

using VIT at 238°F 

 
Figure 2.40 also shows that a good linear fit also exists when the equilibrium IFT 

measurements are plotted against the reciprocal of pressure at the constant gas-oil 

molar ratio Rm 2.333 using a hyperbolic function with a coefficient of determination 

(R2) of 0.9691. The linear regression equation when extrapolated to zero interfacial 

tension provides a minimum miscibility pressure of 6216 psig for the constant gas-oil 

molar ratio of Rm=2.333. 

6. From Figure 2.40 it can be seen that equilibrium IFT values measured for the 

Rm=8.346 were high compared to the case when Rm=2.333. This appears to be due 

to less amount of reservoir oil available in the feed at Rm=8.246 and hence less 

interaction of CO2 with the reservoir fluid. This has resulted in the lower extraction of 

components from the liquid phase. However, relatively more amount of reservoir oil 

is available in the feed when Rm=2.333 and hence the interaction of CO2 with the 

reservoir fluid appears to be more due to the greater amount of components available 

in the liquid phase for extraction. 

7. It can be seen from Figure 2.40 that the equilibrium IFT values measured at the two 

widely different gas/oil molar ratios of Rm=8.346 and Rm=2.333 converge almost to 

the same point of zero interfacial tension. This indicates that the equilibrium IFT 

measurements for the two selected gas-oil molar ratios move along different paths, 
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but they both appear to converge at about the same end point of zero interfacial 

tension to yield similar minimum miscibility pressures, within about 0.6% of each 

other. 

 

2.2.4.3.2 Constant Gas/Oil Volume Ratio Experiments 

In the previous section, IFT measurements were performed using the constant gas-oil 

molar ratios as feed in the mixture. The following section discusses the results of the gas-

oil IFT measurements performed with constant gas-oil volume ratio using the recombined 

reservoir crude oil as the liquid phase and carbon dioxide as the gas phase. These 

experiments were conducted at the reservoir temperature of 238°F and varying 

experimental pressures from 1500 psig to 6000 psig. This was done mainly to investigate 

the effect of compositional paths on the gas-oil IFT measurements using the constant 

gas/oil volume ratio approach. 

Measurements were carried out using a constant gas-oil volume ratio of 0.850 volume 

fraction of carbon dioxide gas and 0.150 volume fraction of recombined reservoir fluid as 

feed in the mixture (Rv=0.850/0.150=5.667) and a constant gas-oil volume ratio of 0.450 

volume fraction of carbon dioxide gas and 0.550 volume fraction of recombined reservoir 

fluid as feed in the mixture (Rv=0.450/0.550=0.818). 

The measured densities of the equilibrated gas liquid phases at 238°F and interfacial 

tension values obtained from the pendant drop and the capillary height techniques at the 

constant gas/oil volume ratio Rv=5.667 are summarized in the Table 2.34. 

 

Table 2.34: Summary of the equilibrated fluid densities and gas-oil IFT measured at 

constant gas/oil volume ratio of 0.850 volume fraction of CO2 and 0.150 volume fraction 

of recombined reservoir fluid (Rv=0.850/0.150=5.667) at 238°F 

Gas Volume Fraction 0.850

Liquid Volume Fraction 0.150

Pressure Density Diff. Capillary First-Contact IFT

Oil Gas ∆ρ Height Capillary Rise Pendant Drop Pendant Drop

(psig) (g/cc) (g/cc) (cm) (dyne/cm) (dyne/cm) (dyne/cm) Gas Oil

2000 0.7760 0.2167 0.5594 0.480 6.58 6.85 7.30 0.882 0.118

3000 0.7922 0.4250 0.3672 0.375 3.37 3.75 4.21 0.925 0.075

4000 0.8104 0.5349 0.2756 0.195 1.32 1.44 2.15 0.941 0.059

5000 0.8280 0.6158 0.2122 0.125 0.65 0.75 1.00 0.948 0.052

6000 0.8583 0.6861 0.1722 - *(1) *(2) *(3) 0.952 0.048

*(1) IFT could not be determined due to less oil in the feed mixture and the approaching miscibility between the fluid phases

*(2) and *(3) drop shapes could not be formed due to the approaching misciblity between the fluid phases

Equilibrium IFTEquilibrated Phase Densities Corresponding

Mole Fraction 
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Table 2.35: Compositional analysis of the equilibrated gas phase at constant gas/oil 

volume ratio of 0.850 mole fraction of CO2 and 0.150 mole fraction of recombined 

reservoir fluid (Rv=0.850/0.150=2.333) at 238°F 

Gas VolumeFraction 0.850

Liquid Volume Fraction 0.150

2000 3000 4000 5000 6000

Hydrogen Sulphide H2S 0.000 0.000 0.000 0.000 0.000

Carbon Dioxide CO2 96.616 97.962 98.316 98.640 98.622

Nitrogen N2 0.084 0.050 0.045 0.032 0.048

Methane C1 2.820 1.667 1.218 0.987 0.940

Ethane C2 0.000 0.000 0.000 0.000 0.000

Propane C3 0.008 0.006 0.007 0.000 0.000

i-Butane iC4 0.010 0.007 0.004 0.003 0.003

n-Butane nC4 0.023 0.009 0.010 0.007 0.008

i-Pentane iC5 0.049 0.036 0.026 0.021 0.022

n-Pentane iC5 0.044 0.033 0.024 0.019 0.020

Hexanes C6 0.103 0.083 0.076 0.063 0.070

Heptanes Plus C7+ 0.243 0.147 0.275 0.228 0.267

Total 100.000 100.000 100.001 100.000 100.000

Density, at Pressure (g/cc) 0.2167 0.4250 0.5349 0.6158 0.6861

Molecular Weight 43.44 43.68 43.89 43.91 43.96

Charged GOR, SCF/STB 10935 11359 11448 11429 11372

Component Carbon No.

Pressure (psig)

Gas Phase Mole%

 
Table 2.36: Compositional analysis of the equilibrated liquid phase at constant gas/oil 

volume ratio of 0.850 mole fraction of CO2 and 0.150 mole fraction of recombined 

reservoir fluid (Rv=0.850/0.150=2.333) at 238°F 

Gas VolumeFraction 0.850

Liquid Volume Fraction 0.150

1250 2000 3000 4000 5000 6000

Recombined

Reservoir Fluid*

Hydrogen Sulphide H2S 0.000 0.000 0.000 0.000 0.000 0.000

Carbon Dioxide CO2 0.063 51.063 65.903 69.532 73.337 76.195

Nitrogen N2 0.005 0.009 0.019 0.017 0.009 0.024

Methane C1 24.216 1.126 0.870 0.739 0.734 0.819

Ethane C2 0.011 0.007 0.003 0.006 0.006 0.005

Propane C3 0.021 0.007 0.006 0.004 0.001 0.000

i-Butane iC4 0.068 0.017 0.009 0.005 0.004 0.004

n-Butane nC4 0.190 0.046 0.024 0.017 0.014 0.013

i-Pentane iC5 0.638 0.173 0.114 0.057 0.042 0.036

n-Pentane iC5 0.597 0.175 0.119 0.058 0.041 0.035

Hexanes C6 2.353 0.821 0.375 0.262 0.159 0.132

Heptanes Plus C7+ 71.838 46.556 32.558 29.303 25.653 22.737

Total 100.000 100.000 100.000 100.000 100.000 100.000

Density, at Pressure (g/cc) 0.7403 0.7760 0.7922 0.8104 0.8280 0.8583

Molecular Weight (Recombined Oil) 165.7 134.3 116.1 116.1 115.8 115.5

Molecular Weight C7+ (Recombined Oil) 220.7 237.6 265.6 290.1 324.4 359.2

Flash GOR, SCF/STB 0 526 859 917 987 1045

* Bubble Point Pressure - New Batch

Component Carbon No.

Pressure (psig)

Liquid Phase Mole%
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The effect of constant gas/oil volume ratio Rv=5.667 in the feed mixture on the first-

contact and equilibrium miscibility for the CO2-recombined reservoir fluid system was 

investigated at different pressures at 238°F using the pendant drop technique and these 

results are also presented in Table 2.34. The compositional analysis of the equilibrated 

gas and liquid phases at 238°F for the constant gas/oil volume ratio Rv=5.667 are 

summarized in the Tables 2.35 and 2.36 respectively.  

Another set of gas-oil IFT experiments were performed with the constant gas-oil 

volume ratio of 0.450 volume fraction of CO2 and 0.550 volume fraction of recombined 

reservoir oil in the feed mixture (Rv=0.450/0.550=0.818) using the capillary rise 

technique. The measured densities of the equilibrated gas and liquid phases and 

equilibrium interfacial tension values at Rv=0.450/0.550=0.818 are summarized in Table 

2.37. 

 

Table 2.37: Summary of the equilibrated fluid densities and gas-oil IFT measured at 

constant gas/oil volume ratio of 0.450 volume fraction of CO2 and 0.550 volume fraction 

of recombined reservoir fluid (Rv=0.450/0.550=0.818) at 238°F 

Gas Volume Fraction 0.450

Liquid Volume Fraction 0.550

Pressure Density Diff. Capillary

Oil Gas ∆ρ Height Capillary Rise Pendant Drop

(psig) (g/cc) (g/cc) (cm) (dyne/cm) (dyne/cm) Gas Oil

2000 0.7645 0.2125 0.5520 0.175 2.37 * 0.519 0.481

3000 0.7728 0.3471 0.4256 0.114 1.19 * 0.640 0.360

4000 0.7664 0.4932 0.2732 0.066 0.44 * 0.696 0.304

5000 0.7856 0.6160 0.1696 0.033 0.14 * 0.724 0.276

6000 0.7971 0.7183 0.0788 0.010 0.02 * 0.740 0.260

* Equilibrium IFT could not be calculated from the drop shapes due to significant amounts of reservoir oil in the optical cell

Equilibrium IFTEquilibrated Phase Densities Corresponding

Mole Fraction 
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Table 2.38: Compositional analysis of the equilibrated gas phase at constant gas/oil 

volume ratio of 0.450 mole fraction of CO2 and 0.550 mole fraction of recombined 

reservoir fluid (Rv=0.450/0.550=00.818) at 238°F 

Gas Volume Fraction 0.450

Liquid Volume Fraction 0.550

2000 3000 4000 5000 6000

Hydrogen Sulphide H2S 0.000 0.000 0.000 0.000 0.000

Carbon Dioxide CO2 86.674 90.070 92.446 95.010 88.638

Nitrogen N2 0.107 0.099 0.048 0.050 0.041

Methane C1 12.476 8.882 6.669 4.419 4.709

Ethane C2 0.000 0.000 0.000 0.000 0.001

Propane C3 0.008 0.006 0.008 0.003 0.005

i-Butane iC4 0.017 0.015 0.016 0.008 0.011

n-Butane nC4 0.041 0.038 0.037 0.022 0.030

i-Pentane iC5 0.084 0.086 0.077 0.050 0.083

n-Pentane iC5 0.071 0.075 0.069 0.044 0.073

Hexanes C6 0.164 0.198 0.175 0.117 0.275

Heptanes Plus C7+ 0.358 0.531 0.455 0.277 6.134

Total 100.000 100.000 100.000 100.000 100.000

Density, at Pressure (g/cc) 0.2125 0.3471 0.4932 0.6160 0.7183

Molecular Weight 40.85 41.99 42.55 43.02 51.92

Charged GOR, SCF/STB 1754 2153 2311 2380 2411

Component Carbon No.

Pressure (psig)

Gas Phase Mole%

 

 

Table 2.39: Compositional analysis of the equilibrated liquid phase at constant gas/oil 

volume ratio of 0.450 mole fraction of CO2 and 0.550 mole fraction of recombined 

reservoir fluid (Rv=0.450/0.550=0.818) at 238°F 
Gas Volume Fraction 0.450

Liquid Volume Fraction 0.550

1250 2000 3000 4000 5000 6000

Recombined

Reservoir Fluid*

Hydrogen Sulphide H2S 0.000 0.000 0.000 0.000 0.000 0.000

Carbon Dioxide CO2 0.063 47.194 60.436 67.281 72.017 78.022

Nitrogen N2 0.005 0.021 0.035 0.024 0.029 0.018

Methane C1 24.216 4.333 4.047 4.122 4.170 3.289

Ethane C2 0.011 0.007 0.005 0.004 0.007 0.003

Propane C3 0.021 0.008 0.007 0.006 0.007 0.005

i-Butane iC4 0.068 0.030 0.023 0.023 0.020 0.015

n-Butane nC4 0.190 0.092 0.065 0.056 0.054 0.039

i-Pentane iC5 0.638 0.299 0.194 0.171 0.155 0.117

n-Pentane iC5 0.597 0.289 0.181 0.159 0.145 0.109

Hexanes C6 2.353 1.235 0.707 0.616 0.554 0.418

Heptanes Plus C7+ 71.838 46.492 34.300 27.538 22.842 17.965

Total 100.000 100.000 100.000 100.000 100.000 100.000

Density, at Pressure (g/cc) 0.7403 0.7645 0.7728 0.7664 0.7856 0.7971

Molecular Weight (Recombined Oil) 165.7 126.8 107.7 95.4 88.3 80.2

Molecular Weight C7+ (Recombined Oil) 220.7 223.2 231.9 233.6 241.3 249.3

Flash GOR, SCF/STB 0 556 911 1248 1553 2037

* Bubble Point Pressure - New Batch

Component Carbon No.

Pressure (psig)

Liquid Phase Mole%
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The compositional analysis of the equilibrated gas and liquid phases at 238°F for the 

constant gas/oil volume ratio Rv=0.818 are summarized in the Tables 2.38 and 2.39 

respectively.  

 

Effect of Constant Gas/Oil Volume Ratio on Fluid Phase Compositions, Densities and 

Molecular Weights 

 

The following observations are made on the effects of the two selected constant gas-oil 

volume ratios on the compositions, densities and molecular weights of the equilibrated 

gas and liquid phases from Figures 2.41-2.47 and Tables 2.34 and 2.37 respectively. 
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Figure 2.41: The dependence of gas/oil molar ratio on pressure at constant gas/oil 

volume ratios 

 
1. Figure 2.41 shows the plot of gas/oil molar ratio versus pressure for the two selected 

constant gas-oil molar ratios. It can be seen from Figure 2.41 that the gas/oil molar 

ratio increases rapidly with pressure at the constant gas/oil volume ratio Rv = 5.667 

and is an indication of approximately constant low amounts of reservoir oil in the 

feed mixture with increasing pressures. However it remains approximately constant 

for the constant gas/oil volume ratio Rv = 0.818 in the feed mixtures used in 

conducting the gas-oil IFT experiments at various pressures indicating approximately 

constant amounts of gas and constant amounts of oil in the feed mixture. 
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2. Figure 2.42 is a plot of densities of equilibrated fluid phases versus pressure for the 

two selected constant gas/oil volume ratios. As can be seen from Figure 2.42 the 

equilibrated gas phase density increases rapidly with pressure and the equilibrated 

liquid phase density changes slightly with pressure. The decrease in the difference in 

the densities between the equilibrated gas and liquid phase with increase in pressure 

provides evidence of CO2 gas approaching the miscibility pressure with this particular 

reservoir fluid. 
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Figure 2.42: The effect of equilibrated gas and liquid phase densities at constant initial 

gas/oil volume ratio at 238°F 

 
3. Figure 2.43 is a plot of CO2 mole% in the equilibrated fluid phases versus pressure 

for the two selected constant gas/oil volume ratios. It can be seen from Figure 2.43 

that CO2 in the equilibrated gas phase for the constant gas/oil volume ratio of Rv = 

5.667 was approximately 98 mole% at the various experimental pressures at 238°F. It 

was also observed that the densities of pure CO2 (Table 2.27) are approximately 

similar to the measured densities of the equilibrated gas phase shown in Table 2.34. 

This observation confirms that the gas phase contains predominantly CO2 and there 

has been very little extraction of light components from the liquid phase into the gas 

phase. 
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Figure 2.43: CO2 content in the equilibrated gas and liquid phases at 238°F 

 
4. Figure 2.43 also shows that the CO2 in the equilibrated gas phase for the constant 

gas/oil volume ratio of Rv = 0.818 increases with pressure until 5000 psig and then 

decreases slightly at 6000 psig. This was attributed to the presence of about 6 mole% 

of C7+ in the gas phase at 6000 psig. It was also observed while performing flash 

separation on the equilibrated gas phase at 6000 psig at the constant gas/oil volume 

ratio of Rv = 0.818, there was light brown condensate condensing into the separator. 

This is due to the gas being rich in C7+ components which have resulted in liquids 

dropping out of gas phase. 

5. Figure 2.44 is a plot of C7+ mole% in the equilibrated fluid phases versus pressure for 

the two selected constant gas/oil volume ratios. Figure 2.45 is a plot of flash GOR of 

the equilibrated liquid phase versus pressure. 
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Figure 2.44: C7+ content in the equilibrated gas and liquid phases at 238°F 
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Figure 2.45: Effect of CO2 dissolution in the liquid phase on GOR at 238°F 

 
Figure 2.43 indicated that the concentration of CO2 dissolving in the liquid phase 

increases appreciably with increase in pressure until 4000 psig and then increases slowly 

up to 6000 psig. Due to these phenomena the amount of C7+ mole% in the liquid phase 
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has decreased with increasing pressures (Figure 2.44). This indicates that the recombined 

reservoir fluid was fully saturated with CO2 and that miscibility between CO2 and 

recombined reservoir fluid was approached. Increasing gas-oil ratios with increasing 

pressures obtained by performing a flash separation analysis on the equilibrated liquid 

phases at each pressure as shown in Figure 2.45, was also an indication that CO2 is 

continuously dissolving into the liquid phase. 
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Figure 2.46: Equilibrated gas and liquid phase molecular weights as a function of 

pressure at constant initial gas/oil volume ratio at 238°F 

 
6. Figure 2.46 is plot of molecular weights of the equilibrated fluid phases versus 

pressure for the two selected constant gas/oil volume ratios The molecular weights for 

the equilibrated gas phase increases slightly with increase in pressure and molecular 

weights for the equilibrated liquid phase decreases rapidly until 3000 psig and then 

remains approximately constant up to 6000 psig for the constant gas/oil volume ratio 

Rv = 5.667 as shown in Figure 2.46. Due to this, the difference in molecular weights 

for the constant gas/oil volume ratio Rv = 5.667 between the equilibrated fluid phases 

decreases very slowly with increase in pressure. This could be due to the less 

interaction of CO2 with liquid phase, due to the less amount of reservoir fluid 

available in the feed mixture at the high gas/oil volume ratio Rv = 5.667. 

7. Figure 2.46 also shows that at the constant gas/oil volume ratio Rv = 0.818, the 

molecular weights of the equilibrated gas phase is almost constant until 5000 psig and 

then shows a slight increase at 6000 psig. At 6000 psig the gas phase is rich in C7+ 

components since it is able to extract these components from the liquid phase, due to 
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more reservoir fluid being available in the feed mixture. Due to these phenomena the 

difference in molecular weights of the equilibrated fluid phase is gradually decreasing 

with increase in pressure. The molecular weights at 6000 psig for the equilibrated gas 

and liquid phase at the constant gas/oil volume ratio Rv = 0.818 approach each other 

and is an indication that the compositions of the fluid-fluid phases will eventually 

become similar when miscible condition between CO2 and the reservoir fluid is 

approached. 

8. Figure 2.47 is a plot of C1 content in the equilibrated fluid phases versus pressure for 

the two constant gas/oil volume ratios. A very small amount of C1 component has 

been extracted by CO2 from the liquid phase into the gas phase as shown in Figure 

2.47, and the amount of extraction decreases very slowly with increase in pressure for 

the constant gas/oil volume ratio Rv = 5.667. But a large amount of C1 component is 

extracted by CO2 from the liquid phase at the constant gas/oil volume ratio Rv = 

0.818 and the extent of extraction decreases with increase in pressure. This is due to 

the less amount of reservoir oil present in the feed mixture (less C1 available in the 

feed mixture for extraction) for the constant gas/oil volume ratio of Rv 5.667 and 

more amounts of reservoir oil present in the feed mixture (more C1 available in the 

feed mixture for extraction) for the constant gas/oil volume ratio of Rv = 0.818. 
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Figure 2.47: C1 content in the equilibrated gas and liquid phases at 238°F 

9. There appears to be less interaction of the CO2 with the liquid phase as can be seen 

from the compositional analysis data shown in Figures 2.43, 2.44 and 2.47 and hence 

there is less transfer of components from the liquid phase into the gas phase. It also 
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appears that the amounts of extraction of components by CO2 from the liquid phase 

are dependant on the volume of reservoir fluid available in the feed mixture. The 

compositional analysis results of the liquid phase at each pressure also indicate that 

CO2 was continuously dissolving in the liquid phase with increase in pressure. This is 

due to the absence of C2-C5 components in the depleted reservoir fluid, leading to less 

extraction of hydrocarbon components from the liquid phase into the gas phase. All 

these observations indicate that a condensing gas drive mechanism was responsible 

for developing miscibility in this CO2-reservoir oil system. 

 

Pressure (psig) = 2000 

Gas/Oil IFT (dyne/cm) = 7.30

Pressure (psig) = 2000

Gas/Oil IFT (dyne/cm) = 6.85

Pressur  (psig) = 3000 

Gas/Oil IFT (dyne/cm) = 4.21

Pressure (psig) = 3000

Gas/Oil IFT (dyne/cm) = 3.75

Gas/Oil IFT (dyne/cm) = 0.75

Pressure (psig) = 4000 Pressure (psig) = 4000 Pressure (psig) = 5000 Pressure (psig) = 5000

Equilibrium IFT First-Contact IFT Equilibrium IFT

First-Contact IFT Equilibrium IFT First-Contact IFT Equilibrium IFT

Gas/Oil IFT (dyne/cm) = 2.15 Gas/Oil IFT (dyne/cm) = 1.44 Gas/Oil IFT (dyne/cm) = 1.00

First-Contact IFT  

Pressure (psig) = 6000

Gas/Oil IFT (dyne/cm) = *

 
*Note: The DSA program was not able to calculate the IFT because of the irregular shapes of the drops  
Figure 2.48: FCM and equilibrium gas/oil IFT using the pendant drop shape images at 

constant initial gas/oil volume ratio at 238°F (Rv=0.850/0.107=5.667) 

Effect of Gas/Oil Volume Ratios on Interfacial Tension 

 

Figure 2.48 shows the drop shape images captured by the digital video camera for the 

first-contact miscibility and equilibrium IFT performed at the constant gas/oil ratio of 
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Rv=5.667. The first-contact process corresponds to the IFT of the first drop of fresh 

reservoir fluid when it first meets CO2 gas without any liquid at the bottom of the optical 

cell i.e. the CO2 gas has not been exposed to the crude oil. The equilibrium IFT 

corresponds to the drops of reservoir fluid with the CO2 gas that attained complete mass 

transfer equilibrium by placing certain amount of reservoir oil at the bottom of the optical 

cell. Hence these equilibrium measurements represent the thermodynamic condition at 

which the fluid phases are in equilibrated and stabilized state. 
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Figure 2.49: Gas/Oil IFT using the capillary rise technique at constant initial gas/oil 

volume ratio at 238°F (Rv=0.850/0.107=5.667) 

 
Figures 2.49 and 2.50 show the capillary height images captured using the digital video 

camera for the constant gas/oil volume ratio corresponding to Rv=5.667 and Rv=0.818, 

respectively. 
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Figure 2.50: Gas/Oil IFT using the capillary rise technique at constant initial gas/oil 

volume ratio at 238°F (Rv=0.450/0.550=0.818) 

 
The IFT data measurements using pendant drop and capillary rise techniques are 

for the two gas/oil volume ratios are summarized in Tables 2.34 and 2.37 respectively. 

The following observations can be inferred from the first-contact and equilibrium 

gas/oil IFT measurements for two selected the constant gas/oil volume ratios Rv = 5.667 

and Rv = 0.818, respectively. 

1. The drop shape images shown in Figure 2.48 indicate that the IFT values calculated 

using the drop shape analysis software (DSA) is high for the first-contact miscibility 
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when compared to the equilibrium IFT values. These high first-contact IFT values 

clearly describe a situation where the fresh reservoir fluid contacts CO2 and hence no 

mass transfer and interaction of the CO2 with the reservoir fluid has occurred. The 

low equilibrium IFT values calculated from the drop shape images using the DSA 

program very much resemble multiple-contact miscibility where a complete counter 

directional mass transfer of components between the CO2 and reservoir fluid takes 

place and hence the two fluid phases are in complete equilibrium. 

There is a small difference observed between the equilibrium IFT values of the 

pendant drop and capillary rise techniques at the constant gas/oil volume ratio Rv = 

5.667 as shown in Figures 2.48 and 2.49 respectively (Table 2.34). This can be 

attributed to the less contact time between the fluid phases (6 hours) for the pendant 

drop technique as compared to the high stabilization time of 24 hours for the capillary 

rise technique at the constant gas/oil volume ratio Rv = 5.667. 

2. Figure 2.51 shows the plot of IFT measurements against the reciprocal pressure using 

a hyperbolic function. This plot indicates that a good linear fit exists for first-contact 

and equilibrium experimental IFT data using the pendant drop and capillary rise 

methods at the constant gas/oil volume ratio Rv = 5.667 with a coefficient of 

determination (R2) values of 0.9953, 0.9919 and 0.9927 respectively. These linear 

regression equations when extrapolated to zero interfacial tension provide a minimum 

miscibility pressure value for the first-contact and equilibrium conditions to be 6845 

psig and 6103 psig, respectively, based on pendant drop technique and a minimum 

miscibility pressure of 6142 psig for the equilibrium IFT data obtained using the 

capillary rise technique at the constant gas/oil volume ratio Rv = 5.667. 



 174 

G/O IFT = 20960/Pressure - 3.0621

R
2
 = 0.9953

G/O IFT = 20468/Pressure - 3.354

R
2
 = 0.9919

G/O IFT = 19133/Pressure - 3.115

R
2
 = 0.9927

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0.000100 0.000200 0.000300 0.000400 0.000500 0.000600 0.000700

1/Pressure, psi
-1 

G
a
s/
O
il
 I
F
T
 (
d
y
n
e/
cm

)

First-Contact IFT (Pendant Drop)

Equilibrium IFT (Pendant Drop)

Equilibrium IFT (Capillary Height)

Gas-Oil Volume Ratio (Rv=0.850/0.150=5.667)

First-Contact MMP = 20960/3.0621 = 6845 psig

Equilibrium MMP = 20468/3.0354 = 6103 psig

Equilibrium MMP = 19133/3.115 = 6142 psig

 
Figure 2.51: First-contact and equilibrium MMP using VIT technique at the constant 

gas/oil volume ratio Rv=5.667 at 238°F 

 
The extrapolated linear regression equations to zero interfacial tension indicate the 

condition where the interface between the fluid-fluid phases vanishes and as a result the 

entire fluid-fluid system becomes a single-phase fluid. As expected the MMP for the 

first-contact was higher than that of equilibrium MMP, since no mass transfer and 

interaction of components between CO2 and the reservoir fluid had occurred during the 

first-contact due to the fresh reservoir fluid contacting the CO2 for the first time. While 

the low MMP for the equilibrium IFT is a stabilized state of fluid-fluid phases due to the 

complete counter directional mass transfer of hydrocarbon between the fluid-fluid phases. 



 175 

G/O IFT = 19133/Pressure - 3.115

R
2
 = 0.9927

G/O IFT = 6715.2/Pressure - 1.089

R
2
 = 0.9876

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0.000100 0.000200 0.000300 0.000400 0.000500 0.000600 0.000700

1/Pressure, psi
-1

G
a
s/
O
il
 I
F
T
 (
d
y
n
e/
cm

)

Gas-Oil Volume Ratio (Rv=0.850/0.150=5.667) Gas-Oil Volume Ratio (Rv=0.450/0.550=0.818)

Equilibrium MMP = 19133/3.115 = 6142 psig

Equilibrium MMP = 6715.2/1.089 = 6166 psig

 
Figure 2.52: Effect of initial gas/oil volume ratio on gas-oil IFT and equilibrium MMP 

using VIT at 238°F 

 
3. Figure 2.52 shows that IFT data for the two constant gas/oil volume ratios of Rv = 

5.667 and Rv = 0.818 when plotted against reciprocal pressure using the hyperbolic 

function converge to similar end point on zero IFT axis. The linear curve fit gives an 

equilibrium MMP of 6142 psig for the constant gas-oil volume ratio of Rv = 5.667 at 

zero interfacial tension with a coefficient of determination (R2) of 0.9927and an 

equilibrium MMP of 6166 psig for the constant gas-oil volume ratio Rv = 0.818 at 

zero interfacial tension with a coefficient of determination (R2) of 0.9876. The 

equilibrium IFT measurements at the widely different two gas/oil volume ratios 

clearly indicate that although the initial mixture composition of the phases affects the 

gas/oil IFT yielding different relationships for its dependence on pressure, they all 

converge at same end point of zero interfacial tension yielding an almost identical 

miscibility pressure. 

 

2.2.4.3.3 Compositional Effects on IFT at Varying Gas/Oil Ratios (Molar and 

Volumetric) in the Feed Mixture 

Since gas-oil IFT is dependant on gas/oil ratio, it may appear that the minimum 

miscibility pressure, determined from VIT technique, may also depend on gas/oil ratio. 

However, Figures 2.40 and 2.52 indicated that although IFT varies with gas-oil ratio and 
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pressure at constant reservoir temperature for this type of CO2-reservoir fluid system, all 

of them would eventually converge to similar miscibility pressures at zero interfacial 

tension. 

Table 2.40: Summary of MMP data at varying gas/oil ratios 

Equilibrium

MMP (psig)

1 Gas/Oil Molar Ratio (Rm=8.346) 6180

2 Gas/Oil Molar Ratio (Rm=2.333) 6216

3 Gas/Oil Volume Ratio (Rv=5.667) 6142

4 Gas/Oil Volume Ratio (Rv=0.818) 6166

6176

0.31

1.20

72

86

Standard Deviation

% Maximum Deviation

% Variation in Gas/Oil Molar Ratio

% Variation in Gas/Oil Volume Ratio

Case Gas/Oil Ratio

Average MMP (psig)

 
 

Table 2.40 shows the MMP data obtained from performing the gas/oil IFT 

measurements using the VIT technique at the varying gas/oil molar ratios (72%) and the 

varying gas/oil volume ratios (86%). Table 2.40 indicated that a 4-fold increase in gas/oil 

molar ratio and a 7-fold increase in gas/oil volume ratio resulted in a standard deviation 

of only 0.31% and maximum deviation of only 1.20% in equilibrium MMP. These results 

clearly indicate that the compositional paths followed by the fluids to attain mass transfer 

equilibrium do not affect MMP derived from IFT measurements. This experimental study 

has also demonstrated that the VIT technique for miscibility determination is independent 

of the compositional path followed by gas and oil in their approach to equilibrium. 

The VIT technique involved contacting of fresh reservoir oil with already pre-

equilibrated CO2 gas by placing a small amount of oil at the bottom of the optical cell. 

This simulates a dynamic (multiple-contact) displacement process occurring in the 

reservoir where the injected gas interacts with reservoir oil as it moves ahead in the 

reservoir and gradually becomes altered in composition due to mass transfer between 

fluid phases so as to become miscible with the original oil. The definition of multiple-

contact is an approximation which serves well to explain the “continuous interaction” that 

actually occurs in the reservoir (or in the slim-tube) by means of several discrete steps or 

contacts (Ayirala and Rao, 2006). It is an approximation because infinite number of such 

contacts between phases will be required in order to truly approach the result of their 

continuous interaction. 
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Since the IFT measurements were made using the pendant drop and capillary rise 

technique after complete equilibrium and stabilization of the mass transfer between the 

fluid phases, it was concluded that the terms “Equilibrium IFT” and Equilibrium 

Miscibility” are appropriate to use for this type of an experimental study. Equilibrium 

IFT typically simulates a real reservoir where the injected CO2 gas interacts continuously 

with crude oil as it flows to the producing well. This continuous interaction enables 

counter-directional mass transfer (vaporizing and condensing) between the fluid phases 

thereby allowing the system to attain equilibrium miscibility. 

 

2.2.5 Summary of Conclusions 

The following important conclusions were drawn from the results of various VIT 

experiments conducted in this section using a live crude oil-CO2 system at reservoir 

conditions. 

1. The experimental procedure used in this study for IFT measurements closely 

resembles the continuous interaction between the injected gas and the crude oil 

occurring in the reservoir. At the leading edge of the CO2 slug, the gas which has 

attained compositional equilibrium with live reservoir oil through its continuous 

interaction as it flows through the reservoir, contacts fresh live reservoir oil ahead of 

the gas slug. This is exactly what is simulated in the VIT technique by allowing the 

gas and live reservoir oil to continuously interact and attain equilibrium before 

exposing the gas phase to fresh oil drops that are injected into the higher pressure 

optical cell for measuring the IFT through the pendant drop technique. Additional 

care was taken to restart each experiment at each new pressure to avoid compositional 

interference from the previous experiment. 

2. The validation of the vanishing interfacial tension technique to determine the fluid-

fluid miscibility in a real CO2-live reservoir fluid system using the pendant drop and 

capillary rise techniques once again proved that VIT is a fast and cost effective 

method, requiring small amounts of fluid samples. 

3. For the first time an in-depth insight into the phase behavior interactions between the 

fluid-fluid phases was gained from the compositional analysis of the fluid phases at 

two different gas/molar ratios and at two different gas/oil volume ratios in the feed 

mixture and at actual reservoir temperature. 

4. The compositional analysis data of the equilibrated fluid phases at constant gas/oil 

molar ratios and constant gas/oil volume ratios indicated that the gas phase contained 

predominantly CO2 and the CO2 continuously dissolved into the liquid phase with 

increase in pressure. The CO2 content in the liquid phase rapidly increased up to a 

certain pressure and then slowed down, until the liquid phase becomes fully saturated 

with CO2 near miscibility conditions. This type of behavior of CO2 gas observed with 
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the depleted reservoir fluid clearly indicated that condensing gas drive mechanism 

was the dominant mass transfer mechanism for miscibility development. 

5. The dominance of condensing gas drive mechanism for obtaining the miscibility with 

the depleted reservoir crude oil can be attributed to the least interaction of CO2 with 

the reservoir fluid to extract C2-C5 components from the reservoir fluid. This was 

confirmed by the compositions of the original reservoir fluid which showed 

negligible amounts of C2-C5 (about 2.528 mole%) components. This reservoir oil was 

depleted starting from an initial reservoir pressure of 4050 psi to the current reservoir 

pressure of 1100 psi at 238°F. Hence most of the lighter components of C2-C5 present 

in the original live oil were produced since the reservoir pressure was well below the 

bubble point pressure. This type of gas-oil interfacial tension measurements and their 

direct dependence on hydrocarbon fluid phase compositions at constant initial gas/oil 

(molar and volumetric) ratios provided an effective means to determine the mass 

transfer drive mechanisms responsible for miscibility development. 

6. An interesting finding of using the constant gas-oil ratio in the feed mixture for this 

type of a condensing mode gas-oil fluid system was that the amount of hydrocarbon 

components extracted by the CO2 gas from the reservoir fluid was dependent on the 

volume of oil present in the feed. More amount of reservoir fluid in the feed mixture 

had resulted in more extraction of n-C1 by CO2 from the liquid phase. Similarly less 

amount of reservoir fluid in the feed mixture had resulted in less extraction of n-C1 by 

CO2 from the liquid phase. Therefore, it can be concluded that the amount of 

extraction of hydrocarbon components from the reservoir fluid by CO2 is dependent 

on the gas-oil ratio in the depleted reservoir fluid-CO2 system. 

7. Minimum miscibility pressures of 6180 psig and 6216 psig were obtained for the two 

constant gas/oil molar ratios of Rm=8.346 and Rm=2.333, respectively. Hence, it can 

be concluded that although the equilibrium gas-oil interfacial tensions for the two 

gas/oil ratios exhibit different dependences on pressure, they converge to the same 

end point of zero interfacial tension with similar minimum miscibility pressures. 

8. The first-contact miscibility of 6845 psig obtained was distinctly higher than the 

equilibrium MMP of 6103 psig using the pendant drop technique at the constant gas-

oil volume ratio Rv=5.667 at 238°F when the gas-oil interfacial tension values were 

extrapolated to zero interfacial tension. These observations were in good agreement 

with the published literature (Rao, 1997). During a first-contact miscible 

displacement process, CO2 gas becomes miscible with the reservoir fluid to form a 

single-phase fluid on the first-contact itself. Hence no mass transfer of hydrocarbon 

components between the fluid phases will take place in a first-contact miscible 

displacement process. The lower value of MMP for equilibrium miscibility compared 

to first-contact miscibility is due to the fact that in equilibrium miscibility the CO2 gas 

attains equilibrium with the reservoir fluid due to complete mass transfer of 
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components during their continuous interaction, and hence a thermodynamic 

equilibrium state is reached between the injected gas and reservoir oil. The 

equilibrated minimum miscibility pressure at the constant gas/oil volume ratio 

Rv=5.667 at 238°F was 6142 psig using the capillary rise technique and this was in 

good agreement (within 0.64%) with the MMP value obtained from the equilibrium 

IFT values using the pendant drop technique at the same gas/oil volume ratio. 

9. The minimum miscibility pressure at the constant gas/oil volume ratio Rv=5.667 was 

6142 psig and at Rv=0.818 was 6166 psig using the capillary rise technique. These 

observations show that although the nature of dependence of equilibrium interfacial 

tension on pressure varies with gas-oil ratio, but all of them would eventually 

converge at the same point of zero interfacial tension to yield similar miscibility 

pressures. This once again proves the compositional independence of minimum 

miscibility pressures determined using the VIT technique. 

10. The experimentally determined VIT miscibility value (from 6103 psig to 6215 psig) 

at 238°F was in good agreement (within 7%) with the predicted MMP of 6675 psi at 

238°F calculated from modified Peng-Robinson (1987) equation of state model using 

the CMG-WinProp. The equation of state models for MMP calculations have been 

known to over predict the minimum miscibility pressure. Interestingly, the governing 

mass transfer mechanism of condensing drive mechanism inferred from the measured 

compositional data also agreed well with the predictions of PR-EOS calculations. 

11. The gas-oil interfacial tensions measured for the CO2-live reservoir fluid system 

using the capillary rise technique at reservoir conditions in this study proved that the 

capillary rise technique is accurate, and reliable, and can be successfully used to 

measure very low values of gas-oil interfacial tension for obtaining the minimum 

miscibility pressure through the VIT technique. 
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2.3 Development of Computational Models for Miscibility Prediction 

 

2.3.1 EOS Computational Model for Gas-Oil Miscibility 

 

2.3.1.1 Introduction 

Apart from the experimental techniques discussed previously in Section 2.1.1.1, a 

computational approach based on equations of state calculations is also available to 

determine minimum miscibility pressures. With the advances in computer implemented 

equations of state models, the predictions of phase behavior by this approach have 

become more reliable (Kuo, 1985). However, this approach requires the availability of 

compositional data for the reservoir fluids, which can be obtained from the laboratory 

PVT measurements that are considered to be somewhat tedious. 

An analytical model (Wang and Orr, 1998; Jessen et al., 1998; Wang and Peck, 2000) 

has been widely used in recent years to calculate the MMP and MME for real systems. 

The main principle involved in this analytical approach is that all key tie-lines intersect 

each other in a multicomponent system and hence these tie-line intersections can be used 

to determine the MMP or MME. The key tie-lines are first determined for various 

increasing pressures. MMP is then defined as the pressure at which one of the key tie-

lines becomes a critical tie-line, that is, a tangential tie-line of zero length to the critical 

locus. Besides speed and accuracy, the main advantage of this method is that the 

computed MME and MMP are dispersion-free. Oil and gas mixing due to dispersion 

affects the displacement efficiency and hence the oil recovery. Dispersional effects are 

much likely to be greater in the field than observed in the laboratory. The main 

disadvantage of this analytical technique is that a good equation of state fluid 

characterization is required. 

Lee and Reitzel (1982) determined the miscibility conditions of Pool A crude oil from the 

Brazeau River Nisku field with injection gas containing 90 mole% of methane by 

conducting laboratory slim-tube tests. They compared the experimental result with that 

obtained from PR-EOS calculations and found that the EOS predictions were higher by 

about 4.0 MPa than the experimental slim-tube measurement. They attributed this 

deviation to inaccuracies in estimating the critical points as well as to lack of suitable 

experimental PVT data to fine tune the PR-EOS. Firoozabadi and Aziz (1986) compared 

the slim-tube miscibility conditions with PR-EOS calculations for four different reservoir 

fluids. They found that PR-EOS predictions were consistently higher by about 0.7-9.0 

MPa for the four systems studied. Hagen and Kossack (1986) measured the MMP of 

methane-propane-n-decane systems using a high-pressure sapphire cell and compared 

their experimental results against slim-tube displacements and modified three-parameter 

PR-EOS calculations. They were able to accurately match the sapphire cell measurement 

of MMP with the three-parameter PR-EOS, using binary interaction coefficients as 
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regression variables. Ahmed (1997) used a new “miscibility function” in PR-EOS and 

matched the slim-tube experimental results of several already existing systems with an 

absolute average deviation of around 3.4%. Wang and Orr (1998), Wang and Peck (2000) 

used an analytical model to calculate the MMP and evaluated their model results with 

numerical simulation and slim-tube displacements. Jessen et al. (1998) developed a model 

based on Wang and Orr (1998) to predict the MMP and matched their model with slim-

tube experimental results and compositional simulators. 

 

2.3.1.2 Objectives 

The objective is to compare the VIT experimental results of MMP with those obtained 

from phase behavior calculations based on a PR-equation of state computational model. 

For this purpose, two reservoir fluids of Rainbow Keg River and Terra Nova were used, 

since all the PVT data needed for EOS calculations and the VIT experimental values of 

MMP were readily available (Rao, 1997; Rao et al., 1999; Rao and Lee, 2002). VIT 

experimental results of two standard gas-oil systems of n-decane-CO2 at 37.7
oC and live 

decane (consisting of 25 mole% methane, 30 mole% n-butane and 45 mole% n-decane)-

CO2 at 71.1
oC, reported in Section 2.1.1.5, were also used for comparison with EOS 

calculations. All the phase behavior calculations were carried out using the commercial 

simulator, Winprop (Computer Modelling Group Ltd., 2002). This is a multiphase 

equilibrium program equipped with Peng-Robinson (PR) (Peng and Robinson, 1976) and 

Soave-Redlich-Kwong (SRK) (Redlich and Kwong, 1949; Soave, 1972) equations of 

state and accommodates most of the phase behavior calculations efficiently. 

 

2.3.1.3 EOS Tuning 

The phase behavior calculations of reservoir fluids are routinely made using equations of 

state in petroleum industry today. It is common practice to tune equations of state prior to 

use for accurate phase behavior prediction of reservoir fluids. EOS tuning is nothing but 

the calibration of EOS against the experimental data by adjusting the input values of 

some uncertain parameters in the EOS so as to minimize the difference between the 

predicted and measured values. The effectiveness of each experimental property is 

introduced into the EOS model through its weight factor. The weakness of EOS towards 

calculation of some specific properties, the reliability of data and the target for the fluid 

properties study affect the values of these weight factors. Coats and Smart (1986), Coats 

(1988) and Bahbahaninia (2001) recommended a universal set of weight factors for 

experimental data to ensure proper tuning of EOS, which are shown in Table 2.41. 

However, if the input parameters of EOS were adjusted widely by assigning weight 

factors other than those suggested by Coats and Smart (1986), Coats (1988), 

Bahbahaninia (2001) to match the experimental data, it would lead to unrealistic results. 

This is known as over tuning of EOS. Pederson et al. (1988) discussed the dangers of 
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over tuning of EOS and provided many examples of reliable predictions without any 

tuning, but only by a proper analysis and characterization of real reservoir fluids. Danesh 

(1998) suggested that, in general, any leading EOS, which predicts the phase behavior 

data reasonably well without tuning, would be the most appropriate choice for phase 

behavior calculations. 

 
Table 2.41: Optimum Weight Factors Proposed for Proper EOS Tuning (Coats and 

Smart, 1986; Smart, 1988; Behbahaninia, 2001) 

Property Weight Factor

Saturation Pressure 50

Oil Specific Gravity 5 – 10

Gas Compressibility Factor 2 – 3

All Other Properties 1
 

 

Table 2.42: Composition of Rainbow Keg River Fluids Used 

Reservoir Temperature: 87oC      Saturation Pressure: 17.15 MPa 
Reservoir Pressure: 17.50 MPa (bubble point) 

 

Hydrogen Sulfide 1.37 0.00 0.00

Carbon Dioxide 0.82 1.24 0.80

Nitrogen 0.57 1.76 0.40

Methane 35.13 81.01 14.73

Ethane 10.15 11.14 21.34

Propane 6.95 3.95 41.83

iso-Butane 1.10 0.50 7.35

n-Butane 3.16 0.34 11.67

iso-Pentane 2.29 0.00 0.00

n-Pentane 1.74 0.07 1.89

Hexanes 3.68 0.00 0.00

Heptanes plus 33.04 0.00 0.00

Total 100 100 100

C2+ + CO2 62.93 17.24 84.88

Mol % in lean gas 

(Primary)

Mol % in rich gas 

(Makeup)
Component Mol % in live oil

 
  
 

C7+ Properties: 
Specific Gravity: 0.8397  
Molecular Weight: 205 

 

From the Table 2.41, it is observed that saturation pressure has the highest weight 

factor of 50. The higher the weight factor, the more accurate is the measurement of that 

data and hence more importance must be given to match that property. Hence, in this 

study, EOS has been tuned to match saturation pressures as done by Jessen et al. (1998) 

and Glaso (1990). Peng-Robinson EOS has been chosen as it is most widely used in the 
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industry. The reservoir fluid compositions, reservoir temperatures and saturation 

pressures described in Tables 2.42 and 2.43 form the basis for this study.  Before tuning 

the EOS, the heptanes plus fraction was characterized using two-stage exponential 

distribution (Whitson and Brule, 2000). Then the PR-EOS was tuned to match the 

saturation pressures using different tuning approaches. The detailed description of the 

equations and the procedures used for obtaining the optimum values of regression 

parameters while tuning PR-EOS to match the saturation pressure can be seen elsewhere 

(Computer Modeling Group Ltd., 2002).  

 

Table 2.43: Composition of Terra Nova Fluids Used 

 
Reservoir Temperature: 96oC        Saturation Pressure: 24.79 MPa 

Reservoir Pressure: 38.04 MPa           (bubble point) 
 

Mol % in lean gas  

(Primary)

Mol % in rich gas  

(Makeup)

Nitrogen 0.15 0.33 0.21

Carbon dioxide 0.69 1.1 1.18

Methane 45.06 90.11 51.55

Ethane 5.37 6.01 12.8

Propane 5.44 2.09 16.31

iso-Butane 0.98 0.12 2.63

n-Butane 2.85 0.21 6.71

iso- Pentane 1.24 0.02 2.12

n- Pentane 1.8 0 2.35

n-Hexane 9.13 0 3.86

Heptanes plus 27.29 0 0.29

Total 100 100 100

CO2+ C2+ 54.79 9.56 48.24

Component Mol % in live oil

 
  

C7+ Properties: 
Specific Gravity: 0.879 
Molecular Weight: 241 

 

The regression parameters tuned are: 

1. The critical temperature, Tc, of the heaviest component in the characterized heptanes 

plus fraction 

2. The critical pressure, Pc, of the heaviest component in the characterized heptanes plus 

fraction 

3. The acentric factor, ω, of the heaviest component in the characterized heptanes plus 

fraction 

4. The binary interaction coefficient (BIC), Kij, between methane and the heaviest 

component in the characterized heptanes plus fraction 
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5. Volume shift parameter, S, of the heaviest component in the characterized heptanes 

plus fraction 

6. EOS parameter, Ωb, of the heaviest component in the characterized heptanes plus 

fraction 

7. Molecular weight of the heaviest component in the characterized heptanes plus 

fraction 

The initial and final values of tuned parameters and predicted saturation pressures for 

different tuning approaches of RKR and Terra Nova crude oil systems are given in Tables 

2.44 and 2.45, respectively. The deviations of EOS predicted saturation pressures without 

tuning and without heptanes plus characterization from experimental values were 

reasonable (less than 5%). The tuning of volume shift parameter and molecular weight of 

the heaviest component in C7+ fraction were ineffective in improving the match of EOS 

predictions. The EOS predictions from the tuned parameters of critical temperature, 

critical pressure, binary interaction coefficient, acentric factor and Ωb of the heaviest 

component in C7+ fractions matched well with the experimental saturation pressure. The 

best fit of saturation pressures was obtained with the tuned parameter of binary 

interaction coefficient for both the cases studied. Furthermore, in order to match the 

experimental saturation pressure, an absolute change of less than 5% was needed in all 

these parameters. Knowing the uncertainty in the experimental measurements, these 

variations in EOS parameters can be considered as reasonable. 

 

2.3.1.4 MMP Determination Using EOS  

The compositions of the lean and rich gases used for making up the solvent and the 

compositions of various solvents used in VIT experiments as well as in EOS calculations 

are shown in Tables 2.42, 2.46 and 2.43, 2.47 for RKR and Terra Nova reservoirs, 

respectively.  

The following steps are used in the commercial simulator, Winprop (Computer 

Modelling Group Ltd., 2002) to calculate the MMP at a given temperature. 

1. An initial pressure below MMP is chosen to start the computation. 

2. The reservoir temperature, crude oil composition, primary and makeup gas 

compositions, makeup gas fraction, pressure increment, solvent to oil ratio increment, 

equilibrium gas/original oil mixing ratio and equilibrium liquid/original solvent 

mixing ratio are then provided as inputs to the program. 

3. The composition of solvent obtained by mixing of primary and makeup gases is then 

calculated using the specified ratio. 

4. Solvent is added to the crude oil at specified solvent to oil molar ratio increments and 

flash calculations are performed until two-phase region is detected. The absence of 

two-phase region implies first contact miscibility and the program stops. 
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5. For the presence of two- phase region, the program checks the relative positions of 

solvent and crude oil compositions with respect to limiting tie line. If the solvent 

composition is to the left, while that of crude oil to the right of limiting tie line, then 

the process is a vaporizing gas drive. Otherwise, the process is a condensing gas drive 

(Green and Willhite, 1998). 

6. For vaporizing gas drive, using the first point in the two-phase region detected in step 

4, the flashed vapor is mixed with the original oil at the specified ratio of equilibrium 

gas to original oil and the flash calculation is performed.  

7. For condensing gas drive, using the first point in the two-phase region detected in 

step 4, the flashed liquid is mixed with the original solvent at the specified ratio of 

equilibrium liquid to original solvent and the flash calculation is performed. 

8. The procedure is repeated until the liquid composition is same as the vapor 

composition and MMP is the pressure at which this occurs and the program stops. 

9. Otherwise, the pressure is increased at specified pressure increment and the steps 4 to 

8 are repeated. 

 

Table 2.44: Comparison of MMP from VIT Measurements and EOS Calculations Using 

Various Tuning Approaches for Rainbow Keg River Fluids 

Tuned    

Value

Psat        

(MPa)

Solvent #1   

(C2+=51.0%)  

MMP         

(MPa)

Solvent #2 

(C2+=52.5%)     

MMP          

(MPa)

Solvent #3  

(C2+=59.7%) 

FCM        

(MPa)

- - 17.15 0.00 14.8 14.0 14.8

Tc ( 
o
C

 
) 667.817 642.33 17.15 0.00 21.8 23.7 22.3

Pc (MPa) 1.0367 0.9903 17.14 -0.05 21.8 23.6 23.5

ω 1.09313 1.04037 17.15 0.00 21.9 21.7 22.7

0.085167 0.035171 17.33 1.05 15.6 16.4 24.7

Kij (C1 – C27+) 0.111198 0.105836 17.15 0.00 15.9 23.6 23.6

Ω b 0.077796 0.079139 17.15 0.00 24.1 23.7 23.1

Mw (g/mole) 480.611 480.611 17.33 1.05 15.6 16.4 24.7

17.8 16.7 19.5

- - 17.32 1.02 15.6 16.4 24.7

- - 17.68 3.07

Parameter
Initial   

Value

Deviation*        

(%)

Experimental (VIT)

No tuning and without 

C7+ characterization

No tuning and with C7+ 

characterization

Volume Shift 

Parameter, S
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Table 2.45: Comparison of MMP from VIT Measurements and EOS Calculations 

 
Tuned      

Value

Psat          

(MPa)   

Solvent #1   

(C2+=9.56%) 

MMP         

(MPa)

Solvent #2     

(C2+=21.4%) 

MMP        

(MPa)

Solvent #3      

(C2+=29.4%) 

MMP        

(MPa)

Solvent #4     

(C2+=32.3%)   

MMP     

(MPa)

Solvent #5  

(C2+=41.2%)   

MMP       

(MPa)

34.24

34.60

34.58

34.93

34.58

34.93

34.59

-

26.20

29.30

34.59

35.95

37.32

36.64

35.95

30.48

38.40

37.67

-

30.00

40.00

35.95

37.32

37.32

36.64

39.40

38.00

31.80

30.60

44.40

31.50

32.87

38.01

31.85

31.50

Mw (g/mole)

57.80

55.00

54.80

38.00

38.70

38.70

38.40

38.00

38.70

38.70

39.04

38.70

38.00

62.85

60.70

56.20

38.00

0.14

0.17

3.59 38.00

38.70

39.40

2.89

0.50

2.84

3.59

0.00

-

5.84

3.59

25.683

24.828

24.834

25.683

25.683

25.510

24.917

25.497

-

-

- 24.793

-

26.241

0.8282

723.098

606.549

-

0.082574

0.106069

0.122

1.16924

0.07201

0.119124

0.077796

577.624

ω

Kij (C1 – C31+)

Ω b

-

-

-

-

741.47

0.9453

1.20948

Experimental (VIT)

Visible MMP

Tc  ( 
o
C )

Pc  (MPa)

Parameter
Deviation*      

(%)

No tuning and without 

C7+ characterization

No tuning and with C7+ 

characterization

Volume Shift       

Parameter, S

Initial     

Value

Using Various Tuning Approaches for Terra Nova Fluids 

* Deviation (%) = (Psat,calc – Psat,exp) / (Psat,exp) 

 
Table 2.46: Composition (in Mole %) of Solvents Used in VIT Tests as well as in EOS 

Calculations of Rainbow Keg River Fluids 

Component Solvent #1 Solvent #2 Solvent #3

Hydrogen Sulfide 0.00 0.00 0.00

Carbon Dioxide 1.01 1.00 0.96

Nitrogen 1.06 1.03 0.89

Methane 46.93 45.47 38.46

Ethane 16.38 16.61 17.69

Propane 23.42 24.26 28.27

iso-Butane 4.02 4.17 4.90

n-Butane 6.16 6.41 7.61

iso-Pentane 0.00 0.00 0.00

n-Pentane 1.01 1.05 1.24

Hexanes 0.00 0.00 0.00

Heptanes plus 0.00 0.00 0.00

Total 100.00 100.00 100.00

 C2+ 51.00 52.50 59.70

Makeup (%) 51.417 53.621 64.198  
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Table 2.47: Composition (in Mole %) of Solvents Used in VIT Tests as well as in EOS 

Calculations of Terra Nova Fluids 

Nitrogen 0.33 0.2933 0.2684 0.2594 0.2318

Carbon dioxide 1.1 1.1245 1.141 1.1471 1.1654

Methane 90.11 78.306 70.3285 67.4085 58.5642

Ethane 6.01 8.0894 9.4932 10.0071 11.5635

Propane 2.09 6.4444 9.3848 10.4611 13.7211

iso-Butane 0.12 0.8886 1.4076 1.5976 2.173

n-Butane 0.21 2.2004 3.5445 4.0365 5.5266

iso- Pentane 0.02 0.663 1.0973 1.2562 1.7377

n- Pentane 0 0.7196 1.2055 1.3834 1.9222

n-Hexane 0 1.182 1.9802 2.2723 3.1573

Heptanes plus 0 0.0888 0.1488 0.1707 0.2372

Total 100 100 100 100 100

CO2 + C2+ 9.56 21.4 29.4 32.33 41.2

Makeup (%) 0 30.62 51.3 58.87 81.8

Solvent #4 Solvent #5Component Solvent #1 Solvent #2 Solvent #3
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Figure 2.53: Representation of Condensing Drive Mechanism on a Pseudo-Ternary 

Diagram for Rainbow Keg River Fluids at a C2+ Concentration of 52.5% in Solvent 

 

2.3.1.5 Results and Discussion  

Rainbow Keg River Reservoir.  Figure 2.53 (for a pressure of 16.7 MPa) shows the 

development of multiple-contact miscibility by condensing drive mechanism at a C2+ 

concentration of 52.5% in the solvent, as an example case. Since the 7 th contact-line 

between solvent (A) and the liquid phase (L7) lies outside the two-phase envelope, the 
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MMP is 16.7 MPa. The summary of VIT experimental results and EOS calculations for 

different tuning approaches is shown in Table 2.44.  The comparison is shown in Figure 

2.54, which indicates that the MMP predictions from untuned PR-EOS and without C7+ 

characterization were consistently higher by about 3-5 MPa than VIT measurements at all 

C2+ enrichments. This is in good agreement with other studies (Lee and Reitzel, 1982; 

Firoozabadi and Aziz, 1986), which show that EOS calculations generally yield more 

conservative results than laboratory measurements. 
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Figure 2.54: Comparison of Miscibility Conditions of RKR Fluids Obtained from VIT 

Experiments and EOS Calculations 

 

As can be seen in Table 2.44, the MMP predictions from tuned EOS of critical 

temperature, critical pressure, acentric factor, binary interaction coefficient, and Ωb 

parameter are nearly the same. Interestingly, all these tuned parameters also resulted in 

similar saturation pressure predictions. But these MMP predictions significantly differed 

from the VIT experimental values. Thus, in spite of matching the saturation pressure with 

acceptable change in EOS parameters, the significantly different MMP predictions 

obtained in this study for different tuning approaches clearly indicate that tuning of EOS 

may not be always suitable while calculating the MMP. However, it also raises question 

as to the effect of choosing another measured property to match other than saturation 

pressure, on MMP prediction. 

Terra Nova Reservoir. Table 2.45 shows the summary of VIT experimental values 

and EOS calculations for this reservoir. The comparison between various experimental 
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techniques and EOS calculations is shown in Figure 2.55. The important observations 

are: 

• Large differences exist between untuned and tuned EOS at low C2+ enrichments 

below 25%. 

• Untuned EOS prediction is much closer to VIT and visible MMP experimental values 

than tuned EOS predictions. 

• Sharp decline in MMP is indicated at C2+ enrichments above 21.4% by almost all the 

techniques including VIT, visible observation, untuned and tuned EOS. 

• Both tuned and untuned EOS indicate that calculated MMP is insensitive to 

enrichment when the C2+ enrichment level is between 9.5-21.4%. This does not 

appear to be reasonable, since the doubling of enrichment should be expected to yield 

a significant drop in MMP. 
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Figure 2.55: Comparison of Miscibility Conditions of Terra Nova Fluids Obtained from 

VIT Experiments and EOS Calculations 

 

In three out of total of five cases studied, the predicted MMP from untuned PR-EOS 

and without C7+ characterization reasonably matched the visible MMP from VIT 

experiments. Interestingly, the C2+ concentration in the solvent is around 30% for the two 

particular cases where the strong disagreement is observed. In one out of three cases 

where reasonable match is obtained, the EOS prediction is about 3.0 MPa higher than the 

VIT experimental value. The C2+ concentration in the solvent for this case is around 40%. 

Similar situation was observed at 50% C2+ concentrations in the RKR case. Furthermore, 
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the slim-tube measurement exactly lies on the line joining the visible MMP experimental 

points (Figure 2.55). 
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Figure 2.56: Effect of Tuning on EOS MMP Predictions for Terra Nova Fluids 
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Figure 2.57: Determination of VIT Miscibility in Decane-CO2 System at 37.7oC 
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The comparison of predicted MMP from different tuning approaches is shown in 

Figure 2.56. The overall range of predicted MMP from tuned EOS was from 30 to 40 

MPa throughout the range of enrichments studied. However, the experimental (VIT) 

MMP ranged from 31.8-62.85 MPa. The untuned EOS prediction did cover the same 

range as experimental data. While critical temperature, acentric factor and binary 

interaction coefficient show a sharp decline in predicted MMP at a C2+ concentration 

above 21.4%, the remaining tuned parameters did not show such a decline. This clearly 

points out that any MMP value within the range of 10 MPa can be matched by suitably 

choosing a tuning parameter, which in turn raises questions about the utility of such non-

unique results from EOS tuning. 

Standard Gas Oil Systems. The interfacial tensions measured in n-decane-CO2 system at 

a molar composition of 40 mole% gas and 60 mole% oil in the feed are plotted against 

pressure in Figure 2.57 to determine miscibility using the VIT technique. A good linear 

relationship between interfacial tension and pressure can be seen with a coefficient of 

determination (R2) value of 98.8%. The regression equation obtained is also shown in 

Figure 2.57. The extrapolation of this relation to zero interfacial tension gives a VIT 

miscibility of 7.83 MPa. This VIT miscibility agrees well with the slim-tube miscibility 

of 8.27 MPa reported for this gas-oil system at 37.7oC (Elsharkawy et al., 1996).  
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Figure 2.58: Determination of VIT Miscibility in Live Decane-CO2 System at 71.1oC 



 192 

 

The standard gas-oil system of live decane-CO2 has been reported to have a slim-tube 

MMP of 11.7 MPa at 71.1oC (Metcalfe and Yarborough, 1978). The same MMP has been 

obtained even with phase diagram measurements (Metcalfe and Yarborough, 1978) and 

analytical model calculations (Monroe et al., 1990; Orr et al., 1993). The interfacial 

tensions measured in this gas-oil system at 71.1oC and at a molar composition of 20 

mole% gas and 80 mole% oil in the feed are plotted against pressure in Figure 2.58 to 

determine the VIT miscibility. The IFT measurements were fitted using a hyperbolic 

function. This function was mainly used to fit the curvature to the data that resulted due 

to almost one order of magnitude reduction in IFT observed near miscibility. A good 

linear relationship between IFT and reciprocal pressure can be seen with a determination 

coefficient (R2) of 98.1%. The regression equation obtained is also shown in Figure 2.58, 

which when extrapolated to zero IFT yielded an MMP of 12.2 MPa. This VIT miscibility 

agrees well with the miscibility pressures reported from the slim-tube, phase diagram and 

analytical models (11.7 MPa).  

The comparison of VIT miscibilities measured in the two standard gas-oil systems 

with untuned PR-EOS calculations are given in Table 2.48. From Table 2.48, close match 

between the VIT miscibilities and EOS calculations can be seen for both the gas-oil 

systems with low absolute deviations in the range of 3.5-8.7%. Thus the good match of 

VIT miscibilities with slim-tube measurements (with small absolute deviations in the 

range of 4.1-5.6%) as well as untuned EOS calculations obtained once again validate VIT 

technique to determine fluid-fluid miscibility in multicomponent hydrocarbon systems. 

Reality Check on EOS Tuning. The best set of tuning parameter (binary interaction 

coefficient) obtained in this study that matched the saturation pressures for both the 

reservoir crude oils perfectly, was used to predict the laboratory PVT data as a reality 

check. The weight factors proposed by Coats and Smart (1986), Coats (1988) and 

Bahbahaninia (2001) were used to improve the PR-EOS predictive capabilities. These 

predictions were then compared against the actual laboratory PVT measurements of 

reservoir crude oil samples. The comparisons of tuned PR-EOS predictions against the 

PVT experimental data for RKR and Terra Nova crude oils are shown in the Figure 2.59 

and Figure 2.60, respectively. It is observed that, the best set of tuned EOS parameter was 

unable to predict the other PVT measurements such as oil specific gravity, gas 

compressibility factor and gas-oil ratio as accurately as the saturation pressure, for the 

two reservoir cases. This raises another question: Is tuning an EOS based on saturation 

pressure alone enough to provide capability to predict other PVT properties and 

miscibility conditions? This study therefore recommends further work, using different 

tuning strategies, to address this question. The recent efficient EOS tuning strategy 

proposed by Zurita and McCain (2002) has been identified as one such approach for 

future use to improve the tuned EOS predictions reported in this study. 
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Figure 2.59: Comparison of Tuned PR-EOS Predicted and Experimental PVT Data of 

RKR Fluids 

 
 
 
Table 2.48: Comparison of Measured VIT Miscibilities with Slim-Tube Miscibilities and 

EOS Calculations in Standard Gas-Oil Systems 

MMP              

(MPa)

Abs. Dev. from VIT            

(%)

MMP                            

(MPa)

Abs. Dev. from VIT              

(%)

Decane - CO2 at 37.7
oC 7.83 8.27 5.6 7.56 3.5

Live Decane -CO2 at 71.1
oC 12.2 11.7 4.1 13.27 8.7

Standard Gas-Oil System
VIT Miscibility           

(MPa)

Slim-Tube Miscibility EOS Miscibility           
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Figure 2.60: Comparison of Tuned PR-EOS Predicted and Experimental PVT Data of 

Terra Nova Fluids 

2.3.1.6 Conclusions  

1. Tuning of critical temperature, critical pressure, binary interaction coefficient, 

acentric factor, and Ωb of the heaviest component in C7+ fraction were effective in 

matching the experimental saturation pressure of RKR and Terra Nova crude oils. 

2. Tuning of volume shift parameter and molecular weight of the heaviest component in 

C7+ fraction were found to be ineffective in improving the EOS prediction of 

saturation pressure for RKR and Terra Nova crude oils. 

3. The MMP calculated using untuned PR-EOS and without C7+ characterization 

reasonably matched the VIT experimental values (within 3-5 MPa) for RKR 

reservoir. 

4. For Terra Nova reservoir, in three out of total five cases studied, the visible MMP 

from the VIT experiments reasonably matched the untuned PR-EOS calculations. 
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5. The MMP calculated using the tuned EOS with different tuning approaches showed 

strong disagreement with the experimental MMP from the VIT technique for both the 

RKR and Terra Nova reservoirs. This clearly indicates that tuning of EOS is not 

advisable for calculating the MMP of these reservoirs. 

6. This work also indicates that MMP can be matched within a 10 MPa range by 

suitably choosing a tuning parameter, which raises questions about the utility of such 

non-unique results from EOS tuning. 

7. The good match of VIT miscibilities obtained with slim-tube measurements as well as 

untuned EOS calculations in the two standard gas-oil systems studied once again 

validate VIT technique to determine fluid-fluid miscibility in multicomponent 

hydrocarbon systems. 

 

2.3.2 Parachor Computational Model for Gas-Oil Miscibility 

 

2.3.2.1 Introduction 

Need for Gas-Oil Miscibility. More than half of the crude oil found in petroleum 

reservoirs is left behind at the end of primary recovery and secondary water floods. This 

is due to rock-fluids interactions including capillary forces, which prevent the oil from 

flowing within the pores of reservoir rock, trapping huge amounts of residual oil in 

reservoirs. These capillary forces can be reduced to a minimum if the interfacial tension 

between the injected fluid and the trapped crude oil is reduced to zero. Zero interfacial 

tension is nothing but miscibility between the injected fluid and reservoir crude oil 

(Benham et al., 1965; Stalkup, 1983; Holm, 1987; Lake, 1989). Thus there is a need for 

miscibility development between the gas injected (natural gas or CO2) and the crude oil 

to remobilize these huge amounts of trapped oil and improve the oil recovery. 

Mass Transfer Mechanisms in Miscibility Development. Miscible displacement of 

crude oil in a reservoir can be carried out by the injection of gases such as hydrocarbon 

solvents, CO2, flue gas and nitrogen. The compositional changes resulting from the mass 

transfer between reservoir oil and injected gas promote miscibility attainment. During 

displacements of oil by gas, miscibility develops mainly due to three types of mass 

transfer mechanisms between the fluids in reservoir, namely vaporizing gas drive, 

condensing gas drive and combined condensing/vaporizing gas drive.  

In the vaporizing gas injection process, the injected gas is relatively a lean gas 

consisting of mostly methane and other low molecular weight hydrocarbons. As the 

injected fluid moves through the reservoir, it contacts the reservoir oil several times and 

becomes enriched in composition by vaporizing the intermediate components (C2 to C4) 

in the crude oil. This process continues till the injected gas attains miscibility with 

reservoir oil.  
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In the condensing gas injection process, the injected gas contains significant amounts 

of intermediates (C2 to C4). During the multiple contacts of the injected gas with crude oil 

in the reservoir, the intermediates condense from gas phase into the oil phase. The 

continuation of this process modifies the reservoir oil composition to become miscible 

with additional injected gas, resulting in miscible displacement. 

In the combined condensing/vaporizing process, the light intermediate compounds in 

the injected gas (C2 to C4) condense into the reservoir oil, while the middle intermediate 

compounds (C5–C10 to C30) in the crude oil vaporize into the injected gas. This prevents 

miscibility between fluids near the injection point as the oil becomes heavier. As the 

injection of gas continues, there will be no further condensation of light intermediates 

from the injected gas into this saturated oil. However, the vaporization of middle 

intermediates continues from the oil enriching the injected gas further. As this 

condensation/vaporization process continues farther into the reservoir, the gas becomes 

enriched to greater and greater extents as it contacts more and more oil and eventually 

becomes miscible with reservoir oil. This mechanism involving simultaneous counter- 

directional mass transfer of components between the phases is shown to be the one that 

most frequently occurs during the displacements of oil by gas (Zick, 1986). 

Parachor Model for Gas-Oil Miscibility. A model based on Parachor IFT calculations 

has been investigated in this study for gas-oil miscibility determination. Just as the VIT 

experimental technique, this model is also based on the concept of zero interfacial tension 

at miscibility. In this model, the interfacial tension between the fluids is calculated using 

Weinaug and Katz’s Parachor method (Weinaug and Katz, 1943) at reservoir temperature 

as a function of pressure or gas enrichment. Then the extrapolation of the plot between 

interfacial tension and pressure or enrichment to zero interfacial tension yields the 

conditions of miscibility. 

 

2.3.2.2 Objectives 

The objectives are to utilize the Parachor model to calculate interfacial tension in 

complex vapor-liquid systems involving multi-components in both phases and to evaluate 

the performance of the proposed Parachor model by comparing the miscibility conditions 

of pressure and enrichment determined from the model with VIT experiments and 

equations of state (EOS) calculations. For this purpose, Rainbow Keg River (RKR) 

reservoir fluids were used, since all the phase behavior data needed for miscibility 

calculations and the VIT experimental results were readily available (Rao, 1997; Rao et 

al., 1999). The calculations were carried out using the commercial simulator, Winprop 

(Computer Modelling Group Ltd., 2002). 
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2.3.2.3 EOS Calculations 

Our previous study on effects of tuning an equation of state (EOS) on miscibility 

calculations (reported in Section 2.3.1) indicated that EOS tuning based on saturation 

pressures is not suitable for miscibility calculations of this reservoir. Hence, untuned 

Peng-Robinson EOS has been chosen to perform all the miscibility calculations. The 

reservoir fluid compositions, reservoir temperature, the compositions of lean and rich 

gases used for making up the solvent and the resultant solvent compositions are given in 

Tables 2.42 and 2.46. Detailed description of EOS miscibility calculation procedure is 

already provided in the previous Section 2.3.1.4. 

The comparison between the MMP’s from VIT experiments and EOS calculations for 

RKR fluids at C2+ enrichments of 51.0% and 52.5% in the injected gas phase (solvent) is 

given in Table 2.49 and shown in Figure 2.61. From these results, it can be seen that EOS 

MMP predictions are higher than the experimental MMP’s (by about 3.5 MPa). This is in 

good agreement with other reports (Lee and Reitzel, 1982; Firoozabadi and Aziz, 1986) 

that EOS calculations yield more conservative results than laboratory measurements. 

 

Table 2.49: Comparison of VIT MMP’s with EOS Calculations and Parachor Model (5: 

Rao, 1997; 6: Rao et al., 1999) 

Solvent #1                       

(C2+ = 51.0 %)    

MMP (MPa)

Solvent # 2                 

(C2+ = 52.5%)     

MMP (MPa)

Experimental (VIT) 
5,6 14.8 14.0

 PR - EOS calculation 18.3 17.4

Parachor model (Weinaug & Katz) 19.4 18.7

MMP Determination Method

 
 

2.3.2.4 Parachor Model Calculations 

Background. Macleod-Sudgen (Macleod, 1923; Sudgen, 1924) related surface tension of 

a pure compound to the density difference between the phases, as: 

)(4/1 V

M

L

MP ρρσ −= ……………………………………………………………..…. (2.14) 

Whereσ  is the surface tension in dynes/cm, L

Mρ  and V

Mρ  are the molar density of the 

liquid and vapor phases, respectively, in gmole/cm3 and the proportionality constant, P is 

known as the Parachor. The Parachor values of various pure compounds have been 

determined from measured surface tension data using the Eq. (2.14). The Parachor values 

of different pure compounds are reported in the literature by several investigators (Quale, 

1953; Fanchi, 1990; Ali, 1994; Schechter and Guo, 1998). 
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Figure 2.61: Comparison of VIT MMP’s with EOS Calculations and Parachor Mode 

 

The equation proposed by Macleod-Sudgen (Macleod, 1923; Sudgen, 1924) was later 

extended to hydrocarbon mixtures using the simple molar averaging technique of 

Weinaug and Katz’s (Weinaug and Katz, 1943) for the mixture Parachor, 

ii

V

Mii

L

M PyPx ∑−∑= ρρσ 4/1 …….…………………..…………………………….... (2.15) 

Where ix and iy are the mole fractions of component i  in the liquid and vapor phases, 

respectively, and iP  is the Parachor of the component i .  Parachor values of pure 

compounds are used in Eq. (2.15) to calculate the interfacial tension of the mixtures, 

considering the Parachor value of a component in a mixture is the same as that when pure 

(Danesh, 1998). This method is most widely used in petroleum industry to estimate the 

interfacial tension between fluids. 

Gas-Oil IFT Calculations. In order to apply the Parachor model to the current 

reservoir case study, a mixture consisting of 10 mole% of crude oil and 90 mole% of 

solvent is used as the feed composition in the computational model to match the 

composition used in VIT experiments. Flash calculations are performed with the mixed 

feed at the specified pressure and reservoir temperature at varying C2+ enrichments in 

solvent.  The resultant molar liquid, vapor densities, equilibrium liquid and vapor 

compositions of different components along with their Parachors reported in the 

literature, are then used in IFT computations.  
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Figure 2.62: Comparison of Experimental IFT’s with Parachor Model for RKR Fluids at 

14.8 MPa 
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Figure 2.63: Comparison of Experimental IFT’s with Parachor Model for RKR Fluids at 

14.0 MPa 
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The summary of experimental IFT’s and the calculated IFT’s using the Parachor 

computational model for RKR fluids at different C2+ enrichments in solvent is given in 

Table 2.50 for pressures of 14.8 MPa and 14.0 MPa. Similar trends are observed at both 

the pressures. Parachor computational model under predicts the interfacial tension in high 

IFT regions. However, the difference between the experimental and the calculated IFT’s 

gradually decreases and consequently the Parachor model predictions match with 

experimental measurements in the low IFT regions. This is in good agreement with 

Cornelisse et al. (1993) where similar observations are made. The calculated IFT’s are 

then plotted against C2+ enrichment to determine MME’s in Figures 2.62 and 2.63, for 

pressures of 14.8 MPa and 14.0 MPa, respectively. As can be seen in these figures, 

conservative estimates of MME’s are obtained with Parachor model when compared to 

experimental MME’s (by about 3.2-3.4%) at both the pressures.  

 

Table 2.50: Comparison of Measured IFT’s with Parachor Model Predictions (5: Rao, 

1997; 6: Rao et al., 1999) 

Experimental 
5,6 Parachor Experimental 

5,6 Parachor

17.79 4.26 2.91 32.68 2.86 1.88

21.64 3.89 2.59 37.55 1.89 1.46

25.85 3.27 2.21 41.45 1.51 1.14

30.57 2.69 1.81 42.61 1.39 1.04

33.86 2.13 1.54 47.48 0.70 0.68

37.70 1.52 1.24

43.07 0.97 0.85

48.39 0.53 0.50

49.28 0.27 0.48

Enrichment (C2+ %)
IFT (dynes/cm)IFT (dynes/cm)

Enrichment (C2+ %)

Pressure = 14.8 MPa Pressure = 14.0 MPa

 
 

MMP Calculations. The sequence of steps followed in MMP calculation procedure 

using Parachor computational model are: 

• Oil composition, solvent composition, reservoir temperature, mole fraction of oil in 

the feed, pressure and the pressure increment are provided as inputs to the model. 

• Flash calculations are performed with mixed feed at reservoir temperature and 

specified pressure. 

• The resulting molar liquid, vapor densities, equilibrium liquid and vapor 

compositions of different components along with their Parachors are used to calculate 

the IFT’s. 

• The pressure is incremented at the specified pressure increment and the steps 2 to 3 

are repeated. 
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In the low interfacial tension region, pressure is incremented in smaller steps to clearly 

identify the point of vanishing IFT pressure. Then this vanishing IFT pressure becomes 

the MMP for the system. 

The comparison between VIT experimental MMP’s and the calculated MMP’s from 

Parachor computational model for RKR fluids at C2+ enrichments of 51.0% and 52.5% in 

solvent is given in Table 2.49 and shown in Figure 2.61. The calculated IFT’s using the 

Parachor model at these C2+ enrichments are plotted against pressure to determine 

MMP’s in Figure 2.64. From these results, it is quite evident that Parachor model has 

resulted in MMP over-predictions, when compared to VIT experiments (by about 4.5 

MPa). Moreover, these over-predictions are greater than those obtained in EOS 

calculations. 
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Figure 2.64: MMP Determination using Parachor Computational Model for RKR Fluids 

 

2.3.2.5 Mass Transfer Effects on Miscibility Predictions 

Since IFT, a good indicator of mass transfer effects, was used to interpret miscibility in 

this study, the reasons for the miscibility over-predictions by the computational models 

appear to be the following. 

In VIT experiments, equilibrated fluids are used in IFT measurements. Hence various 

types of mass transfer mechanisms are allowed to take place between the fluids 

(condensing gas drive, vaporizing gas drive and combined condensing/vaporizing gas 

drive). Thus VIT measurements include all the mass transfer effects and hence predict 

true MMP’s. In EOS calculations, mass transfer effects are taken into account only 
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through either condensing gas drive or vaporizing gas drive, which is quite evident in the 

MMP calculation procedure of EOS model. This limited mass transfer resulted in MMP 

over-predictions (about 3.5 MPa) by the EOS model. In Parachor computational model, 

the Parachor values are based on surface tension measurements of pure compounds. 

Hence these values are incorporated in the computational model considering each 

component of the mixture as if all the others were absent. Because of this assumption, 

any type of mass transfer effect is not considered at all in the calculation procedure. This 

appears to be responsible for even larger over-predictions of MMP (about 4.5 MPa) by 

the Parachor model.  

Further, it can be seen that the difference in the over-predictions of miscibility is not 

significant (only about 1 MPa) between the EOS and Parachor models. This means 

incorporation of either condensing or vaporizing mass transfer mechanism in the EOS 

model has not resulted in any significant improvement in accuracy of miscibility 

prediction. This observation intuitively suggests that the combined 

vaporizing/condensing mechanism involving simultaneous counter-directional mass 

transfer of components between the fluid phases is the main mechanism that controls 

fluid-fluid miscibility. This is in good agreement with the experimental observations of 

Zick (1986). Thus the ability of any miscibility computational procedure to account for 

the counter-directional mass transfer effects between the fluids governs the extent of 

agreement with miscibility pressures and enrichments determined from VIT experiments. 

This clearly demonstrates the importance of mass transfer effects in fluid-fluid miscibility 

computations and hence identifies the need to develop methods to incorporate these mass 

transfer effects in the models used to compute miscibility. 

 

2.3.2.6 Conclusions 

1. The interfacial tensions computed using the Parachor model are found to differ from 

the experimental measurements by about 0.1 to 1.4 dynes/cm, except in low IFT 

regions where the agreement is good. 

2. Parachor computational model over-predicts minimum miscibility pressures, when 

compared to VIT experiments (by about 4.5 MPa) and EOS calculations (by about 1.0 

MPa). 

3. The combined vaporizing/condensing mechanism involving simultaneous counter- 

directional mass transfer of components between the fluid phases appears to be the 

main mass transfer mechanism that governs the attainment of fluid-fluid miscibility. 

4. The disagreement with IFT measurements and over-predictions of miscibility 

obtained using the proposed Parachor model appears to be due to the inability of the 

model to account for counter-directional mass transfer effects that can occur in reality 

between the fluids. 
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5. This study exemplifies the importance of counter-directional mass transfer effects in 

interfacial phenomena and hence gives raise to the need to develop methods to 

incorporate these mass transfer effects in the proposed Parachor model for interfacial 

tension and miscibility calculations. 

 

2.3.3 Development of a New Mechanistic Parachor Model for Gas-Oil IFT and 

Miscibility 

 

2.3.3.1 Introduction 

Interfacial tension is an important property for many processes such as enhanced oil 

recovery by gas injection and flow through porous media, and in mass and heat transfer 

applications. However, the experimental data on interfacial tension for complex fluid 

systems involving multicomponent phases are scarce. Therefore, there has long been a 

need for a simple and accurate computational model for prediction of interfacial tension 

in multicomponent hydrocarbon systems. Several models have been proposed for the 

calculation of interfacial tensions of simple fluids and mixtures in the past few decades. 

The most important among these models are the Parachor model (Macleod, 1923; 

Sudgen, 1924), the corresponding states theory (Brock and Bird, 1955), thermodynamic 

correlations (Clever and Chase, 1963) and the gradient theory (Carey, 1979). 

While most of the thermodynamic properties refer to individual fluid phases, 

interfacial tension (IFT) is unique in the sense that it is a property of the interface 

between the phases. The IFT, being a property of interface, is strongly dependent on the 

compositions of fluid phases in contact, which in turn depend on the mass transfer 

interactions between the phases. The commonly occurring mass transfer mechanisms 

between the fluid phases to attain equilibrium are vaporization, condensation or a 

combination of the two. In the vaporizing drive mechanism, the vaporization of lighter 

components (C1 to C3) from the liquid (crude oil) to hydrocarbon vapor phase promotes 

the attainment of miscibility of the two phases. In condensing drive mechanism, the 

condensation of intermediate and heavy components (C4 to C8) from hydrocarbon gas to 

the crude oil is responsible for attaining miscibility between fluid phases. In combined 

condensation and vaporization drive mechanism, the simultaneous counter-directional 

mass transfer mechanisms, that is, vaporization of lighter components from crude oil to 

gas and condensation of intermediate and heavy components from gas to crude oil, are 

responsible for attaining miscibility of the phases. These mass transfer interactions affect 

the compositions of both phases and hence their interfacial tension. Therefore, the 

dynamic changes in IFT can be used to infer information on mass transfer interactions 

taking place prior to the attainment of thermodynamic fluid phase equilibrium and 

miscibility.  
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Almost all currently available IFT models have been extensively tested for either pure 

compounds or binary mixtures. The use of these models to predict interfacial tension in 

complex hydrocarbon systems involving multicomponents in both the phases is limited 

and not well documented. Furthermore, none of these models provides information on 

mass transfer interactions occurring prior to attaining fluid phase equilibria. Hence, a 

mass transfer enhanced mechanistic model, based on the Parachor model, has been 

proposed in this study for prediction of interfacial tension as well as to identify the 

governing mass transfer mechanism for fluid phase equilibria in complex 

multicomponent hydrocarbon systems. 

 

2.3.3.2 The Proposed New Mass Transfer Enhanced Mechanistic Parachor Model 

The conventional Parachor model (described in Section 2.3.2) has been extensively used 

for prediction of surface tension of pure compounds and binary mixtures. However, the 

model gives poor IFT predictions for complex multicomponent hydrocarbon mixtures 

(Danesh et al., 1991). Several attempts have been already made in the past to improve the 

Parachor model IFT predictions in multicomponent systems. Fawcett (1994) has 

reviewed these reported studies in detail. All these attempts are mostly directed at 

improving the Weinaug and Katz’s molar averaging technique (Weinaug and Katz, 1943) 

for the mixture Parachor determination. The Hough-Stegemeier correlation (Hough and 

Stegemeier, 1961) is almost the same as the Weinaug-Katz correlation, but with a slight 

change in the values of empirical parameters. Other investigators have modified the 

Weinaug-Katz correlation using more complex mixing rules for multicomponent 

mixtures (Hugill and Van Welsenes, 1986), or incorporating a parameter that depends on 

the density difference between the fluid phases (Danesh et al., 1991). The Lee-Chien’s 

modification (Lee and Chien, 1984) is based on critical scaling theory and still retains the 

same functional form of Weinaug-Katz correlation. All these modifications are intended 

to match the experimental data based on empirical correlations and there appears to be no 

strong theoretical background associated with them. 

In the application of the conventional Parachor model to multicomponent mixtures, 

Parachor values of pure components are used in IFT predictions, considering each 

component of the mixture as if all the others were absent. Significant interactions take 

place between the various components in a multicomponent mixture and hence the 

inability of pure component Parachor values to account for these interactions of each 

component with the others in a multicomponent mixture appears to be the main reason 

for poor IFT predictions from the Parachor model in multicomponent hydrocarbon 

systems. 

In the present study, a mechanistic Parachor model has been proposed, in which the 

ratio of diffusivity coefficients raised to an exponent is introduced into the Parachor 

model to account for mass transfer effects. The mass transfer interactions for phase 
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equilibria between any two fluid phases take place by diffusion due to concentration 

gradient and by dispersion. Hence diffusivities are used in the proposed mechanistic 

model to account for mass transfer interactions. Furthermore, only diffusivities can 

reasonably represent mass transfer interactions in complex multicomponent systems like 

crude oil-hydrocarbon gas mixtures involving multicomponents in both the phases. The 

ratio of diffusivities in both directions (vaporizing and condensing) between the fluid 

phases raised to an exponent used in the mechanistic model, enables the retention of the 

same dimensions of the original Parachor model. The proposed mechanistic model is 

given by: 
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Where, osD  is the diffusivity of oil in gas (solvent), soD  is the diffusivity of gas 

(solvent) in oil and n is the exponent, whose sign and value characterize the type and 

extent of governing mass transfer mechanism for fluid phase equilibria. If n > 0, the 

governing mechanism is vaporization of lighter components from the oil to the gas phase. 

If n < 0, the governing mechanism is condensation of intermediate to heavy components 

from the gas to the crude oil. The value of n equal to zero (n ≈ 0) indicates equal 
proportions of vaporizing and condensing mass transfer mechanisms to be responsible for 

fluid phase equilibria. This condition of equal mass transfer in both the directions of 

vaporization and condensation appears to be most common in binary mixtures where the 

conventional Parachor model has shown to result in reasonably accurate interfacial 

tension predictions (n = 0 in the mechanistic Parachor model). The higher the numerical 

value of n (irrespective of its sign), the greater is the extent of that governing mass 

transfer mechanism. 

Sigmund (1976) used Wilke equation (Wilke, 1950) for comparison with the 

experimental data of diffusivities between two nine-component gas mixtures and found 

that Wilke equation is capable of giving good estimates of diffusivities even for the cases 

where one mixture diffuses into another mixture. Fayers and Lee (1992) compared the 

diffusivity data of multicomponent systems at reservoir conditions obtained from various 

correlations with experiments and concluded that Wilke-Chang equation (Wilke and 

Chang, 1955) is the best available empirical correlation to compute the diffusivities in 

multicomponent hydrocarbon systems. Hence, in this study, the diffusivities between the 

fluid phases are computed, using the empirical correlation of Wilke and Chang (Wilke, 

1949; Wilke and Chang, 1955), given by: 
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Where  ABD    = diffusivity of solute A in very dilute solution in solvent B, m2/sec 

              MB      = molecular weight of the solvent, kg/kmol 
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              T        = temperature, K 

              µ        = solution viscosity, kg/m.sec 

             νA       = solute molal volume at normal boiling point, m3/kmol 

              ϕ       = association factor for solvent, set equal to unity since the solvents used 
in this study are unassociated. 

Eq. (2.17) is extended to multicomponent hydrocarbon mixtures, using: 

BiBiB MxM ∑= .……….…………………………………………….……………. (2.18) 

AiAiA x νν ∑= ………………………………………………………….………....... (2.19) 

Where, xi is the mole fraction of the component i in the mixture, MBi is the molecular 

weight of the component i and vAi is the molal volume of the component i at normal 

boiling point. 

An objective function (∆) is defined as the sum of weighted squared deviations 

between the original Parachor model predictions and experimental IFT values and is 

given by: 
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Where, each element of the objective function expresses the weighted difference 

between the predicted and experimental interfacial tension values, σpred and σexp, 

respectively; w is the weighting factor; N represents the number of measured data points 

to be fitted and X designates the correction factor to the original Parachor model 

prediction. 

The mass transfer enhancement parameter (k), a correction to the original Parachor 

model to account for mass transfer effects, is then defined as the correction factor (X) at 

which the objective function (∆) becomes the minimum. The mechanistic Parachor model 

is now given by: 
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From Eqs. (2.16) and (2.21), the exponent n, characterizing the governing mass 

transfer mechanism for fluid phase equilibria, can be computed using: 
n
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
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2.3.3.3 Objectives 

The objectives are to utilize the newly proposed mechanistic Parachor model to (1) 

calculate interfacial tension in complex vapor-liquid systems involving multicomponents 

in both phases, (2) evaluate the model effectiveness by comparing the interfacial tensions 

determined from the model with experimental measurements, and (3) identify the 
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governing mass transfer mechanism responsible for fluid phase equilibria in 

multicomponent hydrocarbon systems. For this purpose, two reservoir crude oil-gas 

systems of Rainbow Keg River (RKR) and Terra Nova have been used, since the fluids 

compositions and the phase behavior data needed for IFT calculations and the 

experimental IFT measurements are readily available (Rao, 1997; Rao and Lee, 2002). 

These gas-oil interfacial tension measurements are made using the axisymmetric drop 

shape analysis (ADSA) technique by fitting the images of the captured pendent drops of 

crude oil in gas phase with the drop profile calculated using the Laplace capillary 

equation. An aging period of about 2 hours was allowed between the fluid phases to reach 

equilibrium during these experiments. Flash calculations needed for gas-oil interfacial 

tension calculations are carried out using QNSS/Newton algorithm (Nghiem and 

Heidemann, 1982) and Peng-Robinson equation of state (Peng and Robinson, 1976), 

within a commercial simulator (Computer Modelling Group Ltd., 2002). 

 

2.3.3.4 Results and Discussion 

Rainbow Keg River Reservoir. The crude oil and hydrocarbon gas compositions and the 

reservoir temperature from Rao (1997) are used in IFT computations for this reservoir. 

The IFT measurements at various C2+ enrichments in hydrocarbon gas phase and at 

various pressures reported by Rao (1997) are used for comparison with model 

predictions. A mixture consisting of 10 mole% of crude oil and 90 mole% of 

hydrocarbon gas is used as the feed composition in the computations to match the 

composition used in the reported experiments. 

The comparison of IFT predictions by the original Parachor model with experiments 

at various C2+ enrichments in gas phase is given in Tables 2.51 and 2.52, for pressures 

14.8 MPa and 14.0 MPa, respectively. These results are also shown in Figures 2.65 and 

2.66, respectively, at these pressures. As can be seen, similar trends in IFT are observed 

for both the pressures. The match between the experiments and the model predictions is 

not good and IFT under-predictions are obtained with the Parachor model.  
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Table 2.51: Comparison of IFT Measurements with Parachor and Mechanistic Parachor 

Models for RKR Fluids at 87oC and 14.8 MPa 

 

Experimental          

(Rao, 1997)
Parachor Model

 Mechanistic 

Parachor Model
Parachor Model

 Mechanistic 

Parachor Model

17.79 4.26 2.91 3.79 0.1000 0.0123

21.64 3.89 2.59 3.36 0.1124 0.0184

25.85 3.27 2.21 2.88 0.1043 0.0144

30.57 2.69 1.81 2.36 0.1065 0.0155

33.86 2.13 1.54 2.00 0.0762 0.0035

37.70 1.52 1.24 1.61 0.0347 0.0034

43.07 0.97 0.85 1.10 0.0166 0.0175

48.39 0.53 0.50 0.65 0.0028 0.0535

49.28 0.27 0.48 0.63 0.0061 0.0173

0.5595 0.1558                                                                         Objective Function (Π) =

Weighted Squared Deviation
Enrichment                             

(Mole% C2++CO2 )

IFT (mN/m)

 
 
Table 2.52: Comparison of IFT Measurements with Parachor and Mechanistic Parachor 

Models for RKR Fluids at 87oC and 14.0 MPa 

 

Experimental           

(Rao, 1997)
Parachor Model

 Mechanistic 

Parachor Model
Parachor Model

 Mechanistic 

Parachor Model

32.68 2.86 1.88 2.37 0.1167 0.0290

37.55 1.89 1.46 1.84 0.0518 0.0007

41.45 1.51 1.14 1.43 0.0610 0.0026

42.61 1.39 1.04 1.32 0.0620 0.0029

47.48 0.70 0.68 0.86 0.0007 0.0518

0.2921 0.0871                                                   Objective Function (Π) =

Weighted Squared Deviation
Enrichment                             

(Mole% C2++CO2 )

IFT (mN/m)

 
 

The disagreement between the experiments and the model predictions, as seen in 

Figures 2.65 and 2.66, are attributed mainly to the absence of mass transfer effects in the 

original Parachor model. Hence correction factors are used for original Parachor model 

predictions to minimize the objective function (∆), which is the sum of weighted squared 

deviations between the model predictions and experimental values. The correction factors 

and the resulting objective functions for this crude oil-gas system are shown in Figure 

2.67. The mass transfer enhancement parameters (k), the correction factors at which 

objective function becomes the minimum, are estimated to be 1.30 and 1.26, respectively 

for pressures of 14.8 MPa and 14.0 MPa. 

The computed diffusivities between the fluid phases at various C2+ enrichments in 

hydrocarbon gas phase for RKR fluids at pressures of 14.8 MPa and 14.0 MPa are given 

in Table 2.53. The mass transfer interactions between the fluid phases declined slightly as 

the C2+ enrichment in hydrocarbon gas phase is increased for both the pressures. 

However, the ratio of diffusivities in both directions (oil to gas and gas to oil) remains 

almost the same at all C2+ enrichments in gas phase.  
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Figure 2.65: Comparison between IFT Measurements and Parachor Model for RKR 

Fluids at 87oC and 14.8 MPa 
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Figure 2.66: Comparison between IFT Measurements and Parachor Model for RKR 

Fluids at 87oC and 14.0 MPa 
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The average ratios of diffusivities between the fluids at all C2+ enrichments are 3.70 and 

3.92, respectively for pressures 14.8 MPa and 14.0 MPa. From the mass transfer 

enhancement parameters and the average ratios of diffusivities between the fluid phases, 

the exponents (n) characterizing the governing mass transfer mechanism are found to be 

+0.20 and +0.17, respectively for pressures 14.8 MPa and 14.0 MPa. These values of n 

being greater than zero, indicate that the vaporization of light components from the crude 

oil into the gas phase is the mass transfer mechanism that governs the fluid phase 

equilibria of these reservoir fluids. This can be attributed to the presence of significant 

amounts of lighter components (52 mole% C1 to C3) in the crude oil of this reservoir 

(Rao, 1997). 

The comparison between the IFT predictions of mass transfer enhanced mechanistic 

Parachor model with experiments at various C2+ enrichments in gas phase is given in 

Tables 2.51 and 2.52, respectively, for pressures of 14.8 MPa and 14.0 MPa. These 

results are also shown in Figures 2.68 and 2.69, respectively, at these pressures. Since the 

optimization of the mass transfer enhancement parameter (k) is based on minimizing the 

sum of squared deviations between the experimental and calculated values, the 

mechanistic model predictions matched well with the experiments for both the pressures. 

 

Table 2.53: Diffusivities between Oil and Gas at Various C2+ Enrichments for RKR 

Fluids  

 

(Mole% C2++ CO2) Dos (m
2
/s) Dso (m

2
/s) Dos/Dso (Mole% C2++CO2) Dos (m

2
/s) Dso (m

2
/s) Dos/Dso

17.79 3.45E-08 9.69E-09 3.56 32.68 3.44E-08 8.67E-09 3.97

21.64 3.45E-08 9.40E-09 3.68 37.55 3.34E-08 8.39E-09 3.98

25.85 3.42E-08 9.11E-09 3.75 41.45 3.21E-08 8.18E-09 3.93

30.57 3.36E-08 8.81E-09 3.81 42.61 3.17E-08 8.12E-09 3.91

33.86 3.29E-08 8.62E-09 3.82 47.48 2.99E-08 7.89E-09 3.79

37.70 3.19E-08 8.41E-09 3.80

43.07 3.03E-08 8.14E-09 3.73

48.39 2.85E-08 7.89E-09 3.61

49.28 2.83E-08 7.88E-09 3.59

3.70 3.92

14.8 MPa 14.0 MPa

Average = Average =  
 

Terra Nova Reservoir. The crude oil and gas compositions, the reservoir temperature 

and the IFT measurements needed for gas-oil interfacial tension calculations of these 

reservoir fluids are obtained from the reference of Rao and Lee (2002). IFT calculations 

are performed using a feed composition of 8 mole% of crude oil and 92 mole% of gas in 

the mixture since the same composition is used during the reported interfacial tension 

measurements. 
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Figure 2.67: Determination of Mass Transfer Enhancement Parameters for RKR Fluids 
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Figure 2.68: Comparison between IFT Measurements and Mechanistic Parachor Model 

for RKR Fluids at 87oC and 14.8 MPa 
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Figure 2.69: Comparison between IFT Measurements and Mechanistic Parachor Model 

for RKR Fluids at 87oC and 14.0 MPa 

 

Table 2.54: Comparison of IFT Measurements with Parachor and Mechanistic Parachor 

Models for Terra Nova Fluids at 96oC and 30.0 MPa 

 

Experimental       

(Rao and Lee, 2002)
Parachor Model

 Mechanistic 

Parachor Model
Parachor Model

 Mechanistic 

Parachor Model

9.49 3.19 0.78 3.59 0.5694 0.0154

11.79 3.09 0.66 3.00 0.6204 0.0008

14.22 2.60 0.58 2.64 0.6052 0.0003

18.57 2.02 0.41 1.86 0.6376 0.0060

24.64 1.07 0.23 1.06 0.6147 0.0001

27.77 0.73 0.15 0.70 0.6265 0.0020

3.6738 0.0245

Weighted Squared Deviation

Objective Function ( ) =

Enrichment                             

(Mole% C2++CO2 )

IFT (mN/m)

 
 

The results of comparison of experimental IFT measurements with original Parachor 

model predictions at different C2+ enrichments in gas phase and at a pressure of 30 MPa 

are summarized in Table 2.54 and shown in Figure 2.70. From Table 2.54 and Figure 

2.70, it can be seen that significant IFT under-predictions are obtained with the Parachor 

model when compared to the experiments due to the absence of mass transfer effects in 

the Parachor model. Therefore, as before, an objective function (∆), the sum of weighted 

squared deviations between the model predictions and experimental values, has been 

defined and then minimized using the correction factors for the original Parachor model 

predictions.  
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Figure 2.70: Comparison between IFT Measurements and Parachor Model for Terra 

Nova Fluids at 96oC and 30.0 MPa 
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Figure 2.71: Determination of Mass Transfer Enhancement Parameter for Terra Nova 

Fluids 
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The minimization of the objective function and the determination of resulting mass 

transfer enhancement parameter (k) for this crude oil-gas system are depicted in Figure 

2.71. The mass transfer enhancement parameter (k), the correction factor at which 

objective function becomes the minimum, is estimated to be 4.58. 

 

Table 2.55: Diffusivities between Oil and Gas at Various C2+ Enrichments for Terra 

Nova Fluids at 96oC and 30.0 MPa 

(Mole% C2++ CO2) Dos (m
2
/s) Dso (m

2
/s) Dos/Dso

9.49 2.39E-08 7.39E-09 3.23

11.79 2.34E-08 7.14E-09 3.28

14.22 2.32E-08 7.05E-09 3.29

18.57 2.24E-08 6.77E-09 3.31

24.64 2.12E-08 6.44E-09 3.29

27.77 2.04E-08 6.25E-09 3.27

3.28Average =  
 
Table 2.56: Model Exponents for different Single Experimental IFT Measurement Points 

in the Mechanistic Parachor Model for RKR Fluids at 14.8 MPa 

Experimental  

(Rao, 1997)
Parachor

Mechanistic                      

Parachor

17.79 4.26 2.910 4.26 1.46 3.56 0.30

21.64 3.89 2.590 3.89 1.50 3.68 0.31

25.85 3.27 2.210 3.27 1.47 3.75 0.29

30.57 2.69 1.810 2.69 1.48 3.81 0.29

33.86 2.13 1.540 2.13 1.39 3.82 0.25

37.70 1.52 1.240 1.52 1.23 3.80 0.16

43.07 0.97 0.850 0.97 1.15 3.73 0.11

48.39 0.53 0.500 0.53 1.10 3.61 0.07

n
Enrichment                                        

(Mole% C2+ + CO2)

IFT (mN/m)

C.F (k) Dos/Dso

 
 

The calculated diffusivities between the fluid phases at different C2+ enrichments in 

gas phase for Terra Nova fluids at a pressure of 30 MPa are summarized in Table 2.55. 

The slight decline of mass transfer interactions between the fluid phases with the increase 

of C2+ enrichment in gas phase can be seen. Furthermore, the ratio of diffusivities 

between the fluids remains nearly constant irrespective of C2+ enrichment in gas phase. 

Both these findings are similar to those observed with RKR fluids. From Table 2.55, it 

can be seen that the average ratio of diffusivities between the fluids at various C2+ 

enrichments is obtained as 3.28. From the mass transfer enhancement parameter and the 

average ratio of diffusivities between the fluid phases, the exponent (n) characterizing the 

governing mass transfer mechanism is computed to be +1.28. The positive sign of n 

indicates that even for these reservoir fluids, vaporization of components from the crude  
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Table 2.57: Model Exponents for different Single Experimental IFT Measurement Points 

in the Mechanistic Parachor Model for Terra Nova Reservoir 

Experimental            

(Rao and Lee, 2002)
Parachor

Mechanistic 

Parachor

9.49 3.19 0.783 3.19 4.08 3.23 1.20

11.79 3.09 0.656 3.09 4.71 3.28 1.30

14.22 2.60 0.577 2.60 4.51 3.29 1.27

18.57 2.02 0.407 2.02 4.97 3.31 1.34

24.64 1.07 0.231 1.07 4.63 3.29 1.29

27.77 0.73 0.152 0.73 4.80 3.27 1.33

n

IFT (mN/m)
Enrichment                                        

(Mole% C2+ + CO2)
C.F (k) Dos/Dso
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Figure 2.72: Comparison between IFT Measurements and Mechanistic Parachor Model 

for Terra Nova Fluids at 96oC and 30.0 MPa 

 

oil into the gas phase is the dominating mass transfer mechanism for attaining the fluid 

phase equilibria. Furthermore, relatively higher value of n obtained for this crude oil-gas 

system compared to RKR fluids imply more pronounced vaporization mass transfer 

effects in the Terra Nova reservoir fluids. This can be attributed to the presence of 

relatively larger amounts of lighter components (56 mole% C1 to C3) in the Terra Nova 

crude oil compared to 52 mole% C1 to C3 in RKR crude oil (Rao, 1997; Rao and Lee, 

2002). 
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Figure 2.73: Sensitivity Studies on Mechanistic Model Results for RKR Fluids at 87oC 

and 14.8 MPa 
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Figure 2.74: Sensitivity Studies on Mechanistic Model Results for Terra Nova Fluids at 

96oC and 30.0 MPa 
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The comparison between the mechanistic Parachor model IFT predictions and the 

experiments at various C2+ enrichments in gas phase is given in Table 2.54 and shown in 

Figure 2.72 for a pressure of 30 MPa. As expected, an excellent match is obtained 

between the experiments and the mechanistic model predictions. 

Sensitivity Studies on Proposed Mechanistic Model. Sensitivity studies were carried 

out for RKR and Terra Nova fluids to determine the effect of number of experimental 

IFT measurement data points on the mechanistic model results. The exponents obtained 

by using different single experimental IFT measurements in the mechanistic model are 

shown in Table 2.56 and Table 2.72 for RKR fluids at 14.8 MPa and Terra Nova fluids at 

30.0 MPa, respectively. The comparison of IFT predictions from the mechanistic model 

obtained by using three different single IFT measurements namely high IFT, medium IFT 

and low IFT with the original Parachor model and the mechanistic model with all the 

available experimental data are shown in Figures 2.73 and 2.74 for RKR and Terra Nova 

fluids, respectively. From Figure 2.73 for RKR fluids, it can be seen that there is no 

significant differences among the mechanistic model IFT predictions using single high 

and medium IFT measurement points and all the experimental data in the mechanistic 

model. However, the use of low single IFT measurement point in the mechanistic model 

resulted in significantly deviating IFT values when compared to the mechanistic model 

with all the experimental points. It is important to note that even the provision of single 

low IFT measurement point as input to the mechanistic model yielded better IFT 

predictions compared to original Parachor model. Similar results are obtained even for 

Terra Nova fluids. From Figure 2.74 for Terra Nova fluids, it can be seen that the 

provisions of single high, medium and low IFT measurement points as well as all the 

experimental data in the mechanistic model resulted in almost similar IFT predictions. 

The IFT predictions from all these combinations matched extremely well with 

experiments when compared to original Parachor model. Based on these observations, it 

can be concluded that the provision of a single high or medium experimental IFT 

measurement in the proposed mechanistic model is sufficient for reasonable IFT 

predictions from the model.  

Development of a Generalized Multiple Regression Model. In crude oil-solvent 

systems such as RKR and Terra Nova fluids, simultaneous counter-directional mass 

transfer interactions occur from both the oil and solvent (gas) phases. These include 

vaporization of lighter components (C1-C3) from crude oil phase to solvent (gas) phase 

and condensation of intermediate to heavier components (C4-C7+) from the solvent (gas) 

phase to crude oil phase. CO2 has also been included in the model, as it is the active 

component involved in both the mechanisms of vaporization from crude oil and 

condensation from the injection gas Therefore, the compositions of (C1-C3 + CO2) in 

crude oil and (C4-C7+ + CO2) in gas constitute the solute composition. These 

compositions are normalized as a molar ratio: (C1-C3 + CO2) / (C4-C7+) in crude oil to 
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represent vaporizing drive mechanism from the oil and (C4-C7+ + CO2) /(C1-C3) in gas 

phase to represent condensing drive mechanism from the gas. The mechanistic model 

exponents resulted by the provision of different single experimental IFT measurements in 

the mechanistic model for the two crude oil-solvent systems of RKR and Terra Nova 

reservoirs (as given in Table 2.56 for RKR fluids and Table 2.57 Terra Nova fluids) are 

now related to the normalized solute compositions using multiple regression analysis. 

The results are summarized in Figure 2.75. From Figure 2.75, it can be seen that a good 

linear relationship between the exponent and the normalized solute compositions is 

obtained for both the crude oil-solvent systems with a multiple determination coefficient 

of 0.984. The regression equation obtained for predicting the exponent (n) values is also 

shown in Figure 2.75 and is given by, 

 

GasOil
CCMole

CCCOMole

CCMole

CCCOMole
n 









−
−+

−








−
−+

+−= +

+ 31

742

74

312

%

%
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26206.84473.9 …
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Higher absolute value of the slope for vaporizing mechanism (8.262) when compared 

to condensing mechanism (1.006) in the regression equation further substantiates that the 

vaporization of lighter components from crude oil to gas phase is the governing mass 

transfer mechanism for the attainment of fluid phase equilibria between the vapor and 

liquid phases of these two crude oil-solvent systems. This regression model can be used 

for a priori estimation of exponent (n) in the mechanistic model for crude oil-solvent 

systems. Thus, the exponent (n) in the mechanistic model can be simply determined by 

using the compositions of crude oil and solvent and thereby completely eliminating the 

need for even a single experimental IFT data in the proposed mechanistic model. 

Although this regression model incorporates both the mechanisms of vaporization and 

condensation, the regression correlation obtained is based on the systems where 

vaporization mechanism is dominant and hence the application of the model is suggested 

mainly for vaporizing drive crude oil-gas systems. 

Validation of the Proposed Generalized Multiple Regression Model. The proposed 

generalized multiple regression model was utilized to predict the exponent in the 

mechanistic model and consequently interfacial tensions in Prudhoe Bay gas-oil system 

for validation. The experimental IFT data on Prudhoe Bay reservoir fluids at 200oF 

reported by Dorshow (1995) were used for comparison with the results from the proposed 

regression model. The crude oil and solvent compositions for Prudhoe Bay reservoir 

fluids needed in the calculations were obtained from the references of Spence and 

Ostrander (1983) and McGuire and Moritz (1992), respectively. 
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Figure 2.75: Multiple Linear Regression Model for the Mechanistic Model Exponent 

Prediction in Vaporizing Drive Gas-Oil Systems 
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Figure 2.76: Validation of Multiple Linear Regression Model for Mechanistic Model 

Exponent Prediction Using Prudhoe Bay Crude Oil-Solvent System 
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Table 2.58: Summary of IFT Measurements, Parachor Model Predictions and 

Diffusivities between Fluid Phases for Prudhoe Bay Reservoir Fluids at 200oF 

Experimental           

(Dorshow, 1997)

Parachor 

Model

2869 0.694 0.307 1.704E-08 5.831E-09 2.923

3082 0.486 0.230 1.614E-08 5.294E-09 3.048

3340 0.268 0.162 1.525E-08 5.627E-09 2.710

3560 0.143 0.119 1.459E-08 5.485E-09 2.659

2.835Average =

Dos Dso Dos/Dso

Pressure                                      

(psi)

IFT (mN/m)

 
 

A feed composition of 65 mole% of crude oil and 35 mole% of solvent was used in 

IFT computations to match the composition used in the experiments. The comparison 

between the experimental IFT measurements and the original Parachor model predictions 

is given in Table 2.58 and is also shown in Figure 2.76. As can be seen from Table 2.58 

and Figure 2.41, IFT under-predictions are obtained with Parachor model, when 

compared to experiments due to lack of mass transfer effects in Parachor model. Hence 

correction factors are applied for Parachor model predictions to minimize the objective 

function and consequently a mass transfer enhancement parameter (k) of 1.94 has been 

obtained. The calculated diffusivities between fluid phases for Prudhoe Bay reservoir 

fluid are also given in Table 2.58, which indicates an average ratio of diffusivities 

between the fluid phases to be 2.835. From the average ratio of diffusivities and the mass 

transfer enhancement parameter, the exponent in the mechanistic model is computed as 

0.636. A mechanistic model exponent of 0.699 has been obtained for Prudhoe Bay crude 

oil-solvent system by using only the compositional data of reservoir fluids in the 

proposed generalized regression model. This exponent calculated using the regression 

model thus deviates by only about 9.9% from the mechanistic model exponent of 0.636 

obtained by using all the available IFT experimental data. The positive exponent obtained 

indicates that vaporization of lighter components from crude oil into the gas is the 

governing mass transfer mechanism for fluid phase equilibria of these reservoir fluids. 

The comparison of the IFT measurements with the predictions of mechanistic 

Parachor model with the exponent calculated using the compositional data of reservoir 

fluids is shown in Figure 2.76. The mechanistic Parachor model IFT predictions with the 

exponent obtained by fitting all the available experimental IFT data are also shown in 

Figure 2.76 for better comparison. From Figure 2.76, better match of IFT predictions 

with experiments can be seen with the mechanistic Parachor model of both the exponents. 

Moreover, the IFT predictions from the mechanistic model for both the exponents used 

are almost similar. Therefore, this validates the proposed regression model to predict the 

exponent in the mechanistic model without the need for even a single IFT measurement 

in the mechanistic Parachor model. 
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Extension of the Proposed Mechanistic Parachor Model for Gas-Oil Miscibility. The 

use of diffusivities in the proposed mechanistic model and the ability of model to provide 

information on mass transfer mechanisms indicate that the IFT measurements modeled in 

this study are dynamic in nature. This is further supported with the already published 

works of the other investigators as cited below.  

Rosen and Gao (1995) and Campanelli and Wang (1999) used their models to 

compute the diffusion coefficients from the measured short-time and long-time dynamic 

interfacial tension data in aqueous surfactant solutions. Diamant et al. (2001) discussed 

the kinetics of surfactant adsorption and provided a general method to calculate dynamic 

interfacial tension at fluid-fluid interfaces using diffusion-controlled models. Taylor and 

Nasr-EI-Din (1996) modeled the measured dynamic interfacial tensions in crude oil-

brine-surfactant systems with diffusion coefficient as one of the parameters in their 

model. Ayirala (2005) experimentally proved the dynamic nature of interfacial tension in 

gas-oil systems by measuring the variations in interfacial tension with time in live decane 

consisting of 25 mole% methane, 30 mole% n-butane and 45 mole% n-decane and CO2 

system at 160oF and 7.7 MPa. The dynamic changes in interfacial tension were observed 

in this live decane-CO2 system for about 48 hours, after which the IFT remained 

reasonably constant. Ayirala (2005) reported that even after such long aging periods 

between the two fluid phases, minute changes in interfacial tension may occur, but are 

not measurable with the available experimental system and instrumentation. It is also 

worth mentioning that the provision of one hour aging period between the fluid phases in 

this experimental study has been found to be sufficient for attaining nearly 98% of the 

equilibrium interfacial tension value. We also believe that these dynamic effects of 

interfacial tension will be especially significant in the complex hydrocarbon systems 

consisting of multicomponent crude oil and gas phases. Crude oils contain thousands of 

chemical compounds (McCain, 1990) and hence it is difficult to attain thermodynamic 

equilibrium compositions of these various components within short aging periods. 

Therefore, in crude oil-gas systems such as the ones used for IFT modeling in this study, 

even after aging for much longer times, there may be still some infinitesimal amounts of 

mass transfer interactions occurring between the fluid phases to reach the ultimate 

thermodynamic equilibrium. However, after certain finite aging periods, the changes in 

interfacial tension with time become so minute that it is reasonable to approximate these 

interfacial tensions to near equilibrium interfacial tension. Therefore, considering the 

aging period of about 2 hours allowed between the fluid phases during the reported 

experiments, the IFT measurements modeled in this study appear to be at near 

equilibrium condition. Thus, these near equilibrium interfacial tensions appear to be 

amenable to calculations using the diffusivity included mechanistic Parachor model 

proposed in this study. Fluid-fluid miscibility means the absence of interface between the 

fluids, that is, zero interfacial tension between the fluid phases (Benham et al., 1965; 
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Stalkup, 1983; Holm, 1987; Lake, 1989). Therefore, the interfacial tension predictions 

from the proposed mechanistic model can be plotted against pressure or solvent 

enrichment and the extrapolation of the plot to zero interfacial tension gives the dynamic 

miscibility conditions in multicomponent hydrocarbon systems.  

Miscibility Prediction in Standard Gas-Oil Systems Using Mechanistic Parachor 

Model. The fluid phase compositions for dynamic gas-oil IFT and miscibility in the two 

standard gas-oil systems of n-decane-CO2 at 37.7
oC and live decane (consisting of 25 

mole% methane, 30 mole% n-butane and 45 mole% n-decane)-CO2 at 71.1
oC were 

obtained by performing flash calculations using QNSS/Newton algorithm (Nghiem and 

Heidemann, 1982) and PR-EOS (Peng and Robinson, 1976) incorporated in the 

commercial simulator, Winprop (Computer Modeling Group Ltd., 2002). The IFT’s and 

miscibilities measured at an initial gas-oil ratio of 80 mole% gas and 20 mole% oil in the 

two standard gas-oil systems were used for comparison with model predictions. The 

viscosities of the fluid phases were computed using the Pederson’s corresponding state 

model (Pederson and Fredenslund, 1987) within the commercial simulator, Winprop 

(Computer Modeling Group Ltd., 2002). The measured densities of the equilibrated fluid 

phases and the pure component Parachor values reported by Danesh (1998) were used 

during gas-oil IFT calculations. 

 

Table 2.59: Comparison of IFT Measurements with Parachor Model in n-Decane-CO2 

System at 37.8oC 

Experimental Parachor Model

0.103 22.45 22.21

1.483 20.13 19.90

2.862 16.24 16.10

4.241 10.27 10.10

5.621 6.07 5.96

7.000 3.34 3.21

7.690 0.33 0.13

Pressure                 

(MPa)

IFT (mN/m)

 
 

The comparison between IFT predictions from the Parachor model and the experiments 

at various pressures for n-decane-CO2 system at 37.7oC is given in Table 2.59. The 

results are also shown in Figure 2.77. As can be seen in Table 2.59 and Figure 2.77, a 

good match between the experiments and the model predictions is obtained with the 

Parachor model. This agrees well with the already published reports that the Parachor 

model predicts IFT reasonably well in binary mixtures (Weinaug and Katz, 1943; 

Fawcett, 1994). The good match of experimental IFT measurements with Parachor model 

indicates an exponent of zero in the mechanistic Parachor model. The zero value for the 

exponent in the mechanistic model implies equal proportions of vaporizing and 
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condensing drive mechanisms to be responsible for dynamic gas-oil miscibility 

development in this standard gas-oil system. This means that the amount of CO2 

dissolving in n-decane is about the same as the amount of n-decane vaporizing into CO2 

gas. Now, the model IFT predictions were fitted using the simple linear regression. The 

relation obtained is indicated in Figure 2.77. A predicted VIT miscibility of 7.84 MPa 

was obtained by extrapolation of this relation to zero IFT. This predicted miscibility 

deviates by only about 0.13% from the experimental VIT miscibility of 7.83 MPa (Figure 

2.57) obtained from the IFT measurements. 
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Figure 2.77: Comparison of IFT Measurements with Parachor Model in n-Decane-CO2 

System at 37.8oC 

 

The comparison between IFT predictions from the Parachor model and the experiments 

at various pressures for live decane-CO2 system at 71.1oC is given in Table 2.60 and 

shown in Figure 2.78. As can be seen, the match between the experiments and the model 

predictions is not good and IFT under-predictions are obtained with the Parachor model. 

This was not the case in the binary system of n-decane-CO2 discussed earlier. The 

disagreement between the experiments and the model predictions in this gas-oil system 

indicates significant effect of interaction of one component with the others in terms of 

Parachor values in multicomponent hydrocarbon systems. This furthermore substantiates 

the poor performance of Parachor model for IFT predictions in multicomponent 

hydrocarbon systems, as reported by the other researchers also (Danesh et al., 1991; 

Fawcett, 1994). 
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Table 2.60: Comparison of IFT Measurements with Parachor and Mechanistic Parachor 

Models for Live Decane - CO2 System at 71.1oC 

Experimental Parachor Model
Mechanistic Parachor 

Model

7.69 4.061 2.394 4.908

8.03 3.490 1.936 3.969

8.38 2.712 1.526 3.128

8.72 2.437 1.263 2.589

9.07 2.041 1.056 2.165

9.41 1.791 0.776 1.591

9.76 1.373 0.614 1.259

10.45 1.115 0.411 0.843

10.79 0.887 0.300 0.615

11.14 0.571 0.185 0.379

11.48 0.441 0.138 0.283

11.83 0.125 0.028 0.057

12.17 0.044 0.014 0.029

Pressure                 

(MPa)

IFT (mN/m)
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Figure 2.78: Comparison of IFT Measurements with Parachor and Mechanistic Parachor 

Models for Live Decane-CO2 System at 71.1oC 

 

 

The mechanistic Parachor model has been applied to improve the IFT predictions in 

this live decane-CO2 system by accounting for counter-directional mass transfer effects. 

Correction factors are used for the original Parachor model predictions to minimize the 

objective function, that is, the sum of weighted squared deviations between the original 
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Parachor model predictions and the experimental IFT values. The mass transfer 

enhancement parameter (k), the correction factor at which the objective function becomes 

the minimum was found to be 2.20. The diffusivities between the fluid phases at various 

pressures in this gas-oil system are given in Table 2.61. From Table 2.61, it can be seen 

that the average ratio of diffusivities between the fluids at all pressures is 3.0. From the 

mass transfer enhancement parameter and the average ratios of diffusivities between the 

fluid phases, the exponent (n) characterizing the governing mass transfer mechanism is 

found to be + 0.716 (Eq. 13). The positive sign of n indicates that vaporization of 

components from the oil into the gas phase is the controlling mass transfer mechanism for 

attaining dynamic gas-oil miscibility in this standard gas-oil system. This can be 

attributed to the presence of significant amounts of lighter components (55 mole% n-C1 

and n-C4) in the live decane. 

 

Table 2.61: Diffusivities between Oil and Gas at Various Pressures in Live Decane-CO2 

System at 71.1oC 

Pressure           

(MPa)

Doil-gas              

(m
2
/s)

Dgas-oil                     

(m
2
/s)

Doil-gas/Dgas-oil

7.69 4.178E-08 1.251E-08 3.339

8.03 4.100E-08 1.244E-08 3.295

8.38 4.024E-08 1.238E-08 3.251

8.72 3.952E-08 1.231E-08 3.210

9.07 3.881E-08 1.224E-08 3.171

9.41 3.797E-08 1.217E-08 3.119

9.76 3.716E-08 1.211E-08 3.068

10.45 3.521E-08 1.198E-08 2.940

10.79 3.438E-08 1.192E-08 2.885

11.14 3.333E-08 1.185E-08 2.812

11.48 3.234E-08 1.180E-08 2.742

11.83 3.141E-08 1.173E-08 2.677

12.17 3.043E-08 1.167E-08 2.607

3.009Average =
 

 

The generalized regression model (Eq. 14) proposed for mechanistic model exponent 

prediction in vaporizing crude oil-solvent systems was then utilized to determine the 

exponent. In this standard gas-oil system, the solvent is the pure CO2 gas. Therefore, the 

term representing condensing drive mechanism of intermediate to heavy components 

from solvent to oil in the regression model is not applicable and hence can be ignored. 

But, the portion of the regression model representing the vaporizing drive mechanism 

holds good even for this case, as the lighter components (solute) vaporizing from oil into 

gas are almost the same. Furthermore, it is reasonable to add the component n-C4 to the 

numerator in the term representing vaporizing drive mechanism, as its tendency will be 

primarily towards vaporization in this standard gas-oil system. With these assumptions, a 



 226 

mechanistic model exponent of + 0.651 is obtained using the compositional data of live 

decane in the generalized regression model. This exponent calculated using the 

compositional data in the regression model deviates by about 8.6% from the mechanistic 

model exponent of 0.716 obtained by using all the measured IFT experimental data. 

The comparison between experiments and the predictions obtained using the exponent 

from the compositional data of live decane in the mechanistic Parachor model is given in 

Table 2.60 and shown in Figure 2.78. From Table 2.30 and Figure 2.78, a good match of 

IFT predictions from the mechanistic model with IFT measurements can be seen. The 

mechanistic model IFT predictions were then fitted against pressure using the hyperbolic 

function and the relationship obtained is shown in Figure 2.78. Extrapolation of this 

relationship to zero interfacial tension gives a predicted VIT miscibility pressure of 12.19 

MPa. This predicted VIT miscibility is almost identical to the experimentally measured 

VIT miscibility of 12.2 MPa (Figure 2.58) and deviates by only about 0.08%. 

 

2.3.3.5 Conclusions 

1. A new mass transfer enhanced mechanistic Parachor model has been proposed for 

prediction of dynamic gas-oil interfacial tension as well as to characterize the 

governing mass transfer mechanism responsible for fluid phase equilibria and 

miscibility in multicomponent hydrocarbon systems. 

2. The ratio of diffusivities between the fluid phases raised to an exponent is introduced 

into the Parachor model for mass transfer effects. The sign and value of the exponent 

in the proposed mechanistic model characterize the type and the extent of governing 

mass transfer mechanism for fluid phase equilibria and miscibility. 

3. The performance of the proposed mechanistic model has been tested for two reservoir 

crude oil-gas systems of Rainbow Keg River and Terra Nova to evaluate its 

effectiveness in multicomponent hydrocarbon systems. 

4. For Rainbow Keg River reservoir fluids, the positive exponents (+0.20, +0.17) 

obtained in the mechanistic model indicate that the governing mass transfer 

mechanism is the vaporization of lighter components from crude oil into the gas 

phase for attaining the fluid phase equilibria and miscibility. 

5. For Terra Nova reservoir fluids, the positive exponent (+1.28) in the mechanistic 

model indicates the vaporization of light hydrocarbon components from crude oil into 

the gas phase to be the governing mass transfer mechanism for fluid phase equilibria 

and miscibility. 

6. The relatively higher value of positive exponent in the mechanistic model for Terra 

Nova fluids compared to RKR fluids indicates more pronounced vaporization mass 

transfer effects in Terra Nova fluids. This is substantiated by the presence of 

relatively higher amount of light hydrocarbon components (C1 to C3) in Terra Nova 

crude oil. 
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7. The sensitivity studies on proposed mechanistic model results for RKR and Terra 

Nova reservoir fluids indicate that the provision of a single high or medium range IFT 

measurement in the proposed model is sufficient for reasonable IFT predictions. 

8. A generalized multiple regression model has been developed correlating the exponent 

(n) in the mechanistic model with normalized solute compositions present in both the 

fluid phases for RKR and Terra Nova reservoir fluids. The proposed regression model 

has been validated for mechanistic model exponent prediction using Prudhoe Bay 

reservoir fluids and hence can be used for a-priori estimation of exponent (n) in the 

mechanistic model in predominantly vaporizing drive gas-oil systems. 

9. The dynamic nature of interfacial tensions observed in the experiments justifies the 

use of diffusivity coefficients in the mechanistic model. Hence, IFT predictions from 

the mechanistic model can be used to determine dynamic gas-oil miscibility 

conditions in multicomponent hydrocarbon systems. 

10. The proposed mechanistic model can be utilized to identify the predominating mass 

transfer mechanism in the combined vaporizing/condensing mode and to determine 

dynamic interfacial tension and miscibility in multicomponent hydrocarbon systems 

by using only the compositional data of fluid phases. 

11. The miscibilities determined using the mechanistic Parachor model deviated by only 

about 0.08-0.13% from the measured VIT miscibilities for both the standard gas-oil 

systems studied. Hence accurate miscibility predictions can be obtained using the 

mechanistic Parachor model in multicomponent hydrocarbon systems by knowing 

only the fluids compositional data. 
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3. Determination of Multiphase Displacement Characteristics in 

Reservoir Rocks 

 

This comprehensive section of the final progress report includes the entire experimental 

work aimed at evaluating the multiphase displacement characteristics of gravity stable 

gas injection processes in Berea and reservoir rocks for the project period starting Oct 1, 

2002 to Sept 30, 2006. This final report also summarizes the previous progress reports to 

the DOE (15323R01, Jan 2003 to date).  

This work attempts to address six key questions: (i) do we continue to ‘fix the 

problems’ of gravity segregation in the horizontal gas floods or find an effective 

alternative?, (ii) is there a ‘happy-medium’ between single-slug and water-alternating-gas 

(WAG) processes that would outperform both?, (iii) what are the controlling multiphase 

mechanisms and fluid dynamics in gravity drainage processes?, (iv) what are the 

mechanistic issues relating to gravity drainage?, and (v) how can we model the novel gas 

assisted gravity drainage (GAGD) process using traditional analytical and empirical 

theories and (vi) what are the roles of the classical displacement, versus drainage in the 

GAGD process?  

To facilitate fair and effective performance comparisons between the WAG and 

GAGD processes, as well as to decipher the controlling operational multiphase 

mechanisms and fluid dynamics in the GAGD processes, the dimensional analysis 

approach was employed and ten gravity stable and eight WAG field applications in the 

U.S., Canada and rest of the world were analyzed. A newly defined ‘index of 

productivity’ and five dimensionless groups, namely Capillary (NC), Bond (NB), 

Dombrowski-Brownell (NDB), Gravity (NG), and Grattoni et al.’s N group were 

calculated for these gravity stable field projects. This dimensional analysis not only 

provides an effective starting point to elucidate the mechanisms and dynamics associated 

with the gravity stable gas injection processes, but also serves as an effective means for 

‘field-scaled’ experimental design. This dimensionless experimental design appeared to 

capture and characterize most of the spectrum of the operational forces in field gas 

injection projects.  

Extensive literature review and laboratory experimentation (GAGD corefloods) were 

conducted to investigate and characterize the effects of various parameters on the GAGD 

process. The parameters investigated were: (i) gravity segregation, (ii) miscibility 

development, (iii) spreading coefficient, (iv) reservoir heterogeneity, (v) reservoir 

wettability, (vi) injection fluid type, (vii) injection mode, and (viii) gas cap control. 

This work has resulted in several original contributions to our current understanding 

of the multiphase mechanisms and fluid dynamics of gas injection processes. The original 

contributions of this work to the existing literature are summarized as: (i) first 
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demonstration of the GAGD concept through high pressure experimentation, (ii) 

experimental demonstration of the superior oil recovery performance of the GAGD 

process in secondary (immiscible recovery range: 62.3% to 88.6% ROIP) and tertiary 

(immiscible recovery range: 47.3% to 78.9% ROIP) processes, in both miscible (avg. 

secondary miscible recoveries: near 100% ROIP; avg. tertiary miscible recoveries: near 

100% ROIP) and immiscible modes, and in varying wettability and rock types of porous 

media, (iii) experimental verification of the hypothesis that the GAGD process is largely 

immune to the deteriorating effects of reservoir heterogeneity and that the presence of 

vertical fractures possibly aid the GAGD oil recoveries, (iv) experimental demonstration 

of the possibility of gas breakthrough control, (v) definition of a new ‘combination’ 

process between single-slug and WAG processes, (vi) preliminary mechanistic and 

dynamic differences between the drainage and displacement phenomenon have been 

identified and a new mechanism to characterize the GAGD process fluid mechanics has 

been proposed, (vii) a new parameter was introduced in the Li and Horne (2003) model to 

accurately predict the dynamic behavior of the GAGD process which resulted in more 

accurate predictions of GAGD oil recoveries, and (viii) a new dimensionless number to 

predict GAGD oil recoveries in both the miscible as well as the immiscible modes has 

been identified. Excellent correlation between the newly proposed number and GAGD 

immiscible recoveries was observed, and although the correlation’s regression fit was not 

as good in GAGD miscible floods, the holistic nature of this correlation, makes it a useful 

tool for predicting GAGD oil recoveries. 

To ensure continuity this report has been subdivided into four major sections: (i) 

literature review on gas injection enhanced oil recovery (EOR) processes, (ii) literature 

review on gravity stable gas injection and introduction of the GAGD process, (iii) 

experimental design for gravity stable and horizontal mode gas injection laboratory 

corefloods, (iv) gravity stable and horizontal mode gas injection coreflood experimental 

results, (v) analytical and conceptual modeling of GAGD process. It is important to note 

that the items (iii) and (iv) correspond to Tasks 3.1 and 3.2; whereas item (v) illustrates 

the Task 3.3 of the original statement of work submitted to the DOE for this research. 

 

3.1 Introduction to EOR by Gas Injection 

3.1.1 Need for Enhanced Oil Recovery (EOR)  

In 1978, the United States Congress commissioned the Office of Technology (OTA, 

1978) to evaluate the state of the art in U.S. oil production.  The OTA concluded that the 

300 billion barrels of known U.S. oil were economically unproducible by conventional 

methods in practice at that time. The OTA report (OTA, 1978) also evaluated a range of 

Enhanced Oil Recovery (EOR) techniques and their potential for improving the prospects 

of extracting a sizeable fraction of this known resource base. These major political and 
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administrative amendments triggered increased interest in EOR in late 70’s and early 

80’s, most notably in California and the Permian Basin of West Texas. 

Now, 25 years later, there is again a strong interest in improving domestic oil 

production (Nummedal et al., 2003), and the total ‘unproducible oil’ referred to in the 

OTA report (OTA, 1978), has increased to a whopping 377 billion barrels (Maddox, 

2004). The need for oil in the U.S., as well as globally, has been constantly on the rise, 

except for the temporary drop during 1979 - 1983 (Figure 3.1) (USGS, 2000).  

 

 

Figure 3.1: Oil Production and Imports of the U.S. (USGS, 2000) 

 
The U.S. Geological Survey (USGS, 2000) notes that the proven U.S. reserves 

(Maddox, 2004), about 21.9 billion barrels, as of January 01, 2005 (USEIA, 2005), would 

be depleted quickly at the current production rates (USEIA, 2005) of 5.4 million barrels 

per day, and the probability of finding newer reserves is diminishing (Maddox, 2004, 

USEIA, 2005). The most important conclusion of this report, from oil self-reliance point 

of view, is that the EOR techniques have not been tried for most of these reservoirs. 

Therefore, the potential for EOR applications in the U.S. are very large with a target of 

377 billion barrels (Moritis, 2004). 

 

3.1.2 U.S. EOR Scene  

The National Petroleum Council (NPC) defines Improved or Enhanced Oil Recovery 

(IOR or EOR) as “…incremental oil that can be economically produced…over that which 

can be economically recoverable by conventional primary and secondary methods”. The 

main goals of any EOR method are increasing the capillary number and providing 

‘favorable’ (M < 1.0) mobility ratios. The EOR processes today contribute a significant 

portion (~ 12% (EOR Survey, 2004)) to the U.S. domestic production, and its importance 

continues to rise in light of the recent high crude oil prices of about $70 per barrel.  
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The U.S. EOR scene is dominated by thermal methods used in heavy oil production, 

followed by CO2 gas injection (mostly miscible) and finally hydrocarbon gas injection. 

These three processes account for almost 98% of the U.S. EOR production.  

The changes in the U.S. EOR application and distribution scenario from 1984 to 2004 

are shown in Figure 3.2 (Kulkarni, 2004). Figure 3.2 shows that except for the CO2 and 

hydrocarbon processes, all the other EOR processes, namely thermal, and Nitrogen, have 

significantly decreased and the and chemical methods are nearly extinct. The share of 

CO2 and hydrocarbon gas processes has increased from 18% (1984) to 48% (2004) in just 

two decades. 

 

3.1.2.1 EOR Status  

The U.S. EOR share patterns (Figure 3.3) demonstrate a clear shift in the oil industry 

towards more efficient EOR processes, and the steep rise and equally quick downfall of 

the chemical based EOR in the past 3 decades. The thermal methods are indispensable 

due to the presence of extensive heavy oil reserves. The gas injection process applications 

have steadily grown in use to become the main EOR process for light oil applications 

(using CO2 or hydrocarbon (HC) gas). EOR survey (Moritis, 2004) shows that the gas 

injection processes are applicable to almost all medium-to-light oil reservoirs, with 

various fluid and reservoir characteristics. Thus, the gas injection processes hold the 

promise of significantly enhancing the recovery of the oil left behind by primary and 

secondary operations. 

 

3.1.2.2 Gas Injection EOR Status  

As demonstrated earlier, the gas injection EOR processes would be instrumental in 

tapping the 377 billion barrels of oil left behind in the U.S. reservoirs after primary and 

secondary processes. Moreover, as most of the U.S. oil reserves can be classified as 

medium to light, with average API gravities of over 28o, except for the ‘Thums’ and 

‘Kern River’ oils (Platt, 2005); gas injection process has become indispensable in the 

U.S. EOR scenario. 

Further scrutiny of the gas injection EOR performance shows that within the last 

twenty years the miscible CO2 projects have increased (Moritis, 2004) from 28 in 1984 to 

70 in 2004 and their production during the same time period has grown by 6 folds 

(Moritis, 2004) from 31,300 BPD to 205,775 BPD. The production from miscible 

hydrocarbon gas injection projects in the U.S. has also steadily increased from 14,439 

BPD in 1984 to 124,500 BPD in 2000 in spite of their decreasing numbers. However, this 

trend was reversed in 2002 and 2004 when the production from hydrocarbon gas floods 

fell to 97,300 BPD, perhaps due to the increasing price of natural gas (Rao et al., 2004). 
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Figure 3.2: EOR Application and Distribution Scenario 1984 – 2004 (Kulkarni, 2004) 
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Figure 3.3: EOR Project Distribution Changes from 1971 – 2004 
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Studies of the gas injection EOR status (Figure 3.4) show that only two injectants, 

CO2 (miscible) and hydrocarbon (miscible and immiscible) gas, have continued to grow, 

while all the other injectants namely, CO2 (immiscible), N2 and flue gas have declined or 

become extinct. The overall effect is that the share of production from gas injection EOR 

in the U.S. has more than doubled from 18% in 1984 to 47.9% in 2004. This clearly 

demonstrates the growing commercial interest that the U.S. oil industry has in gas 

injection EOR projects – especially CO2. 
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Figure 3.4: EOR Project and Production Distribution Dynamics (1986 – 2004) 

 

3.1.2.3 EOR by Gas Injection  

The target oil for the gas injection processes is the ‘left-behind’ oil in reservoirs that have 

been already discovered and deemed unproducible by current technology, which amounts 

to 377 billion barrels of left behind U.S. oil identified in OGJ surveys (Moritis, 2004). 

The growing importance of the recovery of this oil is evident from increased efforts in 

EOR, especially gas injection EOR. 

Injection of gases such as hydrocarbon (HC), carbon dioxide (CO2), air, Nitrogen 

(N2), flue gas etc. for improved light oil recovery has been practiced since the early 

1920’s. Gas injection refers to those enhanced oil recovery (EOR) techniques whose 

main oil recovery function is extraction, vaporization, solubilization, and condensation. 

However, some of the injectants such as CO2 possess other, important oil recovery 

mechanisms such as oil viscosity reduction, oil swelling and solution gas drive.  

In the earliest applications of gas injection, both liquefied petroleum gas (LPG) and 

lean hydrocarbon gases constituted the major share of injectants for gas injection EOR. 

However, this process became economically unattractive with increasing natural gas 

prices. In the 1970’s, renewed interests in gas injection methods, especially CO2, were 
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observed, mainly due to the increasing oil prices and improved capabilities in oil 

recovery estimates by gas injection (Stalkup Jr., 1985). The last two decades have shown 

a significant increase in CO2 injection EOR and the hydrocarbon gas injection is losing 

its applicability due to sustained high natural gas prices (Moritis, 2004). Hydrocarbon 

injection is still widely practiced in large offshore fields such as Prudhoe Bay, where 

limited gas processing and transportation facilities are available. 

 

3.1.2.4 Importance of CO2 as Injectant: U.S. Perspective  

CO2 injection remains an important EOR method in the U.S. in-spite of oil price swings 

and ownership realignments. The CO2 process leads the gas injection processes spectrum, 

complimented with nitrogen and hydrocarbon (HC) processes. This is especially true in 

the Permian Basin of West Texas and New Mexico. Over 95% of the CO2 flooding 

activity is in the United States and mainly in the mature Permian Basin of the 

southwestern U.S. and dominated by injection under miscible conditions (Christensen et 

al., 1998; Moritis, 1995).  

CO2 floods demonstrate lower injectivity problems due to its higher viscosity, 

compared to other common gas injectants. Furthermore, the lower formation volume 

factor (FVF) of CO2 and lower mobility ratio make the volumetric efficiency higher for 

CO2 than other solvents and solvent mixtures. Another beneficial effect of CO2 usage is 

the likelihood of higher gravity segregation within the high water saturation zones of the 

reservoir than in the higher oil saturation zones. This effect is useful when targeting 

pockets and bypassed areas of oil and drain them effectively (Hadlow, 1992). The 

increasing price of natural gas, higher incremental oil recoveries by CO2, compared to 

hydrocarbon gases (Rogers and Grigg, 2000) as well as the additional benefit of carbon 

sequestration tips the scales in favor of CO2 for future gas injection projects. 

The lower costs for implementing CO2 floods (Figure 3.5) are due to large gas 

processing facilities as well as huge reserves of almost pure CO2 (Mississippi, West 

Texas, New Mexico, Oklahoma, North Dakota, Colorado and Wyoming), supported with 

extensive CO2 pipeline infrastructure (Kulkarni, 2003). Projected oil recoveries from 

these projects are in the order of 7-15% OOIP (Christensen et al., 1998; Rogers and 

Grigg, 2000). Improved simulation capabilities and reduced development costs have 

made the CO2-based processes even more attractive for commercial applications in recent 

years. 
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Capital 
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Figure 3.5: Estimated Cost of New CO2 Flood based on $18/BOE Price (Shows a Profit 

Potential of more than $7/BOE (Petroleum Engineering International, 1995). 

 

3.1.3 U.S. EOR Scene  

Field-scale gas injection applications have almost always been associated with design and 

operational difficulties. Although, the gas processes demonstrate high microscopic 

displacement efficiencies, especially under miscible conditions, the volumetric sweep of 

the flood has always been a cause of concern (Hinderaker et al., 1996). The mobility 

ratio, which controls the volumetric sweep, between the injected gas and displaced oil 

bank in gas processes, is typically unfavorable due to the relatively low viscosity of the 

injected phase. This difference results in severe gravity segregation of fluids in the 

reservoir, consequently leading to poor flood conformance controls. 

Commercial gas injection has traditionally been classified into primarily four types of 

applications: water-alternating-gas (WAG) injection, down-dip injection, crestal (gas cap) 

injection, and gas recycle mode injection. WAG injection is generally practiced in normal 

horizontal reservoirs, where down-dip injection is difficult; and the beneficial gravity 

effects are difficult to obtain. During WAG applications, water and gas are alternatively 

injected in predetermined slugs to offset the gravity segregation phenomenon and achieve 

a uniform and stable flood front (Christensen et al., 1998).  

The down-dip injection, with or without WAG, is mostly favored in sloping 

reservoirs for targeting waterflood residual as well as the ‘attic oil’ (Jayasekera & 

Goodyear, 2002). Down-dip injection has been proven to be beneficial even under 

immiscible injection modes and in cases where reservoir characteristics do not permit a 

miscible flood, mainly due to interfacial and three phase relative permeability effects.  
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Crestal injection has been generally found useful to increase reservoir sweeps, in 

saturated reservoirs with gas cap, and gravity stable displacements using miscible or 

immiscible gas. Crestal type gas injection has also been employed on some continental 

shelves (such as U.K. Offshore), but this has usually been driven by the need for gas 

storage or to manage the position of oil rims under gas caps rather than enhanced 

recovery (Jayasekera & Goodyear, 2002). Furthermore, improving the liquid recoveries 

from rich gas condensate reservoirs has also successfully utilized the crestal gas recycle 

mode process (Jayasekera & Goodyear, 2002). 

 

3.1.3.1 The WAG Process  

To increase the extent of reservoir contacted by the injected gas, the water-alternating-gas 

(WAG) process is the most commonly employed commercial field gas injection process. 

Conceptually, the WAG process, proposed by Caudle and Dyes (1958), is meant to 

‘break-up’ the continuous slug of gas into smaller slugs by alternating them with water. 

In the WAG process, the counter tendencies of gas to rise upward and water to descend 

within the reservoir are supposed to ‘compensate’ each other to provide a more uniform 

reservoir sweep of the entire reservoir (Figure 3.6). The WAG process attempts to 

combine the good microscopic displacement arising from gas injection with improved 

macroscopic efficiency by injection water to improve the flood mobility ratio. 

Today the WAG process is applied to nearly 83% (49 out of 59 field reviews reported 

(Christensen, 1998)) of the miscible gas injection field projects, and is the default process 

for commercial gas injection projects. The large-scale WAG applications have been 

driven by proven improved EOR performances over continuous gas injection (CGI) and 

their successes on both the laboratory as well as the field-scale(s) (Kulkarni, 2003). 

 

3.1.3.2 Problems Associated with the WAG Process  

Since the WAG principle is to improve the flood conformance and ‘combat’ the natural 

forces of gravity segregation, the best ‘WAG-effects’ have been observed in reservoirs 

with negligible gravity force components i.e. in thin or low permeability reservoirs 

(Jayasekera & Goodyear, 2002). However, these types of reservoirs represent an 

insignificant fraction of the gas flood candidate reservoirs, which results in lower than 

expected WAG recoveries. Even though in most of the reservoirs, the WAG process 

helps dampen the water-oil-gas segregation due to gravity in the near-wellbore region, 

the gravity segregation effects’ prominence increases as the injected fluids progress away 

from the wellbore, resulting in a large bypassed zone attributable to the gas over-ride and 

water under-ride as shown in Figure 3.7. Figure 3.7 clearly shows that although good 

conformance is achieved by employing the WAG process in the near-well bore region, 

the natural gravity segregation tendencies of gas and water eventually dominate the 
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process, thereby resulting in a large un-swept region in the central portion of the 

reservoir.  

 

 

Figure 3.6: Schematic of the WAG Process (Kinder Morgan CO2 Company Website) 

 

 
Figure 3.7: More Probable WAG Displacement (Conceptually in Horizontal Reservoirs) 

(Rao et al., 2004) 

Furthermore, water injection for conformance control leads to other mechanistic 

problems such as increased three-phase relative permeability and water-shielding effects 

and decreased gas injectivity. These effects could collectively result in injectivity and 
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operational problems, as well as difficulties in effectively establishing gas-oil contact and 

miscibility in the reservoir.  

Apart from these reservoir problems such as high initial water production, water 

shielding effect of mobile water, decreased oil relative permeabilities and decreased gas 

injectivity; operational problems for WAG implementation like corrosion, asphaltene and 

hydrate formation, and premature gas breakthrough are also perennial (Jackson et al., 

1985; Christensen et al., 1998; Rogers and Grigg, 2000). 

A review of 59 WAG field experiences by Christensen et al. (1998) clearly concluded 

that although the WAG process is conceptually sound, its field recovery performance has 

been low. Of the 59 WAG field experiences they examined (Christensen et al., 1998), a 

majority of the projects reviewed reported an incremental oil recovery in the range of 

only 5 to 10% OOIP, with an average incremental recovery of 9.7% for miscible WAG 

projects and 6.4% for immiscible WAG projects. 

 

3.1.3.3 Proposed Solutions for Mitigating Field WAG Implementation Problems  

Although, significant research has been put forth to increase tertiary recoveries from 

WAG floods have provided with better understanding of the injectivity limitations and 

WAG ratio optimizations (Christensen et al., 1998), they have had limited success in 

terms of incremental tertiary recoveries. Proposed modifications for WAG 

implementation such as the Hybrid-WAG, Denver Unit WAG (DUWAG), Simultaneous 

WAG (SWAG), foam injection etc. have also met with limited success (Moritis, 1995).  

Other research efforts such as gas thickeners (Enick et al., 2000) with gas-soluble 

chemicals (McKean et al., 1999), and injectant slug modifications (Moritis, 1995) 

targeted at specific formation types have also been proposed. Although these methods 

appear promising on a laboratory / simulator scale; important issues such as feasibility, 

cost, applicability, safety and environmental impact still need to be addressed (Moritis, 

1995 and 2004). Furthermore, most of these process modifications are still at inception or 

experimental stage and are yet to be tested in the field and hence are not accepted as part 

of the current commercial technology.  

It is important to note that all the above newly proposed gas injection methods are 

still aimed at overcoming the gravity force (consequently the natural phenomenon of 

gravity segregation) and an ‘attempt’ to improve the flood profile (Moritis, 1995 and 

2004). Hence the full utilization of EOR potential (377 billion barrels of target oil) in the 

United States requires the development of new and more efficient gas injection processes 

that would overcome the conceptual limitations of the WAG process and its successors. 

 



 239 

3.1.4 WAG Process Literature Review 

The objective of this section was to summarize the literature’s perspective on WAG 

process. It is important to note that the continuous gas injection (CGI) process has been 

also classified as a type of WAG process with a WAG ratio of 0:1.  

 

3.1.4.1 Mobility Control Processes 

The overall efficiency of the EOR process depends on both, the microscopic as well as 

the macroscopic sweep efficiencies. Specifically, the mobility ratio controls the aerial 

sweep in the reservoir, and the vertical sweep is controlled by the difference in the 

densities of the injected and displaced fluids. The low residual oil saturations in swept 

zones, and overall poor volumetric reservoir sweep are the main concerns in a gas flood. 

The ‘unfavorable’ mobility ratio in gas floods being the main cause, flood profile control 

in gas floods is instrumental for a successful project.  

Continuous research efforts are being made to improve the flood profile control in gas 

floods(2)(3). These include preparation of direct thickeners with gas-soluble chemicals like 

Telechelic Disulfate, Polyfluoroacrylate and Fluoroacrylate-Styrene copolymers, which 

can increase the viscosity of gases several folds (e.g. For CO2 viscosity increase from 2 – 

100 fold). Other methods such as, modifications in the injected slug such as the use of 

Natural Gas Liquids (NGL) instead of water for highly viscous oils in low pressure, 

poorly producing and unconsolidated formations are also proposed (Moritis, 1995). 

Although they seem promising on the laboratory/simulator scale, important issues like 

feasibility, cost, applicability, safety and environmental impact still need to be addressed 

(Moritis, 1995).  

Most of these process modifications are still at inception or experimental stage and 

are not accepted as part of the current commercial flooding technology. Moritis (1995), 

comments on the National Petroleum Council’s (NPC) survey conducted for about 27 

production, 16 deepwater development and 34 developmental technologies. He predicts 

that gas thickeners and combustion, thermal and microbial EOR processes will have 

lower impact in future Research, Development and Demonstration (RD&D). New 

directional drilling techniques, stimulation and re-completion techniques along with 

reservoir characterization will be the keys for cost-effective production in the oil and gas 

industry. 

Almost all the commercial miscible gas floods today employ the WAG method 

(Hinderaker, et al., 1996). The WAG process is shown schematically as Figure 1 below. 

Gas injection projects contribute about 40% of the total US-EOR production: most of 

which are WAG floods. Almost 80% of the WAG flood projects in the US are reported 

an economic success (Hadlow, 1992). 

The WAG survey conducted by Hadlow (1992) reported an ultimate recovery of 

about 8–14% OOIP, based on simulation and pilot tests. However, the more recent survey 
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of 2001 by Christensen et al. (1998) shows that the average increases in oil recovery were 

only 5 – 10%. The survey encompassed 59 projects. The popularity of the WAG process 

is evident from the increasing number of projects and many successful field wide 

applications (Enick, 2000). 

The survey (Christensen et al., 1998) also sheds light on the application scenario and 

distribution of the WAG process. U.S. had the largest share of WAG applications of 

62.7%, followed by Canada at 15.3%. The process was seen mostly applied to onshore 

reservoirs (88%), but applicable to a wide range of reservoir types, from chalk to fine 

sandstone. The popularity of the miscible flood was evident from the fact that 79% of the 

WAG projects employed are miscible. The CO2 floods lead the WAG applications with a 

share of 47% of total projects, closely followed by hydrocarbon gas at 42%. 

 

3.1.4.2 WAG Process Classification 

The large-scale reservoir applications need a good classification system for better 

understanding and design of WAG process. Although Claudle and Dyes (1958) suggested 

simultaneous injection of oil and gas to improve mobility control, the field reviews show 

that they are injected separately (Christensen et al., 1998). The main reason for this 

injection pattern is the better injectivity when only one fluid is injected.  

Christensen et al. (1998) have attempted to systematically classify the WAG process. 

They grouped the process into four types: Miscible, Immiscible, Hybrid and Others based 

on injection pressures and method of injection. Many reservoir specific processes 

developed have been patented and are generally grouped under the ‘other’ WAG 

classification. Some of the examples are the ‘Hybrid-WAG’ process patented by 

UNOCAL (Huang and Holm, 1986), and the ‘DUWAG’ process of Shell (Tanner et al., 

1992). These patented processes namely; Hybrid-WAG and DUWAG were developed to 

optimize recoveries from gas injection processes wherein a large slug of CO2 is injected 

followed by 1:1 WAG. 

 

3.1.4.3 Design Parameters for the WAG Process 

The WAG review showed that this process has been applied to rocks from very low 

permeability chalk up to high permeability sandstone. Most of the applied processes were 

miscible. The miscibility issue is generally based on gas availability, but is mainly 

reported as an economic consideration and the extent of reservoir repressurization 

required for process application. The major design issues for WAG are reservoir 

characteristics and heterogeneity, rock and fluid characteristics, composition of injection 

gas, injection pattern, WAG ratio, three-phase relative permeability effects and flow 

dispersion. It is important to note that plain gas injection is considered as a part of WAG 

process with a WAG ratio of 0:1, hence the design issues pertinent to WAG are 

applicable to plain gas injection as well. 
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Reservoir Heterogeneity and Stratification 

Stratification and heterogeneities strongly influence the oil recovery process. Reservoirs 

with higher vertical permeability are influenced by cross flow perpendicular to the bulk 

flow direction. Viscous, capillary, gravity and dispersive forces generally influence this 

phenomenon (Rogers and Grigg, 2000). Cross-flow may influence to increase the vertical 

sweep, but generally the effects are detrimental to oil recovery – mainly due to the 

gravity segregation and decreased flow velocity in the reservoir. This leads to reduced 

frontal advancement in lower permeability layer. WAG recoveries and continuous gas 

injections are more strongly affected by these phenomena.  Reservoir heterogeneity 

controls the injection and sweep patterns in the flood. The reservoir simulation studies 

(Jackson et al., 1985) for various kv/kh (vertical to horizontal permeability) ratios suggest 

that higher ratios adversely affect oil recovery in WAG process. 

Gorell (1990) reported that the vertical conformance of WAG displacements is 

strongly influenced by conformance between zones. In a non-communicating-layered 

system, vertical distribution of CO2 is dominated by permeability contrasts. Flow into 

each layer is essentially proportional to the fractional permeability of the overall system 

(average permeability * layer thickness (k*h)) and is independent of WAG ratio, 

although the tendency for CO2 to enter the high permeability zone with increasing WAG 

ratio cannot be avoided. Due to the cyclic nature of the WAG, the most permeable layer 

has the highest fluid contribution, but as water is injected it quickly displaces the highly 

mobile CO2 and all the layers attain an effective mobility nearly equal to the initial value. 

These cause severe injection and profile control problems. The higher permeability 

layer(s) always respond first. WAG will reduce mobility not only in the high permeability 

layer but also in the low permeability layer, resulting in a larger amount of the CO2 

invading in the highest permeability layer.  

The ratio of viscous to gravity forces is the prime variable for determining the 

efficiency of WAG injection process and controls vertical conformance of the flood. 

Cross-flow or convective mixing can substantially increase reservoir sweep even in the 

presence of low vertical to horizontal permeability ratios. Heterogeneous stratification 

causes physical dispersion, reduces channeling of CO2 through the high permeability 

layer, and delays breakthrough. This is attributed to permeability and mobility ratio 

contrasts (Rogers and Grigg, 2000). This is unfavorable and greatly influences the 

performance of the flood. However, the effects are reservoir specific and the overall 

effect is dependent on various parameters like permeability, porosity, reservoir pressure, 

capillary pressure and mobility ratio (Gorell, 1990; Rogers and Grigg, 2000; McCoy et 

al., 2000; Alvarez et al., 2001). 
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Rock and Fluid Characteristics 

Fluid characteristics are generally black-oil or compositional PVT properties obtained in 

the laboratory by standardized procedures (Rogers and Grigg, 2000). Very accurate 

determination of fluid properties can be obtained with current techniques. 

However, rock-fluid interactions such as adhesion, spreading and wettability affect 

the displacement in the reservoir. In reservoir simulators all these rock-fluid interactions 

are generally lumped into one parameter – relative permeability. The relative 

permeability is the connecting link between the phase behavioral and transport properties 

of the system. Relative permeability is an important petrophysical parameter, as well as a 

critical input parameter in predictive simulation of miscible floods. Relative permeability 

data are generally measured in the laboratory by standardized procedures with actual 

reservoir fluids and cores and at reservoir conditions (Rogers and Grigg, 2000).  

 

Injection Gas Characteristics 

This issue is more related to the location than the applicability of the reservoir. The 

question of availability is most important as far as the design criteria are concerned. The 

CO2 design criteria suggest a minimum depth limitation as well as dictate the specific 

gravity and viscosity criteria of the oil to be produced from the concerned reservoir. In 

offshore fields, the availability of hydrocarbon gas directly from production makes 

hydrocarbon gas injection feasible. Good example of this issue is the Ekofisk field where 

miscible hydrocarbon WAG was suggested to be more suitable for Ekofisk, even though 

CO2 WAG yielded higher incremental production under laboratory conditions (Jensen et 

al., 2000). Christensen et al. (1998) suggest that all the offshore fields use hydrocarbon 

WAG, however the option to use CO2 is being tested for environmental concerns. 

 

Injection Pattern 

The WAG process review (Christensen et al., 1998) clearly shows the popularity of the 5-

spot injection pattern with close well spacing on shore. In spite of higher costs, the 5-spot 

injection pattern with closed well spacing is still popular since it gives better control over 

the process. Inverted 9-spot patterns are also reported in DUWAG and the Hybrid WAG 

projects of Shell and Unocal respectively.  

 

Tapering 

Tapering is the decrease in gas-to-water ratio as the flood progresses. This is generally 

done to control the gas mobility and channeling as well as to prevent early breakthrough 

of the gas. This step is important especially when the injected gas is expensive and needs 

recycling. Tapering is generally done in most of the CO2 and hydrocarbon floods and 

prevailed even in the earliest WAG flood trials (Hadlow, 1992; Christensen et al., 1998). 
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WAG Ratio 

The optimum WAG ratio is influenced by the wetting state of the rock (Jackson et al., 

1985). WAG ratio of 1:1 is the most popular for field applications (Christensen et al., 

1998). However, gravity forces dominate water-wet tertiary floods while viscous 

fingering controls oil-wet tertiary floods. High WAG ratios have a large effect on oil 

recovery in water-wet rocks resulting in lower oil recoveries. Tertiary CO2 floods 

controlled by viscous fingering had a maximum recovery at WAG ratio of about 1:1. 

Floods dominated by gravity tonguing showed maximum recovery with the continuous 

CO2 slug process. The optimum WAG ratio in secondary floods was a function of the 

total CO2 slug size. 

For water-wet rocks, 0:1 WAG ratio (continuous gas injection) is suggested for 

secondary as well as tertiary floods (Jackson et al., 1985). For a partially oil-wet rock, 

tertiary gas injection with 1:1 WAG ratio is suggested. The recovery depends on the slug 

size with larger slug size yielding better results. A 0.6 PV slug size gives maximum 

recovery, but 0.2 – 0.4 PV slug size is dictated by economics. Tertiary and secondary 

CO2 floods (in both oil-wet and water-wet reservoirs) are viscous (or finger) dominated 

(Jackson et al., 1985). In these cases, miscible CO2 floods would greatly enhance oil 

recovery since miscibility reduces fingering considerably.  

 

Flow Dispersion Effects 

The WAG injection results in a complex saturation pattern as both gas and water 

saturations increase and decrease alternatively. This results in special demands for the 

relative permeability description for the three phases (oil, gas and water). There are 

several correlations for calculating three-phase relative permeability in the literature(15), 

but these are in many cases not accurate for the WAG injection since the cycle (water / 

gas) dependant relative permeability modification and application in most models are not 

considered. Stone II model is the most common three-phase relative permeability model 

used in commercial reservoir simulators today; however, it is necessary to obtain 

experimental data for the process planned. 

 

Gravity Considerations in WAG 

Green and Willhite (1998) suggest that the same density difference, between injected gas 

and displaced oil, that causes problems of poor sweep efficiencies and gravity override in 

these types of processes can be used as an advantage in dipping reservoirs. Gravity 

determines the ‘gravity segregation’ of the reservoir fluids and hence controls the vertical 

sweep efficiency of the displacement process. Gravity-stable displacements of oil by 

plain gas injection or WAG in dipping reservoirs as secondary or tertiary process results 

in very high oil recovery. This has been confirmed by laboratory tests, pilot tests as well 

as field applications (Tiffin and Kremesec, 1986; Chatzis et al., 1988; Thomas et al., 
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1990; Bangla et al., 1991; Mungan, 1991; Karim et al., 1992; Kalaydjian et al., 1993; 

Hinderaker et al., 1996; Audolfo and Jourdan, 1996). Although the purpose of WAG 

injection is to mitigate the gravity segregation effects and provide a stable injection 

profile, WAG in downdip reservoirs have shown better profile control and higher 

recoveries. Hence the gravity considerations in WAG design are indispensable. 

 

Laboratory Studies and Simulation 

Detailed laboratory studies coupled with reservoir simulation are of paramount 

importance for successful WAG design (Sanchez, 1999). The quality of data input to the 

simulator is the key to provide quality predictions (Prieditis et al., 1991). For 

compositional simulations phase behavior and slim-tube experiments should be 

performed and used to tune the EOS model. This tuned model helps in accurate 

characterization of reservoir fluid. Also relative permeability and capillary pressure 

hysteresis modeling for three-phase flow is a requirement when simulating miscible 

WAG floods. Although these compositional effects do not affect immiscible floods to the 

same extent as in miscible floods, a tuned EOS coupled with an accurate three-phase 

relative permeability model is required for reliable predictions from the simulation. 

Significant improvements are being made in three-phase relative permeability models 

(Blunt, 1999; Moulu et al., 1999; Hustad, 2000; Christensen et al., 2000; Larsen et al., 

2000; Dijke et al., 2002). As a result, accuracy of the simulation studies is improving. 

 

3.1.4.4 Need for Miscibility Development 

Most of the gas injection processes could be segregated as miscible or immiscible. Gas 

injection processes are most effective when the injected gas is nearly or completely 

miscible with the oil in the reservoir (Jakupstovu et al., 2001). The immiscible gas flood 

increases oil recovery by raising the capillary number due to the relatively low interfacial 

tension values between the oil and injected gas. In miscible flooding, the incremental oil 

recovery is obtained by one of the three mechanisms: oil displacement by solvent through 

the generation of miscibility (i.e. zero interfacial tension between oil and solvent – hence 

infinite capillary number), oil swelling and reduction in oil viscosity (Schramm et al., 

2000). 

Miscible flooding has been used with or without WAG for the control of viscous 

fingering and reduction in gas-oil interfacial tension of the system. Miscibility is 

achieved by repressurization in order to bring the reservoir pressure above the minimum 

miscibility pressure (MMP) of the fluids. Christensen et al. (1998) observed that it is 

difficult to distinguish between miscible and immiscible processes since in many cases 

multi-contact gas-oil miscibility may have been obtained. This leads to uncertainty about 

the actual displacement process. Loss of injectivity and/or failure of pressure 

maintenance in the actual reservoir, attributable to many factors, cause the process to 
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fluctuate between miscible and immiscible during the life of the process. The author 

(Hadlow, 1992) also point out that the earlier miscible processes used expensive solvents 

like propane, which are uneconomical in the present price context. The injectivity 

problems and pressure loss dictate closer well spacing – hence increased costs – although 

no severe impairments in the project economics have been reported attributable only to 

these problems (Hadlow, 1992). 

There seems to be no consensus in the literature for the need for development of 

miscibility in gas floods (Thomas et al., 1995; Schramm et al., 2000; Jakupstovu et al., 

2001). Rogers and Grigg (2000) suggest that interfacial tension is the most sensitive and 

the most easily modified parameter in the capillary number, and suggest that considerable 

decrease in interfacial tension at relatively low cost is the benefit of miscible flooding. 

However, overlapping values of interfacial tension for immiscible, near-miscible and 

miscible floods have been reported (Taber et al., 1996; Christensen et al., 1998; Rao, 

2001). Although Rogers and Grigg (2000) suggest a way to improve the capillary 

number, the issue of viscous forces still needs to be addressed. Viscous forces strongly 

depend on the reservoir heterogeneities, petrophysical properties and cross-flow in the 

reservoir, hence are strongly reservoir dependant. Rao (2001) suggests the use of 

chemicals to alter wettability in non-water wet reservoirs where miscibility achievement 

(for reduction in interfacial tension) may not be as important as the water-wet reservoirs 

where miscibility is useful to maximize pore-level displacement efficiency. 

 

3.1.4.5 Effect of Brine Composition 

The migration of small solid materials (‘fines’) within porous media has long been 

recognized as a source of potentially severe permeability impairment in reservoirs (Eng et 

al., 1993). This impairment has a strong effect on the flow capability (relative 

permeability) of the reservoir rock. Fines migration occurs when loosely attached 

particles are mobilized by fluid drag forces caused by the motion of fluid within the pore 

space. One of the primary factors that determine the migration of clay particles is the 

brine composition. Laboratory studies (Eng et al., 1993) have shown that brine salinity, 

composition and pH can have a large effect on the microscopic displacement efficiency 

of oil recovery by waterflooding and imbibition.  

Gray and Rex (Scheuerman and Bergersen, 1990) in their study of the migration of 

mica needles and kaolinite, found that fines migration, consequently permeability 

reduction, could be induced by salinity changes or abrupt reductions in the ratio of 

divalent to monovalent ions present in the brines. Mungan (1965) studied the effects of 

permeability reduction (‘Core Damage’) due to changes in pH and salinity of the injected 

brine. He concluded that the permeability reduction occurs, regardless of the type of clay, 

due to changes in brine salinity.  
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Capabilities of divalent cations like [Ca2+] and [Mg2+] to control permeability 

impairment of reservoir due to swelling of clays have been long recognized(39)(41)(42). This 

phenomenon is attributable to the cation exchange properties of clays, which inherently 

favor the adsorption of [Ca2+] and [Mg2+] ions over [Na+]. The clays in their calcium-

form are less easily dispersed compared to the clays with sodium, and they are easily 

interchangeable by flowing a solution containing other cations (Jones, 1964).  

Even though the literature is unison about the effects of brine composition on 

permeability reduction and fines migration, there seems to be little consensus about the 

effects of brine composition on oil recovery (either by waterflooding or imbibition). 

Kwan et al. (1989), in their study of permeability damage via fines migration in extracted 

core material, concluded that permeability and oil recovery were nearly independent of 

brine composition. Contrarily, other experimental studies (Jones, 1964; Khilar et al., 

1990; Filoco and Sharma, 1998; Tang and Morrow, 1999), suggested that changes in 

brine composition could have a large effect on oil recovery. This is especially apparent 

based on wettability. 

Waterflooding and core imbibition experiments conducted by Tang and Morrow 

(1999) with 1% solutions of NaCl, CaCl2 and AlCl3 showed increased waterflood 

recoveries (forced displacement) and decreased (natural) imbibition rates with increase in 

cation valency. Generally, oil recovery was found to increase with decrease in brine 

salinity. 

In contrast to the observations of Tang and Morrow (1999), Sharma and Filoco 

(1998) conducted centrifuge experiments on Berea cores and found that oil recovery via 

imbibition increases significantly with increasing salinity of connate brine. 

 

3.1.4.6 WAG Literature Review Summary 

The gas injection EOR processes today contributes a substantial portion of the oil from 

light oil reservoirs, next only to thermal processes used in heavy oil reservoirs and their 

importance is continuing to rise.  

Nearly all the commercial gas injection projects today employ the WAG method. The 

WAG process has long been considered as a tertiary gas injection mobility control 

process after a secondary waterflood. Previous research and field applications have 

repeatedly proven the inadequacy of the WAG process, yet it has remained the default 

process due to absence of a viable alternative. The low recoveries from the WAG process 

lead to substantial research of the process and consequently some of its limitations are 

eliminated. In spite of these improvements, the field performance of WAG process is 

disappointing. Hence the full utilization of EOR potential in the U.S. requires the 

development of new and more efficient gas injection processes that overcome the 

limitations of the WAG process. 
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In the United States, most of the WAG applications are onshore, employing a wide 

variety of injection gases for a wide range of reservoir characteristics in the miscible 

mode. Although many types of injectant gases have been used in the commercial WAG 

floods, CO2 and Hydrocarbon gases form the major share of injectant types (~ 90%).  

The main design parameters that need to be evaluated on a laboratory scale so as to 

evaluate the feasibility of the process are: Reservoir heterogeneity, rock type, fluid 

characteristics, injection gas, WAG ratio and gravity considerations. Other important 

parameters that are important for gas injection and tertiary recovery in general are those 

of miscibility development and oil / brine composition (characteristics). 

 CO2 is ideally suited for the use as an EOR gas in the U.S. scenario. Abundance of 

reserves of almost pure CO2 and availability of technical know-how can be instrumental 

in the growth of CO2 injection process. Carbon sequestration is an added advantage of the 

CO2 injection projects. 

 

3.1.5 Scope for Improvement – Gravity Stable Gas Injection (Gravity Drainage) 

In summary, the literature review (Kulkarni 2003) clearly shows that WAG process, 

plagued with operational problems and poor recovery performance, has prevailed in the 

oil field, primarily due to the absence of a viable alternative. Although less popular as n 

EOR method, the gravity stable gas injection, is an attractive method of oil recovery. The 

drainage of oil under gravity forces, either through gas cap expansion or by gas injection 

at the crest of the reservoir, has proven to be an efficient gas injection method since it can 

reduce the residual oil saturation to very low values, when applied in both secondary as 

well as tertiary modes. These claims are well substantiated via both corefloods and field 

investigations. These studies experimentally prove that a large amount of incremental 

tertiary oil can be recovered using gravity assisted tertiary gas injection. Recoveries as 

high as 85 – 95% OOIP have been reported in field tests and nearly 100% recovery 

efficiencies have been observed in laboratory floods (Ren et al., 2003).  

Conceptually, the gravity stable gas injection takes advantage of the density 

difference between injected gas and reservoir oil that controls the extent of gravity 

segregation within the reservoir. The density difference, between injected gas and 

displaced oil, often cause problems of poor sweep efficiencies and gravity override in 

horizontal gas floods (such as WAG), but can be effectively used as an advantage in 

dipping reservoirs (Green and Willhite, 1998). Ironically, although the primary purpose 

for employment of WAG injection is to mitigate the gravity segregation effects and 

provide a stable injection profile, WAG or continuous gas injection (CGI) in downdip 

reservoirs, in secondary as well as tertiary mode, have demonstrated better profile control 

and higher oil recoveries (Hinderaker et al., 1996). These reviews underscore the benefits 

of working in tandem with nature by exploiting the natural buoyancy tendency of injected 
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gas to displace oil downwards (Rao et al., 2004), and indicate that the gravity stable gas 

injection process appears to be a promising alternative to WAG. 

 

3.1.6 Newly Proposed Gas Assisted Gravity Drainage (GAGD) Process 

EOR field applications have repeatedly proven the inadequacies of the WAG process and 

underscored the viability of the gas gravity drainage process. Furthermore, the 

consistently successful field applications of the gravity stable gas injections in dipping 

reservoirs and pinnacle reefs with widely varying reservoir and fluid characteristics, in 

both secondary and tertiary mode, are also encouraging.  

This leads us to the question: why not always inject gas in a gravity-stable mode at 

the top of the pay zone in order to drain the oil downwards into a horizontal producer? 

The newly proposed Gas Assisted Gravity Drainage (GAGD) process (Rao, 2001) aims 

to address this question and to provide with a process which extrapolates the highly 

successful gravity stable gas injection processes, that have been applied only to dipping 

reservoirs and pinnacle reefs, to horizontal type reservoirs. The concept of GAGD is 

depicted in Figure 3.8.  

The GAGD process consists of placing a horizontal producer at the bottom of the pay 

zone and injecting gas through existing vertical wells at the top (into the gas cap) to 

provide gravity stable displacement and uniform reservoir sweep. CO2 injected through 

the vertical wells accumulates at the top of the pay-zone due to gravity segregation and 

displaces oil, which drains to the horizontal producer straddling several injection wells. 

With increased cumulative gas injection, the CO2 chamber grows downward and 

sideways which results in larger and larger portions of the reservoir being swept, without 

any increases in the reservoir water saturation, thus maximizing the volumetric sweep 

efficiency. The natural gravity segregation of CO2 not only helps in delaying (or even 

eliminating) the premature CO2 breakthrough to the producer, but also eliminates the co-

current gas-liquid flow mechanics, resulting in lower pressure drops and increased gas 

injectivity. The oil displacement efficiency within the CO2 filled chamber can be further 

maximized by maintaining the injection pressure near the minimum miscibility pressure 

(MMP), which helps in lowering of the reservoir capillary forces: consequently the 

residual oil saturations. 

For GAGD applications in water-wet formations, it is hypothesized that water is 

likely to be held back in the rock pores by capillary and surface forces while the oil will 

preferentially drain to the producer. Opposingly, GAGD applications in oil-wet 

formations will be aided by the continuity of the oil phase, which would help create 

continuous oil drainage flow paths to the horizontal producer. 
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Figure 3.8: Concept of the Gas Assisted Gravity Drainage (GAGD) Process (Rao, 2001) 

 

 The proposed GAGD process appears to be capable of not only eliminating the two 

major limitations (poor sweep and water-shielding) of the conventional WAG processes, 

but also of significantly increasing oil relative permeabilities in the near producing well-

bore regions due to the absence of high water saturation and consequently increasing 

recoveries. 

Because the GAGD process utilizes the candidate field’s existing vertical wells for 

CO2 injection and requires the drilling of only a few horizontal wells, GAGD capital 

costs could be kept low. Additionally, the drilling costs of horizontal wells have been 

continuously dropping due to advancements in drilling technology.  

In summary, the proposed GAGD process not only possesses the potential of 

significantly enhancing ultimate oil recovery, but also holds the promise of delivering 

this incremental recoveries at production rates comparable to (or even higher than) those 

achieved by the widely-applied conventional WAG process. 

 

3.2 Problem Definition and Research Objectives 

 
3.2.1 Problem Definition 

Although the gas injection EOR has seen steady commercial growth in the last two 

decades, the overall recoveries have been disappointly low (in the range of 5 – 10% 

OOIP). This implies that inspite of their economic success, the WAG projects do leave 
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behind significant quantities of residual oil in the reservoirs. Furthermore, the high 

saturations of injected water existing at the end of a WAG project, makes the recovery of 

the remaining oil even more difficult.  

This raises several questions: Is there any harm done if the previous secondary 

recovery was by water flooding? Just for the benefit of 5 – 10% additional oil recovery, 

have we done more harm than good by injecting large quantities of water into the 

reservoir during the WAG projects? Has the increased waster saturation rendered the 

remaining oil even more remote to access? How are the mechanisms of oil recovery and 

multiphase flow behavior by gas injection affected by increased water saturation? Is there 

a happy medium between CGI and WAG that could outperform both? Should the gas 

injection be in secondary or tertiary mode? Is gravity drainage an effective alternative to 

WAG considering the fact that gravity stable gas injection projects have performed well 

in dipping reservoirs and pinnacle reefs? How would the relative roles of gravity, 

capillary and viscous forces change in gravity drainage process versus WAG or CGI? 

How would the reservoir characteristics (heterogeneity and wettability) affect the gas-oil-

water multiphase dynamics in gravity drainage? How would the fluid characteristics 

(miscibility and gas composition) affect oil recovery performance in gravity drainage? 

These are some of questions that this research project seeks to address in addition to 

gaining a better understanding of the underlying mechanisms responsible for the success 

or failure of any gas injection EOR project. 

 

3.2.2 Research Objectives 

The major objectives of this study are to: 

1. Study the operative mechanisms of multiphase coexistence in reservoirs: 

(i) Identification of operative mechanisms via dimensional analyses. 

(ii) Investigating the effect(s) of positive and negative spreading coefficients, 

obtained by using various fluid triplets, on gravity stable gas injection performance. 

(iii) Investigation of the effects of miscibility development on various commercial 

modes of gas injection, namely CGI, WAG, Hybrid-WAG and the newly proposed 

Gas Assisted Gravity Drainage (GAGD) process. 

(iv)  Identifying the effects of reservoir mobile water saturation, by comparison of the 

performance characteristics of gas injection floods in secondary and tertiary modes. 

(v) Characterization of the effects of reservoir wettability and possible wettability 

alteration effects (if any) operational during gas injection EOR processes. 

(vi) Identification and characterization of the relative importance of gravity / capillary 

/ viscous force effects in gas injection processes. 

(vii) Investigation of the effects of reservoir heterogeneity on gas injection EOR 

performance. 

2. Study the multiphase fluid dynamic characteristics in gas injection EOR: 
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(i) Characterization of the effect(s) of multiphase mechanisms (such as gravity 

segregation, wettability, spreading coefficient, miscibility, etc.) on fluid dynamics 

namely relative permeability and oil recovery. 

(ii) Comparing and correlating various laboratory and field scale studies. 

 

3.3 Gravity Drainage Literature Review 

Schechter and Guo (1996) provided a comprehensive review of the gravity drainage 

literature and suggested that three different gravity drainage processes can occur in 

porous media, namely: (i) forced gravity drainage by gas injection at controlled flow rates 

into steeply dipping reservoirs, (ii) simulated gravity drainage by centrifuging (existing 

only in laboratories), and (iii) free-fall (or pure) gravity drainage which takes place in 

naturally fractured reservoirs after depletion of oil from fractured or gas injection into a 

depleted fractured reservoirs.  

Since only the first and third gravity drainage processes discussed above are relevant 

to the GAGD process being developed in this study, this literature review focuses on 

these two gravity drainage processes. The literature review details: (i) displacement 

stabilities for gravity stable gas flow through porous media, (ii) gravity drainage 

fundamentals and traditional models, (iii) various laboratory studies on gravity drainage 

and (iv) various field applications of gravity drainage. 

 

3.3.1 Displacement Instabilities for Gravity Stable Gas Flow through Porous Media 

Although less popular as an EOR method, the gravity stable crestal or downward 

displacement type injection, either through gas cap expansion or by gas injection at the 

crest of the reservoir is an attractive method of oil recovery. The drainage of oil primarily 

under the influence of gravity forces (gravity drainage) has been found to be an efficient 

improved recovery method (Rao et al., 2004), since it can reduce the remaining oil 

saturation to below that obtained after secondary recovery techniques. It is important to 

note that the literature review on the mechanistic characterizations of gas injection 

processes is applicable to all processes; however the emphasis of this review is on gravity 

stable gas injection.  

The presence of viscous forces in a gas injection process may result in unstable flood 

fronts. Gas injection for EOR results in a finite viscous force acting on the gas-liquid 

interface. Because in any gas injection process (horizontal or gravity stable), the mobility 

ratio is typically unfavorable, the development of unstable fingers during gas 

displacements is imperative. The macroscopic and microscopic heterogeneities result in 

unequal displacement rates between the gas and in-situ fluids, thus magnifying this 

‘fingering’ phenomenon. In horizontal mode floods, various modifications in gas 

injection protocol are followed to mitigate this phenomenon, but have met with limited 

success – mainly due to the unfavorable gravity forces (as discussed in Chapter 1).  
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On the other hand, in vertical (gravity stable) gas floods, this unfavorable mobility 

ratio is generally attempted to overcome by reducing the viscous force magnitude (by 

decreasing the injection rates), and allowing the favorably acting gravity forces to 

stabilize the gas front. The maximum (vertical) gas injection rate allowable in a given 

reservoir to achieve a stable flood front is called as the ‘critical rate’. Mechanistically, the 

critical rate represents the injection rate wherein the favorable gravity force effects are 

overcome by the increased magnitude of viscous forces.  

For miscible gravity stable flood, Hill (1952) derived a critical velocity expression to 

predict the rates above which viscous instabilities can occur due to gravity forces being 

overshadowed by viscous forces. This equation (Equation 3.1) assumed a single interface 

contact between the injected and displaced phase with no mixing of solvent and oil 

behind the front. 
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Where: 

VC = Critical vertical injection rate (ft/d) 

∆ρ = Density difference (gm/cc) 

k = Permeability (D) 

θ = Dip angle (degrees – measured from horizontal) 

φ = Porosity (fraction) 

∆µ = Viscosity difference (cP) 

Dietz (1953) also proposed a method of analysis of stability of a vertical flood front 

with the following assumptions: homogeneous porous medium, vertical equilibrium of oil 

and water, piston displacement of oil by water, no oil-water capillary pressures, and 

negligible compressibility effects of rock and fluid. The Dietz equation is given by 

Equation 3.2 below. 
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Where, 

M = Mobility Ratio 

Nge = Gravitational force 

Dumore (1964) eliminated the limitation of the Hill (1952) equation which assumed 

that for vertical gas-liquid displacements, the solvent and oil do not mix, and derived a 

new frontal stability criterion (summarized in Equation 3.3). Interestingly, the Dumore 

stability criterion is more stringent than the Hill criterion, and for all rates lower than Vst; 

each infinitesimal layer of the mixing zone is stable with respect to each successive layer. 
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Where 

Vst = Critical velocity for stable vertical flow of gas (ft/D) 

Rutherford (1962; Mahaffey et al., 1966) developed a stability criterion for miscible 

vertically oriented corefloods in laboratory. The equation is given as Equation 3.4 below.  
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Where, 

(q/A) = Critical velocity for stable flow (ft/D)        

µO = Viscosity of Oil (cP) 

µS = Viscosity of Solvent (cP) 

Brigham (1974) observed that the estimate of stability of a coreflood front could be 

obtained by measuring mixing zone length. The mixing zone length could then be used to 

calculate the effective mixing coefficient (αe) an important reservoir simulation 

parameter. Perkins (1963) and Brigham (1974) solved the diffusion-convection equation 

and concluded that by measuring the mixing zone between 10% and 90% injected fluid 

concentrations at the core exit; the effective mixing coefficient (αe) can be easily 

determined. Brigham (1974) suggested that in the absence of viscous mixing, the 

effective mixing coefficient (αe) is a function of the porous medium only and typical 

values for Berea are 0.005 ft in laboratory scale systems. 

Slobod and Howlett (1964) derived a critical injection velocity equation for gravity 

stable displacements’ frontal stability in homogeneous sand packs and is given in 

Equation 3.5. 
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Among all the available analytical models in the literature to determine the critical gas 

injection rates (and promote stable displacement fronts) in gravity stable (vertical) gas 

injection floods, the Dumore (1964) criterion appears to be the most popular in the 

industry. The Dumore criterion has been widely applied, inspite of newer models being 

available (Piper and Morse, 1982; Skauge and Poulsen, 2000; Pedrera et al., 2002; 

Muggeridge et al., 2005). 

 

3.3.2 Gravity Drainage Fundaments and Traditional Models 

Gravity drainage is defined as a recovery process in which gravity acts as the main 

driving force and where gas replaces the voidage volume (Hagoort, 1980). Gravity 

drainage has been found to occur in primary phases of oil production through gas cap 

expansion, as well as in the latter stages wherein gas is injected from an external source. 

Muskat (1949) provides a detailed review on the effects of gravity forces in controlling 

oil and gas segregation during the primary-production phase of gas drive reservoirs. It 
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was suggested that the most efficient type of gravity-drainage production would be an 

idealized case wherein no free gas is allowed to evolve in the oil zone by maintaining the 

reservoir pressure above its bubble point, or by pressure maintenance at current GOR 

levels (Muskat, 1949).  

The literature employs the words ‘gravity stable gas injection’ and ‘gas gravity 

drainage’ interchangeably. Identification of the conceptual mechanistic differences 

between gravity stable gas injection, and ‘pure’ gas gravity drainage has been attempted 

in this study, and are detailed in following sections. 

The importance of gravity drainage as an important oil recovery mechanism has been 

well recognized. Gravity drainage has been observed to occur during gas injection 

(Muskat, 1949) as well as in the stripper stages of volumetric reservoirs (Matthews and 

Lefkovits, 1956). Field and laboratory experience has shown that that gravity drainage, 

under certain conditions, can result in very high oil recoveries and also, that gravity 

drainage is one of the most effective mechanisms of developing an oil field (see Section 

3.4).  

In spite of the fact that one of the earliest gravity drainage models appeared in 1949, 

the “…characterization and modeling of the (gravity drainage) process are still a great 

challenge (Li and Horne, 2003)”. This review attempts to provide a mechanistic 

understanding of the forced gravity drainage process, the fundamental mechanism 

involved in the GAGD process. 

 

3.3.2.1 Drainage or Displacement? 

Literature seems to use the words ‘gravity stable gas displacement’ and ‘drainage’ 

interchangeably. Many authors suggest the drainage process to be a type of displacement 

mechanism with the classical theories of Buckley-Leverett (1942), Darcy’s law, relative 

permeability, continuity equation, and decline curve analysis (material balance equation) 

to be applicable (Terwilliger et al., 1951; Hagoort, 1980; Li et al.; 2000).  

However, Muskat (1949) suggested that although the classical theories of Darcy and 

Buckley-Leverett are relevant, the decline curve equation, applicable to most 

displacements, does not in itself provide any information regarding the gravity drainage 

phenomenon. The decline curve method represents only the thermodynamic equilibrium 

between the net liquid / gas phases in the reservoir and hence cannot characterize the 

mechanistic and fluid-dynamic aspects of the gravity drainage process. This statement of 

Muskat (1949) seems to be supported by many researchers (Cardwell and Parsons, 1948; 

Richardson and Blackwell, 1971; Pedrera et al., 2002; Li and Horne, 2003) which suggest 

that “Gravity drainage can be modeled by conservation equation, Darcy’s law and 

capillary pressure relationship (Pedrera et al., 2002)”. 

Most of this confusion about gravity drainage characterization appears to stem from 

ignoring the injection gas pressure distribution as well as due to the application of ‘pure’ 
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or ‘free’ gravity drainage theory (Cardwell and Parsons, 1948) to forced gravity drainage 

applications or vice-versa.   

 

3.3.2.2 Gravity-Drainage / Buckley-Leverett Displacement Mechanisms and Models 

To facilitate the differentiation between displacement and drainage, the original Buckley-

Leverett (1942) displacement theory and the gravity drainage theory (Cardwell and 

Parsons, 1948) were critically examined and the resulting inferences are summarized 

below. 

 

Classical Displacement Theory 

Buckley and Leverett (1942) first described the mechanism of displacement and also 

proposed an analytical model to determine the oil recovery by gas or water injection into 

a linear (horizontal mode) oil reservoir. The Buckley-Leverett (B-L) model (Equation 

3.6) considers a small element within a porous medium and expresses the displacement 

rates in terms of accumulation of the displacing fluid (material balance theory is 

applicable).  

The B-L displacement theory also suggests that after displacing phase breakthrough, 

the oil production rate changes (generally decreases) in proportional to its saturation. 

Since the oil saturation decreases continually after breakthrough, the oil production rate 

also drops with time. Additionally, for pure piston-like displacement (B-L displacement) 

in water-wet systems (ignoring the capillary pressure effects), water floods demonstrate a 

‘clear’ breakthrough, i.e. no additional oil is produced after the water breaks through at 

the producing well. If the capillary pressure effects are included, the size of the oil bank 

increases with proportional decrease of the oil saturation from the leading to the trailing 

edge (Buckley and Leverett, 1942; Welge, 1952) 
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Where, SD is the saturation of the displacing fluid, A is the cross-sectional area of 

flow, θ is the time, qT is the total rate of flow through the section, u is the distance along 

the path of flow, φ is the porosity, and fD is the fraction of flowing stream comprising of 

the displacing fluid. 

However, inspite the fact that the original B-L model was hypothesized to be 

applicable to gas floods as well, the two assumptions used by B-L model, no mass 

transfer between phases and incompressible phases, result in severely limiting its 

application to GAGD type (gravity drainage) floods. 
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Buckley-Leverett’s Perspective about Gravity Drainage 

The original paper by Buckley and Leverett (1942) suggests that the gravity drainage 

phenomenon is “exceedingly slow” and is defined as the ‘mechanism in which no other 

forces in the reservoir, except gravity, are available to expel the residual oil’. Although 

Buckley and Leverett (1942) suggest that the ‘mechanism by which the area of high gas 

saturation invades the area of high oil saturation is very similar to that by which water 

encroaches into and displaces oil from a sand’; they also acknowledge that ‘in gas 

displacing oil systems, simultaneous three phase flow in the reservoir results in non-

piston like displacements and complete displacement never occurs!’. 

 

Classical Drainage Theory 

The earliest known analytical theory on gravity drainage was that of Cardwell and 

Parsons (1948), which derived a gravity drainage model based on hydrodynamic 

equilibrium equations in vertically oriented sand packs. The original theory assumed a 

free gas phase draining a single liquid phase, and suggested that the liquid recovery is 

equal to the percentage of the total area above the height versus saturation curve. One of 

the most important requisites to gravity drainage is the absolute pressure equilibrium 

between the gaseous and liquid phases. In other words, the gas zone does not exert a 

vertical pressure gradient on the gas-liquid interface.   

Interestingly, Cardwell and Parsons (1948) acknowledge that only a slight pressure 

gradient in the gas zone is sufficient for the B-L theory to be applicable. This statement 

seems to be the reason for non-distinction between displacement and drainage, since in 

real oil-gas-water systems, reservoir pressure maintenance and gas injection result in a 

finite pressure gradient on the gas-liquid flood front.  

A gravity drainage model similar to that of Cardwell and Parsons (1948) was 

proposed by Terwilliger et al. (1951). Terwilliger et al. (1951) applied the B-L 

immiscible displacement theory and the ‘shock-front’ technique (using fractional gas 

flow equations (Welge, 1952)) to match the steady state gravity drainage laboratory 

experiments (assuming steady-state relative permeability and static capillary pressure 

distribution). Terwilliger et al. (1951) also showed that recovery by gravity drainage is 

inversely proportional to production (conversely, injection) rates and recommended a 

“maximum rate of gravity drainage” or “gravity drainage reference rate” (Equation 3.7). 

Equation 6 appears to be the theoretical basis for the “critical injection rate” and “frontal 

stability” equations developed by various researchers (Hill, 1952; Dietz, 1953; Perkins 

and Johnston, 1963; Dumore, 1964; Brigham, 1974; Moissis et al., 1987; Ekrann, 1992; 

Virnovsky et al., 1996) for commercial gravity drainage applications. 
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Where, KL is the effective permeability to liquid at 100% liquid saturation, A is the cross-

sectional area of flow, µL is the liquid viscosity, g is the gravitational constant, ∆ρ is the 

density difference between liquid and gas, and α is the angle of dip. 

 

3.3.2.3 Traditional Gravity Drainage Models 

Although Cardwell and Parsons (1948) and Terwilliger et al. (1951) models first 

presented the governing equations for the gravity drainage process, the non-linearity of 

the equations forced them to ignore two important parameters: (i) the capillary pressure 

variation with saturation and (ii) capillary pressure dependence on permeability. 

Although, Nenniger and Storrow (1958) provided an approximate series solution 

(obtained from film flow theory) to predict the gravity drainage rates on a glass bead 

pack, the next important development in gravity drainage modeling was the 

generalization of the Cardwell and Parsons (1948) theory (Dykstra, 1978) by improving 

the capillary pressure representation in the governing equations. Using similar analysis 

and procedures, Hagoort (1980) also developed a theoretical analysis to predict forced 

gravity drainage recoveries, by simultaneously employing the B-L and Cardwell and 

Parsons (1948) theory. Although the model was significantly improved over the classical 

gravity drainage theory by modeling the capillary function as a Leverett J function, 

analytical solution of the model is not feasible due to the resulting non-linear governing 

equation. 

Richardson and Blackwell (1971) presented a radically different ‘hybrid’ approach to 

predict gravity drainage recoveries for a variety of scenarios such as: vertical flow 

conditions, water under running viscous oils, gravity segregation of water banks in gas 

caps, and for control of coning by oil injection. They combine the Buckley and Leverett 

(1942), Cardwell and Parsons (1948) and Welge (1952) theories with the Dietz (1953) 

frontal stability criterion to predict the ultimate oil recoveries, when the injection rate is 

less than one-half of the Dietz’s (1953) critical rate. 

Pavone et al. (1989) and Luan (1994) revisited the ‘demarcator’ concept introduced 

by Cardwell and Parsons (1948) to generate analytical models for gravity drainage in low 

IFT conditions and fractured reservoir systems, respectively. The ‘demarcator’ is defined 

(Cardwell and Parsons, 1948) as the region of minimum gas saturation in the systems. 

They also showed that assuming the demarcator at the bottom (or outlet) of the reservoir, 

improves the model prediction.  

Blunt et al. (1994) developed a theoretical model for three-phase gravity drainage 

flow through water-wet porous media based on a wide range of experiments, from 

molecular level to glass bead packs. These studies suggest that best tertiary gravity 

drainage efficiency in water-wet systems occurs when the oil spontaneously spreads as a 

layer between water and gas (under positive spreading coefficient conditions). 
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Li and Horne (2003) claim that “…the analytical models do not work well…” for 

gravity drainage recovery predictions, an empirical approach is more suitable. They 

proposed an empirical oil recovery model to match and predict oil production, which was 

tested against experimental, numerical and field data.  

 

3.3.3 Gravity Drainage Fundaments and Traditional Models 

Mechanistic reviews (provided earlier in Section 3.3.2) on pure gravity drainage and 

gravity stable gas injection processes suggest that they are the two ends of the gravity 

stabilized (vertical) gas injection processes. This section therefore summarizes the 

laboratory experiments conducted for the characterization and optimization of the vertical 

gas injection process, since the forced as well as free gravity drainage processes are 

relevant to the GAGD process. 

Although, Leverett’s (1941) studies on capillary behavior in porous media appear to 

be foremost of the documents suggesting the importance of gravitational and capillary 

forces in immiscible gas injection processes; Katz’s (1942) studies on vertical sand packs 

supplied the experimental evidence to confirm Leverett’s (1941) hypothesis. The 

experimental as well as analytical studies (Stahl et al., 1943; Lewis, 1944; Terwilliger et 

al., 1951; Higgins, 1953) that followed this pioneering work, stressed on the importance 

of ‘gravity-stabilization’ of the flood front by controlling flow rates, fluid properties and 

injection temperatures, for improved oil recovery factors from gravity stable gas injection 

(gravity drainage) floods.  

Since most of the latter (mid 1950’s to early 1970’s) experimental work involving 

gravity drainage experimental studies, conducted for improved understanding of the 

gravity drainage process, was focused on solving the non-linear gravity drainage models 

resulting from application of Darcy’s law, Buckley-Leverett theory and continuity 

equations to gravity drainage process (see Section 3.2), minimal mechanistic and fluid 

dynamic studies are resulted during this period. 

Dumore and Schols (1974) conducted gravity stable gas displacement experiments in 

high permeability oil saturated cores. They observed that the presence of connate water is 

critical for achieving very low oil residual saturations during gravity drainage floods, 

under high gas-oil capillary pressures, irrespective of whether or not the oil spreads on 

water in the presence of gas. Interestingly, Dumore and Schols (1974) attribute the 

achievement of low residual oil saturations to possible ‘film flow’. This appears to 

contradict their previous inference that the oil spreading need not occur in presence of 

gas, and that the contribution of oil from film flow in secondary gas caps is negligible.   

Centrifuge gravity drainage experiments by Hagoort (1980) conducted using various 

consolidated outcrop and field cores suggested that the gravity drainage was a “very 

effective” process in water-wet, connate water bearing reservoirs. The results were 

analyzed using the Buckley-Leverett displacement theory (forced gravity drainage) and 



 259 

the author suggested that the oil relative permeability was a key parameter during the 

gravity drainage process. It was also suggested that the centrifugal relative permeabilities 

are representative of the gravitational relative permeabilities if the microscopic flow 

regimes in the centrifuge were similar to those in reservoir floods, as characterized by the 

Dombrowski-Brownell (NDB) number. Hagoort (1980) suggested that a value of less than 

10-5 for the Dombrowski-Brownell number, results in the microscopic flow being 

capillary dominated, and that a NDB value of greater than 10
-3 would make the centrifugal 

gravity drainage experiments unrealistic. These observations appear to be supported by 

the experimental results presented by Danesh et al. (1989). 

Tiffin and Kremesec (1986) conducted a series of gravity-assisted vertical core 

displacements of both first contact miscible and multiple contact miscible type, with CO2 

– recombined crude oil systems at various pressures and temperatures. The authors 

suggested that downward gravity assisted displacement recoveries, even at injection rates 

significantly higher than the critical rates, are more efficient than horizontal floods at 

similar rates. This inference appears to contradict the original gravity drainage theory 

(hypothesized by Terwilliger et al. (1951)) which predicts similar recoveries for both 

scenarios. Tiffin and Kremesec (1986) also attempted to experimentally determine the 

mixing lengths required for miscibility development, and reported that while miscibility 

development in vertical core displacements was at similar pressures as their horizontal 

counterparts; miscibility was achieved in the downward gravity assisted displacements at 

a considerably shorter core length. This study also demonstrates that component mass 

transfer, similar to those in multiple contact miscible processes, strongly (negatively) 

affect flood front stability and that displacement efficiency increases at lower fluid cross 

flow and mixing conditions.  

Kantzas et al. (1988) identified two possible mechanisms for gravity drainage 

processes by conducting gravity assisted inert gas injection experiments in 2-D 

micromodels and unconsolidated columns of glass beads. Along with excellent oil 

recoveries observed (99% in unconsolidated columns and about 80% in the others), they 

identified two distinct displacement mechanisms for gas injection into discontinuous oil 

films, termed gravity drainage mechanism and leakage mechanism. For gravity drainage 

mechanism, the injected gas (air) was observed to advance at slow flow rates, and an oil 

bank was formed behind the free water zone and the bulk gas zone. On the other hand, 

during the leakage mechanism, the injected gas advanced rapidly to the production end 

and bypassed the isolated oil globules, resulting in poor sweeps. Interestingly, these 

experiments demonstrated that the discontinuous oil globules can be reconnected and 

displaced by decreasing (or stopping) the injection rate. 

Chatzis et al. (1988) carried out downward displacements of oil by injection of inert 

gas at initial and waterflood residual oil saturations. Very high recovery efficiencies 

under strongly water-wet systems in consolidated or unconsolidated porous media were 
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observed. Further experimentation with CT scans and regular capillary tubes for 

immiscible gravity stable inert gas displacements concluded that very high recoveries 

under these conditions were only possible when oil spread over water, the reservoir was 

strongly water-wet and a continuous film of oil existed over the water in the corners of 

the pores invaded by gas. The spontaneous spreading of oil at the water-gas interface 

occurred in the case of water-wet rock samples and positive spreading coefficients. It 

should be noted that this inference appears to contradict all the previously summarized 

gravity drainage studies, which suggested that spreading of the oil is not required for 

achieving very low residual oil saturations. 

Meszaros et al. (1990) examined the potential use of inert gas (N2 and / or CO2) 

injection using horizontal injection and production wells in scaled physical model studies 

at experimental pressures ranging from atmospheric to about 609 psi (4200 kPa). This 

investigation appears to be aimed at the verification of the Dumore (1964) stability 

criterion and experimental verification of the two extreme scenarios obtainable during 

gravity stable gas injection, namely pure gravity drainage and vertical gas injection 

performance approaching horizontal floods (as proposed by Terwilliger et al. (1951)). 

Numerical simulation coupled with physical model studies clearly demonstrated the need 

for gravity-stabilization of the flood front for higher recovery factors and that a slanting 

or horizontal front propagation (probably due to increased injection rates) results in 

severe reduction in recoveries. 

The experimental and numerical observations of Meszaros et al. (1990) appear to 

fortify the original assumptions (hypothesis) of gravity drainage proposed by Terwilliger 

et al. (1951) and Muskat (1949) (but contradict the inferences of Tiffin and Kremesec 

(1986)). The two extreme possible scenarios hypothesized are clearly observed in the 

experimental results, however the oil production patterns appear to contradict the 

Muskat’s (1949) theory. Muskat (1949) suggested that the ideal scenario for gravity 

drainage would be wherein the reservoir pressure is held constant and oil is allowed to 

drain only under the influence of gravity. Two important observations from the 

experimental results of Meszaros et al. (1990) are interesting: (i) the pure gravity 

drainage experiment produces at the lowest rate (i.e. higher pressured gravity stable 

experiments demonstrate higher production rates), and (ii) the pure gravity drainage flood 

continues to produce for a significantly longer time as compared to its higher pressure 

counterparts.  

CO2 cyclic (or huff-and-puff) injection in Berea cores using live oil samples for 

gravity stable (vertical) displacements and dead oil samples with horizontal cores were 

studied by Thomas et al. (1990). It was found that an existence of a gas cap, gravity 

segregation as well as higher residual oil saturations increased overall oil recovery in 

gravity-stable floods. Moreover, it was observed that gravity segregation (beneficial in 
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gravity-stable floods) helped deeper penetration of CO2 (hence better recovery), and 

accidental injection of CO2 in gas cap did not have detrimental effects on recovery. 

Mungan (1991) conducted miscible and immiscible coreflood experiments using 

heavy and light oils with CO2. It was concluded that CO2 could increase heavy oil 

recovery even without miscibility development. Furthermore an increase in breakthrough 

recovery from 30% to 54% was observed when CO2 was used instead of CH4 as a 

displacing fluid.  

Karim et al. (1992), similar to Thomas et al. (1990), conducted CO2 cyclic (huff-and-

puff) coreflooding experiments using 6-ft long Berea cores and Timbalier Bay light 

crude. The core inclination was found to substantially influence the oil recovery 

efficiencies and gas utilization factors of the coreflood and the ‘best’ performance was 

observed when CO2 was injected into the lower end of a core tilted at a 45 or 90o angle.  

Barkve and Firoozabadi (1992) derived the initial (also the maximum) gravity 

drainage rate (qo) for an immiscible process in a homogeneous rock matrix, and is given 

by Equation 3.8.  
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Where: 

ko = Single phase oil permeability  

µo = Oil viscosity 

∆ρ = Density difference between injected / displaced fluids 

g = gravitational acceleration 

Pc
(TH) = Threshold capillary pressure  

L = Height  

Infinite gas mobility during displacement is one in the assumptions used in the 

Barkve and Firoozabadi’s (1992) derivation. The authors reported that in the initial phase, 

the gravity drainage rate in fractured media does not exceed the un-fractured media, 

provided the fractures have negligible storage. In developed flow conditions, the capillary 

pressure contrast between the matrix and fracture, results in lower gravity drainage rates 

in case of fractured media. 

For miscible displacements (capillary pressure = 0), the (PC
(TH)/L) term in Equation 

3.8  becomes negligible and therefore, the initial (also the maximum) gravity drainage 

rate (qom) in a homogeneous rock matrix is simplified as (Equation 3.9): 
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Interestingly, comparison of Equations 3.5 and 3.7 shows that the capillary force term 

becomes negligible during miscible gravity dominated flows. The decrease in the density 

difference (∆ρ) term due to miscibility development also decreases the maximum 
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miscible oil drainage rate (qom) achievable, as compared to immiscible critical rates (qoc) 

wherein the density difference (∆ρ) term is high due to negligible injected gas viscosity.   

Kalaydjian et al. (1993) conducted sand-pack experiments in both horizontal and 

gravity stable modes. These results were similar to the previous experimental findings 

that the gravity stable floods had higher (approx. 30% OOIP) incremental recoveries over 

horizontal floods.  

Longeron et al. (1994) studied the influence of capillary pressure on oil recovery by 

compositional simulation. The gas-oil capillary pressures were always found to be higher 

in the presence of connate water, as compared to the capillary pressures displayed in the 

absence of connate water saturation. However, the authors suggested that recovery was 

very sensitive to capillary pressure input data, and “using scaled capillary pressures from 

mercury-air data, the recovery is underestimated by about 6% PV”. These inferences 

reinforce the general notion that effective modeling of the capillary pressures in gravity 

drainage floods is still a challenge (see Section 3.2). 

Catalan et al. (1994) reported the results on low pressure inert gas injection assisted 

by (forced) gravity drainage experiments on short core plugs with varying wettability and 

heterogeneity characteristics. They concluded that tertiary gravity drainage in water-wet 

systems is most efficient when the oil can spread on water in the presence of gas. 

Furthermore, the experimental results also suggested that the oil-wet nature of the porous 

medium was not detrimental to the oil recovery factors. These observations appear to be 

supported by both theoretical as well as experimental gravity drainage floods in both 

secondary as well as tertiary modes (Blunt et al., 1994; Oyno et al., 1995).The additional 

contribution of Oyno et al. (1995) was that they experimentally demonstrated the 

dependence of the time required to reach gravity/capillary equilibrium on oil-gas density 

difference, oil-gas interfacial tension, and molecular diffusion between the two bulk 

phases. However, the identification of the conditions at which individual factors 

dominate is still an open question. 

Chalier et al. (1995) employed the gamma ray absorption technique to visualize fluid 

saturation distribution in the core as a function of injected gas volume at reservoir 

conditions. The authors experimentally demonstrated that gravity drainage proves to be a 

“very efficient” process in a water-wet (sandstone) reservoir under positive spreading 

coefficient conditions.  

Vizika and Lombard (1996) discussed the effect of spreading and wettability on 

gravity drainage oil recovery in water-wet, oil-wet and fractionally-wet porous media. 

The authors experimentally demonstrated that in water-wet porous media, oil recovery 

depends on the spreading coefficient value, while the spreading coefficient “does not 

affect the process efficiency” in oil-wet media.  The highest oil recoveries were obtained 

with water-wet and fractional wet media under positive spreading coefficient conditions; 

while the oil recoveries were found to deteriorate when the spreading coefficient value 
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was less than zero (or negative). Numerical simulation to match the experimental results 

showed that the lowest oil recoveries were obtained in oil-wet porous media. However, 

continuous oil (wetting) films were still observed, but were found to be subjected to 

strong capillary retention. This observation is extremely important for commercial 

GAGD applications in oil-wet reservoirs, and suggests that miscibility development (to 

alleviate the capillary retention of oil) would be beneficial in such cases. 

Saputelli et al. (1998) examined the physics of gravity effects that compete with 

capillary forces, under different scenarios of wettabilities, density differences, and low 

IFT differences for multi-phase coexistence in porous media. The authors reported that 

for the same positive spreading coefficient values, the gravity drainage is significantly 

less efficient in oil-wet system as compared to the water-wet system. Furthermore, the oil 

recovery by gravity drainage was found to be independent of spreading conditions. The 

authors also stressed the need for incorporation of the wettability effects and spreading 

coefficient in Bond number correlation, since “…it does not describe wettability, 

spreading coefficient or saturation effects, which are important at the microscopic scale”.  

Sargent et al. (1999) performed a series of gas/oil and water/oil gravity drainage 

experiments on sandpacks, with permeabilities representative of United Kingdom’s 

Continental Shelf (UKCS) viscous oil fields. Experimental results showed that an 

effective residual oil saturation of about 10% was obtained for gravity drainage of 

viscous oils (about 100 cP). For gravity drainage experiments with oils with 1 – 1000 cP 

viscosities, very low residual oil saturations (at gas breakthrough) were obtained with 

gravity drainage at a range of reservoir permeabilities (1 – 5 Darcy) and gravity stable 

displacement rates (about 10 ft/month and below). 

Wylie and Mohanty (1999) conducted secondary near-miscible mass transfer and gas 

flood experiments in both oil-wet and water-wet sandstones to study the effects on 

wettability on oil recovery. The reported experimental results of higher oil recoveries in 

oil-wet media, as compared to water-wet media; agree with the similar miscible gas flood 

experiments reported previously (Rao and Sayegh, 1992). Gas flood experiments by Rao 

and Sayegh (1992) also observed a significant enhancement in the incremental oil 

recovery in intermediate-wet systems, while the lowest incremental increase was 

observed in water-wet media. Rao and Sayegh (1992) attributed this incremental oil 

recovery in oil-wet media to wettability alteration, while Wylie and Mohanty (1999) 

suggested it to be due to the higher water-shielding effects in water-wet porous media.  

Although, the wettability alteration phenomenon, reported by Rao and Sayegh (1992), 

was experimentally verified by contact angle measurements, the water-shielding 

phenomenon, reported by Wylie and Mohanty (1999), does not appear to be the dominant 

factor for the observed oil recovery increases, since Wylie and Mohanty’s (1999) 

experiments were conducted in secondary mode and no water production was observed in 

either of the gravity drainage miscible floods. Previous studies (Blunt et al., 1994; Oyno 
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et al., 1995; Vizika and Lombard, 1996; Saputelli et al., 1998) on spreading and 

wettability effects on immiscible gravity drainage have attributed the relatively lower oil 

recovery performance of oil-wet porous media either to the absence of continuous oil 

films (the inability of oil to spread under negative spreading coefficient conditions) or 

strong capillary retention of the continuous wetting phase (oil) films on rock surface. The 

probable reason for improved oil recoveries in oil-wet systems, with minimal 

improvements in water-wet recoveries, is probably due to alleviation of the strong 

capillary retention forces due to miscibility development. 

Li et al. (2000) discuss the results of the experimental work on CO2 gravity drainage 

on artificially fractured Berea sandstone cores at reservoir conditions (Spraberry Trend 

Area, West Texas). The authors suggested that fractures could improve the efficiency of 

CO2 flooding, but suggest further experimental investigation for further clarification. 

Pedrera et al. (2002) examined the effects of wettability on (air) immiscible gravity 

drainage by conducting secondary mode experiments with varying core wettabilities. 

Their results appear to agree with the previous observations (Meszaros et al., 1990) that 

higher production times are required for oil-wet systems as compared to water-wet 

systems. However, the authors observed higher oil recoveries for oil-wet systems (64%) 

as compared to the water-wet systems (52%), which appear to contradict the previous 

experimental results (Blunt et al., 1994; Oyno et al., 1995; Vizika and Lombard, 1996; 

Saputelli et al., 1998). The important contribution of Pedrera et al. (2002) towards 

improved mechanistic understanding of the gravity drainage process was the 

identification and characterization of two flow regimes operating sequentially during gas 

gravity drainage: bulk flow followed by film flow. The authors’ numerical modeling 

studies suggested that wettability has a weak influence on the bulk flow regime 

(consisting of bulk displaced fluid, and capillary fringe region of high and medium oil 

saturation (or oil bank)) of gravity drainage, whereas it has “great influence” during the 

late film flow regime. 

Li and Horne (2003) developed an empirical model for the prediction of oil recovery 

patterns in free-fall gravity drainage. This model was used to predict the recovery 

patterns of Lakeview Pool, Midway Sunset Field, resulting in a good match. 

Ren et al. (2003) suggests that the incremental oil recovery obtainable by tertiary gas 

gravity drainage consists of two-parts: firstly the bypassed oil, existing as a continuous 

oil phase in previously unswept areas (by secondary waterflood), and secondly the 

residual oil existing, at the microscopic scale, as isolated ganglia. It is suggested that the 

injected gas improves the reservoir sweep by reestablishing the hydraulic continuity of 

the residual oil, under positive spreading conditions, resulting in assured flow of this 

isolated oil into the dynamic oil bank. This connectivity of the oil bank, with both the 

bypassed oil as well as the isolated oil ganglia, is implicit to facilitate their drainage via 

the oil bank to the production well. 
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Muggeridge et al. (2005) studied the effect of the presence of discontinuous shale 

barriers in the reservoir on miscible gas gravity drainage, both experimentally and 

through numerical simulation. The experimental (as well as simulation) results indicate 

that all the oil in the vicinity of the shales will ultimately be recovered; and that 

“regardless of the miscible displacement conditions” it is “surprisingly difficult” to 

bypass oil in the vicinity of shales over significant times. 

Dastyari et al. (2005) investigated gravity dominated immiscible gas injection in a 

single-matrix block using 2D glass micromodels, in both free and forced gravity drainage 

modes. The authors reported that the free gravity drainage is initially a very fast process, 

but slows down at longer times. This observation appears to be supported by the original 

gravity drainage theories (Cardwell and Parsons, 1948; Terwilliger et al., 1951) as well as 

other macroscopic experimentation (Meszaros et al., 1990). However, three other 

conclusions of Dastyari et al. (2005) appear to contradict the previous observations. 

Firstly, the authors suggested that the oil recovery in an un-fractured system appears to be 

higher than that of a fractured system. This observation contradicts the observations of 

Catalan et al. (1994) and Li et al. (2000) which indicate that the presence of fractures in 

the direction of flow enhanced the oil production rates. Secondly, the authors stated that 

the residual oil saturation increases to more than twice of the natural gravity drainage, 

which contradicts the observations of Thomas et al. (1990) and Karim et al. (1992). 

Thirdly, the authors reported that gas injection in both un-fractured and fractured models 

results in higher residual oil saturations, which appears to contradict almost all the 

experimental studies summarized in this section, which suggest that gravity stabilized gas 

injection can result in very low residual oil saturations.  

 

3.3.3.1 Laboratory Studies Summary 

1. Gravity stable gas injection and pure gravity drainage appear to be on the two 

extreme ends of the vertical gas injection EOR processes spectrum. 

2. Literature does not attempt to mechanistically differentiate between these two 

processes, and the precise distinction between these two processes is not available. 

3. Two different schools of thought are evident from the literature review on gravity 

stabilized gas injection: (i) the drainage process is a type of displacement mechanism 

with the classical theories of Buckley-Leverett, Darcy’s law, relative permeability, 

continuity equation, and decline curve analysis (decline curve equation) are 

applicable; and (ii) although the classical theories of Darcy and Buckley-Leverett are 

relevant, the decline curve equation, applicable to most displacements, does not in 

itself provide any information regarding the gravity drainage phenomenon.  

4. Most of this confusion about gravity drainage characterization appears to stem from 

ignoring the injection gas pressure distribution as well as due to the application of 
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‘pure’ or ‘free’ gravity drainage theory to forced gravity drainage applications or 

vice-versa.  

5. Characterization and modeling of the gravity drainage process is still a challenge. 

6. Non-linear nature of the fundamental gravity drainage equation (Cardwell and 

Parsons (1948)) has prompted application of numerical and empirical techniques to 

gravity drainage process characterization. No single model to adequately define the 

gravity drainage process is available.  

7. The forced gravity drainage process has been suggested to be consisting of two flow 

regimes: bulk flow and film flow, and a ‘lumped’ approach between the Buckley-

Leverett (1942) and Cardwell and parsons (1948) theory to accurately model forced 

gravity drainage has been advocated. 

8. Characterization and quantification of conditions of displacement instabilities and 

critical injection rates are important for flood profile control and need to be evaluated 

using 3D physical models and / or reservoir simulation. Various models for the 

mitigation of these displacement instabilities in gravity drainage have been proposed. 

9. Wettability influences on gravity drainage oil recoveries are not very clear. Although 

the literature appears to be in unison about the beneficial effects of oil spreading and 

film flow in water-wet and mixed wet systems, conflicting reports about the effects of 

wettability on gravity drainage recoveries in oil-wet systems have been found. 

10. The effects of spreading coefficient (coupled with wettability) on gravity drainage 

performance in oil-wet systems are also not clear. However, most of the literature 

appears to agree that positive spreading coefficient in water-wet or intermediate-wet 

systems is beneficial to gravity drainage by promoting film flow. 

11. Although, miscibility development has demonstrated improved oil recoveries in both 

water-wet as well as oil-wet systems; the screening criteria for miscible flood 

applications have not been defined. 

12. The literature review on miscible gravity stable gas injection into depleted reservoirs 

(gas cap injection) yielded only a few studies. This is probably due to the notion that 

immiscible gravity drainage can eventually recover nearly 100% of the reservoir oil 

given enough drainage time. Further characterization and optimization of the miscible 

gravity drainage process presents an excellent future research opportunity. 

13. Vertical coreflood displacement studies suggest the use of CO2 over hydrocarbon 

gases due to the higher recovery efficiency and injectivity characteristics of CO2; 

although economical and assured supply of CO2 for EOR applications could be an 

issue in some cases. 

14. Reservoir heterogeneity and fractures may not negatively influence the recovery 

characteristics of gravity drainage processes. Some studies suggest that the fractures 

may actually aid the gravity drainage process. 
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15. Gravity stabilized gas injection remains an active research area and has continued to 

demonstrate superlative oil recovery performance in laboratory applications inspite of 

the meager mechanistic understanding of the process. 

 

3.3.4 Review of Field Applications of Gravity Stable Gas Injection (Gravity Drainage)  

In the previous section, the laboratory and numerical studies on gravity stable gas 

injection (gravity drainage) were summarized. Although, the gravity stabilized gas 

injection process demonstrated superlative oil recovery performance on the laboratory 

scale; the performance evaluation of this process on a field scale is required. This section 

details the various field scale applications of the gravity stable gas injection (gravity 

drainage) process.  

Since gravity stable gas injection and WAG are the two main commercial gas 

injection application processes, in the vertical and horizontal modes respectively; 

examination of each of the process’ ‘report-card’ is important. Preliminarily, two field 

reviews by Howes (1988) and Christensen et al. (1998) are compared for this evaluation. 

Howes (1988) summarized 51 gravity stable ‘vertical’ floods (Table 3.1) conducted for 

recovery of light – to – medium crude oils in Canada upto 1986.  

 

Table 3.1:  Summary of Canadian ‘Vertical’ Hydrocarbon (HC) Miscible Field 

Applications (Howes, 1988) (Table continued on next page) 
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1964 Golden Spike D3A Pool Esso 590 49.60 58.0 56.1 

1968 Rainbow Keg River A Pool Canterra 253 14.30 88.1 61.5 

1969 Wizard Lake D3A Unit Texaco 1075 62.00 95.2 79.9 

1969 Rainbow Keg River T Pool Esso 87 3.18 81.8 55.7 

1970 Rainbow Keg River O Pool Canterra 281 6.21 79.9 61.0 

1970 Rainbow Keg River EEE Pool Canterra 24 1.91 70.2 36.6 

1972 Rainbow Keg River E Pool Canterra 69 3.97 85.4 44.3 

1972 Rainbow Keg River G Pool Canterra 65 2.38 77.3 56.3 

1972 Rainbow Keg River AA Pool Mobil 259 15.90 78.0 40.9 

1972 Rainbow Keg River B Pool Amoco 223 6.52 79.9 50.9 

1973 Rainbow Keg River H Pool Canterra 19 2.35 74.9 59.1 

1973 Rainbow Keg River Z Pool Esso 181 1.49 65.8 44.3 
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1973 Rainbow Keg River FF Pool Esso 92 2.50 66.0 41.2 

1976 Rainbow Keg River D Pool Canterra 34 1.13 82.3 53.1 

1980 Bigoray Nisku B Pool Amoco 67 1.50 60.0 28.7 

1980 Brazeau River Nisku A Pool Petro-Canada 108 5.30 75.1 45.5 

1980 Brazeau River Nisku E Pool Petro-Canada 142 2.30 65.1 38.7 

1981 Brazeau River Nisku D Pool Petro-Canada 157 2.70 65.2 28.9 

1981 Pembina Nisku G Pool Texaco 133 3.00 70.0 32.0 

1981 Pembina Nisku K Pool Texaco 58 2.43 70.0 31.7 

1981 Westpem Nisku A Pool Chevron 62 2.65 75.1 34.0 

1981 Westpem Nisku D Pool Chevron 74 2.20 70.0 34.1 

1982 Rainbow Keg River B Pool Canterra 1090 43.00 71.6 43.5 

1983 Pembina Nisku M Pool Canadian Reserve 78 2.85 75.1 27.0 

1983 Pembina Nisku O Pool Texaco 85 1.70 70.0 20.6 

1983 Pembina Nisku P Pool Texaco 170 4.25 75.1 22.4 

1983 Rainbow Keg River II Pool Mobil 73 3.49 75.1 48.7 

1984 Rainbow Keg River I Pool Esso 146 1.88 70.2 N/A 

1984 Westpem Nisku C Pool Chevron 60 4.00 80.0 31.5 

1984 Brazeau River Nisku B Pool Chevron 90 2.30 80.0 29.1 

1985 Pembina Nisku A Pool Chevron 124 2.80 70.0 30.0 

1985 Pembina Nisku D Pool Chevron 143 4.80 72.1 31.7 

1985 Pembina Nisku F Pool Chevron 170 2.10 61.9 3.8 

1985 Pembina Nisku L Pool Texaco 253 5.00 82.0 25.4 

1985 Pembina Nisku Q Pool Texaco 122 2.80 83.9 12.5 

1986 Bigoray Nisku F Pool Chevron 52 2.80 76.1 32.5 

1987 Acheson D3 A Chevron N/A 3.70 83.8 N/A 

 

The performance evaluation of the projects show that gravity stable oil recoveries are 

much higher, in the range of 15 – 40 % OOIP, for gravity stable gas floods in the 

pinnacle reefs of Alberta, as compared to WAG recoveries of 5 – 10 % OOIP in 

horizontal floods as reported by Christensen et al. (1998). Additionally, comparison of 

secondary gas flood recoveries from Howes’ (1988) review with secondary (horizontal) 

waterflood recoveries from Christensen et al.’s (1998) review clearly showed the benefit 

of gas injection applications over plain waterfloods (secondary mode gravity stabilized 

gas injection recovery factors: 59% versus waterflood recovery factors of 32% OOIP). 
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3.3.4.1 Screening Criteria for Gravity Stable Gas Injection 

As suggested earlier, up-dip (gravity stable) gas injection into dipping or a reef type 

reservoir is one of the most efficient oil recovery methods in both secondary and tertiary 

modes. Furthermore, the gravity drainage concept has been applied and has been 

successfully implemented in many field applications and pilots (individually discussed in 

the following sections). Potential candidates for gas injection EOR are generally selected 

using various empirically based screening criteria (Taber et al., 1996; Lepski and 

Bassiouni, 1998).  The empirical screening criteria for identification of potential 

reservoirs (Table 3.2) for gravity stable gas injection projects were presented by Lepski 

and Bassiouni (1998). These screening criteria provide with a critical tool for preliminary 

selection, screening and evaluating the application of the gravity stable gas injection EOR 

processes to potential reservoirs. 

 

Table 3.2:  Screening Criteria for Gravity Assisted Gas Injection 

Parameter Value 

Waterflood Residual Oil Saturation Substantial (range not specified) 

Reservoir Permeability (Vertical) > 300 mD 

Bed Dip Angle > 10o 

Oil Viscosity Free flow 

Spreading Coefficient Positive 

 

3.3.4.2 Review of Ten Commercial Gravity Drainage Field Projects 

Ten gravity stable field projects (summarized in Table 3.3) in various parts of the world 

were critically examined to decipher the controlling multiphase mechanisms and fluid 

dynamics operational in gravity stable gas injection processes. This section summarizes 

the unique characteristics of each of the gravity drainage project. This review has enabled 

the duplication of the multiphase mechanisms and fluid dynamics operational in the field 

into the laboratory through proper strategy for experimental design. 

1. West Hackberry Field, Louisiana (Gillham et al., 1996) 

The Hawkins (Woodbine) field is a salt dome reservoir in southwest Louisiana, with 

average porosity of 28% and a connate water saturation of 19%. This reservoir 

production history was subjected to sidetracking as well as waterflooding. 

Amoco Production Company, U.S. Department of Energy and Louisiana State 

University jointly initiated the air injection project into the West Hackberry Field 

(Cameron Parish) Louisiana. This air injection project was initiated to improve recovery 

from this watered-out reservoir, by creating an artificial gas cap thereby allowing the 

gravity drainage of liquids (termed as the Double Displacement Process (DDP)). DDP is 
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the gas displacement of a water invaded oil column to recover additional oil (and by 

default free water) through the gravity drainage process.  

Laboratory and field studies on the steeply dipping, high permeability West 

Hackberry field clearly demonstrated the superiority of the gravity drainage process 

which exhibited recoveries of nearly 90% OOIP as against the 50 – 60% water drive 

recoveries. The gravity drainage based DDP process has proved to be a success on both 

engineering and economic fronts in the West Hackberry field.   

 

2. Hawkins (Woodbine) Field, East Texas (King and Lee, 1976; Carlson, 1988) 

The Hawkins (Woodbine) field is highly faulted with a 6o dip and a strong aquifer 

support. The oil gravity was 12-30 oAPI with viscosity varying from 2-80 cP. The 

reservoir characteristics include 10,000 acres of area, with greater than 1000 ft of 

hydrocarbon column. A reservoir characterization study of the Hawkins (Woodbine) field 

was completed using 35,900 ft of conventional cores obtained from 193 wells in the field.  

Detailed phase behavior and modeling studies (Carlson, 1988) suggested gas injection 

to prevent oil encroachment in the gas cap and prevent further shrinking. These studies 

concluded that the gas gravity drainage process had a recovery efficiency of > 80% 

compared to the water drive efficiency of only 60%. Coreflood investigations (Carlson, 

1988) confirmed that even under immiscible conditions, the gas could recover additional 

oil from the water invaded portions of the reservoir and thereby reducing the residual oil 

saturation in water invaded oil column from 35% to about 12%. The above conclusion 

helped the development of the ‘Double Displacement Process’ (DDP) (both in the West 

Hackberry and Hawkins Fields) and initiation of a field DDP pilot in the east fault block 

of the reservoir.  

Predictive simulation studies indicated that about 189 million bbl of additional oil 

recovery was feasible, of which nearly 116 million bbl would be produced by converting 

the water-drive areas into gas-drive/gravity drainage, and 67 million bbl from prevention 

of the oil loss caused by gas cap shrinkage. The central inference of this reservoir study 

was that the gas-drive / gravity drainage combination process would help produce nearly 

33% more oil than what was possible in a water drive. 

 

3. Weeks Island: S-RB Field Pilot, Louisiana (Johnston, 1988) 

Shell initiated an immiscible gravity stable CO2 (diluted with methane gas) flood at 

Weeks Island S-RB reservoir in Louisiana, in 1978. The pilot was conducted in a dipping 

13,000 ft and 225 oF fault block similar to West Hackberry reservoir. The S-RB reservoir 

was chosen due to the small, well confined nature and exceptional sand quality and 

continuity. Reservoir characteristics include vertical permeability of 1200 mD and a bed 

dip of 26o. The reservoir oil properties are not specified, however residual oil saturation 

before the pilot was 22% based on Special Core Analysis (SCAL). Low oil rates, water 
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cuts and increasing GOR made tertiary recovery (CO2 injection) necessary in the field. 

Interestingly, the residual oil saturation was lower than the minimum saturation 

recommended by the screening criteria for gravity assisted gas injection (Lepski and 

Bassiouni, 1998) 

A 25.5% PV gravity stable miscible CO2 + HC slug (24% PV & 1.5% PV) was 

injected resulting in additional 205 MBbl or 60% waterflood residual oil. The core-

analysis of gas swept zones showed that gas injection has decreased the residual oil 

saturation from 22% to 1.9%.  

The displacement efficiencies were found greater than 90% (based on sidewall core 

data) and a CO2 usage rate of 7.90 MCF/Bbl considering the recycled gas. Although the 

pilot’s expected oil recovery was 66% of the ROIP and a technical success, it was 

deemed as a non-profitable venture, probably due to the low oil prices prevalent at the 

time.  

 

4. Bay St. Elaine Field, Louisiana (Cardenas et al., 1981; Ray, 1994; Nute, 1983) 

A miscible gravity stable CO2 flood, in the dipping Louisiana Gulf Coast field, Bay St. 

Elaine, was initiated by Texaco in 1981. Laboratory studies conducted to study the 

injection slug characteristics demonstrated that after miscibility was achieved, the 

injected CO2 solvent mixture was effectively able to recover all of the waterflood residual 

oil.  

Pressure pulse testing during field implementation of the EOR process indicated the 

process to be “successful” (Nute 1983), but EOR surveys (Moritis, 1995) deem the flood 

to be “discouraging and non-profitable” probably due to the low oil prices prevalent at 

the time. No oil recovery data was found in the literature for this flood. 

 

5. Wizard Lake D3A Pool, Alberta, Canada (Backmeyer et al., 1984) 

The Wizard Lake D3A reservoir is a dolomitized bioherm reef of Devonian age with oil 

zone of 648 ft with a bottom water drive (Cooking Lake Aquifer). The reservoir 

characteristics include vuggular and matrix porosities with average horizontal 

permeability of 1375 mD and average vertical permeability of 107 mD with original 

reservoir pressure of 2270 psi. Reservoir oil is paraffin based 38 oAPI crude with a 

saturation pressure of 2131 psi at 160 oF.  

Texaco Canada initiated a secondary miscible HC flood in this reservoir in 1969. The 

HC miscible slug size was 7.5% HCPV, which projected the incremental recovery 

increase to 28.5 MMSTB. This flood was highly successful with an overall reservoir 

recovery factor of about 95% OOIP.  
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6. West Pembina Nisku ‘D’ Pool, Alberta, Canada (Da-Sle and Guo, 1990) 

Westpem Nisku D pool, a pinnacle reef type carbonate reservoir, is located 100 miles 

southwest of Edmonton, Canada. The reservoir oil is light (45 oAPI) with a viscosity of 

0.19 cP. Chevron Canada Resources implemented a miscible flood in May 1981, 

employing a miscible slug composed of 80% Methane and 20% C2+ fraction(s). The slug 

design was later changed to 85% C1, and 15% C2+ fraction at 4800 psi working pressure 

to assure miscibility development.  

Flood analysis demonstrated that the solvent/oil interface was consistently flat across 

the reef, affirming the applicability of the Dumore stability criterion. Furthermore, the 

core-analysis results indicated very low residual oil saturation in the order of 5% making 

the flood an economic as well as a technical success. Chevron expected an overall 

recovery factor of about 84% OOIP from this flood. 

 

7. Wolfcamp (Wellman Unit) Reef, W. Midland, Texas (Bangla et al., 1991) 

Union Texas Petroleum Corp. conducted a gravity stable vertical tertiary CO2 flood in 

Wellman unit of the Wolfcamp reef (limestone) reservoir, located in the western Midland 

basin of Terry county, Texas. Reservoir oil was light (43.5 API) with 0.43 cP viscosity, 

making it a good gas flood candidate. A tertiary CO2 miscible flood was planned after a 

successful waterflood with residual oil saturation (ROS) of 35%. CO2 was injected into 

the crest of the reservoir with water injection continued in the water zone to maintain the 

reservoir pressure above the MMP of 1900 psi.  

Numerical model studies predicted the CO2 ultimate recovery efficiency to be 78%, 

which was exceeded in the actual field flood (84%). The gas flood reduced the residual 

oil saturation to only 10.5% with a net gas utilization ratio of the 6.5 MSCF/STB. This 

flood ultimately produced 68.8% of the OOIP, of which CO2 incremental recovery was 

27%. This flood was an economic and a technical success, and Union Texas Petroleum 

expects the final recovery of about 74.8% of the OOIP.  

 

8. Intisar D Reef, Libya (DesBrisay et al., 1960; 1975; 1981) 

Occidental Libya initiated a vertical gravity stable miscible flood in the Intisar ‘D’ 

reservoir in the Libyan Sirte basin. Geologic studies show the reservoir as an upper 

Paleocene pinnacle reef, roughly circular (diameter ~ 3 miles) in plan with original 

hydrocarbon column of 950 ft. The reservoir oil was highly undersaturated, very light 

(40o API) with 0.46 cP viscosity. Laboratory studies show that the minimum miscibility 

pressure (MMP) of 4000 psi for this oil with hydrocarbon gas from nearby fields, was 

lower than the original reservoir pressure of 4257 psi. The highly undersaturated nature 

of the reservoir prompted simultaneous peripheral water and crestal gas injection to 

maintain the reservoir pressure above the MMP. Occidental predicts that almost 1.6 

billion bbl of OOIP (of which 496 million bbl) recovered till date (1981) would be 
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ultimately recovered yielding a recovery factor of about 67%, and most of which is 

attributable to miscible gas gravity drainage, making this flood a success. 

 

9. Handil Main Zone, Indonesia (Gunawan and Caie, 1999) 

Handil is a giant oil field located in the Mahakam Delta of the island of Borneo in 

Indonesia. The reservoir is simple anticline, 2.49 mile (4 km) long and 1.86 mile (3 km) 

wide, with a main East-West fault dividing the reservoir into North and South area. The 

reservoir geology is complex, and the field comprises of more than 500 hydrocarbon 

accumulations, stacked between 984.25 ft (300 m) to 1312.34 ft (4000 m) (ss), and 

trapped in channel-sand and sand-bar reservoirs deposited in a fluvio-deltaic environment 

of the Miocene age. The reservoir permeability ranges from 10 to 2000 mD, with 25% 

porosity and connate water saturation around 22%. The oil accumulations consist of a 

large oil column (in excess of 328.08 ft (100 m)) underlying a variable sized gas-cap. The 

reservoir structural dip ranges from 5o to 12o, which connects an underlying aquifer 

(weak in the main and deep zones). 

Total’s gravity stable lean gas injection into the waterflooded Handil reservoir in 

Indonesia, has increased the oil recovery factor by 1.2% during 1979 to 1982, and is 

deemed successful. Total expects that the reservoir would yield additional 30 MMSTB 

EOR oil, and ultimately extend the productive life of the near abandonment Handil 

reservoir in the Mahakam delta of Borneo, Indonesia. 

 

10. Albian Paluxy Formation, East Texas (Hyatt and Hutchison, 2005) 

The clastic Paluxy formation is a large, fault dependent closure with a moderately strong 

water drive producing from the lower Cretaceous Albian Paluxy formation of the East 

Texas basin. This formation is composed of fluvial channel sands intercalated with shaly, 

silty interfluves and estuarine mudstones. The reservoir interval is over 300 ft thick and 

was deposited during the transgression of the early Cretaceous seaway over the central 

North American continent. The channel sands have a porosity of 25% and an average 

permeability of 2200 mD. The channel sands predominantly fine upward resulting a 

lower permeability (10 to 500 mD) at the top and margins with considerably higher 

permeability (2000 to 6000 mD) at the channel bases.  

 

Table 3.3:  Summary of Gravity Drainage Field Applications 

Property 

West 

Hackberry 

Hawkins 

Dexter 

Weeks 

Island 

Bay St. 

Elaine 

Wizard 

Lake 

Westpem 

Nisku 

Wolfcamp 

Reef 

Intisar D 

Reef 

Handil 

Main 

Paluxy 

Formation 

Location 

Louisiana  

USA Texas  USA 

Louisiana  

USA 

Louisiana  

USA 

Alberta 

Canada 

Alberta 

Canada Texas  USA Libya 

Borneo 

Indonesia 

East Texas, 

USA 

RESERVOIR CHARACTERISTICS 

Rock Type Sand Stone Sand Stone Sand Stone Shaly Sand Dolomite Carbonate Limestone 

Biomicrite/ 

Dolomite Sand Stone 
Fluvial-
Deltaic 

Reservoir Type 
23 – 35

o
 

8
o
 Dip 26

o
 Dip 36

o
 Dip 

Pinnacle Pinnacle Pinnacle Pinnacle 
5 – 12

o
 Dip 

Channel 
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Dip Reef Reef Reef Reef Sand - Thk 

Porosity (%) 23.9 - 27.6 27 26 32.9 10.94 12 8.5 22 25 25 

Permeability (mD) 300-1000 3400 1200 1480 1375 1050 110 200 10 - 2000 10 - 6000 

Kv/Kh Ratio 1.0 ~ 1.0 1.0 1.0 0.08 0.033 - 0.2 Not Avbl 0.75 1.0 1.0 

Pay (ft) 30 - 31 230 186 35 648 292 824 950 50 - 82 300 

Swc 19 - 23 13 10 15 5.64 11 20 Not Avbl 22 Not Avbl 

Res. Temp (
o
F) 195 - 205 168 225 164 167 218 151 226 197.6 Not Avbl 

PROCESS DATA 

Project Scope Fieldwide Fieldwide Pilot Fld Lab Study Fieldwide Fieldwide Fieldwide Fieldwide Fieldwide Pilot 

Start Date 11/1994 08/1987 01/1979 01/1981 01/1969 05/1981 07/1983 01/1969 01/1994 01/2001 

Project Area (Ac) 381 2,800 8 9 2,725 320 1,400 3,325 1,500 ~ 640 

Injection Gas Air N2 CO2/HC CO2 HC HC CO2 HC HC HC (?) 

Injection Mode Secondary Tertiary Tertiary Secondary Secondary Secondary Tertiary Secondary Tertiary Tertiary 

Injection Strategy Immsc Immsc Immsc Immsc Misc Misc Misc Misc Immsc Immsc 

Displ. Velo. (ft/D) .095 – .198 Not Avbl .04 – 1.2 Not Avbl .021- .084 .020 - .203 .116 .06 Not Avbl Not Avbl 

Status (Date) C (‘02) NC (‘02) NC (‘86) NC (‘86) NC (‘02) HF (‘92) HF (‘98) NC (‘02) Not Avbl NC (’05) 

PHASE BEHAVIOR DATA 

Oil API Gravity 33 25 32.7 36 38 45 43.5 40 31 – 34 23 

Oil Viscosity (cP) 0.9 3.7 0.45 0.667 0.535 (Pb) 0.19 0.43 0.46 0.6 – 1.0 23 

Oil FVF at Pb 1.285 1.225 1.62 1.283 1.313 2.45 1.284 1.315 1.1 – 1.4 Not Avbl 

GOR (SCF/STB) 500 900 1386 584 567 1800 450 509 2000 10 

MMP (psi) Not Avbl Not Avbl Not Avbl 3334 2131 4640 1900 4257 Not Avbl Not Avbl 

KEY RESULTS 

Wtr flood Sor (%) 26 35 22 20 35 Not Avbl 35 Not Avbl 27 Not Avbl 

WF Recvry (OOIP) 60 60 60 - 70 Not Avbl Not Avbl Not Avbl Not Avbl Not Avbl 58 35 

Gas flood Sor (%) 8 12 1.9 Not Avbl 24.5 5 10 Not Avbl 3 Not Avbl 

So at Start (%) Not Avbl Not Avbl 22 20 93 90 35 80 28 Not Avbl 

So at End (%) Not Avbl Not Avbl 2 5 12 5 10 18 Not Avbl Not Avbl 

Enh. Prd (GF: b/d) 150 - 400 1,000 160 7 1,300 2,300 1,400 40,000 2,383 175 

Ult. Rcvry (OOIP) 90.0 > 80.0 64.1 Not Avbl 95.5 84.0 74.8 67.5 Not Avbl Not Avbl 

Conclusion Successful Successful Successful Discorgng Successful Successful Successful Successful Successful Successful 

Profit? Profit Profit No Profit No Profit Profit Profit Profit Profit Profit Not Avbl 

 

The oil is about 23o API with a viscosity of 23 cP at reservoir conditions. The 

reservoir is highly undersaturated with original pressure of 1900 psig with a solution 

GOR of 10 SCF/Bbl. The reservoir pressure is maintained by a moderately strong 

aquifer. Since the start of the production of this field in 1930’s, it has been marred with 

high production water-cut, due to the unfavorable mobility ratio in the production water-

drive.  

After about 70 years of water-drive production, ExxonMobil initiated an immiscible 

gas injection pilot in this field in the early 2000’s. A full-field reservoir simulation study 

suggested that this field would reach its economic production limit at about 35% OOIP 

production. Simulation studies also suggested excellent EOR potential (5% incremental 

OOIP in 3 years and 10+% incremental OOIP recoveries after 10 years) by immiscible 
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gas injection, and gravity drainage of the oil to the lowest point of the channel sands with 

the help of horizontal wells. The results of the pilot are being awaited, but production 

logs and reservoir monitoring has demonstrated the feasibility of the gravity drainage 

process in significantly improving the oil recoveries primarily driven by film flow behind 

the advancing gas flood front. 

 

3.3.4.3 WAG and Gravity Drainage Field Production Rates 

The general perception about gravity drainage processes appears to be that the production 

rates are lower than conventional flooding / displacement processes.  

To compare the enhanced production flow rates between gravity stable and WAG 

projects, four miscible and four immiscible WAG projects and ten gravity stable projects 

were evaluated. Furthermore, to provide with a common comparison basis for 

performance evaluation of the WAG and gravity stable gas injection processes, a 

parameter ‘Index of Productivity’ was defined as: 

I.P. = [Enhanced Production (Bbl/D)] / [Flood Volume (Ac-ft)]……………….......…(10) 

The immiscible WAG projects considered were: (i) Painter Field, Wyoming 

(Sandstone reservoir, using N2 injectant), (ii) ARCO Block 31, Texas (Limestone 

reservoir using HC/N2 mixture as injectant), (iii) Timbalier Bay, Louisiana (Sandstone 

reservoir using CO2 as injectant), and (iv) Yates Field, Texas (Dolomite reservoir using 

CO2 as injectant). The miscible WAG projects considered were: (i) Slaughter Estate, 

Texas (Dolomite reservoir, using CO2 injectant), (ii) Levelland, Texas (Limestone 

reservoir using Enriched HC/CO2 mixture as injectant), (iii) Quarantine Bay, Louisiana 

(Sandstone reservoir using CO2 as injectant), and (iv) Prudhoe Bay, Alaska (Sandstone 

reservoir using Enriched HC injectant). 

The comparison of the gravity stable gas injection projects and WAG projects was 

based on the index of productivity. The range of productivity indices calculated for the 

miscible and immiscible projects is depicted in Table 3.4, which clearly shows that the 

gravity drainage processes have comparable enhanced production rates and that gravity 

drainage rates can sometimes be several folds higher than in WAG projects. This 

comparison clearly demonstrates that gravity drainage processes could outperform the 

WAG processes, not only on a production rate basis, but also on overall recovery factors. 

 

Table 3.4:  Index of Productivity Comparisons between Nine Gravity Drainage and Eight 

WAG Field Projects  

Index of Productivity (Bbl/D-Ac) 

Immiscible WAG Projects Immiscible Gravity Drainage Projects 

Field Name I.P. Field Name I.P. 

Painter Field, Wyoming 1.07 West Hackberry, Louisiana 0.72 
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ARCE Block 31, Texas 0.56 Hawkins Dexter Sands, Texas 0.04 

Timbalier Bay, Louisiana 0.23 Weeks Island, Louisiana 20.00 

Yates, Texas 3.64 Bay St. Elaine, Louisiana 0.78 

Average P.I. 1.37 Handil Main Zone, Borneo 1.59 

Average P.I. 4.62 
Miscible WAG Projects 

Miscible Gravity Drainage Projects 

Field Name I.P. Field Name I.P. 

Slaughter Estate, Texas 0.88 Wizard Lake D3A, Alberta 0.48 

Levelland, Texas 1.41 West Pembina Nisku D, Alberta 7.19 

Quarantine Bay, Louisiana 2.19 Wolfcamp Reef, Texas 1.00 

Prudhoe Bay, Alaska 1.09 Intisar D, Libya 12.03 

Average I.P. 1.39 Average I.P. 5.17 

 

3.3.4.4 Field Reviews Summary 

The important characteristics of the field scale gravity drainage projects are: 

1. Up dip / crestal gas injection into oil reservoirs is one of the most efficient methods to 

recover residual oil. 

2. Gas gravity drainage process has been applied as secondary as well as tertiary 

recovery processes with encouraging results. 

3. Gas gravity drainage process has been applied to all reservoir types, from extremely 

geo-complex reservoirs like Biomicrite / Dolomite to high quality turbidite (fluvial-

deltaic sands) reservoirs. 

4. Various field injectant gases such as Air, Nitrogen (N2), Hydrocarbon (HC) and 

Carbon Dioxide (CO2) have been successfully employed for the gas gravity drainage 

process. 

5. Gas gravity drainage process is applicable to low permeability (110 mD) – low 

porosity (8.5%) reservoirs as well as high permeability (3400 mD) – high porosity 

(32.9%) formations, and is not greatly affected by the variation of common reservoir 

and fluid parameters such as reservoir heterogeneity, bubble point pressure, gas oil 

ratio (GOR), reservoir temperature and oil formation volume factor (FVF). 

6. Gas gravity drainage process is best applicable to light oil reservoirs, low connate 

water saturations, positive spreading coefficient (to promote film flow), thicker 

formations, moderate-high vertical permeability, highly dipping or reef structured 

reservoirs, and minimal reservoir re-pressurization requirements (for miscible GAGD 

applications). 

7. Corefloods and field investigations confirm that a large amount of incremental 

tertiary oil can be recovered using gravity assisted gas injection. 
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8. Recoveries as high as 85 – 95% OOIP have been reported in field tests, with the 

calculated average ultimate recoveries for all the field projects reviewed in this study 

being 77 %OOIP, and laboratory gas gravity drainage floods yielding nearly 100% 

recovery efficiencies. 

 

3.3.5 Multiphase Mechanisms Operational in Gas Injection EOR Projects 

Multiphase mechanisms strongly influence the fluid distribution and microscopic 

displacement behavior in gas injection process. The multiphase mechanisms are 

displayed through the rock-fluid and fluid-fluid interactions occurring in gas injection 

processes.  

This section identifies and details on the various multiphase mechanisms operational 

in gas injection EOR processes. This study places special emphasis on gravity stable gas 

injection (consequently the GAGD process), and evaluates the various interplays of these 

reservoir specific interactions that eventually determine the recovery efficiency of the 

project. The relevant multiphase mechanisms identified through the review of literature 

are: (i) gravity segregation, (ii) wettability, (iii) spreading coefficient, (iv) miscibility 

development, and (v) mobile water saturation.  

 

3.3.5.1 Gravity Segregation 

The gravity segregation phenomenon is one of the dominant mechanisms that dictate the 

recovery performance during horizontal type gas injection projects. Although the WAG 

process is deployed to minimize this effect, significant differences in viscosities and 

densities between the injected water, gas and reservoir fluids, results in severe in-situ 

gravity segregation effects ultimately causing the water to ‘under-ride’ while the gas to 

‘over-ride’. As discussed previously, this negatively influences the flood performance. 

Slight mitigation of this negative influence is possible in reservoirs with high vertical-

to-horizontal permeability (KV/KH) ratios, where higher cross-flow and / or convective 

mixing tendencies may slightly increase the local vertical sweep. However, this 

phenomenon of convective mixing has been found to be generally detrimental to the 

overall flood oil recovery; mainly due to the increased gravity segregation tendencies and 

loss of miscibility due to decreased frontal velocities.  

On the other hand, contrary to the horizontal floods, gravity stable (vertical) gas 

injections demonstrate marked benefits due to this phenomenon of gravity segregation. In 

vertical floods the gravity segregation phenomenon assuredly increases the oil recoveries 

by improved volumetric sweep, increased gas injectivity and decreased flow competition 

between injected gas and liquids to the producing well. 
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3.3.5.2 Effect of Wettability 

The strong effect of the reservoir rock’s wetting properties on the gas flood performance 

has been experimentally proven in the laboratory (for some examples see: Rao et al., 

1992; Wylie and Mohanty, 1999; Rao, 2001). The wetting nature of the reservoir rock not 

only governs the oil-gas-water distribution in the reservoir pore space, but also influences 

the fluid flow behavior during oil production.  

In water-wet porous media the sand grains are covered with a thin film of water and 

the oil and gas occupy the central portions of the pore space. On the other hand, in oil-

wet media, the rock grains are covered with a thin oil layer, whereas the gas and water 

now occupy the central portion of pore. Two more wettability states have been observed 

in oil reservoirs: neutral or intermediate wet and mixed wet. For neutral or intermediate 

wet media, the rock has no preference for either oil or water, and the fluid saturations 

dictate the film type on the rock grains. For mixed-wet systems, the smaller pores are 

water-wet whereas the larger pores are oil-wet. This reservoir fluid distribution, dictated 

primarily by the native wettability state of the rock, seriously influences the primary, 

secondary as well as the tertiary recoveries from the reservoir. 

The gravity stable gas injection studies can be categorized in two groups: immiscible 

floods and miscible floods. Only two experimental studies (Rao and Sayegh, 1992; Wylie 

and Mohanty, 1999) evaluating the gravity stable miscible gas flood performance 

dependence on various reservoir wettability states were found. These two studies proved 

that the water-wet system resulted in the poorest oil recoveries during miscible gas 

injection.  

The experimental studies on the effects of reservoir wettability on immiscible gravity 

stable gas injection result in conclusions contradictory to the miscible floods. The 

detailed literature review is included in Section 3.2 of this dissertation. Immiscible 

gravity drainage experimental studies demonstrated that the highest oil recoveries were 

obtained in water-wet porous media followed by mixed-wet media; whereas the lowest 

oil recoveries were obtained in oil-wet porous media. The poor recoveries were attributed 

to the strong capillary retention (or surface) forces acting on the wetting phase films and 

the inability of the oil to spread (even under positive spreading conditions (discussed 

later)). 

3.3.5.3 Effect of Spreading Coefficient 

The spreading coefficient, along with wettability, affects the gas-oil-water distributions, 

consequently the recoveries during a gas injection program. The spreading coefficient is a 

‘balance’ between the three interfacial tensions (IFT) in Oil/Water/Gas systems. Equation 

3.11 below defines the spreading coefficient. 

OWOGWGOS /// σσσ −−= …….…..………………………………....……...……… (3.11) 
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The spreading coefficient value (as well as the reservoir wettability) is also critical in 

determining the equilibrium spreading characteristics between the three co-existing 

reservoir phases. The fluid spreading characteristics are critical in determining the oil 

recoveries in gas floods, especially in gas assisted gravity drainage. Furthermore, the 

equilibrium value of the spreading coefficient also determines the orientation and 

continuity of the fluid phase in the reservoir pores. Rao (2002) conceptually summarized 

the phase orientation dependence on spreading coefficient and wettability. He reported 

that the positive spreading coefficient conditions appear to be favorable from an oil 

recovery point of view.  

The presence of continuous oil films (in the center of the pores) over the water films 

covering the rock grains not only increases the oil drainage phenomenon (during gas 

injection) at lower pressure drops, but also provides with continuous ‘conduits’ that guide 

isolated oil globules toward the production well. The continuity of these oil films is an 

interfacial phenomenon and depends on the ability of the oil phase to spread on the water 

phase in presence of gas. The spreading coefficient can be positive or negative depending 

on the in-situ fluids’ composition and reservoir temperature and pressures.  

Micromodel experiments (Oren and Pinczewski, 1994) to visualize and characterize 

the effects of wettability and fluid-fluid spreading on gas flood oil recovery prove that the 

positive value of the spreading coefficient helps ensure development and maintenance of 

continuous oil films between injected gas and reservoir water, thereby resulting in 

minimal losses of the injected gas to the reservoir water. On the other hand a negative 

value signifies a lens-type discontinuous distribution of oil between water and gas, 

thereby enabling gas-water contact and consequently lowers the oil recoveries.  

Although horizontal mode gas injection literature agrees with the inferences of Oren 

and Pinczewski (1994), the gravity drainage literature does not appear to be in unison 

about the effects of spreading coefficient on oil recoveries. Most of the gravity drainage 

literature (Blunt et al., 1994; Oyno et al., 1995; Vizika and Lombard, 1996; Saputelli et 

al., 1998) suggests that the presence of oil films is instrumental in increasing the oil 

recoveries in water-wet and mixed-wet porous media. Conversely, the absence of these 

oil films is responsible for the observed lower recoveries in oil-wet media. However, no 

agreement on the effects of spreading coefficient value (positive, zero or negative) on oil 

recovery appears in the gravity drainage literature. Interestingly, the gravity drainage 

literature from 1998 to 2005 (see Section 3.2 and 3.3) focuses on the numerical 

experimentation of the gravity drainage process, and no experimental studies on the 

effects of spreading coefficient were found.  

 

3.3.5.4 Effect of Miscibility Development 

Currently, almost all of the commercial CO2 / hydrocarbon gas injection projects 

operating in the United States and Canada are miscible. Oil and Gas Journal’s biannual 
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EOR survey (2002) clearly demonstrates the industry inclination towards miscible gas 

floods and that the commercial immiscible projects have significantly decreased over the 

past few decades with no immiscible floods planned for the immediate future. 

The capillary number (Nca) controls the microscopic displacement efficiency in gas 

floods. The capillary number is defined by Equation 3.12. 

θσ
µ

Cos

V
N ca = ……………………………………………………………………….. (3.12) 

The fundamental definition of miscibility (Stalkup Jr., 1985) implies that the 

necessary and sufficient condition for miscibility development is the absence of an 

interface between the injected and the reservoir fluids (in other words, a condition of zero 

interfacial tension). Interestingly this results in a capillary number of infinity, and 

theoretically all the oil in the reservoir can be produced. Furthermore, as the capillary 

number controls the microscopic displacement efficiency of the flood, miscible floods 

have the potential to demonstrate nearly 100% microscopic displacement efficiencies in 

the gas swept zones.  

The need for miscibility development for improved oil recovery processes can be best 

explained using the Klins (1984) plot. The Klins plot (Figure 3.9) correlates the reservoir 

residual oil saturation to the capillary number, and suggests that significantly higher 

recoveries are obtained by increasing the capillary number. It is important to note that 

when miscibility is achieved, the σ term in Equation 12 becomes zero; thereby resulting 

in an infinite capillary number (consequently very low oil saturations) at miscibility.  

The CO2 flood design criteria (for both miscible and immiscible floods) (Green and 

Willhite, 1998) suggest a minimum depth limitation as well as dictate the density and 

viscosity of the oil to be produced from the concerned reservoir. Hence in shallow and 

medium gravity (22o to 31o API) oil reservoirs, the flood is by default immiscible. 

However, the immiscible nature of gas injection may not be always due to reservoir 

limitations. The operational, economic and design factors may sometimes result in 

immiscible floods. Although the recoveries for immiscible floods are lower than those of 

miscible floods, the costs of reservoir re-pressurization may be prohibitive in certain 

cases for miscible flooding. It is important to note that although the performance of 

horizontal immiscible floods is significantly lower than horizontal miscible floods (WAG 

as well as CGI) (Christensen et al., 1998), the miscible and immiscible horizontal flood 

oil recoveries have been comparable to gravity stable (vertical) gas injection projects. 
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Figure 3.9: Dependence of Capillary Number Value on Reservoir Residual Oil 

Saturation (After Any EOR Process) for Water-wet Reservoirs (Klins, 1984) 

 
In miscible flooding, the incremental oil recovery is obtained by one of the three 

mechanisms, namely oil displacement by solvent through the generation of miscibility 

(i.e. zero interfacial tension between oil and solvent – hence infinite capillary number), 

oil swelling and reduction in oil viscosity (Schramm et al., 2000).  

Although both immiscible and miscible floods appear to have their own merits and 

demerits, there seems to be no consensus in the literature for the need for development of 

miscibility in gas floods (Thomas et al., 1995, Schramm et al., 2000, Rao 2001, 

Jakupsstovu et al., 2001). This debate could be partially due to the ‘industry-definition’ of 

the capillary number, which leaves out the contact angle (Cos θ) term (Rao, 2001), which 

eliminates the reservoir wettability from consideration. The general belief is that the IFT 

is the most easily modifiable term in the capillary number definition (Rogers and Grigg, 

2000), which resulted in increased research efforts for the development of new and better 

surfactants for IFT reduction. However, overlapping values of interfacial tension for 

immiscible, near-miscible and miscible floods for similar fluid system have been reported 

(Taber et al., 1996, Christensen et al., 1998, Rao, 2001). If the ultimate goal is to make 

the value of capillary number large, gas injection in a neutral-wet reservoir (or made 

neutral wet using surfactants: where the condition of θ = 90o or Cos θ = 0 makes capillary 

number infinity), could theoretically yield the results similar to zero IFT conditions (Rao, 

2001). Inspite of these different schools of thought on miscible gas injection, the 

inclination of the industry towards miscible flooding is very evident (EOR survey, 2002). 
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However, the gravity drainage literature review appears to advocate immiscible gas 

injection. Literature review on gravity drainage studies yielded only two miscible gravity 

stabilized gas injection floods. The inclination towards immiscible flooding in gravity 

drainage applications appears to stem from the two notions: (i) the Bond number is the 

controlling parameter in gravity drainage floods, and (ii) immiscible floods result in good 

oil recoveries in water-wet and mixed-wet porous media. The Bond number value is 

directly proportional to the density difference (∆ρ) between injected gas and reservoir oil. 

Therefore, it appears that to maximize the Bond number value, immiscible injection has 

been preferred, since the ∆ρ value significantly decreases in the near miscible region. The 

second notion appears to be attributable to the erroneous assumption that all reservoirs 

are water-wet.  

The gravity drainage literature (Section 3.2) suggests that the lower oil recovery in 

oil-wet media is attributable to the strong surface retention forces on the wetting phase 

films. It is hypothesized that for such scenarios, miscibility would be beneficial to 

alleviate these surface retention forces and improve oil recoveries. This hypothesis 

appears to be supported by the experimental results of miscible gravity stable floods (Rao 

and Sayegh, 1992; Wylie and Mohanty, 1999).  

 

3.3.5.5 Effect of Mobile and Connate Water Saturation 

Reservoir water saturation, both connate (bound) and free (mobile), has been found to 

influence the oil recovery characteristics of many enhanced recovery processes (Dumore 

and Schols, 1974; Hagoort, 1980; Meszaros et al., 1990). From a gas injection point of 

view, oil recovery rates (and efficiency), especially during the injection of a water-

soluble solvent (such as CO2), have been found to be directly related to the free water 

saturation in the reservoir (Kulkarni and Rao, 2005). The bound and free water 

saturations influence the gas injection processes differently and their effects are 

summarized in the following sections, with the emphasis on gas gravity drainage. 

  

Effect of Connate Water Saturation 

In gas injection processes (especially secondary gravity-drainage process); three phases 

usually exist, even at initial (or connate) water saturation. Although the connate water 

saturation is generally considered to be immobile, micromodel studies (Sajadian and 

Tehrani, 1998) have demonstrated that this assumption may not always hold true. During 

gas gravity drainage, changes in the gravity – capillary force balances could result in 

saturation redistributions and / or connate water re-mobilization during the process.  

There appears to be no consensus on the effects of connate water saturation on gravity 

drainage gas injection recoveries. Sparse experimental data available on the topic yielded 

a wide variety of conflicting conclusions (Dumore and Schols, 1974; Kantzas et al., 1988; 

Nahara et al., 1990; Skauge et al., 1994; Sajadian and Tehrani, 1998). Nahara et al. 
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(1990), based on centrifugal gas-oil displacements, report that gas-oil relative 

permeabilities are unaffected by the presence of water, as long as the water is immobile. 

On the other hand, Dumore and Schols (1974) showed that the presence of immobile 

connate water in Bentheim sandstones result in extremely low residual oil saturations 

during gravity drainage, irrespective of the gas/oil IFT values (that affect the gas-oil 

relative permeabilities).  

Pavone et al.’s (1989) free gravity drainage experiments at low interfacial tensions 

with fractured reservoir cores suggested that the presence of immobile water reduces the 

oil relative permeability, and thereby the ultimate oil recovery. These findings appear to 

contradict the observations of Hagoort (1980) as well as Skauge et al. (1994), which 

showed that the presence of connate water helps to increase oil relative permeability and 

the maximum hydrocarbon pore volume (HCPV) oil recovery is possible at a connate 

water saturation of about 30%, in gravity drainage processes (Skauge et al., 1994). 

 

Effect of Mobile Water Saturation 

Presence of mobile water saturation in the reservoir has a strong influence on the gas-oil 

displacement process. Farouq Ali (2003) suggested that one of the main reasons for 

failures of miscible gas injection flood is its application in tertiary mode, wherein 

significant quantities of water need to be displaced and also the injected solvent, 

especially CO2 is lost into the reservoir brine. 

The mobile water ‘shields’ the oil from the injected gas resulting in delayed oil 

production, decreased gas injectivity and lower oil relative permeabilities (Kulkarni and 

Rao, 2005). Furthermore, the water-shielding phenomenon is a strong function of 

wettability, and hence more prominently observed in water-wet media than oil-wet media 

(Rao et al., 1992, Wylie and Mohanty, 1999). The water-shielding phenomenon leads to 

decreased oil recoveries in water-wet media, with similar oil trapping effects for either 

HC or CO2, in both multiple contact miscibility (MCM) as well as first contact 

miscibility (FCM) displacements (Tiffin et al., 1991). 

 

3.3.6 Fluid Dynamics of Gas Injection EOR Projects 

Although the multiphase mechanisms (discussed previously) are translatable to (and 

participate in) any of the gas injection processes applied for light oil EOR, evaluation of 

the macroscopic fluid dynamics characterize the individual processes. Multiphase flow 

behavior (fluid dynamics) strongly influences the macroscopic displacement process and 

ultimately affects the performance of gas injection processes.  These fluid dynamic 

effects are primarily influenced by the relative magnitude of the dominant reservoir 

forces (namely, gravity, capillary and viscosity) and are displayed through effects of 

relative permeability, oil recovery / injectivity patterns and water-to-oil ratios (in WAG 

processes). 
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This section identifies and summarizes the various multiphase fluid dynamics 

operational during any gas injection EOR process, with a special emphasis on gravity 

stable gas injection (consequently the GAGD process). The relevant multiphase fluid 

dynamics identified relevant for this study are: (i) gas injection mode, (ii) gravity / 

capillary / viscous force ratio effects, (iii) relative permeability and oil recovery 

characteristics and (iv) reservoir heterogeneity. However, this review is restricted to 

investigating the effects of gas injection mode and reservoir heterogeneity, since these 

parameters have been identified for further experimental investigation in this study 

(discussed in following sections). 

  

3.3.6.1 Effect of Gas Injection Mode 

Literature review discussed earlier (Section 3.2 and 3.3), demonstrates that the gas 

gravity drainage processes have been applied in both secondary as well as tertiary modes.  

This section summarizes the relevant multiphase fluid dynamics relevant to these two 

modes of gas injection. It is interesting to note the significant dynamic changes associated 

with the tertiary gas injection processes that are attributable only to the presence of 

mobile water saturation in the reservoir. 

 

Secondary Mode Gas Gravity Drainage  

Multiphase fluid dynamic considerations for gas injection under secondary conditions, 

generally assumes the connate water saturation to be immobile. Injection under secondary 

conditions, especially in an unsaturated oil reservoir (without gas cap), firstly results in 

an initial single-phase oil displacement followed by secondary gas-oil gravity drainage in 

the gas-invaded zone (Saidi and Sakthikumar, 1993). The secondary gravity drainage is 

controlled by the spreading coefficient (discussed in Section 3.5.3) and this secondary oil 

film flow (under positive spreading coefficients) is important for high gravity drainage oil 

recoveries in water-wet and mixed wet reservoirs. The influence of spreading coefficient 

(therefore film flow) on gravity drainage performance is not well understood in oil wet 

reservoirs.  

For secondary mode gas gravity drainage under immiscible injection conditions, the 

threshold entry capillary pressure of the pore is the parameter that controls the extent of 

gas invasion. This capillary retention phenomenon, primarily responsible for trapping the 

reservoir oil (as well as wetting phase films), can be abated by lowering of the interfacial 

tension and / or increasing the viscous forces. Note that the capillary retention 

phenomenon is not a consideration for miscible gas gravity drainage floods, due to the 

absence of IFT between injected gas and reservoir oil thus negating the capillary effects. 

Although the above results are generally applicable to wide range of gas gravity drainage 

applications, one of the major assumptions employed in the above analysis may not 

always hold true. As discussed in Section 3.5.5 (part a), the connate water does not 
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necessarily remain immobile during gravity drainage, thus violating the major 

assumption in the analysis, thereby resulting in saturation mobilization and redistribution 

attributable to the dynamics of the balance between gravity and capillary forces. Sajadian 

and Tehrani’s (1998) micromodel studies also show that during gas gravity drainage, 

horizontal movement of the gas-oil contacts are not initially possible since the buoyancy 

forces overshadow the viscous forces, early in the life of the flood. However, in the latter 

stages of gas injection, liquid film flow becomes critical for gravity drainage oil 

production, both before and after the gas breakthrough at the production well. 

 

Tertiary Mode Gas Gravity Drainage  

Application of the gas gravity drainage process in the tertiary mode has been proven to be 

a viable and profitable commercial concept since the early 1980’s. In gravity assisted 

tertiary gas injection processes, the carrying capacity of the oil films (transmissibility) is 

critical and determines the extent of possible reduction of the residual oil saturation (Ren 

et al., 2003). In watered-out reservoirs, the oil distribution could be continuous (oil-wet 

rocks) or as disconnected ganglia (other wetting states). In the presence of a third phase 

(namely injected gas), in non oil-wet systems, the oil can spread between the gas and 

water films under positive spreading conditions (see Section 3.5.3). However under 

negative spreading conditions, continuous oil films may not develop substantially 

decreasing recoveries. Micromodel studies (Kantzas et al., 1988; Dawe, 1990; Oren et al., 

1992) on water-wet media provide with the visual proof for this phenomenon. 

Other pore-level experiments (Ren, 2003) to study the drainage rates during gravity 

assisted tertiary gas injection, provide with additional visual proof that the oil flow rates 

through oil films are dependent on both, weight of the oil ganglia as well as the 

incremental volume of gas injected till gas breakthrough. Even after gas breakthrough, 

the model’s gas out-flow has been observed to be intermittent (Sajadian and Tehrani, 

1998) and the film flow rates become primarily gravity driven; thereby resulting in low 

oil flow rates. To mitigate this problem another process ‘Second Contact Water 

Displacement’ (SCWD) process has been proposed (Lepski et al., 1996; 1998) that 

possesses the potential to improve the oil production rates after gas breakthrough. 

Micromodel studies (Ren, 2002) to assess the feasibility of this process have shown some 

incremental recoveries and saturation redistributions during this process. However, other 

possible controlling economic parameters such as increased water saturations, decreased 

oil relative permeabilities, increased water shielding effects and higher surface water-

handling costs are yet to be addressed. 

 

3.3.6.2 Effect of Reservoir Heterogeneity 

Stratification and heterogeneities strongly influence the oil recovery process since they 

control the injection and sweep patterns in the flood. Heterogeneity plays havoc with 
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horizontal gas floods leading to early breakthroughs and poor reservoir sweeps (Jackson 

et al., 1985; Rao, 2001). On the contrary, in gravity stable (vertical) gas floods 

heterogeneous stratification can delay gas breakthrough due to physical dispersion, and 

reduced gas channeling through the horizontally deposited high permeability layer, 

thereby ultimately improving sweeps. 

The vertical-to-horizontal permeability (kv/kh) ratio is a major factor that is generally 

used to represent the extent of heterogeneity in a reservoir. Higher kv/kh ratios lead to 

increased cross flow in horizontal floods, perpendicular to the bulk flow direction, which 

are mainly influenced by viscous, capillary, gravity and dispersive forces (Rogers and 

Grigg, 2000). Although, the cross-flow phenomenon may increase the vertical sweep, it 

generally has detrimental effects on oil recovery, attributable to increased gravity 

segregation and decreased flow velocity, thereby leading to reduced frontal advancement 

in lower permeability layer(s) in horizontal (CGI or WAG) displacements. Higher kv/kh 

ratios and increased reservoir permeability contrasts not only adversely affect oil 

recovery in WAG process (Jackson et al., 1985), but also cause severe injection and 

conformance control problems (Gorell, 1990). Reservoir simulation studies (Jackson et 

al., 1985) conducted to examine the effects of kv/kh ratios on WAG oil recoveries also 

suggest that the higher values of kv/kh ratios adversely affect WAG oil recoveries. 

In sharp contrast to the horizontal gas floods, the gravity stable gas injection seems 

largely immune to heterogeneity effects – instead the heterogeneity could be beneficial in 

improving injectivity and reservoir sweep. This statement is supported by comparable 

gravity stable injection recoveries demonstrated in sand-packs (Cardenas et al., 1981), 

laboratory corefloods (Catalan et al., 1994; Soroush and Saidi, 1999; Li et al., 2000), as 

well as commercial field injections in heterogeneous or fractured onshore / offshore 

reservoirs (Henriquez and Jourdan, 1996, Rao, 2001, Krijn et al., 2002, Sections 3.2 and 

3.3), with widely varying reservoir and heterogeneity characteristics.  

 

3.4 Experimental Design and Procedures 

This section has been divided into two parts: (i) WAG experiments and (ii) GAGD 

experiments. The WAG experiments have been completed to provide with a base case 

scenario for the confident evaluation of the GAGD process. The bases cases were 

additionally designed to study the flooding characteristics of WAG and continuous 

injection processes in short and long Berea sandstone cores and to determine the effects 

of gas-oil miscibility and brine composition. Further details of the WAG experimental 

design are available elsewhere (Kulkarni, 2003). 

 

3.4.1 WAG Experimental Procedure 

Coreflood experiments to identify the multiphase flow characteristics of the fluids were 

central to this work. The corefloods of the project are of the dynamic displacement type. 
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Identification and separation of parameters to effectively study their effects on the 

process is required. Pure CO2 gas has been used as an injectant in all the floods. n-Decane 

has been used as the ‘Oleic’ phase and two types of brine have been used as the aqueous 

phases to measure the effects of brine compositions (i.e. mono-valent vs. multi-valent 

brine). 

Initially, base case flooding experiments have been conducted using Berea cores, 5% 

NaCl (mono-valent) brine and n-Decane. Because n-Decane is considered to be ‘non-

reactive’ in terms of wettability effects, the data generated served as the base case for 

comparing water-wet system data. The base case experiments have been conducted in 

WAG and continuous gas injection corefloods in both miscible and immiscible modes 

using a horizontal Berea core system set up. Similar experiments have been conducted 

using n-Decane and multi-valent (Yates reservoir) brine so as to examine the results of 

brine composition and stability of clays. These experiments have provided the data on 

gas-oil displacements (both miscible and immiscible) in Berea sandstone cores for the 

‘non-reactive’ system.  

 

3.4.2 GAGD Experimental Design 

The need for this section arises due to the pre-requisites of effective laboratory 

experimental design to facilitate the effective performance evaluation of the newly 

proposed Gas Assisted Gravity Drainage (GAGD) process, as an effective alternative to 

the industry-default WAG process. The GAGD process extends the highly successful 

gravity stable gas floods in pinnacle reefs and dipping reservoirs to horizontal type 

reservoirs. To allow for scalability of the laboratory experiments, the reproduction of the 

various multiphase mechanisms and fluid dynamics, which have been found to be 

influential in the success of the gravity stable gas floods is crucial. Literature reviews 

(Kulkarni, 2004; Section 3.3) of multiphase mechanics and fluid dynamics, suggests that 

dimensionless characterization of flood parameters to generate analogous field scale 

multiphase processes into the laboratory, is one of the most effective and preferred 

scaling tools.  

This section examines the dimensionless reservoir characterization process and 

presents the protocols developed to achieve the goals of effective performance 

evaluation(s) of the GAGD process. This section also reinforces the relevance of 

dimensional analysis for development and optimization of the GAGD process, and also 

attempts to understand the individual effects of these dimensionless variables on 

multiphase mechanisms and fluid dynamics controlling gas gravity drainage. 

 

3.4.1.1 Reservoir Characterization Requirements 

To properly ‘scale’ and characterize a representative experiment or numerical model, 

several aspects pertaining to the spatial and / or physical mechanisms need to be 
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considered. Scaling is defined (Buckingham, 1914; Johnson, 1998; Novakovic, 2002) as 

a procedure of extrapolation of results obtained at one scale to another, e.g. from a small-

scale laboratory observation to a large-scale process and vice versa.  

A review of the various dimensionless groups traditionally employed in the literature 

as scaling tools are seen to be applicable to two distinct phase systems: single-phase and 

multi-phase. Intuitively, the dimensionless numbers applicable to single-phase systems 

are generally not relevant to model multiphase flow through porous media; however, they 

can sometimes be applicable to special scenarios wherein the fluid can be treated as 

single phase, e.g. pressure-transient analysis of under-saturated reservoirs (Novakovic, 

2002). On the other hand, unlike the single-phase groups, the multi-phase dimensionless 

groups focus on the balance of the four major forces: viscous, gravity, capillary and 

dispersion; which also control gravity stable gas flow through porous media, and 

ultimately dictate breakthrough times, recoveries and dispersion. 

In addition to the phase compatibility issues of dimensionless groups, the accurate 

numerical / experimental modeling require that the following five scaling issues also be 

addressed for upscaling, sensitivity analysis, stability analysis, reservoir characterization 

and numerical simulation (Novakovic, 2002): (i) scalability of physical effects, (ii) 

scalability of boundary conditions, (iii) scalability of reservoir shape, (iv) compatibility 

with existing reservoir simulation tools, and (v) numerical and physical dispersion.  

Out these five scaling issues, only the first two are assessed to be pertinent to the 

laboratory experimental design for this work, wherein duplication of the multiphase 

mechanisms and fluid dynamics operational in the actual reservoir displacements to the 

laboratory is important. The remaining scaling issues also need to be addressed and 

should be considered for further development of the GAGD process. 

 

3.4.1.2 Scalability of Physical Effects / Boundary Conditions 

Scaling of the physical phenomenon as well as the imposed boundary conditions is 

critical in duplication of the multiphase mechanisms and fluid dynamics in the laboratory. 

Several dimensionless variables have been used in order to scale the flow behavior, with 

each variable representing a portion of reservoir fluid dynamics and multiphase 

mechanisms. Table 3.5 summarizes the basic dimensionless groups used for scaling of 

these phenomena from the laboratory to the field.  

 

3.4.1.3 Dimensional Analysis of the Gravity Stable Gas Injection Process 

Traditionally, the dimensional analysis has been an extremely useful tool for scaling of 

the laboratory experiments to field scale and vice versa. The fluid flow literature shows 

two distinct possible procedures for obtaining different dimensionless numbers for a 

given system. Basic fluid mechanics literature (Johnson, 1998; Fox and McDonald, 1998) 
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advocates the use of dimensional analysis (DA), while the porous media fluid mechanics 

studies (Shook et al., 1992) recommend the inspectional analysis (IA). 

 

Table 3.5: Summary of Basic Multiphase Dimensionless Numbers (Novakovic, 2002) 

Scaling Parameter Variable Formulation Remarks 

Dimensionless Time 
pore

injected

D
V

V
t =  

Imposed Injection 

Boundary Conditions Boundary Conditions/ 

Response Displacement 

Efficiency Factor reference

produced

D
V

V
E =  

Dimensionless 

Production Response 

Mobility Ratio 
displacing

displaced
M

λ

λ
=  

Fluid-Fluid-Rock 

Interaction Effect on 

Flow Behavior 

Capillary Number 
viscous

capillary

C
F

F
N =  

Fluid-Rock Interaction 

depicting entrapment at 

pore scale 

Physical Effects 

Scaling 

Gravity Number 
viscous

gravity

G
F

F
N =  

Fluid-reservoir shape 

dependent, capturing the 

effect of buoyancy force 

 

Dimensional and Inspectional Analysis 

Buckingham (1914) developed the theory on physically similar systems that resulted in 

the development of a general analytical method, called the dimensional analysis. This 

dimensional analysis theory states that any equation that describes completely a relation 

among a number of physical quantities, is reducible to the form (Equation 3.13): 

φ (π1, π2, ....etc.) = 0.................................................................................................... (3.13) 

In Equation 3.13, the π’s are the independent dimensionless products of the form of 

the original quantities. The Buckingham (1914) theory thus helps characterize any 

physical phenomenon as an effect of various dimensionless groups, instead of individual 

variables. Furthermore the effects of these dimensionless groups could be experimentally 

investigated and universal equations could be derived for a set of variables representing 

different physical phenomena, thus eliminating the need for the experimental evaluation 

of numerous individual variables.   

The term ‘inspectional analysis’, first coined by Ruark (1935), is generally regarded 

as a precursor to the dimensional analysis for improved understanding of the mechanistic 

behavior of a process. For the inspectional analysis of a physical phenomenon, it is 

necessary to write down the differential equations describing the physical process and the 

associating boundary or initial conditions to eventually derive various dimensionless 

groups governing the concerned process. Although dimensional analysis, based on 
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Buckingham’s Pi theorem, generates complete and independent dimensionless groups for 

a process; this analysis generates a number of dimensionless group combinations which 

are non-unique solutions. Therefore, dimensionless analysis is seen to be best applicable 

in smaller physical systems. Inspite of the fact that inspectional analysis helps improved 

understanding of the underlying physical laws involved in the systems’ flow behavior, 

the analysis is complex and cumbersome. On the other hand, although the dimensional 

analysis may result in non-unique solutions, it has been found to be sufficiently useful for 

processes involving similar flow behavior (Hagoort, 1990), thus making it more relevant 

to the GAGD experimental design. 

 

Dimensional Analysis Literature Review 

Dimensional analysis has been regarded to be a powerful tool that can be used to reduce 

the number of experimental variables required for the adequate description of the 

relationship among these variables. In many applications of science and engineering, 

especially experimental work, the mathematical relationship between the variables of a 

system is unknown (Chandler, 2003). The dimensional analysis of the process becomes 

almost indispensable since experimental evaluation and verification of all the process 

variables is not feasible or sometimes even impossible. 

Inspite of the relevance of the dimensional analysis for improved understanding of 

any flow process, dimensional analysis and model studies for the gas gravity drainage 

applications are sparse. Geertsma et al.’s (1956) derivation of dimensionless groups using 

inspectional analysis is relevant to the GAGD experimental design since it not only 

describes dimensionless groups for solvent injection, but also helps identify the physical 

analogues of gravity drainage in other engineering sciences (such as Chemical and 

Mechanical engineering). Geertsma et al.’s correlation to the gravity drainage perspective 

has helped identify six commonly used dimensionless groups, namely Reynolds, 

Schmidt, Weber, Froude, Lewis and Grashoff groups, which could also be used for 

gravity drainage flow characterization. 

Other gravity drainage studies (Edwards et al., 1998) show that two more 

dimensionless groups, the Dombrowski-Brownell number or microscopic Bond number 

(Equation 3.14) and macroscopic bond number (defined as Equation 3.15), need to be 

included to account for the gravity (buoyancy) forces relative to capillary forces during 

the gravity drainage process.  

σ
ρgk

NDB

∆
= ………………………..……………….....……………..……..……… (3.14) 

Where ∆ρ = fluid density difference, g is gravitational constant, k is permeability and 

σ is interfacial tension. 
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k

gl
N B

φσ

ρ 2∆
= ……………………….……...…….……...…..……………………… (3.15) 

Where l is the characteristic length (represented by the grain diameter), and φ is the 
porosity. 

Grattoni et al.’s (2001) studies on gravity-dominated gas invasion with wettability 

and water saturation as variables show that in addition to the Bond and capillary numbers 

(Equation 3.16), the gravity number (Equation 3.17) plays a major role to improve the 

gravity drainage flow characterization along with a newly defined dimensionless group 

formed by combination of the effects of gravity and viscous to capillary forces.  

The capillary number (Grattoni et al., 2001) describes the balance between viscous 

and capillary forces and is defined as Equation 16, while the Bond number measures the 

relative strength of gravity (buoyancy) and capillary forces (Grattoni et al., 2001) as 

described by Equation 15. The gravity number is defined by Equation 17 below. 

θ
µ

Cos
RP

v
N

AC

C 2= ………………...……...………………....………………...…… (3.16) 

v

gk
NG µ

ρ
∆
∆

= ………...……………...…….....…....………………………..………… (3.17) 

Where, v is the Darcy velocity, µ is the viscosity of the displacing phase, θ being the 
contact angle and RA the average pore throat radius. 

 

3.4.1.4 Identification of Key Variables through Dimensional Analysis 

This section summarizes the results of the dimensional analysis of GAGD process, 

employed for the identification and characterization of the key operating variables, 

relevant dimensionless groups and their extension and comparison to field scale gravity 

stable gas injection applications. 

 

Dimensional Analysis of the GAGD Process 

Literature review shows that there has been limited work reported on the characterization 

or the dimensionless analysis for gravity drainage fluid flow; hence, dimensional analysis 

employing the Buckingham-Pi approach was conducted to facilitate effective GAGD 

experimental design.  

Buckingham's Pi theorem (Buckingham, 1914) states that ‘physical laws are 

independent of the form of the units, hence quantification and generalization of most 

mathematical relationships used to describe a physical phenomenon is best expressed in a 

dimensionless form’. This analysis becomes especially necessary for better understanding 

and performance prediction of novel – newer processes like the GAGD. The procedure of 

analysis has been documented and available elsewhere (Lui, 2003). The dependant and 

independent variables used in this analysis are shown in Table 3.6 along with their 
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fundamental dimensions. The nineteen dimensionless groups obtained after the analysis 

are summarized in Table 3.7.  

 

Table 3.6: Dependant and Independent Variables used for Buckingham-Pi Analysis 

Variable Dimensions Variable Dimensions Variable Dimensions 

Porosity (φ) [M0.L0.T0] 

Length per Thickness 

(L/T) or Radius per 

Thickness (R/T) 

[M0.L0.T0] 
Reservoir Absolute 

Permeability (k) 

[M2.L0.T0] 

 

Reservoir Horizontal 

Permeability (kh) 
[M2.L0.T0] 

Ratio of Vertical to 

Horizontal Permeability 

(kv/ kh) 

[M0.L0.T0] 
Gas Injection Pressure 

(PIG) 
[M1.L-1.T-2] 

Reservoir Pressure (PR) [M1.L-1.T-2] 
Minimum Miscibility 

Pressure (MMP) 
[M1.L-1.T-2] Gravity Force (g) [M1.L0.T-2] 

Velocity (V) [M1.L0.T-1] Injector Flow Rate (QI) [M3.L0.T-1] Producer Flow Rate (QP) [M3.L0.T-1] 

Gas Viscosity (µg) [M1.L-5.T1] Oil Viscosity (µo) [M1.L-5.T1] Capillary Pressure (PC) [M1.L-1.T-2] 

Oil-Water Interfacial 

Tension (σOW) 
[M1.L1.T-2] 

Water-Gas Interfacial 

Tension (σWG) 
[M1.L1.T-2] 

Oil-Gas Interfacial 

Tension (σOG) 
[M1.L1.T-2] 

Waterflood Residual 

Oil Saturation (SOR) 
[M0.L0.T0] 

Connate Water 

Saturation (SWC) 
[M0.L0.T0] Time (T) [M0.L0.T1] 

It is important to note that the Buckingham-Pi analysis does not rank the 

dimensionless groups obtained in any order of relative importance as controlling 

variables of the process. Experimentation and inspectional analysis may be required to 

further characterize the controlling groups of variable(s) in gravity stable gas injection 

processes. 

Dimensionless Numbers Governing the GAGD Process Performance 

The literature review suggests that the most important dimensionless groups governing 

the gravity stable gas injection are the capillary number (NC) and the Bond number (NB), 

since these two numbers envelope majority of the reservoir forces active during gravity 

stable gas injection, namely the buoyancy, capillary and viscous forces. The microscopic 

Bond number, namely the Dombrowski – Brownell number (NDB), could be a good 

parameter for microscopic displacement and film flow characterizations especially in 

gravity drainage applications where these phenomena are dominant, since it incorporates 

the pore size distribution as well as overall reservoir permeability in its definition. The 

microscopic Bond number (NDB) would therefore help in improved characterizations of 

the governing forces in field as well as laboratory displacements.  

The gravity number (NG) and the New Group (N) by Grattoni et al. (2001) are 

different combinations of the capillary and Bond numbers incorporating a scaling 
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parameter for better displacement characterizations and appear to be good augmentations 

for scale-up and finer characterizations of the scaled GAGD experimental results. 

 

Table 3.7: Dimensionless Groups Obtained Using Buckingham-Pi Analysis 

No. D. L. Group No. D. L. Group No. D. L. Group 

1 φ 8 QP/QI 15 SOR 

2 L/R 9 
RI

g

PQ

g

.

.
)2.0(

)6.0(µ
 16 SWC 

3 kv/kh 10 PC/PR 17 
RI PQ

gT

.

.
)2.0(

)6.0(

 

4 )8.0(

)4.0(.

I

h

Q

gk
 11 

RI

o

PQ

g

.

.
)2.0(

)6.0(µ
 18 (MMP)/PR 

5 )8.0(

)4.0(.

IQ

gk
 12 

RI

OW

PQ

g

.

.
)4.0(

)2.0(σ
 19 

R

I

P

Qg
)4.0()8.0( ..ρ∆
 

6 PIG/PR 13 
RI

WG

PQ

g

.

.
)4.0(

)2.0(σ
   

7 )2.0()4.0( . IQg

V
 14 

RI

OG

PQ

g

.

.
)4.0(

)2.0(σ
   

 

GAGD Application in Miscible Mode and Highly Heterogeneous Reservoirs 

Almost all the dimensionless numbers identified for the characterization of the gas 

gravity drainage process, involve gas-oil IFT and density and viscosity differences 

(∆ρ, ∆µ) in their definitions. These terms make the dimensionless groups inapplicable to 

miscible floods, since the gas-oil IFT as well as the density and viscosity differences, 

after miscibility development, is zero. To eliminate this redundancy, the following 

assumptions were made to facilitate the application of the same dimensional groups to 

miscible gas floods.  

1. Miscibility is achieved when the value of interfacial tension (IFT) between injected 

gas and reservoir oil reaches 0.001 dynes/cm. 

2. There are no density / viscosity contrasts between injected gas and reservoir oil in the 

‘mixing-zone’ or the miscibility development zone. Hence the ∆ρ and ∆µ terms can 

be replaced by ρavg and µavg respectively.  
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3. The characteristic length term for the concerned reservoir can be expressed as a 

square root of the ratio of absolute permeability to porosity. 

These assumptions appear to be well justified, since they not only effectively 

eliminate the redundancy and provide a common comparison basis for both miscible and 

immiscible gas gravity drainage floods, but also truly reflect the prevalent reservoir 

physics during miscible gas injection. 

 

3.4.1.5 Calculation of Dimensionless Numbers for the Field Projects 

Ten commercial gas gravity drainage field applications were extensively studied and 

summarized (Section 3.4) for the identification and characterization of various 

multiphase mechanisms, fluid dynamics and calculation of the range of various 

dimensionless groups applicable to GAGD process. The detailed calculation protocol is 

included as Figure 3.10, while step-wise calculations for one commercial immiscible 

gravity drainage field project (West Hackberry Field, LA) is included as Appendix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Protocol for Calculation of Dimensionless Groups for Field Cases (Where 

NC = Capillary Number (Eqn. 16); NB = Bond Number (Eqn. 15); NDB = Dombrowski-Brownell 

Number (Eqn. 14); NG = Gravity Number (Eqn. 17); N = New Group of Grattoni et al. (2001)) 

Calculation of these dimensionless numbers for field projects involved the use of 

various well logs (for thickness, net-to-gross values, OWC, GOC and grain size), field 

maps (for Darcy velocity), use of grain size classification systems (for Bond number), 

production / injection data (for New Grattoni et al. (2001) group), bottom hole pressure 
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survey plots (for PVT simulations), compositions of injected / produced fluids (for PVT 

simulations), and PVT compositional simulations (for fluid properties predictions). 

It was noted earlier that these dimensionless groups are not applicable to miscible 

fluid injection mainly due to the absence of interfacial tension (IFT) and density / 

viscosity contrasts between displacing and displaced reservoir fluids. Definition of new 

dimensionless groups governing miscible flood behavior is necessary due to the 

increasing commercial trends toward miscible injections.  

Hence to facilitate the calculation of various dimensionless groups in miscible field 

cases, appropriate modifications to the definition of dimensionless numbers to reflect the 

reservoir physics were also employed (see Section 4.4.3). The complete ranges of 

dimensionless groups for all the commercial gravity drainage projects is included as 

Table 3.8, and plotted as Figure 3.11. 

 

Table 3.8: Dimensionless Number Ranges Obtained for Field Applications and 

Laboratory Studies  

IMM MIS Para nC10 Type 1-ft 6-ft

Min 4.18E-08 1.84E-05 IMM 2.59E-06 2.59E-09

Max 1.12E-09 1.83E-06 MIS 2.57E-04 2.57E-04

Min 1.21E-05 5.77E-02 IMM 1.64E-06 7.72E-07

Max 2.84E-07 3.01E-03 MIS 1.70E-02 7.88E-03

Min 3.14E-06 6.31E-03 IMM 3.09E-07 1.68E-07

Max 1.50E-07 2.56E-04 MIS 3.15E-03 1.71E-03

Min 8.75E+02 2.96E+02 IMM 1.17E+01 6.38E+00

Max 3.85E-01 1.62E+00 MIS 1.22E+01 6.66E+00

Min -6.89E-05 -2.30E+00 IMM -4.96E-04 -4.97E-04

Max -2.42E-03 -3.00E+00 IMM -4.41E+00 -4.42E+00

Dim. Groups
Field Range Physical Model Corefloods

NC 9.28E-09 6.92E-09

NB 1.48E-04 4.16E-05

N
6.17E-05 1.53E-05

NDB 1.23E+00 4.80E+01

NG 1.48E-04 3.90E-05

 
 

Calculations of Dimensionless Numbers for Field Projects – A Case Study 

Out of the ten field cases considered, calculation of dimensionless numbers for the West 

Hackberry tertiary air injection project is included here as an example case. The West 

Hackberry tertiary air injection project was a joint initiation by United States Department 

of Energy, Amoco Production Co. and Louisiana State University to demonstrate the 

feasibility of air injection in Gulf coast reservoirs with pronounced bed-dip using the 

Double Displacement Process (DDP) in 1993. The range of calculated dimensionless 

numbers for this project is included as Table 3.9. Further detailed calculations and 

methodology are included as elsewhere (Kulkarni, 2005). 
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(e) N Group (Grattoni et al., 2001) Comparison 

Figure 3.11: Graphical Comparison of Values of Dimensionless Groups Calculated for 

Field and Laboratory Cases 
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Important Conclusions from these Calculations – Example Case Study 

The plots of operating Bond, capillary, Dombrowski-Brownell, Gravity and N groups for 

West Hackberry field are included in Figure 3.12 and 3.13. The ranges of operating 

bottom hole pressures (BHP) for West Hackberry field are 2400 psi – 3400 psi. For this 

range, the capillary number is observed to be a weak function of the reservoir Darcy 

velocity, but the Bond number shows a strong dependence of mean reservoir grain 

diameter. Hence, reservoir heterogeneity would become important parameter determining 

the overall displacement characteristics. The microscopic Bond number (that is the 

Dombrowski-Brownell number) and N group exhibit similar dependence on reservoir 

permeability and grain size distribution respectively. However, the Gravity number does 

not show significant dependence on grain size distribution and / or reservoir permeability. 

These groups are instead seen as strong functions of Darcy velocity. 

The results indicate that these dimensionless numbers can be weakly characterized 

into two groups: (i) Petrophysical parameter(s) dependent groups – NB, N and NDB 

(which are characterized by reservoir permeability, porosity, grain size distribution and 

tortuosity) and (ii) Operational parameter(s) dependent groups – NC, and NG (which are 

characterized by injection pressures, rates, and other production parameters). 

It is interesting to note that similar trends were observed for all other field studies, 

and the dimensionless number ranges are critical for effective GAGD experimental 

design. Furthermore this dimensional analysis suggests that the field project 

characterizations should be primarily based on the operating Bond, capillary, 

Dombrowski-Brownell, Gravity and N groups (by Grattoni et al. (2001)).  

 

Table 3.9: Values of Dimensionless Groups Operating in West Hackberry Field 

Number Formula Min. Value Max. Value 

Capillary Number 
)/(

).(*)/(

mN

SPasmV
NC σ

µ
=  4.564E-09 4.1798E-08 

Bond Number 
)/(

)(*)/(*)/( 2223

mN

mlsmgmkg
N B σ

ρ∆
=  0.03171 1.5932 

Dombrowski-

Brownell Number )/(

)()./()./( 223

mN

mksmgmkg
NDB σ

ρ∆
=  1.5024E-07 7.833E-07 

Gravity Number 
)/()..(

)()./()./( 223

smusPa

mksmgmkg
NG µ

ρ
∆

∆
=  0.3855 1.5932 

New Group of 

Grattoni et al., (2001) 
C
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D
B N

sPa

sPa
ANN ).

).(

).(
(
µ
µ

+=  0.0361 1.627 
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West Hackberry: Operating Capillary Numbers
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West Hackberry: Operating Bond Numbers
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West Hackberry: Operating Dombrowski-Brownell Numbers
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Figure 3.12: Calculated Operating Capillary, Bond and Dombrowski-Brownell Numbers 
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West Hackberry: Operating Gravity Numbers

0.0

0.4

0.8

1.2

1.6

2.0

1000 1500 2000 2500 3000 3500 4000 4500

Pressure (psia)

G
ra
v
it
y
 N
u
m
b
e
r 
(N
G
)

0.095 ft/D

0.136 ft/D

0.198 ft/D

K Range: 300 - 1000 mD

NG Only Velocity Dependant

 

West Hackberry: Operating N Group
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Figure 3.13: Calculated Operating Gravity and N Group Numbers 

 

Lastly, it is important to note that none of the dimensionless groups governing the 

gravity drainage process contain the macroscopic length term i.e. displacement 

characteristics are independent of the length of the porous medium. Hence, scaled 

experimentation on shorter laboratory cores would be as effective and comparable to 

longer cores; thus de-emphasizing the need to conduct all the experiments on 6-ft Berea 

cores, which significantly reduces the experimentation time. 

 

3.4.3 Dimensional Similarity Approach to GAGD Experimental Design 

The literature review, summarized in previous sections, clearly shows that the five 

dimensionless numbers recommended for the characterization of the gravity drainage 
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field projects provide adequate reservoir mechanics information for gravity stable gas 

injection processes. Literature review and dimensional analysis further advocate the 

dimensional similarity based experimental design. To facilitate this design, the five 

dimensionless groups were calculated (see Section 4.5) for each of the gravity stable field 

projects studied (see Table 3.3). Attempts were made to duplicate the ranges obtained for 

these dimensionless groups in the laboratory by selecting proper fluids and operating 

conditions. This section details the calculation of dimensionless numbers for the 

laboratory experiments and summarizes the resulting experimental design. 

 

3.4.3.1 Calculation of Dimensionless Numbers for Laboratory Core Displacements 

The five dimensionless groups mentioned above were calculated for the GAGD 

corefloods conducted in this study. The ranges of the dimensionless numbers for both 

laboratory and field projects are tabulated as Table 3.8 and plotted as Figure 3.11. 

It is observed that values of the dimensionless numbers for laboratory corefloods as 

well as the 2-D Hele-Shaw type visual physical model (Sharma, 2005) values lie within 

the field ranges. This clearly indicates that we are able to ‘mimic’ the various multiphase 

mechanisms and fluid dynamics operating in the field into the laboratory, and that the 

results of all the laboratory experiments completed in course of this work, are 

‘translatable’ to the field. 

This mechanistic scaling of the laboratory experiments not only helps regenerate field 

scale mechanics into the laboratory corefloods, but also provides with a realistic tool to 

study the effects of flood parameters on the processes’ performance The following 

section details on the mechanistic and fluid dynamic experimental design of the ‘scaled’ 

laboratory experiments. 

 

3.4.3.2 Flow Regime Characterization of the GAGD Process 

Flow regime characterization is important for the elucidation of operating fluid 

mechanics during gravity drainage, and is also helpful in designing efficient gas injection 

programs in commercial floods. Localized variations in the capillary forces, due to pore 

scale heterogeneities, result in non piston-like (Buckley-Leverett type) displacements, 

called ‘capillary fingering’ (Aker, 1996). On the other hand, the viscous forces act across 

the fluids at all length scales, and combined with mobility ratio, are responsible for 

viscous fingering. In horizontal floods these displacement instabilities have a negative 

effect on the flood performance, and may lead to non-optimal recoveries in gravity stable 

gas injection processes. 

Literature review (see Section 3.1) suggests the use of various stability criteria to 

assure the flood fronts’ stability. The GAGD flood experimental design used three of the 

common stability criteria to assure the flood fronts’ stability: Leas and Rappaport (1953) 
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criterion for horizontal injections and Dumore (1964) and Rutherford (1962; Mahaffey et 

al., 1966) criteria for gravity stable injections. 

Experimental (Lenormand et al., 1987) and simulation model (Aker, 1996) studies for 

drainage flow characterizations in porous media are sparse, and rely on unrealistic 

horizontal type drainage floods conducted using either micromodels or Lattice-

Boltzmann percolation flow simulation models. The Lenormand et al.’s (1988) ‘phase-

diagram’ is the common gravity drainage flow regime identification plot (Aker, 1996; 

Sukop and Or, 2003). Dimensionless numbers calculated for both the miscible and 

immiscible GAGD laboratory coreflood experiments as well as the field gravity drainage 

applications were plotted on the digitized Lenormand et al.’s (1988) plot (Figure 3.14). 
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Figure 3.14: Digitized Lenormand et al’s (1988) Horizontal Instability Plot 

Superimposed with Gravity Stable Field and Laboratory (Coreflood and Visual Model) 

Data 

Since the Lenormand et al.’s (1988) plot was developed using horizontal micromodel 

displacement experiments, Figure 14 shows that the horizontal type injection at the 

respective capillary number and fluid property values would result in an unstable flood 

front (i.e. capillary fingering at the flood front would occur, resulting in non-optimal 

flood performance).  
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To assess the validity of the above hypothesis that the flood front during GAGD 

experiments conducted is stable, 2-D physical model experiments using Hele-Shaw type 

visual model were also conducted at various capillary number values and fluid viscosities 

(Sharma, 2005). Figure 3.15 compares the actual flood fronts (Sharma, 2005) observed 

during GAGD displacements and the flood front profile predicted by Lenormand et al.’s 

(1988) plot (reproduced by Sukop and Or, 2003).  

In spite of the fact that Lenormand et al.’s plot predicts capillary fingering 

development during GAGD floods (Figure 3.14); Figure 3.15 clearly shows that during 

GAGD injection capillary fingering does not occur and that the GAGD flood fronts 

closely resemble the ‘stable displacement’ pattern predicted by Lenormand et al.’s (1988) 

plot (reproduced by Sukop and Or, 2003). This clearly suggests that satisfaction of the 

flood’s frontal stability criteria is necessary and sufficient to ensure stable displacement 

in GAGD floods. 

 

Incorporation of the Multiphase Mechanisms and Fluid Dynamics Operations in the 

Field Applications into Experimental Design 

This section summarizes the isolation and characterization of various multiphase 

mechanisms and fluid dynamics duplicated from commercial gravity stable gas injection 

floods into the ‘scaled’ laboratory coreflood experiments.  

The important parameters that were considered in the experimental design were: 

miscibility development, effect of spreading coefficient, reservoir heterogeneity, 

reservoir wettability (use of Yates Dolomite core) considerations, injectant type and 

mode(s) of injection. 

 
Figure 3.15: Comparison of Actual GAGD Flood Front Profile (Sharma, 2005) with 

Flood Front Profile Predicted by Lenormand et al.’ (1988) Phase Diagram 
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Miscibility Considerations 

Important miscibility considerations during the optimization and development of the new 

GAGD process were addressed by conducting miscible and immiscible GAGD floods on 

1-ft Berea cores using Yates reservoir brine, n-Decane and CO2. 

 

Effect of Spreading Coefficient 

Laboratory and theoretical studies (Section 3.2) demonstrate that a positive spreading 

coefficient in strongly water-wet systems results in significantly high gravity drainage 

recoveries, while its effects on oil-wet media are not clear. Winprop® simulations for the 

n-Decane, Water, and CO2 fluid triplets showed that a positive spreading coefficient 

results for the coreflood conditions being employed in this study. These values are 

summarized as Table 3.10. 

To investigate the effects of a negative spreading on oil recovery in water-wet porous 

media, following three chemicals were considered as the ‘oleic’ phase: Aniline, Carbon 

Tetrachloride and Isopropyl Acetate. The various properties calculated for these three 

chemicals are included as Table 3.11 below. 

 

Table 3.10:  Simulated / Calculated Spreading Coefficients for n-Decane, Water, and 

CO2 fluid triplets 

nC10/H2O/CO2 σσσσG/W (dy/cm) σσσσG/O (dy/cm) σσσσW/O (dy/cm) Spreading Coeff. 

500 psia / 76 oF 17.5074 8.7268 0.0044 (+) 8.78 

2500 psia / 76 oF 0.3279 0.0000 0.0031 (+) 0.3248 

 

Table 3.11:  Calculated Aniline, Carbon Tetrachloride and Isopropyl Acetate Properties 

with CO2 and Yates Reservoir Brine 

Property / Chemical Aniline Carbon Tetrachloride Isopropyl Acetate 

P & T Conditions 500 psi & 76 oF 500 psi & 76 oF 500 psi & 76 oF 

Chemical Formula C6H7N CCl4 C5H10O2 

Molecular Weight 93.1 153.8 102.1 

Normal Boiling pt 363.2 oF 169.7 oF 192.2 oF 

Specific Gravity 1.02 1.59 0.88 

Water Solubility 3.4 gm / 100 ml 0.1 gm / 100 ml 4.3 gm / 100 ml 

σG/W (dynes/cm) 17.5074  17.5074  17.5074  

σG/O (dynes/cm) 91.4017  4018.3194  36.8204  

σW/O (dynes/cm) 2.8867  1627.9867  0.1899  

S = σG/W - σG/O - σW/O (dynes/cm) (-) 76.78  (-) 5628.7987  (-) 19.5029  
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It is interesting to note that Isopropyl Acetate has moderate solubility in brine and 

exhibits negative spreading coefficient at 500 psia and 76 oF. On the other hand, IPA 

exhibits first contact miscibility with CO2 at pressures higher than 730 psia; and results in 

reversing the sign on the spreading coefficient value at miscible coreflood design 

conditions (spreading coefficient becomes positive at 2500 psia and 76 oF as shown in 

Equation 3.18 below). To investigate the effects of spreading coefficient on GAGD oil 

recoveries, GAGD type corefloods were conducted at 500 psia and 76 oF. 

S = σG/W - σG/O - σW/O…….@ 2500 psia & 76 F……………………...……….…..(3.18) 

S = (+) 0.0902 dynes/cm. 

 

Effect of Reservoir Heterogeneity and Wettability 

The GAGD corefloods conducted on homogeneous, strongly water-wet Berea sandstone 

cores for miscibility considerations (using n-Decane, Yates reservoir brine and CO2), 

provided with a base case for the GAGD process performance evaluation against these 

two parameters. To investigate the effects of reservoir vertical fractures, the base case 

GAGD experiments were repeated on the same Berea core, but sliced in the center, 

resulting in a very high permeable vertical fracture connecting the injection and 

production fluid distributor plates.  

On the other hand, to investigate the effects of reservoir wettability on GAGD flood 

performance, miscible as well as immiscible GAGD experiments were conducted using 

Yates reservoir fluids on Yates reservoir cores. Berea sandstone corefloods conducted 

previously also served as a base case to evaluate GAGD performance in highly fractured, 

heterogeneous and oil-wet to mixed-wet Yates reservoir cores. 

 

Effect of Injectant Fluid Type 

The recent spotlight on CO2 sequestration makes CO2 an ideal injectant in U.S. scenario 

(Kulkarni, 2003). Furthermore, the GAGD process using natural gas as injectant could 

possibly be very relevant to facilitate offshore EOR applications of the GAGD process. 

To evaluate the effect of gas injectant type on GAGD performance, miscible and 

immiscible GAGD floods were conducted using CO2 injectant. However, discussion of 

the hydrocarbon GAGD floods is outside the scope of this dissertation. This is partly due 

to the complex mass-transfer effects involved in miscible HC slug design and 

displacement. 

 

Effect of Injectant Fluid Mode 

Gas injection literature review (see Chapters 1 and 3) suggests that gas injection has been 

applied in both secondary as well as tertiary injection modes in commercial gas injection 

projects. Although there is a difference of opinion as to whether gas injection be applied 
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in secondary or tertiary mode, it has been observed that project economics, reservoir 

wettability and gas availability are the critical decision parameters. Moreover, as the 

injection mode is generally reservoir specific, both of the gas injection modes were 

evaluated for GAGD experimental design.  The other parameters of particular relevance 

to tertiary mode gas injection that need to be considered are: (i) reservoir mobile water 

saturation (Farouq Ali, 2003), (ii) reservoir residual oil saturation (Farouq Ali, 2003), (iii) 

solvent-brine solubility, especially in case of CO2 injectant, and (iv) higher and 

preferential initial free water production in tertiary mode GAGD floods driven by gravity 

segregation and reservoir fluid saturations. 

 

3.4.4 Experimental Details 

3.4.4.1 Experimental Fluids 

Analytic grade reagents were used in all the experiments. n-Decane, Isopropyl Acetate, 

various cleaning chemicals (Acetone, Methylene Chloride and Toluene) and the various 

salts used for synthetic Yates reservoir brine (default brine used for all experiments) 

preparation were obtained from Fisher Scientific with a purity of 99.9%.  Brine was 

prepared by dissolving predetermined quantity of various salts (Table 3.12) in de-aerated 

deionized water from LSU’s Water Quality Laboratory. The Berea sandstone (Liver Rock 

type) used in the experiments was obtained from Cleveland Quarries, Ohio, while the 

Yates reservoir rock and fluids were obtained from Marathon Oil Company. 

 

3.4.4.2 Experimental Setup 

The vertical coreflooding system schematic that was used for unsteady state GAGD 

experimentation is shown below as Figure 3.16. It consists of a high-pressure Ruska 

pump injecting fresh (tap) water at desired flow rate and pressure to the bottom part of 

the floating piston transfer vessel. The transfer vessel is filled with the fluid to be injected 

into the core. 

High-pressure steel piping (1/8” ID) carries the fluid and is injected into the core with 

the assistance of a liquid re-distributor plate. The produced fluids were carried through 

the backpressure regulator into a measuring cylinder / electronic balance to determine 

fluids production as a function of run time. A parallel set of piping was constructed to 

facilitate the circulation of core clean-up fluids using a centrifugal pump. The inlet, 

outlet, differential, back and annulus pressures were measured using electronic pressure 

transducers (previously calibrated against a standard dead-weight tester) mounted on the 

coreflood apparatus. 

The vital components of the core-flooding apparatus are labeled from ‘A’ to ‘J’. 

Individual pictures of the equipment are shown in Figures 3.17 – 24 (not pictured: Parts 

G, H and J). The cores were coated with a single coating of epoxy, to prevent damage 

during handling and processing of the core such as end facing, polishing and cutting. 
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Table 3.12: Composition of Yates Reservoir Brine of pH 7.39 (Vijapurapu and Rao, 

2002) 

Parameter Concentration (mg/L) 

Total Dissolved Solids 9200 

Calcium 425 

Magnesium 224 

Potassium 50.5 

Sodium 1540 

Hardness as CaCO3 1500 

Hardness as Carbonate 810 

Hardness as Non-Carbonate 730 

Bicarbonate 800 

Alkalinity 810 

Sulfate 660 

Chloride 3700 

 

 
Figure 3.16: Vertical Core Flooding System Schematic 

Legend for the above schematic: 

  : Electrical Lines    : Instrumentation Lines 

  : 1/8” High Pressure Piping   : Cleanup / Accessories Lines 
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Figure 3.17: Differential Pressure Transducer (Part A) 

 

 
Figure 3.18: Core Holders used for GAGD Experiments (Part B) 

 

 
Figure 3.19: The Suite of Cores Employed for GAGD Experimental Design (Part B) 
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Figure 3.20: Fluid Transfer Vessel (Part C) 

 

 

 
Figure 3.21: Ruska Positive Displacement Pump (Part D) 

 

 

 
Figure 3.22: Back Pressure Regulator (Part E) 
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Figure 3.23: Centrifugal Pump used for Cleanup (Part F) 

 

 

 
Figure 3.24: Injection, Production and Annulus Pressure Readout (Part I) 

 

3.4.4.3 Experimental Flowchart 

The complete suite of ‘scaled’ experiments that were designed for individual 

investigation of the various controlling parameters (discussed in previous sections) on the 

GAGD process performance evaluation has been summarized in Figure 3.25. 

 

3.4.4.4 Experimental Procedure 

There were two distinct experimental procedures (sets) that were followed for optimizing 

the gas injection process. First set comprised of the continued investigation of the 

recommendations and hypothesis provided in the M.S. thesis of Kulkarni (2003). This 

section involved all horizontal mode injections for: CGI, WAG and the ‘happy-medium’ 

between CGI and WAG identified in course of these experiments. The experimental 

protocol that was followed during this experimentation is documented elsewhere 

(Kulkarni, 2003; Kulkarni and Rao, 2004; Kulkarni and Rao, 2005). The first 

experimental set also provided with a base case scenario for the second suite of 
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corefloods designed for the further development and optimization of the newly proposed 

GAGD process (Rao, 2001).  
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Figure 3.25: Experimental Flow Chart Designed for GAGD Process Evaluation 

 

For the GAGD experimentation, apart from the employment of various experimental 

fluids and conditions (elucidated during the individual discussion of the experimental 

results), two discrete flood protocols were employed: Gravity Stable Displacement 

History (GSDH) GAGD floods and Non-Gravity Stable Displacement History (NSDH) 

GAGD floods. In GSDH GAGD floods, all the experimental steps, namely oil injection 

to connate water saturation (oil flood), water injection to residual oil saturation (water 

flood – where applicable), and gas injection in the GAGD mode, were conducted in a 

gravity stable mode. In GSDH GAGD floods, oil was injected into a fully brine saturated 

vertically oriented core from top to bottom, water was injected into a vertically oriented 

core at connate water saturation from the bottom (optional step), while the gas injection 

step was gravity stable, i.e. gas injection into a vertically oriented from the top. On the 

other hand, the NSDH GAGD floods conducted the oil and water injection steps on a 

horizontally oriented core were as only the gas injection was conducted in a gravity stable 

manner (vertically oriented core, with gas injection from the top). The GSDH floods, 

although unrealistic from a commercial gas injection point of view and purely of 

academic interest, provided with an ‘upper-limit’ estimate of the GAGD process 

performance.  

In spite of the fact that CGI, WAG, Hybrid-WAG and GAGD coreflood experiments 

required significantly different gas injection protocols, the steps common to all the 
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experiments conducted were: Saturation of the core with Yates reservoir brine, 

determination of core pore volume and absolute permeability, oil injection (either in the 

horizontal or gravity stable mode) into the core to achieve connate water saturation, end-

point oil-permeability, Yates reservoir brine injection (either in the horizontal or gravity 

stable mode) into the core to achieve waterflood residual oil saturation (for tertiary gas 

floods only), and end-point water-permeability measurement followed by the gas 

injection step in either CGI, WAG, Hybrid-WAG or GAGD mode.  

The detailed experimental protocol that was employed for core cleaning, pore volume 

determination, absolute permeability determination, oil flooding, brine flooding and gas 

injection in CGI, WAG, Hybrid-WAG mode is available elsewhere (Kulkarni, 2003; 

Kulkarni and Rao, 2004; Kulkarni and Rao, 2005). For the GAGD experimentation the 

following changes were made: 

1. The fluid injection rates during horizontal mode floods are determined by the Leas 

and Rappaport (1953), while the gravity stable gas injection rates are determined 

using the Dumore (1964) and Rutherford (1962; Mahaffey et al., 1966) flood front 

stability criterion. 

2. The GAGD flood protocol was very similar to the CGI floods, with the exception that 

the gas injection step during GAGD floods was gravity-stable. 

During the NSDH GAGD Yates core injections, the n-Decane is replaced with Yates 

stocktank crude oil in the oil flooding step. 

 

3.4.4.5 Scope of Research 

The scope of this study was limited to the experimental flow chart depicted in Figure 

3.25. Majority of the experimentation was conducted by employing Yates reservoir 

fluids, n-Decane, with 1-ft Berea cores as the porous media. Moreover, as the 

dimensional scaling of the experiments helps eliminate the dependency of experimental 

results on the length of the porous media, only selected experiments were conducted on 

6-ft Berea sandstone cores due to significantly higher run time requirements. Reservoir 

condition scaled experiments using Yates reservoir fluid and Yates field cores were also 

conducted to identify and characterize the influence of design parameters on realistic 

fluid systems. Lastly, all the GAGD experiments were conducted using pure CO2 as 

injectant. 

 

3.4.4.6 Base Case CGI and WAG Experimental Results 

The base case CGI and WAG experiments were conducted with the objective of 

evaluating miscible and immiscible modes of gas injection, the effect of brine 

composition and core length on gas-oil displacements in porous media. Berea sandstone 

was chosen because of its wide acceptance as a relatively homogeneous porous medium 

well suited for controlled experiments.  
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Ten sets of experiments – eight with 1-ft Berea cores and two with 6-ft Berea cores 

were conducted. Two different brines, one a commonly used 5% NaCl solution and the 

other actual reservoir brine were used to examine the effects of rock fluid interactions. n-

Decane was used as the oleic phase and pure Carbon dioxide as the injected gas. The 6-ft 

coreflood experiments were conducted using only 5% NaCl brine. Both miscible and 

immiscible displacements of n-Decane and Carbon dioxide gas were conducted. Miscible 

floods were performed at 2515 psia and the immiscible ones at 515 psia. Two modes of 

gas injection were used: Continuous Gas Injection (CGI) and Water-Alternating-Gas 

(WAG) injection.  

Conventional plots of waterflood residual oil recovery vs. pore volume injected were 

found to yield misleading conclusions. Hence a new factor, namely Tertiary Recovery 

Factor (TRF) was defined to normalize by pore volume of CO2 injected the oil recovery. 

Comparison of the results in terms of TRF enabled the evaluation of the performance of 

tertiary gas floods on the same basis.  

The main conclusions from this study were: 

1. The performance evaluation of the gas floods solely on the basis of oil recovery, could 

lead to misleading conclusions. Recoveries should be normalized by the amount of gas 

injected to enable direct comparisons.  

2. Miscible gas floods were found to recover over 60 to 70% more of the waterflood 

residual oil than immiscible gas floods. While the recoveries in immiscible floods 

(both CGI and WAG) were about 23%, the miscible floods yielded 84.5% recovery for 

the WAG flood and 93.7% recovery for the CGI flood. This is not a surprising result, 

since laboratory 1D corefloods where sweep efficiency effects were minimal; 

miscibility has significant impact on oil recovery. 

3. Based on oil recovery (as %ROIP), the CGI flood appeared to be better in 

performance than WAG flood. However, on the basis of the Tertiary Recovery Factor 

(TRF), where the recoveries were normalized by the volume of CO2 injected, the 

WAG flood clearly out-performed the CGI flood. Furthermore, the performance of the 

CGI miscible flood approaches that of the immiscible gas floods, in terms of TRF, 

indicating deteriorating economics of the CGI compared to that of miscible WAG 

flood. 

4. The definition of TRF enabled the identification of a process for optimizing tertiary 

recovery in gas floods. This consists of injecting a continuous gas slug of 0.7 PV 

(where the CGI flood showed maximum TRF value) followed by 1:1 WAG. This was 

found to be similar to the patented ‘Hybrid WAG’ and ‘DUWAG’ processes 

employed in the oil industry. 

5. Miscible CGI floods showed negligible sensitivity to brine composition variations. 

Recoveries of 96.7% and 97.6% where obtained with 5% NaCl brine and Yates 

reservoir brine, respectively. As against this, the miscible WAG recoveries exhibited 
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significant dependence on brine composition. The miscible WAG recoveries showed a 

significant decrease (12%) in oil recovery when the connate brine was changed from 

5% NaCl solution to Yates reservoir brine. While the recoveries for the miscible 5% 

NaCl brine were 84.5%, the recovery decreased to 72.5% for Yates reservoir brine. 

This is attributable to the higher solubility of CO2 in natural multi-component brines 

than solutions of pure salts like NaCl, which results in higher volumes of CO2 being 

available for oil recovery in 5% NaCl brine floods. 

6. Both CGI and WAG (with 5% NaCl brine) immiscible experiments showed 

comparable oil recoveries of 21.9% and 23.7% in 1-ft Berea corefloods, respectively. 

However, significant differences (~ 21%) in the final oil recoveries of CGI and WAG 

were seen in 6-ft Berea cores, although the test conditions were identical. The CGI 

recovery increased from 21.9% in 1-ft Core to 33.5% in the 6-ft corefloods, whereas 

the WAG recovery showed a higher increase in recoveries, from 23.7% in 1-ft core to 

54.4% in 6-ft core. Thus, it was seen that the gravity segregation phenomenon was 

amplified in long cores, thus making 6-ft corefloods more appropriate and useful to 

examine the WAG process performance. 

The detailed results of these experiments are available elsewhere (Kulkarni, 2003); 

and only the recommendations summarized below: 

1. 1-ft Berea core experiments should be used to identify important parameters affecting 

gas-oil displacements. The effect of these parameters should then be further examined 

using the 6-ft coreflood apparatus, as they are time consuming. 

2. Berea cores previously exposed to crude oils should not be reused in other 

displacement experiments due to interfering wettability effects. Use of fresh Berea 

cores for each fluid pair is recommended. 

3. Coreflood test conditions (namely pressure and temperature) should be chosen to 

avoid the two envelope of the injected gas in order to avoid liquefaction during the 

tests and to facilitate single-phase fluid transport through the apparatus. 

4. The effect of CO2 solubility in brine on gas-oil displacement should be minimized by 

using mutually saturated fluids. 

5. “Hybrid-WAG” type corefloods should be conducted on long cores to determine the 

optimum mode for gas floods and to compare their effectiveness against gravity-stable 

gas floods. 

6. Corefloods should be conducted with live reservoir fluids and formation rock samples 

an at reservoir conditions in order to enable collection of data for field-scale reservoir 

simulation studies and to facilitate field implementation of promising concepts and 

processes. 
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3.5 Experimental Results and Discussion 

As suggested earlier, the experimental investigations for the development and 

characterization of the GAGD process can be divided into two parts: (i) further 

investigations of the recommendations of the M.S. Thesis (Kulkarni, 2003) and (ii) 

‘scaled’ GAGD experimentation to elucidate the multiphase mechanisms and fluid 

dynamics of the newly proposed GAGD process. This division was necessary to provide 

with a common and effective performance evaluation of the GAGD process as well as to 

provide with a methodology to extend the laboratory observations to the field scale. This 

chapter limits the details to the results and inferences obtained from the experimental 

work.  

 

3.5.1 Conventional Gas Injection Processes 

This section reports the further investigation of the recommendations and hypotheses 

resulting from the previous tertiary coreflood work of the M.S. Thesis (Kulkarni, 2003). 

This work also extends the previous work on evaluation of the multiphase displacement 

characteristics of reservoir (Berea) rocks, and extends it to ‘Hybrid’ WAG type multi-

phase displacements in the laboratory using Berea sandstone cores. 

 

3.5.1.1 Research Focus 

The research objective of this extended work was to further investigate the 

recommendations of the previous horizontal gas injection coreflood (CGI and WAG) 

results. The major objectives of this experimental investigation are summarized below: 

1. Investigation of the delayed breakthrough observed in the previous coreflood studies 

by studying the system behavior with mutually saturated fluids. 

2. To conduct high-pressure corefloods (CGI / WAG / Hybrid-WAG modes of gas 

injection) in immiscible and / or miscible modes with Berea cores at selected 

operating conditions under both secondary and tertiary injection strategies. 

3. Further investigation of the predicted optimum ‘Hybrid WAG’ type injection by 

conducting ‘Hybrid WAG’ type corefloods using both CO2 saturated as well as 

unsaturated brine. 

 

3.5.1.2 Experimental Design 

This section details the experimental design used to achieve the extended research 

objectives.  

1. Literature review (Kulkarni, 2003) suggests that the water-shielding and solvent 

solubility effects are especially important during CO2-WAG injection processes in the 

tertiary mode, wherein significant quantities of free water exist in the reservoir. To 

facilitate the characterization and quantification of these critical reservoir mechanics 
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in tertiary CGI and WAG processes; miscible WAG corefloods using mutually 

saturated fluids were conducted.  

2. During tertiary mode CGI injection, significant delays in the oil breakthrough times 

(accompanied with only free water production) were observed (Kulkarni, 2003). It 

was hypothesized (Kulkarni, 2003) that in tertiary floods, the unsaturated nature of 

the brine results in dissolution of the injected CO2 gas in brine, and CO2 is 

unavailable for tertiary recovery till the core-fluids become saturated. To 

experimentally verify the validity of this assumption, tertiary mode immiscible CGI 

floods were conducted using mutually saturated (CO2-saturated) coreflood fluids.  

3. WAG literature review (Kulkarni, 2003) suggests that secondary mode gas injection 

is another popular methodology for commercial CGI and WAG applications. Since 

the immiscible horizontal CGI and WAG corefloods did not demonstrate significant 

variations in oil recovery characteristics, in the tertiary mode; only secondary mode 

miscible CGI and WAG corefloods were conducted using -Decane, Yates reservoir 

brine and pure CO2. These corefloods thus effectively encompass the entire spectrum 

of the various modes of commercial CGI and WAG applications. 

4. A new factor ‘tertiary recovery factor’ (TRF) was defined to facilitate the fair 

evaluation of the various CGI and WAG corefloods conducted (Kulkarni, 2003) to 

provide a base case for further evaluation of the GAGD process. TRF analysis of the 

miscible and immiscible CGI and WAG tertiary gas injection corefloods suggest that 

for optimum CO2 utilization during horizontal mode gas injection a ‘combination 

process’ comprising of both CGI and WAG modes of injection should be employed. 

Two conceptually similar processes, termed as the ‘Hybrid-WAG’ (Huang and Holm, 

1986) and ‘DUWAG’ (Tanner et al., 1992) were found to be previously patented and 

implemented in the industry by UNOCAL and Shell respectively. To experimentally 

verify this ‘optimum’ process, Hybrid-WAG type tertiary miscible corefloods were 

conducted using previously determined TRF maxima obtained from CGI and WAG 

flood analyses using n-Decane, Yates reservoir brine and pure CO2. 

 

3.5.1.3 Effect of CO2 Solubility on Oil Recovery Characteristics 

To achieve the research objectives 1 and 2, two horizontal mode tertiary coreflood 

experiments, namely immiscible CGI (termed experiment # 11) and miscible WAG 

experiments (termed experiment # 12) were conducted using CO2-saturated Yates 

reservoir brine. Since there is no water injection in CGI flood, the secondary waterflood 

was conducted using saturated brine, and the drainage (oil flood) and EOR (immiscible 

CGI) floods were conducted at conditions similar to experiment 7 of the M.S. Thesis 

(Kulkarni, 2003).  On the other hand, for the miscible WAG experiment, CO2-saturated 

brine was used in the tertiary (EOR) mode while conducting the drainage (oil flood) and 

imbibition (Yates reservoir brine flood) steps at conditions similar to experiment 10 of 
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the M.S. Thesis (Kulkarni, 2003). The CO2-saturated brine was hypothesized to saturate 

the core-brine and eliminate the CO2 solubility effects during tertiary mode gas injection. 

The results of these two experiments are detailed in the following sections. The detailed 

analysis of the experimental results requires precise CO2 solubility data with Yates 

reservoir brine, the simulation and analytical procedures employed for the CO2-brine 

solubility determination are also included in this section.  

 

Determination of Solubility of CO2 in Yates Reservoir Brine 

CMGL’s Winprop® was used to determine the solubility of pure CO2 gas in Yates 

reservoir brine. The solubility of CO2 in water was studied as a function of temperature, 

pressure and salinity. The solubility of CO2 in fresh water increases with increasing 

pressure, decreasing temperature (Crawford et al., 1963, Holm, 1963, Jarell, 2002) and 

the values of CO2 solubility in fresh water obtained from different experimental studies 

(Crawford et al., 1963, Holm, 1963, Jarell, 2002) can be adjusted based on the salinity of 

the brine (at given pressure and temperature) as a percent of solubility retained (Jarell, 

2002, Johnson et al., 1952, Martin, 1951, Chang et al., 1996). 

The plots obtained from these references were digitized and are plotted below. To 

facilitate simpler computing procedures, a 6-order polynomial curve was fitted to the 

experimental data curve used to predict the effect of brine salinity on CO2 solubility. The 

experimental data are included as Figure 3.26. 

To evaluate and calibrate the simulator with the experimental values, the CO2 

solubility’s were calculated at 70 oF, 100 oF, 130 oF and 190 oF using CMGL Winprop®; 

using two equations of state, namely, Peng Robinson (PR EOS) and Soave Redlich 

Kwong (SRK EOS) with two viscosity models for water, namely, Jossi-Thiel-Thodos (J-

S-T) Correlation and Pedersen Corresponding States Model. The predicted values of 

solubility at desired conditions (82 oF and at 500 or 2500 psi) are summarized in Tables 

3.13 and 3.14. 

 

 

 

 

 

 

 

 

 

 

 

 



 317 

 

 

 Solubility of CO2 in Pure Water

0

25

50

75

100

125

150

175

200

225

250

275

0 2000 4000 6000 8000 10000

Pressure (psi)

S
o
lu
b
il
it
y
 (
s
c
f/
b
b
l)

70 F

100 F

130 F

190 F

 Effect of Brine Salinity on CO2 Solubility 

y = -2E -29x6 + 1E -23x5 - 2E -18x4 + 2E -13x3 - 1E -10x2 - 0. 0007x + 100.94

R2 = 0.999

40

50

60

70

80

90

100

0 50000 100000 150000 200000

Salinity (NaCl concentration - ppm)

P
e
rc
e
n
t 
S
o
lu
b
il
it
y
 R
e
ta
in
e
d

 
 

Figure 3.26: Experimental Solubility Data from Literature (Crawford et al., 1963, Holm, 

1963, Jarell, 2002, Johnson et al., 1952, Martin, 1951, Chang et al., 1996). 

 
 
 
 
 

Table 3.13: Predicted CO2 solubility values in Yates Reservoir Brine at 500 psi and 82 oF 

Solubility (mol %) Data Source 

1.89 PR EOS: Adjusted for salinity from pure water simulated value 

1.93 SRK EOS: Adjusted for salinity from pure water simulated value 

2.27 PR EOS: Brine simulated value 

2.29 SRK EOS: Brine simulated value 

1.89 Average of 70 oF and 100 oF data (85 oF) 
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Table 3.14: Predicted CO2 solubility values in Yates Reservoir Brine at 2500 psi and 82 
oF 

Solubility (mol %) Data Source 

3.12 PR EOS: Adjusted for salinity from pure water simulated value 

3.32 SRK EOS: Adjusted for salinity from pure water simulated value 

3.64 PR EOS: Brine simulated value 

3.64 SRK EOS: Brine simulated value 

2.84 Avg. of 70 oF and 100 oF data (85 oF) 

 

Results for 500 psi 

The predicted values from simulation for both the EOS show higher solubility values as 

compared to those predicted by the experimentally averaged 85 oF data, as well as that 

predicted by the adjusted pure water solubility value. The experimental averaged value at 

85 oF is 1.89 mol %, which is close to the prediction of PR EOS (adjusted value). As 

solubility increases with decreasing temperature, the solubility should be slightly higher 

than 1.89 mol %. Hence the value of 1.92 mol % predicted by the SRK EOS seems more 

realistic. 

Results for 2500 psi 

Solubility increases with decreasing temperature. Hence, the lower predicted solubility 

value by the 85 oF data seems appropriate. Comparison of the simulation data with 

experimental averaged data (at 85 oF) shows that the solubility of 3.64 mol %, as 

predicted by the PR and SRK simulations, is achievable at pressure > 8500 psi. Hence the 

simulated value of 3.64 mol % seems unrealistic in this case. The averaged data shows 

that solubility of approx. 3 mol % is obtained at 4000 psi and 85 oF range. Therefore, the 

PR EOS simulated value of 3.12 mol % solubility predicted from adjusting for salinity 

from pure water data is a good approximation of solubility of CO2 in Yates reservoir 

brine. 

Immiscible CGI Flood with CO2 Saturated Brine in Secondary Mode 

The flooding sequence for this coreflood consisted of an oil flood (primary drainage), a 

secondary waterflood (secondary imbibition with CO2-saturated Yates reservoir brine), 

and a tertiary immiscible CGI injection. Rappaport and Leas (1953) stability criterion 

was satisfied in all the floods to avoid flow rate effects. The step-wise results of the 
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immiscible CGI coreflood experiment using CO2 saturated Yates reservoir brine in 

secondary step is shown in Figure 3.27. 

The experimental observations during this flood for the oil injection step (drainage) 

were similar to those previously observed in other horizontal corefloods. On the other 

hand, the results of the secondary waterflood with saturated Yates reservoir brine were 

markedly different, and showed significant pressure fluctuations till water breakthrough.  

However these pressure fluctuations were stabilized immediately after a sharp water 

breakthrough. Even after water breakthrough, a significant delay (until 1.59 PVI) in gas 

(dissolved in brine) breakthrough times was observed along with continually increasing 

flood pressure-drops.  

These pressure drop fluctuations during secondary CO2-saturated brine injection are 

hypothesized to be attributable to the miscible displacement (consequently replacement) 

of the connate (unsaturated) core brine by the saturated injection brine. This replacement 

of the unsaturated core brine with saturated brine, helps significantly decrease the oil and 

gas breakthrough times for the tertiary CO2 CGI flood and markedly improve the flood’s 

gas utilization (TRF) factors (Figure 3.27(a) & 3.28(b)). 

Miscible WAG Flood with CO2 Saturated Brine in Tertiary Mode 

The flooding sequence for this coreflood consisted of an oil flood (primary drainage), a 

secondary waterflood (secondary imbibition), and a tertiary miscible WAG (CO2 gas 

alternating with CO2-saturated Yates reservoir brine) injection. The step-wise results of 

the immiscible CGI coreflood experiment using CO2 saturated Yates reservoir brine in 

secondary step is shown in Figure 3.29. For this miscible CO2 WAG flood, the drainage 

and imbibition steps were similar to the previously conducted WAG corefloods, however 

significant improvement in the oil production rate was observed when the saturated brine 

was alternated with CO2 instead of the non-saturated brine. Another characteristic flood 

feature observed during the employment of CO2 saturated brine for the WAG flood, was 

the increased flood pressure drops. The increased pressure drops, and hence decreased 

gas injectivities compared to the previous normal brine WAG floods, could be 

attributable to the increased 3-phase relative permeability effects (Figure 3.30(b)). 
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(a) Drainage Cycle: Oil Flood with n-Decane 
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(b) Imbibition Cycle: Waterflood with CO2-Saturated Yates synthetic Brine 
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(c) Tertiary CO2 Flood: Pure CO2 continuous miscible injection 

Figure 3.27: Data for Immiscible CGI flood: 1-ft Berea core + n-Decane + CO2-

Saturated Yates Reservoir Brine with Tertiary Continuous CO2 Immiscible Injection. 
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(a) Oil Recovery and TRF for CGI Flood with Unsaturated Brine Secondary Waterflood 
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(b) Oil Recovery and TRF for CGI Flood with Saturated Brine Secondary Waterflood 

 

Figure 3.28: Effect of Saturation of Brine with CO2 on Immiscible CGI Recovery 
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The major observations obtained from the comparison of the normal (unsaturated) 

and saturated brine WAG floods (Figure 3.30) are: 

1. Liquid and water productions for both the corefloods are identical. 

2. The miscible WAG coreflood using CO2-saturated brine recovered significantly 

higher oil (89.2% ROIP) compared to miscible WAG flood with normal brine (72.5% 

ROIP). This could be attributable to the decreased solubilization tendency of CO2 in 

brine (due to previous saturation) and consequently resulting in higher gas volumes 

being available for oil recovery. 

3. The improved oil recovery can also be partially attributed to the decreased viscosity 

contrasts (Figure 3.30(c)) between the injected and produced core fluids, thus leading 

to improved volumetric sweeps. 

4. The TRF maxima (Figure 3.30(d)) were achieved at almost identical pore volume 

injections (0.84 for normal brine WAG (labeled experiment 10) and 0.82 for CO2 

saturated brine WAG (labeled experiment 12)). 

5. The use of CO2 saturated brine shows markedly decreased breakthrough times as well 

as increased gas productions (Figure 3.30(a) and 3.31(d)). 

The analyses of these experimental results need all the data from previously 

completed horizontal mode CGI and WAG corefloods. The ten coreflood experiments 

completed prior to this analysis are available elsewhere (Kulkarni, 2003) and only 

relevant data is included here for sake of completeness. 

The peak TRF values calculated for each of the twelve corefloods conducted are 

summarized in Figure 3.32. It is interesting to note that the peak TRF values, as observed 

from Figure 3.32, for the 5% NaCl brine miscible floods (both CGI and WAG) are higher 

than the Yates brine miscible floods. However, this effect has been reversed for the 

immiscible floods. This indicates that although the Yates brine has a higher CO2 

solubility than 5% NaCl brine at 500 psi; this effect is offset at 2500 psi (miscible) 

flooding conditions.  

The highest TRF factor value for CGI floods was obtained by the use of saturated 

brine in secondary mode as expected. This data further fortifies the earlier assumption of 

relatively higher CO2 solubility rate in brine at lower pressures and that this effect is 

mitigated at miscible flooding conditions (experiment 12). Consequently incremental 

benefits of the brine-CO2 solubility reduction (by prior saturation) are more than offset by 

miscibility development. 

The recoveries, residual oil saturations and gas utilization factors for the corefloods 

conducted are summarized in the Tables 3.15, 3.16 and 3.18 (Part (C)). The utilization 

factor, defined earlier, is a good indicator of the overall efficiency of the process, and is a 

useful augmentation, along with the TRF, for the analysis of the data. The utilization 

factor is a measure of the CO2 design requirements for the field gas injection projects. 
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(a) Drainage Cycle: Oil Flood with n-Decane 
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(b) Imbibition Cycle: Waterflood with Yates synthetic Brine 
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(c) Tertiary Mis. CO2 WAG Flood: Pure CO2 alternating with CO2-Saturated Yates Brine 

Figure 3.29: Data for Tertiary Miscible CO2 WAG Flood: 1-ft Berea core + n-Decane + 

CO2-Saturated Yates Reservoir Brine with Tertiary WAG Miscible Injection. 
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(c) Winprop® Viscosity for Expt. Fluids (d) TRF Comparisons for WAG Floods 

Figure 3.30: Effect of Saturation of Yates Reservoir Brine with CO2 on Miscible WAG 

Recovery using n-Decane and CO2 

 

Explanation of the Observed Delayed Breakthroughs in Tertiary Immiscible 

Corefloods based on CO2-Brine Solubility Concepts 

One of the common features of the immiscible CGI Experiments 1 and 7 (Kulkarni, 

2003) are the significant delays in oil production inspite of continuous gas injection. This 

delay was further investigated by plotting volumetric injection / production plots versus 

pore volume injection. Mass balance calculations showed that the water production till oil 

breakthrough matched the volume of cumulative CO2 injection. The difference between 

injection and production observed in Figure 3.31 is attributable to the significant density 

differences between the injected CO2 (4.86 lbm/ft3) and reservoir brine (62.38 lbm/ft3). 
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Table 3.15: Coreflood Results for 5% NaCl Brine + n-Decane + Berea Core System (for 

detailed experimental results see Kulkarni, 2003 and Kulkarni and Rao, 2005) 

 

 

Longer delays in oil production are observed for the Yates brine immiscible CGI 

flood (Figure 3.31(a)) compared to that of the 5% NaCl brine (Figure 3.31(b)). This is 

mainly due to the significantly higher solubility of CO2 gas in multi-component brines 

than monovalent brines. Also the water-shielding and solubility requirements are higher 

in experiment # 7 than experiment # 1 due to higher water saturation (+10%) in the core 

(Figure 3.31). These results may have serious implications in the field projects, in that 

higher costs may be incurred due to delayed oil productions and increased CO2 

requirements in immiscible mode. 

This phenomenon of delayed oil breakthrough is not observed for miscible floods 

since CO2 has significantly higher density (51.15 lbm/ft3) at 2500 psi injection pressures 

resulting in lower density contrasts between field brine and injected gas. Furthermore the 

differences between CGI and WAG oil breakthroughs are significantly reduced for the 

miscible floods compared to the immiscible floods where this difference could be as high 

as 1.8 PVI. 

System: 5 % NaCl Brine + n-Decane + Berea 

Core 

PTEST 

(psi) 

Abs. Perm 

(D) 
SWC SOI 

End Point 

Rel-

Perms 

(A) Drainage (n-Decane) Step 

Experiment # 1 500 0.2526 12.5 87.5 % 34.5 % 

Experiment # 2 500 0.3435 21.3 78.7 % 39.9 % 

Experiment # 3 2500 0.2895 13.3 86.7 % 42.0 % 

Experiment # 4 2500 0.1825 15.1 84.9 % 47.0 % 

(B) Imbibition (5% NaCl brine) Step 

Experiment Title 
PTEST 

(psi) 
SOR SW 

Recovery 

%OOIP 

End Point 

Rel-Perms 

Experiment # 1 500 35.0 65.0 60.0 % 08.01 % 

Experiment # 2 500 27.7 72.3 64.8 % 08.09 % 

Experiment # 3 2500 32.8 67.2 62.2% 08.05 % 

Experiment # 4 2500 35.4 64.7 58.1% 08.72 % 

(C) Tertiary Gas (EOR) Step 

Experiment Title 
PTEST 

(psi) 
SL SG 

Rvry 

(cc) 

Recovery 

%OOIP 

Utilz. Ftr. 

(MCF/bbl) 

Experiment # 1 (CGI – Immiscible) 500 47.9 52.1 10.5 8.8% 7.5 

Experiment # 2 (WAG – Immiscible) 500 -- -- 9 8.3% 4.5 

Experiment # 3 (CGI – Miscible) 2500 26.4 73.6 43.5 36.6% 20.2 

Experiment # 4 (WAG – Miscible) 2500 -- -- 41 35.0% 9.0 
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Table 3.16: Coreflood Results for Yates Reservoir Brine + n-Decane + Berea Core 

System (for detailed experimental results see Kulkarni, 2003 and Kulkarni and Rao, 

2005) 

 

Hence for miscible floods the added benefit of hastened oil breakthroughs by WAG 

employment is not available, and the CO2-brine dissolution effect, favoring WAG 

application in immiscible mode, is not as pronounced for miscible floods. 

 

3.5.1.4 Secondary Miscible CGI and WAG Corefloods  

As noted earlier, commercial gas injection literature review indicates that secondary gas 

injection was another common application methodology. To achieve the research 

objective 3 (see Section 5.1.2), two horizontal mode miscible corefloods, namely 

secondary CGI and secondary WAG were conducted on 1-ft Berea sandstone core using 

n-Decane, Yates reservoir brine and pure CO2. 

 

Secondary Miscible CGI Flood 

The results of the secondary mode miscible CGI flood (using n-Decane, Yates reservoir 

brine and CO2) completed are summarized in Figure 3.33. As expected, the miscible CGI 

System: Yates Reservoir Brine + n-Decane + 

Berea Core 

PTEST 

(psi) 

Abs. Perm 

(D) 
SWC SOI 

End Point 

Rel-Perms 

(A) Drainage (n-Decane) Step 

Experiment # 7 500 0.1311 21.3 78.7 65.5 % 

Experiment # 8 500 0.1869 19.1 80.9 58.3 % 

Experiment # 9 2500 0.1443 18.4 81.6 59.1 % 

Experiment # 10 2500 0.1906 16.9 83.1 66.8 % 

(B) Imbibition (Yates reservoir brine) Step 

Experiment Title 
PTEST 

(psi) 
SOR SW 

Recovery 

%OOIP 

End Point 

Rel-Perms 

Experiment # 7 500 25.5 74.5 67.6 % 11.80 % 

Experiment # 8 500 27.7 72.3 65.8 % 07.51 % 

Experiment # 9 2500 29.9 70.1 63.4% 11.56 % 

Experiment # 10 2500 27.0 73.0 64.9% 09.39 % 

(C) Tertiary Gas (EOR) Step 

Experiment Title 
PTEST 

(psi) 
SL SG 

Rvry 

(cc) 

Recovery 

%OOIP 

Utilz. Ftr. 

(MCF/bbl) 

Experiment # 7 (CGI – Immiscible) 500 27.8 72.2 22 20.4% 4.7 

Experiment # 8 (WAG – Immiscible) 500 -- -- 11 9.9% 3.1 

Experiment # 9 (CGI – Miscible) 2500 19.8 80.2 40 35.7% 19.4 

Experiment # 10 (WAG – Miscible) 2500 -- -- 29 25.4% 12.9 
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recoveries were excellent (94.4%) and the TRF plot shifted to the left indicating higher 

and faster oil recoveries per unit volume of injectant, compared to those of tertiary floods.  

Furthermore, no delays in oil breakthrough were observed, and no free water was 

produced during the entire flood, indicating the connate water to be essentially immobile 

and the water shielding effect to be minimal. 

 

Secondary Miscible WAG Flood 

To isolate and quantify the effects of water-shielding and three-phase relative 

permeability on oil recovery, a miscible secondary WAG coreflood was required. 

Therefore a miscible WAG flood was conducted using n-Decane, Yates reservoir brine 

and CO2; whose results are included as Figure 3.33. Note that each division on the X-axis 

in Figure 3.33(b) depicts one fluid slug, with the first slug being gas (CO2). 

 

Table 3.17: Coreflood Results for Yates Reservoir Brine + n-Decane + Berea Core 

System using CO2 Saturated Yates reservoir brine for specified steps  

 

System: Yates Reservoir Brine + n-Decane + 

Berea Core 

PTEST 

(psi) 

Abs. 

Perm 

(D) 

SWC SOI 
End Point 

Rel-Perms 

(A) Drainage (n-Decane) Step 

Experiment # 11 500 0.4503 40.1 59.9 69.07% 

Experiment # 12 2500 0.1361 27.2 72.8 58.25% 

(B) Imbibition (Yates reservoir brine) Step 

Experiment Title 
PTEST 

(psi) 
SOR SW 

Recovery 

%OOIP 

End Point 

Rel-Perms 

Experiment # 11 (Yates reservoir brine saturated 

with CO2 Gas Flood) 
500 14.9% 85.1% 65.79% 9.64% 

Experiment # 12 (Unsaturated Yates reservoir brine 

Flood) 
2500 20.9% 79.2% 56.46% 10.26% 

(C) Tertiary Gas (EOR) Step 

Experiment Title 
PTEST 

(psi) 
SL SG 

Recovery 

(%OOIP) 

Utilz. Ftr. 

(MCF/bbl) 

Experiment # 11 (CGI – Immiscible) 500 40.7% 59.3% 

5 cc 

(4.80% 

OOIP) 

2.5 

Experiment # 12 (WAG – Miscible – Yates 

reservoir brine saturated with CO2 Gas alternating 

with CO2 Flood) 

2500 -- -- 

33 cc 

(27.7% 

OOIP) 

11.2 
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Experiment 1: Imsc CGI Flood (5% NaCl Brine)
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(a) Oil-Water-Gas-Injection Volumetric Plot: 5% NaCl Brine Immiscible CGI Flood 

Experiment 7: Imsc CGI Flood (Yates Brine)
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(b) Oil-Water-Gas-Injection Volumetric Plot: Yates Brine Immiscible CGI Flood 

Figure 3.31: Investigation of the Delayed Oil Production for Immiscible CGI Floods 

using both 5% NaCl Brine and Yates Reservoir Brine 



 329 

0.112
0.218

2.25

0.0

0.4

0.8

1.2

1.6

2.0

2.4

CGI-NaCl (#  1) CGI-Y (#  7) CGI-Sat-Y (#  11)

Experiment

P
e
a
k
 T
R
F
 V
a
lu
e

Immsc. CGI Floods @ 500 psi

1.054

0.844

0.0

0.4

0.8

1.2

1.6

2.0

2.4

CGI-NaCl (# 3) CGI-Y (#  9)

Experiment

P
e
a
k
 T
R
F
 V
a
lu
e

Misc. CGI Floods @ 2500 psi

 

(a) Peak TRF Value Comparisons for Immiscible and Miscible CGI Floods 
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(b) Peak TRF Value Comparisons for Immiscible and Miscible WAG Floods 

Figure 3.32: Comparison of Peak TRF Values for CGI and WAG Experiments For 5% 

NaCl Brine and Yates Reservoir Brine 

 

3.5.1.5 Miscible Hybrid-WAG Coreflood 

To achieve the research objective 4, miscible Hybrid-WAG type coreflood was 

conducted using n-Decane, Yates reservoir brine and pure CO2 to asses the validity of the 

conclusions of the previous work that optimum performance may be obtained by the 

employment of the combination of CGI and WAG floods. The comparison of the results 

of the miscible CGI, WAG and Hybrid-WAG floods conducted in the laboratory are 

included as Figure 3.34.   

Figure 3.34(a) depicts the conventional oil recovery (as % ROIP) plot for miscible 

CGI, WAG and Hybrid-WAG floods; while Figure 3.34(b) summarizes the TRF behavior 

for these corefloods. 
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(a) Recovery and TRF Plot 
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(b) Pressure Drop Behavior 

 

Figure 3.33: Recovery, TRF and Pressure Drop Behavior in Secondary Miscible CO2 

CGI Flood in n-Decane, Yates Reservoir Brine, 1-ft Berea System at 2500 psi and 72 oF 
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(a) Oil, Total Liquid Recovery and TRF Plot 
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(b) Pressure Drop Behavior 

Figure 3.34: Recovery, TRF and Pressure Drop Behavior in Secondary Miscible CO2 

WAG Flood in n-Decane, Yates Reservoir Brine, 1-ft Berea System at 2500 psi and 72 oF 
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(a): Recovery as Percent Residual Oil in Place 
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(b): Recovery as Fraction of Residual Oil in Place per PV of CO2 Injected 

Figure 3.35: Comparison of Miscible Hybrid-WAG, WAG and CGI Floods on 1-ft Berea 

in n-Decane, Yates Reservoir Brine, 1-ft Berea System at 2500 psi and 72 oF 
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The miscible ‘Hybrid-WAG’ experiment was conducted using Yates reservoir brine, 

n-Decane and pure CO2. Figure 3.35(a) shows the conventional oil recovery (as % ROIP) 

plot for miscible CGI, WAG and Hybrid-WAG floods. As expected, the Hybrid-WAG 

type injection clearly out performs both the CGI as well as WAG floods from an oil 

recovery point of view. This data strengthens the initial speculation that optimum mode 

of injection is a ‘combination’ of CGI and WAG floods. 

 

Important Operational Differences between the Optimum Processes Identified by 

this Work and ‘Hybrid-WAG’ / DUWAG 

In this experimental work, all CGI experiments showed a TRF peak after about 0.6 – 0.8 

PV injection, and that the TRF values of CGI floods till this peak are higher than the 

respective WAG floods (Kulkarni and Rao, 2005). However, after this peak, the CGI 

flood performance exponentially deteriorates. On the other hand, the WAG employment 

prevents this exponential TRF decline (after reaching a peak TRF value) (see Figures 

3(b), 4(b) and 6(b) of Kulkarni and Rao, 2005) indicating improved gas utilization factors 

in both miscible and immiscible modes. Therefore to optimize gas utilization (and 

therefore flood economics), it is recommended that gas be injected in CGI mode till 0.7 

PV injection (or at the TRF peak), followed by 1:1 WAG injection.  

Conceptually the ‘optimum’ process (the combination of CGI and WAG) 

recommended by this work, is similar to the patented Hybrid-WAG and DUWAG 

processes implemented in the field previously. However, there are significant differences 

between these patented processes and the optimum process suggested by this 

experimental work, which is identified below.  

The Hybrid-WAG and DUWAG were mainly the result of field dependant parameters 

such as market conditions (Bellavance, 1996) (namely, reduce the early peak CO2 

demands, maximize utilization of recycled CO2, minimize manpower requirements and 

provide flexibility to accelerate or decelerate project development), and flooding 

conditions (Bellavance, 1996; Tanner et al., 1992) (namely WAG implementation only 

under the circumstances of premature gas breakthroughs or “Gassing Out” of wells). 

Another striking feature of the ‘optimum’ process described in this paper, is that the 

reservoir heterogeneity factor has been effectively eliminated in these experiments by 

conducting all the CGI, WAG and Hybrid-WAG corefloods on one Berea core. This is 

not the case in the patented processes. For example, in the Wasson Denver Unit (Tanner 

et al., 1992) east-west anisotropy in the continuous CO2 pilot area resulted in “non-radial 

flood fronts”. Although the initial response of the continuous CO2 pilot was encouraging; 

the “gassing-out” of production wells suggested subsequent WAG employment to control 

premature gas breakthroughs. 

The main difference between the patented processes and this ‘optimum’ process is the 

slug-size. Hybrid-WAG process calls (Bellavance, 1996) for a 9% pore volume CGI 
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followed by 21% 1:1 WAG flood; whereas the DUWAG process (Tanner et al., 1992) 

requires 4 – 6 years of CGI flood (at the pilot rates of 2 – 7 MMCF/D) followed by 1:1 

WAG till a 40% HCPV injection is achieved (although simulation studies (Tanner et al., 

1992) suggest a higher HCPV injection (~ 60% PV) for higher recoveries).  

The ‘optimum’ process suggested by this experimental work is: approx 60 – 80% 

pore volume CGI injection followed by 1:1 WAG, which conceptually agrees with the 

speculation of Tanner et al. (1992) that “…predict that a larger slug size (60% HCPV) 

could result in additional EOR recovery…without increasing peak gas production rates”. 

 

3.5.1.6 Comparison between Secondary and Tertiary CGI / WAG Corefloods 

There are two important performance comparison parameters from the horizontal 

CGI/WAG floods completed that are critical to commercial gas injection projects and 

need to be analyzed: (i) Secondary floods – Injection Mode (CGI and WAG) and (ii) 

Effect of intermediate waterflood in gas flood oil recovery – Injection Type (Secondary 

and Tertiary). The collective comparisons are discussed below. 

Both of the miscible secondary floods (2500-psi backpressure) completed, show high 

oil recoveries (> 95% OOIP) in both CGI and WAG modes of injection. The oil recovery 

trends (both volumes of oil produced as well as %OOIP recovery) are almost identical in 

both injection modes (Figure 3.36 (a) and (b) respectively).  

The secondary gas flood oil recoveries (> 95% OOIP) are significantly higher than 

the waterflood recoveries (~ 60% OOIP) obtained at similar flooding conditions 

(Kulkarni, 2003), and are mainly attributable to the lower IFT values (miscibility 

development - consequently high capillary numbers) obtained in gas injection floods.  
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(a) Oil Recovery in cc    (b) Oil Recovery as %OOIP 

Figure 3.36: Oil Recovery Patterns in Secondary Miscible CGI and WAG Floods In n-

Decane, Yates Reservoir Brine, 1-ft Berea System at 2500 psi and 72 oF 
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Furthermore, as expected, the TRF values for the secondary WAG floods are higher 

than those of the secondary CGI (Figure 3.36(a)). It is important to note that no free water 

production (Figure 3.36(b)) was observed during the secondary miscible CGI, affirming 

the assumption that the connate water saturation at the start of the experiment is 

essentially immobile, although saturation re-distributions are a possibility – as observed 

from the unstable pressure drops throughout the experimental run (Figure 3.33(b)).  

Figure 3.37 summarizes the oil recovery characteristics obtained in miscible 

secondary and tertiary CGI and WAG floods. It should be noted that the oil recovery is 

expressed as percent initial oil in place (%IOIP) in both secondary and tertiary floods. 

The initial oil corresponds to the oil saturation existing at the start of each gas flood. It is 

seen that the secondary floods and the tertiary CGI flood oil recoveries are high (> 95%). 

The tertiary CGI flood was extremely successful in recovering residual oil even after a 

secondary waterflood and in the presence of high free-water saturations. However, the 

tertiary WAG flood recoveries are only marginal, demonstrating that the free-water 

injection (to improve conformance) results in increased water shielding effects – 

consequently deteriorating WAG performance with time. The important feature of this 

plot is the immediate oil production in secondary mode, in contrast to the delayed oil 

production (after ~ 0.5 PV injection) observed in tertiary floods. 
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(a) TRF Plot      (b) Gas / Water Production Plot 

Figure 3.37: TRF and Gas / Water Production Plots for Secondary CGI / WAG Floods In 

n-Decane, Yates Reservoir Brine, 1-ft Berea System at 2500 psi and 72 oF 

 
Figure 3.38 summarizes the TRF characteristics of the miscible secondary and tertiary 

CGI and WAG floods. The TRF plot clearly demonstrates the improved economics by 

virtue of secondary injection by hastened oil production and vastly improved CO2 

utilization factors. The striking feature(s) of Figure 3.38 are the first TRF peak obtained 
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by WAG employment, shift of the CGI TRF line to the left (in secondary mode compared 

to tertiary) and the near perfect duplication of oil recovery mechanisms (as seen from the 

near similar re-traces of the TRF plots) in both secondary and tertiary mode CGI and 

WAG miscible floods. Another interesting feature of Figure 3.38 is that the TRF trends of 

both secondary and tertiary floods are similar after ~ 0.8 (or 0.9) PV injections. The gas 

and water handling requirements in CGI and WAG secondary floods show that the CGI 

flood have higher cumulative gas recycling and handling requirements. 
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Figure 3.38: Oil Recovery Characteristics in Secondary and Tertiary Miscible Floods In 

n-Decane, Yates Reservoir Brine, 1-ft Berea System at 2500 psi and 72 oF 

 

On the other hand, in the WAG flood, water breakthroughs are observed at about ~ 

0.84 PVI, and the gas productions are comparable to the CGI up to that extent. After 

about 0.8 PVI injection, the gas production in CGI increased rapidly, whereas the WAG 

employment controls gas breakthrough (Figure 3.40(b)). 

Figure 3.39 summarizes the pressure drop behavior of the miscible secondary and 

tertiary CGI and WAG floods. The highest pressure-drops are observed under tertiary 

mode WAG injection, followed by secondary mode WAG injection, while the miscible 

CGI floods demonstrate comparable pressure-drop characteristics. Figure 3.39 

underscores the importance of injectivity problems, common to most WAG commercial 

field applications, and suggests that injectivity problems in WAG are probable even 

under secondary mode injections. The injectivity problems can lead to pressure surges, 

and could also be partially responsible for the loss of miscibility at the flood displacement 

front, which can be exaggerated by reservoir heterogeneity. This plot also suggests that 
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minimal operational problems, especially related to injectivity are probable in CGI mode 

injections (in both secondary as well as tertiary modes). 
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Figure 3.39: TRF Characteristics in Secondary and Tertiary Miscible Floods in n-

Decane, Yates Reservoir Brine, 1-ft Berea System at 2500 psi and 72 oF 

Figure 3.40 summarizes water and gas production characteristics in secondary as well 

as tertiary miscible floods. Figure 3.40(a) shows that tertiary floods start producing water 

right from the beginning of the flood whereas the water production and handling 

problems are almost non-existent in secondary floods until later life of the secondary CGI 

and WAG floods and that the secondary CGI flood does not produce any free-water. 

 

Summary 

The miscible secondary floods (conducted at 2500 psi backpressure) demonstrate high oil 

recoveries (> 95%) in both CGI and WAG mode of injection. The oil recovery trends 

(both volumes of oil produced as well as %OOIP recovery) are almost identical in both 

injection modes. The secondary gas flood recoveries (> 95% OOIP) are significantly 

higher than the waterflood recoveries (~ 60% OOIP) obtained at similar flooding 

conditions, mainly attributable to the lower interfacial tension (IFT) values (miscibility 

development - consequently high capillary numbers) obtained during gas injection.  

As expected, the TRF values for the WAG floods are higher than those of the CGI. 

The TRF values for CGI and WAG peak at nearly the same PV injections (0.46 and 0.49 

PVI respectively), but are markedly lower than the TRF peaks in tertiary floods (0.7 – 0.8 

PVI), thus demonstrating the beneficial effects of early gas injection (in secondary mode) 
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by hastened oil recovery and improved CO2 utilization factors. The water shielding 

effect, responsible for delayed oil production in tertiary floods, was almost non-existent 

in the secondary floods – even in WAG mode of injection. 
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Figure 3.40: Pressure Drop Characteristics in Secondary and Tertiary Miscible Floods In 

n-Decane, Yates Reservoir Brine, 1-ft Berea System at 2500 psi and 72 oF 
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            (a) Water Production    (b) Gas Production 

Figure 3.41: Water and Gas Production Plots for Secondary and Tertiary Miscible 

Floods In n-Decane, Yates Reservoir Brine, 1-ft Berea System at 2500 psi and 72 oF 
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The TRF trends (Figure 3.38) and the gas and water production trends indicate that it 

could be economical to inject in CGI mode up to about 0.7 to 0.9 pore volumes, and then 

switch over to 1:1 WAG for controlling gas and water productions, to improve efficiency. 

Hence, the ‘happy-medium’ of Hybrid-WAG, which was demonstrated to be relevant to 

tertiary gas floods in previous reports, could also be applicable to the secondary floods, 

and may be employed for optimum economics. 

 

3.5.1.7 Preliminary Conclusions from Horizontal Corefloods 

1. Based on oil recovery, the CGI flood appeared to be better in performance than WAG 

flood. However, on the basis of the overall Tertiary Recovery Factor (TRF), where 

the recoveries were normalized by the volume of CO2 injected, the WAG floods 

clearly out-performed the CGI floods. Furthermore, the TRF performance of the CGI 

miscible flood approaches the relatively low recoveries obtained in the immiscible 

gas floods, indicating deteriorating returns from the CGI with time. 

2. Miscible gas floods were found to recover over 60 to 70% more of the waterflood 

residual oil than immiscible gas floods. While the recoveries in immiscible 5% NaCl 

brine floods (both CGI and WAG) were about 23%, the miscible floods yielded 

84.5% recovery for the 5% NaCl brine WAG flood (for 1.02 PV of CO2 injected) and 

96.7% recovery for the 5% NaCl brine CGI flood (for 2.44 PV of CO2 injected). 

However, about 94% of the oil is produced in ~ 1.02 PV of CO2 injected compared to 

84.5% for WAG. 

3. Miscible CGI floods showed negligible sensitivity to brine composition variations. 

Recoveries of 96.7% and 97.6% where obtained with 5% NaCl brine and Yates 

reservoir brine, respectively. In contrast, the miscible WAG recoveries exhibited 

significant dependence on brine composition. The miscible WAG recoveries showed 

a significant decrease (12%) in oil recovery when the connate brine was changed 

from 5% NaCl solution to Yates reservoir brine. While the recovery for the miscible 

5% NaCl brine was 84.5%, it decreased to 72.5% for Yates reservoir brine. This is 

attributable to the higher solubility of CO2 in natural multi-component brines than 

solutions of pure salts like NaCl, which results in higher volumes of CO2 being 

available for oil recovery in 5% NaCl brine floods. 

4. Solubility of CO2 in reservoir brine (at lower pressures) may have serious 

implications in the reservoir projects, in that the costs may increase due to delayed oil 

productions and increased CO2 requirements for injection in immiscible mode. 

5. Unlike immiscible floods, where WAG employment hastens oil breakthroughs, the 

miscible WAG and CGI floods’ oil breakthroughs occur at near identical pore volume 

injections. The delayed oil breakthroughs in immiscible floods are attributable to CO2 

solubility effects in core-brine. However, miscibility development offsets these brine 
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solubility effects and the need for pre-saturation of injection brine with CO2 appears 

to be effectively eliminated. 

6. Secondary gas floods demonstrate faster as well as higher oil recoveries and gas 

utilization factors indicating the beneficial effects of gas injection earlier in the life of 

the flood. 

7. Experimental results show that for optimization of tertiary recovery in gas floods, a 

continuous gas slug of 0.7 PV (where the CGI flood showed maximum TRF value) 

followed by 1:1 WAG needs to be injected. This optimized method indicated by our 

results was found to be similar to the patented ‘Hybrid WAG’ and ‘DUWAG’ 

processes employed in the oil industry. 

8. The ‘Happy-Medium’ between single slug and WAG processes has been conceptually 

identified and experimentally demonstrated. 

9. In addition to sweep improvement, if the purpose of the employment of the WAG 

process to decrease the quantities of CO2 injected, then the environmental benefit of 

CO2 sequestration would be minimal. 

10. Watered out reservoirs containing high water saturations serve as good candidates for 

CO2 sequestration through CO2 dissolution in brine. 

 

3.5.2 Gravity Stable Displacement History (GSDH) GAGD Floods (On 1-ft Berea, n-

Decane, Yates Reservoir Brine and CO2) 

The GAGD experimental design suggested two possible GAGD experimental protocols: 

all the coreflood steps such as oil flood, water flood (if applicable) and gas flood, be 

conducted either in a gravity stable manner (GSDH) or only the gas flood be gravity 

stable (NSDH). This section details the results of the scaled GSDH GAGD experiments 

completed; while the scaled NSDH GAGD experiments are discussed in Section 5.3 later. 

Five GSDH GAGD experiments, three immiscible and two miscible, were completed 

using n-Decane (oleic phase), Yates reservoir brine (water) and CO2 on 1-ft Berea 

sandstone core. As dictated by the experimental design, all the experimental steps 

conducted during these experiments were in a gravity stable mode, i.e. the oil flood, 

water flood (secondary, if applicable) as well as the tertiary gas injection flood. The oil 

flood was completed by injecting n-Decane into a previously brine saturated core from 

the top, and the displacement was from top to bottom. The water flood was completed by 

injecting Yates reservoir brine from the bottom, and finally gas was injected (at 10 cc/hr) 

from the top. Inspite that these experiments are not realistic from a field perspective, they 

provided with an approximation of the upper limit for GAGD recovery characteristics. 

 

3.5.2.1 Immiscible GSDH GAGD Floods 

The three scaled immiscible GSDH GAGD experiments were conducted to evaluate: (i) 

the effect(s) of injection mode on GAGD recovery characteristics in an immiscible mode 
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and (ii) the effect(s) of injection rate on GAGD recovery characteristics in an immiscible 

mode. Figures 3.42 – 44 summarize the data obtained from these GSDH GAGD floods.  

Part (a) of the figures provides the data for water recovery and pressure drop during 

the drainage cycle when n-Decane was injected into the brine saturated core. Part (b) 

provides the data for oil recovery and pressure drop when Yates reservoir brine was 

injected into the core at connate water saturations. Part (c) provides the data for water, 

and oil recoveries as well as pressure drop during the gravity stable GAGD tertiary 

recovery process, where in pure CO2 was injected into the core at residual oil saturation. 

 

3.5.2.2 Miscible GSDH GAGD Floods 

Two scaled GSDH GAGD coreflood experiments using n-Decane, Yates reservoir brine 

and pure CO2 on 1-ft Berea core in the miscible mode, were also completed. The 

objectives of these experiments were: (i) to evaluate the effect of injection mode on 

GAGD recovery characteristics in a miscible mode and (ii) to study the effect of 

miscibility development on GAGD recovery characteristics. Figures 3.45 and 3.46 

summarize the data obtained from these GSDH GAGD miscible floods. 

Similar to Figures 3.42 to 3.54, part (a) of the figures provide the data for water 

recovery and pressure drop during the drainage cycle when n-Decane was injected into 

the brine saturated core. Similarly, part (b) provides the data for oil recovery and pressure 

drop when Yates reservoir brine was injected into the core at connate water saturations. 

Finally, part (c) provides the data for water, and oil recoveries as well as pressure drop 

during the gravity stable GAGD tertiary recovery process, where in pure CO2 was 

injected into the core at residual oil saturation. 

 

3.5.2.3 Comparison of Immiscible and Miscible GSDH GAGD Floods 

There are five major comparisons that can be made from the GSDH GAGD experiments 

completed: (i) effect of injection rate (10 cc/hr versus 40 cc/hr) on GAGD secondary 

immiscible floods, (ii) effect of injection mode (secondary versus tertiary) on GAGD 

immiscible floods, (iii) effect of injection mode (secondary versus tertiary) on GAGD 

miscible floods, (iv) effect of miscibility development (miscible versus immiscible) on 

GAGD floods, and (v) comparison of oil recovery characteristics of GAGD versus 

horizontal mode WAG floods. This sub-sections details this comparison for GSDH mode 

GAGD experiments. 

 

Effect of Injection Rate on Secondary Immiscible GSDH GAGD Floods 

The effect of injection rate on secondary immiscible GSDH GAGD floods is shown in 

Figure 3.47. In course of the dimensional analysis of the gravity stable field projects 

followed by the laboratory coreflood experimental design, various models were used to 

calculate the limiting ‘Critical Injection Rate’ (CIR) for the coreflood displacement 
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(flood interface) to be stable. During experimentation, the lowest value of the CIR 

predicted (which was – 43 cc/hr) from model calculations was used as the maximum 

injection rate. However, as the entire previous horizontal mode CGI / WAG corefloods 

were conducted at 10 cc/hr rates (as dictated by the Leas and Rappaport stability 

criterion); the GAGD corefloods were also conducted at the same injection rates. This 

assured normalization of viscous / capillary / dispersive forces in all the corefloods to 

provide with an effective comparison based on buoyancy forces only. 

However, for the validation and experimental verification of the CIR’s relevance to 

GAGD experimentation, two secondary immiscible gravity stable GAGD floods were 

conducted at different injection rates (both below the limiting CIR), namely 10 cc/hr and 

40 cc/hr, using n-Decane, Yates reservoir brine and CO2. 

Figure 3.47(a) clearly shows that the effects of injection rate on the gravity stable 

GAGD floods are minimal. On the other hand, near perfect duplication of the tertiary 

recovery factors (TRF) for the two corefloods (Figure 3.47(b)) suggest that the gas 

utilization efficiencies too are independent of the injection rates, provided the injection 

rates are below the CIR. The pressure drop behavior suggests that in secondary floods, 

the pressure drops tend to stabilize near the absolute permeability pressure drop value 

(Figure 3.47(c)), indicating near perfect gas sweep efficiencies.  

 

Effect of Injection Mode on Immiscible GSDH GAGD Floods 

The effect of injection mode (secondary versus tertiary) on immiscible gravity stable 

GAGD floods is shown in Figure 3.48. The literature review suggests that the 

commercial gravity stable gas injection processes have be employed in both secondary as 

well as tertiary modes. To provide with effective comparisons and performance review 

between horizontal WAG / CGI floods and GAGD, all these experiments were completed 

in both secondary and tertiary modes. The secondary and tertiary mode CGI / WAG 

corefloods data are available elsewhere (Kulkarni, 2003; Rao et al., 2004). 

To isolate the effects of injection mode on gravity stable immiscible GAGD floods, 

two immiscible gravity stable GAGD floods were conducted in secondary and tertiary 

modes of injection using n-Decane, Yates reservoir brine and CO2.  

Figure 3.48(a) shows that the gravity stable GAGD recovery efficiencies (average 

incremental recovery: 61.95% ROIP) are significantly higher than horizontal CGI / WAG 

floods (average incremental recovery: 34.34% ROIP), even under immiscible modes of 

injection. These oil recovery numbers show that the GAGD mode of injection clearly 

outperforms the WAG floods. Also it is important to note that the mode of injection 

(secondary or tertiary) significantly affects the GAGD performance under immiscible 

mode. Tertiary immiscible GAGD flood recovery (59.06%) is significantly lower than 

the secondary immiscible GAGD flood recovery (64.83%), thus suggesting higher 

incremental benefits of GAGD application in secondary mode. 
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(a) Gravity Stable Drainage Cycle: Oil Flood with n-Decane 
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(b) Gravity Stable Imbibition Cycle: Brine Flood with Yates Reservoir Brine 
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(c) Gravity Stable GAGD Cycle: Gas Flood with Pure CO2 

Figure 3.42: Data for Experiment GAGD GSDH # 1: 1-ft Berea Core + Yates Reservoir 

Brine with Gravity Stable Immiscible Secondary GAGD CO2 Injection @ 10 cc/hr 

No Secondary 

Brine Flood in 

this step 

No Secondary 

Brine Flood in 

this step 
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(a) Gravity Stable Drainage Cycle: Oil Flood with n-Decane 
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(b) Gravity Stable Imbibition Cycle: Brine Flood with Yates Reservoir Brine 
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(c) Gravity Stable GAGD Cycle: Gas Flood with Pure CO2 

Figure 3.43: Data for Experiment GAGD GSDH # 1(A): 1-ft Berea Core + Yates 

Reservoir Brine with Immiscible Secondary GAGD CO2 Injection @ 40 cc/hr 
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Brine Flood in 

this step 

No Secondary 

Brine Flood in 

this step 
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(a) Gravity Stable Drainage Cycle: Oil Flood with n-Decane 
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(b) Gravity Stable Imbibition Cycle: Brine Flood with Yates Reservoir Brine 
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(c) Gravity Stable GAGD Cycle: Gas Flood with Pure CO2 

Figure 3.44: Data for Experiment GAGD GSDH # 2: 1-ft Berea Core + Yates Reservoir 

Brine with Gravity Stable Immiscible Tertiary GAGD CO2 Injection @ 10 cc/hr 
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(a) Gravity Stable Drainage Cycle: Oil Flood with n-Decane 
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(b) Gravity Stable Imbibition Cycle: Brine Flood with Yates Reservoir Brine 
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(c) Gravity Stable GAGD Cycle: Gas Flood with Pure CO2 

Figure 3.45: Data for Experiment GAGD GSDH # 3: 1-ft Berea Core + Yates Reservoir 

Brine with Gravity Stable Miscible Secondary GAGD CO2 Injection @ 10 cc/hr 

No Secondary 

Brine Flood in 

this step 

No Secondary 

Brine Flood in 

this step 
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(a) Gravity Stable Drainage Cycle: Oil Flood with n-Decane 
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(b) Gravity Stable Imbibition Cycle: Brine Flood with Yates Reservoir Brine 
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(c) Gravity Stable GAGD Cycle: Gas Flood with Pure CO2 

Figure 3.46: Data for Experiment GAGD GSDH # 4: 1-ft Berea Core + Yates Reservoir 

Brine with Gravity Stable Miscible Tertiary GAGD CO2 Injection @ 10 cc/hr 
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(a) Oil Recovery Characteristics versus PV CO2 Injection 
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(b) TRF (%ROIP / PVI CO2) Characteristics versus PV CO2 Injection 
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(c) Pressure Drop Characteristics versus Pore Volume CO2 Injection 

Figure 3.47: Effect of Injection Rate on Secondary Immiscible GSDH GAGD Floods in 

n-Decane, Yates Reservoir Brine and Pure CO2 System 
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(c) Pressure Drop Characteristics versus PV CO2 Injection  

Figure 3.48: Effect of Injection Mode (Secondary versus Tertiary) on Immiscible GSDH 

GAGD Floods in n-Decane, Yates Reservoir Brine and Pure CO2 System 
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The utilization factors pertaining to secondary floods show high TRF values till 1.0 

pore volume injection (PVI), followed by a decline. However this decline is not 

exponential, as was observed in immiscible horizontal secondary CGI corefloods, 

suggesting sustained higher gas utilization factors for gravity stable GAGD corefloods. 

Furthermore, as observed in Figure 3.48(c), the pressure drop behavior tends to reach a 

plateau, although the approach could be asymptotic in tertiary gravity stable GAGD 

floods, suggesting high sweep efficiencies during these corefloods. 

 

Effect of Injection Mode on Miscible GSDH GAGD Floods 

The effect of injection mode (secondary versus tertiary) on miscible GSDH GAGD 

floods is shown in Figure 3.49. The literature review suggests that the commercial gravity 

stable gas injection processes have been employed in both secondary as well as tertiary 

modes, and that the miscible mode of injection is highly popular in commercial gas 

injection processes.  

As previously practiced in immiscible GSDH GAGD floods, the miscible GSDH 

GAGD corefloods were also completed in both secondary and tertiary modes. 

Furthermore, to isolate the effects of injection mode on miscible GSDH GAGD floods, 

these two miscible GSDH GAGD floods were conducted in both secondary as well as 

tertiary modes of injection using n-Decane, Yates reservoir brine and CO2.  

Figure 3.49(a) shows that in the miscible gravity stable GAGD floods, near perfect 

sweep efficiencies were observed, and are significantly higher than the CGI / WAG 

miscible flood recoveries. It is important to note that excepting the delay in oil production 

for tertiary floods, there are minimal effects of injection mode on miscible GAGD 

recovery. The average incremental recovery in gravity stable GAGD floods was ~ 100% 

ROIP while the average incremental recoveries in horizontal mode CGI and WAG floods 

were 97.12% ROIP and 78.52% ROIP only. These oil recovery numbers show that the 

GAGD mode of injection far outperforms the WAG floods; while maintaining better gas 

utilization efficiencies as compared to the CGI floods (Figure 3.49(b)), by achieving 

hastened TRF peaks and asymptotic decreases in TRF values throughout the life of the 

flood. Furthermore, on a macroscopic scale, advantages of injecting in the GAGD mode 

far outweigh the CGI floods due to the favorable gravity force effects during GAGD (Rao 

et al., 2004). Consistent with the observations of immiscible GSDH GAGD floods, the 

pressure drop behavior in miscible gravity stable GAGD floods, also tend to reach a 

plateau, although the approach could be asymptotic in tertiary gravity stable GAGD 

floods (Figure 3.49(c)), suggesting high sweep efficiencies during these corefloods. 

 

Effect of Miscibility Development on GSDH GAGD Corefloods 

Comparison of Figures 3.48 and 3.49 clearly demonstrate the benefits of miscibility 

development during GAGD applications.  
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(c) Pressure Drop Characteristics versus PV CO2 Injection 

 Figure 3.49: Effect of Injection Mode (Secondary versus Tertiary) on Miscible GSDH 

GAGD Floods in n-Decane, Yates Reservoir Brine and Pure CO2 System 



 352 

The average incremental oil recovery for miscible gravity stable GAGD floods is ~ 100% 

ROIP while average incremental oil recovery for immiscible gravity stable GAGD floods 

is 61.95% ROIP, thus attributing a clear 38.06% ROIP incremental recovery only to 

miscibility development. The trend to more efficient commercial miscible gas injection 

projects (EOR Survey, 2004) is comprehendible from the high recovery efficiencies 

observed in these vertical as well as horizontal gas injection coreflood experiments. 

However, it is important to note that the GSDH GAGD floods fared well even in the 

immiscible mode of injection, in both secondary as well as tertiary application modes. 

The high gas utilization efficiencies coupled with the good oil recovery characteristics 

could therefore also help make the immiscible GAGD process desirable in low pressure 

and depleted oil reservoirs. 

 

Preliminary Conclusions from GSDH GAGD Corefloods 

Some of the characteristics features and preliminary conclusions obtained from the 

GSDH GAGD experimentation are: 

Oil Recovery Characteristics: 

1. Minimal effects of rate on oil recovery. 

2. Excellent recovery characteristics even under immiscible injection mode. 

3. Near perfect microscopic as well as microscopic sweep efficiencies during miscible 

injection. 

Tertiary Recovery Factor (TRF) Characteristics: 

1. Hastened TRF peaks for all secondary injections, followed by a rapid TRF (or gas 

utilization) decline after about 1.0 pore volume injection. 

2. TRF peaks during tertiary injections, although lower and later in the flood’s life, 

exponential performance (TRF) decline as observed in horizontal mode CGI / WAG 

injections was not observed. 

3. Near-perfect TRF characteristics’ reproduction clearly indicates the repeatability and 

the mechanistic duplication of the flood parameters. 

Pressure Drop Characteristics: 

1. Exponential approach to absolute permeability pressure drop measurement values of 

the secondary GSDH GAGD floods’ pressure drop data (for both immiscible and 

miscible), demonstrates excellent reservoir sweep efficiencies. 

2. Tertiary GAGD floods demonstrate pressure drop characteristics similar to the 

secondary GAGD floods, although in tertiary floods, the approach to the absolute 

permeability pressure drop value is asymptotic. 

3. Higher initial free water saturation (tertiary mode GAGD injection), also seem to be 

affected by microscopic multiphase mechanisms such as CO2-brine solubility effects, 

higher startup pressure drops (thus decreased gas injectivity), and three-phase relative 

permeability effects. 
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3.5.3 Non-Gravity Stable Displacement History (NSDH) GAGD Floods (On 1-ft Berea, 

n-Decane, Yates Reservoir Brine and CO2) 

Four scaled non-gravity stable displacement history (NSDH) GAGD experiments (two 

immiscible and two miscible) were completed in addition to the scaled GSDH GAGD 

experiments. For these scaled NSDH GAGD experiments, the oil (n-Decane) flood and 

the water (Yates reservoir brine) flood (only in tertiary mode gas floods) were conducted 

in a non-gravity stable (horizontal) mode. The oil flood was completed by horizontally 

injecting n-Decane into a previously brine saturated core, and the displacement was from 

left to right. The water flood was also completed in a similar manner by horizontally 

injecting Yates reservoir brine. The core was then positioned vertically and allowed to 

reach equilibrium for 24 hours. Pure CO2 was injected (at 10 cc/hr) into this core from 

the top in a gravity stable manner, to represent the actual field GAGD implementation 

and provide with realistic and scalable recovery characteristics.  

 

3.5.3.1 Immiscible NSDH GAGD Floods 

The objectives of these scaled NSDH GAGD immiscible coreflood experiments were: (i) 

to evaluate the effect of injection strategy on GAGD recovery characteristics in an 

immiscible mode and (ii) to study the effect of the previous non-gravity stable waterflood 

(in tertiary mode floods only) on GAGD recovery characteristics in an immiscible mode. 

The results of these experiments are summarized in Figures 3.50 and 3.59.  

In these Figures, Part (a) provides the data for water recovery and pressure drop 

during the drainage cycle when n-Decane was injected into the brine saturated core. Part 

(b) provides the data for oil recovery and pressure drop when Yates reservoir brine was 

injected into the core at connate water saturations. Part (c) provides the data for water, 

and oil recoveries as well as pressure drop during the gravity stable GAGD tertiary 

recovery process, where in pure CO2 was injected into the core at residual oil saturation. 

 

3.5.3.2 Miscible NSDH GAGD Floods 

In addition to the scaled NSDH GAGD immiscible coreflood experiments, two NSDH 

GAGD miscible coreflood experiments using n-Decane, Yates reservoir brine and pure 

CO2 were also conducted. The operating conditions of these miscible NSDH GAGD 

experiments were identical to those of immiscible NSDH GAGD floods, except for the 

higher operating pressures for miscible injections. The objectives of these scaled NSDH 

GAGD miscible coreflood experiments were: (i) to evaluate the effect of injection 

strategy on GAGD recovery characteristics in a miscible mode and (ii) to study the effect 

of miscibility development on GAGD recovery characteristics. The results of these 

experiments are summarized in Figures 3.52 and 3.53.  

Similar to the data in Figures 3.50 and 3.51, Part (a) of the Figure provides the data 

for water recovery and pressure drop during the drainage cycle when n-Decane was 
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injected into the brine saturated core. Secondly, part (b) provides the data for oil recovery 

and pressure drop when Yates reservoir brine was injected into the core at connate water 

saturations. Finally, part (c) provides the data for water, and oil recoveries as well as 

pressure drop during the gravity stable GAGD tertiary recovery process, where in pure 

CO2 was injected into the core at residual oil saturation. 

 

3.5.3.3 Comparison of Immiscible and Miscible NSDH GAGD Floods 

Similar to the scaled GSDH GAGD floods discussed in Section 5.2.3, there are three 

major comparisons that can be made from the scaled NSDH GAGD experiments 

completed till date: (i) effect of injection mode (secondary versus tertiary) on NSDH 

GAGD immiscible floods, (ii) effect of injection mode (secondary versus tertiary) on 

NSDH GAGD miscible floods, and (iii) effect of miscibility development (miscible 

versus immiscible) on NSDH GAGD floods. 

 

Effect of Injection Mode on Immiscible NSDH GAGD Floods 

To isolate the effects of injection mode on NSDH immiscible GAGD floods, two 

immiscible NSDH GAGD floods were conducted in secondary and tertiary injection 

modes using n-Decane and Yates reservoir brine.  

The secondary and tertiary recovery characteristics of immiscible NSDH GAGD 

floods are included as Figure 3.54. Figure 3.54(a) shows that the NSDH GAGD recovery 

efficiencies (average incremental recovery: 54.79% ROIP) are significantly higher than 

horizontal CGI / WAG floods (average incremental recovery: 34.34% ROIP), even under 

immiscible modes of injection. These observations are consistent with the all gravity 

stable (GSDH GAGD) floods reported earlier, and that the GAGD mode of injection 

clearly outperforms the WAG floods.  

Also it is important to note that the mode of injection (secondary or tertiary) 

significantly affects the NSDH GAGD performance under immiscible mode. Tertiary 

immiscible GAGD flood recovery (47.27%) is significantly lower than the secondary 

immiscible GAGD flood recovery (62.31%), thus reconfirming the previous inference 

that the incremental benefits of GAGD process are higher during secondary mode 

application. 

The utilization factors (Figure 3.54(b)) pertaining to secondary floods show high TRF 

values till 1.4 PVI, followed by a non-exponential decline, suggesting sustained higher 

gas utilization factors for NSDH GAGD corefloods.  

As observed in Figure 3.54(c), the pressure drop behavior tends to reach a plateau, 

although the approach could be asymptotic, similar to the tertiary GSDH GAGD floods, 

suggesting high sweep efficiencies during these NSDH GAGD corefloods. 
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(a) Non-Gravity Stable Drainage Cycle: Oil Flood with n-Decane 
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(b) Non-Gravity Stable Imbibition Cycle: Brine Flood with Yates Reservoir Brine 
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(c) Gravity Stable GAGD Cycle: Gas Flood with Pure CO2 

Figure 3.50: Data for Experiment GAGD NSDH # 1: 1-ft Berea Core + Yates Reservoir 

Brine with Gravity Stable Immiscible Secondary GAGD CO2 Injection @ 10 cc/hr 

No Secondary 

Brine Flood in 

this step 

No Secondary 

Brine Flood in 

this step 
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(b) Non-Gravity Stable Imbibition Cycle: Brine Flood with Yates Reservoir Brine 
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(c) Gravity Stable GAGD Cycle: Gas Flood with Pure CO2 

Figure 3.51:  Data for Experiment GAGD NSDH # 2: 1-ft Berea Core + Yates Reservoir 

Brine with Gravity Stable Immiscible Tertiary GAGD CO2 Injection @ 10 cc/hr 
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(a) Non-Gravity Stable Drainage Cycle: Oil Flood with n-Decane 
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(b) Non-Gravity Stable Imbibition Cycle: Brine Flood with Yates Reservoir Brine 
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(c) Gravity Stable GAGD Cycle: Gas Flood with Pure CO2 

Figure 3.52:  Data for Experiment GAGD NSDH # 3: 1-ft Berea Core + Yates Reservoir 

Brine with Gravity Stable Miscible Secondary GAGD CO2 Injection @ 10 cc/hr 

No Secondary 

Brine Flood in 

this step 

No Secondary 

Brine Flood in 

this step 
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(a) Non-Gravity Stable Drainage Cycle: Oil Flood with n-Decane 
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(b) Non-Gravity Stable Imbibition Cycle: Brine Flood with Yates Reservoir Brine 
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(c) Gravity Stable GAGD Cycle: Gas Flood with Pure CO2 

Figure 3.53:  Data for Experiment GAGD NSDH # 4: 1-ft Berea Core + Yates Reservoir 

Brine with Gravity Stable Miscible Tertiary GAGD CO2 Injection @ 10 cc/hr 
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(a) Oil Recovery Characteristics versus PV CO2 Injection 
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(c) Pressure Drop Characteristics versus PV CO2 Injection 

Figure 3.54: Effect of Injection Mode (Secondary versus Tertiary) on Immiscible NSDH 

GAGD Floods in n-Decane, Yates Reservoir Brine and Pure CO2 SystemEffect of 

Injection Mode on Miscible NSDH GAGD Floods 
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Similar to the experimental protocol followed during scaled immiscible NSDH 

GAGD experimentation, the scaled miscible NSDH GAGD floods were also completed 

in both secondary and tertiary modes using n-Decane and Yates reservoir brine and pure 

CO2. The effect of injection mode (secondary versus tertiary) on miscible gravity stable 

GAGD floods is summarized in Figure 3.55. 

Figure 3.55(a) shows that in the miscible NSDH GAGD floods, near perfect sweep 

efficiencies were obtained, and hence significantly higher oil recoveries were obtained as 

compared to the CGI or WAG miscible floods. These results are consistent with the all 

GSDH GAGD floods discussed earlier. As observed in GSDH GAGD floods, except for 

the delay in oil breakthrough for tertiary floods, the effects of injection mode on miscible 

NSDH GAGD recovery are also minimal. The average incremental recovery in NGS 

GAGD floods was close to 100% ROIP, which was found to be significantly higher than 

the horizontal mode CGI (97.12% ROIP) and WAG (78.52% ROIP) floods.  

The NSDH GAGD flood TRF behavior demonstrated superlative gas utilization 

factors (Figure 3.55(b)), which is observed from the hastened TRF peaks and asymptotic 

(non-exponential) decrease in TRF values throughout the life of the NSDH GAGD flood.  

As observed in immiscible GSDH GAGD floods, the pressure drop behavior, in 

miscible gravity stable GAGD floods, also tend to reach a plateau, although the approach 

could be asymptotic in tertiary gravity stable GAGD floods (Figure 3.55(c)), also 

suggesting high sweep efficiencies during these corefloods. 

 

Effect of Miscibility Development on NSDH GAGD Floods 

Comparison of Figures 3.54 and 3.55 clearly demonstrate similar benefits of miscibility 

development in NSDH GAGD floods, as observed in GSDH GAGD floods. The average 

incremental oil recovery for miscible NSDH GAGD floods is 100% ROIP while average 

incremental oil recovery for immiscible NSDH GAGD floods is 54.79% ROIP, thus 

attributing a clear 45.21% ROIP incremental recovery to miscibility development in the 

NSDH injection mode. These observations are consistent with the GSDH GAGD floods 

discussed earlier. 

These experimental results are in-line with the oil-industry’s inclination towards more 

efficient commercial miscible gas injection projects (EOR Survey, 2004) in the vertical 

as well as horizontal gas injection modes. Furthermore, it is important to note that the 

worst GAGD flood performances are significantly better than the presently used WAG or 

CGI floods (Table 3.18), thereby making the GAGD process a better alternative to the 

WAG process even in low pressure and depleted oil reservoirs.  
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(a) Oil Recovery Characteristics versus PV CO2 Injection 
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(b) TRF (%ROIP / PVI CO2) Characteristics versus PV CO2 Injection 
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(c) Pressure Drop Characteristics versus PV CO2 Injection  

Figure 3.55: Effect of Injection Mode (Secondary versus Tertiary) on Miscible NSDH 

GAGD Floods in n-Decane, Yates Reservoir Brine and Pure CO2 System 
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3.5.4 Comparison of GSDH and NSDH GAGD Performance 

As suggested earlier, the GSDH mode GAGD floods were completed to provide with an 

upper performance limit of the GAGD floods. The NSDH (or only gas gravity stable) 

mode GAGD floods were repeated at similar operating conditions, for duplication of the 

realistic recovery sequences practiced in the oil field. The major comparison parameters 

between the all gravity stable (GSDH) and NSDH GAGD floods are: (i) Oil recovery 

characteristics, (ii) TRF behavior, and (iii) pressure drop behavior. Figures 3.56 and 3.57 

summarize these comparisons between GSDH and NSDH GAGD floods. 

 

Table 3.18: Comparison between the Best Case Scenarios with CGI, WAG, Hybrid-

WAG and GAGD Processes as observed in the Scaled Laboratory Corefloods using n-

Decane, Yates Reservoir Brine and Pure CO2. 

Process Description Type of Flood 
Recovery 

(%ROIP) 

PVI 

Reqd. 

Continuous Gas Injection (CGI) Miscible – Secondary 97.56% 1.69 

Water Alternating Gas (WAG) Miscible – Secondary 72.50% 1.75 

Hybrid-WAG Miscible – Hybrid 93.75% 2.26 

All Gravity Stable (GSDH) GAGD 

(Hypothetical Limiting Scenario) 

Secondary or Tertiary 

(Miscible Flood) 

Close to 

100% 
1.95 

Gas Only Gravity Stable (NSDH) GAGD 

– (Realistic GAGD Application) 

Secondary or Tertiary 

(Miscible Flood) 

Close to 

100% 
1.12 

 

 

3.5.4.1 Comparison of GSDH and NSDH GAGD Flood Oil Characteristics 

The comparison is characterized as miscible and immiscible floods, discussed below. 

 

Immiscible GAGD Floods 

Figure 3.56(a) shows that the oil recovery characteristic patterns for the immiscible 

GAGD floods are similar. However, the NSDH secondary immiscible floods demonstrate 

hastened oil recoveries as compared to GSDH secondary immiscible floods, attributable 

to the lower efficiencies of the previous non-gravity stable floods. On the other hand, in 

case of tertiary floods, although the recovery patterns are similar, the NSDH GAGD 

floods demonstrate significantly slower oil recovery rates.  This decreased rate appears to 

be due to the higher mobile water saturations in the upper core portions (from previous 

horizontal waterflood), resulting in higher water-shielding effects and hence decreased oil 

recovery rates during the tertiary NSDH GAGD floods. 
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(c) Pressure Drop Characteristics versus PV CO2 Injection 

 Figure 3.56: Effect of Injection Mode (Secondary versus Tertiary) on Immiscible 

GAGD Floods (GSDH and NSDH) in n-Decane, Yates Reservoir Brine and Pure CO2 

System 
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(c) Pressure Drop Characteristics versus PV CO2 Injection  

Figure 3.57: Effect of Injection Mode (Secondary versus Tertiary) on Miscible GAGD 

Floods (GSDH and NSDH) in n-Decane, Yates Reservoir Brine and Pure CO2 System 
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Miscible GAGD Floods 

Figure 3.57(a) summarizes the oil recovery characteristics of the miscible GAGD floods 

completed. The NSDH GAGD floods fare better than the GSDH GAGD floods, 

recovering 100% of the residual oil in both secondary and tertiary injection modes, 

compared to 98.89% recoveries in GSDH GAGD floods. The NSDH floods demonstrate 

hastened recoveries than their GSDH counterparts, affirming that the water-shielding 

effects, gas (CO2) solubility effects, and the effect of previous non-gravity stable 

waterflood (in case of tertiary floods) is significantly lower. 

 

3.5.4.2 Comparison of GSDH and NSDH GAGD Flood TRF Characteristics 

Figure 3.56(b) and 3.57(b) summarize the TRF behavior of the immiscible and miscible 

TRF characteristics of the GAGD floods completed. Similar TRF patterns are observed 

for both GSDH and NSDH GAGD floods when each corresponding pair of floods is 

considered. This reconfirms that the mechanistic and dynamic characteristics of these 

corefloods are similar. It is important to note that, all the NSDH floods, except tertiary 

immiscible GAGD floods, demonstrate higher TRF values, consequently higher gas 

utilization efficiencies, as compared to the GSDH GAGD corefloods. 

 

3.5.4.3 Comparison of GSDH and NSDH GAGD Flood Pressure Drop 

Characteristics 

Figure 3.56(c) and 3.57(c) summarize the pressure drop behavior of the immiscible and 

miscible of the GAGD floods completed. As observed from the TRF characteristics 

previously, similar pressure drop patterns suggest similar mechanistic and dynamic 

characteristics of these corefloods.  

Higher pressure drops observed in NSDH floods as compared to GSDH floods, for 

both miscible and immiscible modes of injection, appear to be due to the previous non-

gravity stable steps as well as the relatively higher water saturations in the upper-portion 

of the core during these NSDH GAGD displacements.  

 

3.5.4.4 Preliminary Conclusions from GSDH and NSDH Mode GAGD Corefloods 

1. GAGD experimentation (in an all gravity stable as well as only gas gravity stable 

mode of injection) clearly shows that the GAGD process can potentially outperform 

all the commercial modes of gas injection, namely CGI, WAG and Hybrid-WAG as 

demonstrated by scaled laboratory corefloods. 

2. Similar patterns obtained for oil recovery, TRF and pressure drop characteristics as 

observed in both GSDH and NSDH GAGD floods suggest that we are able to 

duplicate the multiphase mechanisms as well as fluid dynamics operational in the 

field into the laboratory. 
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3. Minimal injectivity and operational problems would be encountered during the 

GAGD process applications, as observed from pressure drop characteristics of GAGD 

floods completed. 

4. GAGD application in secondary mode is beneficial from a recovery as well as gas 

utilization point of view. 

5. Although miscibility development is beneficial in some cases, immiscible GAGD 

employment could generate comparable oil recovery characteristics. Consequently, 

miscibility development may not be a controlling economic decision for the 

application of the GAGD process, especially under secondary injection modes. 

6. Both miscible and immiscible GAGD processes demonstrate excellent recovery 

characteristics. 

 

3.5.5 Evaluation of Various Modes of Gas Injection with GSDH GAGD Performance (on 

6-ft Berea, n-Decane, 5% NaCl Brine and CO2)  

The immiscible gas assisted gravity drainage (GAGD) flood was conducted in a 6-ft 

Berea core using 5% NaCl brine and n-Decane. Initially floods with long cores have been 

conducted with n-Decane, 5% NaCl brine prior to exposing the cores to crude oils. 

Immiscible CGI and WAG floods were conducted at similar conditions for comparison 

with GAGD floods. Results of these floods are included as Figure 3.58. Figure 3.58 

shows amplification of the difference in the recoveries between CGI and WAG, which 

were not obvious in 1-ft immiscible corefloods. This shows that gravity segregation 

would be more pronounced in the longer cores; hence long core tests are not only 

appropriate and useful but also essential for performance assessment of floods involving 

gravity segregation effects. Figure 3.58 shows that the GAGD process has the highest 

recovery efficiency compared to WAG and CGI. The GAGD process produces nearly 

8.6% higher tertiary EOR oil than WAG and 31.3% over CGI even in the immiscible 

mode.  

 

3.5.6 NSDH Mode GAGD Experimentation on Real Reservoir Systems (On Yates 

Reservoir Core, Yates Reservoir Fluids and CO2) 

Antecedently, all the scaled laboratory experimentation was limited to using model fluid 

systems and porous media for the performance evaluation of the GAGD process. To 

include realistic reservoir systems into the GAGD process evaluation(s), scaled GAGD 

corefloods were conducted using Yates reservoir rock-fluid systems at reservoir 

conditions. The GAGD experiments (two miscible and two immiscible) completed using 

Yates reservoir cores (Figure 3.59), Yates reservoir fluids and CO2 are: 

1. Immiscible NSDH secondary GAGD Yates flood using Yates reservoir core, Yates 

crude oil, Yates reservoir brine and CO2. 
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2. Immiscible NSDH tertiary GAGD Yates flood using Yates reservoir core, Yates 

crude oil, Yates reservoir brine and CO2. 

3. Miscible NSDH secondary GAGD Yates flood using Yates reservoir core, Yates 

crude oil, Yates reservoir brine and CO2. 

4. Miscible NSDH tertiary GAGD Yates flood using Yates reservoir core, Yates crude 

oil, Yates reservoir brine and CO2. 

For these four NSDH GAGD experiments, the oil (Yates crude oil) flood as well as 

the water (Yates reservoir brine) flood (only in tertiary mode gas floods) was conducted 

in a non-gravity stable (horizontal) mode. The oil flood was completed by injecting Yates 

crude oil into a previously brine saturated core mounted horizontally. The brine flood was 

also completed in a similar manner by mounting the core horizontally. The core was then 

positioned vertically and allowed to attain reach equilibrium of fluids distribution over 24 

hours. Pure CO2 was injected into this core (at 20 cc/hr) from the top in a gravity stable 

manner to duplicate actual GAGD implementation in the field.  

 

3.5.6.1 Immiscible NSDH GAGD Yates Floods 

The experimental objectives of the two immiscible NSDH GAGD Yates corefloods 

(Figures 3.60 and 3.61) were: (i) to evaluate the effect of injection strategy on GAGD 

recovery characteristics in an immiscible mode, (ii) to study the effect of the previous 

non-gravity stable waterflood (in tertiary mode floods only) on GAGD recovery 

characteristics in an immiscible mode, (iii) to study the effects of rock mineralogy 

(dolomite versus Berea sandstone) on GAGD recovery characteristics in an immiscible 

mode, and (iv) to characterize and identify the positive or negative effects of natural 

fractures (Yates cores are naturally fractured) on immiscible GAGD flood performance.  

 

3.5.6.2 Miscible NSDH GAGD Yates Floods 

Two NSDH GAGD miscible coreflood experiments with Yates reservoir core, Yates 

crude oil, Yates reservoir brine and pure CO2 were also completed for the GAGD process 

performance evaluation on real reservoir systems. The operating conditions of these 

experiments were identical to those of immiscible NSDH GAGD Yates floods except for 

the higher operating pressures in miscible NSDH GAGD Yates floods. The experimental 

objectives of the two miscible NSDH GAGD Yates corefloods (Figures 3.62 and 3.63) 

were: (i) to evaluate the effect of injection strategy on GAGD recovery characteristics in 

a miscible mode, (ii) to study the effect of miscibility on GAGD recovery characteristics, 

(iii) to study the effect of the previous non-gravity stable waterflood (in tertiary mode 

floods only) on GAGD recovery characteristics in miscible mode, (iv) to study the effects 

of rock mineralogy (dolomite versus Berea sandstone) on GAGD recovery characteristics 

in miscible mode, and (iv) to characterize and identify the positive or negative effects of 
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natural fractures (Yates cores are naturally fractured) on miscible GAGD flood 

performance. 
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Figure 3.58:  Comparison of GAGD floods with WAG and CGI in Immiscible Mode in 

6-ft Long Berea Cores with n-Decane, 5% NaCl Brine with Gravity Stable Immiscible 

GAGD CO2 Injection @ 10 cc/hr 

5.6.3 Comparison of Model and Realistic Fluid NSDH GAGD Floods  

The important inferences obtained by performance evaluation of the previously 

completed GAGD floods on Berea corefloods using model fluid systems and GAGD 

floods using real reservoir fluid systems are summarized: 

1. GAGD experimentation (in all gravity stable as well as gas only gravity stable mode 

of injection) clearly shows that the superlative GAGD process performance is 

consistent in both model fluid systems as well as real reservoir fluid systems (Table 

3.19). These results further underscore the benefits of working in tune with nature by 

employing the GAGD process for improved oil recovery. 

2. It is interesting to note that the miscible GAGD flood performance is comparable in 

both model and real reservoir fluid systems. This re-confirms the previous inference 

that we are able to duplicate multiphase mechanisms and fluid dynamics using 

dimensional analysis in a consistent manner.  

3. In immiscible GAGD floods, the gas utilization factor (TRF) in Yates immiscible 

GAGD corefloods is significantly lower compared to model fluid GAGD 
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experiments. This effect was not observed in miscible corefloods. The incremental 

gas requirements are mainly attributable to: (i) changes in the rock mineralogy, (ii) 

presence of natural fractures in the core, resulting in higher gas requirements to 

facilitate fracture-matrix mass transfer, (iii) significant difference in the wettability 

characteristics of the Yates reservoir core compared to Berea sandstone, and (iv) 

severe water-shielding and CO2 solubility effects in tertiary mode Yates GAGD 

corefloods.  

4. GAGD application in secondary mode not only hastens oil recovery, but also is 

beneficial from an overall recovery and gas utilization point of view (Figures 64 and 

65). 

 

Figure 3.59: Various Views of the Actual Yates Reservoir Core Used for the Scaled 

NSDH GAGD Yates Experimentation Depicting the Natural Fractures and Heterogeneity 
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(a) Non-Gravity Stable Drainage Cycle: Oil Flood with Yates Crude Oil 
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(b) Non-Gravity Stable Imbibition Cycle: Brine Flood with Yates Reservoir Brine 
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(c) Gravity Stable GAGD Cycle: Gas Flood with Pure CO2 

Figure 3.60: Data for Experiment GAGD Yates # 1: Yates Reservoir Rock-Fluid System 

with Gravity Stable Immiscible Secondary GAGD CO2 Injection @ 20 cc/hr 
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No Secondary 
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(a) Non-Gravity Stable Drainage Cycle: Oil Flood with Yates Crude Oil 
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(b) Non-Gravity Stable Imbibition Cycle: Brine Flood with Yates Reservoir Brine 
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(c) Gravity Stable GAGD Cycle: Gas Flood with Pure CO2 

Figure 3.61:  Data for Experiment GAGD Yates # 2: Yates Reservoir Rock-Fluid System 

with Gravity Stable Immiscible Tertiary GAGD CO2 Injection @ 20 cc/hr 
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(a) Non-Gravity Stable Drainage Cycle: Oil Flood with Yates Crude Oil 
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 (b) Non-Gravity Stable Imbibition Cycle: Brine Flood with Yates Reservoir Brine 
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(c) Gravity Stable GAGD Cycle: Gas Flood with Pure CO2 

Figure 3.62:  Data for Experiment GAGD Yates # 3: Yates Reservoir Rock-Fluid System 

with Gravity Stable Miscible Secondary GAGD CO2 Injection @ 20 cc/hr 

No Secondary 

Brine Flood in 

this step 

No Secondary 

Brine Flood in 

this step 



 373 

0

5

10

15

20

25

30

0.0 1.0 2.0 3.0 4.0
P V Injected

W
a
te
r 
R
e
c
o
v
e
ry
 (
c
c
)

 

0

5

10

15

20

25

0.0 1.0 2.0 3.0 4.0

P V Injected

P
re
s
s
u
re
 D
ro
p
 (
P
s
i)

 
(a) Non-Gravity Stable Drainage Cycle: Oil Flood with Yates Crude Oil 
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(b) Non-Gravity Stable Imbibition Cycle: Brine Flood with Yates Reservoir Brine 
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(c) Gravity Stable GAGD Cycle: Gas Flood with Pure CO2 

Figure 3.63:  Data for Experiment GAGD Yates # 4: Yates Reservoir Rock-Fluid System 

with Gravity Stable Miscible Tertiary GAGD CO2 Injection @ 20 cc/hr 
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Table 3.19: Performance Evaluation of the NSDH GAGD Floods in Model Fluid 

Systems and Real Reservoir Systems as observed in the Scaled Laboratory Corefloods 

using Pure CO2 as Injectant  

Process Description 
Type of 

Flood 

Recovery 

(%ROIP) 

PVI 

Required. 

Secondary 62.31% 2.59 Immiscible NSDH GAGD floods 

using model fluid systems Tertiary 47.27% 3.99 

Secondary ~ 100% 1.27 Miscible NSDH GAGD floods 

using model fluid systems Tertiary ~ 100% 1.53 

Secondary 85.13% 4.985 Immiscible NSDH GAGD floods 

using Yates reservoir fluid systems Tertiary 78.85% 16.124 

Secondary ~ 100% 1.636 Miscible NSDH GAGD floods 

using Yates reservoir fluid systems Tertiary ~ 100% 2.105 
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         (a) Immiscible NSDH GAGD Floods         (b) Miscible NSDH GAGD Floods  

 

Figure 3.64: Comparison of Oil Recovery Characteristics between Immiscible and 

Miscible Gas Only Gravity Stable (NSDH) GAGD Yates Floods using Yates Reservoir 

Core, Yates crude oil, Yates reservoir brine and CO2. 
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Figure 3.65: Comparison of Oil Recovery Characteristics between all NSDH GAGD 

Yates Floods using Real Reservoir Fluid Systems. 

 

3.5.7 Effect of Reservoir (Core) Heterogeneity on GAGD Corefloods 

During various presentations of this research work, many researchers have questioned the 

applicability of the GAGD process in such fractured systems and speculated that the 

presence of long, highly conductive vertical fractures in the reservoir would have a 

detrimental effect on the GAGD process performance. To examine the effects of vertical 

fractures on GAGD, two sets of miscible secondary GSDH GAGD coreflood experiments 

at similar operating conditions were conducted: one in using un-fractured Berea 

sandstone core, while the other in same Berea core sliced vertically along the axis.   

The secondary mode miscible and immiscible GSDH GAGD corefloods conducted 

using un-fractured Berea sandstone core (summarized in Section 5.2) provide with the 

base case scenario for the performance evaluation of the GAGD process in presence of 

long, highly conductive vertical fractures.  

The same Berea core used for the GSDH GAGD experiments was later sliced 

vertically in the middle and assembled using highly permeable sand (rounded glass 

beads) filling and Kim-wipes® for capillary contact (Figure 3.66), to generate an end-to-

end vertical fracture with a fracture permeability of about 15 Darcy and matrix 

permeability of about 300 mD. The miscible and immiscible secondary GSDH GAGD 
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fractured floods (Figure 3.67 and 3.68) were repeated at similar operating conditions, 

using n-Decane, Yates reservoir brine and CO2, on this high pressure fractured core 

assembly. 

 

3.5.7.1 Effect of the Presence of Vertical Fractures on GAGD Performance 

The GAGD process performance appears to be relatively insensitive to the detrimental 

effects of vertical, high permeability fractures. It is interesting to note that, in the 

immiscible GAGD flood (see Figure 3.69(a)), the presence of vertical fractures seem to 

‘hasten’ the rate of oil recovery! This inference further seems to be supported by the 

force analysis of the dominant reservoir mechanics (Figure 3.70).  

On the other hand, the miscible fractured GAGD flood demonstrated consistent 

performance when compared to the un-fractured coreflood till gas breakthrough. And 

although the fractured core system requires higher pore volume gas injection, the 

similarity in the ultimate oil recoveries (see Figure 3.69(b)), further substantiates the 

observations of the immiscible fractured corefloods, that the presence of fractures may 

not be completely detrimental to oil recovery in the GAGD process. 

In an ultimate recovery equation, the reservoir properties are constants, whereas the 

improved recovery process selection is the primary variable. From an oil field and 

economics perspective, we have little or no control over the reservoir properties. For 

example, if we have a highly fractured reservoir, the WAG process yields very low oil 

recoveries. In this case, even the most conservative performance estimates of the GAGD 

process far out-perform even the highest known WAG recoveries. 

 

3.5.8 Injection Rate Effects on GAGD Performance and Possibility of Regain of Floods’ 

Conformance  

One of the critical issues of horizontal mode gas injection projects is the premature gas 

breakthroughs, either due to reservoir heterogeneities, unfavorable gravity segregation of 

the injected and reservoir fluids, or very high injection rates resulting in injected gas 

shooting to the producer without effectively sweeping the reservoir, ultimately leading to 

an unfortunate and abrupt end of the flood’s life. The reservoir heterogeneities 

particularly detrimental to horizontal injections (including waterfloods) have been 

identified to be the high permeability streaks or fractures (high permeability reservoir 

contrasts) between the injection and producing well. The effects of reservoir 

heterogeneities on GAGD floods were experimentally investigated in Section 5.7. This 

section details the experimental study conducted to investigate the rate effects on GAGD 

flood performance as well as to experimentally address the economically important 

question: Is premature gas breakthrough the end of the gas floods’ life? 

Literature review on gravity stable gas injection (see Section 3.1.2. and 3.1.3) 

suggests that to avoid viscous instabilities and improved flood conformance, the gas 
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injection rates should not exceed a ‘critical’ injection rate. Although there are many 

analytical models that could be used for the prediction of this ‘critical’ injection rate, the 

significant variations in the predicted rates inculcate doubt about the most relevant and 

accurate model for gravity stable gas injection applications. One of the possible solutions 

to this issue is to conduct a series of scaled experiments at various gas injection rates and 

correlate them to the gas breakthrough times and recoveries. 

 

 
Figure 3.66:  Pictures Showing Sliced Berea Core with Sand Pattie and Kim-wipes® for 

Capillary Contact (Top) and the final assembled core with a central 15-D perm fracture 

 
Numerical experiments may not be useful to solve this problem, because of the 

limited correlation models available in simulator. However, the experimental verification 

of the various models used to characterize the ‘critical’ gas injection rates for gravity  
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(a) Gravity Stable Drainage Cycle: Oil Flood with n-Decane 
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 (b) Gravity Stable Imbibition Cycle: Brine Flood with Yates Reservoir Brine 
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(c) Gravity Stable GAGD Cycle: Gas Flood with Pure CO2 

Figure 3.67:  Data for Experiment GAGD Frac # 1: 1-ft Berea Core + Yates Reservoir 

Brine with Gravity Stable Immiscible Secondary GAGD CO2 Injection @ 20 cc/hr 

No Secondary 

Brine Flood in 

this step 

No Secondary 
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this step 
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(a) Gravity Stable Drainage Cycle: Oil Flood with n-Decane 
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 (b) Gravity Stable Imbibition Cycle: Brine Flood with Yates Reservoir Brine 
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(c) Gravity Stable GAGD Cycle: Gas Flood with Pure CO2 

Figure 3.68:  Data for Experiment GAGD Frac # 2: 1-ft Berea Core + Yates Reservoir 

Brine with Gravity Stable Miscible Secondary GAGD CO2 Injection @ 20 cc/hr 

No Secondary 

Brine Flood in 

this step 

No Secondary 

Brine Flood in 

this step 
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(a) Immiscible Floods     (b) Miscible Floods 

Figure 3.69: Immiscible and Miscible Oil Recovery Characteristic(s) Comparisons for 

Vertically Fractured and Non-Fractured NSDH GAGD Corefloods on Berea Core with 

Similar Matrix Heterogeneity 
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Figure 3.70: Dimensionless Force Analysis of the Dominant Reservoir Mechanics 

Corroborating the Observed Higher Fractured Core Immiscible GAGD Recoveries 

 
stable gas injection applications is outside the scope of this dissertation. To study the 

effects of injection rate on flood performance and address the issue of the possibility of 

renewed flood control, a scaled three-stage secondary immiscible GSDH GAGD 
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experiment was conducted using n-Decane, Yates reservoir brine and CO2 on 6-ft Berea 

sandstone core. 

To facilitate ease of comparison, all the flood parameters, excepting gas injection 

rates, were kept similar to the previously conducted immiscible secondary GSDH GAGD 

floods. It is important to note that the dimensional scaling of the experiment helps 

eliminate the core length influences on the flood’s performance. The vertically oriented 

core was brought to initial oil saturation by injecting n-Decane (at 320 cc/hr) from top. 

The secondary immiscible GSDH GAGD step was divided into three sub-steps: (i) 

injection of CO2 at a very high rate (nearly 8 times the calculated critical rate) till gas 

breakthrough, (ii) stop gas injection and allow the system to come to equilibrium (till 

core pressure stabilizes or differential pressure gauge reads nearly zero), and finally (iii) 

gas injection at about 80% of the lowest calculated ‘critical’ injection rate, till no 

additional oil is produced. The data from this experiment is included as Figure 3.71. 

The oil recovery and TRF data for the GSDH GAGD IRC # 1 Experiment is included 

in Figure 3.72. A picture of the collection burette, showing the initial premature gas 

breakthrough time and production has been also included in Figure 3.72, to provide with 

additional visual proof of the above described phenomenon. Additionally, since the oil 

recovery and pressure drop data plotted versus pore volume injected (Figure 3.71(c) and 

3.72) masks the information about shut-in time(s), phase segregation and the system’s 

pressure behavior, the same data has been plotted on cumulative injection time scale 

(Figure 3.73). 

It is extremely encouraging to see that the premature gas breakthrough (due to very 

high injection rates) very early in the life of the GAGD flood does not negatively 

influence the ultimate oil recoveries achievable as well as the fact that the gas bubble 

developed in the reservoir during GAGD flood is definitely controllable via the rate of 

injection. Furthermore, this experiment provides a visual / physical proof of the benefits 

of working in tune with nature and that ‘not all is lost’ in the GAGD mode of injection 

after gas breakthrough, as compared to the horizontal mode WAG floods. 

 

3.5.9 Analysis of GAGD Performance 

In course of optimization of the GAGD process, various scaled experiments were 

conducted to isolate and identify the effects of specific parameters on GAGD process 

performance. To identify the effects of various flood parameters on GAGD ultimate 

recoveries and the oil production rates; all the GAGD experiments completed were 

classified as immiscible and miscible and were plotted as Figure 3.74 and 3.75 

respectively. Figure 3.74 summarizes all the immiscible GAGD experiments conducted. 

It can be clearly seen that the secondary GAGD floods demonstrate faster oil recovery 

rates than their tertiary counterparts. However, the ultimate recoveries for all the 

immiscible floods can be comparable.  
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(a) Gravity Stable Drainage Cycle: Oil Flood with n-Decane 
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 (b) Gravity Stable Imbibition Cycle: Brine Flood with Yates Reservoir Brine 
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(c) Gravity Stable GAGD Cycle: 3-Stage Gas Flood with Pure CO2 

Figure 3.71:  Data for Experiment GSDH GAGD IRC # 1: 6-ft Berea Core + Yates 

Reservoir Brine with Immiscible Secondary GAGD CO2 Injection @ varied Rate 

No Secondary 

Brine Flood in 

this step 

No Secondary 
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this step 
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Figure 3.72: Oil Recovery and TRF Data for the GSDH GAGD IRC # 1 Experiment 

 

It is interesting to note that the worst GAGD flood recovery (47.27% ROIP) is more 

than four times the best average miscible WAG flood recoveries. Surprisingly, all the 

GAGD miscible floods, irrespective of the flood characteristics, such as fractured core, 

GSDH or NSDH mode injection, reservoir or model fluid systems; recover almost all of 

the residual oil. This shows that the effect of various operating parameters on GAGD 

performance has little or no significance. Furthermore, the range of oil recovery rates 

(therefore process times) demonstrated by various floods is also similar and not as varied 

as their immiscible counterparts. 

 

3.5.9.1 Mechanisms and Dynamics of the GAGD Process  

In addition of better understand the fluid dynamics of displacement and drainage 

occurring during GAGD, the fluids production characteristics of each of the floods were 

plotted together as in Figures 3.76 to 3.78 (from Table 3.20). The two major factors 

affecting the oil, gas and water flow (injection rates as well as production and 

breakthrough times) during GAGD floods are: (i) CO2 solubility effects in Yates 
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reservoir brine and the oleic phase (n-Decane or Yates stock tank oil) , and (ii) CO2 phase 

behavior during immiscible flood pressure and temperature conditions. 

The solubility effects of CO2 in Yates reservoir brine are reported in Section 5.1.3. 

Solubility calculations suggest that the CO2 solubility in the core brine delays the oil 

breakthrough times by nearly 0.5 pore volume. It has been hypothesized that the gas may 

not be available for CO2 mobilization and recovery until nearly all the brine becomes 

saturated with the solvent.   
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Figure 3.73: Oil Recovery and System Pressure Drop Data Plotted on a Time Scale for 

the GSDH GAGD IRC # 1 Experiment 

Secondly, the temperature of the immiscible GAGD floods (82 oF) being slightly 

below the critical temperature of CO2 (87.8 
oF), influence the oil, water and gas 

production characteristics during the immiscible GAGD floods. This proximity of the 

experimental conditions to the CO2 vapor pressure curve possibly resulted in the 

liquefaction of CO2 in the transfer vessel (TV) and fluid lines during pumping due to 

variations (increases) in the system injection pressure. This liquefaction results in CO2 

being injected as a liquid phase (since the TV is at lower temperature (70 oF) than the 
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core (82 oF)) into the core. The produced gas volumes being measured by the gasometer 

at ambient conditions is about five times the injected liquid CO2 volumes (based on the 

CO2 pressure-volume diagram. 
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Figure 3.74: Performance Comparison of Various Immiscible GAGD Floods Completed  

 

During secondary GAGD floods, majority of the oil gets produced before the gas 

breakthrough; whereas in tertiary GAGD floods, water constitutes the majority of the 

production before gas breakthrough. Since in the immiscible mode of injection during 

secondary gas floods, the water being essentially immobile, two-phase flow is expected; 

whereas in the tertiary floods three-phase flow is anticipated.  

The GAGD secondary flood data support the former hypothesis for secondary mode 

floods; while during the immiscible tertiary floods, the data appear not to support the 

anticipated three phase flow. Experimental observations depicted in Figures 3.76 to 3.78, 

suggest that for the majority of the multiphase flow, even during tertiary floods, is of two 

phases; and limited (if any) three phase flow effects are encountered. For tertiary GAGD 

floods, the initial water production is through gas-water displacements, whereas most of 

the oil is produced by the gas-oil drainage process.  

In secondary immiscible GAGD floods the oil production is found to decease to zero 

after gas breakthrough, whereas in immiscible tertiary mode GAGD floods, the oil 
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production continues even after gas breakthrough. The latter effect appears to be a 

commingled effect of the drainage and the displacement phenomena. 

The high density difference existing between oil and gas during immiscible secondary 

mode GAGD floods also appears to contribute to the drainage of the oil from the gas 

zone to gas-oil interface. This drained oil accumulates ahead of the gas-oil front, thereby 

forming an oil bank, which is being continually displaced immiscibly by the expanding 

gas zone. The contribution of the displacement mechanism to oil production during 

secondary immiscible GAGD flood is evident from the fact that oil production begins 

immediately after gas injection (in both NSDH and GSDH modes of injection). This 

suggests that the displacement mechanism dominates early in the life of the flood, since 

sufficient time for the formation of a gas zone (essential for drainage mechanism to 

occur) has not elapsed. 

Conversely, during miscible GAGD floods, single phase oil flow dominates during 

secondary injection modes. Therefore, the pressure drop characteristics approach absolute 

permeability values (Figures 3.49 and 3.57), and suggest that the second phase (CO2) 

does not compete to flow with the oil. This results in higher production rates supported 

by non-compressible liquid CO2 injection. 
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Figure 3.75: Performance Comparison of Various Miscible GAGD Floods Completed 
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Secondary GSDH GAGD Flood w/ C10-Berea (500 psi + 82 F)
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(a) Secondary GSDH GAGD Floods 

Tertiary GSDH GAGD Flood w/ C10-Berea  (500 psi + 82 F)
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(b) Tertiary GSDH GAGD Floods 

Figure 3.76: Normalized Oil, Water and Gas Recovery Characteristics for Immiscible 

and Miscible GSDH GAGD Experiments with 1-ft Berea, n-Decane and CO2 
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Secondary NSDH GAGD Flood w/ C10-Berea  (500 psi + 82 F)
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(a) Secondary NSDH GAGD Floods 

Tertiary NSDH GAGD Flood w/ C10-Berea  (500 psi + 82 F)
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(b) Tertiary NSDH GAGD Floods 

 

Figure 3.77: Normalized Oil, Water and Gas Recovery Characteristics for Immiscible 

and Miscible NSDH GAGD Experiments with 1-ft Berea, n-Decane and CO2 
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Secondary NSDH GAGD Flood w/ Yates System (680 psi + 82 F)
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Tertiary NSDH GAGD Flood w/ Yates Sytem  (680 psi + 82 F)
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(b) Tertiary NSDH GAGD Floods 

 

Figure 3.78: Normalized Oil, Water and Gas Recovery Characteristics for Immiscible 

and Miscible NSDH GAGD Experiments with Yates Reservoir System and CO2 



 390 

Table 3.20: Rock and Fluid Characteristics for all the GAGD Corefloods Conducted 

during this Study 

 

Until gas breakthrough, the gas production occurs primarily due to the displacement 

mechanism, coupled with the formation of a miscible zone behind the front. It appears 

that the GAGD fluid mechanics are characterized by two phenomena: single phase Darcy 

displacement of pure oil, followed by an oil-solvent mixed miscible zone. Gas 

breakthrough occurs when the leading edge of the miscible zone reaches the producer, 

when the entire core pore volume is occupied by the miscible zone. After gas 

breakthrough, the oil production rates decrease (as observed in all three miscible GAGD 

floods in Figures 3.76 to 3.78), attributable to the solvent dilution of the oil. It is 

important to note that the flow mechanics after gas breakthrough are the combined effects 

of displacement and drainage effects. During miscible gas injection, the Figures 3.76 to 

Immiscible Floods: 500 psi 

Miscible Floods: 2500 psi 

System Temperature: 82 
o
F 

PTEST 

(psi) 

Abs. 

Perm 

(D) 

Core 

PV (cc) 

SWC 

(%) 

WF 

Recvry 

(%OOIP) 

GF 

Recvry 

(%ROIP) 

(A) GSDH Corefloods 

Rock-Fluid System: Yates Reservoir Brine + n-Decane + 1-ft Berea Core 

GSDH GAGD # 1 (Secondary Immiscible) 500 0.2224 116.26 31.53 N/A 64.83 

GSDH GAGD  # 2 (Tertiary Immiscible) 500 0.3028 116.26 40.14 68.95 59.06 

GSDH GAGD  # 3 (Secondary  Miscible) 2500 0.2440 116.26 31.53 N/A ~ 100 

GSDH GAGD  # 4 (Tertiary Miscible) 2500 0.3331 116.26 31.53 58.28 ~ 100 

GAGD Frac # 1 (Secondary Immiscible) 500 0.7790 141.26 37.56 N/A 88.56 

GAGD Frac # 2 (Secondary Miscible) 2500 0.7932 141.26 37.56 N/A ~ 100 

GAGD IRC # 1 (Secondary Immiscible) 500 3.0061 756.39 36.67 N/A 72.86 

(B) NSDH Corefloods 

Rock-Fluid System: Yates Reservoir Brine + n-Decane + 1-ft Berea Core 

NSDH GAGD # 1 (Secondary  Immiscible) 500 0.1426 116.26 34.12 N/A 62.31% 

NSDH GAGD  # 2 (Tertiary Immiscible) 500 0.1784 116.26 34.98 60.82 47.27 

NSDH GAGD  # 3 (Secondary  Miscible) 2500 0.1176 116.26 35.84 N/A ~ 100 

NSDH GAGD  # 4 (Tertiary Miscible) 2500 0.1509 116.26 35.84 61.64 ~ 100 

Rock-Fluid System: Yates Reservoir Brine + Yates ST Crude + Yates Reservoir Core 

GAGD Yates # 1 (Secondary Immiscible) 680 0.2596 22 24.12 N/A 76.04 

GAGD Yates  # 2 (Tertiary Immiscible) 680 0.3858 22 27.36 67.46 78.85 

GAGD Yates  # 3 (Secondary  Miscible) 2500 0.3574 22 21.91 N/A ~ 100 

GAGD Yates  # 4 (Tertiary Miscible) 2500 0.7797 22 31.94 72.66 ~ 100 
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3.78 suggest that about 60% to 65% of the oil production with n-Decane occurs due to 

the displacement mechanism at gas breakthrough. On the other hand, for the Yates 

reservoir rock-fluid systems (Figure 3.78), this contribution increases to 74% oil 

production at gas breakthrough. This appears to be the effect of high viscosity ratio of 

Yates crude-CO2 (16.0/0.1) compared to n-Decane-CO2 (0.92/0.1).  

 

3.5.10 Comparison of Laboratory Experimental Results to Field Data 

Dimensional analysis of various field studies on gravity stable gas injection (see Chapter 

4) suggested the use of various dimensionless numbers to characterize and correlate 

GAGD oil recoveries. Literature review recommends the use two separate and equally 

important dimensionless groups: capillary (NC) and Bond (NB) numbers for GAGD 

characterization. Therefore these groups were employed as performance indicators and 

the results are detailed below. 

 

3.5.10.1 Immiscible Scaled GAGD Floods 

The results obtained from the physical model (Sharma, 2005) and immiscible core flood 

experiments were compared with data obtained from the gravity drainage field projects. 

Significant variations in the NC and NB values for individual floods were observed, 

making the performance evaluation difficult. To facilitate effective comparisons, as well 

as to account for the relative variations of the Bond and capillary numbers in each of 

these floods, a single comparison parameter was hence required.  

The gravity number is a combination of Bond and capillary numbers, and 

incorporates the relative variations of the major reservoir forces, namely the gravity, 

capillary and viscous forces. Therefore, the Gravity number appeared to be more 

appropriate for the comparison of laboratory and field data. Therefore the results for all 

the laboratory experiments (both the physical model and corefloods) and the field 

recovery data were plotted against the gravity number in Figure 3.79. 

From Figure 3.79, it can be seen that there is a good logarithmic relationship, with 

very low data dispersion, between the GAGD recovery characteristics and the Gravity 

number. This is very encouraging, since the data for this comparison are obtained from 

vastly varied sources, such as from the atmospheric pressure, homogeneous 2-D sand 

packs, to the highly heterogeneous and high-pressure field flood projects. These findings 

indicate that the performance of the GAGD process appears to be well characterized by 

the use of the gravity number. Additionally the correlation developed can also be used for 

pre-prediction of oil recoveries for field GAGD projects if the NG value is known. 

Figure 3.79 also suggests that there could be two logarithmic correlations between oil 

recovery and gravity number, based on the wettability characteristics of the porous 

medium. Although the oil-wet nature of the Yates corefloods has been confirmed from 

contact angle experiments (Xu, 2005), the reservoir mineral composition of the field 
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study suggests it to be an oil-wet type of porous medium. This plot suggests that the gas 

injection process performance is enhanced in oil-wet media, which also appears to be 

supported by the literature review. 

 

3.5.10.2 Miscible Scaled GAGD Floods 

The miscible GAGD flood results for the physical model were not available due to 

experimental limitations; hence characterization of these floods was completed using 1-D 

GAGD corefloods and field results. However, the NG versus oil recovery plot did not 

yield a very good correlation, as it did for the immiscible floods. However, the individual 

plots of NC and NB versus recovery resulted in good correlations. Therefore, it was 

hypothesized that there is some other important mechanistic parameter that is not well 

represented in the gravity number, and a mathematical combination of the NC, NB and NG 

groups with that mechanistic parameter should yield an improved correlation parameter. 

Literate review suggested the importance of two ratios: density and viscosity (gas to oil). 

The density ratio was factored into the newly defined group (Equation 3.19) below:  









++=− )( BC

O

G NNNGGroupNew
ρ
ρ

………………………...……………….. (3.19) 

When immiscible and miscible GAGD physical model (Figures 3.80 and 3.81), 

coreflood and field data were plotted against this correlation, excellent correlation was 

obtained for immiscible floods; while an acceptable (significantly improved fit over NG 

vs. Recovery) correlation was obtained for miscible floods. Although this new number is 

significantly more complex than NG, and its physical phenomena interpretation may be 

difficult; it is definitely a positive step toward confident and improved characterization of 

the GAGD process. 
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Figure 3.79: Comparison of Immiscible GAGD Laboratory Experimentation and Field 

Gravity Drainage Projects’ Performance versus Flood Gravity Number 

 

Recovery (%OOIP) = 4.59Ln(New Group) + 32.302

R2 = 0.9548

50

55

60

65

70

75

80

85

1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05

New Group [NG+{(DG/DO)*(NC+NB)]

R
e
c
o
v
e
ry
 (
%
O
O
IP
)  
 y

Coreflood Experiments

Physical Model Experiments

Field Gravity Stable Projects

 
Figure 3.80: Comparison of Immiscible GAGD Laboratory Experimentation and Field 

Gravity Drainage Projects’ Performance versus New Group 
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Figure 3.81: Comparison of Miscible GAGD Laboratory Experimentation and Field 

Gravity Drainage Projects’ Performance versus New Group 

 

3.6 Analytical and Conceptual GAGD Modeling 

Forecasting the reservoir behavior and the oil recovery characteristics is one of the most 

important tasks of reservoir engineering. Since the GAGD process is new, its analytical 

and conceptual coupling with the existing knowledge base is essential for better 

understanding. The literature views on gravity drainage and gravity stable gas injection 

were summarized in Section 3.1. This chapter attempts to identify the gravity drainage 

flow mechanisms, and improve our understanding by using existing simple analytical 

models to predict the recovery patterns from GAGD applications. 

 

3.6.1 Inferences from Gravity Drainage Literature 

The inferences resulting from the detailed gravity drainage mechanistic review (see 

Section 3.1) relevant to GAGD modeling are summarized: 

1. Literature seems to use the words ‘gravity stable gas displacement’ and ‘drainage’ 

interchangeably.  

2. Although, the original Buckley-Leverett model was hypothesized to be applicable to 

gas floods as well, the two assumptions used by Buckley-Leverett model, no mass 

transfer between phases and incompressible phases, result in severely limiting its 

application to GAGD type (gravity drainage) floods.  

3. Buckley and Leverett (1942) theory suggests that the gravity drainage phenomenon is 

“exceedingly slow”. 
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4. Terwilliger et al.’s (1951) model result in two inferences that appear to be relevant for 

the mechanistic description of the GAGD process: (i) as oil production rate 

approaches zero, the oil drains under its own weight, in the gas swept zone, fast 

enough to maintain the “static capillary saturation distribution” in the gas-oil contact 

transition zone; and (ii) at very high production rates, oil drainage under its own 

weight is negligible and recoveries approach those of horizontal gas drives. 

5. It is interesting to note that Grattoni et al.’s (2001) studies on gas invasion under 

gravity-dominated conditions, to study the effects of wettability and water saturation 

on three-phase flow; reconfirm the first inference of Terwilliger et al.’s (1951) model, 

which states that there exists a critical height in the porous medium above which the 

oil saturation is negligible. The second inference, more relevant to the GAGD 

process, also seems to be supported from the first part of the scaled GSDH GAGD 

IRC # 1 experiment (see Section 5.8) conducted to study the influence of injection 

rate on GAGD flood performance. Interestingly, the oil recovery (6.89% OOIP) 

obtained in the first part, wherein the gas injection rate far exceeded the critical 

injection rate, is very close to the average field scale horizontal mode immiscible CGI 

(or WAG) recoveries of about 6.4% OOIP (Christensen et al., 1998).  

 

3.6.2 Application of Traditional Gravity Drainage Models to the GAGD Process 

All the limited number of existing models of the gravity drainage process seems to be 

limited by the fact that “…capillary pressure is usually neglected or considered 

inappropriately (Li and Horne, 2003)”. To assess the applicability of various traditional 

models to the new GAGD process, two models were chosen after careful review: 

Richardson and Blackwell (1971) and Li and Horne (2003). 

 

3.6.2.1 Richardson and Blackwell (R&B) Model 

The R&B model was selected because of its simplicity and versatility. This model was 

applied to the following secondary mode GAGD experiments: (i) gravity stable 

displacement history secondary immiscible GAGD flood (GSDH GAGD # 1), gravity 

stable displacement history secondary miscible GAGD flood (GSDH GAGD # 3), non-

gravity stable displacement history secondary immiscible GAGD flood (NSDH GAGD # 

1), and non-gravity stable displacement history secondary miscible GAGD flood (NSDH 

GAGD # 3). The step by step procedures for calculating the oil recovery rates are 

available in the Richardson and Blackwell (1971) reference. The model application 

required some data that was not measured during regular experimentation. Therefore 

CMGL’s Winprop®
 PVT simulator was used to generate some of the missing data. The 

GAGD experiments conducted in the laboratory used a gas injection rate of 10 cc/hr. This 

rate is less than one-half of the Dietz’s (1953) critical rates; hence the R&B model was 

found to be applicable to these floods. The R&B model application procedure also 
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requires the reservoir to be ‘divided’ into blocks of equal size. Since all the GAGD 

experiments were conducted on 1-ft Berea cores, six arbitrary divisions of 0.1667 ft each 

were used for the model prediction. 

The data used for the prediction of oil production rates using the R&B model are 

included in Table 3.21. The calculated fractional flow of gas during GAGD experiments 

is summarized in Table 3.22. The calculated vertical drainage rates and gas interface 

height for each core block is plotted in Figure 3.82. Lastly the comparison between 

predicted and actual oil recoveries is summarized in Table 3.23.  

The R&B model was validated against the Hawkins Dexter field data, and the model 

was found to under predict the ultimate oil recovery by 5.2% OOIP. From Table 3.23, it 

is clearly seen that the maximum error generated by this model’s application to the 

GAGD floods is 6.4%. This makes the R&B model a good prediction tool for gravity 

drainage ultimate recoveries. However, since this model does not predict oil production 

rates, another model was required for this purpose. To facilitate prediction of production 

rates, another model by Li and Horne (2003) was employed, and the results are discussed 

in the following sections. 

 

Table 3.21: Data Used for R&B Model Application 

Experiment Number Type GSDH # 1 GSDH # 3 NSDH # 1 NSDH # 3 

Pore Volume (Vp) (cubic ft) Expt. Data 0.0041 0.0041 0.0041 0.0041 

Cross-Sectional Area (A) (sq. ft) Expt. Data 0.0218 0.0218 0.0218 0.0218 

Permeability (Darcy) Expt. Data 0.2224 0.2440 0.1426 0.1176 

Density Difference (lbm/ft3) Winprop 38.3655 44.8946 38.3655 44.8946 

Oil Viscosity (cP) Winprop 0.9250 0.9250 0.9250 0.9250 

Gas Viscosity (cP) Winprop 0.0165 0.1879 0.0165 0.1879 

Relative Permeability to Oil (Fraction) Expt. Data 0.1001 0.1001 0.1001 0.1001 

Relative Permeability to Gas (Fraction) Expt. Data 0.0018 0.0500 0.0018 0.0500 

Recovery (%OOIP) Expt. Data 0.7544 1.0000 0.7387 1.0000 

Connate Water Saturation (Swc) Expt. Data 0.0194 0.0194 0.0452 0.0624 

Residual Oil Saturation to Gas (Sor) Expt. Data 0.3516 0.0000 0.3804 0.0000 

Critical Rate (Dietz's Model) (ft3/D) Calculated 4.3674 0.0786 2.7998 0.0379 

Critical Rate (Dietz's Model) (cc/hr) Converted 5152.9055 92.6803 3303.4372 44.6689 

Gas Fraction of Flowing Stream (Fg) Calculated 0.5546 0.8064 0.5358 0.7570 

Actual Rate of Frontal Movement (ft/D) Calculated 0.0812 0.0559 0.0841 0.0595 

Time to Breakthrough (Days) Calculated 12.3096 17.8986 11.8912 16.8010 
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3.6.2.2 Li and Horne (L&H) Model 

Since the R&B model did not predict the oil production rates, the Li and Horne (2003) 

empirical model was employed. The important feature of this model is the ability to 

incorporate capillary pressure data to improve gravity drainage recovery predictions. The 

capillary pressure data for the GAGD experiments and L&H model application was 

generated using the Brooks-Corey (1966) model.  

To check the validity of this model as well as to calibrate the data, the L&H model 

was employed to predict free gravity drainage data generated from 2-D Hele Shaw 

physical model runs (Sharma, 2005). The experimental and predicted recovery data 

comparison for two free gravity drainage floods is summarized in Figure 3.83. 

 

Table 3.22: Calculated Fractional Flow of Gas for GAGD Floods 

Kor Kgr Fg1 (GSDH # 1) Fg2 (GSDH # 3) Fg3 (NSDH # 1) Fg4 (NSDH # 3) 

0.1001 0.0000 0.0000 0.0000 0.0000 0.0000 

0.0900 0.0020 0.6069 0.1105 0.5882 0.1043 

0.0800 0.0040 0.7987 0.2187 0.7766 0.2077 

0.0700 0.0060 0.8883 0.3246 0.8666 0.3102 

0.0600 0.0080 0.9373 0.4282 0.9175 0.4116 

0.0500 0.0100 0.9661 0.5294 0.9489 0.5122 

0.0400 0.0120 0.9833 0.6283 0.9692 0.6117 

0.0300 0.0140 0.9934 0.7248 0.9825 0.7102 

0.0200 0.0160 0.9986 0.8189 0.9913 0.8078 

0.0100 0.0180 1.0005 0.9106 0.9968 0.9044 

0.0000 0.0200 1.0000 1.0000 1.0000 1.0000 

 

Table 3.23: Comparison of Experimental and Predicted Ultimate Oil Recovery for 

Various GAGD Floods 

Experiment Experimental Recovery R&B Model  Model Error 

  %OOIP %OOIP  Avg. Error: 5.6% 

GSDH # 1 64.8% 75.5% -16.5% 

GSDH # 4 100.0% 94.2% 5.8% 

NSDH # 1 62.3% 73.5% -17.9% 

NSDH # 4 100.0% 93.6% 6.4% 
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It is important to note that the L&H model is applicable only to free gravity drainage 

floods. Application of this model to forced gravity drainage (FrGD) 1-D GAGD 

corefloods and 2-D physical models resulted in over-prediction of the oil production 

rates. This is intuitive, since the pure (or free) gravity drainage performance is usually 

better than the forced gravity drainage performance (Muskat, 1949).  
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Figure 3.82: R&B Model Predicted Vertical Drainage Rates and Gas Interface Height for 

Each Core Block 
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Figure 3.83: Comparison of Experimental and L&H Model Predicted Oil Production 

Rates for Two Selected Free Gravity Drainage Tests in a 2-D Physical Model 

Proposed Modification to the Capillary Pressure Model Incorporated in the L&H 

Model to facilitate its application to Forced Gravity Drainage 

Sensitivity analysis of the L&H model application to the forced gravity drainage 1-D and 

2-D scaled GAGD experiments suggested the inadequacy of the Brooks-Corey model for 

capillary pressure modeling. Furthermore, the insensitivity of the pore size distribution 
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index (λ) as well as dimensionless length (Zc) of the model in production rate prediction; 

while the significant dependence on the depth corresponding to entry capillary pressure 

(Ze) data suggested the need for modification of the L&H model.  

Further consideration of the ‘demarcator’ concept of Cardwell and Parsons (1948) to 

generate analytical models for gravity drainage in low IFT conditions and / or fractured 

reservoir systems as well as regression analysis of the GAGD data suggested that for 

improved GAGD recovery predictions, the Ze needs to be multiplied by a factor defined 

by Equation 3.20. 











−=

)(

)(

*

Injection

Entry

C

Ps

P
LZeZe …………………………………………………………… (3.20) 

Where, Ze* is the modified Ze, Ze is the original depth corresponding to entry 

capillary pressure (Li and Horne, 2003), L is the equivalent length of the porous medium, 

PC
(Entry) is the entry capillary pressure calculated by Brooks-Corey model, and PS

(Injection) 

is the average system injection pressure (recorded during experimentation). 

This modification is very similar to the ‘demarcator’ concept proposed by Cardwell 

and Parsons (1948), and is also more representative of the multiphase mechanics 

operational in the flood. And although the employment of this equation sometimes 

generates negative dimensionless length (Zc) values; it does reflect the physical 

phenomenon operational in the flood. For example, for coreflood experiments, Equation 

25 generates a negative Zc value, physically suggesting that the entry capillary pressure 

effects (or capillary end effects) are insignificant. On the other hand, this value is found 

be zero or positive in free or forced 2-D Hele Shaw physical model runs, suggesting 

stronger capillary end effects, which are also supported by visual inferences (Sharma, 

2005). Finally, it is intended to make the capillary pressure modeling representative of 

the physical system as well as the improved performance prediction for the new GAGD 

scaled laboratory experiments. 

Tables 3.24 and 3.25 summarize the data employed for the application of the 

modified L&H model to the GAGD process’s coreflood and physical model experiments. 

Comparison of the modified L&H model predictions and the experimental results is 

graphically depicted in Figures 3.84 and 3.85. As can be observed from Figures 3.84 and 

3.85, excellent match between the experimental and model results is obtained. 

Furthermore, this modified model appears to be more representative of the various 

multiphase flow phenomena (such as displacement, film flow and gravity drainage)  
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Table 3.24: Data Used for Modified L&H Model Application to 2-D GAGD Floods 

Experiment Number Type FrGD # 1  FrGD # 2 FrGD # 3 FrGD # 4 

Beta (β) Calculated 0.016528 0.01552413 0.018871722 0.019756 

Pore Volume (Vp) Expt. Data 514.8 522 520 530 

Recovery (%OOIP) Expt. Data 0.675578 0.494708356 0.593096558 0.708109 

Connate Water Saturation (Swc) Expt. Data 0.203574 0.22605364 0.173076923 0.245283 

Residual Oil Saturation to Gas (Sor) Expt. Data 0.258378 0.391068629 0.336477847 0.220295 

Initial Oil Production Rate (Qoi) Calculated 4.578103 3.102686421 4.812883847 5.595865 

Ultimate Oil Production by FGD (Npo Inf.) Calculated 276.9869 199.8621759 255.0315198 283.2435 

Average Residual Oil Saturation (Sor Avg.) Calculated 0.258378 0.391068629 0.336477847 0.220295 

Depth Corresponding to Entry Pc (Ze) Expt. Data 0.35 0.35 0.35 0.35 

Pore Size Distribution Index (λ) Assumed 3 5 3 5 

Dimensionless Length (Zc) Calculated 0 0 0 0 

 

Table 3.25: Data Used for Modified L&H Model Application to 2-D GAGD Floods 

Experiment Number Type GSDH # 1 GSDH # 3 NSDH # 1 NSDH # 3 

Beta (β) Calculated 0.0010 0.0014 0.0016 0.0016 

Pore Volume (Vp) Expt. Data 116.2600 116.2600 116.2600 116.2600 

Recovery (%OOIP) Expt. Data 0.7544 1.0000 0.7387 1.0000 

Connate Water Saturation (Swc) Expt. Data 0.0194 0.0194 0.0452 0.0624 

Residual Oil Saturation to Gas (Sor) Expt. Data 0.2408 0.0000 0.2494 0.0000 

Initial Oil Production Rate (Qoi) Calculated 0.0881 0.1603 0.1304 0.1773 

Ultimate Oil Production by FGD (Npo Inf.) Calculated 86.0000 114.0000 82.0000 109.0000 

Average Residual Oil Saturation (Sor Avg.) Calculated 0.2408 0.0000 0.2494 0.0000 

Depth Corresponding to Entry Pc (Ze) Expt. Data 0.3500 0.3500 0.3200 0.3500 

Pore Size Distribution Index (λ) Assumed 3.0000 5.0000 3.0000 5.0000 

Dimensionless Length (Zc) Calculated -0.1483 -0.1483 -0.0499 -0.1483 
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Figure 3.84: Comparison of Experimental, L&H and Modified L&H Models Predicted 

Oil Production Rates for Forced Gravity Drainage 2-D Physical Model GAGD Floods 

 
3.6.3 Inferences and Recommendations for Future Modeling Work of the GAGD Process 

The literature review on gravity drainage suggests that the fundamental understanding 

and modeling of the gravity drainage process is still a challenge to the reservoir engineer, 

mainly because of the limitations of the reservoir simulation tools to better include the 

physics of the process into improved reservoir management. This section summarizes the 

important mechanistic and dynamic characteristics of the gravity drainage process 

identified and also attempts to distinguish between displacement and drainage 

phenomena. Finally some recommendations for continued research on analytical 

modeling of the new GAGD process are also included. 
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Figure 3.85: Comparison of Experimental and Modified L&H Model Predicted Oil 

Production Rates for Forced Gravity Drainage 1-D GAGD Corefloods 

 

3.6.3.1 Hypothesized Gravity Drainage Mechanisms and its Possible Distinction 

from Buckley Leverett Type Displacements  

The literature review (Schechter and Guo, 1996) suggests that there are three distinct 

categories of the gravity drainage processes: (i) forced gravity drainage by gas injection 

at controlled flow rates, (ii) centrifuge simulated gravity drainage (not occurring in 

natural systems), and (iii) free fall gravity drainage occurring in a variety of cases, such 

as pressure depleted fractured and volumetric reservoirs, and gas injection (or pressure 

maintenance) into highly fractured reservoirs.  

It appears that the displacement (classical definition) is an indivisible characteristic of 

the forced gravity drainage (GAGD) phenomenon. However, the displacement 

phenomenon appears to be one of the several distinct phenomena occurring during the 

GAGD process. Nevertheless, almost all the models used to characterize forced gravity 

drainage (relevant to the GAGD process), employ the Buckley-Leverett approach. Inspite 

of the inherent limitations of the B-L theory (imparted due to unrealistic assumptions 

from gravity drainage injection view-point: see Section 6.1.2), its application to a wide 

variety of scenarios with fair results, suggest it to be relevant and important to forced 
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gravity drainage (therefore GAGD) applications. However, from a theoretical point of 

view, this argument appears to be valid only when there is little or no pressure variation 

within the gas chamber, which may be achievable for constant pressure type and low 

injection rate floods. Therefore, the B-L theory could be useful to model gravity drainage 

until gas breakthrough.  

It is interesting to note that all the forced gravity drainage models that employ B-L 

approach appear to be valid only until gas breakthrough. This is a serious limitation, since 

the modified B-L theory (which includes the capillary pressure effects on oil recoveries 

and breakthrough times) suggests that in real reservoir systems (water-wet), the 

production rates decrease after breakthrough and this decrease is proportional to pore 

volume injection, residual saturation and the corresponding oil relative permeability; and 

therefore cannot be used to predict post breakthrough oil production rates. Furthermore, 

for pure piston-like displacements, in water-wet porous media (ignoring capillary 

pressure), ‘clean’ breakthroughs are observed, i.e. no oil production after water 

breakthrough. This statement is also supported by the scaled secondary waterflood data 

on realistic water-wet porous media (also reported in this study). GAGD experimental 

data (presented in Chapter 5) clearly demonstrate that GAGD oil production rates do not 

drop significantly even after gas breakthrough. This suggests that the spreading 

coefficient and oil film flow rates are important for GAGD oil recovery (especially after 

gas breakthrough) and must be incorporated into the GAGD analytical models. Gravity 

drainage literature review also seems to support this view.  

It is hypothesized that the GAGD process operates in three distinct multiphase modes: 

(i) piston-like displacement (B-L theory, decline curve and continuity equation, and 

Darcy’s law are valid), (ii) gravity drainage mechanisms (oil film flow under positive 

spreading coefficient conditions), and finally (iii) extraction mechanism. The lumped 

approach of Richardson and Blackwell (1971) and Pedrera et al. (2002) also seems to 

support this multi-level and multi-mechanistic approach.  

The first multiphase mode is supported by many authors (Terwilliger et al., 1951; 

Hagoort, 1980; Li et al.; 2000) and is best depicted in Hagoort’s (1980) schematic of the 

forced gravity drainage (gravity stable gas displacement) flood front (Figure 3.86). The 

second multiphase mechanism stems from the limitations of the B-L theory to accurately 

predict the oil production rates under forced gravity drainage (GAGD) floods. Scaled 

corefloods, physical model results as well as field reviews clearly demonstrate that oil 

production rates may not drop after gas breakthrough.  
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Figure 3.86: Buckley-Leverett Saturation Profile for Stable Downward Displacement 

(Hagoort, 1980) 

Additionally, the B-L ‘shock-front’ concept does not appear to be applicable to the 

forced gravity drainage process. The saturation shock (from initial oil saturation ahead of 

the flood front to residual oil saturation immediately behind the front) does not appear to 

be representative of the reservoir mechanics during forced gravity drainage (GAGD), 

attributable to the presence of oil films, which act as high-speed conduits for oil 

production. The laboratory studies on gravity drainage (see section 3.1.3) appear to 

support this view since they stress the importance of thicker and continuous oil films to 

promote improved film flow and consequently higher gravity drainage recoveries.  

The last multiphase mechanism was not apparent from ‘model’ laboratory fluids used 

for scaled GAGD floods. This phenomenon was noticed during GAGD Yates corefloods, 

wherein the color of the produced crude oil started fading towards the end of the flood. 

The pictorial representation of this phenomenon is shown in Figure 3.87. 

The reduced color intensity of the produced oil suggested the possibility of the ‘in-

situ’ oil up gradation and increased API gravity of the produced oil during the GAGD 

process. The possibility of dilution of the produced oil by the injected solvent was 

limited, since this oil sample was recovered after the backpressure regulator (at ambient 
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conditions. Since the injected solvent (CO2) cannot exist in the liquid phase at ambient 

conditions, the dilution effect is probably not relevant in this scenario.  

 

Figure 3.87: Gradual Color Fading of the Produced Oil for GAGD Yates Corefloods 

A fully compositional numerical simulation model which included the effects of 

molecular diffusion and interfacial tension (Darvish et al., 2004: Figure 88) reconfirms 

the presence of the two mechanisms during forced gravity drainage, film flow gravity 

drainage and extraction mechanism, and also attests that the film flow gravity drainage 

phenomenon does not become active (at a given point in the porous medium) till that 

point comes at the trailing end of the gas front.  

 

 
Figure 3.88: Numerical Simulations Demonstrating the Presence of Gravity Drainage 

Film Flow Mechanism and the Extraction Mechanism in Forced Gravity Drainage 

(GAGD) Type Flow (Darvish et al., 2004) 
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3.6.3.2 Inferences and Recommendations 

The above discussion clearly suggests that the characterization and modeling GAGD 

process is a multi-mechanistic approach. The modified L&H model and the proposed 

multi-step explanation of the GAGD flood mechanism (consisting of Buckley-Leverett 

flooding till gas breakthrough, film flow phenomenon and extraction mechanism), 

appears to be well supported by previous work. One of the critical limitations of the 

modified L&H model is its empirical nature, which significantly limits its scope of 

application. Additionally, there appear to be many smaller multiphase mechanisms 

operational during the GAGD process using CO2 such as: extraction, molecular diffusion, 

non-linear film flow, solvent (CO2) dissolution, viscous displacement, capillary retention 

etc. which need to be better understood. The next step to this work would be the 

characterization of the contribution of these individual mechanisms in the gravity 

drainage process and development of an analytical model of the phenomena.  

 

3.7 Conclusions and Recommendations 

This section summarizes the conclusions resulting from this experimental study, and also 

attempts to detail the possibilities for continued research work into gas assisted gravity 

drainage. 

 

3.7.1 Conclusions 

3.7.1.1 Conclusions from Dimensional and Mechanistic Studies on GAGD Process 

1. The critical multiphase mechanisms and fluid dynamics operational during gravity 

stable gas injection (consequently the GAGD process) have been identified and 

studied in detail in course of this study. The multiphase mechanisms identified to be 

relevant to the GAGD process are: (i) gravity segregation, (ii) wettability, (iii) 

spreading coefficient, (iii) miscibility, and (iv) connate and mobile water saturation. 

The fluid dynamics identified are: (i) gas injection mode and (ii) reservoir 

heterogeneity effects. Each of these multiphase mechanisms and fluid dynamics have 

been experimentally investigated in this study.  

 

3.7.1.2 Conclusions from Scaled GAGD Experimentation 

1. The GAGD process could potentially outperform all the presently practiced 

commercial modes of gas injection, namely CGI, WAG and Hybrid-WAG, as verified 

by scaled laboratory corefloods. While the recoveries in immiscible CGI and WAG 

scaled corefloods were 33.7% and 56.4% ROIP respectively, the immiscible GAGD 

coreflood recoveries were 58.37% ROIP. On the other hand, the miscible CGI, WAG 

Hybrid-WAG and GAGD coreflood recoveries, under miscible flooding conditions, 

were 97.6%, 72.5%, 93.6% and 100% ROIP respectively. It is important to note that 

the gas requirements to achieve these recoveries were lowest in the GAGD process. 
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2. Although miscibility development is beneficial in many GAGD applications, 

immiscible GAGD employment could generate comparable (in the range of 47.27% 

to 88.56% ROIP) oil recovery characteristics, which has also been found to be nearly 

5 to 8 times miscible WAG performance (average incremental field scale oil recovery 

reported: 9.4% OOIP). Therefore, miscibility development may not be a controlling 

economic decision for the commercial GAGD process application. 

3. However, it is important to note that all the miscible GAGD corefloods conducted in 

this study, eventually resulted in near perfect (near 100% ROIP) oil recoveries, 

irrespective of core properties or experimental conditions. 

4. The GAGD flood tertiary recovery factor (TRF) behavior demonstrated significantly 

higher (nearly 2 to 3 times) gas utilization factors as compared to CGI, WAG and 

Hybrid-WAG floods. This hastened TRF peaks and asymptotic (non-exponential) 

decrease in TRF values throughout the life of the GAGD flood, as compared to steep 

declines in TRF for WAG floods, indicates sustained and superior gas utilization.  

5. The exponential pressure drop decrease observed in GAGD corefloods, as against the 

sustained high pressure drops during CGI and WAG floods, suggests lower injectivity 

problems during field implementation of the GAGD process. The rapid approach of 

the flood pressure drop to absolute permeability pressure drop values is also 

indicative of the higher sweep efficiencies of the GAGD flood.  

6. Comparable oil recovery patterns in widely varied experimentation systems, ranging 

from uniform porous media (Berea sandstone) to highly heterogeneous fractured 

cores (Yates reservoir cores (dolomite)), in both miscible and immiscible modes, 

clearly indicates that GAGD process appears to be immune to the effects of reservoir 

heterogeneity, a serious concern for horizontal mode gas injections. Additionally, the 

presence of vertical fractures in the reservoir could be beneficial to the GAGD 

process as observed from near perfect recoveries for miscible floods, and higher 

immiscible recoveries of 88.56% and 64.83% ROIP, respectively, for fractured and 

un-fractured GAGD coreflood experiments. 

7. The long core experiment conducted to investigate the possibility of gas bubble 

control during the GAGD process suggests that: (i) the premature gas breakthrough 

(due to very high injection rates) very early in the life of the GAGD flood does not 

negatively influence the ultimate oil recoveries achievable, and that (ii) the gas 

bubble developed in the reservoir during GAGD flood is definitely controllable via 

the rate of injection. Furthermore comparable oil recoveries for the variable rate 

coreflood and constant rate coreflood experiment (72.86% and 64.83% ROIP 

respectively) suggest that the GAGD recoveries are independent of injection rate 

(provided they are below the critical injection rate) 
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3.7.1.3 Conclusions from Conceptual Studies on GAGD Process 

1. Preliminary mechanistic and dynamic differences between the drainage and 

displacement phenomenon have been identified and a new mechanism to characterize 

the GAGD process fluid mechanics (consisting of Buckley-Leverett flooding till gas 

breakthrough, film flow phenomenon and extraction mechanism) has been proposed.  

2. To incorporate the relative variation in the capillary, viscous and buoyancy forces 

into a single parameter and to provide with a common comparison and prediction 

tool, a new dimensionless number [NG + {(ρG/ρO)*(NC+NB)}] has been identified. 

Good correlation between the newly proposed number and GAGD recoveries was 

observed. More importantly, the ability of this correlation to match immiscible as 

well as miscible GAGD flood performance makes it a useful tool for predicting 

GAGD oil recoveries. 

3. The Richardson and Blackwell analytical model was successfully applied to predict 

the ultimate oil recoveries for the GAGD process, within 6.4% error.  

4. Since the Richardson and Blackwell model could not predict the dynamic GAGD 

behavior, an empirical Li and Horne model (developed for free gravity drainage 

applications) was used. Although this model predicted the dynamic behavior of free 

GAGD process, it was found to over predict the forced GAGD oil recoveries.  

5. A new parameter (Ze*) was therefore introduced in the Li and Horne model for 

improved prediction of the dynamic GAGD flood behavior. The introduction of this 

parameter resulted in an accurate model (although empirical) to predict GAGD oil 

recoveries.   

 

3.7.2 Recommendations for Future Work on GAGD Process 

3.7.2.1 Recommendations for Conceptual and Analytical Development 

1. Detailed study of drainage versus displacement characteristics. 

2. Development of an analytical or computational GAGD performance prediction model 

using simple analytical models. 

3. Development of GAGD screening criteria based on rock and fluid characteristics, to 

enable reservoir screenings prior to GAGD process application (e.g. defining the 

minimum vertical to horizontal permeability (kv/kh) ratio, porosity, oil API gravity, 

connate water saturation (Swc) or residual oil saturation (Sor)). 

4. Investigation of single-well GAGD applications in reservoirs commonly found in the 

Gulf of Mexico: thin bedded, laminated sheet sands, shaly sands, highly faulted and 

complex reservoirs (e.g. a channel-levee complex). 

5. Development of a flow regime characterization map for major flow regimes 

generated during GAGD displacements and their cross-characterization with observed 

oil recoveries. 
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6. Tools for pre-prognosis of possible operational and execution problems, such as gas 

compressibility issues possibly resulting in decreased injectivity during immiscible 

gas injections. 

 

3.7.2.2 Recommendations for Further Laboratory Experimentation 

1. Conducting scaled laboratory GAGD corefloods using different crude oils (with 

varying fingerprint characteristics such as high ashphaltenes content, high paraffin 

content, high resin content etc.) at respective reservoir conditions and with reservoir 

cores, to study the dependence (if any) of the GAGD process performance on crude 

oil characteristics and oil-gas interactions. 

2. Investigation of possibly improved protocols for tertiary GAGD implementation (e.g. 

producing mobile water before gas injection through horizontal well to decrease the 

water-shielding effects and improved oil relative permeabilities, etc.) 

3. GAGD studies using hydrocarbon and flue gas for offshore and CO2 sequestration 

applications. 

4. Investigation of reverse GAGD injection for gravity stable pressure and depletion 

management (PDM) in hydrocarbon gas reservoirs (e.g. injection of water using 

horizontal well and gravity stable gas production using vertical wells). 

 

3.7.2.3 Recommendations for 2-D/3-D Simulation / Experimental Model Studies 

1. Micromodel studies for visualization of oil film flows during GAGD floods.  

2. Investigation of the effects of withdrawal rates on GAGD gas chamber characteristics 

and development. 

3. Investigation of the effects of reservoir heterogeneity, shale barriers and poor cement 

job (channeling) on GAGD gas injectivity and oil recovery. 

4. Characterization of reservoir wettability effects on GAGD oil recoveries. 

5. Investigation of optimum injection well spacing as well as the true vertical span 

between injector and producer for GAGD applications. 

6. Studies to improve production rates in GAGD process (e.g. by possible variation 

between the viscous / capillary / gravity force ratios). 

7. Investigations of GAGD application in water drive reservoirs (e.g. strong bottom or 

edge water drives). 

8. Investigation of possible improved GAGD oil recovery rates by employment of 

peripheral water injection in volumetric reservoirs, followed by the double 

displacement process (DDP) to maximize both microscopic and macroscopic sweep. 
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4. Technology Transfer Efforts  

Numerous technology transfer efforts were undertaken by the LSU-EOR Research Group 

during this project period from Oct 2002 to date. This project research has yielded 2 

doctoral dissertations, 5 master’s theses, 16 reviewed journal publications, 20 full-length 

papers published in international conference proceedings, and 7 presentations in 

international symposiums.  

Additionally, invited presentations were held at: 

• The Independent’s Day Session at the SPE/DOE IOR Symposium in April 2006. 

• The Desk and Derrick Club of Baton Rouge on September 21st, 2006. 

• LSU’s Saturday Science program on October 7th, 2006.  

A two-hour course was also given at the Oil and Natural Gas Corporation Limited 

(ONGC) in Ahmedabad, India. 

This work also helped arrange for a half-day workshop at the Petroleum Club of 

Shreveport, LA, hosted by the Petroleum Technology Transfer Council (PTTC).  

Finally, the technology transfer efforts have resulted in two patent applications and 

one commercial license of the GAGD process. 

 

4.1 Technical Progress Reports 

Eleven Quarterly Technical Progress Reports, 3 Annual Reports, and one Final Technical 

Report have been prepared and submitted to US-DOE during the project period from 

October 2002 to December 2006. 

 

4.2 Ph.D. Dissertations 

1. Ayirala, S.C., “Measurement and Modeling of Fluid-Fluid Miscibility in 

Multicomponent Hydrocarbon Systems,” Craft and Hawkins Department of 

Petroleum Eng., Louisiana State University, Baton Rouge, LA 70803, Aug 2005. 

2. Kulkarni, M.M., “Multiphase Mechanisms and Fluid Dynamics in Gas Injection 

Enhanced Oil Recovery Processes”, Craft and Hawkins Department of Petroleum 

Eng., Louisiana State University, Baton Rouge, LA 70803, Aug 2005. 

3. Paidin, W.R, Craft and Hawkins Department of Petroleum Eng., Louisiana State 

University, Baton Rouge, LA 70803, In progress. 

 

4.3 M.S. Theses 

1. Mahmoud, T. N. N., “Demonstration and Performance Characterization of the Gas 

Assisted Gravity Drainage (GAGD) Process using a Visual Model,” Craft and 

Hawkins Department of Petroleum Eng., Louisiana State University, Baton Rouge, 

LA 70803, August 2006. 



 433 

2. Paidin, W. R., “Physical Model Study of the Effects of Wettability and Fractures on 

Gas-Assisted Gravity Drainage (GAGD) Performance,” Craft and Hawkins 

Department of Petroleum Eng., Louisiana State University, Baton Rouge, LA 70803, 

May 2006. 

3. Sharma, A. P., “Physical Model Experiments of the Gas-Assisted Gravity Drainage 

Process,” Craft and Hawkins Department of Petroleum Eng., Louisiana State 

University, Baton Rouge, LA 70803, August 2005. 

4. Xu, W., “Experimental Investigation of Dynamic Interfacial Interactions at Reservoir 

Conditions,” Craft and Hawkins Department of Petroleum Eng., Louisiana State 

University, Baton Rouge, LA 70803, May 2005. 

5. Kulkarni, M.M., “Immiscible and Miscible Gas-Oil Displacements in Porous Media”, 

Craft and Hawkins Department of Petroleum Eng., Louisiana State University, Baton 

Rouge, LA 70803, Aug 2003. 

 

4.4 Reviewed Journal Publications 

1. Rao, D.N., and Ayirala, S.C.: “Authors’ Response to the Comments on A New 

Mechanistic Parachor Model to Predict Interfacial Tension and Miscibility in 

Multicomponent Hydrocarbon Systems by F.M. Orr and K. Jessen,” Article in Press, 

Journal of Colloid and Interface Science, 2006. 

2. Ayirala, S.C. and Rao, D.N.: “A New Mechanistic Parachor Model to Predict 

Dynamic Interfacial Tension and Miscibility in Multicomponent Hydrocarbon 

Systems,” Journal of Colloid and Interface Science, 299 (2006) 321-331. 

3. Ayirala, S.C. and Rao, D.N.: “Application of Parachor Model to the Prediction of 

Miscibility in Multi-Component Hydrocarbon Systems,” Journal of Physics: 

Condensed Matter, 16 (2004) S2177- S2186. 

4. Ayirala, S.C. and Rao, D.N.: “Dew Point Pressure Prediction of Gas Condensate 

Reservoirs,” Oil Asia Journal, September-October 2005. 

5. Ayirala, S.C. and Rao, D.N.: “Miscibility Determination from Gas-Oil Interfacial 

Tension and P-R Equation of State,” Manuscript Accepted for Publication in 

Canadian Journal of Chemical Engineering, 2006. 

6. Ayirala, S.C. and Rao, D.N.: “Solubility, Miscibility and their Relation to Interfacial 

Tension in Ternary Liquid Systems,” Fluid Phase Equilibria Journal, 249 (2006) 82-

91. 

7. Ayirala, S.C., and Rao, D.N.: “A New Mechanistic Parachor Model to Predict 

Dynamic Interfacial Tension and Miscibility in Multicomponent Hydrocarbon 

Systems,” Journal of Colloid and Interface Science, 299 (2006) 321-331. 

8. Ayirala, S.C., and Rao, D.N.: “Comparative Evaluation of a New MMP 

Determination Technique,” Manuscript under Review for Publication in SPE Journal, 

2006. 
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9. Ayirala, S.C., and Rao, D.N.: “Miscibility Determination from Gas-Oil Interfacial 

Tension and P-R Equation of State,” Manuscript under Review for Publication in 

Canadian Journal of Chemical Engineering, 2006. 

10. Ayirala, S.C., and Rao, D.N.: “Solubility, Miscibility and their Relation to Interfacial 

Tension in Multicomponent Hydrocarbon Systems,” Manuscript under Review for 

Publication in Fluid Phase Equilibria Journal, 2006. 

11. Ayirala, S.C., Xu, W. and Rao, D.N.: “Interfacial Behavior of Complex Hydrocarbon 

Fluids at Elevated Pressures and Temperatures,” Canadian Journal of Chemical 

Engineering, 84 (Feb. 2006) 22-32. 

12. Rao, D.N. and Ayirala, S.C.: “The Multiple Roles of Interfacial Tension in Fluid 

Phase Equilibria and Fluid-Solid Interactions,” Journal of Adhesion Science and 

Technology, 20 (Feb. 2006) 125-142. 

13. Rao, D.N., and Ayirala, S.C.: “Mechanistic Modeling of Dynamic Vapor-Liquid 

Interfacial Tension in Complex Petroleum Fluids,” Manuscript under Review for 

Publication in Contact Angle, Wettability and Adhesion, Vol. 5, Ed. K.L. Mittal, 

2006. 

14. Kulkarni, M. M., and Rao, D. N., “Experimental Investigation of Miscible and 

Immiscible Water-Alternating-Gas (WAG) Process Performance”, Journal of 

Petroleum Science and Engineering, 48 (2005), 1 – 20. 

15. Kulkarni, M. M., and Rao, D. N., “Experimental Investigation of Miscible and 

Immiscible Water-Alternating-Gas (WAG) Process Performance”, PETROL 1277, J. 

of Pet. Sci. and Eng, 2005. 

 

4.5 Manuscripts under Review for Journal Publication 

1. Rao, D.N. and Ayirala, S.C.: “Mechanistic Modeling of Dynamic Vapor-Liquid 

Interfacial Tension in Complex Petroleum Fluids,” Manuscript under Review for 

Publication in Contact Angle, Wettability and Adhesion, Vol. 5, Ed. K.L. Mittal, 

2006. 

 

4.6 Full-Length Papers Published in International Conference Proceedings 

1. Ayirala, S.C. and Rao, D.N.: ‘Measurement and Modeling of Gas-Oil Miscibility for 

Improved Oil Recovery,” Paper presented at the 20th International Symposium of the 

Society of Core Analysts, Trondheim, Norway, Sept. 12-16, 2006. 

2. Rao, D.N. and Ayirala, S.C.: “Mechanistic Modeling of Dynamic Vapor-Liquid 

Interfacial Tension in Complex Petroleum Fluids,” Invited paper presented at Fifth 

International Symposium on Contact Angle, Wettability and Adhesion, 21-23 June 

2006, Toronto, Canada.  
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3. Ayirala, S.C. and Rao, D.N.: “Comparative Evaluation of a New MMP Determination 

Technique,” SPE Paper 99606 presented at 2006 SPE Symposium on Improved Oil 

Recovery, April 22-26, Tulsa, U.S.A.  

4. Ayirala, S.C., Xu, W. and Rao, D.N.: “Interfacial Behavior of Complex Hydrocarbon 

Fluids at Elevated Pressures and Temperatures,” Paper presented at the 2005 

International Conference on MEMS, Nano and Smart Systems, July 24-27, Banff, 

Alberta, Canada. 

5. Ayirala, S.C. and Rao, D.N.: “Dew Point Pressure Prediction of Gas Condensate 

Reservoirs,” Paper No. 470 presented at the 6th International Petroleum Conference 

and Exhibition, Petrotech-2005, New Delhi, India, January 16-19, 2005. 

6. Ayirala, S.C. and Rao, D.N.: “Solubility, Miscibility and their Relation to Interfacial 

Tension for Application in Reservoir Gas-Oil Systems,” SPE Paper 91918 presented 

at the SPE International Petroleum Conference, Puebla, Pue., Mexico, Nov. 7-9, 

2004. 

7. Ayirala, S.C. and Rao, D.N.: “Application of a New Mechanistic Parachor Model to 

Predict Dynamic Gas-Oil Miscibility in Reservoir Crude Oil-Solvent Systems,” SPE 

Paper 91920 presented at the SPE International Petroleum Conference, Puebla, Pue., 

Mexico, Nov. 7-9, 2004. 

8. Rao, D.N. and Ayirala, S.C.: “The Multiple Roles of Interfacial Tension in Fluid 

Phase Equilibria and Fluid-Solid Interactions,” Invited paper presented at Fourth 

International Symposium on Contact Angle, Wettability and Adhesion, Philadelphia, 

PA, June 14-16, 2004. 

9. Rao, D.N., Ayirala, S.C., Kulkarni, M.M. and Sharma, A.P.: “Development of Gas 

Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery,” SPE 

Paper 89357 presented at the SPE/DOE 14th Symposium on Improved Oil Recovery, 

Tulsa, OK, April 17-21, 2004. 

10. Ayirala, S.C., Rao, D.N. and Casteel, J.: “Comparison of Minimum Miscibility 

Pressures Determined from Gas/Oil Interfacial Tension Measurements with Equations 

of State Calculations”, SPE Paper 84187 presented at the 2003 SPE Annual Technical 

Conference and Exhibition, Denver, Colorado, October 5-8, 2003. 

11. Ayirala, S.C. and Rao, D.N.: “Validation of New Experimental Approach of 

Vanishing Interfacial Tension (VIT) for Minimum Miscibility Pressure (MMP) 

Determination Using Equation of State”, Paper Presented at the Astatphys-Mex 2003 

Petroleomics Symposium, Puerto Vallarta, Mexico, August 22-25, 2003. 

12. Kulkarni, M. M., and Rao, D. N., “Experimental Investigation of Various Methods of 

Tertiary Gas Injection”, SPE 90589, Presented at the 80th SPE ATCE, Houston, TX, 

Sept 26 – 29, 2004 
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13. Kulkarni, M. M., and Rao, D. N., “Analysis of the Novel Toe-To-Heel Air Injection 

(THAI) Process using Analytical Models”, AIChE 2004 Annual Meeting, Austin, TX, 

Nov 7 –12, 2004 

14. Kulkarni, M. M., and Rao, D. N., “Is Gravity Drainage an Effective Alternative to 

WAG?”, AIChE 2004 Annual Meeting, Austin, TX, Nov 7 –12, 2004 

15. Kulkarni, M. M., and Rao, D. N., “Analytical Prediction of In-Situ Combustion (ISC) 

Process Performance – Applicability to Indian EOR Scene”, 11th Annual India Oil 

and Gas Review Symposium and International Exhibition (IORS), Mumbai, India, 

Sept 6 – 7, 2004 

16. Kulkarni, M. M., and Rao, D. N., “Is there a ‘Happy-Medium’ between Single Slug 

and Water-Alternating-Gas (WAG) Processes?”, 11th IORS, Mumbai, India, Sept 6 – 

7, 2004 

17. Kulkarni, M. M., Sharma, A. P., and Rao, D. N., “Use of Dimensional Analysis for 

Scaling Immiscible Gas Assisted Gravity Drainage (GAGD) Experiments”, SCA 

P064,19th International Symposium of the Society of Core Analysts, Toronto, 

Canada, Aug 2005 

18. Kulkarni, M. M., and Rao, D. N., “Experimental Investigation of Miscible Secondary 

Gas Injection”, SPE 95975, 81st Society of Petroleum Engineers’ ATCE, Dallas, TX, 

Oct 2005 

19. Kulkarni, M. M., and Rao, D. N., “Characterization of Operative Mechanisms in 

Gravity Drainage Field Projects Through Dimensional Analysis”, SPE 103230, 

Society of Petroleum Engineers’ ATCE, San Antonio, TX, Sept 24-27, 2006. 

20. Kulkarni, M. M., “Analytical Modeling of the Forced Gravity Drainage GAGD 

Process”, American Inst. of Chemical Engineers Annual Meeting, San Francisco, CA, 

Nov 12 –17, 2006. 

 

4.7 Technical Paper Presentations in National/International Symposiums 

1. Ayirala, S.C., Kulkarni, M.M. and Rao, D.N.: “Application of GAGD Process in a 

Louisiana Oil Field – Reservoir Characterization and Simulation,” Paper presented at 

the PPTC Workshop, Shreveport, Sept.13, 2006. 

2. Ayirala, S.C. and Rao, D.N.: “Mass Transfer Effects in Fluid-Fluid Miscibility 

Determination,” Paper presented in the 230th ACS National Meeting, Washington, 

DC, USA, Aug. 28-Sept.1, 2005. 
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