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Abstract

This project is designed to develop a family of novel NOx control technologies, called Second

Generation Advanced Reburning which has the potential to achieve 90+ NOx control in coal

fired boilers at a significantly lower cost than Selective Catalytic Reduction. The seventh

reporting period in Phase II (April 1 – June 30, 1999) included experimental activities and

combined chemistry-mixing modeling on advanced gas reburning. The goal of combustion tests

was to determine the efficiency of advanced reburning using coal as the reburning fuel. Tests

were conducted in Boiler Simulator Facility (BSF). Several coals were tested. The modeling

effort was focussed on the description of N-agent injection along with overfire air. Modeling

identified process parameters that can be used to optimize the AR-Lean process.
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Executive Summary

This project is designed to develop a family of novel NOx control technologies, called
Second Generation Advanced Reburning which has the potential to achieve 90+ NOx control in
coal fired boilers at a significantly lower cost than SCR. The seventh reporting period in Phase II
(April 1 – June 30, 1999) included combustion tests and combined chemistry-mixing modeling
on advanced reburning.

The goal of combustion tests was to determine the efficiency of the advanced reburning
(AR) process using coal as the reburning fuel. The first step in testing advanced coal reburning is
to rank different coals in tests on basic reburning. Tests were conducted in 300 kW Boiler
Simulator Facility (BSF). The fuel tested included coals utilized by South Carolina Electric and
Gas (Consol Jines Fork, Sunnyridge, Knott-Floyt Land and Rocklick) and E-fuel, which is a
waste-based product consisting of 70% coal, 15% plastics, and 15% paper. Test were conducted
with natural gas and coals as the primary fuel. For the natural gas tests, E-Fuel provided the
highest NOx reduction. For the coal primary tests, Knott-Floyd Land coal performed the best.
The data analysis to interpret the results is in progress.

The second step in advanced coal reburning testing includes combustion experiments
with injection of N-agents in reburning and burnout zones, and along with overfire air (OFA).
The tests matrix for these tests has been developed and tests are in progress.

Since the efficiency of AR depends on many factors, the best performance can be
achieved if the effects of these factors on the process performance are well determined and
understood. The most efficient approach to the AR optimization is to explore the effects of
different parameters on NOx reduction via combined kinetic-mixing modeling and to use the
model for guidance to select the most effective test conditions. During the reporting period the
extended AR model was developed and validated based on experiments involving co-injection of
aqueous NH3 and urea with OFA. The modeling effort during this period concentrated on
parameters for optimizing the effect of N-agent addition with OFA, i.e. AR-Lean. The variables
in modeling included the amount of the reburning fuel, temperature of flue gas at the point of
OFA and N-agent injection, initial temperature of OFA and N-agent, and the amount of N-agent.
Modeling shows that the efficiency of reburning increases when N-agent is co-injected with
OFA. When optimum process parameters are selected, modeling predicts the efficiency of NOx

reduction in AR-Lean to be about 95%.



6

1.0 Coal Reburning Studies

Basic reburning and advanced reburning tests were performed in which coal was used as

the reburning fuel. These tests were performed in conjunction with South Carolina Electric and

Gas (SCE&G) that is considering installing basic coal reburning on multiple boilers with

potential to subsequently utilize advanced coal reburning. Coal can be effectively used as a

reburning fuel given the right fuel properties and process conditions. In some boiler applications

the use of coal as a reburning fuel is limited by the fact that furnace temperatures and residence

times are insufficient to fully combust the reburning coal, leading to high carbon-in-ash levels.

However, the boilers of interest are equipped with carbon recovery units and thus can tolerate

relatively high carbon-in-ash levels. Therefore, these boilers are ideal targets for application of

coal reburning and advanced coal reburning.

Two test series were planned, including basic reburning and promoted advanced

reburning. All test work was conducted at EER’s 1.0 MMBtu/hr Boiler Simulator Facility, which

was described in detail in previous reports. As detailed in the following sections, the basic

reburning tests have been completed. The advanced reburning tests are in progress, the results

will be reported in the forthcoming quarter and compare with the basic reburning tests.

1.1 Basic Coal Reburning Tests

Studies conducted by EER have shown that a number of fuels can be used effectively in

the reburning process. However, due to the heterogeneous nature of coal, it is not possible to

predict how a specific coal will perform as a reburning fuel based upon easily characterized fuel

properties. Therefore, combustion tests were performed to evaluate the reburning performance of

five coals of specific interest to SCE&G. The primary objective of the basic reburning tests was

to characterize the impacts of reburning process parameters on NOx reduction at conditions

typical of the full-scale boilers.

For the initial experiments, the main burner was fired with natural gas. Ammonia was

premixed with the combustion air to provide a controlled initial NOx level. Five reburning test

fuels were provided by the utility, including four bituminous coals and a material referred to as
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“E-fuel,” which consists nominally of 70% coal, 15% plastics, and 15% paper. Fuel

characteristics are shown in Table 1-1. Each fuel was pulverized such that 70% passed through a

200 mesh sieve. The coals were pulverized in a CE-Raymond deep bowl mill. E-Fuel was

pulverized in a hammer mill. The E-Fuel was found to be somewhat sticky, especially at higher

temperatures. It tended to clog the screen on the mill, requiring that the screen be removed and

cleaned several times during the milling. It was also found during the reburning tests that the E-

Fuel did not feed uniformly through the screw feeder.

Table 1-1. Test fuel analyses.

Consol Rocklick Knott-Floyd Sunnyridge E-Fuel
Parameter Units Jones Fork Land
Proximate
Moisture % 4.32 5.35 8.22 5.62 14.61
Ash % 7.16 8.49 14.72 8.26 6.32
Volatiles % 34.30 33.12 31.41 31.82 35.62
Fixed Carbon % 54.22 53.04 45.65 54.3 43.45
Total % 100.00 100.00 100.00 100.00 100.00

Calorific Value Btu/lb 13288 13217 11283 13124 11502
Ultimate
Carbon % dry 78.63 78.77 69.50 77.03 75.07
Hydrogen % dry 4.91 4.89 4.46 4.71 5.31
Nitrogen % dry 1.62 1.50 1.39 1.41 1.60
Sulfur % dry 0.82 0.91 1.11 0.82 0.78
Ash % dry 7.48 8.97 16.04 8.75 7.40
Oxygen % dry 6.54 4.96 7.50 7.28 9.84
Total % dry 100.00 100.00 100.00 100.00 100.00

The reburning fuel was injected into the furnace through an injector designed to provide

rapid dispersion of the fuel into the flue gas. The transport medium for the fuel was nitrogen (to

simulate recycled flue gas). The range of parameters investigated in the study represented the

range of conditions available at the full-scale units. The main burner was fired at an excess air

level of 10%. The reburning fuel was injected at a temperature of 2,600°F at rates between 10%

and 20% of the total furnace heat input. For the tests with natural gas primary the OFA was
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injected at 2100°F, corresponding to a reburning zone residence time of 800 ms. The initial NOx

level was set at 400 ppm on a dry, corrected to 3% O2 basis.

Figure 1-1 compares reburning performance of the five fuels. The best performance was

obtained with the E-Fuel, followed in order by Consol Jones Fork, Sunnyridge, Knott-Floyd

Land, and Rocklick. It is believed that these trends are related to the composition and volatility

of each reburning fuel. More volatile fuels tend to release the bound-nitrogen species and fuel

fragments quicker. This allows the reburning chemistry more time to occur, and enables

nitrogen-bound species to be processed in an environment where they can be reduced to

molecular nitrogen.
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Figure 1-1. Basic coal reburning performance as a function of reburning heat input with natural gas

primary.

Another factor that can affect reburning performance is the nitrogen content of the coal;

higher nitrogen concentrations result in poorer reburning performance. However, in this case the

nitrogen contents of the five test fuels vary by only 0.2%, so this factor has minimal impact on

reburning performance.
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The second series of tests was performed with coal as the primary fuel. For each of the

four coals the same coal was used as both the main and reburning fuel. A limited amount of E-

Fuel was available, so Sunnyridge coal was selected as the main fuel for the E-Fuel reburning

tests. OFA was injected at 2300oF, corresponding to a reburning zone residence time of 400 ms.

Figure 1-2 compares reburning performance of the five test fuels. For these conditions, Knott-

Floyd Land performed best, followed by Rocklick, Consol Jones Fork, E-Fuel, and Sunnyridge.

NOx reductions for these tests were lower than those obtained during the previous tests with

natural gas primary. This is mainly attributed to the fact that reburning zone residence time

during the coal primary tests (400 ms) was lower than during the natural gas tests (800 ms).
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Figure 1-2. Basic coal reburning performance as a function of reburning heat input with coal primary.

In summary, the results of the experiments indicate that the four bituminous coals and E-

Fuel would all be capable of providing reasonably high NOx control at the conditions available at

the full-scale boilers. At the BSF, at 20% reburning with nitrogen transport each of the five fuels

provided over 50% NOx reduction. Defining the level of control at full scale will depend on the

extent to which effective mixing of the reburning fuel can be achieved, and the extent to which
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the furnace flow field characteristics impact the reburning zone residence time. In addition,

potential full-scale usage of E-Fuel would require that fuel pulverization and handling issues be

addressed.

1.2 Advanced Coal Reburning Tests

The test approach involves performing basic reburning tests with the five fuels described

above, followed by more detailed Advanced Reburning tests with the two fuels exhibiting best

performance. Based on the basic reburning results, the Consol Jones Fork and Knott-Floyd Land

coals were selected for AR tests. As summarized in Table 1-2, three test series will be

performed, including AR-Lean, AR-Rich, and Reburning + SNCR. Natural gas will be used as

the main fuel in initial test series followed by coal-over-coal tests. Variables will include

reburning heat input, injection temperature of the OFA and additives, and promoter type and

amount. After each variable is evaluated a series of optimization tests will be conducted. The

objective will be to define maximum achievable NOx control for advanced coal reburning.

Performance will also be compared to that achievable with natural gas advanced reburning.

These tests are in progress and will be reported in the upcoming quarter.

Table 1-2. Advanced coal reburning test matrix.

Reburn Reburn OFA N-Agent Promoter
Coal % Temp., F Type Temp., F Type ppm Location

1. AR-Lean
Consol Jones Fork 10 1900-2300 Urea w/OFA Na2CO3 0-150 w/N-agent
Knott-Floyd Land 10 1900-2300 Urea w/OFA Na2CO3 0-150 w/N-agent

2. AR-Rich
Consol Jones Fork 10 1900 Urea 2000-2300 Na2CO3 0-150 Reb. Zone
Knott-Floyd Land 10 1900 Urea 2000-2300 Na2CO3 0-150 Reb. Zone

3. Reburn+SNCR
Consol Jones Fork 10-20 2300 Urea 1800-2000 Na2CO3 0-1200 Downstream
Knott-Floyd Land 10-20 2300 Urea 1800-2000 Na2CO3 0-1200 Downstream
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2.0 Kinetic Modeling

This section describes ongoing efforts to model the AR process. Previous work1

demonstrated that main features of AR can be described by using a detailed chemical

mechanism2 and with a one-dimensional representation of mixing. It was shown that injection of

NH3 and a sodium promoter in the reburning zone (AR-Rich) results in an increase of NOx

reduction. The modeling efforts during the reporting period concentrated on the effect of N-agent

co-injection with OFA on NOx reduction (AR-Lean).

During the reporting period the model1 of basic reburning was expanded to describe the

effect of N-agent co-injection with OFA on NOx reduction (the AR-Lean process). The goal of

this modeling effort is to predict the effect of AR conditions and optimize process performance.

2.1 Model Setup

Advanced reburning model was based on studies described in previous reports. The

following features of the mixing process were addressed in modeling:

•  Injected gases are available for the reaction over certain period of time (mixing time) rather

than instantaneously.

•  Injection of reburning fuel results in mixture stratification such that mixture composition in

the mixing area is not uniform.

Since the characteristic time of chemical reactions in the reburning zone is usually

smaller than that of the mixing process, distributed addition of reburning fuel and OFA can

significantly affect the efficiency of the process. Mixture stratification in the reburning zone, or

existence of local fuel-rich zones in which concentration of fuel is higher than average, is another

important factor that affects efficiency of reburning. It is believed3, 4 that this factor is mainly

responsible for high levels of NOx reduction (40-50%) under slightly fuel-rich and even fuel-lean

reburning conditions observed5, 6 in experiments.

The mixing process in the reburning zone was described in modeling by addition of flue

gas to the stream of natural gas over mixing time (so-called inverse mixing). Additional fuel
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stratification in modeling was introduced by assuming that within the reburning zone there is one

zone with 25% larger and one zone with 25% smaller concentration of fuel than average. NO

reduction was calculated as average of that for these two zones.

The current AR model is different from basic reburning model1 in the following features:

•  Model of inverse mixing was applied not only to the reburning zone, but to the injection

of OFA and N-agent as well. Modeling shows that reactions in the burnout zone have

small effect on NOx concentration in basic reburning, except for large (more than 15%)

heat inputs of the reburning fuel. Thus, choice of mixing mode in the burnout zone is not

critical. In the AR-Lean process, significant NOx reduction occurs upon injection of OFA

and N-agent, and choice of the mixing mode is important.

•  Model of a single jet in crossflow was used to calculate temperature profile within mixing

zones. This was done to give more realistic representation of the temperature field in

mixing areas.

The current model of AR-Lean treats the reburning process as series of four plug-flow

reactors (Fig. 2-1). Each reactor describes one of the physical and chemical processes occurring

in a boiler: addition of the reburning fuel, NOx reduction as a result of the reaction with the

reburning fuel, addition of OFA and N-agent, and NOx reduction by N-agent and oxidation of

partially oxidized products in the burnout zone. The first reactor describes mixing of the

reburning fuel with flue gas. As was suggested earlier1, the mixing zone was divided into two

reactors R1a and R1b. The reactor R1a was assigned with more fuel-rich mixture than average,

the reactor R1b with a less fuel-rich mixture. Averaging fuel contents distributed between the

two reactors gave mixture composition corresponding to the total amount of added reburning

fuel. The model of inverse mixing was applied to both reactors R1a and R1b. The mixture

entering reactors R1a and R1b corresponds to natural gas. The mixture added to reactors R1a and

R1b corresponds to products of natural gas combustion in air at SR1 = 1.1 (main combustion

zone). The flue gas was added to the reburning fuel with constant rate over 120 ms time. The

second reactor R2 described reactions in flue gas downstream from mixing area up to the point

were OFA and N-agent were injected. The reburning fuel and flue gas were completely mixed in

the second reactor. The third reactor R3 described mixing of OFA and N-agent with flue gas
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using model of inverse mixing. The mixture entering R3 consisted of air and N-agent. It was

assumed that N-agent and OFA were premixed prior to injection. The gas added to R 3

corresponds to products coming out of R2. The forth reactor R4 described reactions in the

burnout zone.

Reburning 
fuel

60%

40%

Flue gas, SR1 = 1.1

Flue gas, SR1 = 1.1

R1a

R1b

R2

Air and
N-agent

R3 R4

Figure 2-1. Reactor diagram of AR-Lean model setup.

Mixing time and temperature profile in mixing areas were estimated using a single jet in

crossflow model, JICFIS7. Major inputs for the model included the velocity and density ratios of

the crossflow to jet, their relative orientation in two dimensional rectangular coordinates, and the

initial conditions (diameter, velocity, and temperature) of the jet. The mixing is determined by

evaluating the entrainment rate of fluid from the crossflow into the jet. The JICFIS model was

used up to the point where the amount of entrainment equals the main flux; after this, complete

mixing is assumed. At the point of complete mixing the temperature of the jet is equal to that of

the flue gas.

Figure 2-2 shows calculated temperature profile along the centerline of the reburning fuel

jet for conditions used in experiments reported in previous reports. It was assumed in this

calculations that reburning jet and flue gas consists of pure nitrogen. This approximation is not

far from reality: flue gas consists of more than 70% nitrogen, and reburning fuel is co-injected

with nitrogen to improve mixing with flue gas. Figure 2-2 shows that the mixing time of the

reburning jet with flue gas is about 120 ms. By the end of the mixing time period, the

temperature of the jet is 1670 K. It was assumed that variation in the amount of the reburning

fuel has little effect on mixing time since reburning jet includes 70% nitrogen.
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Figure 2-2. Calculated temperature profile along centerline of the reburning jet. Initial temperature of the

reburning fuel is 300 K, temperature of flue gas is 1670 K.

OFA injection was handled in the same manner as the reburning fuel. For the OFA jet,

the mixing time was calculated to be 110 ms. These times are approximate since the actual

geometry of injectors does not precisely match the single jet treated by the JICFIS algorithm.

However, the results are considered to reflect the magnitude of the mixing rate and approximate

temperature profile in jet based on the general scale of the problem.

Based on the approximations in the JICFIS model, a single mixing time of 120 ms was

used for all injections. Modeling shows that the value of the mixing time has strong effect on the

predicted efficiency of the reburning process as mixing time increases from 0 (instantaneous

mixing) to 100 ms. Further increase in mixing time has relatively small effect on NOx reduction.

Variation of mixing time within 120±20 ms showed small effect on modeling results.

The kinetic model includes 447 reactions of 65 C-H-O-N chemical species (Glarborg et

al.2). Initial amount [NO]i of NO was 600 ppm. Temperature of flue gas decreased at a linear rate

Ð300 K/s. Variations in the temperature gradient within ±50o showed little effect on modeling

predictions.
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2.2 Model Validation

The EER chemical kinetic code ODF7, for ÒOne Dimensional Flame was employed to

model experimental data. ODF is designed to march through a series of well-stirred or plug flow

reactors, solving a detailed chemical kinetics mechanism. ODF contains the same basic

capabilities as Chemkin-II8, including the evaluation of pressure-dependent and reversible

Arrhenius rate expressions, and the specification of time-dependent profiles of temperature and

pressure. The solution algorithm has also been formulated to allow for the introduction of an

arbitrary profile of heat and/or mass fluxes along the length of the reactor. This capability has

proven significant for accurate modeling of many types of combustion systems, including

reburning with natural gas.

The following parameters were varied in modeling:

•  The amount of the reburning fuel (5-18% from the total amount of fuel).

•  Temperature at which OFA and N-agent are injected (1200-1550 K).

•  Type of the N-agent (NH3 and urea).

•  The initial temperature of OFA (300-600 K).

•  Delay in injection of N-agent relative to OFA injection (0-0.6 s).

•  The amount of the N-agent (NSR up to 3.0).

Previous work1 showed that the model of basic reburning predicted main features of the

reburning process. NOx reduction efficiencies determined in experiments as functions of the

initial NOx amount, amount of the reburning fuel and OFA injection temperature are well-

described by the model. During the reporting period the extended AR model was developed and

validated based on experiments on co-injection of aqueous NH3 and urea with OFA. The

experimental data were obtained in a 300 kW Boiler Simulator Facility, described in previous

reports and elsewere1.

Figure 2-3 shows comparison of modeling predictions with experimental data on the

effect of OFA injection temperature in basic reburning and AR-Lean processes. In agreement

with experiments, modeling predicts that the efficiency of the AR-Lean process increases as
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temperature at which OFA and N-agent are injected decreases. Modeling predicts that urea is

slightly more effective N-agent than aqueous NH3.
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Figure 2-3. Comparison of modeling predictions (lines) with experimental data (symbols) on the effect of

OFA injection temperature in AR-Lean with aqueous ammonia (a) and urea (b). Squares correspond to

basic reburning, circles to co-injection of N-agent with OFA. NSR = 1.5. [NO]i = 600 ppm, 10%

reburning.
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2.3 Parametric Study of the AR-Lean Process

Since the efficiency of AR depends on many factors, the best performance can be

achieved if the effects of these factors on the process performance are well determined and

understood. The most efficient approach to the AR optimization is to explore the effects of

different parameters on NOx reduction via kinetic modeling, and use model for guidance to select

the most effective test conditions. The following sections describe results of modeling study on

the effect of the AR-Lean parameters on NOx reduction.

Effect of CO on NOx Reduction

Fuel fragments, such as CO, formed in the reburning zone can significantly affect NOx

reduction in the presence of N-agents9. However, previously it was difficult to determine this

effect quantitatively since a predictive model of AR-Lean had not been developed. The described

model of AR-Lean has such quantitative predictive capabilities.

Figure 2-4 shows the predicted effect of CO on NOx reduction by urea injection. Urea

and air were injected into flue gas containing 600 ppm NO, 8% CO2, 16% H2O, balance N2

(corresponds to typical composition of flue gas entering the burnout zone). The amount of CO in

flue gas was varied in modeling from 0 to 3%. Marks Ò10%Ó and Ò18%Ó on x-axis indicate the

amount of CO coming from the reburning zone at 10 and 18% reburning fuel. At 1280 K the

presence of CO in flue gas promotes NOx reduction, while at 1530 K NOx reduction is inhibited

by CO. The relative effect of CO at 1280 K also depends on the amount of CO: small amounts of

CO significantly promote NOx reduction, while CO concentrations on the level 3% have much

smaller effect than that expected from linear interpolation. Thus, CO can increase or decrease the

efficiency of the AR-Lean process depending on the temperature at which OFA and N-agent are

injected, and on CO concentration. At high temperatures, which are characterized by high

concentrations of active species in flue gas, the CO oxidation reduces the efficiency of N-agent

by competing for radicals with reactions of NOx reduction. At low temperatures, the

concentrations of active species in flue gas are much smaller, and the CO oxidation produces

radicals via chain reaction

CO + OH → CO2 + H

H + O2 → OH + O.
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The similar observation was made by Leckner et al.10 for the effect of CO on Selective Non-

Catalytic Process.
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Figure 2-4. Predicted effect of CO on NOx reduction by urea. [NO]i = 500 ppm, NSR = 1.8.

Effect of Reburning Heat Input

Since the amount of CO present in flue gas at the point of OFA injection depends

strongly on the amount of fuel injected in the reburning zone, the efficiency of the N-agent also

depends on heat input of the reburning fuel. In basic reburning, efficiency of NOx reduction

increases as the amount of the reburning fuel increases. It also slightly increases as OFA

injection temperature decreases (Fig. 2-3). The situation is quite different when N-agent is co-

injected with OFA (Fig. 2-5).

At OFA and N-agent injection temperatures in the range of 1280-1530 K, AR-Lean is

more effective than basic reburning for heat inputs of the reburning fuel less than 13%. This is

because the amount of CO entering the burnout zone is relatively small (less than 5,000 ppm) for

reburning heat inputs less than 13%. Modeling predicts that the concentration of CO in flue gas

at 18% heat input of the reburning fuel is approximately 2.3% At 1530 K, this amount of CO has

strong inhibiting effect on NOx reduction. At 1280 K, the promotion effect of CO is relatively
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small. High concentrations of H2 in flue gas coming from the reburning zone also contribute to

the degradation of AR-Lean performance at large heat inputs of the reburning fuel. Modeling

suggests that the AR-Lean process is more effective than basic reburning at heat inputs of the

reburning fuel smaller than that usually utilized in basic reburning. Figure 2-6 supports these

modeling conclusions by demonstrating that AR-Lean with 5 and 10% reburning is more

effective that 18% reburning at all reasonable OFA injection temperatures. Note, however, that

these modeling results are obtained under assumption that N-agent and OFA are perfectly mixed

prior to injection. The effect of the delayed N-agent injection will be discussed in the following

section.
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Figure 2-5. Predicted effect of the reburning heat input on NOx reduction at different OFA injection

temperatures. Solid lines correspond to basic reburning, dashed lines to AR-Lean.

Thus, the AR-Lean process not only provides higher levels of NOx reduction than basic

reburning, but it also requires less reburning fuel. Modeling suggests that the efficiency of the

AR-Lean process depends on the amount of the reburning fuel and OFA injection temperature.

The amount of the reburning fuel determines the composition of flue gas entering the burnout

zone. Among other species present in flue gas, CO has the strongest effect on the efficiency of

N-agent. The larger the reburning heat input, the more CO is present in flue gas by the end of the
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reburning zone. Figure 2-5 shows that for 18% reburning, the presence of CO in flue gas

decreases the efficiency of N-agent at OFA injection temperatures in the range of 1400-1500 K.
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Figure 2-6. Predicted effect of OFA/N-agent injection temperature.

Effect of N-Agent Injection Delay Time

To eliminate negative influence of CO on NOx reduction, the N-agent can be injected

with a delay, or injection can be arranged in such a way that the release of N-agent into the gas

phase occurs with a delay. The later can be done, for example, by injection of large droplets of

aqueous solution containing N-agent. Because of the time required for droplets to evaporate and

mix with flue gas, the N-agent will be delivered to the flue gas with some delay. Both

approaches result in N-agent entering flue gas after the mixing process of OFA and flue gas is

almost completed and thus allow for most of the CO to be oxidized before N-agent reacts with

NOx.

Figure 2-7 shows the predicted effect of urea injection delay time on NOx reduction in

AR-Lean process at OFA injection temperature 1530 K. As the delay time increases, the

efficiency of the process also increases. At long delay times the dependence becomes less

prominent since at 1530 K most CO is oxidized within first 200 ms.
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Figure 2-7. Predicted effect of delay in N-agent injection on NOx reduction. 10% reburning, [NO]i = 600

ppm, OFA is injected at 1530 K.

Effect of the Amount of N-Agent

Figure 2-8 shows the effect of the amount of urea on NOx reduction at different OFA/N-

agent injection temperatures calculated for zero delay times of N-agent injection. There is an

optimum amount of N-agent that results in the highest efficiency of the process at OFA/N-agent

injection temperatures in the range 1430-1530 K. As OFA injection temperature decreases,

optimum becomes less prominent. Modeling shows that for zero delay times and OFA injection

temperatures of 1430 and 1530 K, the AR-Lean process is most effective for NSR equals 1.5 and

1.25, respectively.
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Figure 2-8. Predicted effect of the amount of urea on NOx reduction. 10% reburning.

Effect of the Initial OFA/N-Agent Temperature

Figure 2-9 shows the effect of the initial OFA/N-agent temperature on NOx reduction.

Initial OFA/N-agent temperature is defined here as temperature of OFA/N-agent mixture prior to

injection into flue gas. Preheating OFA results in decrease of NOx reduction efficiency. This

effect does not depend on the temperature of flue gas at the point of OFA injection. The main

reason for the negative impact of elevated initial temperatures of OFA on NOx reduction is that

the increase in OFA initial temperature results in decrease of the mixing time of OFA and flue

gas and as mixing time in burnout zone decreases, the efficiency of the process also decreases.

For example, modeling shows that as the initial temperature of OFA increases from 300 K to 600

K, the mixing time decreases from 120 ms to 80 ms and NOx reduction decreases on average by

ten percentage points.
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Figure 2-9. Predicted effect of the OFA/urea initial temperature on NOx reduction at 10% reburning.

2.4 Optimization of the AR Process

Modeling demonstrated that several process parameters could be used for optimizing AR-

Lean. The following parameters were considered:

•  The amount of the reburning fuel.

•  Temperature of flue gas at the point of OFA/N-agent injection.

•  The delay in N-agent injection (separate injection or large droplets).

•  The amount of N-agent.

•  The initial temperature of OFA/N-agent.

Modeling suggests that selection of these parameters in the optimum range results in the

efficiency of the AR-Lean process over 90%.

Assuming that the amount of N-agent is in the optimum range identified by modeling (for

example, NSR = 1.5), the following conditions result in the highest NOx reduction: the amount of

the reburning fuel is in the range of 5-10%, the OFA injection temperature is in the range of

1350-1500 K. The AR-Lean process is more efficient at lower heat inputs of the reburning fuel
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and higher OFA injection temperatures. The efficiency of AR-Lean can be further increased if

the N-agent is injected with a delay. Optimization of AR via modeling is still in progress.

3.0 Future Work

This report describes ongoing efforts to optimize the AR process. Future test activities

will include experimental evaluation of advanced coal reburning. Kinetic modeling on

optimization of AR variants will continue. The effect of additives (N-agents and promoters) will

be predicted using the model and compared with experimental data.
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