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Executive Summary:  
The objective of the project is to develop an integrated process for fast, 
high-temperature carburizing.  The new process will result in an order of 
magnitude reduction in cycle time compared to conventional carburizing 
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and represents significant energy savings in addition to a corresponding 
reduction of scrap associated with distortion free carburizing steels.  In 
addition to the above accomplishments, alloys were developed Gearmet® 
C61 and C69 in collaboration with Questek Corp.  These alloys have 
demonstrated high performance and have been used in a variety of 
applications – i.e., GM, NASCAR, knife blades, etc.   The project has 
demonstrated energy reduction, process optimization, and the value of 
working together within an industry-university alliance such as CHTE.  
The latter has allowed the researchers at WPI, Northwestern and 
Questek to be able to take the laboratory results and developments to 
commercial use. 

Accomplishments:  See Appendix A, which contains three key publications: 

 Optimization of High Temperature Vacuum Carburizing: Process 
Simulation, Experiment and Validation. 

 Performance Optimization and Computational Design of High-Strength 
Gear Steels (page 21) 

 Residual Stress Control and Design of Next Generation Ultra-hard Gear 
Steels  (page 229) 

Project Activity:   

 
ID 

Number 
Task / Milestone 

Description 
Planned 

Completion 
Actual 

Completion 
Comments 

1a ThermoCalc Modeling 7/31/05 7/31/05 100% 
1b Process Experiments 7/31/05 7/31/05 100% 
1c Industrial Experiments 7/31/05 12/31/06 100% 
1d Hardenability 10/31/03 7/31/05 100% 
2a Redesign Alloys 10/31/04 4/29/05 100% 
2b Grain Stability 10/31/04 7/31/05 100% 
3a RCF and Wear 7/31/05 12/31/06 100% 
3b Residual Stress 7/31/05 12/31/06 100% 
3c Redesign for Performance 7/31/05 4/29/05 100% 
3d Forming Dies 7/31/05 7/31/05 100% 
3e Forging/Casting Dies 7/31/05 7/31/05 100% 
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Products Developed:  

The experimental Cu-bearing alloys aimed at reducing material cost 
through decreased Co content have been evaluated and subsequent heat 
treatment studies were completed. Local Electrode Atom Probe (LEAP) 
tomographic microanalysis was utilized to analyze the microstructure of 
M2C strengthening dispersions. Data were collected from the carburized 
case of all four experimental Cu-bearing alloys at tempering times of 12 
and 48 hours, corresponding to two observed hardness peaks.  
Tomographic reconstruction and 3D analysis of has been completed for 
one of four experimental Cu-bearing alloys as a function of tempering 
time. At typical peak hardness tempering conditions for M2C precipitation 
strengthening, the M2C carbides have reached an over-aged state and 
are over 50% larger than the optimal size assumed in the alloy design 
process. A reduced precipitated M2C volume fraction was also observed. 
This larger size, reduced volume fraction as well as a strong interaction 
and co-location with the Cu strengthening dispersion have been identified 
as the main causes of the discrepancy between designed and achieved 
hardness values for the Cu-bearing alloys.  Maximum hardness was 
ultimately achieved with further aging, where the M2C strengthening 
dispersion both increased in volume fraction and coarsened to a rod-
shaped morphology, diminishing the effective co-location between 
precipitate phases. Using revised microstructural parameters as 
quantified with LEAP analysis, alloy design models were recalibrated, 
providing close agreement with measured hardness levels. Preliminary 
calculations using the revised design models by an undergraduate 
materials design team suggested a maximum achievable surface 
hardness of 65 Rc is possible within design constraints for this 
microstructural approach. 

Spur gears of four experimental Cu-bearing alloys have been machined 
for single tooth bending fatigue studies. Carburization cycles are 
developed to ensure proper surface carbon and case depth requirements. 
Heat treatment is currently underway, with preliminary testing on puck 
samples to be used for refinement of carburization cycles including 
carbon and microhardness measurements.  Preliminary isotropic 
superfinishing (ISF) studies on experimental Cu-bearing alloys have 
demonstrated an increased response to common ISF slurry chemistries 
compared to high Ni-Co C61 and C67 alloys. 

For newly designed alloy prototypes aimed at extremely high surface 
hardness accessible only through low case transformation temperatures, 
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process optimization including vacuum carburizing, cryogenic deformation 
and tempering has been performed on newly designed alloy prototypes.  
Two runs of vacuum carburization have been carried out with process 
cycles designed through CBPWIN2 and DICTRA simulation. The surface 
carbon content after the second run was measured as 0.9%, showing 
good agreement with the predicted carbon content. The carbon content 
profile also shows a desired carbon level of 0.8% at a depth of 50µm 
where the volume fraction of retained austenite was confirmed as 22% 
through X-ray diffraction, confirming the designed alloy is well suited for 
planned cryogenic deformation to complete martensitic transformation in 
the outer case. 

Cryogenic deformation including cryogenic shot peening and cryogenic 
compression has been optimized for reduced retained austenite levels. 
Specimens were cut from vacuum carburized samples and 50um was 
ground off the surface so the exposed surface has the designed carbon 
content of 0.8%.  Two runs of cryogenic shot peening have been 
completed at Purdue University. In the first run, the surface with 0.8wt% 
carbon was subject to shot peening at the temperature range of -110oC~-
80oC. A lower temperature of -130oC was obtained and a prolonged 
peening time applied in the second run for specimens resolutionized and 
liquid nitrogen treated. Three levels of peening intensity (low, medium and 
the highest available) were selected in both runs according to prior Almen 
tests. Conditioned hard cut wire steel shot media (hardness of 58~62 Rc) 
was chosen to ensure the plastic deformation in specimens during 
peening. X-ray diffraction shows that retained austenite content at the 
carbon level of 0.8% was slightly reduced after shot peening at -110 oC/-
130oC with low peening intensity, which suggest that a temperature closer 
to  -196 oC and more energy are probably needed to complete martensitic 
transformation.  Cryogenic uniaxial compression was then employed to 
meet requirements for temperature and deformation extent. The 3×3×6 
mm and 4×3×7 mm specimens were aligned with the 0.8wt% carbon case 
parallel to the compression axis, subjecting case and core to parallel 
deformation. The compression test was conducted at -196 oC to a plastic 
strain of 4-5%. Consistent with transformation kinetic model predictions, 
X-ray diffraction confirmed the amount of austenite on the surface was 
reduced from 22% to 8%.  To explore a possible industrial process for 
cryogenic compression, collaboration with DesignMecha, Co. Ltd. in 
Korea was established to perform ultrasonic surface modification at -196 

oC on vacuum carburized cylindrical specimens. The amount of austenite 
reduction demonstrated was intermediate between that of cryogenic shot 
peening and the cryogenic uniaxial compression. 



Final Report  7/23/07 
DE-FC36-01ID14207 

 5 

Subsequent tempering at 482 oC has been performed to the cryo-
compressed specimens. To minimize austenite during tempering, the 
specimen was cyclically treated in liquid nitrogen 1hr for every 8 hrs of 
tempering. Prolonged tempering (56 hrs) has shown a hardness of 976 
Hv at 80um depth and a hardness of 512Hv in the core. The experimental 
case hardness is within 8% of the design goal. 

 

Patents: None 

 

Publications/Presentations: (*: presenting author)  

B. Tiemens*, G.B. Olson and A.K. Sachdev, Design and Microstructural 
Validation of Cu-Bearing Ultra-Hard Gear Steels, Materials Science and 
Technology 2006, Cincinnati, OH, October 17, 2006. 

Y. Qian*, J. Almer, U. Lienert, B. Tiemens, G.B. Olson, Non-destructive 
Residual Stress Distribution Measurement in Nano-structured Ultra-high 
Strength Gear Steels, Presentation and Proceedings, the Fifth 
International Conference on Synchrotron Radiation in Materials Science, 
Chicago, IL, July 30 - August 2, 2006. 

B. Tiemens*, G.B. Olson, Design and Optimization of High Power Density 
Gear Steels, Poster Presentation (2nd place Student Poster Competition - 
Ph.D. section), ASM Chicago chapter Monthly Meeting, April 11, 2006. 

Y. Qian*, J. Almer, U. Lienert, B. Tiemens, G.B. Olson, Non-destructive 
Residual Stress Distribution Measurement in Ultra-high Strength Gear 
Steels, Poster Presentation, ASM Chicago chapter Monthly Meeting, April 
11, 2006. 

B. Tiemens*, G.B. Olson, Performance Optimization of Ultra-Hard Gear 
Steels, Presentation, Materials Technology Laboratory/Steel Research 
Group 22nd Annual Meeting, March 21, 2006. 

Y. Qian*, G.B. Olson, CryoPeen 70: Future Ultra-high Strength Gear and 
Bearing Steel, Presentation, Materials Technology Laboratory/Steel 
Research Group 22nd Annual Meeting, March 21, 2006. 

X. Gao* and G.B. Olson, “DOE-OIT High Temperature Carburizing 
Steels: Process Modeling”, MTL/SRG 2005, the Materials Technology 
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Laboratory (Steel Research Group) 21th Annual Meeting, Evanston, IL, 
March 14-15, 2005. 

Y. Qian* and G. B. Olson, “High Performance Gear Steels: Controlling 
Residual Stress”, MTL/SRG 2005, the Materials Technology Laboratory 
(Steel Research Group) 21th Annual Meeting, Evanston, IL, March 14-15, 
2005. 

B. L. Tiemens* and G. B. Olson, “Materials and Process Design for High-
Temperature Carburizing: Gear Performance”, MTL/SRG 2005, the 
Materials Technology Laboratory (Steel Research Group) 21th Annual 
Meeting, Evanston, IL, March 14-15, 2005. 

Y. Qian, J. Almer, B. L. Tiemens, G. B. Olson, Residual stress Analysis 
for advanced gear steels using synchrotron radiation, manuscript in 
preparation. 

Y. Qian*, J. Almer, B. L. Tiemens, G. B. Olson, Residual Stresses in 
Advanced Gear Steels – Analysis and New Design, poster session for 
Argonne researchers, Evanston, IL, December 13, 2005. 

X. Gao, B.L. Tiemens, Y. Qian, G.B. Olson and F. Stavehaug, “Findings 
of high temperature vacuum carburizing during process simulations, 
experiments and validation, surface treatment, and performance tests,” 
manuscript in preparation. 

D. Apelian, G.B. Olson, B.L. Tiemens*, X. Gao and Y. Qian, “Materials 
and Process Design for High-Temperature Carburizing: Integrating 
Processing and Performance,” The 2004 Fall Meeting of CHTE, the 
Center for Heat Treating Excellence of WPI, Columbus, OH, Nov. 3-4, 
2004. 

D. Apelian, G.B. Olson, B.L. Tiemens*, X. Gao and Y. Qian, “Materials 
and Process Design for High-Temperature Carburizing: Integrating 
Processing and Performance,” The 2004 Spring Meeting of CHTE, the 
Center for Heat Treating Excellence of WPI, Worcester, MA, May 12-13, 
2004. 

B.L. Tiemens* and G.B. Olson, "High Temperature Carburizing Steels - 
Gear Performance," The 2004 Spring Meeting of PMRC, the Powder 
Metallurgy Research Center of WPI, Worcester, MA, April 28-29, 2004. 

X. Gao*, H.J. Jou and G.B. Olson, “Development of Versatile and Multi-
Constraint Carburizing Process Simulation and Optimization Software 
Using Thermo-Calc/DICTRA and Their C++ TCIPC Interface,” MTL/SRG 
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2004, the Materials Technology Laboratory (Steel Research Group) 20th 
Annual Meeting, Evanston, IL, March 22-23, 2004. 

B. Tiemens* and G.B. Olson, "High Temperature Carburizing Steels - 
Gear Performance,” MTL/SRG 2004, the Materials Technology 
Laboratory (Steel Research Group) 20th Annual Meeting, Evanston, IL, 
March 22-23, 2004. 

X. Gao, G.B. Olson, F. Stavehaug and C. Scharer. “Process Design and 
Optimization for High-Temperature Vacuum Carburizing,” In: Modeling, 
Control and Optimization in Nonferrous and Ferrous Industry, F. Kongoli 
et al. eds, pp. 381-395, 2003 

“Materials and Process Design for High-Temperature Carburizing: 
Integrating Processing and Performance.” CENTER FOR HEAT TREATING 
EXCELLENCE FALL MEETING, Cincinnati, OH, Oct. 29-30, 2003 

 “Materials and Process Design for High-Temperature Carburizing: 
Integrating Processing and Performance.” CENTER FOR HEAT TREATING 
EXCELLENCE SPRING MEETING, Worcester, MA, May 28-29, 2003 

 “Controlling High Temperature Carburizing.” MATERIALS TECHNOLOGY 
LABORATORY/ STEEL RESEARCH GROUP ANNUAL MEETING, Evanston, IL, 
March 24-25, 2003 

 

Budget Data (03/31/07):  

 
 Approved Spending Plan Actual Spent to Date 

Phase / Budget Period DOE 
Amount 

Cost 
Share Total DOE 

Amount 
Cost 

Share 
Total 

 From To       
Year 1 9/01 9/02 339,849 343,000 682,849 262,722 422,958 685,680 
Year 2 9/02 9/03 371,424 348,217 719,641 387,251 366,000 753,251 
Year 3 9/03 9/04 400,123 470,963 871,086 274,975 419,605 694,580 
Year 4 9/04 9/05 258,248 505,560 763,808 313,825 486,800 800,625 
Year 5 9/05 3/07 150,784 178,974 329,758 281,654 152,300 433,954 

         
Totals 1,520,428 1,846,714 3,367,142 1,520,428 1,847,663 3,368,090 
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Appendix A: 
Key Publications- accomplishments  

 
 Optimization of High Temperature Vacuum Carburizing: 

Process Simulation, Experiment and Validation. 

 Performance Optimization and Computational Design of 
High-Strength Gear Steels (page 21) 

 Residual Stress Control and Design of Next Generation 
Ultra-hard Gear Steels (page 229) 
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Optimization of High-Temperature Vacuum Carburizing  - Process Simulation, Experiment and 
Validation  

 
Xiujie Gao†, Benjamin L. Tiemens†, Yana Qian†, Frode Stavehaug* and Gregory B. Olson† 

 
† Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208 

* QuesTek Innovations LLC, 1820 Ridge Ave., Evanston, IL 60201 

Abstract 
Compared to conventional gas carburization, the optimization of vacuum carburization at elevated 
temperatures offers an order of magnitude savings in process cycle time with corresponding reductions 
in processing cost and energy consumption.  This paper summarizes work aimed at such optimization by 
quantifying the vacuum carburizing behavior of two case-hardened steels, GearMet® C61 and C69.  
Optimum boost and diffuse cycle times as well as carburization temperatures were determined through a 
combination of weight gain, microhardness measurements and surface carbon measurements iteratively 
combined with computational modeling.  The effect of carburization on the residual stress state as well 
as the bending fatigue properties was also studied. 

1 Introduction 
In current carburizing practice, gas carburizing under atmospheric or slightly higher pressure is most 
commonly used. Vacuum carburizing was first introduced two decades ago (Herring and Hughton, 
1995) and consists of repeated boost and intermediate diffuse cycles followed by a final diffuse. The 
furnace is usually maintained at a relative low pressure (around 1 kPa) except during boosts when the 
pressure is raised to about 10 kPa. Figure 1 shows schematically the change of surface carbon content 
(wt%) with time for gas and vacuum carburizing. Limited by soot formation, gas carburizing is a 
relatively slower process than vacuum carburizing where a higher carbon potential is maintained and is 
instead limited by the saturation of austenite and carbide formation. Due to a higher carbon potential (or 
higher availability of carbon), vacuum carburizing also provides a more homogeneous case depth and is 
more predictable and reproducible. Vacuum carburizing is often carried out at higher temperatures than 
regular gas carburizing, and this so-called “high-temperature” carburizing significantly reduces furnace 
cycle time. 

Compared to conventional gas carburizing, the optimization and control of high-temperature vacuum 
carburizing would result in at least an order of magnitude reduction in cycle time and processing cost. 
This time reduction represents significant energy savings. Based on energy consumption statistics in the 
Process Heating Technology Roadmap (2001), conservative estimates reveal a 30% reduction in cycle 
time resulting in saving 20-24 trillion BTUs per year. High performance materials designed for high-
temperature vacuum carburizing can enable higher power densities and increased life in transportation 
and die applications. The reduction of scrap associated with distortion-free and maximum uniformity 
steels achieved via high-temperature vacuum carburizing is yet another important source of energy 
savings. Reduced energy consumption would also greatly decrease environmentally harmful emissions.  

In response to these potential productivity and quality improvements in heat treating technology, the 
Office of Industrial Technologies (OIT) division of the Department of Energy (DOE) has supported a 
multi-university project titled “Materials and Processes Design for High-Temperature Carburizing: 
Integrating Processing and Performance.”  The project addresses the technology for reduced process 
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cycle times of 50% or more and the achievement of distortion-free, maximum uniformity heat-treated 
parts. As part of this project, the work reported here focuses on the vacuum carburizing behavior at 
elevated temperature of two case-hardened steels, GearMet® C61 and C69. Response of the steels to 
high-temperature carburizing was investigated through their weight gains, surface carbon contents, 
microhardness and microstructures after carburizing. Residual stress and fatigue properties were also 
tested to verify the performance of steels that employ high-temperature carburizing.  

2 Materials and Experimental Procedures 

2.1 Materials 

Two types of ultrahigh-strength case-hardened steels, GearMet® C61* and C69* from QuesTek 
Innovations LLC, have been chosen for this carburizing study because of their promising combination of 
strength and toughness (Kuehmann and Olson, 1998). GearMet® C61 provides unusual high 
strength/high toughness core properties for damage tolerant gearing. GearMet® C69 combines a ductile 
core with an ultra hard case that can achieve hardness levels up to 67 HRC, promoting high wear and 
contact fatigue life. GearMet® C69 is the product of an ongoing research and development program with 
the objective of reducing weight of components by as much as 50% over those manufactured using 
conventional high performance alloy steels. These case hardenable steel alloys have a carbon content in 
the range of about 0.05 weight percent to about 0.24 weight percent in combination with a mixture of 
about 15 to 28 weight percent cobalt, 1.5 to 9.5 weight percent nickel, 3.5 to 9.0 weight percent 
chromium, up to 3.5 weight percent molybdenum, and up to 0.2 weight percent vanadium. The nominal 
composition of GearMet® C61 is listed in Table 1 and the nominal composition of GearMet® C69 is 
referred to (Kuehmann and Olson, 1998).  

Table 1: Nominal alloy composition of studied steels 

Alloy Fe Co Ni Cr Mo V C (core) 

GearMet® C61 Bal. 18 9.5 3.5 1.1 0.08 0.16 

2.2 Vacuum Carburizing  

Two sample sizes were used in developing the vacuum carburizing process. One size was small pucks of 
1.0 inch diameter and 1/3 inch thickness, and the other was larger discs of 5.25 inch diameter and ¼ inch 
thickness. All carburizing treatments were performed at Midwest Thermal-Vac (Kenosha, WI) using the 
patented Infracarb® process of ECM USA Inc.  

The combined solutionizing/vacuum carburizing was carried out with varying boost times (bt) and 
carburizing temperatures (T).  The chosen parameters were increased linearly, denoted with increasing 
integers (bt1 < bt2, T1<T2, etc.). 

After the final diffuse cycle, samples were transferred to a separate chamber and quenched with oil or 
gas. All samples, except those used for surface carbon measurements, were then emersed in liquid 
nitrogen for one hour to promote complete martensitic transformation, followed by tempering from 1-16 
hours at temperatures ranging from 200-510°C.  To increase the residual stress level in the case, some 
components were shot-peened or laser-peened.  

                                                 

* US Patent Number 6,176,946 B1 
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To save time and cost in both process development and production, the boost/diffuse times were 
developed with the assistance of several diffusion simulation codes. The CBPWIN2 code (ECM-USA) 
was used for one dimensional (1D) carbon diffusion with temperature dependent diffusion coefficients.  
2D and 3D diffusion was simulated using DEFORM HT (Scientific Forming Technologies Corporation) 
with diffusion coefficients dependent on both temperature and composition.  DICTRA (Thermo-Calc 
Software) was also used to calculate the composition and temperature dependent carbon diffusivity used 
in DEFORM HT, as well as the activation energy and pre-exponential diffusion coefficient (D0) used in 
CBPWIN2.  

2.3 Microhardness Measurement 

Larger samples were first water-jet cut into smaller sizes. Before microhardness measurement, all 
samples were sectioned using a water-cooled cut-off wheel (Struers 456 CA). Proper sized samples were 
then mounted using Struers DuroFast powder for better edge retention and planeness. The samples were 
then ground and polished to 1 µm using a Struers RotoPol-11 grinder/polisher for flatness. 

A computerized microhardness testing system (CLEMEXTM CMT 3.0) was utilized to measure the 
Vickers hardness distributions of C61 and C69. A Knoop indenter was combined with Vickers when 
measurement closer to the sample edge was desired. 

2.4 Microstructural Analysis 

The alloy microstructure was observed through a Nikon Epiphot-TME microscope equipped with digital 
image acquisition software. A Hitachi 3500N Scanning Electron Microscope was utilized for electron 
microscopy. The microscope is also equipped with energy dispersive spectroscopy (EDS) for chemical 
analysis, including a light element detector for increased accuracy in carbon detection. Samples were 
etched before microstructural analysis. The compositions and properties of the etchants are given in 
Table 2. 

 
Table 2: Metallographic etchants 

Etchant Composition (by volume) Properties 

Nital 2%-10% Nitric acid (HNO3) + 
98%-90% Methanol (CH3OH) 

Emphasizes the carbides; 
Used for C61 

Variant of Kalling’s 
reagent 2 (Petzow, 

1999) 

33ml Hydrochloride (HCl, 32%) + 
33ml Distilled Water (H2O) + 

1.5g Copper (II) Chloride (CuCl2) 

Fast etchant and good to show 
martensites and carbides; 

Used for C69 

2.5 Weight Gain Measurement 

The samples were marked and weighed before loading into the chamber. After the carburizing process 
was done, the samples were unloaded and weighed again. A milligram balance with a maximum 
capacity of 720g (ADP 720L) was used to measure the weight of large samples. 

The weight gain data was used to obtain the average and instant carbon flux during carburizing. 

2.6 Surface Carbon Content Measurement 

Samples were sent to ASTON Metallurgical Services Co. Inc. for surface carbon content measurement. 
The combustion method following ASTM test procedure ASTM E415 was employed. 
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2.7 Residual Stress Measurement 

Surface residual stresses of GearMet® C61 and C69 under different conditions were measured using x-
ray diffraction at Northwestern University. The standard sin2ψ method was employed to peak (211) for 
residual stress measurement and a value of 168GPa is used for /(1 )E !+ . Detailed parameters of the X-
rayconditions are shown in Table 3. 

Table 3: Parameters of X-ray facility 
X-ray Source Cr, Kα average 

λ=2.291Angstrom 

Filter in incident arm Vanadium 

Point source size 1 mm 

Collimator size 1 mm 

Slit in incident arm 1 mm 

Slits in detector arm 2 mm, 3 mm 

2.8 Surface Roughness Investigation 

Surface roughness values were measured with phase shift interferometry utilizing a MicroXAM Surface 
Mapping Microscope produced by ADE Phase Shift, Inc. 

2.9 Single Tooth Bending Fatigue Performance Testing 

For performance testing, a 5.25” diameter bar was hot-rolled from a forged, production-scale ingot of 
GearMet® C61. 1.25” thick blanks were then machined from which trial spur gears were cut (hobbed).  
The spur gears were carburized to a total case depth of 1mm.  The heat treatment consisted of 
solutionizing/vacuum carburizing at T7 for 1.5 hours, cryogenic treatment in a liquid nitrogen bath and 
tempering at 500oC for one hour.  After heat treatment, the gear sides were ground for alignment.  
Different surface treatments on the spur gears included grinding a targeted depth of 20µm from the root 
fillet, land and partway up the active profile, and a typical dual shot peening process. Single tooth 
bending fatigue testing on the spur gears was done on a MTS test frame operating at 40 Hz maintaining 
an R-value, or ratio of maximum to minimum applied load, of 0.01 using amplitude control.  Tests ran 
until the applied load caused a tooth displacement exceeding 2 mm, which was classified as failure, or 
the selected endurance limit of 10 million cycles. 

3 Results and Discussions 

3.1 Boost Trends 

3.1.1 Microhardness  

Many factors have an impact on the accuracy and spatial resolution of microhardness measurement.  For 
the materials studied, the mount material and mount configuration (i.e. the different sample geometries 
combined with the relative relationship between the mount surface and samples) made no significant 
difference in microhardness measurement. However, angled surfaces and variation in manual operation 
were seen to have a significant impact on measurement accuracy. For these reasons automatic 
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grinding/polishing machines and computerized microhardness testers should be employed whenever 
possible. The most important consideration for microhardness testing was discovered to be applied force 
and indent spacing. Figure 2 shows the dependence of Vickers’ microhardness measurement on the 
applied force. When the applied force is below 200 grams, one can see that the apparent hardness 
increases significantly. This is mainly due to elastic recovery and non-elastic behavior of the indent, and 
can be generally avoided by maintaining a minimum indent diagonal of 25 µm.  

The spatial resolution is usually limited by the minimum size of the indents (due to force dependence) 
and the interaction of an indent with another or the edge. Following ASTM E384 designations (ASTM, 
1999), the closest allowable distance to the edge for Vickers is 63 µm and 13 µm for Knoop.  

Following the above mentioned cautions and procedures, the microhardness profiles of GearMet® C61 
samples were measured after a single boost cycle for different boost times for small samples at 
temperature T3 and large samples at temperature T5 and are shown in Figure 3a and b respectively. At 
temperature T3 the microhardness profiles expand continuously to higher hardness and deeper cases 
with increasing boost time. The flat region near the surface for bt13 is a sign of retained austenite, which 
lowers the hardness and is due to a lowering of the martensitic transformation temperature (Ms) caused 
by the increased carbon content.  At the elevated carburizing temperature (T7), the effect of boost time 
is effectively reduced, as the microhardness profiles stop expanding after bt7.  Retained austenite is also 
being formed at shorter boost times, as shown by the reduced surface hardness starting at bt10. 

One may also notice that the maximum peak hardness at T3 is lower than that at T5. This is mainly 
because the 200C temper included after carburizing at T3 lowers the peak hardness and is not 
necessarily due to the different carburizing temperatures.  

These hardness profiles obtained from boost experiments were mainly used to help estimate the carbon 
content needed to achieve certain surface hardness levels and at what surface carbon content retained 
austenite may exist for the various carburizing conditions,. Another very important use of the hardness 
profiles was to verify whether target case depth was achieved. 

3.1.2 Weight Gain and Surface Carbon Measurement 

The very important role of weight gain data obviously requires accurate measurement. Past experience 
has shown that the weight gain for the small pucks is on the order of the measurement error of a scale 
with a thousandth gram accuracy due to their small surface area,. Numerical rounding or handling errors 
(including air circulation) would also have a big impact on the measurement. In addition, the small 
pucks were rested on a grate during carburizing, which introduced a non-uniform carbon intake on the 
contacting surface. To overcome these disadvantages, larger pucks, hanging in the furnace, were used 
for weight gain measurements. The large pucks have a surface area and subsequent weight gain as much 
as 20 times that of the small pucks resulting in more consistent and accurate weight gain data. 

The top plot in Figure 4 shows this weight gain data measured after a single boost cycle for different 
boost times for GearMet® C61 at T3 and T5. For T3, the weight gain increased with increasing boost 
time, with this increase beginning to diminish around bt10 and stopping at bt16. This slowing down of 
weight gain increase can be attributed to the formation of film carbides on grain boundaries and free 
surfaces which impede the inward diffusion of carbon. As these film carbides grow with increasing 
boost time, they form a continuous network that essentially prevents any additional carbon from 
diffusing, resulting in the observed weight gain “limit”. . At the higher carburizing temperature of T5, 
the weight gain increase slows down at extended boost times (bt14) and did not exhibit an upper limit. 
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This delayed saturation can be attributed to the increased solubility and diffusion of carbon at the 
elevated temperature. 

The most important use of weight gain information obtained from these boost experiments was to 
calculate the average or instant flux needed in the carburizing simulations.  Boost times corresponding to 
the onset of constant weight gain were also used as a saturation limit for boost cycle simulation. 

The middle plot in Figure 4 shows surface carbon content measurements after a single boost cycle for 
different boost times. For T3, the surface carbon content increased with increasing boost time until the 
saturation limit was reached and leveled out at bt16. At the elevated temperature of T5, the surface 
carbon content continued to increase for all boost times. The most important application of these surface 
carbon content measurements is to help determine the maximum carbon content that can be achieved 
prior to the formation of retained austenite. For both T3 and T5, the peak hardness moves from the 
surface to subsurface with increasing boost time. Using the boost time value at which this shift occurs, 
the corresponding surface carbon content without leading to retained austenite was found to be 
approximately 0.5wt%.  

GearMet® C69 carburized at T7 exhibits similar trends in microhardness and weight gain to those of C61 
at T5. The results are not repeated here and the reader is referred to (Gao et al., 2003) for details. 

3.1.3 Residual Stress Measurement 

The effect of boost time on the surface residual stress is presented in the bottom plot of Figure 4. Surface 
residual stresses were found to be all compressive and peak at a boost time of bt10 regardless of 
carburizing temperature. When the boost time is shorter than bt10, compressive stresses generally 
increase with boost time. When the boost time is further increased to bt13, the compressive stresses 
decrease attributed to the formation of retained austenite.  The lower carburizing temperature T3 
exhibited a larger peak in compressive residual stress than T5.  This can be attributed to the relative 
slopes in carbon composition as observed through the associated hardness profiles near the surface.  Due 
to the increased diffusion at the elevated temperature, the near surface hardness profiles for T5 are 
relatively shallow when compared to those of T3 as more carbon can diffuse further into the material.  
This shallower carbon gradient resulted in the lower peak residual stress value. 

3.1.4 Surface Roughness 

Examination of carburized surfaces under optical and scanning electron microscopes showed that high-
temperature carburizing tends to produce a rough surface compared to conventional gas carburizing. To 
investigate the effect of the surface finish before carburizing on this final roughness, C69 pucks in both 
the as-machined condition and polished to 3um were carburized and then compared. As shown in Figure 
5, the polished samples began with a much smoother surface (Rq=0.0066µm) than the as-machined 
(Rq=0.42µm).  After carburizing, however, both surface conditions exhibited generally the same surface 
roughness (Rq=0.28µm in Figure 5c), which was on the order of the as-machined surface.  Surface 
treatments prior to carburizing, therefore, are not believed to influence the surface roughness after 
carburizing.   

3.1.5 Microstructural Analysis 

Microhardness profiles, weight gain data, and surface carbon contents have shown evidence of non-
monotonic time evolution for longer boost times. The non-monotonic behavior is attributed to the 
formation of carbides on grain boundaries and free surfaces, i.e., these carbides slow down the intake of 
carbon from free surfaces due to slow diffusion of carbon through these carbides. When the carbides 
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form a continuous network, the passage of carbon is fully blocked. In previous work (Gao et al., 2003), 
microstructural analysis using optical/electron microscopy and EDS has been performed to identify the 
composition, location and morphology of these carbides. The results for C69 carburized at a high 
temperature T7 using a long boost time bt10 are summarized below. 

EDS line profile analyses and x-ray digital maps have shown that the carbides present in the 
microstructure are mainly Cr7C3 carbides. This result is consistent with the calculated phase diagram of 
GearMet® C69, which shows that at the carburization temperature, Cr7C3 is a stable carbide at a carbon 
content larger than approximately 0.95 wt%. Figure 6 is an optical micrograph showing carbides (white) 
and other phases. Most of the white carbides are on grain boundaries with only a few larger ones are 
within the grains. There are also carbides present on part of the free surface. The larger carbides can be 
classified as globular carbides (Totten and Howes, 1997) and other carbides on grain boundaries or free 
surfaces are forming a semi-continuous network and can be classified as film carbides (Ruxanda and 
Florian, 1995). The region enclosed by the white has a characteristic scale of around 20µm, 
corresponding to the general grain size (several tens of µm).  

Another observation is that some larger regions in Figure 6 are most likely retained austenite and the 
martensite in the over-carburized region is mostly the plate morphology, contrasting to the lath 
martensite of the lower carbon core.  

3.2 Diffuse Trends 

For the high-temperature vacuum carburizing used in this study, the peak hardness position was seen to 
be offset from the surface due to surface retained austenite, with an intermediate diffuse cycle bringing 
the peak hardness closer to or onto the surface. Figure 7a shows typically observed hardness profiles 
illustrating this effect. Figure 7b shows the change of maximum case hardness with diffuse times for 
large C69 samples carburized for a boost time of bt4 at T7 and diffused for 2, 5, 10, 20 and 40 minutes 
respectively. The optimal diffuse time is identified as 10 minutes where the rate change of maximum 
hardness is moderate. Note a longer diffuse time would result in a more robust process but longer 
furnace time. For the final diffuse, which is often much longer than intermediate diffuse cycles, the peak 
hardness must be brought to the surface. 

Figure 8 displays the influence of intermediate diffusion in the carburizing cycle on the surface residual 
stress. As expected, residual stress is somewhat reduced when diffusion is allowed since it levels the 
carbon gradient in the case. 

3.3 Process Simulation and Optimization for High-Temperature Vacuum Carburizing 

During the course of carburization process development, several notable features of high-temperature 
carburizing were found: flux variation with time, carbide formation and dissolution, diffusivity variation 
with carbon content and temperature, and multiple phase diffusion. The accuracy of carburization 
simulations depends on the ability of simulation software to account for these features.  It was found that 
a minimum requirement for accurate simulation is the ability to handle variable flux and diffusivity. 
Currently available simulation software and their features are listed in Table 4. 

Table 4: Simulation software comparison 
 Simple 

1D 
DICTRA 

1D 
DEFORM HT 

2D/3D 

Flux J Constant J(Time) J(Time) 
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Diffusivity D D(Temp) D(Carbon,Temp) D(Carbon,Temp) 

Carbide formation 
and dissolution 

No Yes Maybe 

Multiple phase 
diffusion 

No Yes No 

The simple 1D software (CBPWIN2) with limited features was only used for preliminary simulations. 
DICTRA 1D has all needed features and is the ideal tool since it can simulate carbide formation and 
dissolution with variable flux. So far, the variation of diffusivity with carbon content and temperature is 
considered, and an averaged constant flux is used. Other features will be considered in future work.  

To simulate a complex component geometry, one needs to use 2D/3D software. DEFORM 2D has 
limited geometry/meshing capacity as it can only create or import polygons, cannot import nodes and 
elements and can only generate a linear triangular mesh.  DEFORM 3D allows the user to import a 
surface and then mesh a solid into linear tetrahedral mesh with limited mesh seeding and control 
capacity, or import a linear hexahedron mesh which is better and faster than tetrahedral. A survey has 
been conducted to identify preprocessing software that can be interfaced to DEFORM-HT 3D 
seamlessly. So far the PATRAN software has been identified as the best candidate, as it may be able to 
simulate carbide formation and dissolution by assuming the carbide-forming rate is much greater than 
that of carbon diffusion (Dupen, 1994). 
During the practice of process development and optimization it was very desirable to have a process 
simulation and optimization code that has the features of DICTRA, considers many constraints, and 
generates a set of boost and diffuse cycles once the material, carburizing temperature and constraints are 
given. Some constraints arising from carburizing are: maximum surface carbon after boost/diffuse, 
minimum/maximum boost/diffuse time, boost/diffuse/total time as multiples of a specified time, etc. 
Although the simple 1D code considered constraints such as maximum surface carbon after 
boost/diffuse, it could not be used in an automated fashion due to the lack of consideration of other 
constraints (e.g., boost/diffuse/total time as multiples) and various other limitations (fixed flux, 
diffusivity not function of carbon content, fixed grid, etc.)  

A versatile process design and optimization code considering all above features and constraints was 
developed to develop carburizing processes (Gao, 2004). The code uses the diffusion simulation 
capability of DICTRA and performs all necessary pre- and post- processing, automation, and 
housekeeping tasks via the inter-process communication interface of DICTRA. As a benefit of using 
DICTRA, another feature of this code is the integration with the specific materials design of the alloy 
being carburized, which uses the same thermodynamic database via Thermo-Calc. Currently a simple 
constant flux is used in the code, and the code can be run in either manual or automatic mode. For the 
manual mode, any number of boost and diffuse cycles can be specified, and in the automatic mode, in 
addition to the constraints mentioned above, one can also specify the desired carbon content at the 
desired case depth.  The code can also be linked to iSIGHT, a complete design exploration tool, to 
perform efficient optimization of carburizing processes. 

3.4 Temper Study 

To find the optimal tempering parameters, pucks carburized with complete sets of boost and diffuse 
cycles (as would be done in conventional practice) as well as pucks that were intentionally over 
carburized using a boost time of bt19 have been combined to identify an optimal temper for C69 as 
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shown in Figure 9. This optimal tempering condition led to a maximum surface hardness with an over-
tempered and tougher core. The resultant hardness profile of commercially produced C61 after 
tempering is shown in Figure 10.   

The evolution of surface residual stress with different tempering treatments was also investigated after 
the material was fully carburized using an optimal carburizing process. Laser peening, also called laser 
shock peening, is a novel surface processing technique to induce deeper and larger compressive residual 
stress into metals using high-power laser pulses (Montross et al., 2002). Figure 11 presents the surface 
residual stresses of C69 treated by liquid nitrogen (LN), stage I temper (200oC), stage IV temper (482oC) 
and laser peening, respectively.  

From the graph, it can be seen that a high surface compressive residual stress is present after carburizing 
and quenching, and that laser peening is an effective way to compensate the residual stress relaxation of 
tempering, even raising the magnitude further to 1463MPa. Residual stress relaxed by ~50 MPa during 
stage I tempering from the as quenched status. The fact that the magnitude of surface compressive stress 
after stage IV tempering is not less than that after stage I tempering indicates that the residual stress 
relaxation during stage IV tempering is not greater than that during stage I tempering. This suggests that 
residual stress relaxation is not necessarily driven by increasing tempering temperature, but rather some 
similar mechanism for stress relaxation occurring during different tempering stages, such as volume 
changes associated with carbide precipitation (Brown et al., 1975).  

It is noted that the compressive residual stress of C69 after laser peening can reach a very high value of 
1463MPa on the surface, which matches expectations since previous studies show higher surface 
hardness can lead to higher compressive residual stress (Qian, 2003). Such a high surface compressive 
residual stress hasn’t been achieved in other current materials and can greatly benefit fatigue 
performance (Schlicht et al., 1988). 

3.5 Performance Trends 

Stress versus cycles to failure plots, or S-N diagrams, are shown for four surface conditions of C61 in 
Figure 12.  Solid symbols denote runs prematurely terminated prior to failure at the designated 
endurance limit of 10 million cycles.  Curves were generated using a least squares exponential fit.   

Significant performance gains were seen from all surface modifications.  SEM images of the 
corresponding surfaces shown in Figure 13 reveal distinct surface morphologies and associated root 
mean square (RMS) roughness values (also denoted as Rq).  The as heat-treated surface displayed 
substantial grooving along prior austenite grain boundaries, a phenomenon possibly caused by increased 
diffusivity and transport present at the elevated carburizing temperatures.  Specimen failure was seen to 
follow along these grooves, and the poor performance demonstrated by gears with the as heat-treated 
surface can be attributed to grain boundary grooving initiating and accommodating fatigue fracture.  
Surface modification either through grinding or shot peening eliminated any grain boundary grooving 
and resulted in the observed performance gains. 

Further performance gains were also seen with the addition of shot peening.  Shot peening is an 
established way of improving gear performance through generating compressive residual stress at the 
surface that counteracts applied tensile loads (Parrish, 1980; Scholtes and Macherauch, 1984).  For the 
spur gears in this study, the surface compressive residual stress was raised from roughly 300 MPa to 
1100 MPa using shot peening, subsequently increasing bending fatigue performance.  As was shown in 
Figure 13, shot peening also changes the surface topography.  While it does slightly increase the overall 
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surface roughness, shot peening also compacts the surface and “smears out” the detrimental grain 
boundary grooving. 

Detailed observations were also made on the locations of fatigue crack initiation.  Besides the grooved 
prior austenite grain boundaries of the as heat-treated gears, a predominant location for fatigue crack 
initiation was specimen corners.  Figure 14 shows one such corner-initiated failure as well as the 
corresponding microhardness cross-sectional map.  As shown in the microhardness map, a region of 
excess hardness in the corner corresponds very closely to the location of fatigue initiation.  This excess 
hardness can be attributed to over-carburization of specimen corners, as the very high fluxes associated 
with vacuum carburizing at high temperature coupled with the geometric constraint of specimen corners 
result in carbon accumulation and in this case excess hardness.  Corner over-carburization has been 
previously shown to negatively affect bending fatigue performance (Cohen et al., 1992). The flux 
boundary condition of vacuum carburizing, compared to the fixed potential boundary of conventional 
gas carburizing, excacerbates this corner effect. Ongoing tests eliminating the overcarburized corners 
have already demonstrated a further 15% improvement in fatigue strength. 

4 Conclusions 
High-temperature vacuum carburizing processes have complex features such as variable flux with time, 
variable carbon diffusivity with composition and temperature, carbide formation and dissolution and 
multi-phase diffusion. A minimum requirement for accurate simulation is that the software is able to 
handle variable flux and/or diffusivity. DICTRA 1D is the ideal tool for 1D simulation since all features 
can be considered. A versatile carburizing process design code built on DICTRA has been developed 
and is also able to consider many constraints observed during real process development. The code is also 
able to be linked to iSIGHT to perform efficient optimization of carburizing processes. For 2D/3D 
simulations, DEFORM-HT is shown to be a good choice for fine tuning of component processing, and a 
survey has identified that PATRAN is the best candidate for seamless interfacing with DEFORM 3D. 

Integration of simulation with materials characterization techniques such as microhardness testing, 
weight gain, surface carbon measurement, and microstructural analysis is essential to rapidly develop 
reliable carburizing processes. For microhardness measurements it was very important to adhere to 
ASTM E384, paying particular attention to the force dependence and distances between indents. It is 
also recommended to use an automatic grinding/polishing wheel for flatness and a microhardness tester 
with an image analyzer for consistent results. For weight gain measurement, samples with large surface 
areas are recommended for required precision.  

A linear relationship between weight gain and boost time was observed prior to the formation of film 
carbides on grain boundaries and free surfaces. Once carbides form, the intake of carbon on the surface 
is slowed down (due to slow diffusion of carbon through these film carbides) resulting in the non-
monotonic behavior seen in both weight gain and surface carbon measurement. Full blockage of carbon 
intake was seen once the carbide film forms a continuous network. In the high Cr steels C61 and C69, 
discrete Cr carbides precipitate on the surface and grain boundaries during the boost cycles and dissolve 
during the subsequent diffuse cycles.  Using this information, boost cycles can then be chosen to avoid a 
continuous carbide network and corresponding diffuse cycles selected whose duration allows for 
robustness. Finally, a temper condition can be chosen such that surface hardness is maximized. 

Examination of carburized surfaces under optical and scanning electron microscopes showed that high-
temperature vacuum carburizing tends to produce a rough surface compared to conventional gas 
carburizing, with a potential adverse effect on fatigue strength if the surfaces are left unfinished. Over-
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carburization of specimen corners, which is more prevalent in vacuum carburizing, was seen to initiate 
failure and reduce material performance. Masking of side surfaces is therefore recommended for gears 
vacuum carburized at high temperatures. It was found that tempering partially relives residual stress 
generated after cryogenic treatment, however a dramatic increase in residual stress can be achieved 
through shot peening or laser peening. 

Single tooth bending fatigue performance was shown to be greatly affected by surface treatment. The as 
heat-treated surface had the lowest fatigue endurance limit, with both the ground finish and shot peening 
greatly benefiting the endurance limit. Shot peening produced the best bending fatigue performance due 
to large amounts of beneficial, compressive residual stress imparted to the surface.   

Future Work 
In the future, DICTRA will be used to investigate carbide formation and diffusion. For the developed 
simulation code based on DICTRA, a critical carbide fraction criterion during the boost cycle will be 
added to ensure that the carbide volume fraction is less than a critical value and the process is not 
controlled by carbon diffusion through films. An appropriate surface reaction kinetics model based on 
surface carbon and weight gain measurement will also be developed to model variable flux.  
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Figure 1: Schematics showing surface carbon content (wt%) changing with time in furnace for (a) Gas 
carburizing (b) High-temperature vacuum carburizing. 
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Figure 2: Dependence of Vickers’ microhardness measurement on the applied forces. The material has a 
core hardness around 470 Vickers (HV). 
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Figure 3: Microhardness profiles for GearMet® C61 samples measured after different first boost times: 
a) using small samples at T3 and b) using large samples at T5. 
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Figure 4: Weight gain, surface carbon content, surface residual stress after different first boosts for 
GearMet® C61 at temperature T3 and T5 (without any temper). 
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Figure 5: Surface roughness obtained from interferometer for a) As-machined sample after carburizing, 
b) Before carburizing with a pre-polishing down to 3 µm, and c) After carburizing with a pre-polishing 
down to 3 µm. 

 

20um  
Figure 6: Optical micrograph of a GearMet® C69 sample showing locations and morphology of carbides 
(white) and other phases. Etched using a variant of Kallings’ reagent 2. 1000x. 
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Figure 7: a) Schematic showing hardness profile after boost and diffuse respectively, b) Change of 
maximum case hardness with diffuse times for large C69 samples carburized for a boost time of bt4 at 
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Figure 8: Surface residual stresses of C69 carburized at T7 with different diffuse time 
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Figure 9: Optimal temper study for C69 using results from multiple cycle runs (real processes for 
components) and those that were intentionally over carburized using a boost time of bt19 
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Figure 10: Specified hardness profile of commercial C61 alloy after temper. 
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Figure 11: Surface residual stresses of fully carburized C69 after different treatments 

 

 

Figure 12: S-N curves for single tooth bending fatigue tests of the four surface conditions of C61.  
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Figure 13: SEM micrographs with corresponding RMS (Rq) roughness values for the surface conditions 
of C61: a) As heat-treated b) Ground c) Shot Peened 

 

 

Figure 14: Correlation between location of a) corner fatigue initiation (SEM micrograph) and b) over-
carburized corner (microhardness map) 
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ABSTRACT

Performance Optimization and Computational Design of Ultra-High Strength Gear

Steels

Benjamin Lee Tiemens

Rising power density requirements in transmission gear applications are swiftly out-

pacing gear redesign alone and will ultimately depend on better materials. Ni-Co sec-

ondary hardening steels show great promise for these applications due to their optimized

combination of strength and toughness.

The commercially available secondary hardening alloys GearMetr C61 and C67 have

already demonstrated promising contact fatigue resistance, however bending fatigue is

anticipated to be the primary failure mode limiting high power density gear applications.

Single tooth bending fatigue testing was therefore completed on C61 and C67 spur gears to

both assess the optimized performance of these alloys as well as identify defect populations

currently limiting further advances. The resultant best-practice C61 spur gears in a shot

peened and isotropic superfinished condition outperformed the top-ranking premium gear

steel, demonstrating an approximate 15% improvement in bending fatigue endurance

limit. Fatigue failures limiting further bending fatigue performance were identified to
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primarily initiate at three defect classes: shot peening-induced surface damage, subsurface

inter-granular cleavage facets and Al2O3 and La2O2S inclusions. C67 spur gears did not

show increased performance despite elevated surface hardness levels due to the inability

of current shot peening practices to achieve maximum compressive stress in ultra-high

hardness materials.

In an effort to reduce the material cost of these alloys through minimization/elimination

of cobalt alloying additions, BCC Cu precipitation was incorporated to offset ensuing

losses in temper resistance by providing additional heterogeneous nucleation sites for the

M2C strengthening dispersion. Fifty-pound experimental heats were made of four de-

signed compositions. Peak hardness levels achieved during tempering fell on average 200

VHN short of the 900 VHN designed surface hardness. 3-dimensional local electrode atom

probe (LEAP) tomographic reconstructions of carburized samples demonstrated the het-

erogeneous nucleation of M2C alloy carbides on Cu precipitates where peak strengthening

occurred with overaged rod-shaped M2C carbides. Recalibrated strengthening models

accounting for the coarsened microstructure agreed well with measured hardness values

with 2nd iteration designs predicting the maximum possible hardness to be 65 RC .
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CHAPTER 1

Introduction

1.1. Motivation

Rising power density requirements in transmission gear applications are demanding

significant technological innovation. In 2004, representative leaders of the gear industry,

including members from the United States Army, Boeing, General Motors and John Deere,

composed the Gear Industry Vision addressing these needs, specifically outlining strategic

goals to be met by the year 2025 [1]. Among the stated objectives were ambitious goals

for enhancing gear performance, calling for 25% increases in power density every 5 years

as well as a 50% increase in power transfer efficiency. Such lofty aims will soon surpass

performance gains possible through gear redesign alone and ultimately depend on better

gear materials. The Gear Industry Vision identifies clean steels heat treatable to ultra-high

hardness levels (RC70+) as leading candidate materials and the continuing development

of such steels as a “key technological challenge” that must be addressed.

Based in Northwestern University, the Steel Research Group (SRG) is composed of

various academic, industrial and government members spanning numerous disciplines and

united in the advance of steel technology. The ultimate aim of the SRG is the ability to

replace time-consuming empiricism in traditional alloy development with systems-based

computational design of materials. Systems-based materials design focuses on the various

interacting subsystems ultimately responsible for material performance. Drawing upon
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the existing knowledge base of various materials systems, targeted microstructures can

be engineered for specific applications through the iterative feedback between theoretical

modeling of these subsystem interactions and state-of-the-art analysis of prototype alloys.

Using this approach, an alloy family of Ni-Co secondary-hardening carburizing steels was

developed that have shown great promise in addressing high performance gear applica-

tions. This work aims to utilize the same systems-framework used to create these alloys to

now optimize their performance specifically to address rising power density requirements

in transmission gear applications.

Yet another challenge acknowledged by the Gear Industry Vision is the rising com-

petition to gears from other forms of power transmission, such as electric motors and

hydraulic systems [1]. Economic viability of gears as well as the materials from which

they are made will be increasingly important. In some instances, material cost must be

reduced with minimal expense to performance, requiring creative solutions. A large por-

tion of the raw material cost of the high performance Ni-Co steel alloys is the significant

cobalt content typically employed to maximize secondary hardening during tempering.

At approximately $20-30 dollars per pound, cobalt is on average over ten times more

expensive than other common steel alloying elements [2]. In response, second-generation

secondary-hardening alloys will also be developed in this work aimed at reducing material

cost through the minimization of cobalt. To achieve this, Cu precipitation will be incor-

porated into the alloy design to supplement and catalyze secondary hardening from M2C

alloy carbides. This novel microstructural modification is made possible by the adaptive

capabilities afforded by the systems approach.
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1.2. Systems Approach

In his review of systems-based engineering, Gwilym Jenkins stressed the importance of

a unifying approach to combat increasing complexity of the world’s problems [3]. Instead

of optimizing individual factors within a complex system, Jenkins argued for the focused

design of interacting subsystems aimed at collectively optimizing the overall system in the

most efficient manner. This development process, as shown in Figure 1.1, takes the form of

broad stages starting from the analysis of the system in question. Models and simulations

are then utilized to design or synthesize an optimized system. This designed system is

then implemented, with the observed results directing additional design iterations or being

directly introduced into standard operation. The applicability of such thinking Jenkins

felt was universal and urgent, requiring insertion “into industry, commerce, and into local

and national government.”[3]

Figure 1.1. General stages for the systems engineering process [3]

Cyril Stanley Smith followed this mantra by applying the systems framework to ma-

terials science [4]. Here, each material is defined as a complex system controlled by a

hierarchy of structural subsystems. Only through understanding the connections between

these subsystems and the processes that lead to them can the overall material performance

be optimized. Further expanding upon this vision, Gregory Olson has distinguished the
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primary controlling subsystems as the central materials science components of process-

ing, structure, properties and performance shown in Figure 1.2[5]. In turn, each of these

primary subsystems can be expanded into an additional hierarchy of subsystems and

interconnections.

Figure 1.2. Linear structure of primary materials subsystems [5]

In following the linear chain of Figure 1.2, scientific understanding traverses left to

right following “cause and effect” logic. By applying the systems framework and integrat-

ing scientific understanding of the interrelations governing the overall system, it becomes

possible to follow a “goal/means” logic path traversing right to left. This approach pio-

neered by Olson first translates desired performance measures directly into quantitative

property objectives. Microstructural elements can then be identified that are most in-

strumental in meeting these objectives, and through a combination of mechanistic and

computational modeling, the corresponding composition and processing parameters can

be derived. In this manner, materials transcend from experimental discoveries into in-

spired creations handcrafted for specific purposes.

The utility of this systems framework carries through initial alloy development into

the operational performance optimization as well. Just as empirical approaches are tra-

ditionally used to develop alloy compositions, trial and error practices also commonly

pervade efforts to tailor materials to specific applications. In this methodology, process-

ing techniques and parameters are widely varied in the hopes of eventually capturing the
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combination leading to “best practice” conditions. Not only are such procedures costly

and time consuming, they neglect to ascribe the contribution of each processing step on

the microstructural elements dictating material properties. Subsequently, these empiri-

cal practices most often yield non-transferable knowledge where the discovered optimal

processing conditions only hold true for a specific alloy requiring the entire process to be

repeated anytime a new alloy is introduced. By adopting the systems-based approach

in process optimization, generated knowledge instead takes the form of key relationships

between the structure-processing-property subsystems rather than alloy specific process-

ing recipes. This allows not only for enhanced scientific understanding of the physical

processes involved, but also for greater adaptability to the application of other alloy sys-

tems. The number of iterations required for processing/performance optimization is also

greatly reduced with this approach. By incorporating the microstructural subsystems, di-

rect links are generated between processing and observed properties, allowing for targeted

optimization of key processing parameters.

1.3. Plan of Study

Guided by the systems-based approach, this work aims to address required gear ma-

terial enhancements through both optimizing the performance of promising secondary

hardening alloys as well as designing second-generation alloys to reduce material cost.

Chapter 2 outlines the prevalent failure modes currently limiting high power density gear

applications. The concepts behind secondary hardening steels are also discussed as well

as an introduction on BCC Cu precipitation to be incorporated into new alloy designs.

The various materials and experimental methods are covered in Chapter 3, as well as
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the computational tools used in alloy design. Chapters 4 and 5 detail studies on existing

alloys, starting with performance optimization driven by failure-inducing defect analy-

sis of single tooth bending fatigue specimens. Chapter 5 follows with studies focused

on intrinsic microstructural issues including grain coarsening, hardenability and carbide

stability. Chapters 6 and 7 discuss the development of second-generation alloys incor-

porating nanoscale Cu dispersions to supplement and catalyze secondary hardening in

lieu of expensive cobalt alloying additions currently used. Chapter 6 outlines the alloy

design process for four experimental alloy compositions. Evaluation of resultant proto-

types is discussed in Chapter 7 including hardness response during tempering and analysis

of both nanoscale dispersions using 3D local electrode atom probe (LEAP) tomography.

Microstructural parameters are then re-assessed to recalibrate alloy design models, and

preliminary 2nd design iterations were carried out. Chapter 8 summarizes both the per-

formance optimization and alloy design, and Chapter 9 provides suggestions for future

work.
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CHAPTER 2

Background

2.1. High Power Density Gear Requirements

The use of gears is required in nearly all applications where power transfer is needed.

Gears typically transfer power from one shaft to another, and can assume a myriad of

geometries and configurations based on the specific application. During power transfer

from one gear to another, stresses are generated between the mating gear teeth. The exact

nature and magnitude of such generated stresses are dependent on the particular gear ge-

ometry being employed. The location of these stresses, however, is generally concentrated

in two principal locations as demonstrated by the photoelastic stress analysis of polymer

spur gears shown in Figure 2.1a [6]. Darkened bands in Figure 2.1a correspond to levels

of constant stress formed by the interference between polarized light transmitted through

the loaded spur gear and a reference beam. The first location is at the point of contact

between two mating gear teeth. As the meshing gear teeth turn, sliding-rolling contact

applies a load along the region of the gear tooth surface known as the active profile. The

generated stress, called the surface contact stress, travels up and down the active profile

as the gear teeth engage. At the midpoint of the active profile, or pitchline, these stresses

are in general pure rolling as the applied load from one gear tooth is normal to the mating

tooth. Both above and below the pitchline the applied load deviates away from normal,
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(a) (b)

Figure 2.1. a) Photoelastic stress analysis of polymer spur gears demon-
strating principal locations of stresses generated during loading [6] and b)
Schematic showing types of principal stress [7]

.

subsequently causing sliding and an associated shear stress component, shown schemat-

ically in Figure 2.1b [7]. The second principal stress location occurs at the gear tooth

root radius or fillet, also shown in Figure 2.1b. This stress is generated as the loaded

gear tooth acts as a cantilever beam, and is therefore commonly called the beam bending

stress. This stress is tensile on the loaded side of the gear and compressive on the opposite

side.

To determine the magnitude of these stresses, the American Gear Manufacturers As-

sociation (AGMA) has developed several detailed standards for various gear geometries

[8, 9, 10]. In general, however, the AGMA stress calculations can be summarized by a

basic stress formula consisting of three indices: a load index, a geometry index and a rat-

ing index [11]. The load index relates to the physical dimensions of the gear determining

the transmitted load. The geometry index takes into account the effect of gear geometry

on the generated stresses, including parameters such as the gear root fillet radius, the
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number of gear teeth and the angle formed between the active tooth profile and a radial

line through the pitchline, known as the pressure angle. The final index, the rating in-

dex, describes additional gear design considerations accounting for possible variations in

operating conditions. These factors include allotted tolerances for gear manufacture and

alignment, operating temperatures and the relative velocity between mating gears.

For the case of a generic beam tensile bending stress (St), the calculation takes the

form of Equation 2.1:

St = UL × Ct ×Ra (2.1)

where the load index is the unit load (UL), the geometry index is the beam stress factor

(Ct) and Ra the rating index or overall rating adjustment factor. The values for Ct and

Ra can themselves be calculated from various other parameters pertinent to the specific

gear geometry and configuration, with common combinations often listed in tables for

reference [12]. For spur gear stress calculations, the value for UL can be calculated with

Equation 2.2:

UL = Wt ×
Pd

F
(2.2)

where Wt is the tangential load, F the face width of the gear in contact and Pd the

diametral pitch. The diametral pitch is a measurement of the size of a tooth crossection

normal to the gear axis found by dividing the number of teeth by a unit of pitch diameter.

The surface contact stress (Sc) calculation has a slightly different general form as shown

in Equation 2.3:

Sc =
√

K × Ck ×
√

Ra (2.3)
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where the load index is now called the “K-factor” (K) and the geometry index denoted

as Ck. The loading factor K is raised to power of one half to reflect the square root

relationship between the applied tangential load (Wt) and the generated stress (Sc). The

various parameters composing the rating index (Ra) are all related to load adjustments,

therefore Ra is also raised to the one half power to calculate Sc. In many applications, the

rating index is the same for both bending stress and surface contact stress calculations.

The K-factor can be calculated by Equation 2.4:

K =
Wt

(F × dp)
× (mg + 1)

mg

(2.4)

where dp is the diameter of the pinion, or the smaller of the two contacting gears, and mg

is the ratio of gear teeth between the larger gear and the pinion.

As demonstrated by Equations 2.2 and 2.4 above, increasing power densities achieved

either through increasing loads or decreasing gear dimensions translates directly into

increased stresses. Consequently, both these primary stresses lead to related failures in

high power density gear applications: sliding contact fatigue from repeated surface contact

stresses and tooth bending fatigue from cyclical beam bending stresses.

2.1.1. Sliding Contact Fatigue

A common failure mode for any mechanical element subjected to rolling/sliding conditions

is contact fatigue. In meshing gears, contact fatigue is generated due to cyclically applied

contact stresses along the pitchline and surrounding active profile. Directly along the

pitchline, the applied stress between the mating gear teeth is normal to the surface,

generating pure rolling conditions. The contact between two rolling bodies generates
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Figure 2.2. Schematic showing contact stress distribution due to combined
rolling and sliding [7]

compressive elastic, or Hertzian, stress where the maximum shear stress occurs below the

surface just ahead of the rolling contact point as shown in Figure 2.2. Subsurface damage

occurs when this Hertzian contact stress exceeds the cyclical yield strength of the material

or interacts with stress-rising defects such as inclusions. With further cyclical loading, the

subsurface damage forms a crack that ultimately propagates to the surface and leads to

damage ranging from micropitting to large-scale spalling. Above and below the pitchline

on the active profile, an additional shear stress component is introduced due to sliding

contact, as also shown schematically in Figure 2.2. The maximum combination of sliding

and rolling stress components typically occurs just above and below the pitchline, making

this portion of the gear tooth especially prone to pitting [7].
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Figure 2.3. Trend of increasing hardness vs. maximum Hertzian contact
pressure [13]

2.1.1.1. Effect of hardness. To counteract these contact stresses concentrated at or

near the mating gear tooth surface, gear surfaces are commonly hardened through pro-

cesses such as carburizing, nitriding and induction hardening. By only hardening the

outer surface, overall toughness and impact resistance can be maintained through the

softer core while the hardened case resists contact fatigue and general wear. Figure

2.3 demonstrates the ability of harder materials to withstand greater Hertzian contact

stresses, with carburized alloy steels exhibiting the best performance [13].

As the applied Hertzian contact stress is increased, the depth at which the maximum

shear stress occurs also increases. To properly resist contact fatigue, the hardened case

must therefore be deep enough to counteract the applied stresses. Surface hardening

through carburizing allows for adequately deep case depths, with typical carburized gear

case depths ranging from 0.020” to 0.040” (0.5 - 1.0 mm).
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2.1.1.2. Effect of residual stress. An additional benefit from surface hardening through

carburizing is the generation of surface compressive residual stress. During the carburiza-

tion process, hardening is achieved by diffusing carbon into the surface at solutionizing

temperatures. The austenite-stabilizing ability of carbon creates a transformation tem-

perature gradient between the carburized case and the core material. Upon quenching, the

core transforms first due its lower carbon content and higher transformation temperature.

The volume expansion associated with the martensitic transformation is accommodated

by the softer austenite phase still present in the carburized case. With further cooling, the

higher carbon case material transforms to martensite. The now martensitic core, however,

resists the expansion of the carburized case transformation and leaves the surface mate-

rial in a state of compression. This compressive stress acts to reduce the overall effective

stress and allows for increased resistance to applied contact stresses.

2.1.1.3. Effect of carbide dissolution. Under heavy contact loads, the subsurface

shear stress is of sufficient magnitude to cause localized deformation and associated mi-

crostructural transformations. This development, sometimes called “martensitic decay”

or “altered martensite”, is often located on shear planes around inclusions or primary

carbides that act as stress risers and is commonly seen in bearing steels as well as car-

burized gears [14]. When chemically etched, such as with Nital, these bands appear

white and are known as white etching bands (WEB’s) or “butterfly wings”, due to the

way they spread out from the originating inclusion or carbide [7]. The microstructure of

these WEB’s or “butterfly wings” consists of heavily deformed, very fine-grained ferrite

where all strengthening carbides have been partially or fully dissolved [15]. The inter-

stitial carbon formerly composing the carbides subsequently diffuses out of the region,
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leading to the observed white-etching behavior as well as causing strain-softening that in

turn leads to further strain localization. The avoidance of these failure-inducing butterfly

formations can in part be achieved by removing the stress risers from which they orig-

inate. Cleaner melt practices to reduce inclusions as well as optimized microstructures

and heat treatments to avoid large primary carbides all benefit contact fatigue resistance.

Steels strengthened through alloy carbides also show improved contact fatigue resistance

than those strengthened by transition ε-carbides [6]. This is attributed to the increased

thermodynamic stability of alloy carbides, which are more stable than cementite unlike

transition carbides. Additionally, the dissolution of alloy carbides requires the diffusion

of substitutional carbide forming elements of low mobility such as Cr and Mo, whereas

dissolution of transition Fe-carbides only requires the diffusion of highly mobile inter-

stitial C atoms. The size of strengthening carbides also plays a role in strain softening

due to carbide dissolution. Under repeated heavy contact loads, the large subsurface

shear stresses can with time shear and dissolve particles that under monotonic loading

conditions would remain unshearable Orowan obstacles. The size at which strengthening

carbides transition from particle shearing to particle bypass regimes is different, therefore,

for monotonic and cyclic loading conditions, with the transition occurring later for cyclic

loading. Overaging may therefore be a means of increasing the stability of strengthening

dispersions to resist cyclic strain softening due to particle dissolution.

2.1.2. Bending Fatigue

Tooth bending fatigue has been found to be the most frequent of all gear failure modes [7].

Unlike surface contact stresses, bending stresses scale linearly with increasing load as well
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as decreasing tooth thickness and will subsequently be a primary performance limitation

in going to higher power densities. Bending fatigue failures occur due to the tensile beam

bending stresses cyclically generated at the roots or fillets of loaded gear teeth, previously

illustrated in Figure 2.1. The process of fatigue failure due to cyclic tensile stresses can

be summarized by five stages as outlined by Fine [16]:

(1) Cyclic plastic deformation

(2) Microcrack initiation

(3) Formation of macrocracks due to microcrack propagation/coalescence

(4) Macrocrack propagation

(5) Final failure

Initially cyclic plastic deformation occurs through dislocation glide during each gen-

erated stress cycle. With continued glide, dislocations interact and form bundles or cells.

Depending on the specific material and its initial microstructure, cyclic hardening, cyclic

softening or a combination of the two may occur due to this evolution of the dislocation

substructure. In certain materials, plastic deformation becomes severely localized and en-

hanced along certain slip bands known as “persistent slip bands” or PSB’s. Microcracks

are formed as obstacles impede dislocation motion, such as high angle grain boundaries

and interfaces. At these obstacles, dislocation pileups accumulate until a critical level is

reached and a dislocation avalanche process occurs, ultimately leading to localized plastic

strain and microcracking. In cases where dislocation pileups do not occur, gliding dislo-

cations emerge at the surface resulting in a slip step. With continued stress cycles, these

steps accumulate where slip bands intersect the surface and the ensuing roughening of
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the surface leads to the formation of a microcrack. The first microcracks to form in the

fatigue process are often called Stage I fatigue cracks.

Once a microcrack has initiated, it will continue to grow assuming the stress or plastic

strain cycling is above a threshold value. Below this threshold, known as the fatigue limit,

microcracks may nucleate but fail to propagate. This phenomena may be in part due to

interactions with obstacles such as phase boundaries or grain boundaries [16], however the

exact nature of microcrack or “small crack” propagation is complicated and the focus of

ongoing study [17]. Above the fatigue threshold, microcracks grow and/or coalesce until

they have reached a sufficiently large size to be deemed a macrocrack, or Stage II fatigue

crack. This transition can be generally approximated as the point where a microcrack

has traversed an area exceeding several grain cross-sections [16]. The propogation of the

larger macrocracks is a much better understood process with the advance of the crack tip

generally following linear elastic fracture mechanics. The controlling parameter governing

macrocrack propagation is the applied stress intensity range (∆K) experienced at the

crack tip during cyclical loading. Macrocrack propagation rates determined by change in

overall crack length (c) per cycle (N) are usually observed to consist of three regimes based

on ∆K. These three regimes manifest themselves as three regions in a log-log plot of dc
dN

vs.

∆K, as shown in Figure 2.4. The first region, Region I, centers around a threshold stress

intensity range (∆Ko) below which macrocracks will not propagate. At stress intensity

ranges just above this threshold, crack propagation rates increase rapidly until leveling

out into a region of steadily increasing crack growth, Region II. Crack propagation in this
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Figure 2.4. Schematic plot of fatigue crack propagation rate vs stress in-
tensity range [16]

second region follows a power law known as the Paris relation shown in Equation 2.5:

dc

dN
= C(∆K)m (2.5)

where C and m are constants. As the stress intensity range increases into Region III, the

crack propagation rate once again increases very rapidly as the maximum stress intensity

nears the critical stress intensity for fracture or critical fracture toughness (KIC) and final

failure occurs

In the specific case of surface hardened gears, the fatigue process is further complicated

due to a gradient in microstructure and associated properties. Krauss outlined five stages

of fatigue as manifested through five distinct regions on the fracture surface of a gear tooth

that failed due to bending fatigue [18, 19]. Figure 2.5 shows example SEM micrographs

of these five stages of bending fatigue in carburized gears [20].
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Figure 2.5. Five regions of bending fatigue crack propogation in case hard-
ened steel [20]
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Region I consists of fatigue crack initiation within the carburized case. Common

defects where initiation occurs include intergranular oxidation from gas carburizing, em-

brittled prior-austenite grain boundaries and subsurface inclusions. Once initiated, the

fatigue crack steadily propagates transgranularly through the carburized case in a radial

fashion, outlining Region II on the fracture surface. If originating from the surface, the

advancing fatigue crack will produce a semi-circular fracture path while subsurface ini-

tiated fatigue cracks radiate in all directions and form a circular fracture region around

the initiating defect, a feature commonly referred to as a “fisheye”. Once the advancing

fatigue crack has reached the critical flaw size of the carburized case, it becomes unsta-

ble and rapidly advances, rupturing the length of the carburized case as seen in Region

III. Further from the surface past the hardened layer, the advancing crack encounters the

softer core, slows down and propagates once again in a stable manner. This region, Region

IV, is characterized by a transgranular fracture surface with resolvable fatigue striations

and secondary cracking[18, 21]. The crack steadily advances until reaching the critical

flaw size of the softer core, eventually leading to ductile overload fracture (Region V).

2.1.2.1. Effect of hardness. The number of cycles spent in each of the aforementioned

stages of fatigue failure depends greatly on the magnitude of the applied cyclic stress. If

the maximum applied stress is low, the macroscopic strain state is predominantly elastic

and a large number of cycles is required to cause failure. This high-cycle fatigue occurs

near the fatigue limit, where the limiting stage of fatigue is the nucleation and propagation

of Stage I microcracks. At higher stresses significantly above the fatigue limit, microc-

racks are able to initiate and propagate into macrocracks much more easily, and fatigue

failure is accelerated. Most of the load cycles in this low-cycle fatigue then is spent in
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the plastic deformation of advancing macrocracks. This behavior was shown experimen-

tally for bending fatigue of carburized gears using acoustic emmision techniques, where

crack initiation at high stresses composed approximately half of the cycles til failure, but

increased to 89% of the total life near the endurance limit [22].

The transition between these two regimes is demonstrated during cyclical strain-

controlled fatigue tests. Results from such tests are typically plotted on a log-log plot of

the applied strain amplitude (1
2
∆ε) vs. cycles till failure (Nf ), as shown schematically in

Figure 2.6a. Here the total strain is a combination of the elastic strain range (∆εel) and

the plastic strain range (∆εpl).

During low cycle fatigue where the large plastic strains dominate, the elastic strain

component becomes negligible and ∆ε ∼= ∆εpl. Near the fatigue limit in high-cycle fatigue,

the total strain is predominantly elastic and ∆ε ∼= ∆εel. General empirical relations

correlate the cycles till failure with these two strain regimes and associated material

parameters. For low-cycle fatigue, Equation 2.6 relates ∆εpl and Nf :

1

2
∆εpl = ε′f (2Nf )

−c (2.6)

where ε′f and c are fitting parameters related to tensile ductility and work softening, re-

spectively. Based on this relation, low-cycle fatigue life can be extended through increased

ductility and enhanced work hardening, correlating with the ability to withstand increased

plastic deformation from advancing fatigue macrocracks. This trend is shown schemat-

ically in Figure 2.6b where ductile materials perform better than harder and stronger

materials in low cycle fatigue. This trend is reversed when going to high-cycle fatigue

where elastic strains predominate. Here the empirical correlation with fatigue life follows
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(a)

(b)

Figure 2.6. a) Schematic showing typical results of strain-controlled fatigue
tests plotting strain amplitude vs. number of cycles til failure and b) rela-
tionship of general material properties on fatigue life [23]

the form of Equation 2.7:

1

2
∆εel =

σ′f
E

(2Nf )
b (2.7)

where the fitting parameters are now σ′f , which relates closely with monotonic tensile

strength, and b, which relates to cyclic work hardening. High-cycle fatigue life may then be
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extended by increasing the tensile strength of the material, effectively resisting microcrack

initiation and propagation. This behavior is also demonstrated schematically by Figure

2.6b, where stronger materials demonstrate improved high-cycle fatigue resistance than

their more ductile counterparts. The total material response combining both elastic and

plastic strain components would then be the combination of Equations 2.6 and 2.7:

1

2
∆ε =

1

2
∆εpl +

1

2
∆εel = ε′f (2Nf )

−c +
σ′f
E

(2Nf )
b (2.8)

As also demonstrated by Figure 2.6b, the ability of higher-strength materials to resist high-

cycle fatigue ultimately translates into increased fatigue limits below which microcrack

propogation and subsequent fatigue failure will not occur. Because this threshold marks

the initial onset of plastic strain, the fatigue limit has long been linked with a material’s

tensile properties such as yield strength or ultimate bending strength. Murakami has

shown that a better correlation exists with microhardness, which reflects a material’s

average flow stress or resistance to plastic deformation. An example of this trend is

shown in Figure 2.7, where the fatigue limit (σw0) of various steels is shown to follow the

relationship σw0
∼= 1.6HV [24, 25].

2.1.2.2. Defect sensitivity. The correlation between increased hardness levels resulting

in increased fatigue limit is not observed at all strength levels. For the various steels shown

in Figure 2.7, this trend holds true up to microhardness levels <400 Vickers (HV). Past

this hardness level, the trend reverses and the fatigue limit is reduced with increased

hardness. This phenomenon can be explained by the increased flaw sensitivity exhibited

by harder materials. Figure 2.8 shows the relationship between the size of an artificial

hole and the observed effect on fatigue strength for steels of two different hardness levels
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Figure 2.7. Correlation between microhardness and fatigue strength for var-
ious steels[24, 25]

achieved through different carbon contents [25]. Both steels exhibit a critical flaw size

below which the impact of the flaw has a negligible or very small effect on the fatigue

strength. Small microcracks were observed to form from these flaws but the effective rise

in stress intensity due to these defects was not great enough to cause them to propagate.

Once the imposed defects exceeded the critical diameter, the generated rise in stress

intensity was great enough to cause microcrack propagation and ultimate fatigue failure.

For the harder steel, this critical threshold occurs at a much smaller flaw size than the

softer steel and the impact of flaws exceeding this critical dimension have a much larger

impact on fatigue strength as well. For the steels shown in Figure 2.7, once the hardness

level surpasses the 400 Hv threshold, the critical flaw size has reduced to the dimensions
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Figure 2.8. Relationship between artificial flaw size and fatigue strength [25]

of intrinsic flaws within the steels such as inclusions and surface defects. With increasing

hardness, the detrimental nature of these flaws becomes more pronounced causing the

reversed trend of diminishing fatigue strength.

One common method of minimizing the detrimental effect of defects is through shot

peening. Shot peening imparts compressive residual stress into the surface and near

subsurface through bombardment of hard media, including hardened steel, ceramic and

glass. This compressive residual stress effectively acts as a mean stress counteracting

applied tensile stress. Consequently, the use of shot peening greatly inhibits microcrack

initiation and growth, both from the surface and near subsurface defects. This in turn

elevates resistance to high cycle fatigue and the associated fatigue limit. The benefit

of shot peening is not as great for low-cycle fatigue, where plastic strains predominant
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and quickly overcome and dissipate compressive residual stresses. The magnitude of

compressive residual stress that can be imparted to a material is largely a function of

that material’s yield strength [26]. Shot peening becomes increasingly important in the

utilization of harder materials, therefore, as this residual stress advantage can be utilized

to offset increased sensitivity to defects.

2.1.2.3. Microstructure limitations. Once extrinsic processing defects are addressed

through such actions as cleaner melt practices and improved surface finishing techniques,

the intrinsic microstructure becomes the limiting factor in fatigue failure. Statistical anal-

ysis of bending fatigue data for various carburized steels revealed that of all investigated

parameters, prior austenite grain size had the largest correlation with endurance limit [27].

Grain size in general has been attributed to influence fatigue in different ways. Smaller

grain size has been linked to increased resistance to high-cycle fatigue and improved fa-

tigue limits. This grain size effect has been attributed to the increased strength from grain

refinement (Hall-Petch strengthening) [16] as well as dilution of grain boundary phospho-

rus segregation believed to promote embrittlement by stabilizing cement [19]. Reducing

grain size has also been shown to delay microcrack initiation and growth along intense slip

bands by reducing the overall slip length[28]. As a result, the number of dislocations in a

pileup is reduced as well as the associated stress concentration at the pileup-causing ob-

stacle. The reduced slip length also limits the number of dislocations that can emerge at a

free surface and cause surface roughening. In high carbon steels, grain size refinement has

also been shown to increase fatigue resistance by minimizing detrimental microcracking

formed by impingement of martensite plates during quenching[29].
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Hardenability, or the lack thereof, can also influence a material’s fatigue properties.

Retained austenite formed by incomplete martensitic transformation upon quenching has

been shown to increase low-cycle fatigue resistance [30]. This has been attributed to

the improvement of ductility from the softer austenite as well as from crack impeding

compressive stresses generated from the volume expansion of deformation-induced trans-

formation to martensite [19, 30]. For high-cycle fatigue and the endurance limit, the

reduction in hardness and tensile strength caused by retained austenite has been shown

to be detrimental [31]. Small inhomogeneities due to limited hardenability such as Bainite

patches have also been shown to act as fatigue initiation sites in ultra-clean steels [25].

2.2. Secondary Hardening Steels

To address rising power density requirements, steels must exhibit superior hardness

to resist localized contact and bending stresses while at the same time sustain adequate

toughness for sufficient flaw tolerance. One family of steels that has demonstrated the

highest combination of strength and toughness is high-alloy secondary hardening marten-

sitic steels. Secondary hardening steels get their name from a secondary hardening re-

sponse exhibited by these alloys when aged at Stage IV (450-600◦C) tempering tem-

peratures. This hardening behavior arises from the formation of fine alloy carbide dis-

persions that replace coarse cementite particles during tempering. Because these alloy

carbides are stable at higher temperatures, secondary hardening steels were first utilized

as tool steels in order to maintain hardness at elevated temperatures, a phenomenon called

“hot-hardness” or “red-hardness”. The superior combination of strength and toughness
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afforded through the fine alloy carbide dispersion was then utilized in high-strength high-

toughness structural steels, leading to commercial alloys such as HY180 and AF1410 .

It is this same optimized combination of strength and toughness that makes secondary

hardening alloys well suited for high power density gear applications.

2.2.1. System Structure

Expanding upon the primary materials subsystems, the systems flow block diagram, or

Olson diagram, for Ni-Co secondary hardening steels can be constructed for high power

density gear applications as shown in Figure 2.9. The two performance objectives corre-

spond to the two limiting failure modes in high power density gears, specifically bending

fatigue and sliding/rolling contact fatigue. Top priority is placed on bending fatigue, as

it is the most common failure mode as well as anticipated to be the primary limitation

when attempting elevated power densities in transmission gear applications. Most im-

portant in meeting these objectives is the optimization of the properties hardness and

toughness, as previously discussed. Additional resistance to both bending and contact

fatigue is generated through compressive residual stress at the surface and mechanical

stability of the strengthening dispersions. Structure is divided into two main subsystems:

the matrix or base steel and the carburized case. Being the ultimate creation of the ma-

terials designer, microstructural elements composing these structures are the central link

connecting processing and properties and will be discussed in later sections.

Processing subsystems begin with the creation of the actual gear from raw material,

which is conventionally accomplished using one of three different methods. The most

common of these methods is machining the gear from a cast ingot that has been forged
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into stock. Additional gear manufacturing methods include direct casting and powder

metallurgy techniques such as powder forging. Once the gear is formed it is typically heat

treated to harden the surface through a process such as carburizing. Carburization treat-

ments consist of a solutionizing heat treatment to dissolve primary carbides and bring the

material to an austenitic state for increased carbon solubility. There are various methods

of carburizing to diffuse carbon into the surface, ranging from simple pack carburizing

to conventional gas carburizing. High temperature vacuum carburizing is desirable for

high power density gear applications by avoiding intergranular surface oxidation common

to conventional gas carburizing which commonly initiates bending fatigue failures [19].

Once carburized the gears are quenched and often subjected to cryogenic treatments to

ensure complete martensitic transformation. Tempering treatments are then performed

to achieve secondary hardening through the precipitation of alloy carbides. Various sur-

face treatments can then be performed. Shot peening is commonly employed to impart

compressive residual stress to the surface of gear teeth and root notches. Different means

of improving the surface finish of the gear to rid of stress rising asperities include honing,

grinding and burnishing [12]. Isotropic superfinishing combines chemical slurries with

vibrating abrasive media to achieve very low surface roughness values shown to enhance

gear performance in both bending and contact fatigue [32].

2.2.2. Matrix

2.2.2.1. Microstructure. The base microstructure of Ni-Co secondary hardening steels

typically consists of a tempered lath martensite matrix, with the Ni and Co in solid solu-

tion. The lath martensitic structure occurs in steels with low to medium carbon contents
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and is composed of groups or packets of very fine and parallel board-shaped crystals,

or laths. This lath structure is formed upon quenching from the FCC austenite phase

through a diffusionless shear transformation, resulting in a highly dislocated substructure

due to accommodation of the associated lattice invariant deformation. The fine struc-

ture of the martensitic laths as well as the associated high dislocation densities gives

this microstructure an excellent combination of strength and toughness. At higher car-

bon contents, the martensitic transformation temperature (Ms) is suppressed, causing

the martensitic transformation mechanism to occur through twinning instead of dislo-

cation motion. The resultant structure is composed of nonparallel plates and is usually

accompanied by significant amounts of untransformed, or retained, austenite phase. The

nonparallel nature of plate martensite often causes the impingement and subsequent brit-

tle cracking of plates formed upon quenching. This propensity for microcracking, as well

as a decreased dislocation density and softening from retained austenite make the plate

martensite morphology less favorable to optimize strength and toughness than the lower

carbon lath martensite microstructure.

Suspended in solid solution within this lath martensite microstructure are both the Ni

and Co alloying additions. Ni is a common alloying element utilized in steels to enhance

toughness. Similar to other BCC metals, brittle fracture of Fe tends to occur along {100}

cleavage planes. Work by Krasko and Olson has attributed this behavior to a reduction in

the overall ferromagnetic contribution to the total surface energy due to the presence of

Ni at or near the surface of {100} planes [33]. Because the ferromagnetic contribution is

negative, its reduction increases the total surface energy and the associated Griffith work

of brittle separation, subsequently resisting cleavage fracture.
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Cobalt alloying additions were originally added to tool steels in order to maintain

hardness at elevated temperatures, a phenomenon known as “hot hardness” or “red hard-

ness”. This behavior arises as, besides from being a modest solid solution strengthener,

Co is attributed to retard dislocation recovery at elevated temperatures [34]. This phe-

nomenon is believed to occur through hindering the self-diffusion of Fe and associated

dislocation climb through atomic short-range ordering between Co and Fe [35, 36, 37].

For secondary hardening steels, preserving this dislocation substructure during temper-

ing at elevated temperatures sustains more locations for the heterogeneous nucleation of

strengthening alloy carbides. By aiding heterogeneous nucleation, cobalt additions sub-

sequently accelerate secondary hardening and allow for peak hardness to be achieved at

significantly reduced tempering temperatures where the thermodynamic driving force for

precipitation is increased. Cobalt additions, therefore, enable the precipitation of finer,

more efficient strengthening dispersions and maximize the secondary hardening response.

Figure 2.10 demonstrates this effect of Co on secondary hardening, where after 1 hour of

tempering, the addition of Co both raises the peak hardness by 10 RC and reduces the

peak hardness tempereature by over 200◦F (100◦C) [38]. To ensure equivelant martensite

transformation temperatures (MS) between the two alloys, 10 wt% Ni was added as an

austenite stabilizer to offset the martensite stabilizing effect of Co. In further studies

of both alloys in Figure 2.10 comparing the isothermal hardnening response at 500◦C,

the Co-Ni steel demonstrated an accleration of secondary hardening by 2 to 3 orders of

magnitude [38].

Another benefit of secondary hardening is that M2C alloy carbides are thermody-

namically more stable than cementite. Given sufficient tempering time, it then becomes
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Figure 2.10. Hardness response after 1-hr temper at various temperatures
for secondary hardening steels with and without 14Co-10Ni (wt%) [38]

possible to fully dissolve coarse, embrittling cementite particles and replace them with

much finer and more stable alloy carbides. Work done by Speich on secondary hard-

ening alloys demonstrated a doubling of the measured Charpy V-notch energy through

complete dissolution of coarse cementite particles, as shown by the tempering-toughness

trajectories in Figure 2.11 [34].

2.2.2.2. Grain refining dispersion. In order to resist grain coarsening during high

temperature heat treatments, fine submicron secondary dispersions are often incorporated

to pin grain boundaries. Small additions of Ti are frequently added to form Ti carbides and

nitrides, as well as Ti oxides in powder-forged steels. With further gains in heat cleanliness

reducing the role of large primary inclusions, however, these secondary grain pinning

particles can become sites for microvoid nucleation and detrimentally impact toughness.

Although typically strongly bonded to the surrounding matrix, secondary particles can
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Figure 2.11. Effect of time and tempering temperature on Charpy v-notch
energy in 10Ni-2Cr-1Mo-8Co steels (wt%) [34]

de-bond under high strains, subsequently forming microvoids. Localized shear occurs

between microvoids and eventually leads to void coalescence and ductile fracture. To

minimize the effect of this microvoiding behavior, the size and volume fraction of these

particles likewise needs to be minimized. The grain pinning ability of secondary particles

is also a function of the average particle size (dbar) and particle volume fraction (fv),

with the maintained grain size proportional to the ratio of dbar/fv. Microvoid resistance,

therefore, can be enhanced by reducing the volume fraction and size of secondary particles
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without impairing their grain pinning ability by maintaining the proper size to volume

fraction ratio. Additionally, grain pinning particles can be designed to have increased

interfacial strength with the surrounding matrix to resist particle debonding.

2.2.2.3. Grain boundary chemistry. For ultra-high strength steels, a common factor

limiting toughness is hydrogen embrittlement. Embrittlement due to hydrogen occurs

through brittle decohesion of grain boundaries, a phenomena aggravated by impurity

segregation [39]. The role of various impurity elements on grain boundary decohesion is

directly related to their various effects on the work required to pull the boundary apart,

specifically the Griffith work of brittle cleavage (2γint). This work of separation scales

with the amount of solute at the boundary, Γ as shown in Equation 2.9:

2γint = (2γint)o − (∆go
b −∆go

s)Γ (2.9)

where 2γint)o is the work of interfacial separation in the absence of impurities and ∆go
b

and ∆go
s are the solute free energies of segregation to a boundary and to a free surface,

respectively. The difference in free energies of a solute between a boundary and a free

surface therefore reflects the embrittling potency of the specific impurity, with elements

that have a lower energy at a free surface reducing the work of interfacial separation

and causing brittleness. Besides H, common impurities such as P and S are two other

such embrittling elements. To minimize the effect of these embrittling impurities, cleaner

melt practices can be employed as well as incorporation of impurity gettering elements

such as La that form stable compounds. Conversely, elements can be added that increase

the work of interfacial separation by having lower free energy at boundaries compared to
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free surfaces. Small additions of B are used for this purpose and work to enhance grain

boundary cohesion to resist hydrogen embrittlement.

2.2.3. M2C Carbide Precipitation Strengthening

Secondary hardening steels garner most of their strength through a fine dispersion of

alloy carbides. The level of precipitation strengthening achieved is highly dependent on

the interaction mechanism between a gliding dislocation and a precipitate. When pre-

cipitates are small and coherent with the surrounding matrix, dislocations are able to

cut into and shear the precipitate given sufficient energy. Depending on the particular

system, the resistance to particle shearing and the associated strengthening is due to sev-

eral mechanisms, including coherency strains between precipitates and matrix (coherency

strengthening), disruption of atomic ordering within precipitates (order strengthening)

and additional surface area created from particle shearing (chemical strengthening). With

all of these strengthening mechanisms, larger particles provide more resistance to shearing

than smaller ones, resulting in the general strengthening behavior for particle shearing

illustrated in Figure 2.12 [40]. With continued growth, precipitates become increasingly

difficult to shear due to their larger size as well as loss of coherency with the surrounding

matrix. Eventually particles become non-shearable and gliding dislocations must bow

around the particles. The Orowan bypass regime than dominates where a gliding dislo-

cation must bow completely around a particle until touching to form a contained loop,

thereby allowing the remaining reconnected dislocation segment to continue gliding. Un-

like particle shearing, Orowan bypass is driven by interparticle spacing where increasing

the number of obstacles impedes dislocation motion. For a given particle volume fraction,
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Figure 2.12. Schematic representation of precipitation strengthening as a
function of particle size at constant volume fraction [40]

fewer larger precipitates are less efficient Orowan strengtheners than a larger number of

smaller precipitates. This difference in the particle size dependency for strengthening

through particle shearing and by particle bypass results in the maximum precipitation

strengthening occurring at the transition between these two mechanisms, as also shown

schematically in Figure 2.12. Optimization of precipitation strengthening thus requires

the refinement of the utilized precipitate strengthening dispersion to a sufficiently fine

size scale.

Ni-Co secondary hardening steels achieve very fine dispersions of alloy carbides in

part due to their large Co alloying additions. As previously discussed, the added temper
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resistance provided by the Co allows for increased heterogeneous nucleation sites for alloy

carbides. By easing nucleation, the driving force for precipitation is increased resulting

in finer precipitate dispersions. Additionally, the type of carbide utilized in precipitation

also plays a role. Carbides capable of maintaining high coherency with BCC Fe are able to

precipitate at a much finer size scale. These carbides correspond to close packed structures,

namely the FCC MC carbide (M=Nb, Ta, Ti, V) and HCP M2C carbide (M=Fe, Cr, Mo,

W)[41]. Other alloy carbides such as M6C, M7C3 and M23C6 are more thermodynamically

stable but less coherent with BCC Fe, resulting in coarser particle dispersions of reduced

strengthening efficiency, as well as reduced toughness due to incoherent precipitation on

interfaces.

The precipitate dispersion of choice in Ni-Co secondary hardening steels is M2C al-

loy carbides, where strong carbide forming elements (M) include Cr, Mo, V and W.

Although metastable, M2C carbides exhibit the strongest driving force for precipitation

from martensite as well as display the aforementioned coherency with the BCC tempered

martensite matrix, resulting in the ability to form exceedingly fine strengthening disper-

sions. The transition between particle shearing and particle bypass marking the point

of maximum precipitation strengthening has been shown to occur at an M2C precipitate

diameters of 3 nm [42]. In order to reach dispersions on such a fine size scale, the ther-

modynamic driving force and kinetics for precipitation are controlled through alloying

to compose mixed alloy carbides of (Cr, Mo, V, W)2C. Due to the increased stability of

Mo2C over Cr2C, Mo increases the precipitation driving force when substituted for Cr

but is ultimately limited for solidification segregation considerations. Small additions of
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V and W also greatly increase the driving force for M2C precipitation, however both are

also constrained, this time due to limited solubility in FCC Fe.

2.2.4. Current Alloys

A family of ultra-high strength, secondary-hardening carburizing steels were chosen as

candidate materials to address high power density gear applications due to their optimized

combination of strength and toughness. Using the previously discussed systems-based

materials design approach, the first prototypes of these alloys were developed by John

Wise at Northwestern University, successfully achieving surface hardness values of 69 HRC

[40]. These prototypes were further developed and then commercialized as GearMetr

C69 and C67 by QuesTek Innovations in Evanston, IL [43]. Designed for maximized

surface hardness, this alloy has shown great promise in contact fatigue, outperforming

M50 bearing steel in NTN ball-on-rod rolling contact fatigue (RCF) screening tests [43]

as well as outperforming any material to date in recent re-circulating spur gear contact

fatigue tests run at the NASA Glenn Research Center [44]. Again using the same materials

design approach, QuesTek developed an additional secondary-hardening carburizing steel,

this time designed for conventional gear steel surface hardness levels ( 58-61 HRC) but

with a harder, yet flaw-resistant, core. Carburized to 61 HRC, this alloy is commercialized

by QuesTek as GearMet C61 and due to its harder core, has successfully been implemented

in racing applications at reduced gear widths with no impact on performance.

The optimized combination of strength and toughness exhibited by ultra-high strength

secondary hardening steels has already been demonstrated to enhance contact fatigue

resistance. Currently, however, the bending fatigue properties and resultant suitability
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for high-power density gear applications, of these steels has not been assessed. Both

GearMet C61 and C67 will be investigated in this study to both assess and optimize their

bending fatigue performance.

Brian Tufts also expanded on Wise’s alloys and developed a powder metallurgy vari-

ant designed for continuously variable transmission (CVT) applications [45]. Aimed at

reducing cost, Tufts explored the possibility of a hybrid design consisting of a lower cost

base steel serving as a substrate for high alloy steel employed at the surface to counteract

highly localized stresses generated in CVT components. Materials formed through powder

metallurgy (PM) have been also shown to exhibit greater high temperature coarsening

resistance than their wrought counterparts when modified with stable-oxide forming ele-

ments that form grain pinning dispersions [46]. As a means of counteracting significant

grain coarsening observed in C69 alloys, Tufts designed PM variants containing small Ti

additions to getter increased oxygen levels intrinsic to powder processing. The resultant

grain-pinning oxide dispersions could be explored as a means of providing grain coarsening

resistance during heat treatments at elevated temperatures. The ensuing alloy was sub-

sequently named PMC69-Ti and will be used in this work to study its potential increased

resistance to grain coarsening.

2.3. BCC Cu Precipitation

One possible alternative to Co-assisted M2C precipitation strengthening is the incor-

poration of BCC Cu precipitates. Strengthening with Cu precipitates is commonly used

for achieving strength where carbon additions are limited due to weldability concerns,
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such as in high strength, low alloy (HSLA) steels used in applications like shipbuilding,

pressure vessels and pipelines [47, 48, 49].

2.3.1. Cu Precipitation Strengthening

BCC Cu precipitation strengthening in steels is due to so-called “modulus strengthening”

as outlined by Russell and Brown [50], where the softer Cu particles have a lower shear

modulus than the harder ferrite matrix. This modulus mismatch of the coherent Cu par-

ticles results in an “attractive” interaction with matrix slip dislocations, with the energy

needed to “pull” the dislocation out of the sheared particle resulting in the observed in-

crease in yield strength. The amount of strengthening provided by modulus strengthening

is dependent on the critical angle at which a dislocation can cut softer precipitates, specif-

ically the angle formed between the portion of dislocation in the matrix to the portion

inside the particle being sheared. This angle is ultimately related to interparticle spacing

and in turn particle radii and volume fraction (f). The maximum value of this strength-

ening increment occurs when the precipitate radius equals twice that of the dislocation

core (ro) and for Cu particles in a Fe matrix can be described by Equation 2.10:

τmax = 0.041
Gbf1/2

ro

(2.10)

As shown in Equation 2.10, the dependency of modulus strengthening on interparticle

spacing results in the same general form as that of Orowan bypass of nonshearable parti-

cles where strength is proportional to the square root of precipitate volume fraction. This

dependency is demonstrated in Figure 2.13 where the maximum hardening increment
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Figure 2.13. Strengthening increment due to Cu precipitation showing re-
lationship to phase fraction to the one-half power [50]

from various studies is plotted vs. phase fraction to the one-half power [50]. Alterna-

tive strengthening mechanisms have been proposed [51, 52], however, recent work by

Deschamps supports the Russell-Brown model for these systems [53].

Peak strengthening occurs as the metastable, spherical BCC Cu precipitates reach a

critical diameter of 2.3 to 3.0 nm [54]. Upon further aging and growth they begin to lose

coherency through an intermediate martensitic transformations to a 9R structure[55, 56],

ultimately evolving into the incoherent rod-shaped morphology of the equilibrium FCC

ε-phase [57]. BCC Cu precipitation is known to occur at Stage IV tempering tempera-

tures (450-600◦C) making it fully compatible with the heat-treating regime used in M2C

precipitation for secondary hardening as shown by Saha [58]. In his development of

blast-resistant plate steel, carbon restrictions due to weldability considerations limited
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the necessary M2C phase fraction, and BCC Cu precipitation was successfully employed

as an alternative strengthening agent to achieve targeted strength goals.

2.3.2. Heterogeneous Nucleation on Cu Particles

Besides providing a supplemental source of strength, Cu precipitation has additional at-

tributes that can be potentially utilized to catalyze M2C precipitation. Cu is known to

precipitate out of solution very rapidly on grain boundaries and dislocations, restricting

their mobility and resulting in temper resistance and grain refinement [59, 60, 61, 62].

Additionally, Cu precipitates themselves have been shown to act as heterogeneous nu-

cleation sites for other phases, such as Laves phase in high Cr ferritic steels [63, 64],

Ni3(Ti,Al) intermetallics in maraging steels [65], and α-Fe in iron-based amorphous glass

[66, 67], examples of which are shown in Figure 2.14. Much like the role of Co additions,

therefore, Cu precipitation has been shown to provide increased locations for heteroge-

neous nucleation, both on additional dislocations provided through temper resistance and

on the actual Cu particles themselves. Evidence of this behavior is also supported by the

aforementioned work of Saha in Cu-bearing, low carbon steels [58]. Using 3-dimensional

atom probe (3DAP) tomography, Saha demonstrated the ability of Cu precipitates to

act as heterogeneous nucleation sites for Ni-rich austenite precipitates desired for trans-

formation toughening. Additionally, targeted secondary hardening strength levels were

successfully achieved from M2C precipitation even in the absence of Co, suggesting a sec-

ondary hardening enhancement effect from the incorporation of Cu precipitation similar

to that achieved through Co alloying additions.
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(a) (b) (c)

Figure 2.14. Examples of heterogeneous nucleation of various precipitates
on Cu particles: a)3DAP reconstruction of Al-rich intermetallics in marag-
ing steels [65], b)HREM and NBD patterns of α-Fe in amporphous glasses
[67] and c) TEM micrograph of laves phase in stainless steel (B=Cu,
C=laves phase) [63]
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CHAPTER 3

Materials and Methods

3.1. Materials

3.1.1. GearMetr C61/C67

The C61 and C67 materials used for bending fatigue testing and performance optimization

studies were produced by QuesTek Innovations with the compositions listed in Table 3.1.

Both materials originally came from production-scale ingots cast using vacuum induction

melting (VIM) followed by vacuum arc remelting (VAR). Small alloying additions were

also included of La (0.01-0.03 wt%) to getter impurities, B (0.001-0.003 wt%) for grain

boundary cohesion enhancement and Ti (0.01-0.03 wt%) to form grain pinning dispersions.

Ingots were forged to 7.2” diameter bar and then machined down to a diameter of 5.25”.

3.1.2. Premium Gear Steel

When assessing the bending fatigue performance of the C61/C67 alloys, it is important

to be able to accurately compare results with previously acquired data from other alloys.

To ensure proper data comparison, “control” gears remaining from previous GM Power-

train experiments were also tested to verify reproducibility of past results. The material

was provided by GM Powertrain in the form of single tooth bending fatigue spur gears

samples ready for testing. The spur gears were made from a premium gear steel and were

conventionally heat treated consisting of gas carburization followed by a Stage I temper.
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The roots of the spur gears were ground to remove inter-granular oxidation intrinsic to

the gas carburization process. Because previous bending fatigue results are unpublished

and material sensitive, alloy designation and composition were withheld.

3.1.3. C69M3B

C69M3B is an earlier prototype of the C69 alloy originally designed to avoid embrittling

Sigma phase seen in previous prototype alloys. The composition of C69M3B is listed in

Table 3.1. QuesTek Innovations formerly donated cast and wrought C69M3B material

to Brian Tufts for rolling contact fatigue testing and tempering studies [45]. Remaining,

untested RCF samples will be used in this work to study the effect of overaging heat

treatments on carbide stability.

3.1.4. PM C69-Ti

PMC69-Ti will be used in this work to study potential grain coarsening resistance from

Ti oxide dispersions. Table 3.1 lists the nominal composition. Two powder-forged bars

5/8” in diameter and 7” long were received from researcher Brian Tufts. Seven disks

approximately 2 mm thick were sectioned from one of the bars using an abrasive cut-off

saw and used as specimens for heat treatment and grain size analysis.

Table 3.1. Composition of investigated materials in weight percent.

Alloy Co Cr Ni Mo W V Ti C Fe
C61 18.0 3.5 9.5 1.1 - 0.08 - 0.16 Bal.
C67 16.0 4.5 4.4 1.8 0.1 0.1 - 0.071 Bal.

C69M3B 19.6 4.9 2.6 2.1 - 0.1 - 0.071 Bal.
PM C69-Ti 19.6 4.9 2.6 2.1 - 0.1 0.05 0.071 Bal.
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3.1.5. Prototype Cu-bearing alloys

Prototype heats for each of four experimental Cu-bearing alloy compositions were pro-

duced following processing steps typical of comparable commercial high strength gear

steels. High purity 30-pound ingots were first cast using a combination of vacuum induc-

tion melting (VIM) and vacuum arc re-melting (VAR) at Special Metals Corporation in

New Hartford, New York. Very small additions of La (0.03 wt.%) and Ti (0.01 wt.%) were

also included to getter impurities and form grain pinning dispersions, respectively. The

cast ingots were then shipped to the Technology Processing Center (TPC) of Special Met-

als (also known as Huntington Alloys) in Huntington, West Virginia to work the ingots

into geometries more suitable for sample sectioning. The ingots were first homogenized

at 1250◦C for 12 hours, hot rolled to 0.75” thick plate and air-cooled to room tempera-

ture. Once cooled, the plates were normalized at 1050◦C for 1 hour and once again air

cooled to room temperature. A final annealing step at 700◦C for 2 hours was performed

to soften the rolled plate for ease of machining. Chemical analysis was obtained with x-

ray fluorescence (XRF) and combustion infrared measurements. Designed and measured

compositions of the four experimental alloys will be included and discussed in Chapters

6 and 7.

3.2. Experimental Procedures

3.2.1. Heat Treating

High temperature carburizing for experimental Cu-alloy samples was performed at Mid-

west Thermal-Vac using a single solutionizing/vacuum-carburizing step at 1000◦C for 1.5

hours, followed by a cryogenic treatment in a liquid nitrogen bath to ensure complete



69

martensitic transformation. Two sample geometries were sent for carburization, the first

of which were gear tooth-sized blocks to simulate the carburization of gear teeth and

allow for evaluation of both carburized case and core microstructures. The second geom-

etry consisted of thin slices 1.5 mm thick which were through-carburized and then used

for carburized case carbon measurement. Carburized samples were then encapsulated

in evacuated Pyrex tubes at Northwestern University to avoid oxidation during further

heat treatment. Encapsulated samples were tempered in a box furnace at either 482◦C or

510◦C for various times. After tempering, samples were air cooled to room temperature.

Solutionizing studies of Cu-bearing experimental alloys were performed on carburized

samples at Northwestern University using an upright Argon furnace. Samples were sus-

pended in a steel wire basket within the furnace and solutionized at temperatures ranging

from 1050-1200◦C in an inert Argon atmosphere to prevent significant oxidation. Sam-

ples were then oil quenched, rinsed with water and cooled in liquid nitrogen to avoid

retained austenite. A 1 hour Stage I temper at 200◦C was then performed to eliminate

autotempering effects after quenching.

3.2.2. Microhardness Testing

Microhardness testing was used to measure carburized case hardness gradients as well

as generate 2-D hardness maps of spur gear tooth cross-sections. Prior to measurement,

specimens were mounted in Bakelite and then ground and polished up to 1µm finish.

Measurements were made using a Buehler Micromet II Micro Hardness Tester following

ASTM standard E92 [68]. Indentions are made using a diamond Vickers pyramidal in-

denter with face angles of 136◦ applying a 500-gram load for 10 seconds. The resultant
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indentation is then measured at 400× magnification, with the Vickers hardness (VHN)

calculated according to Equation 3.1:

V HN =
1.854P

d2
(3.1)

where P is the applied load in kg and d is the average value of the two measured indent

diagonals in µm. With the exception of microhardness maps, all hardness values are the

average of at least three measured indents. For purpose of comparison, surface measure-

ments were taken at a depth of 100µm for the carburized case hardness measurements

and three equidistant interior points were selected for the core hardness measurements.

3.2.3. Microscopy

Light microscopy was employed to study microstructure of C61/C67 carburized spur gear

teeth crossections and sectioned samples of carburized experimental Cu-bearing alloy

specimens. Sectioned samples were first mounted in Bakelite and polished down to 1µm

finish. A 5-10% Nital etchant (5-10% nitric acid in ethanol) was swabbed on the polished

specimen surface for 10 second increments to etch the surface and reveal microstructural

components. Imaging was done using a Nikon EPIPHOT-TME microscope at various

magnifications.

Light microscopy was also employed to measure prior austenite grain size for grain

coarsening resistance studies of PMC69-Ti. Conventional chemical etchant methods to

reveal grain boundaries are often unsuccessful in high purity materials, due to the lack

of impurity segregation and associated localized chemical attack at grain boundaries.

An alternative method utilizing oxidation was subsequently used to delineate the prior
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austenite grain boundaries of heat-treated PMC69-Ti samples. The oxidation method, or

oxygen etching, involves slightly oxidizing the sample surface while at a elevated solution-

izing temperatures. At elevated temperatures (below 1200◦C), grain boundary diffusivity

dominates bulk diffusivity, thereby causing oxide to first form at the grain boundaries.

After quenching, this oxide can then be observed and used to distinguish prior austenite

grain boundaries. For this study, an upright argon furnace was used for the solutionizing

heat treatments. Although designed to operate under an inert atmosphere, trace amounts

of oxygen are inherently present in the system, a problem that lends itself quite nicely to

oxygen etching. Heat treatments were done for one hour at 50◦C intervals between 900◦C

and 1200◦C and then terminated by an oil quench. The samples were then slightly pol-

ished to varying degrees using 1µm diamond polish at 2-5 second intervals. An etchant of

15% HCL and 85% ethyl alcohol was swabbed at 10-second intervals to provide increased

contrast. Both polishing and etching were done to varying degrees depending on sample

condition. The linear intercept method was used to measure grain size, as outlined by

ASTM E112-96 [69].

3.2.4. Single Tooth Bending Fatigue Testing

3.2.4.1. Gear machining. 1.25” thick gear blanks were first cut from the 5.25” diameter

C61 and C67 bar stock at Roll-A-Matic Inc. in Walled Lake, MI. Spur gears were then cut

from the blanks using a hobbing procedure, where the cutting tool, or hob, progressively

forms the gear teeth through a series of cuts as it is fed across the gear blank. Table 3.2

gives relevant dimensions of the spur gear geometry.
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Table 3.2. Selected spur gear geometry values for single tooth bending fa-
tigue specimens

Number of teeth 24
Module 4.500

Diametral Pitch 5.6444
Pressure Angle 20.0
Pitch Diameter 108.000
Major Diameter 118.300
Minor Diameter 98.150

Circular Tooth Thickness 7.483

3.2.4.2. Heat treatment. Heat treatment of spur gear specimens was completed at

Midwest Thermal-Vac consisting of a single solutionizing/vacuum-carburizing step, cryo-

genic treatment in a liquid nitrogen bath and vacuum tempering. Three batches of C61

spur gears were solutionized/carburized at either 950, 1000 or 1050◦C and tempered at

500◦C for 1.5 hours, while one batch of C67 gears was solutionized/carburized at 1050◦C

and tempered at 500◦C for 52 hours. Post heat treatment grinding of gear tooth sides to

remove allotted excess material of up to 0.3mm (0.12”) was employed to counteract any

distortion and/or cracking caused by the heat treatment and subsequent quenching as

well as remove potentially over-carburized material at gear teeth corners. Due to the ob-

served lack of distortion observed after heat treating C61/C67 spur gears, the final batch

of C61 spur gears was ground to the final face width prior to heat treatment with grind-

ing in the hardened post-heat treated state omitted. For this batch of C61 spur gears,

over-carburization of gear tooth corners was achieved by applying “stop-off paint” to the

gear sides prior to heat treatment. Stop-off paint acts as a barrier to carbon diffusion and

allows for an even carburized case layer achieved by preventing excess carbon to diffuse

in from the gear sides.
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3.2.4.3. Shot peening. The shot peening process used was a standard dual-peening

process employed by GM Powertrain and performed by the Metal Improvement Company

at their Romulus, MI facility. Dual peening consists first of a high-intensity application of

peening media to maximize and deepen compressive residual stress at the target surface,

followed by a less-intense saturation of softer media intended to smooth out asperities

and raise the compressive stress at the near surface. For the C61/C67 spur gears, the first

peening operation consisted of high-intensity application of hardened steel (60-64 HRC)

cut-wire shot media conditioned to remove sharp edges. The second peening operation

was performed using a glass bead media. Detailed shot peening parameters, including

shot size, intensity and saturation levels are proprietary.

3.2.4.4. Isotropic superfinishing. To increase the surface finish of shot peened spur

gears, isotropic superfinishing (ISF) was employed. The ISF process consists of chemically

accelerated vibratory polishing where parts are placed in a vibrating bin containing a

slurry of abrasive media and chemical etchants. Surface roughness is gradually reduced

as the chemical etchant attacks surface asperities that are subsequently eroded by the

abrasive media. The resultant surface created by the ISF process is non-directional, or

isotropic, and can approach average surface roughness values (Ra) down to a mirror-like

finish of Ra <0.15 µm (4-6 µ-in) [32]. This process was initially developed by REM

Research Group, Inc and all preliminary alloy reactivity studies as well as final polishing

of spur gear specimens was conducted at their headquarters in Brenham, TX.

3.2.4.5. Testing. Stress-controlled single tooth bending fatigue testing was done on a

100kN MTS test frame outfitted with a top-loading actuator as well as a fixture used to

support the spur gear test specimens . As illustrated in Figure 3.1, single tooth bending
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fatigue testing consists of the use of two anvils. An upper anvil connected to the top-

loading actuator through a 100kN load cell applies the cyclical load to the end of the

tested tooth. A lower stationary anvil located on the attached fixture braces a support,

or anchor, tooth to prevent the spur gear from rotating during loading. A support dowel

aligns the spur gear with the stationary figure as well as providing additional support.

The cantilever effect created by the offset upper anvil concentrates the generated tensile

stress at the root notch of the tested tooth, corresponding to the location of failure. The

anchor tooth is fully supported by the stationary lower anvil and is assumed to experience

negligible stress.

A cyclical compressive load is applied at 40 Hz maintaining an R-value, or ratio of

minimum to maximum applied load, of 0.01 through software amplitude control. Tests

were run until either the selected endurance limit of 10 million cycles was achieved or until

the total upper anvil displacement exceeded 2mm, at which point the tested gear tooth was

deemed failed due to significant macroscopic cracking or often total gear tooth fracture.

Ultimate bending strength testing was also performed with the same experimental setup

with a linearly increasing load applied at a rate of 1.7 kN/sec. Increasing loads were

applied until failure, chosen as the point where the upper anvil displacement rate rapidly

exceeded 0.4mm/sec due to cracking of the loaded gear tooth. Pressure sensitive tape

was place between the upper loading anvil and test tooth to ensure even loading along

the full width of the gear tooth.
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Figure 3.1. Schematic of single tooth bending fatigue test (courtesy of
James Bishar - GM Powertrain)

3.2.5. Interferometry

Light interferometry was used to study surface topography of C61 and C67 spur gear

teeth. A WYKO interferometer set in vertical scanning mode was utilized at various

magnifications. Corrections for specimen tilt and curvature were included when necessary.

Surface roughness was calculated as expressed by the average surface roughness (Ra), root

mean square (RMS) roughness (Rq), maximum height of the measured profile (Rt) and

average maximum height of the profile (Rz).
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3.2.6. Electron Microscopy

Scanning electron microscopy (SEM) was employed to study surfaces of the fracture sur-

face of failed spur gear teeth as well as the topography and features of various spur gear

surface conditions. A Hitachi S-3500 microscope with tungsten hairpin filament was used

at Northwestern University with a 20kV electron beam while the specimen chamber main-

tained a vacuum level of 10−4 torr. A secondary electron (SE) detector was used to image

topographic features while a backscatter electron (BSE) detector was used to achieve

chemical contrast of inclusion phases located on fracture surfaces. Qualitative chemical

analysis and mapping of inclusion phases was performed using a PGT energy dispersive

x-ray (EDS) analyzer.

3.2.7. Dilatometry

Dilatometry is the method of observing phase transformation during heating and cooling

by measuring the associated volume change. For this work, an MMC quenching dilatome-

ter was used for hardenability studies measuring the martensite start temperature (MS)

of C61/C67 at different quench rates. Cylindrical samples 1mm long and 3mm in diam-

eter were prepared using electro-discharge machining (EDM). Samples are heated using

an induction furnace at 1.6◦C/sec up to a solutionizing temperature of 1000◦C, where the

samples were held for 10 minutes. Quenching at various cooling rates was then achieved

through the use of helium jets. Specimen temperature is measured by a Pt / Pt-10%

Rh thermocouple spot-welded onto the sample. The change in specimen length caused

by volume change due to phase transformations and thermal expansion is measured by

a LVDT transducer connected to quartz platens touching both ends of the sample. To
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prevent interference from oxidation, the sample chamber is maintained at vacuum levels

<10−4 torr.

3.2.8. Rolling Contact Fatigue Testing

Rolling contact fatigue (RCF) testing was performed on C69M3B specimens to study

effects of overaging on carbide stability. Tests were performed using an NTN 3-ball-on-

rod dual-head rolling contact fatigue tester as outlined by Glover [70]. Specimens consist

of 3/8” diameter rods radially loaded by three 1/2” diameter test balls. The load is

supplied by compression springs through tapered bearing cups, as shown in Figure 3.2. A

bronze retainer equally spaces the balls and sits within the tapered cups. Rolling contact

is generated as a spindle rotates the sample at 3600 RPM, with the three loaded balls

causing 2.389 test track loading cycles per revolution of the cylindrical sample. The radial

load between one ball and the cylindrical specimen is 1084 N (244 lb), calculations for

which are also shown in Figure 3.2.

During testing, the system is lubricated by Exxon Turbo Oil 2380 applied at rate of

4 drops per minute. Tests are run until pitting-induced vibration triggers a magnetically

attached vibration sensor that stops the test. An attached timer accurate up to 0.1

hours recorded the duration of each test run, with the total cycles to failure calculated

by Equation 3.2:

#Hours =
60 min

hr
× 3600 rev

min
× 2.389 cycles

rev
= 0.516

million cycles

hour
(3.2)

Up to eight tests per sample may be run by shifting the cylindrical sample up and down

within the spindle grip, ensuring a minimum distance of 1 mm between test wear tracks.
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Figure 3.2. Schematic of NTN 3 ball-on-rod rolling contact fatigue test
including load calculations [70]
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Figure 3.3. Schematic of NTN 3 ball-on-rod rolling contact fatigue test
specimen. All dimensions in mm.

C69M3B RCF cylindrical samples were previously heat treated and centerless-ground

to the dimensions shown in Figure 3.3 by Brian Tufts [45]. Two heat treatments were

selected. A one hour temper at 550◦C was used to achieve peak hardness, and a second

temper of 5 hours at 550◦C was used to overage the material and drop the hardness by

1-2 Rockwell C, as previously shown by Tufts [45]. Heat treatments were performed at

Northwestern University in a box furnace with samples encapsulated in evacuated pyrex

tubes. Because NTN tests are extremely sensitive to surface finish, tantalum foil was

included inside the pyrex tube to getter remnant oxygen and avoid any surface oxidation.

Test balls and tapered bearing cups were from the NTN Company and made from SAE

52100 bearing steel. Both test balls and bearing cups were replaced every three test

iterations.
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3.2.9. X-Ray Diffraction

Residual stress and retained austenite profiles of C61 and C67 spur gear roots were mea-

sured using x-ray diffraction by Proto Manufacturing Ltd. In Ontario, Canada. Mea-

surements were done using a CrKα radiation source. Residual stress measurements were

done using the peak shift of {211} crystallographic reflections adhering to standard SAE

J784a [71]. The x-ray elastic constant used in stress calculations was assumed to be

168.9 MPa (24,500 ksi), a typical value for high strength gear steels. Retained austenite

measurements were done using a 4-peak collection method taking into account possible

convolution of M2C carbide peaks and adhering to the standards SAE SP-453 [72] and

ASTM E975-84 [73].

X-ray diffraction was also used at Northwestern University to detect the presence

of retained austenite in carburized Cu-bearing alloy samples. A Scintag diffractometer

equipped with CuKα radiation source was used for wide angle scans with a 2Θ range of

40-90◦. Qualitative assessments of austenite content were then made by examining for

the presence of {220} reflections.

3.2.10. 3-D Local Electrode Atom Probe (LEAP) Tomography

In order to analyze the microstructure of these nanoscale precipitates, 3-dimensional atom

probe (3DAP) tomography will be employed. Atom probe tomography utilizes a combi-

nation of time-of-flight mass spectrometry and point-projection microscopy to chemically

identify and locate individual atoms within a bulk sample. As shown schematically in

Figure 3.4, atom probe specimens are needles or tips sharpened to <100nm in diameter.
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Figure 3.4. Schematic representation of 3-dimensional local electrode atom
probe (LEAPTM)

A positive voltage pulse is applied to the sharpened tip, causing field evaporation of posi-

tively charged metal ions that are subsequently drawn to a detector plate along a voltage

differential. The chemical identity of each ion is revealed through the mass-to-charge ratio

as determined by the time-of-flight between the applied pulse and point of detection. The

x and y coordinate of each ion within the sample is then determined from the point of

impact on the 2-D detector, and the depth or z coordinate is determined by the sequence

number or absolute time of impact.

For this research, a new generation atom probe will be employed called a local electrode

atom probe (LEAPTM). The LEAP improves upon conventional 3DAP by generating the
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electric field through a localized extraction electrode, also illustrated in Figure 3.4. Due

to the close proximity of the electrode to the specimen tip, the voltage requirements

for field evaporation are much smaller and can be pulsed at much faster frequencies

(2 × 105 Hz), significantly raising the data collection rate. The electrode also serves to

shield evaporated ions from the effect of the cycling electric field near the specimen tip,

providing for increased mass resolution (greater than 1/500 full width at half maximum

(FWHM)) at large field-of-views up to 40◦. The practical result of these improvements is

the ability to reconstruct significant volumes of material (>106 nm3) in a matter of hours

instead of days, making the LEAP comparable to other conventional forms of microscopy

used to study the nanoscale [74]. The LEAP tomograph at the Northwestern University

Center for Atom Probe Tomography (NUCAPT) will be used to study the nanoscale

dispersions of both BCC Cu and M2C carbide in order to recalibrate alloy design models

with updated microstructural parameters.

Atom probe samples were created by first sectioning “posts” 300mm×300mm in cross-

section and approximately 25mm long directly from the surface of carburized and tem-

pered samples using a precision saw. A two-step electropolishing procedure was then

used to sharpen the posts into tips. Initial polishing was done with a 10% perchloric

acid in butoxyethanol solution at room temperature applying a DC voltage of 15-20V.

Final polishing and necking was done in a second, weaker solution of 2% perchloric acid

in butoxyethanol at a reduced DC voltage of 8-12V, with the final specimen achieving a

tip radius <100nm.

Atom probe tomography was performed using a LEAPTM 3000 tomograph manu-

factured by Imago Scientific Instruments Corporation in Madison, WI. Analyses were
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performed after cooling specimens to a temperature of 100 Kelvin (-173◦C) to minimize

atomic motion while under ultra-high vacuum (residual pressure <10−8 Pa). Field evapo-

ration of atoms from the specimen tip was achieved through applying high voltage pulses

at a frequency of 200kHz. Voltage is applied to the specimen tip through a standing

DC voltage with voltage pulses applied through the extraction electrode at a pulse-to-DC

voltage ratio of 15%. The voltage levels required for field evaporation is dependent on

the radius of curvature of each specimen tip, with the standing DC voltage ranging from

500V for very sharp tips (diameter<10nm) to 15,000V for larger tips (~100nm diame-

ter). Steady field evaporation rates of 400-10000 atoms/second were maintained through

software-controlled manipulation of the voltage levels, with applied voltage steadily in-

creased to account for tip blunting with continued specimen evaporation.

Reconstruction and quantitative analysis of collected data sets was performed with

the IVAS software from Imago Scientific Instruments. The volume of the analyzed mate-

rial (vtotal) was calculated from the total number of ions in the reconstruction (n) using

Equation 3.3:

vtotal =
nΩ

f
(3.3)

where the average atomic volume,Ω, is set equal to that of BCC Fe (1.18×10−2 nm3)

and the overall detection and reconstruction efficiency (f) is estimated at 0.6. Standard

deviations (σ) of measured compositions through the LEAP analysis were calculated using

Equation 3.4 [75]:

σ =

√
c(1− c)

n
(3.4)
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where c is the measured composition of the particular element. To quantify the two pre-

cipitate dispersions, two tools were used in the IVAS software: isoconcentration surfaces

and 1-dimensional (1D) composition profiles. Isoconcentration surfaces are essentially

3-dimensional compositional contour maps, where a threshold composition is selected

for one or a combination of elements and a surface is drawn connecting the selected

concentration[75]. 1D compositional profiles were generated through a cylindrical selec-

tion volume 1 nm in diameter at various lengths. Composition profiles are generated by

counting the number and type of each atom contained within the cylinder over increments

0.1nm thick.

3.3. Computational Tools

3.3.1. Thermo-CalcTM

Two software programs were utilized in the computational design of these alloys: Thermo-

CalcTM and Computational Materials Dynamics, or CMDTM . Thermo-Calc is a thermo-

dynamic database and calculation package developed by the Royal Institute of Technol-

ogy in Stockholm, Sweden (KTH) [76]. In order to extrapolate to higher order systems,

Thermo-Calc uses sublattice models [77, 78] to describe existing experimental data from

mostly binary and ternary systems. Equilibrium and metastable equilibrium thermody-

namic values are then calculated as a function of chemical composition, temperature and

pressure by solving for the state of lowest Gibbs free energy. Two databases were utilized

for these thermodynamic calculations. The solution (SSOL) database was created by the

Scientific Group Thermodata Europe (SGTE), a consortium of various European research

centers, and consists of free energy data for over 150 binary, 70 ternary and 20 higher
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order systems. The SSOL database was used for all thermodynamic calculations except

for martensite start temperature (MS) calculations, where the high temperature data

used to compile the SSOL database doesn’t accurately describe the lower temperature

thermodynamics. MS calculations were done using the MART5 database, an updated

version of the MART4 database developed by Ghosh and Olson [79] that includes mod-

ified low temperature parameters for Fe-based FCC and BCC phases for more accurate

MS predictions.

3.3.2. Computational Materials Dynamics (CMDTM)

The other software program used, CMDTM , was developed by QuesTek Innovations LLC

in Evanston, IL [80] and consists of a collection of mechanistic models linked to Thermo-

Calc to calculate relevant thermodynamic parameters as well as to the companion DIC-

TRA (Diffusion Controlled TRAnsformation) program to calculate applicable kinetic mo-

bility parameters [81]. Mechanistic model calculations that were utilized in CMD include

the Ni-Co secondary hardening steel strength model, martensite start temperature model

and Scheil microsegregation model, all of which are discussed further in Chapter 6.
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CHAPTER 4

Bending Fatigue Performance Optimization

In order to assess the bending fatigue performance of secondary hardening ultra-hard

steels, single tooth bending fatigue tests on GearMet C61 and C67 spur gear were com-

pleted at the GM Powertrain Gear Center in Wixom, MI. The use of standard GM

performance validation techniques is important as it allows for comparison with existing

unpublished data as well as incorporates relevant gear manufacturing processes that ul-

timately affect material performance. Additionally, the utilization of such accepted prac-

tices to demonstrate the performance of perceived “nontraditional” gear steels provides a

visible and practical example to industry on the merits of such materials and the design

methodology from which they were born. Bending fatigue testing and analysis consisted

of two primary stages. The first stage involved addressing processing factors identified

as directly causing bending fatigue failures. This process optimization was carried out

through targeted analysis and remedy of fatigue inducing defects instead of empirical per-

formance optimization achieved by surveying a wide range of processing variables. Once

optimized, the second stage of testing assessed prevailing factors limiting performance

to provide a quantitative estimate of “best practice” bending fatigue resistance of these

materials as well as provide direction for ongoing research and development.
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4.1. Process Optimization

4.1.1. Effect of Surface Condition

Due to the highly localized nature of the generated bending stresses at the surface of

gear tooth notches, the most pertinent processing parameters for bending fatigue are

often the various surface treatments performed on carburized gear teeth. In order to

assess the impact of these surface treatments on C61, four surface conditions were first

investigated: as heat-treated (AHT), ground (GR), shot-peened (SP) and a combination

ground and shot peened (GR+SP). Post heat treatment grinding of gear root notches is

commonly employed for gears carburized using conventional gas carburization methods

where significant intergranular and surface oxidation can occur. Shot peening is employed

in certain applications to increase resistance to fatigue crack initiation and propagation

through creation of compressive residual stress.

Applied stress versus cycles to failure plots, or S-N diagrams, are shown in Figure 4.1

comparing the measured single tooth bending performance for the four surface conditions

of C61 spur gear specimens. For comparison, curves were generated using a least squares

exponential fit of the form shown in Equation 4.1:

σ = a exp(−(log n)) + b (4.1)

where σ is the maximum bending stress experienced in the gear tooth root notch for the

particular applied bending load, n the number of cycles to failure and a and b fitting

parameters governing the shape and endurance limit for each curve, respectively. Hollow

symbols with adjoining arrows indicate runs achieving the designated endurance limit of
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10 million cycles and thus stopped prior to failure. Because these interrupted test runs

do not represent actual cycles to failure they were not included when fitting S-N curves.

Figure 4.1. S-N curves for four different surface conditions of C61 spur gears

Surface condition was seen to have a significant effect on the single tooth bending

fatigue resistance of C61, with the as heat-treated surface resulting in the poorest perfor-

mance. Figure 4.2 shows SEM images of the four surfaces as well as their RMS roughness

(Rq) values as measured by light interferometry. The as heat-treated surface exhibits sig-

nificant grooving or etching along the prior austenite grain boundaries, with pronounced

grooving occurring where grain boundaries coincide with remnant machining grooves.

This grooving phenomena is believed to be caused by the high temperature vacuum car-

burizing process used for the C61 spur gears, where temperatures are elevated to sufficient

levels to cause enhanced diffusion at grain boundaries. Additionally, pitting can also be
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observed along the grain boundary grooves of the AHT surface. Early in the carburiza-

tion process, transient carbides of similar spherical dimension are observed to form at the

surface during high carbon flux boost cycles, and it is believed these pits are left behind as

the carbides eventually dissipate during subsequent low carbon flux diffuse carburization

cycles. Light interferometry of untested gear teeth root notches measured the depth of

these grooves and pits to exceed 1 µm, at which point the groove width diminished below

the resolution of the interferometer. The poor fatigue resistance of the AHT C61 spur

gears can be directly attributed to these grooved prior austenite grain boundaries that

effectively act as pre-initiated fatigue cracks. SEM analysis of gear teeth fracture surface

demonstrate the detrimental effect of grain boundary grooving, where fatigue initiation

and final fracture propagation path closely coinciding with grooved grain boundaries on

the specimen surface, where in some instances entire grains were observed to decohere

upon final rupture.

Grinding the gear roots removed the grain boundary grooving, resulting in a ridged

topography of reduced surface roughness, as shown in Figure 4.2b. Removing the etched

surface layer resulted in significant improvement in bending fatigue performance, as shown

in Figure 4.1. Comparing the fitting parameter b, which defines the improvement in

endurance limit, grinding the gear roots resulted in over a 60% improvement in bending

fatigue performance compared to the AHT surface (1040 vs. 640 MPa). The process

of grinding was also shown to impart approximately 100 MPa of beneficial compressive

residual stress to the immediate surface, as shown in Figure 4.3.

Bending fatigue failures were still seen to originate at the surface, this time associated

with the grinding ridges that run parallel to the gear tooth root. Additionally, in a
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Figure 4.2. SEM micrographs and RMS (Rq) surface roughness measure-
ments of C61 spur gear surface treatments: a) As heat treated, b) Ground,
c) Shot peened and d) Ground and shot peened

portion of gear teeth the grinding of gear roots was observed to be incomplete and regions

of the AHT grooved topography remained, an example of which is shown in Figure 4.4.

In several instances, fatigue failures initiated at the more detrimental grooved grained

boundary locations, even when occurring ~200 - 300 µm away from the point of maximum

applied stress where most failures occurred, such as the typical failure location shown by

the fracture surface in Figure 4.4.
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Figure 4.3. Measured residual stress profiles for C61 surface treatments

Shot peening was seen to further improve the bending fatigue performance, raising

the approximate endurance limit (as defined by the b fitting parameter) by around 10%.

This can largely be attributed to the large amounts (~1000 MPa) of compressive residual

stress imparted to the surface, as shown in Figure 4.3. Even though the shot peening

process increased the overall surface roughness, this roughening was compressive in nature

and essentially “smoothed out” and eliminated the detrimental grain boundary grooving.

Additionally, even though the SP surface has approximately twice the overall surface

roughness of the GR surface, it is nondirectional and subsequently less detrimental than
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Figure 4.4. SEM micrograph showing region of grooved topography remain-
ing in C61 gear roots after grinding

the grinding ridges that, by nature of the grinding process, are oriented transverse to the

applied load in the direction of maximum impact on fatigue.

As shown in Figure 4.1, the effect of grinding before shot peening results in negligible

difference when compared with the SP-only S-N curve. This further demonstrates the

ability of shot peening to fully eradicate grain boundary grooving as well as the impor-

tance of nondirectionality over overall surface roughness. The roughness of the GR+SP

surface is significantly elevated to an RMS value of 1.92 µm, corresponding to an increased

experienced shot peening intensity, as also suggested by its residual stress profile in Figure

4.3 where the surface stress is slightly lowered but the total depth increased. This may

be due to a number of factors such as reduced surface hardness from material removal via

grinding, different interaction between the shot peening media and the relative topogra-

phies of the AHT and GR surfaces and process variability of the shot peening process as
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performed by the actual shot peening vendor, which will be further discussed in Section

4.2.1.

4.1.2. Corner Over-carburization

In the case of shot-peened gears, sub-surface initiation was also seen at high cycle fatigue

failures approaching the endurance limit. Figure 4.5 shows a typical sub-surface initiation

site where fatigue was observed to initially originate from a flat, cleavage surface and

then propagate radially outward creating a smooth, transgranular area. These features,

or “fisheyes” as they are commonly called, were always located roughly 200-300 µm below

the surface and always in the corner. Such subsurface initiation sites and corresponding

“fisheye” morphology have been observed in other carburized gear steels to nucleate on

inclusions [82, 83, 84]. The flat, cleavage planes centered in the “fisheye” fractures were

also observed in non-subsurface initiated fractures, predominately in the same corner

region where the fisheye features were observed.

(a) (b)

Figure 4.5. SEM micrographs of subsurface fatigue initiation in shot peened
Batch A C61 spur gears showing a)“fisheye” fracture morphology and
b)fatigue-initiated facet
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The common corner location of the fisheye initiation sites and flat cleavage planes

were also much harder than the rest of the case, as shown by the microhardness map in

Figure 4.6. Each microhardness map grid point represents a microhardness measurement,

with the first measurement located in the top left hand corner of Figure 4.6 taken at a

distance 75 µm away from both neighboring edges. The excess hardness in the corner

reached values up to 779 Vickers (approximately 63-64 RC). Such over-carburization of

specimen corners has been shown to occur as carbon introduced at the surface cannot

readily diffuse from the corner into the bulk[85, 86].

Figure 4.6. Microhardness map of overcarburized C61 spur gear corner
(Batch A)

Carbon accumulation in specimen corners has been also been demonstrated with 2D

carburization diffusion simulations by Gao ([87]). Figure 4.7a shows a 2D carbon diffusion

simulation for a single boost and diffuse carburization cycle for C61, demonstrating carbon

accumulation in specimen corners. Gao also analyzed C61 samples subjected to boost

carburization cycles and observed the formation of Cr-carbide films at the prior austenite

grain boundaries, as shown in Figure 4.7b. With subsequent diffuse cycles, these carbide
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films were observed to dissociate and the carbon diffuse deeper into the material. However

at specimen corners where diffusion is limited but carbon flux is enhanced, this dissociation

of film carbide is much more difficult and likely plays a role in the smooth facets observed

in the overcarburized specimen corners.

(a) (b)

Figure 4.7. a) Carbon accumulation in specimen corners in 2D carburiza-
tion simulations and b) SEM micrograph of grain boundary Cr carbide in
C61 formed during carburization boost cycles, courtesy of Gao [87]

Such accumulation is not as severe in conventional gas carburizing because of the con-

stant potential boundary conditions. In contrast, high temperature vacuum carburizing

involves elevated levels of carbon flux into the material and maintains this flux during

each boost cycle, enabling the introduction of additional carbon even in the presence of

accumulation. This increased carbon content subsequently changed the microstructure in

the corner of C61 spur gears relative to the rest of the carburized case, as seen by the

white-etching retained austenite and midrib-bearing plate martensite visible in the light

micrograph of Figure 4.8a relative to Figure 4.8b.

The change in microstructure also resulted in a change in the residual stress. Figure

4.9 shows that the altered corner microstructure resulted in a less compressive residual
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(a) (b)

Figure 4.8. Light micrographs of C61 spur gear teeth cross-sections (Batch
A) showing microstructure for a) overcarburized corner and b) root center-
line of carburized case

stress at the surface, as well as a much shallower compressive residual stress depth. This

corner residual stress deficit becomes large around a depth of 0.3 mm, promoting the

subsurface fatigue crack initiation that was observed around the same depth.

Figure 4.9. Batch A shot peened C61 residual stress profiles measured at
the root center and edge at gear corner
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A second batch of C61 spur gears, designated C61 Batch B, were then prepared in an

effort to avoid overcarburization caused by high temperature vacuum carburizing through

two processing alterations. The first was to reduce the solutionizing/carburizing temper-

ature from 1050◦C to 950◦C to lower the magnitude of carbon flux into the surface.

Additionally, post heat-treatment grinding of the gear sides was used to remove the outer

0.3mm (0.012 in.) of material on each side that is most prone to carbon accumulation.

Due to the 5% reduction in face width from grinding the gears, applied bending loads were

correspondingly reduced by 5% from values used previously in order to achieve equivalent

bending stresses. After taking these preventative measures, single tooth bending fatigue

performance of C61 was seen to increase, as shown in Figure 4.10. The fitting parameter

b defining fatigue endurance limit was raised by over 200 MPa over the previous SP and

GR+SP Batch A gears to 1450 MPa.

Similar performance gains were observed in previous studies by Krauss and coworkers

where a 10% increase in bending fatigue life was achieved by rounding off specimen corners

prior to gas carburizing to achieve a uniform case microstructure [86]. A larger perfor-

mance increase is also expected for specimens subjected to high temperature vacuum

carburizing where the fixed carbon flux boundary conditions are more prone to accumu-

late carbon in specimen corners [85, 86]. Based on these previous studies, the observed

17% increase in bending fatigue endurance limit of C61 Batch B gears can reasonably

be attributed to the avoidance of over-carburized specimen corners. Figure 4.11 shows a

microhardness map for the corner of a Batch B C61 spur gear cross-section.

Compared with those previously tested, the corners of Batch B gears do not show

elevated hardness levels indicative of carbon accumulation/over-carburization and when
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Figure 4.10. S-N curves for C61 Batch A and B spur gears showing perfor-
mance 17% improvement in bending fatigue performance due to avoidance
of overcarburized corners

Figure 4.11. Microhardness map of Batch B C61 spur gear corner
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analyzed using light microscopy, likewise show increased microstructural uniformity with

the rest of the gear root edge. Figure 4.12 shows measured residual stress profiles for

C61 Batch B gears. Again unlike Batch A gears, there is no distinguishable difference

between measurements taken near specimen edges and away from the corner in the center

of the gear root, suggesting uniform microstructure and avoidance of excessive retained

austenite, plate martensite and reduced compressive stress in gear teeth corners.

Figure 4.12. Batch A shot peened C61 residual stress profiles measured at
the root center and edge at gear corner

4.2. Process Limitations

As seen in the process optimization stage of single tooth bending fatigue testing, max-

imizing compressive residual stress is critical for fatigue resistance [88, 89]. Additionally,

surface finish and microstructural uniformity are also important factors for bending fa-

tigue. The second stage of single tooth bending fatigue testing focused on the current
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limitations of these parameters, specifically shot peening variability and associated limi-

tations, surface finish improvement through isotropic superfinishing and microstructural

defects in the form of inclusions. This second stage of testing utilized Batch B C61 spur

gears, an additional batch of C61 spur gears (Batch C) and a set of C67 spur gears.

4.2.1. Shot Peening

S-N curves for shot peened Batch C C61 spur gears are shown in Figure 4.13 along with

results for previous batches of shot peened C61 gears for comparison. In the high cycle

fatigue regime (>106 cycles), Batch C more closely resembled Batch B due to complete

avoidance of overcarburized corners shown to limit high cycle fatigue performance of Batch

A C61 spur gears. Although no failures were recorded in this region for Batch B gears,

a runout at 107 cycles was achieved at over 1300 MPa, which was over 100 MPa greater

than the highest run-out achieved with Batch A gears. In the low cycle fatigue regime,

however, Batch C fell short of the performance exhibited by Batch B gears and closely

mirrored that of Batch A.

Figure 4.14 shows measured residual stress profiles for all three batches of shot peened

C61 gears. The first observation that can be made is that there is significant variation

between batches even though specified shot peening parameters were supposedly identi-

cal. This variability reflects the inconsistency in the actual shot peening procedure and

was seen to primarily affect the stress at the surface as well as the maximum achieved

compressive stress, with the effective compressed layer staying essentially constant around

0.2 mm. The observed variation in residual stress was not seen to directly correlate to
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Figure 4.13. S-N curves for shot peened C61 spur gears

single tooth bending fatigue properties, however. Batch B, the best performing in bend-

ing fatigue, did achieve the greatest maximum compressive stress, but not the greatest

surface compressive stress. The lowest values of compressive stress both at the surface as

well as overall, were shown by batch C, however its bending fatigue results were almost

identical to that as batch A that demonstrated the highest surface compressive stress and

a maximum stress very close to batch B.

Another aspect of shot peening possibly affecting low-cycle fatigue performance is

effective damage caused by the impact of peening media on the gear tooth surface. Figure

4.15a shows an SEM micrograph of the shot peened surface of a shot peened batch C C61
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Figure 4.14. Measured residual stress profiles for shot peened C61 spur gears

spur gear showing a surface crack caused by significant plastic deformation during the

peening process. Figure 4.15b shows a light micrograph of a corresponding cross-section

where white etching bands or crescents were observed near the shot peened surface, further

suggesting severe plastic deformation on the surface due to repeated high energy impact

from the spherical peening media. Such features are consistent with a phenomena known

as “overpeening”, where excessive shot peening damages the surface to a sufficient degree

to offset the imparted beneficial compressive stresses and reduce fatigue resistance. The

occurrence of observed surface and subsurface damage due to shot peening was more

evident on batch C gears compared to batch B gears, and is the most likely factor causing

the reduced low-cycle fatigue resistance.

To study the effect of increased hardness on bending fatigue, C67 spur gears were

fabricated for single tooth bending fatigue testing. Harder materials are desired to resist
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(a) (b)

Figure 4.15. Surface damage caused by shot peening on batch C C61 spur
gears as evidenced by a)SEM micrograph showing shot peened induced fis-
sure on gear tooth surface and b) light micrograph of corresponding cross-
section showing white-etching crescent indicative of severe plastic deforma-
tion (5% Nital etch)

contact and bending fatigue stresses, and although they are generally more sensitive to

flaws, they also have increased capacity to sustain larger strains prior to yielding and

subsequently can achieve greater compressive residual stresses with shot peening [90].

C69 spur gears were ground after heat treatment along with Batch B C61 spur gears

to remove potentially overcarburized material. Single tooth bending fatigue S-N curves

for shot peened C69 spur gears are shown in Figure 4.16 along with corresponding shot

peened Batch B C61 results for comparison. Even with the increased hardness of C67,

its single tooth bending fatigue resistance was significantly below that of C61, with an

approximate endurance limit around 150 MPa below that of the 1450 MPa of shot peened

Batch B C61 gears.

One possible factor for the reduced performance of C67 was an amount of remnant

grain boundary carbides in excess of that observed in the carburized case of corresponding



104

Figure 4.16. S-N curves for shot peened C67 and shot peened Batch B C61
spur gears

C61 Batch B spur gears. More importantly, however, was the response of C67 to shot

peening. Figure 4.17 shows the measured residual stress profiles for both shot peened

C67 and Batch B C61 spur gears. Only measurements taken along the center of the

gear root are displayed, as those taken near specimen corners at the root edge showed

no significant difference. Although the compressive stress achieved at the surface of the

C67 spur gears was slightly higher than that of C61, the overall maximum value was

reduced. Additionally, the generally shape of the residual stress profile exhibited by C67

does not demonstrate the characteristic sigmoidal curve as shown by C61, suggesting the

compressive stress saturation point was not achieved.

In an effort to maximize compressive residual stress in C67, various shot peening

process variants were explored on carburized C67 puck samples, with the resultant residual
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Figure 4.17. Residual stress profiles for shot peened C67 and shot peened
Batch B C61 spur gears

stress profiles shown in Figure 4.18. A slight gain in the maximum compressive stress to

around 1400 MPa was achieved in one of the test pucks, however achieved compressive

stress levels did not surpass those achieved in C61.

The inability of the shot peening process to achieve maximum compressive residual

stress in C67 spur gears can in large part be attributed to the excess hardness of C67 over

the actual shot peening media. At a hardness of 60-64 RC , the hardened steel cut-wire

shot medium used for the first stage of shot peening is actually softer than the surface

hardness of carburized C67. Compressive stresses can still be generated with a shot media

that is softer than the target material, however the maximum residual stress cannot be

imparted as the shot media will deform against the harder target and absorb most of the

projected energy. Based on the residual stress profiles of Figures 4.17 and 4.18, the upper
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Figure 4.18. Residual stress profiles for C67 shot peening study

limit for current hardened steel cut-wire shot appears to be around 1300-1400 MPa when

carburized C61 and C67 are used as targets.

Currently, hardened steel cut-wire shot is the hardest commercially available shot

peening medium, therefore suggesting that maximization of C67 compressive residual

stress may not be possible with current commercial practices. Laser peening is one method

of imparting compressive residual stress that has potential for materials harder than

standard shot peening media. Instead of through particle bombardment, laser peening

imparts compressive stress through the interaction between an incident laser beam and

an applied energy-absorbing surface coating. A thin layer of water contains the expansion

along the surface, and the resultant compressive shock creates the compressive stress in

the target material surface. Preliminary laser peening tests were completed on carburized
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C67 test pucks to investigate possible benefits over conventional shot peening. Figure 4.19

compares the resultant residual laser peening stress profile compared to that measured

from carburized C67 spur gears used in single tooth bending fatigue testing. Laser peening

did produce a much deeper compressive stress layer, however the maximum compressive

stress as well as the surface compressive stress was significantly less than achieved through

conventional shot peening. Previous laser peening studies have shown significant residual

stress enhancement over conventional shot peening [91], and these results indicate that

further optimization of the laser peening process for C67 is required. Relaxation of residual

stress may also have occurred due insufficient sample thickness of the carburized C67 pucks

used in the study.

Figure 4.19. Measured residuall stress profile for laser peened C67 compared
to conventionally shot peened C67
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4.2.2. Isotropic Superfinishing

Isotropic superfinishing (ISF) was investigated as a means of improving surface finish of

shot peened batch B and C C61 gears as well as shot peened C67 spur gears. Resultant S-N

curves showing single tooth bending fatigue results are shown in Figures 4.20 and 4.21 for

C61 and C67, respectively. For both shot peened C61 and C67, isotropic superfinishing

did improve resistance to bending fatigue, particularly the low-cycle fatigue life. C67

results in Figure 4.21 shows this benefit in the low-cycle fatigue region where under

100,000 cycles ISF improved bending fatigue life around a factor of 3. Beyond 100,000

cycles as fatigue initiation shifts from surface flaws to subsurface flaws, the benefit of

ISF diminishes. ISF had a similar effect for C61, approximately doubling the low-cycle

fatigue life (<100,000 cycles) for batch B C61 spur gears. Batch C C61 spur gears showed

significant improvement after isotropic superfinishing, however they were also shot peened

at a different time than their shot peened-only counterparts resulting in a slightly different

residual stress profile.

Figure 4.22 shows the measured stress profiles for the two peening procedures used for

batch C spur gears, with the shot peening procedure used for the ISF-conditioned gears

resulting in a much deeper compressive stress layer as well as increased compressive stress

at the surface. The near surface residual stress values for the two peening conditions are

very similar however, suggesting the enhancement in surface residual compressive stress

may be due to the ISF process. By removing surface asperities along with the very outer

surface layer without relieving compressive stress, isotropic superfinishing effectively raises

the surface compressive stress by eliminating tensile stress-causing defects and pushing

the surface slightly closer to the maximum compressive stress point.
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Figure 4.20. S-N curves for shot peened C61 showing effect of isotropic superfinishing

Figure 4.21. S-N curves for shot peened C67 showing effect of isotropic superfinishing

The surface finish after isotropic superfinishing was also much different for batch B

gears compared to batch C gears. Figures 4.23 a and b shows SEM micrographs of the
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Figure 4.22. Measured residual stress profiles for both shot peening condi-
tions of batch C C61 spur gears

ISF surfaces for shot peened batch B and C C61 spur gears, respectively. The surface

of batch C gears was much rougher, with the frequent occurrence of what appears to be

some form of pitting. C67 also displayed pitting following isotropic superfinishing that

on some occasions was shown to initiate fatigue. For C67, these pits averaged around 50

µm in diameter and when found on tooth fracture surfaces delved approximately 50 µm

beneath the surface. Pits observed in C61 were more frequent, but also approximately

half the size, on average. From discussion with the isotropic finishing developers, these

pits are not representative of chemical attack from the slurry used in the finishing process.

When investigating sectioned teeth from Batch C spur gears, however, the appearance

of these pits very closely resembled that of the white etching crescents observed on the

shot peened-only gears, as shown by the light micrographs of each in Figure 4.24. The
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(a) (b)

Figure 4.23. SEM micrographs of isotropic superfinished surface for a)batch
B and b) batch C C61 spur gears

“pitting” seen on the ISF surface of batch C C61 as well as C67 spur gears can most likely

be attributed to the “plucking out” of damaged material caused by potential overpeening.

4.2.3. Mictrostructural Features

In shot peened C61 and C67 spur gears, subsurface fatigue initiation was observed to

take place, primarily in the high cycle fatigue region approaching the endurance limit.

Microstructural features causing subsurface initiation fell into two classes: cleavage facets

and inclusions.

4.2.3.1. Subsurface Corner Facets. As first observed in shot peened batch A C61

spur gears, cleavage facets occurred in high cycle fatigue failures >106 cycles near the

endurance limit and always were located in specimen corners. Systematic preferential

loading of specimen edges was not believed to be the cause, as pressure sensitive tape was

used before each test to ensure even loading along the full width of each gear tooth and

corner facets were observed to occur randomly at both edges of the loaded gear root.
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(a)

(b)

Figure 4.24. Light micrographs of batch C C61 spur gears comparing
a)white-etching crescents in shot peened gears and b) “pitting” in shot
peened gears after isotropic superfinishing

Despite the observed performance increase and enhanced microstructural uniformity,

Batch B and C gears still demonstrated subsurface fatigue initiation on corner facets in

high cycle fatigue failures, albeit at at elevated applied stress magnitudes. Facets seen in

Batch B C61 gears had the same general appearance as Batch A gears, however, they were

not as smooth as those previously seen and were always inclined to the fracture surface, an

example of which is shown in Figure 4.25. Although successfully avoiding significant over-

carburization, the reduction in solutionizing/carburizing temperature for Batch B gears
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did result in remnant micron-sized grain boundary carbides that likely participated in the

creation of these subsurface facets. The topological transition from completely smooth

to sharp and ridged would also agree with the embrittlement mechanism changing from

continuous retained austenite patches found in severe over-carburization of Batch A gear

corners to the periodic, spherical carbides found in Batch B gears.

Figure 4.25. SEM micrograph of a batch B C61 spur gear tooth fracture
surface showing fatigue-initiating facet

To achieve complete microstructural uniformity along the entire length of the carbur-

ized root notch, batch C C61 spur gears had stop-off paint applied to their sides prior

to carburization to prevent excess carburization and subsequent carbon accumulation in

specimen corners. The solutionizing/carburizing temperature was also raised to an opti-

mized temperature of 1000◦C to fully dissolve grain boundary carbides seen at the 950◦C

temperature used for batch B gears while avoiding excessive carbon flux experienced at

the 1050◦C temperature first used for Batch A gears. Additionally, batch C spur gears

were ground to their final face width prior to carburization and all post-heat treatment
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grinding omitted to completely avoid any detrimental effect of grinding in the hardened

state. Figure 4.26 shows the resultant microhardness map taken of a batch C gear tooth

corner cross-section, demonstrating the achieved uniform carburized case. Reduced hard-

ness in the outer corner of the map is due to slight rounding of the corners caused by

the isotropic superfinishing process. Microstructural uniformity as well as the absence

of significant amounts of grain boundary carbides was verified by light microscopy and

measured residual stress profiles confirmed equivalent compressive residual stress profiles

in the corner compared to the root notch center.

Figure 4.26. Microhardness map of batch C C61 spur gear tooth cross-section

Despite all these precautions, subsurface initiation was still observed to occur in the

corners of batch C spur gears. The appearance of the fatigue-initiating features was very

different from previous facets, however, this time assuming a “feathery” morphology not

much different than the surrounding fracture surface, an example of which is shown in
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Figure 4.27b. “Smeared” material along the root edge located just above the fisheye fea-

ture shown in Figure 4.27a is due to contact with the loading single tooth bending fatigue

anvil during final fracture. The altered appearance of the fatigue-initiating feature does

reflect the increased microstructural uniformity of the corner, and fatigue initiating facets

have been previously observed in other microstructural systems containing no obvious mi-

crostructural inhomogeneities [92, 93, 94, 95, 96]. In these instances, grain boundaries

and the presence of different phases and microstructures impeding dislocation motion are

believed to cause fatigue inititiation.

(a) (b)

Figure 4.27. SEM micrographs of a batch C C61 spur gear tooth fracture
surface showing a) fisheye morphology of subsurface fatigue initiation and
b)closeup of highlighted microstructural feature in a) causing initial fatigue
nucleation in center of fisheye

The reoccurrence of subsurface fatigue initiation only in specimen corners, however,

suggests the corner is still a “weak link” for high cycle fatigue. The common processing

step for all three batches of C61 exhibiting corner facets was the application of shot

peening after heat treatment. When shot peening gear root notches, it is common practice

to shot peen around root edges and along the adjacent gear side to ensure complete
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coverage and achieve fully compressive stresses. At the very high intensities and saturation

levels used for shot peening the high strength C61 and C67 gear steels, this practice may

in fact be detrimental by “overpeening” specimen corners. Similar to the 2D carburization

effect causing carbon accumulation, specimen corners experience magnified shot peening

coverage due to peening on both sides. This may be the root cause of the microstructural

features causing corner subsurface initiation, and offers an explanation why subsurface

facets were not observed in any region other than specimen corners. Over-carburization

previously attributed to facet formation in batch A spur gears may have aggravated this

phenomenon by weakening the microstructure prior to peening oversaturation. Further

analysis as well as shot peening optimization is required to better understand this high

cycle fatigue behavior.

4.2.3.2. Inclusions. The other microstructural features observed to initiate fatigue were

inclusions. On the fracture surface, the same surrounding fisheye morphology as the corner

facets was observed to radiate outward from each failure-inducing inclusion, however there

was no preferential location for subsurface inclusion fatigue failures other than a common

depth of 100-300 µm. Two classes of inclusions were observed as verified qualitatively by

energy dispersive spectroscopy (EDS): Al2O3 inclusions in shot peened batch B C61 spur

gears and La2O2S inclusions in shot peened batch C C61 and C67 spur gears. The switch

from Al2O3 to La2O2S inclusions is a direct result of La additions to Batch C C61 (0.003

wt%) and C67 (0.01 wt%) alloy heats to specifically getter impurities.

Figures 4.28 and 4.29 show SEM micrographs of both classes of inclusions as seen on

both the tooth fracture surfaces as well as the corresponding mating fracture surfaces

remaining on the spur gear. Both Al2O3 and La2O2S inclusions were composed of clusters
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of individual particles aligned along the hot working direction of the billets from which

the gears were made. Individual inclusion particles composing each Al2O3 and La2O2S

cluster were all between 1-10 µm in diameter. The arrangement and number of particles

was very different between inclusion type. Al2O3 clusters were generally composed of

only a couple individual inclusion particles tightly concentrated along a single line. In

contrast, La2O2S clusters were composed of numerous particles and had a much larger

cluster width.

Figure 4.28. SEM micrographs of mating fracture surfaces of subsurface
fatigue initiation on an Al2O3 inclusion

Figure 4.29. SEM micrographs of mating fracture surfaces of subsurface
fatigue initiation on a La2O2S inclusion
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The relative impact on single tooth bending fatigue was also much different between

inclusion type. Figure 4.30 shows single tooth bending fatigue S-N curves for different

shot peened C61 and C67 spur gears where at least one failure occurred due to subsurface

inclusions. Al2O3 initiated failures, as denoted by circles in Figure 4.30, occurred in the

high cycle fatigue range very near the endurance limit (>106 cycles) and were interspersed

among other high-cycle fatigue failures at equivelent applied stresses. La2O2S initiated

failures, however, caused failure at much earlier fatigue lives around 105 cycles and in the

case of batch C C61 gears was clearly detrimental to fatigue life, occurring at an applied

stress several hundred MPa below the other fatigue failures at equivalent fatigue lives.

Due to limited data, the effect on C67 is less clear, however the comparatively frequent

occurrence of two La2O2S-initiated inclusions, due to the alloy’s relatively high La content,

may be largely responsible for the underperformance of C67 in low-cycle fatigue.

Figure 4.30. Occurance of subsurface fatigue initation on both Al2O3 and
La2O2S inclusions in single tooth bending fatigue testing of shot peened
C61 and C67
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The increased defect “potency” of La2O2S inclusions compared to Al2O3 inclusions

can also be seen by the depth at which they occurred relative to measured compressive

residual stress profiles that were generated through shot peening. Figure 4.31 shows

the location at which the observed inclusions initiated fatigue failure plotted against

the corresponding residual stress profiles. With the exception of one La2O2S-initiated

failure in C67, all La2O2S inclusions caused failure at much shallower depths where the

compressive residual stress values were near their maximum values. In contrast, Al2O3

inclusions were only observed to initiate fatigue at depths corresponding to the effective

depth of the compressive depth, where compressive residual stress levels were reduced by

75%.

Figure 4.31. Location of subsurface fatigue initation on different inclusion
types compared to corresponding residual stress profiles
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Although the overall size of the inclusion clusters were not significantly different for

Al2O3 and La2O2S inclusions, the nature of the individual particles composing them did

show significant differences that most likely caused the dissimilarity in effective defect

potency. As shown in Figure 4.29, La2O2S particles are located on both mating fracture

surfaces with individual particles primarily de-cohering from the opposing fracture surface

leaving behind a concavity. It is, however, unclear if numerous jumbled particles are in

fact separate or the fractured remnants of a larger particle, and some single particles did

show signs of fracture, such as annotated particle 8 in Figure 4.29. Al2O3 particles, in

contrast, were primarily located and tightly bonded on only one mating fracture surface,

displaying de-cohesion from the opposing surface with no discernable signs of particle

fracture. McDowell and coworkers have shown similar results where cracked and de-

bonded inclusions are more detrimental to fatigue than their bonded counterparts of equal

size [97]. Additionally, recent and ongoing work by McDowell has shown that the specific

locality between individual inclusion particles plays a large role in fatigue initiation, with

particles placed adjacent to each other along the direction of applied stress being the most

detrimental arrangement [98]. This agrees with the enhanced defect potency of the wider

La2O2S inclusion clusters compared to the more compact Al2O3 clusters.

4.3. Structure/Property Relations

In an effort to summarize the effects of various observed defects, a comprehensive study

was performed to identify fatigue-initiating features for all single tooth bending fatigue

failures, when at all possible. Figure 4.32 summarizes identified fatigue-initiating defects

for all three batches of C61 spur gears. When all the data is grouped together, several
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trends can be observed. With the exception of La2O2S-initiated fatigue, all subsurface

fatigue failures occurred in the high cycle fatigue region after 106 cycles. This is consistent

with previous studies of high-cycle fatigue for other high strength steels, however the

exact mechanics of this phenomenon are not entirely understood. The location of these

subsurface fatigue failures was always at a depth 200-300µm below the surface at the

point where compressive residual stress profiles taper off significantly. Because of their

location along their respective S-N curves, it is these defects that ultimately control the

fatigue endurance limit achieved by each C61 spur gear.

Figure 4.32. Fatigue-initiating defect identification for all three batches of
C61 spur gear single tooth bending fatigue failures
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Another observation is that surface initiated fatigue in shot peened gears tended to

fall within two groups: one group composed of batch A and batch C shot peened gears

and the other containing all batch B as well as batch C gears that had undergone isotropic

superfinishing. As previously discussed, this variance is most likely due to surface damage

caused by excessive shot peening in batch A and C spur gears, where in the case of

isotropic superfinished Batch C gears, the ISF process counteracted this detrimental effect

by raising the surface compressive stress.

Surface fatigue initiation was also observed to occur quite frequently at specimen cor-

ners, as shown in Figure 4.32. Many of these corner-initiated fatigue failures corresponded

to equivalent applied stresses and fatigue lives as fatigue failures initiating on the surface

away from the corners, however in some instances corner initiation appears as a separate

defect class. Specifically in shot peened batch B C61 spur gears, surface initiation at

specimen corners represented failures at the lowest applied bending stresses and several

instances of surface corner initiation were also observed in the high-cycle fatigue range

>106 cycles. Because a large portion of these failures occur either along the observed

“lower band” of surface-initiated fatigue or along with subsurface corner facets, both phe-

nomena of which are associated with over-peening, surface damage caused by over-peening

of specimen corners is also a likely cause of this behavior. SEM analysis of fractured gear

teeth did occasionally show corner surface such as shown in Figure 4.33 that corroborates

this supposition.

One final observation can be made regarding the different inclusion types. Compared

to Al2O3 inclusions, La2O2S inclusions appear to be more detrimental to fatigue as they

are observed to cause fatigue failures at fewer cycles and lower applied stresses as well as
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Figure 4.33. Example SEM micrograph of micracking at gear root corner

causing these failures at various depths seemingly regardless of compressive stress. A clear

demonstration of the potency of La2O2S inclusions can be seen in the single S-N curve in

Figure 4.34 for C61 Batch C gears that were shot peened and polished. In this instance,

only one La2O2S inclusion was found to initiate fatigue, but it essentially was an outlier

lying far below the fitted curve. A shift of the curve fit down to match the inclusion

failure would result in a drop in the estimated endurance limit by over 250 MPa. Al2O3

inclusions, however, were observed more frequently not only when initiating fatigue but

also in general inspection of gear tooth cross-sections, an example of which is shown in

Figure 4.35. There seemingly exists a tradeoff therefore, between having numerous Al2O3

inclusions and few, but more potent La2O2S inclusions.
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Figure 4.34. S-N curve for C61 Batch C spur gear showing detrimental
effect of La2O2S inclusions on fatigue

Figure 4.35. Light micrograph of Al2O3 inclusion observed in polished gear
tooth cross-section. 5% Nital etch

4.4. Ultimate Bending Strength

The load versus displacement curves representing ultimate bending strength for the

four investigated surface conditions in the preliminary process optimization stage of Batch
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A C61 single tooth bending fatigue testing are shown in Figure 4.36. Curves are slightly

offset for ease of comparison. Ultimate bending strengths are designated as the point

where the measured displacement rates rapidly exceeded 0.4 mm/sec marking the onset

of overload failure. Arrows highlighting dips in the load/displacement curves indicate cat-

astrophic rupture of the carburized case, as suggested by corresponding, audible “pops”

heard during testing, indicative of carburized case rupture [99]. Because the carburized

case completely ruptures, the generated stress subsequently changes making all correla-

tions between applied load and stress approximate. The point at which carburized case

rupture occurs strongly depends upon the surface preparation of the tested gear, with in-

creasing stress/displacement levels achieved by shot-peening and then further after grind-

ing. A combination of grinding and shot peening resulted in no evident dip in the graph,

suggesting simultaneous occurrence of case rupture and ultimate failure (also suggested

by the audible “pop” heard only at failure). A distinct increase in total displacement and

ultimate bending load was also seen for the gears that were at one point ground when

compared to the gears that were not. Unlike bending fatigue, surface condition is shown

to be the primary factor for monotonic overload bending where the sole benefit of shot

peening is surface modification and not the generation of compressive residual stress.

Additional load versus displacement curves are shown in Figure 4.37 for Batch B and

C C61 and C67 spur gears used for single tooth bending fatigue process limitation studies.

Overload failure could not be achieved during initial testing of Batch B C61 spur gears,

and additional tests were required to be run on a higher capacity test frame to achieve

failure in one loading cycle. Unfortunately, all testable Batch B C61 gear teeth in the

shot peened only condition had already been expended and could not be tested till failure
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Figure 4.36. Ultimate bending strength curves for the four investigated sur-
face finishes of Batch A C61 spur gears

on the higher capacity load frame. For these gears then, the load/displacement curve is

shown up to the testing capacity of the previous machine, around 84 kN (approximately

equivalent to a stress of 4.8 GPa in the gear tooth root). The occurrence of premature,

catastrophic rupture of the carburized case seen in Batch A C61 gears as slight “dips”

in the load/displacement curves was not seen in Batch B C61 gears. Audible “pops”

associated with these dips were absent as well, further suggesting the carburized case

remained intact throughout loading. The effect of isotropic superfinishing on Batch B

gears cannot be determined because of the lack of comparable shot-peened only data.

Batch C C61 gears demonstrated reduced ultimate bending strengths compared to

Batch B, most probably reflecting the surface damage caused by overpeening and related

poorer isotropic superfinished surface. Curve dips signifiying case rupture were not easily
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Figure 4.37. Ultimate bending strength curves for C61 and C67 spur gears.
Circle denotes achieved test capacity.

determined due to significant data scatter, however it does appear that the carburized

case of the shot-peened only Batch C spur gears did rupture around 4000 MPa, signified

by the sudden change in slope of the curve and additional ductility characteristic of

deformation of the softer core. For Batch C gears, isotropic superfinishing did appear

to delay case rupture to higher applied stresses, however when case rupture did occur,

overload failure occurred rapidly with negligible core deformation and associated ductility.

C67 achieved an ultimate bending load around 43 kN without exhibiting any ductility.

Isotropic superfinishing had no measurable effect on the ultimate bending strength of C67

and duplicate curves were not included. The reduced ultimate bending performance of

C67 can most likely be attributed to both its enhanced sensitivity to surface finish and

lower toughness relative to C61.
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4.5. Performance Summary

In order to compare optimized C61 bending fatigue performance, representative S-N

curves were provided by James Bishar of GM Powertrain to represent a baseline gear steel

(L10 life) as well as a premium gear steel (L50 life). Figure 4.38 plots these representative

curves agains best-practice C61 results, represented by batch B C61 shot peened and

isotropic superfinished spur gears, as well as the starting C61 condition in the as-heat

treated (AHT) condition for comparison. Starting well below the baseline gear steel in

the AHT condition, targeted performance optimization was able to improve the bending

fatigue resistance of C61 to above that of the representative premium gear steel as ap-

proximated by the fatigue endurance limit by around 15% and ultimately surpassing the

baseline gear steel by over 40%. Figure 4.39 summarizes the single tooth bending fatigue

performance optimization process for C61.

Ultimate bending curves for best-practice Batch B C61 spur gears as well as Batch A

C61 and the representative premium gear steel, both of which are in the ground condition,

are all shown in Figure 4.40. Ground Batch A C61 demonstrates improved yield strength

over the premium gear steel, with a slight gain in ultimate bending strength. Best prac-

tice C61 gears show a significant improvement in ultimate bending strength, and further

testing would need to be done with premium gear steels to investigate similar improve-

ments. Based on shot peened-only Batch B and C gears however, a significant portion of

the ultimate bending fatigue enhancement can be attributed to the C61 material and not

entirely on the ISF processing, as the improved surface finish had only a slight benefit.

Total performance validation of C61, representing the three chosen metrics of single

tooth bending fatigue endurance limit, surface hardness and ultimate bending strength is
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Figure 4.38. Comparison between C61 and representative baseline and pre-
mium gear steels in single tooth bending fatigue

Figure 4.39. Summary of single tooth bending fatigue endurance limit op-
timizitaion for C61
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Figure 4.40. Ultimate bending strength comparison between C61 and a
representative premium gear steel

summarized in Table 4.1. A range of ultimate bending strength improvement values are

given to reflect the constrained comparison due to lack of isotropic superfinished data for

other gear steels.

Table 4.1. C61 performance validation summary

Baseline Premium C61 % Improvement
Gear Steel Gear Steel over Premium

Bending Fatigue Endurance Limit (MPa) 1100 1375 1575 15
Surface Hardness (VHN) 668 668 715 7
Core Hardness (VHN) 410 410 510 24

Ultimate Bending Strength (MPa) 2975 3250 5190 25-60

The elevated hardness of C67 did not show any benefit in single tooth bending fatigue,

in large part due to its un-optimized heat treatment and especially the inability of conven-

tional shot peening to maximize compressive residual stress. Further development of heat
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treatment as well as gear surface treatments such as shot peening and surface finishing is

required get further bending fatigue performance from alloys much harder than C61.
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CHAPTER 5

Microstructure Control Studies

As processing-induced defects are addressed through such measures as shot peening

optimization and enhanced surface finishing techniques, microstructural limitations will

become increasingly important for both bending and contact fatigue. Such limitations

for high-strength gear steels include excessive grain coarsening, non-martensitic trans-

formation products and dissolution of strengthening carbide dispersions. In the case of

C61 and C67, coarsened grains in spur gear corners have already been observed to be

involved in fatigue initiation and the predominant failure mode currently limiting high

cycle fatigue resistance. The following three focus studies were completed to address these

microstructural issues to investigate potential improvement methods as well as identify

specific limitations or benefits intrinsic to the microstructure of the C61/C67 alloys.

5.1. Powder Metallurgy Grain Coarsening Resistance Study

As previously discussed in Chapter 2, prior austenite grain size has shown the high-

est statistical correlation with bending fatigue endurance limits of carburized gear steels

[100], with grain size refinement leading to improved resistance to fatigue crack initiation

and propagation. Grain coarsening is a potentially significant issue with the C61/C67

alloys as they are predominantly carburized at elevated temperatures using high temper-

ature vacuum carburizing. Grain coarsening may already be influencing bending fatigue
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performance of C61/C67 as evidenced by cleavage facets presumably along prior austenite

grain boundaries causing subsurface fatigue initiation in shot peened spur gears.

In an effort to prevent grain coarsening during high temperature vacuum carburizing,

several powder metallurgy (PM) variants of C69, a precursor alloy of the C67 used in single

tooth bending tests, were investigated. Powder metallurgy materials have previously

shown resistance to grain coarsening at elevated temperatures due to grain-pinning oxide

dispersions [46]. Initial PM alloys, named C3L and C4, did not demonstrate enhanced

grain coarsening resistance over wrought C69, subsequently attributed to a lack of stable

oxide forming alloying elements [45]. Consequently, researcher Brian Tufts designed new

alloy compositions incorporating sufficient Ti additions to getter typical oxygen levels

intrinsic to the powder metallurgy process into a grain pinning oxide dispersion [45].

This Ti-bearing powder metallurgy alloy, named PM C69-Ti, was investigated in this

work to study the possible benefit of the Ti addition on grain coarsening resistance.

Samples of PM C69-Ti were subjected to one-hour solutionizing treatments at temper-

atures ranging from 900-1200◦C. The oxidation etching method outlined in Section 3.2.3

was utilized to delineate prior austenite grains, with resultant light micrographs taken and

shown for all solutionizing temperatures in Figure 5.1. Average grain size measurements

were then taken following ASTM E112-96 [69] consisting of ten linear intercept measure-

ments per image, with the final value representing an average of two images from different

locations. Figure 5.2 shows the average grain diameter and ASTM grain size measured

for PM C69-Ti compared to previous results for wrought C9 as well as the initial C69 PM

variants (C3L and C4) [45].
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Figure 5.2. Measured average grain sizes for PM and wrought C69. *Data
taken from Tufts [45]

The C69 PM material with added titanium does show resistance to grain coarsening,

maintaining an approximate average grain diameter of 30 µm consistently up to 1200◦C,

well beyond normal solutionizing temperatures. Scatter within the data represents ± one

standard deviation and can largely be attributed to varying degrees of grain boundary

delineation during the oxidation etching process and associated difficulty of grain size

measurement, particularly for samples solutionized at 950◦C and 1050◦C. Even considering

this error and assuming similar scatter for the previous results, the Ti addition clearly

demonstrates improved grain coarsening resistance over the previous PM alloys, C3L

and C4, representing a reduction in average grain size after solutioning at 1200◦C of

approximately 40 and 50%, respectively. PM C69-Ti also displays a slightly finer starting

grain size than both the wrought C69 and previous PM alloys by about 15%.
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One potential source of error in these grain size measurements might be due to an

intrinsic fault in the oxygen etching technique used to delineate prior austenite grain

boundaries. Because oxidation was achieved through the trace oxygen levels present in

the upright argonne furnace, the flow of oxygen and subsequent rate of oxidation was

constant throughout the solutionizing heat treatment. Depending on how fast the oxida-

tion took place, the presence of the oxide at the prior austenite grain boundaries could

potentially obstruct coarsening of surface grains and mask the true coarsening behavior.

Grain coarsening was observed in the C3L and C4 PM alloys using this technique, however

subsequent alterations to the upright argonne furnace may have influenced the inherent

oxygen content and related oxidation characteristics. For conclusive results on the grain

coarsening resistance afforded by the Ti-bearing PM alloy, further study is required using

either a different grain boundary etching process or a modified oxygen etching procedure

where oxidation is limited to occur at the end of the solutionizing heat treatment.

5.2. Hardenability Assessment

Microstructural uniformity is critical in high power density gear applications as softer

non-martensitic transformation products such as retained austenite and Bainite patches

have been shown to reduce high-cycle fatigue performance [31, 25]. To study the hard-

enability of ultra-high strength secondary hardening steels, dilatometry was performed

on C61 samples to measure the effect of cooling rate on transformation behavior and

resultant microhardness levels. Samples were first heated to a solutionizing temperature

of 1050◦C and held for 5 minutes to ensure complete transformation to austenite and



137

dissolution of primary carbides. The samples were then cooled at different quench rates,

at which point the microhardness was measured.

Figure 5.3 shows an example dilatometry plot showing the measured relative length

change versus temperature. Upon heating, thermal expansion of the martensite causes

steady expansion until around 800◦C where the transformation to austenite is clearly

visible by the associated volume contraction. The transformation continues with further

heating until linear expansion is once again resumed, signifying complete transformation

to austenite. Upon cooling, the thermal expansion of the austenite is reversed down to

the martensite start temperature (MS) signified by the associated volume expansion of

the martensitic transformation.

Figure 5.3. Example dilatometry curve showing relative length change ver-
sus temperature

Figure 5.4 shows the transformation response of C61 in the form of a time-temperature-

transformation plot. Various cooling rates labeled as the time required to cool down to
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room temperature. In each case, complete transformation from austenite to martensite

occurred. No significant deviation of the martensite transformation temperature was

observed nor the presence of any additional volume changes associated with other phase

changes, verifying complete avoidance of Bainite.

Figure 5.4. Time-Temperature-Transformation diagram for C61. Labeled
quench rates designate time to reach room temperature from a starting
solutionizing temperature of 1050◦C.

In order to gauge the observed hardenability of C61 relative to other gear materials,

corresponding hardenability data was obtained for the baseline gear steel and premium

gear steel used for single tooth bending fatigue comparisons. Figure 5.5 shows this hard-

enability comparison where different cooling rates are now expressed as an equivalent

air-cooled bar diameter and the shown hardness values correspond to the bar center at
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the point of minimum cooling rate. Shown in this manner, the high hardenability of C61

enables the air-cooling of a bar exceeding 2 meters in diameter with minimal softening

(~15%). In contrast, the premium and baseline gear steels demonstrate significant soft-

ening, demonstrating hardness reductions over 45 and 60% respectively at the center of

a 2-meter diameter air-cooled bar.

Figure 5.5. Hardenability comparison between C61, baseline and premium
gear steels. Shown hardness corresponds to center of an air-cooled bar of
given diameter.

5.3. Effect of Over-Aging on Carbide Dissolution

Ultimately a material’s resistance to both bending and contact fatigue depends on

the mechanical stability of its microstructural constituents. Dissolution of strengthening

carbide dispersions, as discussed in Section 2.1.1.3, is one such mechanism for such mi-

crostructural degradation of secondary hardening steels strengthened by nanometer-sized

M2C alloy carbides. Overaging these fine carbides is one possible means of providing me-

chanical stability that might translate into fatigue resistance even considering the expense

of strengthening efficiency.
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To investigate the possible effects of overaging on mechanical precipitate stability,

rolling contact fatigue (RCF) tests were performed on an extra sample of C69M3B, a pre-

cursor alloy of C69. Once fabricated and carburized (see Section 3.2.8), the C69M3B NTN

rod was tempered at 550◦C for one hour, corresponding to the peak hardness condition,

and four RCF tests completed on one half of the rod. A second heat treatment was then

performed at 500◦C for 5 hours in order to overage the M2C strengthening dispersion.

Four additional RCF tests were then completed on the remaining half of the NTN rod.

Table 5.1 records the rolling contact fatigue results for both temper conditions:

Table 5.1. Rolling contact fatigue data for C69M3B tempered at at 550◦

for different times

1-hr Temper 5-hr Temper
Run # Duration (hrs) Cycles (106) Run # Duration (hrs) Cycles (106)

1 41.2 21.3 5 22.75 11.7
2 54.7 28.2 6 9.1 4.7
3 60.1 31.0 7 26.4 13.6
4 52.85 27.3 8 4.2 2.17

Test runs 6 and 8 stopped at very short times and did not result in sample failure.

A small amount of scorching and increased wear of the balls and bearing cups after run

6 suggested the premature failure was due to over-worn cups, which were subsequently

replaced. The poor outcome of run 8 was most likely due to the spalling of one of the

balls instead of the sample, as a pit was observed on a ball after the test. These two data

points were not included in the final results.

Figure 5.6 displays the rolling contact fatigue results for the two temper conditions of

C69M3B in a Weibull probability plot. Even with the removal of the two failed runs, the

five-hour, over-aging temper showed about a 50% reduction in RCF life compared to the 1-

hour peak aging heat treatment. This could be due to several different factors, the first of
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which is just the reduction in hardness after the five-hour temper. Microhardness testing

after over-aging found the hardness to be around 834 HV, or 65 HRC. This corresponds

to the over-aged hardness reported by Brain Tufts at that temperature [45], and meets

the desired hardness drop of 1-2 HRC from the peak hardness of C69M3B of 66 HRC.

Another possible cause of this reduced performance may also be related to a significant

level of oxidation that unfortunately occurred during the five-hour heat treatment. The

oxide was carefully removed through spinning the sample on a lathe while lightly polishing

with a 0.5-µm suspended alumina solution. This act of polishing may have altered the

dimensions enough to have affected the test, or possibly the act of growing the oxide itself

altered the sample surface.

Figure 5.6. Weibull probability plot of C69M3B comparing peak and over-
aged tempering conditions

Figure 5.7 compares the RCF results with previous results from the research of Brian

Tufts[45]. The one-hour temper RCF tests match up fairly closely with those of Tufts,

with a slight increase in life. This variation might be an additional reflection on the
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extreme surface sensitivity of the NTN RCF test, with slight variations due to different

sample heat treatment batches. When compared to standard M50 bearing steel, even the

over-aged sample runs showed significant improvement over conventional alloys, however

more runs and data points would be needed for any significant assessments to be made.

Figure 5.7. Weibull probability plot comparing new C69M3B RCF results
with previous research by Tufts (denoted by *) [45]

No beneficial effect was therefore observed upon application of the overaging heat

treatment, however the extreme nature of the NTN RCF test may render it unsuitable

for observation of such phenomena. Roughened test balls used to accelerate failure in

the interest of test time reduction effectively alter the nature of contact from one of

pure rolling to one with a significant amount of impact loading from test ball asperities.

The applied stresses from such loading are very localized to the specimen surface and

would subsequently be much more sensitive to the absolute hardness, as observed by

the decreased performance of the over aged C69M3B NTN bars. Any possible benefit
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from over-aging of precipitate dispersions would more likely be observed in rolling/sliding

conditions where maximum stresses occur below the surface.
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CHAPTER 6

Cu-Bearing Alloy Design

For many applications, C61’s extensive alloying additions make it too expensive. A

large portion of this material cost is due to its high cobalt content, which at approximately

$20-30/lb is approximately 10 times more expensive than other common alloying elements

such as nickel and chromium [2].

In an effort to reduce the material cost of these secondary-hardening steels, experi-

mental alloys will be developed where the cobalt content is significantly reduced or elimi-

nated. To counteract the subsequent loss in temper resistance previously provided by Co,

BCC Cu precipitates will be incorporated to provide an additional means of precipitation

strengthening as well as act as supplemental heterogeneous nucleation sites for the M2C

strengthening dispersion. Four compositions will be designed, aimed at exploring the

Cu-Co composition space shown schematically in Figure 6.1.

The chosen levels of Cu alloying additions represent typical (0.9 at%) as well as ele-

vated (3.3 at%) levels of Cu when compared to other Cu-bearing steel alloys. Explored

cobalt contents correspond to completely eliminated levels (0 at%) for maximum cost sav-

ings as well as significantly reduced levels (5.8 at%) where material cost is still lowered yet

maintaining sufficient Co content levels to observe its effect on secondary hardening. Us-

ing this design matrix, the relative effects of Cu and Co contents on secondary hardening

can be observed.
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Figure 6.1. Co-Cu composition space as explored by four experimental alloy designs

Figure 6.2 outlines the system flow block (or Olson diagram) for secondary hardening

gear steels where BCC Cu precipitation is now incorporated. The main microstructural

subsystems consist of the lath martensite matrix and the dual strengthening dispersions

of (Cr,Mo,V)2C alloy carbides and BCC Cu clusters.

6.1. Target Design Parameters

The design optimization process for such a microstructural system is illustrated in

Figure 6.3 and consists of three main steps, the first of which is setting the strength

level. Here the various strengthening contributions from the different microstructural

systems are outlined and related to requisite alloy additions, specifically the carbon and

copper levels required for the specified amounts of M2C and BCC copper strengthening

dispersions.
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Figure 6.3. Design optimization process for Cu-bearing secondary harden-
ing steels

The second step is to optimize the matrix composition through the additions of Ni

and Co. The role of Ni in the tempered martensite matrix is to promote cleavage resis-

tance by increasing the surface energy and associated Griffith work of brittle separation

of {100} planes, where brittle fracture of BCC structures typically occur [33]. In the

case of Cu-bearing steels, Ni has also experimentally been shown to prevent hot shortness

when present in equal or greater amount than Cu [101]. However, as an austenite-

stabilizing element, Ni strongly lowers the MS temperature. Maintaining a sufficiently

high MS temperature ensures complete transformation to lath martensite, which not only

exhibits superior toughness over plate martensite, but is also a highly dislocated structure

conducive to M2C carbide heterogeneous nucleation. An MS temperature above 150◦C

ensures complete transformation to lath martensite upon quenching, but by increasing the
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driving force for transformation through cryogenic treatments, a minimum temperature of

100◦C is sufficient. As previously discussed, Co is added for temper resistance, but it also

has the added benefit of raising the MS temperature. Due to the emphasis on lowering

material cost, however, Co contents will be fixed for the design of these alloys. Therefore,

to optimize the matrix composition, one must balance the conflicting objectives of max-

imizing Ni for toughness and hot-shortness resistance and of maintaining a sufficiently

high MS temperature (>100◦C) to ensure complete transformation to lath martensite.

For alloys high in Co, care must be taken to avoid the embrittling Sigma phase, ensuring

it is thermodynamically unstable (-∆Gσ).

The third step in the design optimization process focuses on optimizing the M2C car-

bide strengthening dispersion by adjusting the relative amounts of the carbide forming

elements Cr, Mo and V. The major objective is to maximize the thermodynamic driving

force for M2C precipitation (∆GM2C). This must be balanced, however, against processing

considerations, such as the solutionizing temperature (TS) and microsegregation. Solu-

tionizing is necessary to fully dissolve any primary carbides since, in addition to being

deleterious to mechanical properties, they also tie up carbon and carbide forming ele-

ments that are needed for the M2C strengthening dispersion. In the interest of reducing

processing costs, it is desirable to minimize the temperature at which this takes place,

preferably below 1050◦C. Microsegregation can also occur during ingot solidification as

certain elements, particularly heavy elements such as Mo, partition to either the liquid

or solid phase. Prolonged homogenization treatments to eradicate this are an added cost,

and these compositional fluctuations, as measured by the microsegregation amplitude (δ),

are constrained to be less than a factor of 4.
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Table 6.1. Targeted design parameters for experimental Cu-bearing sec-
ondary hardening steels

Parameter Target
Case Hardness 894 VHN (67 Rc)
Core Hardness 392 VHN (40 Rc)

Case MS > 100◦C
Core MS > 300◦C

TS < 1050◦C
Ni/Cu ≥ 1
∆GM2C Maximize (> 20 kJ/mol)
∆Gσ Minimize (<0)
δX < 4

Once the appropriate combination of carbide formers has been found, a second iter-

ation of matrix optimization calculations can be done to account for their effect on the

MS temperature. This iterative procedure is carried out until all of the design parameters

have been optimized. Table 6.1 lists the target design parameters for the experimental

Cu-bearing gear steels.

6.2. Design Models

6.2.1. Ni-Co Secondary Hardening Steel Strength Model

To model the strengthening contributions for both the lath martensite matrix as well

as the M2C carbide dispersions, the Ni-Co secondary hardening steel strength model

developed by Wise will be used [40]. This approach models the strength as Equation 6.1:

τ = τSS + τP + τD + τα′ (6.1)

where τ is the total strength consisting of the linear superposition of solid solution

strengthening (τSS), precipitation strengthening (τP ), dislocation strengthening (τD) and
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the intrinsic strength of the lath martensite substructure (τα′). To describe these various

strengthening contributions, Wise applied relevant theories to model existing data. For

solid solution strengthening, he used a model after Labusch [102] :

τSS = 0.0078G (|ε′G|+ 2 |εa|)
4
3
c
2
3

(6.2)

where G is the matrix elastic modulus, ε′G the solute modulus misfit and εa the solute size

misfit at a specific solute atomic fraction denoted by c. The model specifically takes into

account the matrix concentrations of Co, Ni, Cr and Mo, the equilibrium values of which

are determined using Thermo-Calc incorporated through CMD.

The precipitation strengthening contribution has two forms, corresponding to shear-

able (τP,shear) and non-shearable (τP,Orowan) particles:

τP,shear = 0.65
Gb

(L− 2r)

(
Gpr

2πGb

)
(6.3)

τP,Orowan = 1.68
Gb

2π
√

1− ν(L− 2r)
ln

(
2r

r0

)
(6.4)

Shearable precipitates were modeled using Equation 6.3 following the modulus strength-

ening approach by Hornbogen [103]. Here, G is the shear modulus and b the Burger’s

vector of the matrix, and Gp, r and L the precipitate’s shear modulus, radius and inter-

particle spacing, respectively. For over-aged, incoherent M2C carbides the strengthening

contribution is described in Equation 6.4 by the Orowan-Ashby equation [104] with com-

bined edge and screw dislocation effects [105], where ν is the Poisson’s ratio of the matrix

and r0 the dislocation core radius.



151

Dislocation strengthening is modeled using Keh and Weissman’s strength dependency

relation on dislocation density (ρ) [106] adapted to include recovery effects that take place

during tempering as outlined by Leslie [107] :

τD = 0.38Gb
√

ρ ≈ 145− 60

(
V

Vf

)
M2C

(V HN) (6.5)

In Equation 6.5, the degree of recovery is proportional to the fraction of M2C precipitation

relative to the final equilibrium volume fraction (Vf ). Assuming a value of V/Vf of 0.8,

the strength increment due to dislocations is 97 VHN. The final strengthening component

is that provided by the lath martensite matrix itself, and is expressed by the Hall-Petch

expression in Equation 6.6:

τα′ = τα + kd−
1
2 ≡ 65 (V HN) (6.6)

The empirical value of 65 VHN has been found to agree well with typical grain sizes (d)

and prefactor fitting values (k) for low carbon steels [40].

6.2.2. BCC Cu Precipitation Strength Model

To describe the strengthening increment provided by the BCC Cu precipitates, the general

approach outlined by Russell and Brown [50] will be used, where the maximum precip-

itation strengthening is related to BCC Cu phase fraction by Equation 2.10. Based on

the square-root strengthening dependence on particle volume fraction, Saha generated an

empirical Cu strengthening model using an empirical correlation between hardness and

yield strength for various steels as well as experimental data from Russell and Brown [50],

as shown in Figure 6.4.
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Figure 6.4. Empirical Cu precipitation strengthening model developed by
Saha [58]

The resultant strengthening expression based on atomic percent (X) Cu shown is

shown in Equation 6.7:

∆τ(V HN) = 83.807X
1
2
Cu (6.7)

6.2.3. Martensite Start Temperature Model

The Ghosh and Olson model [79] was used to model the composition dependence of the

martensitic transformation temperature (MS). In this approach, the martensite nucleus is

modeled as a set of coherency anti-coherency dislocations that must overcome a frictional

force in order to propagate. Transformation is thus predicted to occur when the thermody-

namic driving force to transform from FCC austenite to BCT martensite (-∆GFCC→BCT )

is sufficient to overcome this frictional barrier (wf ) as shown in Equation 6.8:

−∆GFCC→BCT = wf + K1 (6.8)
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where K1 is a constant including strain energy, interfacial energy and defect potency. The

frictional work encountered by the propagating interface is a function of the composition

of the matrix, specifically solid solution strengthening due to the various alloying elements,

as expressed in Equation 6.9:

wf =

√P
i

(
KiX

1
2
i

)
+

√P

j
(
KjX

1
2
j

)
+

√P
k

(
KkX

1
2
k

)
+ KCoX

1
2
Co (6.9)

where values of K are solid solution strengthening coefficients and X the mole fractions

for the respective subgroups of alloying elements: i=C, N; j=Cr, Mn, Mo, Nb, Si, Ti, V;

k=Al, Cu, Ni, W.

6.2.4. Microsegregation Model

To ensure acceptable processability, microsegregation amplitudes of each alloy design

are approximated using Scheil simulations [108]. By assuming infinite diffusion in liq-

uid phases and no diffusion in solid phases, simulations can be quickly completed using

solid/liquid equilibrium calculations that are repeatedly executed in Thermo-Calc with

decreasing temperature. The resultant composition profiles are expressed as a function of

calculated solid phase fraction and correspond to composition variation across dendrites

during solidification.

6.3. Design Implementation

6.3.1. Strengthening Components

The first step in the actual design process is to determine the levels of carbon and copper

needed to fulfill the strength requirements of 392 VHN (40 RC) for the base alloy with
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a carburized case reaching a maximum hardness of 894 VHN (67 RC) at the surface.

The strength of each base alloy is derived from three microstructural components: the

tempered martensite matrix (τM), BCC Cu precipitates (τCu) and M2C carbides (τ core
M2C).

Additional M2C carbides formed from carbon introduced during carburization provide the

increased strength of the carburized case (τ case
M2C). The total strength of each alloy (τTotal)

will thus be the combination of each of these strengthening increments, as expressed in

Equation 6.10:

τTotal = τM + τCu + τ core
M2C + τ case

M2C (6.10)

The strength contribution from the tempered martensite matrix is derived by subtract-

ing the precipitation strengthening contribution (τP ) from the total secondary hardening

strength model of Equation 6.1:

τM = τ − τP = τSS + τD + τα′ (6.11)

From Equation 6.6, the value for the intrinsic strength of the lath martensite structure

(τα′) is 65 VHN. The strength increment due to the dislocation density within this lath

martensite structure (τD) is 97 VHN as given by Equation 6.5 assuming an 80% final M2C

volume fraction as compared to the equilibrium volume fraction. The final strengthening

component of the martensite matrix comes from solid solution strengthening (τS) and

will vary with composition according to Equation 6.2. Preliminary calculations for solid

solution strengthening using the investigated Co content range of 0 to 5.8 at% and similar

values for Ni and Mo resulted in an average value of approximately 30 VHN. The sum of
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these three strengthening increments equaling 192 VHN was used as a first approximation

for τM .

The value for τCu corresponds to one of the two selected levels of Cu alloying additions

of 0.9 and 3.3 at%. Using Equation 6.7, these levels of Cu translate into 80 and 151 VHN

respectively.

The remaining increments of strength due to M2C carbides were then translated to

requisite carbon levels through Wise’s model for secondary hardening steels [40]. First

approximations for the required carbon contents were found using a generic form of the

M2C precipitation strengthening model showing the effect of carbon content on hardness,

an example of which is shown in Figure 6.5. An M2C particle diameter of 4nm was chosen

to reflect over-aging heat treatments commonly employed to ensure complete dissolution

of paraequilibrium cementite to maintain adequate toughness. The phase fraction of M2C

carbide utilized in precipitation strengthening was set to 80% of its ultimate equilibrium

phase fraction (V/Vf = 0.8).

Based on these estimates, a preliminary composition was assumed by setting the

carbide forming elements (Cr, Mo, V) to equal atomic concentrations that in sum equaled

twice that of the atomic level of carbon in order to satisfy the M2C stoichiometry. Nickel

levels were set at twice that of copper and the M2C radius and relative volume fraction

(V/Vf ) set to 4nm and 0.8, respectively. Based on these preliminary compositions, the

calculated hardness values were determined as a function of carbon content to find the

final carbon levels as shown in Figure 6.6.
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Figure 6.5. Prelimary carbon content requirement estimates using M2C pre-
cipitation strengthening model

Figure 6.6. Final carbon content assessment

6.3.2. Matrix Optimization

The second step in the design methodology is to optimize the matrix composition. First

the cobalt levels were set to pre-selected values 0 at.% for the low-Co alloys and 5.8 at.%
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for high-Co alloys. Next, the effect on MS due to Ni content was calculated to determine

the maximum amount of Ni that could be added in order to resist brittle fracture. An

example of this calculation is shown in Figure 6.7. A final calculation is done for the

thermodynamic instability of the brittle Sigma phase (-∆Gσ) ensuring it is sufficiently

avoided.

Figure 6.7. Maximum Ni content calculation for target case MS tempera-
ture of 150◦C

6.3.3. Carburized Case Optimization

The final design step was to optimize the M2C strengthening dispersion while meeting

processing requirements of a reasonable solutionizing temperature (TS < 1050◦C) and
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minimum microsegregation (δx < 4). Using Thermo-Calc, a pseudo-ternary phase di-

agram varying the carbide forming elements within the M2C stoichiometric limits was

calculated at the desired solutionizing temperature of 1050◦C, as shown in Figure 6.8.

Figure 6.8. Calculated pseudo-ternary phase diagram at target solutioniz-
ing temperature of 1050◦C. Five points are shown in austenite-only phase
field marking investigated compositions, with the red, highlighted circle
representating the composition with maximum M2C driving force.

Within the observed austenite-only phase field, several exploratory compositions were

selected for each of the four Cu-Co combinations and the M2C driving force for precip-

itation was calculated using CMD. In each of the four alloy designs, the austenite-only

phase field was found to be in the Cr-rich corner of the pseudo-ternary phase diagram,
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and within this region, the maximum M2C driving force was always found to correspond

to the maximum vanadium concentration. Figure 6.8 shows five exploratory (Mo, Cr, V)

compositions selected for one of the Cu-Co combinations with the optimum (Mo, Cr, V)

combination located at the maximum V content within the austenite phase field.

Scheil simulations were calculated for each of these compositions, an example of which

is shown in Figure 6.9. All composition amplitudes were found to be within acceptable

levels.

Figure 6.9. Example Scheil simulations for microsegregation amplitude calculations

6.4. Design Summaries

Design parameters were then re-calculated using the final compositions and were found

to be within the required constraints. Table 6.2 summarizes the designed compositions

for the four experimental alloys with corresponding predicted design parameters listed in

Table 6.3.
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Table 6.2. Designed compositions for experimental Cu-bearing alloys in
weight percent

Design C(Core) C(Case) Ni Cr Mo V Cu Co Fe
A 0.035 0.52 3.3 2.6 3.13 0.2 1.05 0 bal.
B 0.035 0.52 5.5 2.6 3.32 0.1 1.05 6 bal.
C 0.015 0.42 3.7 1.6 3.48 0.15 3.7 0 bal.
D 0.015 0.42 5.5 2.5 1.72 0.1 3.7 6 bal.

Table 6.3. Predicted design parameters for experimental Cu-bearing alloys

A B C D
Case Hardness (VHN) 894 910 890 868
Core Hardness (VHN) 396 408 426 427

Case MS(◦C) 115 118 92 113
Core MS(◦C) 327 365 277 333

TS (◦C) 1032 1040 1030 1016
Ni/Cu 3.1 5.2 1.0 1.5

∆GM2C(kJ/mol) 20.4 21.7 20.4 19.0
∆Gσ(kJ/mol) -1.8 -1.6 -2.1 -2.8

δMo 1.3 1.3 1.6 2.4
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CHAPTER 7

Cu-Bearing Alloy Prototype Evaluation

For each designed composition, a prototype 30-lb ingot was prepared as outlined in

Chapter 3. Table 7.1 compares the resultant measured composition of each ingot with its

corresponding design. The most signficant composition discrepency was the Cu content

of alloy B, where the measured Cu content was almost three times that of the designed

1.0 wt%. Carburized case carbon measurements were also much higher than designed lev-

els for alloys C and D. Light micrographs taken from cross-sections of through-carburized

specimens used for case carbon measurement revealed high levels of retained austenite and

high-carbon plate martensite indicative of overcarburization. In the larger, gear tooth-

sized specimens used for all other analyses, overcarburization was not observed to occur,

however the measured effective case depth of 2 mm was approximately twice that of A and

B alloy specimens, which achieved the targeted 1 mm case depth. The thickness of carbon

measurement specimens was chosen to be 1.5 mm in order to achieve a through-carburized

carbon content approximately equivalent to the surface, or maximum, carbon content of

the targeted 1 mm carburization profile. Because of the constant carbon flux boundary

conditions intrinsic to high temperature vacuum carburizing, this excess carbon intro-

duced into C and D alloy specimens accumulated in the thin, through-carburized samples

used for case carbon measurement with the subsequent overcarburization resulting in

elevated carbon measurements not representative of larger specimens.
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7.1. Matrix Microstructure

Figure 7.1a shows a representative micrograph of the tempered lath martensite ma-

trix achieved in all four experimental alloys. No retained austenite or primary carbides

were visible in any of the alloys. X-Ray diffraction (XRD) of the carburized case verified

the existence of a fully martensite matrix, as shown by the lone broadened BCC peaks

characteristic of tempered martensite in Figure 7.1b. The apparent complete transfor-

mation to martensite suggests that the current MS model is adequate for the design of

Cu-bearing gear steels, and the avoidance of large primary carbides verifies the solution

thermodynamics correctly predicted the austenite-only phase field of the pseudo-ternary

phase diagram.

Additionally, all four alloys were successfully hot rolled, suggesting the minimum

Ni/Cu ratio of 1 was sufficient to prevent hot shortness. This ratio may indeed rep-

resent a minimum allowable limit, since the hot rolled plate for alloy C, which did have

the lowest Ni/Cu ratio of 1, was reported to exhibit patches that persistently glowed dur-

ing cooling after the normalization heat treatment. Further analysis of the oxide scale is

needed to see if this behavior is due to the same Cu segregation that induces hot shortness.

7.2. Solution Temperature

Solutionizing studies were conducted on the four experimental alloys to ensure com-

plete compatibility with existing C61/C67 heat treatment regimens. Solutionizing heat

treatments must be able to fully dissolve primary carbides and achieve a fully austenitic

state to maximize carbon solubility during carburization. Carburized samples were so-

lutionized in an argon furnace at various times for one hour, quenched in oil and then
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(a)

(b)

Figure 7.1. Lath martensite matrix exhibited by all four Cu-bearing alloys
as shown by example a) light microscopy and b) x-ray diffraction
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soaked in a liquid nitrogen bath for 30 minutes. A one-hour stage I temper (200◦C) was

then used to counter possible autotempering affects experienced during quenching. Figure

7.2 shows measured microhardness levels for the carburized case (100µm depth) for the

four experimental alloys at solutionizing temperatures ranging from 1050 to 1250◦C. Error

bars represent ± one standard deviation of the averaged microhardness measurements.

For reference, measured Cu and Co contents (wt%) are listed. Because representative case

carbon measurements were not able to be obtained for alloys C and D, designed carbon

contents (wt%) are listed instead. For all alloys, hardness generally decreased with in-

creasing solutionizing temperatures, suggesting complete dissolution of primary carbides

at or before the designed solutionizing temperature of 1050◦C with slight softening oc-

curring due to grain coarsening. Significant scatter in the hardness measurements arose

due to uneven carburization of puck specimens, however average hardness values for all

solutionizing temperatures exceeding 1050◦C were either below or within the standard

deviation of the 1050◦C measurements. For the Cu-bearing alloys there is therefore no

observed benefit for elevating solutionizing temperatures beyond the 1050◦C currently

used in existing heat treating regimes.

7.3. Tempering Response

Figure 7.3 shows the microhardness response for both the carburized case (100 µm

depth) and the core of all four alloys at a tempering temperature of 482◦C for up to

72 hours. Two distinct precipitation phenomena are observable, as represented by two

hardness local maxima, one occurring around 12 hours and another later around 40 hours.
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Figure 7.2. Solutionizing study for experimental Cu-bearing alloys

Comparing the peak hardness values with the hardness targets, all four alloys had a

core hardness about 20-30 VHN lower than the target of 392 VHN, as shown in Figure 7.4.

More important was the fact that the case hardness was approximately 200 VHN lower

than the target case hardness of 894 VHN. Alloy B exhibited the highest hardness in both

the case and core, however, it also had a measured Cu content over 2.5 times greater than

its design due to chemistry control issues during melting. This additional Cu is predicted

to provide an extra 50 VHN based on Equation 6.7 and correlates well with its increased

strength over alloy A, which has equivalent carbon levels and Cu levels closer to the design.

Considering this observed gain in hardness can be specifically attributed to excess Cu, as

well as the fairly good agreement between the predicted and achieved hardness levels in
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Figure 7.3. Microhardness response of the carburized case and core of the
four experimental alloys tempered at 482◦C

the predominantly Cu-strengthened core, preliminary assessment suggests predicted levels

of Cu precipitation and related strength were for the most part achieved. The significant

loss in strength in the case is greater than the anticipated strength increment due to the

Cu alone and can most probably be associated with the M2C strengthening dispersion.

An elevated tempering temperature of 510◦C was also investigated as a means of

possibly accelerating the M2C precipitation kinetics. Figure 7.5 shows the resultant mi-

crohardness response for all four experimental alloys for both the carburized case (100

µm depth) and core tempered at 510◦C. When compared to Figure 7.3, the same core

hardness peak at 1-hr can be observed, corresponding to BCC Cu precipitation as well

as the local hardness maxima around 12 hrs for the carburized case. At 510◦C, however,

this local case hardness maximum at 12hr is broader and is not followed up by a second
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Figure 7.4. Comparison between designed and measured hardness levels for
the carburized case and core for Cu-bearing experimental alloys

hardness peak around 48-hr such as was observed for tempering at 482◦C. For tempering

at 510◦C the peak alloy case hardness was around the 12-16 hour range. The magnitude

of the total peak hardness achieved by the four alloys was lower at the higher tempering

temperature, with the exception of alloy B, as summarized in Table 7.2.

Table 7.2. Peak carburized case hardness comparison for tempering tem-
peratures of 482◦C and 510◦C

Peak Case Corresponding Core Hardness Difference
Hardness (VHN) Hardness (VHN) (482◦C-510◦C)(VHN)

Alloy 482◦C 510◦C 482◦C 510◦C Case Core
A 688.9 681.9 362.3 351.7 7 10.6
B 722.5 739 383.5 383.9 -16.5 -0.4
C 663.1 659.4 353.7 331.4 3.7 22.3
D 692.3 651.5 372.0 358.6 40.8 13.4
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Figure 7.5. Microhardness response of the carburized case and core of the
four experimental alloys tempered at 510◦C

7.4. LEAP Microstructural Analysis

Figure 7.6 shows LEAP reconstructions for alloy B at tempering times of 1, 12 and 48

hours. Overall compositions for each dataset as well as the as-designed compositions and

measured ingot compositions for alloy B are shown in Table 7.3. Calculated standard de-

viations of overall LEAP compositions using Equation 3.4 were all less than 0.5%. Overall

compositions of LEAP datasets compared agreeably with the overall ingot composition

measured with wet chemistry techniques. Reported Ni levels in LEAP datasets are in-

flated due to mass spectrum convolution with Fe. C, Co and Cu levels were systematically

low as measured by the LEAP, suggesting preferential and/or anomalous field evapora-

tion. To best reveal the precipitated phases in the reconstructions, only isoconcentration
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surfaces for the Cu and M2C precipitates are shown along with a 5% sampling of Fe atoms

used to reveal the total analysis volume.

Table 7.3. Alloy B compositions (at%) for original design, wet chemistry
measurements taken from ingot samples and the three overall compositions
of LEAP datasets taken from samples of the three temper times

Fe Ni Co Cr Mo V C (case) Cu
Design bal. 5.3 5.8 2.8 2.0 0.1 2.4 0.9

Measured bal. 4.7 5.3 2.4 1.8 0.1 2.3 2.4
1-hr Temper bal. 5.0 4.7 2.1 1.7 0.1 1.5 1.0
12-hr Temper bal. 5.7 4.4 2.4 1.9 0.1 1.3 1.0
48-hr Temper bal. 6.1 5.7 2.4 1.5 0.1 1.4 1.2

Each individual pink pixel represents one Fe atom. Isoconcentration surfaces used to

outline Cu precipitates bound a concentration threshold chosen to be 5 at%. Threshold

values for isoconcentration surfaces were chosen to be larger than intrinsic compositional

variations to avoid noise while at the same time capture the clustering behavior and

morphology of the precipitating species. The threshold value used to delineate the M2C

carbide precipitates included the combined levels of C, Cr, Mo and V set to a summed

composition of 15 at%. Using these same isoconcentration threshold values to outline

particles for each dataset, the number density for both Cu and M2C precipitates was

calculated by dividing the total number of observed precipitates by the respective analysis

volume as calculated using Equation 1 as summarized in Table 7.4.

The volume of each constructed isoconcentration surface was used to calculate an

equivalent sphere radius in order to quantify precipitate dimensions. Resulting size dis-

tributions for Cu precipitates and M2C carbides are shown in Figure 7.7 and Figure 7.8

respectively. Asymmetry in the recorded size distributions can in part be attributed to the

merging of nearby precipitates where isoconcentration surfaces touch and form a single
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Figure 7.6. LEAP reconstructions for alloy B tempered at 1, 12 and 48
hours at 482◦C
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Table 7.4. Quantitative results from LEAP datasets taken from alloy B
samples for the three tempering times

Temper Time (hrs) 1 12 48
Total # Ions 9703776 2199295 1241245

Analysis Volume (nm3) 190840.9 43252.8 24411.2

Cu

# precipitates 48 48 57
Number Density (m−3) 2.5E+23 1.1E+24 2.3E+24
rtyp.,1Dcomp.prof. (nm) 1.0 1.0 1.2
ravg.,isoconc.surf. (nm) 1.0±0.3 1.0±0.3 1.2±0.4

Vf,typ.pptvol. 0.1 0.5 1.7
Vf,isoconc.surfacevol. 0.1 0.6 2.4

M2C-spheres

# precipitates 0 37 26
Number Density (m−3) 0 8.6E+23 1.1E+24
rtyp.,1Dcomp.prof. (nm) - 1.5 1.5
ravg.,isoconc.surf. (nm) - 1.1±0.3 1.2±0.4

Vf,typ.pptvol. 0 1.2 1.5
Vf,isoconc.surfacevol. 0 0.6 1.1

M2C-rods

# precipitates 0 0 8
Number Density (m−3) 0 0 3.3E+23
rtyp.,1Dcomp.prof. (nm) - - 4.0
ravg.,isoconc.surf. (nm) - - 2.7±0.4

Vf,typ.pptvol. 0 0 8.8
Vf,isoconc.surfacevol. 0 0 2.7

volume. This resulted in a shoulder or secondary peak on the histograms at approximately

double the radius upon which each distribution is centered. The M2C carbide size distri-

bution for the 48-hr temper condition also displayed a second population at larger sizes,

corresponding to the over aged rod-shape morphology of several particles as seen in Figure

7.6. Two distinct precipitate morphologies, rod and sphere, were subsequently used to

treat these different size distributions for the 48-hr tempering condition. The mean radius

of each precipitate population (ravg.,isoconc.surf.) for each temper time was then calculated

and is reported in Table 7.4. The summed volume of all isoconcentration surfaces of

each precipitate species was used to determine an approximation for the total precipitate
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volume fraction (Vf,isoconc.surfacevol.) by dividing by the corresponding specimen analysis

volume, also reported in Table 7.4.

Figure 7.7. Size distribution of Cu precipitates in alloy B at three tempering times

Figure 7.8. Size distribution of M2C alloy carbides in alloy B at three tem-
pering times
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Care must be taken, however, when ascribing quantitative results to features observed

in atom probe reconstructions due to localized magnification effects. Because of differences

in the evaporation field for different phases, precipitates may preferentially protrude or

recess from the specimen tip, causing distorted magnification in lateral (x-y) dimensions

in the reconstruction. To ascertain dimensions independent of local magnification effects,

additional measurements were done using 1-D composition profiles of precipitates taken

along the analysis direction (z-axis) when possible. Figure 7.9 shows example LEAP

reconstructions containing the 1-D concentration profile sampling cylinder as well as the

resultant composition profiles used to determine the size of a rod-shaped M2C carbide

in the 48-hr temper condition. Using this method, typical particle radii (rtyp.,1Dcomp.prof.)

were ascertained. For rod-shaped M2C carbides, the reported typical radius is for a sphere

of equivalent volume as the cylinder composed of the measured carbide length and width.

Additional volume fraction estimates (Vf,typ.ppt.vol.) were also calculated by multiplying

the number density of each precipitate species by the spherical volume associated with

each typical radius. Table 7.4 lists these figures for comparison with values calculated

with the isoconcentration surfaces.

As shown qualitatively by LEAP reconstructions in Figure 7.6 and quantitatively by

Table 7.4, the chosen tempering times have distinctly different microstructures. Figure

7.10 contains side-by-side comparisons of representative 20x20x20 nm3 volumes taken from

each of the larger datasets for the three tempering times. Here three precipitation stages

can clearly be identified: copper precipitation, M2C precipitation and M2C coarsening.

After tempering for 1-hr, spherical Cu precipitates approximately 2 nm in diameter are

present, corresponding to typical peak hardness conditions for BCC Cu precipitation
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Figure 7.9. Example assessment of typical particle size using one-
dimensional composition profiles through IVAS analysis software. Shown
example is for a rod-shaped M2C precipitate in alloy B tempered for 48
hours.
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strengthening [109]. The tempering response of the core (as shown in Figure 7.3), where

Cu precipitation is expected to account for 30-40% of the total strength, shows local

hardness maxima at 1 hour, also supporting peak Cu strengthening conditions. The

measured precipitate number density of 2.5x1023 m−3 is lower than is typically seen for

peak Cu strengthening conditions of around 1024 m−3 [109], however the particle number

density varies greatly over the total analysis volume of the LEAP specimen, with a large

portion of the Cu precipitates residing in the middle third of the tip. Significant amounts

of carbon segregation were observed on the boundary containing both sides of the region

rich in Cu particles, suggesting the presence of un-dissolved cementite that could possibly

be interfering with Cu precipitation. The Cu particle number density within the center

region was very similar to LEAP reconstructions of other tempering times of around 1024

m−3.

The second stage of precipitation seen at 12 hours of tempering consists of M2C

carbides nucleating on the Cu particles. The 2.5-3.0 nm average diameter of the carbides

is indicative of peak M2C precipitation strengthening efficiency, corresponding to the

transition between particle shearing and particle bypass illustrated in Figure 2.12. Other

secondary hardening steels of similar carbon contents, specifically GearMet C61, also

reach peak M2C precipitation strengthening conditions around 12 hours of tempering.

The measured M2C carbide phase fraction of approximately 1%, however, is significantly

below that of the predicted equilibrium phase fraction of 6%. Even accounting for the

carbon deficiency of the analyzed LEAP sample volume, the predicted equilibrium volume

fraction of M2C carbide of 3.5% is still much greater than what was measured, further

indicating incomplete M2C precipitation and not preferential loss of carbide during field
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evaporation. An analyzed LEAP specimen taken from the carburized case of an alloy A

sample also tempered for 12 hours at 482◦C contained a large cementite plate spanning the

width of the tip specimen, further indicating incomplete M2C carbide precipitation and

associated cementite dissolution. The heterogeneous nucleation of strengthening carbide

precipitates on Cu particles is thus shown to occur, however at a reduced effectiveness

or potency when compared to nucleation on dislocations driven by Co-assisted temper

resistance.

With further aging, however, peak hardness is achieved at 48 hours where two things

are observed: 1)an increase in the M2C volume fraction and 2)the coarsening of several

M2C carbides into rods. The increase in volume fraction comes from a 25-45% increase in

the amount of 3nm spherical particles and in large part from the increased volume fraction

from the coarsened rods, measured between 3-9%. The discrepancy between the two

measuring methods for the carbide rods can be attributed to over and under-estimations

intrinsic to the techniques. The cylinder created by measuring the length and width of

M2C rods using 1D composition profiles provides an upper bound by fully encasing the

irregular carbide isosurfaces and slightly overestimating the total volume. The specific

M2C carbide used for measurement via 1D composition profiles was also one of the largest

in the dataset but was chosen because of its orientation along the analysis direction (z-axis)

preferred to minimize local magnification effects. Measurements using isoconcentration

surfaces on the other hand slightly underestimated carbide rod dimensions due spatial

aberation arising from different field evaporation properties of the alloy carbides, however

using these values as a lower bound and the 1D composition profile measurements as an
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upper bound, approximate values are found for the equivalent sphere radius and resultant

rod volume fraction to be 3.5nm and 5.9% respectively.

Comparing the average M2C carbide diameter (d) at the two tempering times (t),

it is possible to approximate the precipitation kinetics, as shown in Figure 7.11. The

rate constant of approximately 1/3 is indicative of precipitate coarsening following initial

nucleation on the Cu precipitates, indicative of nucleation from supersaturated solutions

where particle growth is suppressed allowing for fine precipitate dispersions, as described

by Langer and Schwartz [110].

Figure 7.11. Precipitation kinetics for alloy B tempered between 12 and 48
hours at 482◦C.

Chemical composition measurements of M2C alloy carbides were difficult to accurately

obtain from LEAP reconstructions. As shown in the 1-D composition profiles in Figure

7.9, M2C carbides were primarly composed of roughly equal parts Mo and Cr, with sig-

nificant measured Fe contents exceeding 50%. This can in part be attributed to matrix

material contained within the 1-D sampling volume or “tube”, where the sampling larger
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sampling volume was required for sufficient statistical accuracy. 1-D composition profiles

proved reliable for the measurement of BCC Cu precipitates in LEAP reconstructions of

A and B alloy samples. Using 1-D composition profiles, the maximum Cu content of each

precipitate was shown to strongly depend on the relative precipitate size. Figure 7.12

shows 1-D composition profiles taken along the analysis direction (z-axis) for three Cu

precipitates in Alloy B after 48 hours of tempering at 482◦C. Precipitates were chosen

that corresponded to the observed average precipitate size as well as the lower and upper

bounds of the measured size distribution. Significant amounts of Fe were observed in all

Cu precipitates, with the maximum Cu content at the center ranging from 8 at% for the

smallest Cu clusters (~2nm in diameter) to 30% in the largest precipitates (~3.5nm in

diameter). This composition dependence on size was observed at all tempering times,

with the largest Cu particles at 1 hour of tempering (~3nm in diameter) exceeding 25

at% Cu in their core. 1D composition profiles also revealed the presence of elevated Ni

contents at the Cu particle interface, a known occurence in similar alloy systems [58], as

well as elevated levels of Mo and C associated with M2C carbides, an example of which

is shown in Figure 7.13.

An additional way of analyzing the chemical composition of the spherical BCC Cu

precipitates is through proxigram construction, where spherical shell sampling volumes

are integrated for all Cu precipitates using the chosen isoconcentration surface as the

reference interface [75]. Figure 7.14 shows an example proxigram calculated for all iden-

tified Cu precipitates in an alloy B specimen tempered for 48 hours. At distances greater

than 1.2 nm from the reference interface towards the precipitate center, significant scat-

ter results due to limited sampling from the largest of all precipitates. At the average
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Figure 7.12. 1D Cu composition profiles for BCC Cu clusters in alloy B
tempered for 48 hours at 482◦C

Figure 7.13. 1-D composition profile through a Cu precipitate in alloy B
tempered for 48 hours at 482◦C

particle radius of 1.2 nm, the observed Cu content of ~30-40 at% agrees well with 1-D

composition profile measurements. Additionally, the Ni content is once again observed to

be approximately 50% higher around the Cu precipitates than in the surrounding matrix.

Similar proxigrams were observed for alloy B after tempering times of 1 and 12 hours.
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Additionally, Cu precipitates in alloy A specimens demonstrated equivalent composition

profiles and maximum Cu contents as alloy B even with a lower starting Cu content in

the matrix. The main effect of the excess Cu content of alloy B can therefore be largely

attributed to the observed increased number density and associated reduced interparticle

spacing of Cu precipitates, further validating the general f1/2 form of the Cu precipitation

strengthening model utilized in the design.

Figure 7.14. Calculated proxigram for Cu precipitates in alloy B tempered
for 48 hours at 482◦C

In order to explore secondary hardening in the absence of cobalt, LEAP analysis was

also completed on carburized alloy A specimens. Figure 7.15 shows a LEAP reconstruction

for alloy A tempered for 48 hours at 482◦C with the measured composition listed in Table

7.5. The general microstructure was very similar to that of alloy B, with a mixture of

spherical and rod-shaped carbides nucleating on Cu particles. Using the same procedure

used for alloy B reconstructions, both Cu and M2C precipitate dispersions were quantified

as summarized in Table 7.6.
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Figure 7.15. LEAP reconstruction of alloy A tempered for 48 hours

Table 7.5. Alloy A compositions (at%) for original design, wet chemistry
measurements taken from ingot samples and the overall compositions of the
LEAP datasets taken from the 48-hour temper sample

Fe Ni Co Cr Mo V C (case) Cu
Design bal. 3.2 0 2.8 1.8 0.2 2.4 0.9

Measured bal. 3.1 0 2.5 1.7 0.2 2.3 0.9
48-hr Temper bal. 3.9 0 2.0 1.8 0.2 2.0 0.8

Comparing measurements in Table 7.6 to those of alloy B in Table 7.4, average pre-

cipitate dimensions are shown to be very similar. The number density of Cu particles is
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Table 7.6. Quantitative results from LEAP dataset taken from an alloy A
sample tempered for 48 hours

Temper Time (hrs) 48
Total # Ions 2569696

Analysis Volume (nm3) 50537.4

Cu

# precipitates 57
Number Density (m−3) 1.1E+24
rtyp.,1Dcomp.prof. (nm) 1.2
ravg.,isoconc.surf. (nm) 1.1±0.4

Vf,typ.pptvol. 0.8
Vf,isoconc.surfacevol. 1.1

M2C-spheres

# precipitates 38
Number Density (m−3) 7.5E+23
rtyp.,1Dcomp.prof. (nm) 1.5
ravg.,isoconc.surf. (nm) 1.2±0.3

Vf,typ.pptvol. 1.1
Vf,isoconc.surfacevol. 0.6

M2C-rods

# precipitates 14
Number Density (m−3) 2.8E+23
rtyp.,1Dcomp.prof. (nm) 4.0
ravg.,isoconc.surf. (nm) 2.9±1.2

Vf,typ.pptvol. 7.4
Vf,isoconc.surfacevol. 4.7

slightly reduced in alloy A and can most likely be attributed to the comparatively lower

Cu content of alloy A (30% as captured in LEAP reconstructions). The number density of

both spherical and rod-shaped M2C carbides is also slightly reduced for alloy A compared

to alloy B, however the overall carbide volume fraction is essentially equivalent, primarily

due to the presence of two larger carbide clusters in the alloy A specimen effectively ele-

vating the volume fraction as measured by isoconcentration surfaces(Vf,isoconc.surfacevol.).

Combining the computed approximate volume fractions for both spherical and rod-

shaped carbides at the 48-hour tempering time, the total volume fraction of ~6.9% for alloy

A and ~7% for alloy B agree well with ThermoCalc equilibrium carbide volume fraction
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calculations predicting 6.8% and 6.7%, respectively. Achieving this predicted equilibrium

carbide phase fraction suggests complete dissolution of coarse cementite particles has been

achieved along with anticipated gains in attendent fracture toughness levels. Along with

increased toughness, complete dissolution of cementite and other transition carbides by

the formation of stable alloy carbides provides mechanical and thermal stability when

compared to Stage I tempered alloys of comprable hardness. Additionally, the ability to

achieve equilibrium carbide volume fractions leading to peak strengthening while using a

tempering temperature of 482◦C indicates Cu precipitation does in fact mimic Co-assisted

secondary hardening. As previously illustrated in Figure 2.10, secondary hardening in the

absence of Co is not expected to occur until much higher tempering temperatures or at

tempering times prolonged by magnitudes of order. As verified with LEAP reconstruc-

tions in zero Co alloys, Cu precipitation by itself has demonstrated the ability to initiate

heterogeneous carbide nucleation necessary to both enhance and acclerate secondary hard-

ening.

It is also interesting to note that peak alloy hardness occurred when the majority

phase fraction of the predominant strengthening agent, the M2C carbide dispersion, was

largely in an over aged condition typically affiliated with decreases in strengthening ef-

ficiency instead of the observed increases. Because the interaction between dislocations

and precipitate dispersions is dependent on interparticle spacing, coarser, over aged par-

ticles are typically less efficient strengtheners than finer particles as they have a larger

interparticle distance at a constant volume fraction. The potential difference with this

particular system, however, is that there is a strong interaction between two different

strengthening dispersions, as designed into the microstructural approach. In this case,
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as the M2C carbides coarsen into rods, the effective center for each carbide begins to

distance itself from its associated Cu particle, reducing the degree of co-location and ap-

proaching a more random dispersion. The volume fraction of precipitated carbide also

increased when going from tempering 12 hours to 48 hours, suggesting the maximum

volume fraction is most likely achieved after significant carbide coarsening has occurred.

Therefore, in this scenario, the interparticle spacing might actually be minimized with

some degree of over-aging. Additionally, the growth of these M2C rods typically follows

<100> habit directions [41], as shown clearly in the LEAP reconstructions in Figures 7.6

and 7.9. Oriented precipitate shapes such as rods and plates have in some cases been

shown to be more efficient strengtheners than their randomly distributed spherical coun-

terparts [111, 112]. Strengthening dispersion of rods oriented along <100> directions in

theory would be favorable strengtheners in BCC Fe, as dislocations gliding along {110}

slip planes would be transverse to 2 out of the 3 rod orientations, effectively acting as

more efficient obstacles than a random distribution. This possible size/orientation effect

coupled with the de-localization of the two strengthening dispersions provides a reason-

able explanation for why a rod-shaped M2C morphology is resulting in peak strength for

these alloys.

7.5. Alloy Redesign

7.5.1. Model Recalibration

To determine if the deviation from the assumed optimal particle sizes observed with

the LEAP at peak strength were responsible for the 200 VHN discrepancy between de-

signed and measured hardness levels, design models were then recalibrated with updated



187

microstructural parameters. The Cu precipitation strengthening model used for first it-

eration designs assumed an optimal particle size of 1 nm in radius, however at peak

alloy hardness average Cu precipitates were slightly over aged at an average radius of 1.2

nm. Previous experimental results reported approximately 20% less strengthening due

to similar amounts of over aging after normalizing data to account for different volume

fractions [109]. Applying this correction by simply multiplying the peak strength model

by 80%, the size dependence of the Cu strengthening model was taken into account and

recalibrated as shown in Figure 7.16.

Figure 7.16. Recalibration of Cu precipitaiton strengthening model to ac-
count for overaging

For detailed recalibration of the M2C strengthening model, more accurate size and

volume fraction measurements must be made as well as further investigation into possi-

ble particle size effects and the nonlinear superposition of strengthening dispersions due

to co-location. However, a preliminary model calibration could be made simply taking
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into account the rod-shaped M2C carbides since not only did they account for the ma-

jority of the M2C volume fraction at peak strength, but as previously described they

also were effectively decoupled from the Cu particles and their strengthening contribution

could be added with simple linear superposition. To only consider the rods in the M2C

precipitation-strengthening model, the portion of the calculated equilibrium volume frac-

tion converted into strength (V/Vf ) parameter was set at 0.8 to reflect the approximate

80% that the rod-shaped carbides contributed to the total measured volume fraction of

M2C carbide. With this correction, the average precipitate size was set to the equivalent

sphere radius previously found to be approximately 3.5 nm, recalibrating the strength

model as shown in Figure 7.17. The end result of this recalibration is a significant loss

in strength for a given carbon content. Taking the measured carbon content of alloy B,

this recalibration caused a drop of approximately 200 VHN, correlating well with the

discrepancy between measured and designed case hardness.

Figure 7.17. Recalibration of M2C precipitaiton strengthening model to ac-
count for overaged rod-shape morphology
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Figure 7.18. Comparison between recalibrated total strengthening model
and measured hardness levels for the carburized case and core for Cu-
bearing experimental alloys

Incorporating all strength model recalibrations to accurately reflect the microstructure

observed at peak strength for alloy B, predicted strength levels were then recalculated

for the measured compositions of all four experimental alloys. Figure 7.18 shows these

recalibrated strength predictions plotted against measured hardness levels of both the

carburized case and core for all four alloys, showing close agreement to less than 50 VHN.

7.5.2. Preliminary 2nd Design Iteration

Using these recalibrated strength models, new calculations were completed following the

design approach previously outlined in Chapter 6. Due to the reduced strengthening ef-

ficiency of the larger M2C carbides, the phase fraction of M2C and associated levels of
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C required for the target strength of 67 RC (900 VHN) was significantly increased. This

increase in carbon content in turn greatly suppressed the martensitic start temperature

(MS) and stabilized unwanted primary carbides. Design parameters were subsequently

revised to a reduced target surface hardness of 65 RC (832 VHN) and an increased target

solutionizing temperature of 1100◦C, enabling all other design parameters to be met or

maximized. Table 7.7 outlines two resultant compositions, one with eliminated Co con-

tent and the other with reduced Co content for increased Ni, with the predicted design

parameters outlined in Table 7.8. These preliminary calculations indicate that strengths

up to 65 RC are possible using Cu-nucleated M2C strengthening in the absence of large

cobalt contents.

Table 7.7. Preliminary compositions (wt%) for second iteration alloys de-
rived using recalibrated design models

Alloy C (case) C (core) Co Cr Cu Mo Ni V Fe
C10B 0.7 0.08 0 3.9 1.1 3.7 1.1 0.3 Bal.
C18 0.7 0.08 8.3 4.0 1.1 3.9 2.7 0.1 Bal.

Table 7.8. Predicted design parameters for second iteration alloys

Alloy
MS Case MS Core TS Strength (VHN) M2C Driving

δMo Ni/Cu
(◦C) (◦C) (◦C) Case Core Force (kJ/mol)

C10B 99.4 335.1 1087.7 825.2 392.3 27.6 1.6 1.1
C18 100.0 384.6 1090.7 826.2 393.0 28.8 1.6 2.6
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CHAPTER 8

Conclusions

A systems-based approach was utilized in the optimization and design modification

of secondary hardening steels to meet the demand of rising gear power density require-

ments. Single tooth bending fatigue tests were completed to both assess the optimized

performance of existing secondary hardening gear steels as well as identify defect popu-

lations currently limiting further advances. Three focused microstructural studies were

then completed on grain coarsening resistance, alloy hardenability and precipitate stabil-

ity to address microstructural issues anticipated to limit fatigue performance. Finally, a

second-generation alloy aimed at reducing material cost through incorporating Cu precip-

itation was successfully designed and resultant prototype alloys analyzed for design model

recalibration.

8.1. Bending Fatigue Performance Optimization

Bending fatigue is the projected limiting failure mode for high power density gear

applications and will require harder more flaw tolerant materials. Two commercialized

secondary hardening gear steels, C61 and C67, were chosen for testing as they have

demonstrated an optimized combination of strength and toughness as well as have shown

promising contact fatigue resistance. Single tooth bending fatigue tests were first com-

pleted on a heat of C61 spur gears investigating the effect of different surface conditions

on bending fatigue performance. Shot peening was shown to be an effective way to both
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impart beneficial compressive residual stress to resist fatigue crack initiation and propa-

gation but also as a means of eradicating detrimental grain boundary grooving caused by

high-temperature vacuum carburizing.

A second phase of C61 single tooth bending fatigue tests of shot peened spur gears

identified three major defect classes limiting fatigue. Low cycle fatigue was predominantly

controlled by surface damage induced by shot peening, where observed adiabatic shear

cracks both initiated fatigue as well as interfered with the isotropic superfinishing process

utilized to enhance surface finish. High cycle fatigue failures approaching the endurance

limit (>106 cycles to failure) were observed to largely initiate subsurface on intergran-

ular cleavage facets. Overcarburization of specimen corners facilitated cleavage fracture

and subsequently reduced the bending fatigue endurance limit by over 15%. The third

defect class consisted of inclusions. Al2O3 inclusions were observed in high cycle fatigue

failures near the endurance limit, while La2O2S inclusions were present in C61 spur gears

containing La additions and occurred at lower applied stresses and cycles to failure. The

increased defect potency of La2O2S inclusions can be attributed to the diffuse nature of

the component particle clusters. Best-practice C61 outperformed the top-ranking pre-

mium gear steel, demonstrating an approximate 15% improvement in bending fatigue

endurance limit.

The elevated surface hardness of C67 had no observable benefit for single tooth bend-

ing fatigue resistance. Various shot peening parameters were investigated to maximize

compressive residual stress in C67, with no success. Standard shot peening practices are
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concluded to be currently not sufficient to maximize compressive residual stress for mate-

rials possessing surface hardness levels exceeding the hardness of the hardest shot peening

media.

8.2. Microstructural Limitations

8.2.1. Grain Coarsening

Complete resistance to grain coarsening up to solutionizing temperatures of 1200◦C was

demonstrated using a powder metallurgy alloy where a Ti addition was added to form

stable grain-pinning oxide dispersions. Additionally, PM C69-Ti exhibited a starting grain

size 15% smaller than its wrought counterpart. Neglecting any additional defects that

may be introduced such as porosity, powder metallurgy may be a viable option to achieve

microstructural refinement for increased bending fatigue resistance. Possible interference

from the grain boundary oxidation utilized for optical delineation may be obscuring the

true grain coarsening behavior, however, and further study utilizing a different grain

boundary etching technique is needed.

8.2.2. Hardenability

C61 demonstrated a high level of hardenability through dilatometry measurements of

transformation behavior for various cooling rates in conjunction with resultant micro-

hardness measurements. When compared to the same gear steels used for single tooth

bending fatigue performance comparisons, C61 softened only 15% at a cooling rate equiv-

alent to that at the center of an air cooled bar 2-meters in diameter compared to a drop

of 45 and 60% for baseline and premium gear steels, respectively. Based on the superior
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hardenability of C61, nonmartensitic transformation products should in most cases be

sufficiently avoided and would not be a concern for defect-driven fatigue initiation.

8.2.3. Carbide Dissolution

An overaging heat treatment aimed at increasing mechanical stability of strengthening

carbide dispersions was not shown to benefit rolling contact fatigue life of C69M3B NTN

RCF bars and actually decreased RCF life by about 50%. This deduction is only prelimi-

nary, however, as testing parameters were skewed by the possible deleterious effects caused

by the growth of an oxide layer during the over-aging temper. Additionally, the roughened

test balls used to accelerate the NTN RCF test appears to have accentuated sensitivity

to surface hardness and may not be the most appropriate gauge of rolling/sliding contact

fatigue behavior.

8.3. New Cu-Bearing Alloys

In an effort to reduce material cost through minimization/elimination of Cobalt alloy-

ing additions, BCC Cu precipitation was incorporated to offset ensuing losses in temper

resistance by providing additional heterogeneous nucleation sites for the M2C strengthen-

ing dispersion. Four designs were completed corresponding to four combinations of chosen

Cu and Co composition restraints. Fifty-pound experimental heats were then made, of

which samples were sectioned and heat-treated for prototype evaluation. Tempering hard-

ness evolution studies revealed peak hardness to occur around 48 hours when tempering

at 482◦C, however peak surface hardness values were on average 200 VHN short of the de-

signed value of around 900 VHN. Three-dimensional local electrode atom probe (LEAP)
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tomography was utilized to study the nanoscale BCC Cu and M2C precipitates located

in the carburized case at various tempering times. BCC Cu was shown to act as a hetero-

geneous nucleation site for the M2C strengthening dispersion at tempering temperatures

comparable to high-Co alloys, however at a reduced nucleating efficiency. As a result,

peak strength was achieved with over-aging where 80% of the M2C carbide dispersion

had reached a coarsened rod-shaped morphology at peak strength. Design models were

recalibrated to account for the coarsened peak hardness microstructure, showing good

agreement with measured strength values for both the carburized case and core of all four

experimental alloys. Preliminary secondary design iterations were then completed using

these recalibrated design models with resultant compositions achieving predicted surface

hardness levels of 65 RC .
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CHAPTER 9

Suggestions for Future Work

Considerable progress has been achieved in the bending fatigue performance optimiza-

tion of C61, however identified defects currently limiting fatigue can still be addressed.

Additionally, BCC Cu was successfully incorporated into high strength gear steels and

proven to catalyze secondary hardening, however much remains to be studied for proper

model recalibration and full optimization of the microstructure.

9.1. Bending Fatigue

The shot peening process appears to be the current limiting factor for a majority

of both low and high cycle bending fatigue failures. For C61 and materials of similar

surface hardness levels, sufficient compressive stress can be generated with conventional

shot peening practices, however surface damage due to high intensity shot peening needs

to be addressed. Unlike chemical methods such as isotropic superfinishing, mechanical

surface finishing processes may provide a means of removing damaged shot peened surface

layers without being influenced by shot-peening induced damage features. Additionally,

added protection or rounding of spur gear corners prior to shot peening could be used to

avoid excessive peening and subsequent subsurface damage.

For C67 and other ultra-high hardness materials, conventional shot peening media does

not possess sufficient hardness to impart the maximum possible compressive stress and

alternative peening-type operations are necessary. Further development of laser peening,
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ultra-high hardness shot media or other alternative peening operations are required to

take full advantage of materials exceeding 60-63 RC .

Fatigue-initiating inclusions are one defect class that may never be completely avoided.

Continuing modeling on the effect of different inclusions and inclusion geometries should

shed invaluable light on how to minimize the effect of intrinsic inclusion contents through

selection of utilized gettering elements for less-detrimental inclusion phases as well as iden-

tification of possible melt processing and ingot hot working techniques to alter inclusions

to specific morphologies.

One factor not currently well understood and vital to modeling efforts is the evolution

of residual stress with applied loads. Interrupted test residual stress measurements or even

non-destructive high energy x-ray diffraction methods could be utilized to gain insight into

residual stress profile evolution during cyclical loading. This information would also help

guide selection and tailoring of microstructures to better resist residual stress relaxation

and improve fatigue properties.

Ultimately, processing variables optimized for bending fatigue must be reconciled and

likewise optimized with rolling/sliding contact fatigue requirements. At the time of this

publication, C61 sun gear samples were being fabricated for planetary gear contact fatigue

pitting tests to be run at the GM Powertrain Gear Center in order to assess rolling/sliding

contact fatigue resistance performance as a corollary metric to the obtained single tooth

bending fatigue performance data.
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9.2. Cu-Bearing Alloys

Additional microstructure analysis and quantification is needed to better understand

and describe the precipitation and secondary hardening promotion of incorporated BCC

Cu precipitation. The superposition law governing the BCC Cu and M2C alloy carbide

strengthening dispersions is needed to describe strengthening behavior at earlier tem-

pering times prior to coarsening of the M2C carbides into rods. Tempering studies at

different temperatures as well as multi-step tempering procedures may reveal enhanced

strengthening efficiency and/or tempering time reduction in these microstructures through

manipulation of precipitation kinetics.

Ultimately the bending and contact fatigue resistance of these Cu-bearing alloys must

be assessed to compare against existing secondary hardening alloys. At the time of this

publication, spur gears have been fabrication out of the four experimental alloy heats

and are awaiting heat treatment. A modified gear geometry was required due to limited

dimensions of the starting raw material, however a sufficient number of testable teeth

remains to generate approximate S-N curves for single tooth bending fatigue resistance

comparison.
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ABSTRACT

Residual Stress Control and Design of Next-Generation Ultra-hard Gear Steels

Yana Qian

In high power density transmission systems, Ni-Co secondary hardening steels have shown

great potential for next-generation gear applications due to their excellent strength, tough-

ness and superior fatigue performance.

Study of residual stress generation and evolution in Ferrium C61 and C67 gear steels

revealed that shot peening and laser peening processes effectively produce desired benefi-

cial residual stress in the steels for enhanced fatigue performance. Surface residual stress

levels of -1.4GPa and -1.5GPa were achieved in shot peened C61 and laser peened C67,

respectively, without introducing large surface roughness or defects. Higher compressive

residual stress is expected in C67 according to a demonstrated correlation between at-

tainable residual stress and material hardness. Due to the lack of appropriate shot media,

dual laser peening is proposed for future peening optimization in C67.

A novel non-destructive synchrotron radiation technique was implemented and ap-

plied for the first time for residual stress distribution analysis in gear steels with large

composition and property gradients. Observed substantial residual stress redistribution
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and material microstructure change during the rolling contact fatigue screening test with

extremely high 5.4GPa load indicates the unsuitability of the test as a fatigue life predic-

tor.

To exploit benefits of higher case hardness and associated residual stress, a new mate-

rial and process (CryoForm70) aiming at 70Rc surface hardness was designed utilizing the

systems approach based on thermodynamics and secondary hardening mechanisms. The

composition design was first validated by the excellent agreement between experimental

and theoretical core martensite start temperature in the prototype. A novel cryogenic

deformation process was concurrently designed to increase the case martensite volume

fraction from 76% to 92% for enhanced strengthening efficiency and surface hardness.

High temperature vacuum carburizing was optimized for desired carbon content profiles

using carbon diffusion simulation in the multi-component system. After cyclic tempering

with intermediate cryogenic treatment, a case hardness of 68.5± 0.3Rc at 0.72± 0.2wt%

carbon content was achieved. The design demonstrated the effectiveness of cryogenic de-

formation in promoting martensite transformation for high carbon and high alloy steels.

Good agreement between achieved and predicted case and core hardness supports the

effectiveness of the computational design approach.
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CHAPTER 1

Introduction

1.1. Motivation

High strength gear and bearing steels have been in rising demand for high power den-

sity transmission systems since the 1940’s for their excellent performance under harsh

working conditions. In aerospace, automobile, and heavy machinery industries, perfor-

mance requirements become more and more demanding due to the increasing load, speed

and temperature of the working environment. From the 1940’s to 1990’s, the lives of high

strength gear and bearing steels for aerospace applications were improved by approxi-

mately 200 times, which was attributed to improved material cleanliness, controlled ma-

terial microstructure, induced compressive residual stresses and improved fracture tough-

ness [1]. Pyrowear 53 and M50NiL carburized steels have been recognized as the best

gear and bearing steel, respectively, since the 1990’s, because of their superior strength,

toughness, wear and fatigue resistance. However, the development of new and better

steels has been slowed down since then as the theoretical limit of property objectives is

being approached.

The conventional steel alloy design heavily relied on empiricism. However, the high

cost and time-consuming experimentation greatly impeded the development and commer-

cialization of new advanced steels. To accelerate the development of new steel alloys by

utilizing the valuable scientific information accumulated for centuries, the Steel Research
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Group (SRG), a multi-institutional university/government/industry research team, was

founded at MIT in 1985 and reorganized in 1988 at Northwestern University. SRG fo-

cused on the development of ferrous and non-ferrous alloys by establishing quantitative

composition-structure-property models and necessary databases. By integrating com-

putational modeling and the systems approach [2], the amount of experimentation for

designing new materials can be reduced to 2∼3 single prototype iterations. Through the

collaboration between multiple institutes and organizations, SRG has successfully accom-

plished the computer-aided design of new generation high performance steels, including

the Ferriumr C61 and C67 steel families. Both families are named after the achieved case

hardness, i. e., 61 Rc and 67 Rc, respectively. C61 has been proven to exceed AISI 9310 in

fatigue performance and has been commercialized. The development of ultrahigh-strength

steel, C67, is still ongoing.

To explore the performance potential of Ferrium C61 and C67 steels and the possibility

of alloy redesign for higher hardness, a multi-disciplinary research project was carried

out at Northwestern University. The project focused on the optimization of industrial

processes, fatigue property demonstration for C61 and C67, and methods for residual

stress control in these steels. Based on the research on C61 and C67 steels, the alloy

redesign for higher hardness was proposed as higher hardness enables the achievement

of higher contact fatigue strength and larger compressive residual stresses. Through the

design, we also attempt to first understand the theoretical limit of case hardness in the

C67 family and then to computationally design a new steel approaching this limit. In

parallel, the Gear Industry specified in their vision for 2025 that an advanced gear steel

with surface hardness of 70Rc is desired to improve the power density by 25% every five
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years [3]. This vision also promoted our study on the design of next-generation ultra-hard

gear steels.

1.2. Systems design of materials

The systems approach for new materials design mentioned in Section 1.1 originated

from the general approach to solving complex problems in system engineering as reviewed

by Jenkins [4]. Illustrated by Fig. 1.1 is the problem-solving flow from analysis, design,

implementation to operation. The analysis of the system generates the design objectives.

When designing the system, quantitative models describing relations between inputs and

outputs of the system are established. Prediction of the overall system performance is

also obtained from the outputs. Subsystems and conflicting objectives are often involved

during this step when a system is complex. The goal of systems design is to improve the

overall performance, even at the expense of sacrificing individual subsystems. After the

system is designed, it is created and tested through implementation. If the objectives are

not fully met, the information gathered through the design process will be fed back to the

initial system analysis and the new iteration of design is started. Several iterations may

be needed before the final design is demonstrated to be successful and put into operation.

After Smith recognized the complexity of materials and the feasibility of treating

materials as a hierarchy of structures which can be optimized for overall performance [5],

Olson extended his idea to the four elements in material science. Processing, structure,

properties and performance are four essential elements for materials science and their

linear relationship is described in Fig. 1.2 [6]. Each element can be treated as a system
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Figure 1.1. Problem solving flow using system approach.[4]

and broken down into subsystems. Subsystems interact with one another within one

element and with subsystems belonging to other elements. A system design diagram can

be drawn to elaborate relations between these subsystems and thus guide the design of

materials. Such a diagram is explained in detail in Chapter 5.

Figure 1.2. Four elements in Materials Science and their relationship.[6]
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1.3. Project overview

The 5 year DOE-OIT supported research project titled Materials and Process Design

for High-Temperature Carburizing: Integrating Processing and Performance consisted of

three major parts. Dr. Jay Gao focused on high temperature carburizing process design.

Graduate student, Benjamin Tiemens participated in industrial process optimization and

fatigue testing for C61 and C67 steels. Coordinated study on residual stress control in high

strength steels and on alloy redesign for higher hardness is the subject of this dissertation.

1.3.1. Process simulation

A detailed procedure of carburizing process simulation was developed by Dr. Jay Gao

to reduce the number of experimental carburization trials and therefore lower the cost

of process development [7]. The software Thermo-Calc/DICTRA was selected due to

its ability of including necessary features in high temperature carburizing of complex

multicomponent alloys. Dr. Gao also developed a new process optimization software

system built on Thermo-Calc/DICTRA and the QuesTek TCIPC interface [8].

1.3.2. Performance demonstration

Graduate student Benjamin Tiemens performed industrial fatigue testing for spur gears

of Ferrium C61 and C67 steels at the General Motors Research and Development Cen-

ter. Superior performance of C61 was demonstrated but C67 still needed further process

optimization for improved fatigue performance. Building on this research, principles and

methods for residual stress control were further studied in this thesis. The feasibility of

surface treatment optimization was also examined.
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1.3.3. Residual stress control and new alloy design

It is known that well controlled residual stresses can benefit the fatigue performance of

high strength gear and bearing steels. To fully explore the fatigue properties of Ferrium

C67, a study on methods and mechanisms of producing beneficial residual stress was

carried out. Feasibility of optimizing shot peening, one technique to generate compressive

residual stresses, was investigated. A non-destructive method to measure residual stress

distributions was developed to accelerate the study. Based on findings from residual stress

study and from properties of Ferrium C67, a new ultra-hard steel alloy was then designed

for better wear and contact fatigue resistance to exploit the advantages of controlled

residual stresses.

1.4. Research approach

1.4.1. Residual stress control for high strength gear and bearing steels

High strength gear and bearing steels, FerriumrC61 and C67 were successfully developed

using computational tools guided by the systems approach. Superior strength and tough-

ness over conventional gear and bearing steels were achieved [9]. To further explore the

performance potential of these two steels, efforts were contributed to the optimization of

beneficial residual stresses and corresponding processes. As reviewed in Chapter 2, shot

peening and laser peening are powerful techniques to produce high compressive residual

stresses in the materials. Therefore, both peening methods were first investigated for

feasibility. The attainable residual stress levels in both C61 and C67 steels were then

estimated according to the correlation between maximum residual stress and material

hardness. After identifying appropriate peening service providers, both specimens and
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gears made of C61 and C67 underwent either shot peening or laser peening with different

peening conditions. Steels after peening were characterized for microstructure, residual

stress and mechanical properties. Characterization for gears subject to peening treatments

was conducted by Benjamin Tiemens in the General Motors Research and Development

Center. As part of processing optimization, the post-peening treatment was also studied

to minimize the detrimental effect of rough surfaces on gear performance.

X-ray diffraction was employed to measure surface residual stresses in specimens with

various treatments. However, to obtain subsurface residual stresses, material removal

is required, which is destructive and brings the need of data correction. To accelerate

the optimization of residual stresses, a non-destructive technique utilizing high energy

synchrotron radiation was developed. Measured residual stress depth profiles in various

steels were used to assist the peening process optimization and to help interpret mechanical

phenomena occurring during rolling contact fatigue.

1.4.2. Composition and process design of an ultrahigh-strength steel

From the residual stress study for Ferriumr C61 and C67 steels, it was established that

the attainable surface compressive residual stress increases with hardness, which should

promote more fatigue resistance. In addition, higher hardness itself allows the material

to resist higher levels of contact stress. Thus with combined higher surface hardness

and larger compressive residual stress, the steel should present superior wear and fatigue

resistance than the current C67 steel. Therefore, composition and process design for an

ultrahigh-strength steel with surface hardness of 70 Rc was proposed and carried out as

a final component of the project.
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After the prototype alloy was made, subsequent process optimization/development was

performed to achieve the desired properties. The steel will be used to explore the achiev-

able maximal beneficial residual stress and resulting fatigue performance. The design

also helps establish the limit of surface hardness and strength that can be accomplished

in steels using the secondary hardening carbide mechanism.

1.4.3. Dissertation outline

Following the introduction in Chapter 1, Chapter 2 presents the current status of high

strength gear and bearing steels and residual stress study for this type of steel. Materials,

processing and characterization methods involved in this research are described in Chap-

ter 3. Feasibility of process optimization for desired residual stresses in high strength

steels is investigated in Chapter 4. To effectively explore residual stress behavior, a fast,

accurate and non-destructive characterization method was developed and successfully

demonstrated, which is explained in Chapter 4 as well. The entire design process of the

new steel alloy is elaborated in Chapters 5, 6 and 7, including design concepts for materi-

als and processing, the predictive design of alloy compositions and characterization of the

prototype alloy. Conclusions and suggestions for future work on residual stress study for

high strength gear steels and on the design of next-generation ultra-hard steel are given

in Chapter 8.
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CHAPTER 2

Background

2.1. Gear design

Essential for power transmission systems, gear and bearing components have been un-

der development for more than two millennia since the ancient Chinese began to use gears

in “South Pointing Chariots” in 2600 B.C [10]. Modern gear and bearing design and ma-

terials development have been centered around the consistent improvement in component

life, gearing efficiency and power density. Efforts have been made to postpone and even

eliminate various failure modes. Two major fatigue modes include tooth bending fatigue

and contact fatigue. For gear components, bending fatigue resistance receives relatively

more attention while bearing components require contact fatigue and wear resistance.

Fatigue failure occurs when a certain area of the component is subject to a cyclic

stress above its endurance limit. Therefore, estimation of applied stress has become quite

meaningful for gear design. For a gear tooth, six basic types of applied stress can be

found during the point or line contact between the mating teeth. These applied stresses

include tensile stress (TN), compressive stress (C), slide-shear stress (S), rolling stress

(R), roll-slide stress and torsion stress [11]. Very often two or three types of stress are

simultaneously applied to a specific area of the tooth. Presented in Fig. 2.1 and Fig.

2.2 are the applied stresses for a spur gear tooth, and the stress depth distribution under

contacting surfaces, respectively.
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Figure 2.1. Stress areas on basic spur gear tooth [11]

Figure 2.2. Stress depth distribution in contacting surfaces [12]

Dudley derived the simplified equation for surface contact stress, Sc (in psi), from

rolling contact mechanics [13, 12].

Sc = Ck(KCd)
0.5 (2.1)
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where Ck is the geometry factor for durability, K is the index of tooth loading severity

for pitting (usually called K-factor), and Cd is the overall derating factor for durability.

(Values for Ck and Cd can be found in Reference [12] Chapter 14.)

The K-factor for spur and helical gears is:

K =
Wt

Fd

(
mG + 1

mG

)
(2.2)

where Wt is the tangential driving force (in pounds), obtained from the horsepower be-

ing transmitted by the combination of pinion and gear - P , the speed of the pinion in

revolutions per minute - np, and the pitch diameter of the pinion - d (in inches).

Wt =
P × 126, 050

np × d
(2.3)

In Eq. 2.2, F is the net face width in contact (in inches), and mG is the ratio of the

number of gear teeth to the number of pinion teeth.

The bending stress, St, of a pinion or mating gear tooth may be estimated using the

following formula derived from Lewis’s cantilever model [13, 12]:

Sc = KtU1Kd (2.4)

Similarly, Kt and Kd are geometry factor and overall derating factor, respectively. U1,

the index of tooth loading severity for breakage, often called unit load, can be determined

as the following for spur or helical teeth:

U1 =
WtPn
F

(2.5)
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where Pn is the normal diametral pitch (1/inch).

Guided by the above calculation of surface contact and tooth bending stresses, gear

engineers were able to preliminarily estimate the gear size, given specifications on power

transmission. However, difficulty rises when there exist residual stresses at the gear tooth.

Thus it is necessary to review the influence of residual stresses on the effective applied

stress, which will be given in Section 2.4.

2.2. Gear and bearing steels

2.2.1. Design of gear and bearing steels

The most commonly used materials for gear and bearing components are various steel

alloys because they meet most of the qualifications required by the applications, such as

high allowable bending and contact stresses, good wear resistance and impact strength,

good corrosion resistance, relatively low manufacturing cost and good reliability.

One of the most crucial requirements for gear and bearing steels is strength, which

is frequently used to characterize the amount of stress that can be tolerated in the steel

component before plastic deformation takes place. Bending fatigue performance mainly

relies on the bending strength of the gear tooth, which is a function of surface hardness and

surface conditions. The compressive strength of the core material in a carburized steel

is another often considered factor, which indicates steel’s ability to withstand surface

pressure during crushing or indenting. For rolling contact bearings, shear strength is the

controlling factor of failure since the initial fracture often occurs along the shear plane.

One example is that a shaft subject to torsion loads finally failed along the longitudinal

or transverse directions. Fig. 2.3 shows the estimated correlation between shield yield
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strength and surface hardness for both high carbon steels and carburizing steels. As

surface hardness increases, the alternating bending fatigue strength and contact fatigue

strength also improve, as displayed in Fig. 2.4 and 2.5. Another desired property for gear

and bearing steels is core toughness, which is essential to reduce the risk of catastrophic

fracture failure.

Figure 2.3. Estimated correlation between shear yield strength and hard-
ness [14]

Given the above correlations between material hardness and performance, it is natural

for engineers to develop new steels by seeking desired hardness profiles. Considerations

on toughness, hot hardness, ductility, easy processing, are also incorporated in the steel

design.
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Figure 2.4. Correlation between alternating bending fatigue strength and
hardness [15]
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Figure 2.5. Correlation between contact fatigue strength and hardness [16]

2.2.2. Commercial high strength gear and bearing steels

The most widely and commonly used ferrous alloys for gear and bearing components

are wrought surface hardening and through-hardening carbon and alloy steels. Other fer-

rous alloys used for gears include cast iron/steels, powder metallurgy iron/steels, stainless

steels, tool steels and maraging steels. Surface hardening can be accomplished through

carburizing and/or nitriding. Carburized steels are to date the best candidates for heavy-

duty components, such as transmission gears, since they gain superior fatigue, wear resis-

tance from hardened surface, and impact resistance from the tough core. A sufficient case

depth is required to prevent case crushing in the design, and a reasonable core hardness

is needed to support the case. Compressive residual stresses are usually produced in the

case during the hardening process, which further help improve the fatigue resistance. Be-

cause of the combined benefits from surface hardness, interior toughness and compressive
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residual stress, case-hardened steels can withstand higher load than through-hardened

steels. But the latter possesses a higher core strength and its processing is much more

cost effective due to the simpler heat treatment required. Compared to carburizing, ni-

triding offers the advantage of much less distortion and easier dimensional control since it

does not involve heating to austenite phase and subsequent quenching. However, nitrided

steels often lack the ability to endure possible overload since case crushing can occur due

to the shallow case depth.

Carburized AISI 8620 and AISI 9310 steels serve as good representatives for advanced

high performance gear and bearing steels. Alloyed with Ni, Cr, Mo, these two steels give

exceptional core toughness combined with a high degree of wear resistance and surface

compressive strength. They can operate with bending stresses of 483 MPa and maximum

contact stresses of 1.38 GPa [17]. AISI 9310 is now a standard to which advanced steels are

usually compared. It has a surface hardness of 60 Rc with an exceptional core toughness

of 126 ksi
√
in at 35 Rc. AISI 52100 is a typical through-hardened steel with hardness

of 60 Rc to 64 Rc, presenting excellent contact fatigue and wear resistance for bearing

applications. It has a high carbon martensite matrix with primary carbides and 5 to 10%

retained austenite [14].

As a medium-alloy stage-I tempered steel, AISI 9310 has a limiting operation temper-

ature of 150 ◦C above which hardness loss takes place. This results from the replacement

of hardening epsilon carbides by cementite. Consequently, early bending fatigue, surface

pitting failure or scoring will occur. Therefore, several high temperature steels were de-

signed to meet the criterion that the accepted minimum hardness should reach 58 Rc at

operating temperatures from 232 ◦C to 315 ◦C. Alloy carbide strengthened M50 has been
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successfully used as bearings for temperatures up to 315 ◦C in aircraft and turbine en-

gines [17]. Later on, M50’s brittleness led to the development of case-hardened M50NiL,

which displays better toughness with the addition of Ni and lower carbon content [14].

Two other high temperature steels are CBS600 and CBS1000M [18]. They are low- to

medium-alloy that can be hardened to 60 Rc with a core hardness of 38 Rc. However,

CBS600 has a medium fracture toughness that can cause fracture failure when a surface

fatigue spall forms. Compositions of these steels are listed in Table 2.1.

Table 2.1. Compositions (wt%) of various high performance steels

2.2.3. Computationally designed high performance steels

Utilizing the system approach and computational tools, the Steel Research Group (SRG)

at Northwestern University has successfully designed several high performance gear and

bearing steels, including martensitic stainless steel CS62, FerriumrC61 steel with high

core strength and toughness, high strength steel FerriumrC67 and its variations. All

steels were strengthened through efficient nano-size M2C carbide precipitation during

stage IV tempering. C61 has the surface hardness of 60-62 Rc and core hardness of 48-50

Rc, providing comparable resistance to surface fatigue and wear resistance to AISI 9310

but higher core strength. C61 was designed for alternatives to current gear materials
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in applications where elevated core strength is required but component redesign is not

feasible. The design of C67 was targeted for superior surface wear and contact resistance

with a desired surface hardness of 67-69 Rc. It is the product of the ongoing research

program with the objective of reducing gear weight by as much as 50% over conventional

carburized steels. Material compositions are given in Chapter 3.

2.3. Systems design of secondary hardening carburized steels

The systems approach has been successfully applied to the design of high strength

steels employing secondary carbides - M2C as strengthening precipitates [19, 20]. A flow

chart is first established to elaborate the relationship between processing-structure and

properties-performance. Desired properties or performance requirements are prioritized

to reflect the application needs. Structure describes the hierarchy of microstructural sub-

systems, for example, the case and core subsystems in a case hardened steel. Processing

includes all sequential steps, generating the desired microstructure. Quantitative mod-

els are then devised to predict the material property or performance response to the

variation in material processing or compositions. For instance, Wise has developed a

secondary hardening strengthening model to predict strength from steel’s compositions

and processing and thus compositions can be derived from the needed strength using this

strengthening model [20]. A brief introduction on the microstructure subsystems for sec-

ondary hardening carburized steels, such as FerriumrC61, C67, is given below to provide

basic understanding of material systems.

For the design of FerriumrC61, C67 steels, the prioritized performance requirements

include contact and bending fatigue resistance, wear resistance and fracture toughness.
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Thus the alloy should possess sufficient hardness to withstand high Hertzian contact

stress and bending stress. It should present general flaw tolerance as well. To satisfy

these criteria, a case-core structure is selected, in which the ductile core provides flaw

tolerance, and the hard case provides stress resistance.

Components in the core subsystem usually include the matrix, strengthening disper-

sions, grain refining dispersions and grain boundary cohesion promoters. Lath martensite

with Ni, Co in solution is the matrix of the core in secondary hardening carburized steels.

No retained austenite should be observed in the core matrix, i.e., full martensite trans-

formation should be achieved after quenching. Typically, a martensite start temperature

of 300 ◦C is required for fine lath martensite formation. Strengthening dispersions are

secondary alloy carbides, M2C, where M represents Cr, Mo, V and W. They form during

stage IV tempering (400 − 600 ◦C) when coarse cementite is dissolved. Cementite, M6C

and M23C6 should be avoided since they reduce fracture toughness and strength.

A trace amount of titanium carbides are utilized to pin grain boundaries during solu-

tion treatment, thereby limiting grain growth. Grain boundary cohesion is important for

steel service in a corrosive environment where chemical embrittlement may occur. The

segregation of impurities, such as phosphorus and sulfur, to the grain boundaries during

tempering will lower the interfacial cohesion, which can result in brittle-fracture, partic-

ularly with the influence of environmental hydrogen. Therefore, high purity is obtained

through VIM and VAR processes. Rare-earth elements, such as La, are added to getter

impurities. Boron is also included in the composition to enhance the grain boundary

cohesion because it can increase the work of decohesion for grain boundaries [2].
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In the case subsystem, a gradient of M2C carbide dispersions is formed to provide

desired hardness profile. Studies have shown with the optimal size of 3nm, maximum

strengthening effect can be obtained [21]. Maximized M2C driving force is needed to

ensure the fine precipitation. Beneficial compressive residual stress is desired in the case

for the improvement of fatigue, wear and corrosion resistance. It can be produced through

carburizing and subsequent quenching. More effective methods to generate compressive

residual stresses will be discussed in the next section.

2.4. Residual stress in gear and bearing steels

2.4.1. Influence of residual stress on fatigue life

Structural components such as gears and bearings often contain residual stresses from

forming, machining and heat treatment. It is well known that compressive residual stresses

are beneficial for improving fatigue endurance limit due to their ability of retarding fatigue

crack initiation and propagation. In the study of Schlicht et al. [22], it was shown how

residual stress can alter the equivalent stress distribution in rolling contact, as illustrated

in Fig. 2.6. The resulting actual net shear stress from the combination of nominal

shear stress and residual stress is designated by equivalent stress σv. Residual stresses

are assumed to be biaxial (parallel to the surface in the x and y directions) and the two

components, σx,res and σy,res are set equal. The residual stress component perpendicular to

the surface is zero near the surface. All stresses were normalized to the Hertzian pressure

p0. The depth was normalized to the half width of the contact area b in the rolling

direction. It was clear that the appropriate compressive residual stress could decrease
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the equivalent stress while the presence of tensile residual stress caused an increase of the

equivalent stress curve.

Figure 2.6. Influence of residual stress on equivalent stress distribution

Nelson reviewed the effects of compressive and tensile residual stresses on Mode I

fatigue crack growth [23]. Two approaches for predicting the influence of residual stress on

crack growth were discussed. One was the superposition of the respective stress intensity

factors for the applied stress and the residual stress. The other was the simplified crack

closure model. In the superposition approach, for a plate with a centering crack, an

effective stress intensity was taken as Keff = Kres +Kappl.. Fig. 2.7 schematically shows

the variation of effective stress intensity for crack growth through a compressive residual

stress field with constant loading amplitude at two mean stress levels. For R = 0, crack

growth rate was correlated to the ∆Keff above 0 (∆Ka shown in Fig. 2.7) and good
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predictions had been achieved. Another way was to correlate the crack growth rate to

∆Keff = ∆Kb and the effective R-ratio (given by Reff = Keff,min/Keff,max). Since

∆Kb = ∆Kappl., it was the influence of negative Reff that slowed the growth. This

correlation method also produced good predictions. However, if the applied load has a

significant tensile mean stress, i.e. R > 0, the influence of compressive residual stress

would only be to reduce Reff .

Kres can be calculated using Kanazawa’s relation [24]:

Kres =

∫ a

−a
σres(x)

[
2 sin π(a+x)

W

w sin 2aπ
W

sin π(a−x)
W

]1/2

dx (2.6)

where a is the crack half length, W is the plate width, x is the distance from the plate

centerline and σres(x) represents the residual stress. The superposition approach has been

used to successfully predict the crack growth rate under constant loading amplitude in

existing residual stress fields, however, with the condition that the residual stress field

is not significantly changed by service load or crack growth. In many cases, crack life

is consumed before it grows into the residual stress field with the opposite sign so a

reasonable prediction of the total life can still be obtained.

In the crack closure model, the crack-generated residual stress or the re-distribution

of residual stress caused by crack growth was taken into account to predict effects of

loading sequence and mean stress on the crack growth rate. This method was proven to

be effective for the case that service loadings and/or crack growth altered the residual

stress field. The drawback of the crack closure model is that it requires complex elastic-

plastic finite element analysis, which needs to be repeated as a crack grows. And the



35

Figure 2.7. The variation of effective stress intensity for crack growth
through a compressive residual stress field [23]

simplified models are usually used to describe cracks with simple geometries, such as the

center crack in a plate.

2.4.2. Technologies to enhance beneficial residual stresses

2.4.2.1. Carburizing. Carburizing is one of the surface or case hardening techniques for

steels, which introduces a carbon content gradient from the surface to the core material.

Thus a gradient of Ms temperature is formed along the carbon diffusion direction in the

case. Usually the high carbon case has a lower Ms temperature than the low carbon core.

During quenching, martensite transformation occurs earlier in the core than in the case.

The 3-4% volume expansion due to core martensite transformation deforms the case as it

is still in the austenite phase. Upon further cooling, the case transforms, at a later time,
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and tends to expand. However, its expansion is constrained by the strong martensite core

and therefore a compressive stress state is left in the case. Of the available case hardening

techniques, carburizing provides the greatest depth of hardening and compressive residual

stress.

2.4.2.2. Shot peening. Shot peening is one of the most popular surface treatments

used to produce compressive residual stresses, in which thousands of hard spherical shots

bombard the surface or a region of surface of a part with high-velocity (Fig. 2.8) [25].

During shot peening, the plastically deformed surface tends to expand but is restrained

by the inside material. Thus, the compressive residual stress field is generated in the sur-

face layer. Dynamic impact test further shows how the compressive residual stress results

from the superposition of residual stress produced by surrounding shots [26]. Generally,

the depth of compressive residual stress ranges from 50 to 500µm [25]. This induced

compressive residual stress offsets any following service-imposed tensile stress and thus

delays the fatigue crack initiation and propagation and ultimately extends the fatigue life.

An example of a shot peening induced residual stress field is shown in Fig. 2.9 for an

AISI 4340 steel under different peening intensities [27].

Figure 2.8. shot peening process [25]
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Figure 2.9. Compressive residual stress field induced by shot peening with
different intensities for AISI4340 [27]

Consequently, the fatigue strength of 4340 steel in Fig. 2.9 was improved to various

levels as presented by Fig 2.10. Another study conducted by NASA [28] found a 10%

increase in endurance limit through shot peening in a AISI 4340 steel. Also discovered

was the recovery of fatigue strength of a scratched 4340 specimen to the pristine level

by shot peening. In practice shot peening has been applied to many types of mechanical

components for improved fatigue life, as illustrated by Fig. 2.11.

Evidence of microstructure change by shot peening has also been reported for typical

martensitic steels. X-ray diffraction has shown that the level of retained austenite prior

to peening was substantially reduced through stress induced martensite transformation

[29, 30, 31], as displayed in Fig. 2.12. TEM micrographs, in addition, confirmed this

transformation [32, 31]. As a consequence of retained austenite reduction, the surface

microhardness has presented some increase while the core hardness is maintained at the
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Figure 2.10. S-N comparative curves of the base 4340 and shot peening
conditions [27]

Figure 2.11. Fatigue life increase by shot peening

original level [29, 30]. Moreover, the plastic strain further refined the grain structure,

helping improve the high cycle fatigue performance [29, 30].
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In addition to stress induced phase transformation, high density of tangled dislocations

and twin lamellae were observed after shot peening through cross sectional TEM study on

normalized plain carbon steel SAE 1045 and austenitic steel AISI 304 [33]. The dislocation

structure was believed to be associated with the large strain produced by shot peening.

Figure 2.12. Retained austenite of unpeened (R3) and shot peened (R3S)
specimen [29]

Shot peening generally roughens the surface, which is undesirable because the rough

surface can serve as fatigue crack initiation sites. The resulted surface roughness from

shot peening mainly depends on the shot size and peening intensity. A polishing step

after shot peening can be used to minimize the detrimental effect of surface roughness on

fatigue strength. However, the benefits from compressive residual stress normally exceed

the disadvantages from surface roughness.

To further improve benefits from shot peening, double shot peening was introduced

into the processing of steel gears [30]. A higher surface hardness, larger surface com-

pressive residual stress and more reduction of retained austenite were achieved by using
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double shot peening than single shot peening. Another variation of shot peening, dual

peening, has also been developed and widely applied to industries. After the first pass

during which larger shots with higher velocity are utilized to produce a base residual

stress profile, much smaller shots with lower velocity are adopted in the second pass to

increase surface residual stress and decrease surface roughness.

Ordinary peening media used in industries include cast iron and cast steel shots with

hardness ranging from 48 to 60 Rc. High strength cut wire steel shots can be conditioned

to the hardness of 64 Rc. When zero contamination is required, stainless steel shots

are used. Small glass or ceramic shots are normally utilized for the second pass of dual

peening for better surface quality. Researchers also found that enhanced peening effects

(increased compressive depth, higher compressive residual stress and higher hardness) can

be achieved by using Fe-based glassy alloy shots [34]. For materials with the surface as

hard as 850-1200 Hv, Japanese inventors adopted hard metal alloy shots based on WC-Co

for optimized peening effectiveness [35].

Finite Element Analysis (FEA) was carried out by Baragetti etal. to predict resid-

ual stress profiles with known shot peening parameters, such as shot size, shot speed,

shot material density and yield strength of peened material [36]. Using his analysis, a

reasonable maximum residual stress can be obtained, while surface residual stress was

overestimated and the compressive depth underestimated. To help optimize the peening

process, Baragetti also applied the Design of Experiments method to interpret the results

obtained from numerical simulations of shot peening [37].
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2.4.2.3. Laser peening. Laser shock peening, also called laser peening, is a novel sur-

face processing technique to induce compressive residual stress into metals using high-

power laser pulses [38, 39]. One note has to be made first is that laser peening is a

mechanical process, not a thermal process, although inappropriate processing could cause

local melting or other thermal effects.

The working principle of laser peening is schematically shown in Fig. 2.13. Prior to

the treatment, the material surface is usually covered with two types of overlays. The

first overlay, opaque to the laser, is spread directly onto the surface and then covered

by another layer transparent to the laser. The opaque layer is also called the absorbent

coating layer since it absorbs most of the laser energy. The commonly used material for

opaque and transparent layers are black paint and water, respectively. When the focused

laser pulse with high power density penetrates through the transparent layer and strikes

the opaque layer, part of the opaque overlay is immediately vaporized. The vapor then

absorbs the incoming laser energy and is heated or even ionized to produce plasma. The

vapor or plasma tries to expand but is trapped by the transparent overlay and thus high

pressure is accumulated during a very short time period. This sudden high pressure is

against the surface of the material so a shock wave is produced and propagates into the

material. The material will yield and plastically deform if the peak pressure of the shock

wave exceeds the dynamic yield strength of the material. The peak stress decreases as

the shock wave penetrates more material but deformation continues until the peak stress

drops below the dynamic yield strength. Consequently, the material will receive strain

hardening and compressive residual stresses.
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Figure 2.13. Schematics of how the laser peening works [38]

In Montross’s review on the effects of overlays on laser peening [39], the transparent

overlay was reported to be used to increase the shock wave intensity by preventing the

plasma from expanding rapidly away from the surface. The opaque overlay was also found

to increase the intensity of the shock wave in addition to its original purpose of protecting

the metal surface from ablation or melting. Flat black paint is currently considered to be

the most effective and practical coating among various absorbent coating systems [40].

A typical laser peening treatment produces a uniform biaxial in-plane residual stress

field. Representative depth profiles of residual stress after laser peening are displayed in

Fig. 2.14 for AF 1410 steel. One feature of the profile is that the compressive residual



43

stress extends to a significant depth below the surface of the material. As an outcome

of this beneficial compressive residual stress, the flight hours to failure of AF 1410 was

increased by approximately 60%, as shown in Fig. 2.15. The compressive residual stress

can be extended to a great depth by increasing the laser peening intensity, which is

associated with the incident power density. Fig.2.16 illustrates how the residual stress

profile progresses in a 0.55% carbon steel as the number of shots increases from one to

three. However, investigation has found that there exists a threshold for incident power

density, above which the absolute value of surface residual stress starts decreasing due

to the effect of surface release waves, as indicated by the example of an aluminum A356

alloy [41].

The laser spot size is another factor affecting the resulted residual stresses since it

determines the size of the shock wave [39]. The small diameter shock wave propagates in

a sphere mode while the large diameter shock wave behaves more like a planar front. The

latter attenuates at a much slower rate and thus it can propagate deeper into the material.

Therefore, a greater compressive depth is expected when a laser beam with larger spot

size is utilized. An example showed 0.8 mm compressive depth for 1 mm laser spot and

1.2 mm for 6 mm spot in laser peened 55C1 medium carbon steel [42]. However, the

surface residual stresses were approximately the same in both cases with other identical

processing conditions.

Enhancement in fatigue performance was observed for a notched 55C1 steel through a

four point bending fatigue test with R = 0.1 [42]. Resulted S-N curves shown in Fig. 2.17

displayed significant fatigue strength improvement in laser peened specimens compared to

as-received specimens. It was also noted that with two different laser spot configurations
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Figure 2.14. Residual stresses in AF1410 steel [43]

Figure 2.15. Fatigue of AF1410 Steel tested under Flight Spectrum loading
conditions comparing shot peening and laser shock peening [43]

Figure 2.16. The effect of increasing laser peening intensity on the in-depth
residual stress in a 0.55% carbon steel [44]
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(1 mm and 6 mm), the steel presented approximately equivalent fatigue strength (490

MPa and 470 MPa) at the cycle of 2× 106, although the compressive depth was greater

in the steel treated with larger laser spot. This implied that surface residual stress plays

a determining role in improving surface fatigue resistance. Fatigue improvement through

laser peening in thin sections was also demonstrated in 4340 steel sheets [38]. 1.5 mm

thick, 54 Rc, 4340 steel sheet was notched and then the roots of notches were laser peened

with one shot. The tensile fatigue test was conducted at R = 0.1 with results shown in Fig.

2.18. The run-out stress was increased from 600 MPa to above 1000 MPa. Laser peening

was also found to help improve fatigue strength of the weldment by 17% in 18Ni(250)

maraging steel [45].

Figure 2.17. S-N curves of notched bending 55C1 steel samples treated by
laser peening[42]
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Figure 2.18. Tensile fatigue strength of 4340 steel sheet by laser peening [38]

An elastic-plastic model was developed to analyze the surface residual stress and the

plastically affected depth after laser peening [39, 42]. Peyre pointed out that the laser-

induced plastic deformation (εp) and therefore the surface stress (σsurf ) are linearly de-

pendent on the ratio of laser-induced peak stress (Σ) to the material shock yield stress

under uniaxial loading. The latter is usually termed as the Hugoniot Elastic Limit (HEL).

The HEL is the maximum pressure a crystal can withstand before yielding in shear. The

maximum plastic deformation in materials is achieved when 2HEL < Σ < 2.5HEL. As

Σ > 2HEL, the plastically affected depth (L) and maximum surface stress (σsurf ) can be

calculated as follows:

L =
Σ

2HEL

(
CelCplτ

Cel − Cpl

)
(2.7)

σsurf = σY

[
1− 4

√
2

π
(1 + ν

L

r

√
2

]
(2.8)

where Cel, Cpl are elastic and plastic velocities (6000 and 4500 ms−1 for steels, respec-

tively), τ is the pressure pulse duration (nearly 50-60 ns for a 20-25 ns laser pulse), σY is
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the tensile yield strength (quasi-static value) and r the radius of the impact (mm). Ac-

cording to Johnson’s research, the HEL depends on material’s compressive yield strength

at high strain rate (σdyny ) and Poisson’s ratio (ν).

HEL = (1− ν)/(1− 2ν)σdyny (2.9)

During laser peening, the production of compressive residual stress is accompanied by

significant microstructural and phase changes. High dislocation density (2.6× 1011cm−2)

in a random tangled arrangement was observed in a laser peened SAE 1010 low carbon

steel and in a 304 stainless steel through TEM [46, 47]. No dislocation cell structure

was found in SAE 1010, which indicated that laser peening caused fast deformation, not

allowing dislocation cross slip or long range motion. Phase transformation was also re-

vealed through either X-ray Diffraction or TEM. In a Hadfield Manganese steel, extensive

formation of ε-hcp martensite was discovered and surface hardness was increased by 130%

due to the transformation [48]. Investigation of weld zones in a 18Ni(250) maraging steel

showed that after laser peening the weldment austenite was transformed to martensite,

accompanied with dislocation density increase [45]. Local surface melting was also ob-

served in this steel which resulted in reverted austenite. In a laser peened 304 austenitic

stainless steel, two dense sets of twins as well as α-phase embryos located at the inter-

sections of twin sets were found [49]. The deformation of a laser peened Fe-Si alloy was

revealed to be primarily slip plus minor twinning [50]. It was reported that twins were

generated when the pressure was above the HEL of iron, but whether slip or twinning

occurs would depend on the magnitude and duration of the shock wave pressure and

possibly the resulted strain rate in the target.
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The thermal stability of laser peening induced microstructure change has also been

investigated. The near surface dislocation tangles in a 304 stainless steel were found

to be stable up to 800 ◦C (T/Tm ∼ 0.6) [47]. These thermally stable dislocations with

high density worked as obstacles for dislocation movement and therefore help improve the

resistance to fatigue crack initiation.

It was mentioned earlier that due to ε martensite transformation, surface hardness

of a Hadfiled Manganese steel was increased by 130%. However, in most cases, it was

reported that the surface hardening of metals was caused by the increased dislocation

density. For instance, a 50% increase in hardness was found in SAE 1010 low carbon steel

[46] and about 10% raise in a 18Ni(250) maraging steel weldment [45]. A study of 304

stainless steel also showed that increasing the number of laser shots can further increase

the hardness (Fig. 2.19) as the dislocation density was raised by laser shock repetitions

[39].

Figure 2.19. Surface hardness increase with the increasing number of laser
shots [39]
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The correlation between hardness and dislocation density was quantified by Ganin

[51]: H = H0 + aGb
√
p, where p is the average dislocation density, and H0, a, G and b

are material constants. H0 is the hardness of an ideal material without any defects, G

the shear modulus and b the scalar value of Burgers vector. In the study for a SAE 1010

low carbon steel[46], material constants were calculated based on results from Ganin, and

the dislocation density was calculated through TEM. A reasonable agreement between

experimental and calculated hardenss were obtained using this correlation. Therefore, it

was concluded that the hardness increase is mainly due to the presence of high density

dislocation. When twinning also occurs, a second term kλ1/2 (k material constant, λ

average inter-twin spacing) should be added to represent the contribution from twinning.

The tribology properties of rolling steels can also be modified by laser peening [52].

Study of friction coefficient evolution during rolling-sliding contact for untreated and laser

peened 100Cr6 steel showed that laser peening introduced a plateau during the period

of accommodation while the friction coefficient increased almost linearly in untreated

steel. The duration of the period of accommodation was also shortened by laser peening.

Fig. 2.20 presented the average friction coefficient tested under various applied loads for

untreated and treated steels. It was noted that there was a level of applied load, above

which the benefit provided by laser peening disappeared. The wear rate of the steels under

different pressures were plotted in Fig. 2.21. Again it was proven that there existed a

critical pressure of 100 MPa, above which the wear rate was not affected by laser peening.

Under pressure lower than 100 MPa the better wear resistance was possibly because

the depth of the maximum applied shear stress did not reach the depth of the extreme

hardened layer (50µm). As the loading pressure increased, the depth of maximum shear
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stress increased and exceeded the depth of the hardened layer. Thus the wear rate was

back to the level in untreated steel.

Figure 2.20. Averaged friction coefficient versus applied load[52]

Figure 2.21. Wear rate of steels[52]

Effects of laser peening on stress corrosion cracking were investigated for 316L stainless

steel as well [53]. Both untreated and treated specimens were immersed into MgCl2 44%

boiling solution at 153 ◦C for 24 hrs. The untreated steel has a tensile residual stress near
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the surface. After laser peening, compressive residual stress was developed at the surface

and extended to the depth of about 1mm. Metallographic observations (Fig. 2.22) clearly

showed that laser peening completely inhibited stress corrosion cracking and prevented

microcracks, except very few small cracks developed locally on the surface (Fig. 2.23).

No cracking was observed at the transition zone from the peened layer to unpeened core.

Benefits found here were believed to be associated with the large and deep compressive

residual stress on the surface.

2.4.2.4. Comparison between shot peening and laser peening. Compared to laser

peening, shot peening presents the following features:

1) Shot peening is a semi-quantitative process [39]. The uniformity of peening intensity

can not be 100% ensured since the evaluation of intensity is dependent on a metal strip or

gauge, which is much smaller than the component to be treated. Difficulty still exists in

precisely correlating many processing parameters to the resulted residual stresses. Peening

is still optimized mainly through empiricism, although analytical tools are used to simplify

and assist the optimization.

2) The compressive depth obtained from shot peening (100 to 200 µm) is usually

shallower than that from laser peening. This is because a large laser spot (such as 6 mm

spot) with high peening intensity is feasible for laser peening while no such big shot can

be allowed in shot peening. Thus, laser peening is more suitable for subsurface fatigue

resistance. Still, shot peening is quite effective in promoting resistance to surface crack

initiation and propagation, which is desired for most applications.

3) The surface roughness after shot peening is usually larger than that after laser

peening. However, by optimizing process parameters, surface roughening in shot peening



52

Figure 2.22. SEM graphs of 316L surfaces after SCC test[53] (a)non treated
and (b) laser peened

can be minimized. For hard metals or alloys, the difference between shot peening and

laser peening induced surface roughness is greatly reduced and so is the detrimental effect

of roughness on the fatigue strength. Comparable surface roughness induced by both

processes was observed in rolling steel 100Cr6 [52].
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Figure 2.23. Cross section SEM image of 316L after SCC test[53] (a) non
treated: stress corrosion cracking and (b)Laser peening: microcracks local-
ized at the surface

4) In soft metals or alloys, the surface compressive residual stress generated by shot

peening is usually lower than that by laser peening. However, comparable levels of residual

stress were obtained in hard metal or alloys, such as hardened steels.

Overall, shot peening attracts more attention than laser peening due to its ease and

low cost. Another significant limitation of laser peening is that large tensile stresses are
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produced in the material to balance compressive residual stresses and this may cause accel-

erated failure of the interior material. Given the above discussion, discretion must be paid

when selecting peening techniques and processing parameters for various applications.

2.4.3. Current residual stress levels in gear and bearing steels

Currently, shot peening has been widely applied to engineering components in industry,

especially gear and bearing parts. Laser peening, as an emerging new technology, is

starting to play its role in improving components’ fatigue strength. Fig. 2.24 and 2.25

plot literature data of surface compressive residual stresses and maximum compressive

residual stresses versus surface hardness for various steels. It is noted that surface and/or

maximum compressive residual stresses vary a lot due to distinct processing parameters,

such as shot or laser spot size, shot density and shot velocity. These processing parameters

are usually integrated into and represented by one parameter, peening intensity. The

determination of peening intensity could be found elsewhere [54]. However, a general rule

is observed that the attainable surface compressive residual stress is mainly dependent

on the mechanical properties of materials, i.e., the surface hardness. Correlation between

residual stress and surface hardness will be established in Chapter 4. For shot peening,

the correlation between the compressive depth versus peening intensity has already been

developed by the shot peening industry, as shown in Fig. 2.26. By extracting data of

steels from the graph, one can obtain the relationship between the compressive depth and

surface hardness for steels, also given in Chapter 4.
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Figure 2.24. Surface compressive residual stress in various steels with dif-
ferent treatments

2.5. Stability of residual stress

2.5.1. Residual stress relaxation during tempering

Residual stress relief was often observed in hardened martensitic steels during tempering.

A study on hardened AISI 52100 steel and a series of carbon steels discovered that stress

relaxation was associated with the structure change during tempering, for example, car-

bide precipitation [55]. The kinetics of stress relaxation also followed that of structure

change. Within the range of applied stresses investigated, residual stress relaxation was

found insensitive to the initial applied stress. The extent of relaxation increased linearly

with the increased carbon content. It was proposed that residual stress relaxation during

tempering was due to the generation of a local plastic zone, which was initiated by the
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Figure 2.25. Maximum compressive residual stress in various steels with
different treatments

local carbide volume change during tempering. This mechanism accounted for the strong

dependence of stress relaxation on the carbon content and independence on the initial

stress.

Wright [56] studied residual stress relaxation behavior of M50NiL alloys with two levels

of carbon content using tensile tests and split-ring tests. He found that residual stress

relaxation for low- or high-carbon M50NiL was also independent of the initial applied

stress. Both relaxation during tempering and under cyclic load can be correlated with

the volume fraction change of carbide precipitates. A linear correlation was proposed by

Wright based on results from tensile and split-ring tests:

∆%σrelaxed = A∆f carbidesv (2.10)
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Figure 2.26. Compressive depth in various materials under different peening intensity[54]

where f is the volume fraction of carbides, A is a material constant, which is 2200 for

M50NiL-0.38C.

2.5.2. Residual stress relaxation during annealing

Annealing temperature and time were also discovered to have effects on residual stress

relaxation. Fig. 2.27 shows the kinetics of surface residual stress relaxation in a shot

peened AISI 4140 steel at different temperatures [57]. The kinetics were described by Eq.

2.11.

σrs(T, t)

σrs0
= exp

(
−

[
Cexp

(
−∆HA

kT

)
t

]m)
(2.11)
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Figure 2.27. Surface residual stress relaxation of shot peened AISI 4140
steel during annealing

where σrs0 is the residual stress before annealing, σrs(T, t) is the residual stress after

annealing at temperature T for the time t, ∆HA is the apparent activation enthalpy for

the relaxation process, m an exponent, C a velocity constant and k Boltzmann constant.

∆HA, C and m can be found from literature. The fact that the ∆HA (3.29ev) matches

the activation enthalpy for self diffusion in α-Fe led to the inerpretation that the stress

relaxation rate was mainly determined by edge dislocation climbing by volume diffusion.

2.5.3. Residual stress relaxation under cyclic load

Mattson and Coleman observed residual stress relaxation in a shot peened SAE 5150

steel under cyclic load many years ago [58]. A linear logarithm relationship between

remaining residual stress and the number of cycles was proposed by Kodama based on

his measurement of surface residual stress decrease in a shot peened specimen [59]:

σreN = A+mlogN (2.12)
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where σreN is the surface residual stress after N cycles. A and m are material constants

depending on the loading amplitude σa. From measured residual stress results, it was

noted that the magnitude of compressive residual stress could drop by 50% after the

first cycle, which was not described by the above relationship. Furthermore, the effect of

loading ratio on residual stress relaxation was not explored in Kodama’s study.

To describe residual stress relaxation in the first loading cycle, Holzapfel treated the

first cycle as quasistatic tensile and compressive loading [57]. He conducted separate

tensile and compressive loading tests to investigate residual stress relaxation behavior.

It was found residual stress relaxation occurred where the equivalent von Mises stress

exceeded the local yield strength and there was a critical loading stress at which the

relaxation began. Due to the Bauschinger effect, the critical loading stress was much

smaller during compression than during tension. After the first cycle, Kodama’s relation

was supported by Holzapfel’s results on residual stress relaxation from alternating bending

test (Fig. 2.28).

Zhuang and Halford further developed models for the residual stress relaxation mech-

anism by taking into account the effect of initial cold work [60]. They found the residual

stress relaxation was also dependent on the degree of initial cold work since different lev-

els of cold work resulted in the variation of local tensile or compressive yield strength.

Generally, with the same original compressive residual stress and identical fatigue loading

conditions, a larger amount of tensile cold work would cause more and faster cyclic relax-

ation. Integrating the concepts of cold work relaxation and cyclic loading relaxation, an
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Figure 2.28. Surface residual stress relaxation of shot peened AISI 4140
during alternating bending test [57] (σ∗a,s is the fictitious stress amplitude
at the surface)

equation to predict the residual stress relaxation was proposed:

σreN
|σre0 |

= A

(
σmaxσa

(CWσy)2

)m

(N − 1)B − 1 (2.13)

where σre0 is the initial residual stress, σreN the residual stress after N cycles, σmax is the

maximum load, σa is the amplitude of the cyclic load and σy is material yield strength.

CW is a parameter accounting for the degree of cold work. Material constants m and

A both depend on the cyclic stress and strain response. B reflects the dependence of

relaxation rate on the number of cycles. In terms of the loading ratio R, Eq. 2.13 can be

written into:

σreN
|σre0 |

= A

(
2σ2

a

(1−R)(CWσy)2

)m

(N − 1)B − 1 (2.14)

The rate of residual stress relaxation increased as R increased. The relaxation slowed

down as the loading amplitude was reduced.
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A FEA analysis was performed to evaluate the analytical model described by Eqs.

2.13 and 2.14. Three dominating parameters were investigated, including load amplitude,

load ratio and degree of initial cold work [60]. Comparison between the analytical model

and the FEA numerical simulation demonstrated that the analytical model was robust,

particulary in describing residual stress relaxation behavior during the early cycles for low

cycle fatigue. This feature is crucial because residual stress relaxation mainly takes place

during the early stage of cyclic loading.
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CHAPTER 3

Materials and Methods

3.1. Materials

3.1.1. FerriumrC61, FerriumrC67 and variants

High performance gear steels, FerriumrC61, C67 and C67 variants are computationally

designed using the systems approach based on thermodynamics and strengthening models.

All steels are strengthened through 3nm M2C alloy carbide precipitation during tempering

in stage IV. C61 has already been commercialized through collaboration with QuesTek

Innovations, Inc. and the development of the C67 family is still ongoing. Two previous

versions of C67: C69 and C69-M3B, are also involved in this research. C69 was the earliest

design aimed at a high surface hardness of 69 Rc. High cobalt content was adopted for

high dislocation recovery resistance to help achieve 69 Rc. However, core brittleness was

found in C69 and thus C69-M3B was designed with less Co to eliminate formation of the

brittle σ phase in the core. For a better combination of strength and toughness, C67 was

designed with further reduced Co content and a decreased case carbon content. Fully or

partially heat treated C61, C67 and variants for this research were provided by QuesTek

Innovations, Inc.

For residual stress and retained austenite study, 15×15×6.34mm3 specimens were cut

from 0.25 inch (6.34 mm) thick discs, 5.25 inch (133.35 mm) in diameter. Prior to shot or

laser peening, C67 steel pucks, 1 inch (25.4 mm) in diameter and 0.34 inch (8.6 mm) in
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thickness were tempered either at 200 ◦C for 1 hr or at 482 ◦C for 56 hrs at Northwestern

University. Shot or laser peening service was then provided by Metal Improvement Com-

pany in Addision, Illinois. Effects of peening intensity on surface residual stresses were

studied.

For residual stress distribution analysis, cylindrical specimens, 3 inch (76.2 mm) in

length and 0.375 inch (9.525 mm) in diameter were used. The specimens first underwent

carburization/solution treatment, quenching, cryogenic treatment at liquid nitrogen tem-

perature, tempering and fine grinding. C61 was then shot peened and C67 laser peened.

Finally both C61 and C67 cylinders were subject to the NTN ball-rod rolling contact

fatigue (RCF) screening test with the extreme Hertzian pressure of 5.4 GPa. Residual

stress distribution was measured non-destructively using synchrotron radiation for regions

away from the wear track and beneath wear tracks.

3.1.2. Pyrowear53

Pyrowear 53 is a carburized steel with good temper resistance, high case hot hardness

while maintaining high core impact strength and fracture toughness. Strengthening was

achieved through ε carbide in stage I tempering. Non-destructive measurement of residual

stress distributions were also performed on shot peened and laser peened Pyrowear 53

cylinders provided by QuesTek Innovations.

Compositions of FerriumrC61, C67 and variants, Pyrowear 53 are listed in Table 3.1.
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Figure 3.1. Compositions of various high performance gear steels (wt%)

3.1.3. CryoForm 70

CryoForm 70 steel is the new design aimed at surface hardness of 70 Rc. Like C61

and C67, it is strengthened through M2C carbide precipitation. CryoForm stands for

cryogenic deformation, a novel process developed for the achievement of the hardness

goal. Details on steel composition, structure and properties are elaborated in Chapter

5-7.

3.2. Processing procedures

3.2.1. Carburizing

Carburizing is a case hardening process in which carbon is diffused into steels at tem-

peratures between 850 ◦C and 1050 ◦C. At carburizing temperatures, austenite with high

solubility of carbon is the stable phase. Hardening is accomplished when the steel is

quenched from the carburizing temperature and austenite transforms into marteniste.

With a carbon content gradient, a case providing good wear and fatigue resistance and a

tough ductile core are formed.

3.2.1.1. Pack Carburizing. Pack carburizing is the earliest and simplest carburization

method, in which parts are packed with a mixture of charcoal and carbonate compound
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and then placed in a container. At carburizing temperatures, carbon monoxide is first

produced which breaks down into carbon and carbon dioxide at the part surface. The

nascent carbon is then diffused into the part and carbon dioxide reacts with the mixture

to generate more carbon monoxide.

CO2 + Ccharcoal 
 2CO (3.1)

3Fe+ 2CO → 3Fe+ CinFCC + CO2 (3.2)

3.2.1.2. Vacuum Carburizing. With the same principle, an advanced carburizing

technique - gas/vacuum carburizing has already been widely adopted by industry to

accurately achieve desired carbon content profiles in the material, which is difficult to

accomplish by using pack carburizing. Gas carburizing is normally conducted within the

temperature range from 850 ◦C to 950 ◦C. Pre-oxidation is needed to prevent further ma-

terial oxidation and provide a porous iron oxide surface layer for the carbon to diffuse.

Vacuum carburizing is carried out at much higher temperatures, from 1050 ◦C to 1120 ◦C,

at which the material can be solutionized simultaneously. After the furnace is sealed and

evacuated to 10−4 torr (0.13Pa), a carbonaceous gas, such as propane, is introduced into

the furnace with a pressure of 300 torr (3.9Pa). Carbonaceous gas breaks down into CO

and then CO acts as the carbon source at the part surface. The furnace evacuation prior

to gas introduction eliminates the step of pre-oxidation and thus no scale or other surface

reaction occurs. The part stays clean and bright. Both gas and vacuum carburizing fol-

lows a determined carburizing procedure, as displayed schematically in 3.2. Carburization

is composed of several cycles, each of which consists of a boost and a diffuse cycle. During
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boost cycle, carbonaceous gas flows in with a fixed carbon potential for gas carburizing

or a fixed carbon flux for vacuum carburizing. During the diffuse cycle, gas flow drops

to zero and carbon starts diffusion from part surface to the interior. The intermediate

diffuse between boost cycles is usually shorter than the final diffuse, which finalizes the

carbon content profile. Vacuum carburizing service at 1100 ◦C was provided by Midwest

Thermal-Vac, Inc. in Konesha, Wisconsin for the development of CryoForm 70.

Figure 3.2. Schematic carburization process in gas or vacuum carburizing

3.2.2. Heat treatment

Pack carburized alloys were encapsulated in vacuum quartz tubes 0.75 inch in diameter

and solution treated at 1100 ◦C for 1 hour. They were then oil quenched, treated in liquid

nitrogen for 1 hour and tempered at 200 ◦C for 1 hour. For vacuum carburized alloys,

solution treatment and carburizing was combined into the single step of carburization.

After vacuum carburizing, specimens were quenched by Argon gas and cryogenic treated

in liquid nitrogen for 1 hour. Subsequent tempering was completed in Northwestern

University at 200 ◦C for 1hr or 450 ◦C-500 ◦C for prolonged hours.
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3.2.3. Shot peening and laser peening

Metal Improvement Company, Inc. provided the shot peening service for C61, C67 and

Pyrowear 53 alloys using their proprietary processing parameters. LSP Technologies, Inc.

in Dublin, Ohio performed laser peening for C67 and Pyrowear 53 alloys with proprietary

processes.

3.3. Standard characterization methods

3.3.1. Dilatometry

Alloy volume change during phase transformation is measured using an MMC Quenching

and Deformation Dilatometer. 10 mm long cylindrical specimens 3 mm in diameter are

placed in an induction furnace. A Pt-Pt 10% Rh thermocouple is spot-welded to the

specimen for temperature measurement. Specimens are first heated up to a desired tem-

perature and quenched by injecting helium into the vacuum chamber. The length change

of specimens during thermal expansion and phase transformation is measured through

an LVDT transducer connected to quartz platens on either end of the cylinder. Both

specimen temperature and length change are recorded and displayed in real time by a

computer system.

3.3.2. Hardness test

Alloy hardness profiles are measured using a Buehler Micromet II Micro Hardness Tester.

Vickers hardness testing was performed following ASTM standard E384. A diamond

pyramid Vickers indenter with face angles of 136◦ was used with the applied load of 300

g for 10 seconds. The lengths of indent diagonals were measured and then converted to
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Vickers Hardness (Hv or VHN). With load P in kg and average diagonal length d in mm,

the Vickers Hardness is expressed as

V ickersHardness =
1.854P

d2
(3.3)

Prior to testing, the cross section of a carburized specimen revealing the case and core

was mounted in Durofast for edge retention and polished to 1 µm. The first indent was

made at least 60 µm away from the edge. Three or more measurements were performed

at each depth for better statistics. A Wilson Rockwell Hardness Tester was also utilized

for a quick check of surface hardness following ASTM standard E18. A “C” scale Brale

diamond ball indenter was used with 10 kg preload and 150 kg test load. Parallel top

and bottom faces were required for the Rockewell C test. Prior to the test, the surface

was polished to 12 µm or smoother. Six or more measurements were made each time for

a homogeneous surface.

3.3.3. Crystal structure and phase analysis

Crystal structure and phase relations were analyzed through X-ray Diffraction. All sam-

ples were polished to 12 µm or smoother prior to X-ray irradiation. Line focused Cu

Kα radiation at 40 kV, 20 mA from a Scintag Diffractometer in the Northwestern X-ray

Facility was utilized. On the source side, a 4 mm scattering slit and 2 mm divergence slit

were adopted. On the detector side, a 1 mm scattering slit and 0.5 mm receiving slit was

used. A good combination of high intensity and high signal-to-noise ratio was achieved

with this set of slits. All phases in the alloy were identified by comparing diffraction

spectrum to X-ray powder diffraction files.
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Phase fractions were calculated following Eq. 3.4 [61]:

VA
VB

=
RAIA
RBIB

(3.4)

where subscripts A and B represent Phase A and Phase B, V is the volume fraction of each

phase, I is the integrated intensity of the diffraction peak, R is the intensity correction

factor accounting for structure factor, multiplicity, angle-dependent polarization factor

and temperature factor. A NBS standard and a specimen were irradiated under identical

X-ray conditions to obtain peak intensities from Pseudo-Voigt fitting. With a known VA

VB

ratio of the standard, the prefactor ratio RA

RB
was calculated. With this RA

RB
, VA

VB
for the

specimen was computed. This phase analysis was applied to the measurement of retained

austenite level with respect to martensite phase in carburized steel alloys. X-ray diffraction

was conducted with a step size of 0.05◦, a counting time of 25 s for the martensite (211)

peak and a 50 s counting time for the martensite (200) peak and austenite (220) peak.

Lattice parameters were calculated from finely scanned diffraction peaks with a pro-

longed counting time (50-100 s) and reduced step size (0.02◦). d-spacing of crystal planes

for a tetragonal system is calculated following Eq. 3.5.

1

d
=

√
(
h2 + k2

a2
) + (

l2

c2
) (3.5)

By obtaining two sets of d, h,k,l, lattice parameters a and c are solved.

3.3.4. Microscopy

Alloy microstructures were observed by using optical microscopy and scanning electron

microscopy (SEM). Matrix and precipitate phases in carburized or tempered steel alloys
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were qualitatively analyzed for phase identification, phase morphology and phase frac-

tions. Samples were mounted in Durofast or acrylic and polished to 1 µm. 2% nital

etchant was used to reveal the martensite and coarse carbide phases under an optical

microscope. Microstructure was also analyzed using a Hitachi S-3500 scanning electron

microscope in both secondary electron and back scattering modes. Phase compositions,

line element concentrations and area element map were obtained through a PGT energy

dispersive X-ray analyzer attached to the S-3500.

3.3.5. Surface residual stress measurement

There are two primary types of residual stress measurement methods. Hole drilling or dis-

section is the common destructive method [62] while acoustic method, magnetic method,

X-ray diffraction and neutron diffraction have been developed as non-destructive meth-

ods. Among non-destructive methods, the X-ray diffraction method is most popular for its

speed, accuracy, reliability and low dependence on variations in material properties [25].

The X-ray diffraction method determines the residual stress by measuring the change of

atomic interplanar spacing (d-spacing) to obtain the magnitude of the prevailing elastic

strain, as illustrated in Fig. 3.3. In grains with different orientation, the d-spacing of

the same atomic planes differs from one another due to compressive residual stress on the

surface. In Fig. 3.3 (a), Bragg diffraction occurs on (hkl) planes parallel to the surface,

whose d-spacing is largest. The Bragg peak is at angle 2theta. After the specimen tilts

by a certain angle, in Fig. 3.3 (b), Bragg diffraction occurs at the same atomic plane but

in different grains with decreased d-spacing. Therefore, the Bragg peak shifts to a higher

angle. The magnitude of the peak shift is related to the residual strain, from which the
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residual stress is determined. The elastic anisotropy effect on the peak shift is taken into

account by using X-ray elastic constants in stress calculation.

Figure 3.3. Principle of X-ray diffraction method (redraw from [63]

In this research, point focused Cr average Kα emission was used with a V filter to

eliminate Kβ emission. A typical ferrite/martensite (211) peak is selected to measure

residual stress in steel alloys because the large 2θ of (211) peak (156◦) helps reduce the

measurement uncertainty. Detailed experimental procedure and data analysis are given

in the Appendix.

3.3.6. Interferometry

Surface topography of shot or laser peened C61, C67 and Pyrowear 53 alloys was studied

using light interferometry. A WYKO interferometer in the Department of Mechanical

Engineering was employed with various magnifications. Specimen tilt and curvature were
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corrected during the measurement whenever necessary. Surface topography was repre-

sented by surface roughness, line profiles and 2D and 3D maps. Specifically, surface

roughness was expressed in various roughness values, including average roughness Ra,

root mean square (rms) roughness Rq, maximum height of the profile Rt and average

maximum height of the profile Rz.

3.4. Computational tools

3.4.1. Thermo− Calcr

Two software systems were used for the computational design of gear steels: Thermo −

Calcr and Computational Materials Dynamics (CMDr). Developed by the Royal In-

stitute of Technology in Stockholm, Sweden, Thermo-Calc is a widely used commercial

software for the calculations of equilibrium, thermodynamic data (enthalpy, heat capacity,

activity) and phase diagrams [64]. These calculations dramatically accelerate the devel-

opment of new metals and alloys with low cost as all phase relations can be predicted

without a large amount of experiments. For the design of advanced gear steels, equi-

libria, metastable equilibria and driving forces are calculated as a function of chemical

compositions, temperature and pressure by looking for the lowest free energy state.

Thermodynamic databases compatible with the Thermo-Calc software include the

compound and solution database (SSOL); steel and Fe database; specific alloys database;

specific materials database etc. SSOL is developed by Scientific Group Thermodata Eu-

rope, a consortium of European research centers. It consists of Gibbs free energy data

for more than 150 binary, 70 ternary and 20 higher order systems. The SSOL + M2C

database was also developed at Northwestern to include data for the M2C carbide phase.
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For martensite starting temperature calculation, the Mart5 database developed by Ghosh

and Olson was used since it accounts for low temperature thermodynamics of Fe-based

FCC and BCC phases [65]. A special database developed by QuesTek Innovations LLC,

Evanston, IL was used for sigma phase driving force calculation.

Thermo-Calc uses a sublattice model to describe crystal structure and thermodynamic

data for the convenience of extrapolating to higher order systems [66]. Model parame-

ters depend on chemical compositions, temperature and pressure. Two sublattices are

described for advanced gear steel systems, a substitutional solution and an interstitial

lattice.

3.4.2. Computational Materials Dynamics - CMDr

Computational Materials Dynamics - CMDr, developed by QuesTek Innovations LLC

in Evanston, IL, consists of a collection of mechanistic models interfaced with Thermo-

Calc [67]. Parameters and properties calculated through CMD models include hard-

ness/strength of Ni-Co secondary hardening steels, martensite start temperature and

Scheil microsegregation index. Models involved in the design of CryoForm 70 will be

discussed in Chapter 5. CMD can also calculate solution treatment temperature, M2C

phase driving force and sigma phase driving force using Thermo-Calc.

3.4.3. DICTRAr

DICTRAr (Diffusion Controlled Transformations), developed by the Royal Institute

of Technology in Stockholm, Sweden, is used for the simulation of kinetic processes in

multi-component systems [68]. DICTRA interfaces with Themo-Calc and numerically
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solves multi-component diffusion equations with the assumption that all interfaces are at

thermodynamic equilibrium. In the design of advanced gear steels, DICTRA was utilized

to simulate the carburizing process in the multi-component steel alloys and predict the

dependence of carbon profiles on carburizing parameters (temperature and time).

3.5. Novel synchrotron characterization of residual stress distribution

Conventional X-ray diffraction is one of the most popular techniques to analyze resid-

ual stresses due to its accuracy and convenience. However, to probe residual stress dis-

tributions at various depths, material removal is needed because X-ray can only pene-

trate tenths of µm in steels. It is not suitable when sample intactness is desired. For-

tunately, neutron and synchrotron radiation techniques have been developed to provide

non-destructive characterization of residual stress distributions three dimensionally. How-

ever, neutron strain or stress measurement is limited by slow rate data acquisition and

a low spatial resolution, of the order of 1mm3, due to relatively low intensities of neu-

trons [69]. Modern synchrotron sources, on the other hand, can provide quite intense

narrow beams of highly collimated X-ray photons with high energy [70], which makes

high resolution strain or stress mapping very possible.

To date, three major synchrotron radiation techniques for stress measurement have

been tried successfully: i) θ/2θ scanning in either reflection or transmission geometry; ii)

utilizing high energy X-rays in transmission with a two-dimensional detector; iii) using

a white beam with an energy sensitive detector [69]. However, the non-destructive eval-

uation of residual stress distributions in carburized gear steels by synchrotron radiation
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has not been reported before. In this research, a high-energy X-ray transmission tech-

nique was developed through collaboration with Dr. Jonathan Almer from the Advanced

Photon Source, Argonne National Laboratory. This technique was employed to study

the residual stress depth distributions in shot or laser peened carburized steels. A setup

composed of the conical slit system [71], sample rotation stage [72] and two dimensional

detector was adopted. Experimental details and new technological aspects will be fully

discussed in Chapter 4.

The basic principle behind X-ray strain/stress analysis using two dimensional detectors

has been developed [73, 74, 75]. Here only the key elements are drawn for our study. Two

coordinate systems are defined, laboratory coordinate system (Li) and sample coordinate

system (Si). Li system is related to Si system by angles ψ and φ, as illustrated in Fig. 3.4.

The cylindrical specimen is orientated in such a way that the diffraction vector q, normal

to diffraction planes, is along L3 in Li system. In the transmission mode, the incident

beam makes an angle of 2θ with the diffracted beam. Diffraction rings are then recorded

by a 2D detector. Define the 3 o’clock position as the origin for azimuth angle η and r as

the radius of the diffraction ring. Each point on diffraction rings can then be expressed

as (η, r). Diffraction rings from an unstressed polycrystalline specimen are perfect circles

in which 2θ is independent of η and 2θ = 2θ0 =Bragg angle. The introduction of residual

strain or stress distorts the shape of diffraction rings and thus 2θ becomes a function of

η, 2θ = 2θ(η). This function is uniquely defined by the strain or stress tensor and the

specimen orientation.
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Figure 3.4. Definition of coordinate systems: Laboratory Li, Sample Si and
Experimental geometry with a cylindrical specimen

He and Smith developed the fundamental equation of strain measurement for the 2D

detector [73]:

εφψ = f11ε11 + f12ε12 + f22ε22 + f13ε13 + f23ε23 + f33ε33 (3.6)

where fijs are strain coefficients determined by the matrix operation:

F = Ms(ω, φ, ψ) •Md(η, θ) (3.7)

Ms(ω, φ, ψ) is the sample orientation matrix which defines the relation between the sample

coordinates and the laboratory coordinates. Md(η, θ) is the diffraction ring matrix defining
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the orientation of each diffracted beam. He and Smith used angle χ instead of η (χ =

η + 90◦) in their simplification for strain coefficients.

On the other hand, lattice strain εφψ can be expressed in the relative variation of d

spacing for (hkl) plane:

εφψ =
d− d0

d0

(3.8)

The radius of the diffraction ring r is connected to the diffraction angle 2θ and the distance

between the specimen and the detector D by

θ =
1

2
arctan(r/D) (3.9)

Since d = λ
2 sin θ

,

d =
λ

2 sin 1
2
arctan(r/D)

(3.10)

For high energy X-rays, Bragg angles are very small (r/D � 1). Therefore the trigono-

metric functions can be replaced by their arguments, which resulted in the much simpler

equation

d ≈ λD

r
(3.11)

Combining Eqs. 3.8 and 3.11, this equation yields:

εφψ =
d− d0

d0

≈ r0 − r

r
≈ r0 − r

r0
(3.12)

So the strain is compressive when the radius increases and tensile when the radius de-

creases.
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By combining Eq. 3.6 with Eq. 3.12, one can obtain the final equation of strain

measurement:

εφψ =
∑

fijεij ≈
r0 − r

r0
(3.13)

This is a linear equation with six unknowns. Principally the strain tensor can be solved

with six independent (η, 2θ) or (η, r) data points. With a 2D detector, thousands of data

points are available. Using a least squares regression method, the strain tensor can easily

be solved with very high accuracy.
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CHAPTER 4

Residual stress distribution and its non-destructive analysis

using synchrotron radiation for high strength gear steels

4.1. Residual stress evolution with processing

4.1.1. Effect of carburizing process on the surface residual stress in Ferrium

C61, C67 steels

It is well known that the fatigue performance of engineering materials can be significantly

enhanced by introducing beneficial compressive residual stresses. This fact has been

incorporated into the design of new engineering materials, for instance, bearing and gear

steels [76]. Residual stress generating processes, such as carburizing/nitriding, shot/laser

peening, have also been investigated to maximize the benefits on fatigue strength [77].

The carburizing process is the first source of beneficial compressive residual stresses during

gear steel processing. Its effect on residual stresses was investigated by analyzing surface

residual stresses in specimens carburized with different procedures. Conventional X-ray

diffraction techniques were employed for the analysis.

4.1.1.1. Influence of boost cycle and carburizing temperature. Ferrium C61,

carburized for one cycle with various boost times, was selected to study the influence of

boost cycle and carburizing temperature on surface residual stresses. After carburization,

the specimen was cooled by Argon gas and cryogenically treated with liquid nitrogen.

Surface residual stresses after a single boost cycle with different boost times are shown in



80

Fig. 4.1. At two different carburizing temperatures, surface residual stresses were found

to be all compressive and displayed the same trend. As boost times increases, surface

compressive residual stress climbs to a maximum at 75 s boost time and then drops with

boost time. Surface carbon content was measured by Midwest Thermal-Vac, shown in

Fig. 4.2. As boost time prolongs, more carbon diffuses in and surface carbon content

increases.

It was expected that higher carbon content would result in higher surface compres-

sive residual stress because the martensite transformation would be more delayed during

quenching and cryogenic treatment. However, the compressive stresses decrease after

reaching a maximum while the surface carbon content keeps rising. Similar trend was ob-

served for microhardness. The microhardness test performed by Dr. Gao showed the peak

hardness position moved from the surface to subsurface with increasing boost time [78].

This shift occurred to the boost time of 75 s, at which carbon content reached 0.5wt%

approximately at both temperatures. With boost time longer than 75 s, surface hardness

decreased as retained austenite began to form in connection with the increasing surface

carbon content. Surface compressive residual stress was also reduced. The amount of

retained austenite in four C61 specimens with different boost times were measured using

X-ray diffraction. Prior to the measurement, specimens were tempered at 200 ◦C for 1

hour to stabilize retained austenite. Results are shown in Table 4.1. It is clear that a 30

s more boost time at 950 ◦C or a 25 s increase at 1000 ◦C doubled the level of retained

austenite, which resulted in the position shift of peak hardness and reduction in surface

compressive residual stress.
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At a carburizing temperature of 950 ◦C, a larger maximum compressive residual stress

was exhibited than at 1000 ◦C. This was attributed to the larger carbon content gradient

near the surface at 950 ◦C. Due to the increased diffusion at the elevated temperature,

hardness profiles near the surface at 1000 ◦C were relatively flat compared to those at

950 ◦C, indicating a smaller carbon content gradient. This smaller carbon gradient thus

led to the lower peak residual stress value.

Figure 4.1. Surface residual stresses of C61 with various boost cycles

Table 4.1. Retained austenite content in C61 steels with single boost cycle
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Figure 4.2. Surface carbon content of C61 with various boost cycles

4.1.1.2. Influence of diffuse cycle. Fig. 4.3 displays the influence of intermediate

diffusion time on the surface residual stress. As expected, residual stress is reduced with

longer diffusion time as the carbon content gradient is decreased.

Boost time, diffuse time and temperatures have been shown to affect the distribution

of compressive residual stresses and the level of retained austenite. Desired compressive

residual stresses and minimized retained austenite can be obtained by optimizing the

carburization process. However, peening treatments have been demonstrated to be more

efficient in generating higher beneficial residual stresses. Thus the exploration of carbur-

ization effects on residual stress will be utilized for fine tuning carburizing cycles after

optimization of the entire processing.
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Figure 4.3. Surface residual stresses of C67 with various diffuse times

4.1.2. Evolution of surface residual stress during heat treatment and surface

treatment

It is desired to maintain beneficial residual stresses as it keeps evolving with carburiza-

tion, heat treatment and surface treatment. Shown in Fig. 4.4 and Fig. 4.5 is surface

compressive residual stress evolution after different processes.

A surface compressive residual stress of 700 MPa was present in both C61 and C67

steels after carburizing, quenching, and cryogenic treatment. However, it relaxed by ∼480

MPa during both 200 ◦C and 482 ◦C tempering of C61. The fact that the relaxation is

insensitive to tempering temperatures indicates a similar mechanism during both tem-

perings. It is believed that residual stress relaxation is set on when the carbides start

to precipitate and the extent of relaxation is linearly associated with the volume fraction
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Figure 4.4. Surface residual stresses of C61 after different heat treatments
and shot peening

Figure 4.5. Surface residual stresses of C67 after different heat treatments
and laser peening
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of carbides. Howver, this relaxation did not occcur in the higher carbon case of C67.

This may be associated with more gradual decomposition of retained austenite restoring

residual stress levels.

Any residual stress relaxation was then compensated by the generation of large residual

stresses through shot peening or laser peening. As high as 1200 MPa compressive residual

stress was obtained in shot peened C61 and 1400 to 1500 MPa in laser peened C67.

The effectiveness of peening in producing compressive residual stresses suggests that the

optimization of peening treatment should be focused on to obtain desired residual stresses.

It is also noted that the compressive residual stress of C61 after shot peening can

reach an internal maximum of 1365 MPa. Like surface residual stress, the location and

the magnitude of the maximum residual stress depend on the shot peening process as

well. It is desired to place this maximum where the fatigue cracks most likely initiate.

For different applications, this maximum could be on the surface or at the subsurface.

Thus, the peening process needs to be optimized for not only surface residual stress but

also the maximum. Issues related to peening process optimization will be discussed in the

next section.

4.2. Residual stress generation through peening techniques

4.2.1. Residual stress data review

Surface and maximum residual stresses in various steels are plotted in Fig. 4.6 and 4.7. In

addition to literature data summarized in Section 2.4.3, residual stresses in shot peened

C61 and laser peened C67 are displayed in Fig. 4.6 to better understand the correlation

between residual stress and material hardness. Shot peened SKD61 was excluded from
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the graphs since the outmost peened layer contained the Fe4N white layer so SKD61 can

not be treated as a metal.

Figure 4.6. Surface compressive residual stresses of shot or laser peened steels

It is a rule of thumb in the shot peening industry that the maximum residual com-

pressive stress is at least one half of the material yield strength when equivalently hard

shots are used [79]. This also applies to the case of laser peening since shock waves with

high energy can be treated as peening shots with sufficient hardness. Given the strong

correlation between material hardness and yield strength, it is reasonable to correlate ma-

terial hardness with the attainable maximum and surface compressive residual stresses.

It is expected that better correlation can be obtained by using maximum residual stress

data as surface values vary a lot more than the maximums as peening condition changes.
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Figure 4.7. Maximum compressive residual stresses of shot or laser peened steels

Steel max (MPa) surf (MPa)
C61 1468 1329
C67 1835 1661

A linear relationship through (0,0) was found between the upper bounds of maxi-

mum and surface compressive residual stress and material hardness, shown by the dash

lines in Fig. 4.6 and 4.7. The upper bound of maximum compressive residual stress fol-

lows: −σmax(MPa) = 2.03874×Hardness(Hv). For the upper bound of surface values,

−σsurf (MPa) = 1.84546 ×Hardness(Hv) holds. The attainable maximum and surface

compressive residual stresses in C61, C67 steels are listed above. The difference between

current and attainable residual stresses indicates that the peening process needs to be

optimized for higher beneficial residual stress.
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4.2.2. Proposed peening intensity and media

Collaboration was established to implement peening process optimization between the

Olson research group at Northwestern and the peening service industry, which includes

Metal Improvement Company Inc., Laser Peening Technologies, Inc. and Research and

Development at General Motors. Peening intensity and peening media are the two most

important factors in the optimization. Steel shots as hard as 61 Rc with various sizes

are available from the peening service industry, which enhances the optimization for C61.

Unfortunately, there is no equivalently hard metal shot available for C67. No previous

case of peening such a hard surface was reported. Thus peening intensity and peening

media for a successful operation on C67 were explored herein.

In the Handbook of Shot Peening edited by Metal Improvement Company, Inc., the

depth of compressive layer achieved from shot peening is summarized versus shot peening

intensity for various kinds of materials, including steels with three different hardness

levels [54]. Depth of compressive layer is decreased as material hardness increases if the

same level of peening intensity is applied. For equivalent compressive depth, required

shot peening intensity increases non-linearly with material hardness. The increasing rate

also rises with material hardness. To determine the peening intensity for C67, data for

steels were taken from Fig. 2.27 and replotted as peening intensity versus steel hardness

for various compressive depths. Proposed peening intensity for C67 were obtained by

fitting the industrial data (solid symbols in Fig. 4.8) and extrapolating fitting curves

to the surface hardness of 900 Hv. The fitting process is described as follows: 1) Since

surface hardness and peening intensity are positive, the function domain and range are

Hardness > 0, Int > 0. 2) Boundary conditions were set based on the physics that
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peening intensity tends toward zero or positive infinity when material hardness tends

toward zero or positive infinity. 3) Provided the rate of change in the intensity increases

as the hardness increases, the following corresponding rule was chosen for the function:

Int(AlmenC) = P1exp(P2 ln(P3 •Hardness)) (4.1)

where P1, P2 and P3 are three fitting parameters, Hardness is in Hv units. Fitting results

for five compressive depths are listed in Table 4.2. Also presented are proposed peening

intensity for C67 in both Almen C and Almen A units, shown as hollow symbols in Fig.

4.8. For the conversion between Almen C and Almen A please refer to [80]. According

to desired compressive depth for C67 (0.2-0.25 mm) in the application of gears, a peening

intensity of 0.040 Almen A is needed, which is much higher than that normally provided

by industry.

Table 4.2. Fitting parameters and proposed peening intensity for C67

A survey aboutof available shot showed that currently there is no steel shot having

comparable hardness with C67. Thus the feasibility of using other harder shot, including

tungsten carbide shot, ceramic shot and glass shot, was explored. Metal Improvement
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Figure 4.8. Peening intensity required for different depths in various steels

Company has glass shot with hardness of 70 Rc, but the shot are too small to produce a

compressive depth of 0.2 mm. ZrO2 with hardness of 1000 Hv can be provided by Saint-

Gobain Zirpro Company in Mountainside, New Jersey. Unfortunately it is not feasible for

our collaborator to modify the shot peening equipment to accommodate this special shot.

Tungsten carbide shot with hardness up to 1400 Hv is the best choice since virtually no

equipment modification would be needed and its very high density would provide better

peening effects. However, it costs 200 dollars per lb and normal peening equipment would

require a 400 lb load. Therefore, laser peening was proposed as an alternative since not

only high intensity but also peening media with various sizes and virtual hardness can be

obtained. The cost of laser peening is expected to be reduced as laser peening technology

matures.
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Besides peening techniques, ultrasonic surface modification will be discussed later for

the possible application to C67, which employs a tungsten carbide ball to strike the

material surface at an ultrasonic frequency.

4.3. Influence of peening on surface conditions

Compressive residual stress induced by peening treatment brings great benefit to fa-

tigue strength by retarding crack initiation and propagation. However, a roughened sur-

face due to peening acts as an adverse effect on the fatigue performance by increasing

the risk of fatigue cracks initiating from the surface. Surface conditions of shot and laser

peened Pyrowear 53 steel were investigated to assist the process optimization for desired

residual stress and surface conditions.

4.3.1. Surface roughness

Surface roughness of shot and laser peened Pyrowear 53 cylinders was analyzed using

interferometry. Sample tilt and curvature were corrected during the measurement. Before

peening treatment, cylinders were ground to a RMS roughness of 4 microinch (0.1016

µm). Surface maps, line scans and 3D tomography were also carried out for Pyrowear 53,

shown in Fig. 4.9 and Fig. 4.10. Crater-like 10 µm wide dimples were observed on the

shot peened surface, showing the foot prints of the shots. Comparison between surface

roughness before peening, after shot peening and after laser peening is shown in Table 4.3,

which suggests that a worse surface condition was produced by laser peening. This was

not anticipated since many researchers reported that surface roughening was alleviated

by using laser peening instead of shot peening. It is implied that laser peening does not
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necessarily provide a smoother surface than shot peening. For desired surface roughness,

optimization is needed.

Table 4.3. Comparison of surface roughness before and after peening for
Pyrowear 53

Pyrowear 53 Before Peening After Shot Peening After Laser Peening
RMS roughness (µm) 0.1016 0.31 0.40
Average roughness (µm) - 0.25 0.32

Figure 4.9. Surface conditions of shot peened Pyrowear 53 a) surface map;
b) line scan along x, y axes; c) 3D tomography

4.3.2. Surface defects

Surfaces of shot and laser peened Pyrowear 53 were also observed using SEM to identify

any possible defects. As displayed in Fig. 4.11, both shot and laser peened surfaces

presented crossed grinding marks. Dimples due to shot bombardment were observed and
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Figure 4.10. Surface conditions of laser peened Pyrowear 53 a) surface map;
b) line scan along x, y axes; c) 3D tomography

a few large ones took place where horizontal and vertical grinding marks intersect. On

the laser peened surface, craters linked together and formed a semi-continuous network.

Most craters aligned well with the laser scanning direction (y direction), indicating they

were caused by laser spot overstrike. Slight surface melting may be also involved during

laser peening, promoting network formation. Undesired conditions of the laser peened

surface indicated that the laser energy was set too high during the peening process.

Observation of the cross section of shot peened Pyrowear 53 revealed several micro

cracks and micro notches near or on the surface, displayed in Fig. 4.12. Micro cracks

were believed to initiate from the location of maximum shear stress produced during shot

bombardment.
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Figure 4.11. SEM images of shot and laser laser Pyrowear 53 surfaces a)
shot peened; b) laser peened

Figure 4.12. Cross section SEM images of shot peened Pyrowear 53 a) micro
cracks; b) micro notch

Surface conditions were deteriorated by both shot and laser peening and thus the

fatigue performance was likely downgraded. It is possible to optimize peening processes

for a smoother surface with less defects. However, this objective conflicts with the goal

of achieving maximum residual stresses. Thus a tradeoff must be made when applying

peening treatments to improve material fatigue performance. The ultimate optimization

may involve final removal of a shallow damage layer after high intensity peening.
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4.4. Achieved residual stress and surface conditions in C61,C67

4.4.1. Surface residual stresses in C61, C67

Shot peening was applied to C61 steel through a proprietary process developed by Metal

Improvement Company, Inc. Both experimental alloy and gear products were treated.

Achieved surface residual stresses were measured using the conventional X-ray technique

and results are listed in Table 4.4. Data for gears is provided by the doctoral research

of Dr. Benjamin Tiemens at Northwestern University. Due to the high surface hardness

of C67, it was treated by laser peening using the proprietary process provided by Laser

Peening Technologies, Inc. Here, -1.3 GPa and -1.4∼-1.5 GPa are achieved on the surface

of C61 and C67, respectively. Variation in surface residual stress suggests the need for

further process optimization.

Table 4.4. Achieved surface residual stresses in C61, C67 steels

Steel Treatment Surface Residual Stress (MPa)
C67 Rod laser peening Axial: −1463± 53 Hoop: −1362± 4
C61 Rod shot peening Axial: −1309± 10
C61 Gear 1 shot peening −1234± 14
C61 Gear 2 shot peening −1151± 21
C61 Gear 3 shot peening −1054± 7

In addition, to investigate the effects of shot on residual stresses, experimental C67

pucks were shot peened under three peening conditions. Peening media and intensity

are tabulated in Table 4.5 as well as the resulting surface residual stresses. Peening

intensities are chosen by Metal Improvement Company in Addison, Illinois, according to

selected shots, desired surface residual stress and compressive depth. Two runs of single

peening and one run of dual peening were performed. Comparison between results of
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two single peening runs showed the effect of shot size on surface residual stress. In run

I, large shots were used with higher peening intensity but lower surface residual stress

resulted. That could be explained by the ball-surface contact mechanics. A large ball

would lead to a greater depth of maximum shear stress, a higher maximum shear stress

and a lower surface stress than a small ball. Consequently, it was expected that a lower

surface residual stress, a higher maximum residual stress and a greater compressive depth

were obtained by using large shot. The benefit of using dual peening is clearly shown

by resulting surface residual stress, which was largest among three runs of shot peening.

However, the achieved 988± 10 MPa compressive surface residual stress did not meet our

expectation of 1400∼1500 MPa for C67. This we believe is because the shot hardness

(62∼64 Rc) is lower than the surface hardness of C67. Thus laser peening is proposed

instead. As dual shot peening generates a large surface residual stress and a great depth,

dual laser peening is proposed for further peening optimization.

Table 4.5. Shot peening conditions for C67 and resulting surface residual stresses
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4.4.2. Surface conditions in C61, C67

Surface maps of C61 and C67 are displayed in Fig. 4.13, revealing both surface roughness

and morphology. Comparison between C67 surfaces before and after laser peening showed

an absolute roughness increase by laser peening. Resulting surface roughness in laser

peened C67 is higher than that in shot peened C61. Noting that C67 has a higher surface

hardness than C61, it can be expected that with identical laser peening processing, the

laser peened C61 surface would be much rougher than shot peened C61. Thus in this case

laser peening does not provide a smoother surface than shot peening.

As surface roughness of C67 was increased substantially, the case microstructures of

C67 before and after laser peening were observed using scanning electron microscopy

(SEM) to study the effect from laser peening (4.14, a lighter Nital etching in b)). No

microstructure change was identified under SEM. Complementary hardness profiles were

measured to help probe the possible change in dislocation structure and density. Results

showed no detectable hardness variation, indicating a fairly stable dislocation structure

and density during laser peening.

4.5. Non-destructive analysis of residual stress distributions for high

strength gear steels

4.5.1. Research goals

To analyze residual stress distributions in gear steels with large composition and property

gradients, a non-destructive synchrotron technique is desired for specimen intactness and

measurement accuracy. The first goal of the research is to develop a non-destructive

technique using synchrotron radiation and to demonstrate its effectiveness in measuring
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Figure 4.13. Surface maps of peening treated C61 and C67 a) shot peened
C61; b) laser peened C67; c) not peened C67

residual stress distributions. The second goal is to study residual stress distribution

and its evolution during an NTN rolling contact fatigue (RCF) screening test for three

steels (Pyrowear 53, Ferrium C61 and C67), which were processed differently either by

shot peening or by laser peening for performance enhancement. The third goal is to

understand materials response in this RCF test with extreme 5.4 GPa Hertzian pressure.

Finally, results are expected to illustrate issues regarding the RCF test itself and to direct

the process optimization for desired residual stress and enhanced fatigue strength. Further

details can be found in [81, 82].

4.5.2. Technological aspects

The principles of residual stress analysis using a high energy synchrotron transmission

technique was briefly introduced in Chapter 3. Because the cylindrical specimen is too

long (76.2 mm in length), synchrotron radiation can only penetrate the specimen per-

pendicularly to the cylinder axis. To determine required radiation energy, the desired

penetration depth was first calculated. Since all specimens are carburized steels with a
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Figure 4.14. Case microstructure of C67 before and after laser peening a)
before b) after laser peening

case depth of about 1 mm, it is desired to measure the residual stress at the depth of 1

mm below the cylinder surface. As illustrated in Fig. 4.15, |AC| represents the greatest

depth at which we would like to measure residual stress. Thus the pass length of radia-

tion, t, equals |BD|. With |AC| = 1mm and a diameter of 9.525 mm, the pass length of

radiation t = |BD| = 2 ×
√
r2 − (r − |AC|)2 = 5.84mm. For successful data collection

and reading, the required transmission, T, is at least 5%. The following relation between

transmission and pass length holds: T = exp(−µE × t), where µE is element absorption
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coefficient at energy E. With known T and t, µE can be calculated as 0.5mm−1 in this

case. From µE, the energy level is backed out since µE is inversely proportional to E3.

In this study, 76 keV is needed for the radiation to pass through a length of 5.84 mm in

steels.

Figure 4.15. Pass length of synchrotron radiation

Along with 76 keV high energy radiation, a cryogenically cooled bent double-Laue

monochromator was used to provide over ten times more flux than a flat-crystal monochro-

mator at the same energy without increasing the energy width (∆E/E ' 10−3) [83]. By

using the advanced refractive X-ray lenses, the beam can finally be focused to 20×20µm2

for a high spatial resolution [84].

Due to the existence of carbon content and strengthening dispersion gradients in the

specimens, a local three dimensional gauge volume needs to be confined for the distribution

analysis of residual strain or stress. In the past, slit-imaging has been used for this purpose

for the bulk of polycrystalline materials, such as a shot-peened Al sample [85]. An imaging

slit was placed behind the sample and the longitudinal spatial resolution was defined by

the size of the slit. However, this usually leads to very slow data acquisition since only
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one reflection from one gauge volume is recorded at a time. To be able to define a 3D

gauge volume and accelerate data acquisition, a novel device, the conical slit, has been

developed [71]. The conical slit (CS) is a two-dimensional slit, allowing simultaneous

strain measurement in two directions. It is designed and positioned in such a way that

Debye-Scherrer diffraction cones of a specific symmetry group at a determined energy

would pass and finally reach the two-dimensional detector. Multiple reflections would be

recorded simultaneously. The size of conical opening is determined from diffraction rings

of an ideal powder material at a chosen energy. Higher spatial resolution can be achieved

by choosing a smaller opening. In Fig. 4.17, the resolution along the z axis is determined

by the projection of the gap size δ of CS according to the relation δz = δ/tan(2θ).

Resolutions along the other axes, δy and δx, are defined by the beam size. Thus a three

dimensional gauge volume is well defined, providing an accurate locating of the irradiated

volume. By utilizing the conical slit, Martins et al. successfully measured the residual

strain distribution along the radius of a deformed torsion cylindrical sample [86]. Thus

we believe it is appropriate to apply the conical slit technique to our analysis.

The combined usage of the micro-beam and the conical slit in this measurement pro-

vided a high spatial resolution. However, the resulting diffraction volume is so small that

the diffracted grains could be too few to constitute valid statistics. To solve this problem,

a sample oscillation method developed by Lienert et al. [72] was employed in this study.

A specimen rotation stage was used to enable the rotation of the cylindrical polycrys-

talline specimens besides the x, y and z motions. At each depth, the specimen rotates

continuously at a certain speed while the area detector is recording diffraction. Thus,
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the number of illuminated grains increases and diffraction information averaged over a

sufficiently large number of grains can be obtained.

The depth resolution of the measurement depends on the beam size as well as the

eccentricity of the specimens. With zero eccentricity, the depth resolution is δy0 = 10µm

since the beam size is 20x20µm2. With eccentricity δeccen, the final depth resolution is

δy =
√
δy0

2 + δeccen2. The measured eccentricity and resulting dept resolution for each

specimen are tabulated in Table 4.6.

Table 4.6. Eccentricity in specimens

Steels Delta eccen (µm) Delta y (µm)
C61 Shot Peened 12.5 16
C67 Laser Peened 10 14
C67 Ground 10 14
Pyrowear53 Shot Peened 20 22
Pyrowear53 Laser Peened 10 14

4.5.3. Experimental procedures

The non-destructive measurement of residual strain or stress depth distributions was per-

formed at the 1-ID Beam Line at the Advanced Photon Source (APS), Argonne National

Laboratory. The measurement was instructed by Dr. Jonathan Almer from APS. Dr.

Benjamin Tiemens also participated in the experimentation. The schematic experimental

setup in Fig. 4.16 shows the general idea of the measurement utilizing micro-size high

energy radiation in transmission mode. The specimen was oriented such that the cylinder

axis is perpendicular to the beam. This is because the beam can only penetrate the speci-

men along the z direction. With this orientation, both axial and radial strain components

can be detected simultaneously.
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The detailed top and side views of the experimental setup are shown in Fig. 4.17. In

the top view, x is defined as the cylinder’s axial direction and y points perpendicularly

out of the paper plane; z is the beam direction. A 20 × 20µm2 micro-beam at 76 keV

(wavelength λ = 0.16Å) in the transmission mode was adopted. The conical slit was

mounted between the specimen and the area detector to define a longitudinal gauge

length of 100µm, generating a diffraction volume of 20× 20× 100µm3. The conical slit

also allows diffraction over a plane encompassing (nearly) axial and normal directions to

be collected simultaneously by the detector. Specimens rotated at least 360◦ during the

exposure when diffraction was recorded. After 1s exposure, specimens moved along the y

direction to the next depth position. Diffraction of standard CeO2 powder was first taken

to calibrate the position of the beam center and the distance between the specimen and

the detector.

The hoop strain information will not be obtained in this setup. To collect hoop strain

information, the specimen must be tilted within the xz plane and form an angle with

the x axis. This could be accomplished, however, with an increased difficulty in beam

alignment, data analysis and data interpretation. Given the fact that shot and laser

peening induce mainly biaxial stresses, and the magnitude of hoop stress is usually equal

to that of axial stress, we assume that hoop strain is equal to axial strain. Thus no

specimen tilt was carried out in this study.

Diffraction from regions away from wear tracks (’untested’) and under wear tracks

were both collected. The X-ray beam was precisely positioned at the center of wear

tracks, which could not be accomplished in the conventional X-ray lab since the beam
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Figure 4.16. Schematic experimental setup of non-destructive residual
stress distribution analysis using synchrotron radiation

Figure 4.17. Detailed top and side views of non-destructive residual stress
distribution analysis using synchrotron radiation a) top view b) side view

size itself is close to the track width. The information from wear tracks contain the

averaged diffraction from both tracks and fatigue spalls located in the tracks.
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4.5.4. Results and discussion

4.5.4.1. Diffraction pattern. Seven BCC reflections from the martensite matrix of

three steels were first recorded without the conical slit. Shown in Fig. 4.18 is the pattern

of laser peened C67 with each peak labeled. A similar pattern was observed for shot

peened C61 (not shown). No austenite peak was found. Martensite peak splitting was not

observed, indicating the relief of lattice distortion during tempering. With the presence of

the conical slit, only four BCC peaks (200), (211), (220) and (222) were still visible. Debye

diffraction rings were partially blocked by the conical slit (Fig. 4.19(a)). Diffraction rings

in Fig. 4.19(a) became distorted, implying the existence of residual strain, which can

be clearly observed in Fig. 4.19(b) where the lines converted from diffraction rings were

not straight any more. The diffusion scattering recorded by the detector, displayed as the

white regions in Fig. 4.19(b), were carefully removed in the data analysis. The (211) peak

was selected for all analysis because of its least anisotropic effect on elastic constants, its

second largest intensity and its relatively large radius of the diffraction ring. Analysis of

multiple diffraction peaks will further improve the measurement accuracy. However, one

peak analysis is more favorable herein for the simplicity and the good enough accuracy.

4.5.4.2. Residual strain. To extract strain tensors from the diffraction, angle and ra-

dial positions of each point on diffraction rings (η, r) were worked out by fitting rings

to Pseudo-Voigt functions. Results of shot peened C61 and laser peened C67 are shown

in Fig. 4.20. For each depth, the radial position r maximizes at η = 0◦, 180◦ and 360◦

while the minima occur at η = 90◦ and 270◦, which indicates that the axial strain is

compressive while the radial strain is tensile. This is based on the fact that larger radial

position corresponds to larger 2θ and smaller d-spacing. In the first quadrant of 360◦,
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Figure 4.18. Typical diffraction pattern of laser peened C67 without the
conical slit

Figure 4.19. (a) Diffraction pattern with conical slit (b) Transformed
diffraction pattern in azimuth and radius r Cartesian coordinate, showing
the distortion caused by residual strain.
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radial position at 0◦ reached a maximum for the depth of 0 or 25µm and then gradually

damped as the depth increased, which implied that the largest axial compressive strains

occurred on the surface or subsurface. Radial position at 90◦ first decreased as the depth

varied from zero to 100µm but then rose up quickly for greater depths, which indicated

that there was a maximum in radial tensile strains. For the depth greater than 1.1 mm,

there was almost no difference in radial positions except small perturbations. At that

point both axial and radial strains are quite small and very close to zero. Therefore, one

way to determine the strain-free radial position, r0 in Eq. 3.13, is to take the mean of

the radial positions over 360◦ at the largest depth. However, in the case of laser peened

C67, the depth where zero residual strain occurs was not reached and thus another way

to determine strain-free radial position was adopted.

For laser peened C67, it is noted in Fig. 4.20 that in the first quadrant, radial position

curves crossed each other at a common (η∗, r∗) point. Especially at depths above 1.1 mm

the curves varied around r∗. Given that the strain status varied from pure compressive to

pure tensile as η increased, there must be an azimuth value where the strains reached zero.

That azimuth value was found to be η∗. The corresponding radial position, r∗ would

be the strain-free value. The r∗ has already taken into account the effect of material

composition gradient on the strain-free d-spacing and should be a true representation

of r0. Analysis for laser peened C67, shot and laser peened Pyrowear 53 was based on

choosing an appropriate r∗ as r0. For shot peened C61, both methods of determining r0

generated similar results.

Ideally, radial position curves in the second quadrant are expected to be symmetric

to those in the first quadrant about η = 90◦. Curves in the third and fourth quadrants
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Figure 4.20. Radial positions versus azimuth in a) shot peened C61 and b)
laser peened C67
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should repeat patterns in the first and second quadrants. However, such symmetry is not

observed in the case of laser peened C67. This is believed to be due to the differential

absorption resulted from asymmetric positioning of the specimen with respect to the

conical slit [87]. The extent of non-symmetry was alleviated as the depth increased.

During strain extraction, correction was made for laser peened C67, as shown in Fig.

4.21.

Figure 4.21. Corrected radial positions for laser peened C67

The macro-strain of the steel is represented by the micro-strain in the martensite phase

measured from martensite peak (211) since the volume fraction of retained austenite is

too small to be detected. Three strain components, ε11(axial strain), ε22(radial strain)

and ε12(shear in plane), were solved using Eq. 3.14 with the biaxial strain model (ε13 =

ε23 = ε33 = 0). Depth distributions of three residual strain components for the untested

region in shot peened C61 are shown in Fig. 4.22. Also displayed is the axial strain for

the wear track. Since the measurement was performed along the principal axes, the shear

strain component is negligible. Radial strain represents the extent of lattice distortion
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along the radius, which is much less than the axial strain as peening mainly induces axial

strain. Because the radial direction is mostly parallel to the direction of the fatigue crack

propagation, the radial stress and strain are much less important than the axial and hoop

stress and strain, as the direction of the latter is perpendicular to the crack propagation

path. Also the assumption that the hoop strain is equal to the axial strain holds for shot

peening and laser peening. Thus only axial residual strain profiles are displayed for other

steels. The uncertainty in the depth caused by the eccentricity is summarized in Table

4.6. For easy graph reading, the errors in depths are not plotted.

Figure 4.22. Residual strain of untested region in shot peened C61

Depth distribution of axial strains for both the untested region and wear track are

plotted in Fig. 4.23 for laser peened C67, shot and laser peened Pyrowear 53. Also plotted

is the axial strain for the untested region in ground C67 (unpeened). Large compressive

axial strains were observed near the surface in both C61 and C67 steels, indicating the
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comparable effectiveness of shot peening and laser peening. The compressive strains then

gradually decrease to zero as the depth increases. However, zero strain isn’t shown in laser

peened C67 because our measurement didn’t reach sufficient depth. In Pyrowear 53 steel,

much larger axial residual strain was produced by laser peening than by shot peening,

suggesting laser peening can be more effective than shot peening when appropriately

conducted.

It is noted that the maximum compressive strain occurs on the surface in shot peened

C61 while at the subsurface in laser peened C67. This is quite normal since the location

of the maximum compressive strain can be tuned by adjusting the peening parameters.

It is also evident that the compressive depth is greater in laser peened C67 than that in

shot peened C61. Although the total compressive depth results from the combined effects

of carburizing, heat treatment, grinding and peening, it is reasonable to deduce that the

compressive depth caused by laser peening is generally greater than that by shot peening

because peening is the dominating factor. The fact that C67 is harder than C61, i.e.,

more difficult to be peened, further supports this reasoning.

4.5.4.3. Residual stress. Residual stresses were computed using Eq. 4.2 based on the

assumptions that the material is isotropic and the hoop strain is equal to axial strain

(ε33 = ε11). In Eq. 4.2, δij is the Kronecker’s delta function, S1 and S2/2 are X-ray

elastic constants. The calculated axial residual stress profiles (σ11) for untested regions

and wear tracks in shot peened C61, laser peened C67, shot and laser peened Pyrowear

53 are presented in Fig. 4.24.

σij =
1

S2/2

[
εij −

S1

S2/2 + 3S1

δijεkk

]
(4.2)
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Figure 4.23. Residual strain in a) ground and laser peened C67 b) shot and
laser peened Pyrowear53
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Figure 4.24. Axial residual stress distributions in a) shot peened C61 b)
ground and laser peened C67 c) shot and laser peened Pyrowear53

Large compressive residual stress of -1.4 or -1.5 GPa was found near the surface in

untested regions of C61 and C67 steels, suggesting the potential of the two peening tech-

niques in generating compressive residual stresses. By optimizing the peening process,

surface residual stress, maximum residual stress and its location can be fine tuned to sat-

isfy application requirements. Measured surface axial stresses agree well with results from

the conventional laboratory X-ray method (-1.31 ∼ -1.47 GPa). After reaching maxima,
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compressive residual stresses decreased rapidly at 100 to 200µm depth and then slowly

decreased to the minimum. The greater compressive depth formed in laser peening indi-

cates that laser peening would be more favorable for subsurface fatigue resistance. Due to

limited depths probed, the expected tensile residual stress in the sample center, balancing

compressive residual stress in the case, was not shown in the graphs.

The response of residual stress to the extreme cyclic contact load (5.4 GPa in RCF test)

were investigated by measuring the depth distribution of axial residual stress under wear

tracks, shown by the blue symbols in Fig. 4.24. At cycle N = 4 × 106, surface residual

stress relaxation was observed in both the C61 and C67 steels. In shot peened C61,

surface stress decreased from 1400 MPa to 700 MPa, approximately 50%. The relaxation

in laser peened C67 was about 15% likely because C67 is more capable of retaining residual

stresses due to its higher surface hardness. Residual stress relaxation was not observed

at subsurfaces. Instead, it was maintained at the depth of 25µm in both steels and

then increased until the maximum was reached. Thus a larger maximum of compressive

residual stress was formed at a greater depth after cyclic contact loading. This building

up of compressive residual stresses inside steels was due to the severe compression during

the contact, which is supported by the fact that the position of the maximum residual

stress, 100µm, agrees well with the calculated location of maximum shear stress in the

contact, 98µm. The evolution of residual stress implies that the stability of beneficial

compressive residual stresses under cyclic loading needs to be taken into account when

considering fatigue performance.

4.5.4.4. Diffraction peak breadth. The mean of full width at half maximum (FWHM)

of the martensite (211) peak over the entire diffraction ring was extracted from diffraction
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and plotted versus the depth for untested regions and wear tracks in all steels, shown in

Fig. 4.25.

Figure 4.25. Mean (211) peak FWHM in a) shot peened C61 b) laser peened
C67 c) shot and laser peened Pyrowear53

In untested regions, the martensite (211) peak broadens in the carburized and peened

case (from surface to 1.2 mm depth) for all steels, which results from the combination

of intrinsic martensite peak broadening and micro-strain broadening induced by peening.
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The location of maximal peak breadth (75∼120µ m) for all steels matches the position of

maximum shear stress produced in shot and laser peening if peening is treated as dynamic

compression contact. Due to the greater compressive depth formed in laser peening than

in shot peening, peak broadening took place within a wider depth range in laser peened

steel (0∼700µ m) than in shot peened steel (0∼500µm). At the 106 cycle in the RCF test,

the (211) peak sharpens significantly from the depth of 75∼100µm in all steels, shown by

the blue symbols in Fig. 4.25. Provided that the RCF test and peening both generate

compressive contact, it is assumed that strain broadening would not be reduced much. It

was reported that in conventional hardening steels (such as Pyrowear 53), martensite could

decay to ferrite under high cyclic contact loading although the transformation was not

thermodynamically favorable [88, 89]. Thus the reduction of peak breadth in Pyrowear

53 is mainly due to the alleviation of martensite peak broadening, possibly associated with

the transformation from martensite to ferrite. However, for the C61 and C67 secondary

hardening steels, the tempered martensite matrix was very stable and such decay was not

expected to occur. Instead, carbide dissolution was reported to be possible. Micrographs

were taken to help understand the FWHM change in C61, C67 steels.

It is noted that the matrix FWHMs for shot and laser peened Pyrowear 53 do not

match with each other. Although the reason has not been identified, the general trend

that peak width reduces after the RCF test still holds.

4.5.4.5. Microstructure evolution. The optical images of cross sections beneath an

untested region and a wear track in laser peened C67 were taken to investigate the mi-

crostructure evolution during the cyclic contact loading, shown in Fig. 4.26.
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Figure 4.26. Optical micrograph of cross section under a) an untested region
b) a wear track in laser peened C67

Comparison between these two optical images presents a clear microstructure change

during cyclic contact loading. In the untested region, the material displays a homogeneous

lath martensite structure, except a mix of lath and very fine plate martensite in the

first 50µm depth. From 50µm to 200µm under a wear track, dark lath martensite was

replaced by bright regions, shown in Fig. 4.26(b). This could be due to either ferrite

transformed from martensite or carbide dissolution under extremely high contact load.

More microstructural evidence is needed to specify the mechanism. At this point, carbide

mechanical dissolution was propsed to be the reason. The fact that this zone falls within

the maximum shear stress region of the RCF test (maximum shear stress depth: 98µm)

indicated that the microstructure change is associated with the extreme compression in

the RCF test. At greater depths, dark etching areas were observed to extend to 700µm.

The depth of the entire microstructure alteration zone also matches the width of the

peak sharpening region in Fig. 4.25(b). Therefore it can be concluded that it was the

microstructure change displayed in Fig. 4.26(b) that caused the reduction in peak width.
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4.5.5. Summary

A non-destructive synchrotron radiation technique was successfully implemented and ap-

plied for the first time to the analysis of residual stress distribution and its evolution in

carburized steels with large composition and property gradients. One of the most impor-

tant features in this measurement is the usage of the conical slit. It allows the confinement

of a 3D gauge volume (20× 20× 100µm3). The longitudinal gauge length can be varied

between 100 to 200µ m by adjusting the distance between the sample and CS. The com-

bined usage of the conical slit and the area detector can accelerate data collection easily

by 20 or more times.

4.5.5.1. Advantages of synchrotron radiation technique. The synchrotron and

conventional X-ray techniques have reached good agreement on the measured surface

residual stress values. Although the laboratory X-ray technique is much more easily

accessed, the non-destructive nature of the synchrotron radiation technique makes it more

favorable to measure residual stress depth profiles when the intactness of specimens is

required for subsequent evaluations. This technique can be employed to assist process

optimization for residual stress generation and screen out candidates for contact and

bending fatigue testing. Moreover, the non-destructive nature enables the unique ability

to precisely evaluate residual stress profiles under wear tracks, which is not possible using

conventional laboratory X-ray techniques. The synchrotron radiation measurement is

much faster than the laboratory X-ray method since multiple reflections can be recorded

in seconds by using an area detector and the material removal step can be eliminated.

Without layer removal correction, the accuracy is also improved. Moreover, a high depth
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resolution of 25µm was achieved in our measurement by utilizing the 20× 20µm2 micro-

beam. High spatial resolution also enables us to investigate possible gradients in the

strain and microstructure.

4.5.5.2. Conclusions to non-destructive residual stress distribution analysis.

The non-destructive residual stress analysis using synchrotron radiation was successfully

implemented and performed for shot or laser peened high strength gear steels. The mea-

surement demonstrated that the high energy X-ray transmission technique is suitable

and efficient in exploring residual strain/stress and microstructure non-destructively. It is

also quite effective to investigate in-situ material response to the cyclic loading by probing

strain/stress and microstructure under wear tracks. Large residual stresses of -1.4∼-1.5

GPa near the surface in C61 and C67 steels show that shot and laser peening are both

effective in producing beneficial residual stresses. The greater compressive depth obtained

in laser peening indicates that laser peening is more favorable for subsurface fatigue resis-

tance. Surface residual stresses relax in both C61 and C67 steels after the RCF screening

test, which needs to be taken into account when considering fatigue life from the combined

effect of applied stress and residual stress. The material microstructure also significantly

alters during cyclic contact loading, which is supported by the peak sharpening after the

RCF test and cross section micrographs under wear tracks. Carbide mechanical disso-

lution is proposed for this microstructure change under extremely high Hertzian contact

stress. Residual stress relaxation and microstructure change under extremely high contact

load of 5.4 GPa suggest that this extreme RCF test is not a good indicator for the normal

service life.
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These results, together with measurements on other processed specimens, can guide

and accelerate process optimization to achieve the most suitable residual stresses for

selected applications.
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CHAPTER 5

Conceptual material and process design for an

ultrahigh-strength gear steel - CryoForm 70

5.1. Design background and motivation

Several Ni-Co secondary hardening steels have been successfully designed using the

systems approach, including Ferrium C67. The achievement of 67 Rc surface hardness

endows the steel with excellent contact fatigue strength and wear resistance. C67 was

demonstrated to be one of the best performing steels in auto racing applications [90]. How-

ever, a surface hardness of 69 Rc was desired when the design was initiated. Since higher

surface hardness enables the further increase in contact and bending fatigue strength, re-

designing an ultrahigh-strength gear steel with surface hardness of 69-70 Rc was brought

forward. Moreover, as shown in Chapter 4, higher hardness allows higher compressive

residual stress to be obtained, which further benefits the fatigue performance. We can

also assess the feasibility of utilizing current hardening theory for the design, and explore

the theoretical limit of achievable surface hardness. This design was also motivated by

the gear industry vision of reaching surface hardness of 70 Rc in the near future. During

the design, C67 steel and its variations will be referred to when setting design objectives

and parameters.

Utilizing secondary carbides M2C for strengthening, the design requires high carbon

and alloying element concentrations. A low case Ms is anticipated for the desired case
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hardness. However, mechanical deformation has been demonstrated to effectively trans-

form retained austenite to martensite in low Ms high alloy steels. More transformation

is expected with simultaneous cryogenic treatment due to the combination of mechanical

and thermal martensite transformation driving force. A novel process of Cryogenic De-

formation is proposed to promote martensite transformation in low Ms high alloy steels.

Thus the other goal of this design is to evaluate the feasibility and effectiveness of cryo-

genic deformation process. Designed for higher surface hardness and for the exploitation

of cryogenic deformation process, the new steel is named CryoForm 70, where 70 speci-

fies the desired case hardness of 70 Rc and CryoForm stands for Cryogenic Deformation.

Details regarding this process development are given in Chapter 7.

5.2. Design objectives

As the design goal is to improve the surface hardness from current 67 Rc to 69-70 Rc,

the design objectives of the new steel is determined based on the achieved steel properties

in Ferrium C67. Properties of Ferrium C61 are also compared.

5.2.1. Case property objectives

The top two performance attributes desired in CryoForm 70 include fatigue and wear

resistance. Bending and contact fatigue failure are dominating failure modes in gears.

Under high pressure gears wear out rapidly. Both contact fatigue strength and wear

resistance improve as the surface hardness increases. Thus a surface hardness of 70 Rc

(1076 Hv) is desired. With this hardness, the steel is expected to present a contact fatigue

strength of 1800 ∼ 2200 MPa, according to the extrapolation made to the hardness of
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1076 Hv, as shown in Fig. 5.1. In addition, a surface or maximum compressive residual

stress of 1.9 to 2.1 GPa is anticipated based on the correlation between residual stress and

hardness (explained in Chapter 4). Associated with this hardness objective, it is desired

the driving force of M2C carbide strengthening dispersion be maximized. A martensite

matrix is also required to provide the desired dislocation structure on which M2C carbides

nucleate.

Figure 5.1. Desired contact strength for CryoForm 70

Ferrium C67 has shown an excellent hot hardness at elevated temperatures. Since

the same hardening mechanism is applied in the CryoForm 70 design, this new steel is

expected to possess a high hot hardness as well.
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5.2.2. Core property objectives

An appropriate hardness gradient in secondary hardening steels is desired for a smooth

transition in structure and properties. A core hardness of 500 Hv is needed to support the

case, prevent core crushing under high load and provide necessary toughness. A fracture

toughness of 50∼75 ksi
√
in is required to tolerate an acceptable critical flaw size at this

core hardness. A Ms of 350 ◦C or higher is desired for lath martensite formation. The

brittle sigma phase was observed in the C69 core. Thus it is desired to limit the driving

force of sigma phase to avoid its precipitation during tempering. Design objectives for

CryoForm 70 are summarized in Table 5.1.

Table 5.1. Design objectives for CryoForm 70

5.3. Design approach

Compared to the conventional strengthening mechanism utilizing transition Fe2.4C ε

carbides, secondary hardening mechanism can provide higher efficiency. With only 0.5wt%

carbon, a 60 Rc hardness can be obtained with secondary hardening, while 0.9wt% car-

bon is needed for comparable hardness using the conventional strengthening mechanism.
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Based on the relationships between process/structure and property/performance of sec-

ondary hardening gear steels, a system design chart was prepared to guide the material

and process design of CryoForm 70.

5.3.1. System design chart

The system design chart for CryoForm 70 is presented in Fig. 5.2. From the left to the

right, this chart itemizes each process step, the hierarchial subsystems of material struc-

ture and prioritized properties and performances. Arrows indicating cause-effect relations

are drawn from process steps to material structure and to properties and performances.

In most cases, a cause results in multiple effects and an effect results from several causes.

Thus the system design chart shows the network of all cause-effect links. A brief intro-

duction to the processing will be given below. Material structure will be elaborated in

the next section.

For the easy commercialization of CryoForm 70, a standard industry processing line is

adopted. The processing starts with the ingot or other forms of core material, followed by

simultaneous carburization and solution treatment. Quenching and cryogenic treatment

are performed subsequently to form the case martensite matrix. Final tempering allows

the strengthening dispersion to precipitate. To allow use of compositions that can not be

fully transformed to martensite by cooling alone, a unique process of cryogenic deforma-

tion between cryogenic treatment and tempering is developed for CryoForm 70 to achieve

the desired martensite matrix for maximized strengthening effect. After tempering, a shot

peening step is conducted to enhance beneficial residual stresses.
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Figure 5.2. System design chart for CryoForm 70
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5.3.2. Core microstructure

5.3.2.1. Matrix. Ni-Co secondary hardening steel systems were selected for the design

of CryoForm 70 due to their superior strength, toughness and extraordinary fatigue per-

formance. The matrix of a Ni-Co secondary hardening steel is composed of tempered

lath martensite with Ni and Co in solid solution. The martensite structure is gener-

ated when the steel is quenched from the parent austenite phase. Along with martensite

transformation, a high density dislocation is produced and provides high strength and

resistance to crack propagation. Among two morphologies of martensite, lath martensite

provides higher strength and toughness than plate martensite and thus is more desirable.

To maximize the formation of lath martensite, a Ms temperature of at least 300 ◦C is

required. Past research has shown that a higher Ms has already been realized in Ferrium

C61 and C67 steels. Thus to promote lath martensite formation in the core, the core Ms

for CryoForm 70 is desired to be 350 ◦C.

Ni helps improve cleavage resistance in the martensite matrix. Tempered martensite

matrix has a distorted BCC structure with c axis elongated and tends to fracture on

(100) planes. Using quantum mechanical methods, it was reported by Krasko and Olson

that the presence of Ni at or near the surface increases the surface energy of Fe on (100)

planes [91]. This surface energy increase results from the increase of the ferromagnetic

term contributing to the total surface energy. Thus the energy for the brittle separation

on (100) planes rises.

Co is the element hindering dislocation recovery in the matrix [92]. Dislocation den-

sity and structure are quite important for the precipitation of fine M2C strengthening

carbides. A fine carbide dispersion not only strengthens the matrix efficiently but also
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promotes higher toughness. M2C carbides nucleate heterogeneously on dislocations, grain

boundaries and ferrite/martensite interfaces. To ensure a fine carbide dispersion, a high

dislocation density is needed at early tempering times to provide a large concentration

of nucleation sites. However, self-diffusion of Fe leads to dislocation climb, which aids

dislocation recovery. The addition of Co can increase the short-range ordering, which

reduces the self-diffusion of Fe. Thus Co acts as an inhibitor to dislocation recovery and

promotes the fine precipitation of M2C carbides.

5.3.2.2. Strengthening dispersion. The strengthening dispersion employed in Ni-Co

secondary hardening steels are M2C carbides. As W is a slow diffusing element, it will

not be considered in our design. M2C carbides precipitate during stage IV tempering

in the temperature range of 400 ∼ 600 ◦C. Before they precipitate, most of the carbon

is partitioned in the cementite phase Fe3C, a coarse dispersion detrimental to fracture

toughness and limiting the achievable strength. Fe3C is kinetically favorable as only

carbon diffusion is needed for its formation. Fortunately, it is less stable compared to M2C

carbides. As M2C precipitation continues, Fe3C gradually dissolves. More stable carbides

M6C and M23C6 will precipitate when tempering is extremely prolonged. The presence of

these carbides causes toughness loss as they precipitate incoherently on interfaces. Thus

an optimum tempering time is desired to fully dissolve the cementite phase but form only

M2C carbides.

The mechanism of strengthening relies on how these particles interact with dislocations

in the matrix. When a dislocation meets with a particle, it will either shear through the

particle or bypass it by bowing. When the particle is small so it still keeps its coherency

with the matrix or the particle is soft - having a low elastic modulus, the shear mode
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dominates. As the particle grows, the possible loss of coherency and the increase in size

make the shearing more difficult. At a critical size, the dislocation can not shear the

particle any more and it will bypass the particle by bowing around it, which is called

Orowan bypass. During the bypassing, the central part of the dislocation is pinned by

the particle but the two end segments are free to glide continuously and they combine

with each other after circumventing the particle. The combined two segments become

one, leaving a dislocation loop around the particle. The Orowan bypass becomes easier

as the particle continues to grow at a constant volume fraction. Thus, as a precipitate

grows, the strength first increases since shearing becomes more difficult with particle size

increasing. At the critical size where the transition from shearing to Orowan bypass

occurs, the strength reaches its maximum. Afterwards, the strength begins to decrease

as the precipitates coarsen. This two-stage strength evolution during particle growth is

illustrated in Fig. 5.3 [20]. Past research has shown that for Ni-Co secondary hardening

steels, peak hardness occurs at a particle radius of 1.5 nm [21]. Thus it is desired to

optimize precipitate driving force to achieve this optimal size for maximum strength.

5.3.2.3. Grain refining dispersion. Grain refining dispersions are particles undis-

solved during the solutionizing process, including carbides, nitrides and carbonitrides.

With a size scale of 0.1µm, they pin the grain boundaries to prevent grain growth during

high temperature processing and thus help promote strength and toughness. However,

one disadvantage of having these dispersions is that they can nucleate microvoids similar

to primary inclusions. Primary inclusions are usually oxides and sulfides and some rare

earth compounds. They are on the scale of 1µm, weakly bonded to the matrix and easily
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Figure 5.3. Strength evolution during precipitation as a function of particle
size with a constant volume fraction [20]

nucleate voids. Under both monotonic and cyclic loading, the existence of primary inclu-

sions accelerates the coalescence of microvoids and the ductile fracture. With clean steel

technology, primary inclusions are greatly diminished and thus grain refining dispersions

play a more important role in affecting fracture toughness. Fortunately, the grain refining

dispersions are strongly bonded to the matrix and a much greater strain is needed for

them to debond and generate microvoids. It has been reported that fine dispersions are

less likely to produce microvoids [93]. Thus fine submicrion grain refining dispersions are

desired in the design of CryoForm 70. Trace amount of titanium carbides are utilized for

this purpose.

5.3.2.4. Grain boundary chemistry. Intergranular fracture is one of the common

failure modes for high temperature materials due to the breaking of atomic bonds at
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grain boundaries. After a crack is initiated whether within the grains or along grain

boundaries, it finds its propagating route with lowest energy. If the energy to break

atomic bonds at grain boundaries is lower than to emit dislocations within grains, the

crack will propagate along grain boundaries and finally lead to the intergranular fracture.

For high strength steels, embrittlement is often associated with tempering because element

diffusion toward and away from grain boundaries during tempering can significantly alter

local compositions and the fracture characteristics at grain boundaries.

The energy needed for atomic bonds to break and grain boundary to cleave is usually

denoted as 2γ, work of separation, accounting for the energy change of two sides of the

interface. With the introduction of solute atoms to the grain boundary, the work of

separation is affected because this particular solute has the affinity of either residing at

an interface or staying at a free surface. Thus the free energy of segregation to a grain

boundary, ∆ggb, and to a surface, ∆gs, influence the work of separation according to:

2γ = 2γ0 − (∆ggb −∆gs)Γ (5.1)

2γ0 is the work of separation for a solute-free grain boundary, Γ is the impurity composition

at the grain boundary. If an element has the affinity of staying at the surface, meaning

∆ggb−∆gs > 0, the work of separation will be decreased. Thus grain boundary debonding

becomes easier and the material toughness is reduced.

Denote ∆E = ∆ggb −∆gs. Measuring ∆E for various solute elements experimentally

has had limited success. To study effects of P, S, C and B on grain boundary cohesion, Wu

determined ∆E for these elements using first principle calculations by the full potential

linearized augmented plane wave (FLAPW) method [94]. It was found that P and S
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produce positive ∆E and are grain boundary embrittlers, while C and B increase 2γ by

generating a negative ∆E and help improve grain boundary cohesion. This finding agrees

well with the experimental data of embrittlement sensitivity, which was measured as the

change in intergranular ductile-brittle transition temperature resulting from the solute

segregation to the grain boundary. Fig. 5.4 shows the correlation between theoretical

calculations and experimental results.

Figure 5.4. Embrittlement sensitivity of solute atoms

For many years, the addition of a small amount of B is known by empiricism to help

improve fracture toughness. Clean steel technology is developed to reduce the levels of P

and S. Elements La and Ce are also added to getter P and S in steels.

5.3.3. Case microstructure

5.3.3.1. Dispersion gradient. As the carbon content gradually decreases from the case

surface to the core, a gradient of strengthening dispersion is generated. The surface carbon
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content is constrained to maintain the stoichiometry with the carbide formers to ensure

only M2C carbides can form. Excess carbon results in the formation of coarse cementite

and leads to the reduction in fatigue strength [20].

The introduction of carbon drives the case Ms temperature down. The addition of

alloying elements often affect the case Ms as well. One way to increase case Ms is to

reduce the amount of Ni, which conflicts with the objective of improving core toughness.

To ensure a lath martensite structure in the case, a Ms of 150 ◦C is normally required for

high strength gear steels. However, to achieve 70 Rc surface hardness, a large amount of

carbon is needed. To allow this, the CryoForm 70 design lets the case Ms be reduced to

50 ∼ 100 ◦C. The high carbon content not only results in a mixed case matrix of lath

and plate martensite but also retains a significant amount of austenite after quenching.

Unfortunately, there is no other alternative of utilizing less carbon to achieve that high

surface hardness. Thus in the design of CryoForm 70, the key concept is to employ novel

processing is to promote martensite in the case. A special process of cryogenic deformation

is developed to minimize the retained austenite level prior to tempering.

5.3.3.2. Residual stress. Besides generating a strengthening dispersion gradient in the

case, carburizing also imparts compressive residual stress at the surface, which benefits the

case fatigue strength. The amount of this beneficial compressive residual stress is limited

by relaxation during tempering. Thus shot peening is applied to produce residual stresses

at both surfaces and subsurfaces. Compressive residual stresses help enhance fatigue

performance by retarding the fatigue crack initiation and propagation. Carburizing needs

optimization to avoid quench cracking due to improper residual stress. The optimization

of shot peening is desired to obtain beneficial residual stresses.
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5.3.3.3. Retained austenite. Retained austenite is not desired in the case since its

presence reduces the strengthening dispersion nucleation sites and decreases the achiev-

able strength. However, it is expected to exist in the case of CryoForm 70 even after

cryogenic treatment due to the high carbon content. Fortunately, it is established that

the amount retained austenite in high strength gear steels can be reduced by shot peening

[29, 30, 31, 32]. One example is shown in Fig. 2.12. The reduction in retained austenite

is due to the high Hertzian stress produced through the dynamic compressive loading

during shot peening. With sufficient shear stress applied to the habit planes, austen-

ite is transformed to martensite since this transformation is diffusionless. This behavior

provides an alternative way of taking advantage of mechanical stress to induce marten-

site transformation. An appropriate deformation process, such as shot peening, can help

minimize the retained austenite level in the case of CryoForm 70. If the deformation is

combined with cryogenic treatment, more reduction in retained austenite is anticipated.

Thus the process of cryogenic deformation is proposed prior to tempering to promote the

case martensite structure in highly alloyed compositions.

5.4. Design models

5.4.1. Driving force and martensite transformation kinetics

To promote the case martensite structure, it is necessary to look into the driving force of

martensite transformation and to explore how much martensite can be obtained with cer-

tain amount of driving force. Two major driving forces, thermal driving force and mechan-

ical driving force, are discussed herein. Theoretical predictions for resulting martensite

volume fraction is also presented.
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5.4.1.1. Thermal driving force. The thermal driving force for martensite transfor-

mation is the chemical free energy difference between martensite phase and the parent

austenite phase. This driving force is denoted as ∆Gchem. With defined steel compo-

sitions, the free energy of martensite and austenite phases can be calculated based on

thermodynamic principles.

∆Gchem = GBCC −GFCC (5.2)

Effort has been made to predict the volume fraction of martensite from the tempera-

ture difference between quenchant and Ms. Harris and Cohen, Koistinen and Marburger

estimated the martensite level for athermal transformation according to the temperature

interval below Ms, ∆T [95, 96].

f = 1− 6.956× 10−15[455−∆T ]5.32 (5.3)

f = 1− exp(−(1.10× 10−2∆T )) (5.4)

where ∆T is in ◦C. Both relationships focused on the alloys withMs > 100 ◦C. Harris and

Cohen’s equation is valid for carbon and low alloy steels, with carbon contents up to 1%.

Thus it is not intended for high alloy steels. Koistinen and Marburger’s expression was

derived from data on the amount of retained austenite in a number of carbon steels and

has not been examined over a wide range of compositions. Since CryoForm 70 is designed

for Ms < 100 ◦C, transformation kinetics for low Ms alloys were reviewed. According to

Magee [97], the volume fraction of martensite depends on the driving force gain over the

critical driving force. The critical driving force is the ∆Gchem at Ms, at which martensite

just starts forming and the volume fraction of martensite is very close to 0. Simplifying
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Magee’s expression of martensite volume fraction gives:

fmar = 1− exp(k(∆G−∆Gcrit)) (5.5)

where k is a material constant. This relationship is used to predict the martensite level

after different processes and assist the process design.

5.4.1.2. Mechanical driving force. Mechanical stress is the second source for marten-

site transformation. Olson, Tsuzaki and Cohen investigated the mechanical driving force

distribution for the transformation with applied stress [98]. It was derived that under a

uniaxial stress σ, the mechanical driving force ∆gσ, is dependent on orientation and can

be expressed by:

∆gσ =
σ

2
[γ0 sin 2θ cosα+ ε0(1 + cos 2θ)] (5.6)

where γ0 and ε0 are the transformation shear and normal strains, θ is the angle between

the stress axis and the habit normal, α is the angle between transformation shear direction

and the maximum shear stress direction on the habit plane. For a random orientation

distribution they derived the relation [99]:

∆gσ = −[0.7183σ + 6.85∆V/V σh − 185.3(1− exp(−0.003043σ))] (5.7)

where σh = 1/3σ for uniaxial stress and σh = 2/3σ for biaxial stress.

The additional martensite transformation resulted from the applied mechanical stress

can also be predicted using Eq. 5.5. Thus the expected total volume fraction of martensite

can be theoretically calculated.
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5.4.2. Precipitation strengthening

The strengthening efficiency of precipitation depends on various factors, including particle

size, precipitate volume fraction, the chemical and mechanical properties of particles and

their coherency with the matrix.

5.4.2.1. M2C precipitation strengthening. At the early stage of tempering, the shear-

ing mechanism dominates the interaction between particles and dislocations. Surface en-

ergy, coherency strain, modulus misfit, stacking fault and ordering all contribute to the

strengthening. When the particle is sheared, additional surface area is exposed. Dis-

location movement is hindered as the elastic strain field from the coherency with the

matrix interacts with the strain field of dislocation. In response to modulus misfit, the

line energy of dislocation changes. After reviewing several quantitative models for shear-

ing strengthening, Wise recommended Nembach’s model for coherency strengthening and

Hornbogen’s model for modulus strengthening [20].

At the late stage of tempering, M2C precipitates grow bigger than the critical size and

the Orowan bypass mechanism dominates, which is often the case when a long tempering

time is applied to fully dissolve the coarse cementite. The Orowan bypass strengthening

model takes into account: 1) the energy needed for dislocation bending which depends

on dislocation line tension and spatial distribution of obstacles; 2) the influence from

neighboring dislocations, including both edge and screw dislocations; 3) the effect of

particle size on the particle spacing. The final model is [20]:

∆τ = K
Gb

2π
√

1− ν(L− 2r)
ln

2r

r0
(5.8)
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where L is center to center distance between obstacles and L = r( 2
f
)1/2. f is the volume

fraction of precipitates which depends on the carbon content of steels, r is the obstacle

radius, G is the matrix modulus, b is the dislocation Burger’s vector in the matrix, ν is

Poisson’s ratio, and r0 is dislocation core radius. K is a prefactor.

Wise studied the strengthening effect in the model 1605 alloys under overaged condi-

tion [20]. With the substitution of calculated solid solution strengthening and cementite

strengthening, he found a prefactor of 1.71 by correlating experimental strength gain from

M2C precipitates with theoretical values. By combining terms, the Orowan model yields:

∆τ = K
Gb

2π
√

1− ν(L− 2r)
ln

2r

r0
= (0.8− 1.0)

Gb

L− 2r
(5.9)

where the new prefactor 0.8 − 1.0 describes the overaged condition corresponding to an

average particle radius r equal to or larger than 1.5 nm.

5.4.2.2. Total strength in Ni-Co secondary hardening steels. The total strength

of Ni-Co secondary hardening steels consists of strength from precipitates (τp) and strength

from the matrix. The matrix strength is composed of solid solution strengthening (τss),

dislocation strengthening (τD) and strength from lath martensite matrix (τα′). After

reviewing available strengthening models and finding material constants and prefactors

from the experimental data of model 1605 alloys, Wise expressed the total strength as

the linear superposition of all four components [20]:

τ = τp + τss + τD + τα′ (5.10)
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Since τ ∝ ∆H, we have

∆Hp,shear = 0.65
Gb

L− 2r

(
Gpr

2πGb

)
(5.11)

∆Hp,Orowan(M2C,Fe3C) = 1.68
Gb

2π
√

1− ν(L− 2r)
ln

2r

r0
(5.12)

∆Hss = 0.0078G(|ε′G|+ 2|εa|)4/3c2/3 (5.13)

∆HD = 0.38Gb
√
ρ ≈ 145− 60(V/Vf )M2C(V HN) (5.14)

∆Hα′ = τα + kd−1/2 ≈ 65(V HN) (5.15)

The solid solution strengthening originates from the size and elastic modulus misfit

between solutes and the matrix. It also depends on the concentration of solute atoms, such

as Co, Ni, Cr and Mo. In the equation, c is the solute concentration, ε′G and εa are modulus

and size misfit parameters, respectively. Dislocation strengthening is determined mainly

by dislocation density ρ. 145 VHN is the initial strength from dislocation substructure,

estimated from data on model 1650 alloys. As dislocations recover during tempering,

the total dislocation strengthening decreases. The reduction in dislocation strengthening

can be expressed as the recovery rate constant (60) correlated to the precipitation state

index - V/Vf . V/Vf is the ratio of current precipitate volume fraction over final volume

fraction at equilibrium. With known V/Vf , the total dislocation strengthening can be

estimated. Finally, the tempered martensite strength increases as grain size decreases

and is estimated to be 65 VHN for typical secondary hardening lath martensitic steels.

Compared to precipitate strengthening, strength from the matrix is only a minor

contributor. Total strength can be computed as analytical curves versus carbon content,
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as shown in Fig. 5.5 [20]. Precipitate diameter and volume fraction which depends on

the carbon content are the two major factors controlling the total strength. Ideally, peak

hardness is reached as the particle diameter is at the optimum of 3 nm. However, typical

commercial steel alloys all present a precipitate larger than 3 nm and thus a drop in the

total strength is observed. Thus in the design of CryoForm 70, precipitate size is a critical

parameter to be determined.

Figure 5.5. Total strength versus carbon content for Ni-Co secondary hard-
ening steels [20]

5.4.3. Driving force for sigma-phase precipitation

Doctoral research of J. Wright showed that C69 steel suffered core brittleness after pro-

longed tempering. APFIM study was performed to investigate core microstructure and

the σ-phase was identified to be the root cause of core brittleness [9].

The sigma-phase typically forms after long aging times at lower temperatures. Its

chemical formula is (Fe,Ni)3(Cr,Mo)2, with the composition of 61at% Fe, 26at% Cr,
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7at% Mo and 5at% Ni. It belongs to the intermetallic phase family with a complex

structure (space group No. 136, P42/mnm) [100]. The unit cell contains 30 atoms, which

are distributed into five inequivalent sublattices. This phase is very brittle and stable

once it forms. It deteriorates mechanical properties by providing more crack initiation

sites [100] and corrosion resistance by removing Cr and Mo from the matrix [101].

A high concentration of Cr and Mo promotes the precipitation of sigma-phase [100,

101] and thus it is often observed in duplex stainless steels and austenitic stainless steels.

The sigma-phase preferentially nucleates at the pre-formed M23C6 carbides [102] and

thus the existence of M23C6 strongly accelerates its precipitation. Similar effects were also

found with Cr7C3 carbides [103]. Study on a W-containing duplex stainless steel revealed

that the substitution of W to Mo delayed the sigma-phase precipitation by reducing its

driving force [104]. Analysis of sigma-phase kinetics also shows its formation depends on

the availability of high energy nucleation sites as well as on the driving force [105].

To eliminate the possible formation of sigma-phase in CryoForm 70, the driving force

of sigma-phase must be calculated and limited. Besides Cr, Mo in the steel, Co also acts

as a promoter for sigma-phase precipitation. The calculation can be performed using

Thermo-Calc with an appropriate database. QuesTek Innovations, Inc. has developed a

proprietary database for the control of sigma-phase. Through collaboration with QuesTek,

sigma-phase driving force was successfully calculated for Ferrium C67 steel and designed

CryoForm 70 prototypes.
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5.4.4. Simulation aided carburizing process design

Controlling the carburizing process is essential for the design of case hardened steels. A

proper carbon content profile and strengthening gradient in the case directly determines

the success of the design. Heat treaters often rely on empiricism to develop carburizing

cycles as large amount of carburizing data exists for ordinary steels. Simulation aided

carburizing process design has been utilized to assist the achievement of desired carbon

content profiles and steel properties in new steels. High temperature carburizing (above

1000 ◦C) is desired so the carburization and solution treatment can be combined into one

step. The carburizing temperature is raised to shorten the total carburizing time for cost

reduction.

The simulation starts with solving Fick’s second law for cabon diffusion.

∂Cc
∂t

=
∂

∂x
(−Jc) (5.16)

where Cc is carbon concentration, Jc is the flux of carbon. In a multicomponent system,

Jc follows Fick’s first law:

Jc = −
n−1∑
j=1

D1j
∂Cj
∂x

(5.17)

where j is the index of component, 1 is carbon and 2 to n-1 represents other substitutional

alloying elements. The effect of interstitial elements on the flux of carbon is negligible and

thus interstitial element terms are not included in the sum. When carbon only diffuses in

the FCC phase, the concentration gradient of substitutional elements can be assumed to

be zero because long range diffusion of these elements hardly occurs with a small carbon
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gradient. Thus, Eq. 5.17 can be simplified to:

Jc = −D11
∂Cc
∂x

(5.18)

where D11 strongly depends on the carbon concentration.

On the other hand, carbon diffuses more slowly as the amount of Co increases in

the steel. This effect appears more prominent in Ni-Co secondary hardening steels as

much Co is included in the alloy to retard dislocation recovery. To accurately simulate

carbon diffusion, Wise studied the carbon diffusion in Fe-Ni-Co alloys and extracted

carbon diffusion coefficients from the experimental carbon profiles in 20Co-10Ni model

alloys [20]. He then modified the carbon-cobalt binary interaction parameters in the

DICTRA kinetic database. The final carbon diffusivity in the database was adjusted

down to the experimental level. The general trend of carbon diffusivity increasing with

increased carbon content was still maintained.

To investigate the response of C61 and C67 steels to high-temperature carburizing,

Gao used the CBPWIN2 code (ECM-USA) for one dimensional carbon diffusion with

temperature dependent diffusion coefficients [7]. He also simulated 2D and 3D diffusion

using DEFORM HT (Scientific Forming Technologies Corporation) with diffusion coeffi-

cients dependent on both temperature and composition. The carbon diffusivity used in

DEFORM HT as well as the activation energy and pre-exponential diffusion coefficient

(D0) used in CBPWIN2 were calculated using DICTRA. Compared to CBPWIN2 and

DEFORM HT, DICTRA can not only account for the temperature and composition de-

pendence of carbon diffusivity but also simulate the variable carbon flux with time. Thus

DICTRA is the major tool employed to design the carburizing process for CryoForm 70.
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In practice, to avoid the formation of primary carbide networks during the boost cycle

of carburization, a carbon content of 3wt% was set to be the maximum. An average

carbon flux was utilized as the boundary condition to simplify the simulation without

sacrificing too much accuracy. Both FCC and carbide phases were taken into account

during carburization. Compositions of FCC and carbide phases were calculated using

Thermo-Calc and imported into DICTRA. Since the prototype has a simple puck geom-

etry, 1D diffusion cells were used in the simulation. It is assumed that carbon was the

only diffusing element and the diffusion only occurred within the FCC phase.
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CHAPTER 6

Design Synthesis

6.1. Design parameters

Design parameters are established to accomplish desired steel structure and properties

with acceptable processes. In Chapter 5, design objectives for the case and core materials

have been specified. To achieve the hardness goal, case M2C driving force needs to be

maximized to obtain fine strengthening dispersions. A lath martensite matrix is desired

to provide M2C nucleation sites. Although a case Ms temperature as high as possible is

normally wanted, it is planned that the case Ms in CryoForm 70 could be pushed down

to 50 ◦C to accommodate the high carbon and alloy content for extreme case hardness.

Thus the case Ms of 50 − 100 ◦C is desired for the design. A diffusional rate constant

for carbide precipitate is used to control fast precipitation. Finally, the case solution

treatment temperature, above which the steel system is fully austenite, should not be

higher than 1100 ◦C for easy processing and reasonable cost.

A Core Ms greater than 300 ◦C is desired to form a lath martensite matrix for core

toughness. To avoid core embrittlement, the sigma-phase driving force in the core should

not be greater than that in sigma-phase-free C67 prototype. Overall, limited segregation

should occur during solidification. Thus the fraction of microsegregation for each element

in CryoForm 70 should be below the level in C67 steel. Design parameters are listed in

Table 6.1.
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Table 6.1. Design parameters for CryoForm 70

6.2. CryoForm70 composition design

Computational composition design for CryoForm 70 was carried out following four

steps. First, the desired carbon content for 70 Rc case hardness was set based on the

total strength model in which total hardness is quantitatively correlated to carbon content.

Second, after preliminarily setting carbide former concentrations according to the M2C

stoichiometry, the concentrations of Ni, Co substitutional elements were determined for a

combination of high case Ms temperature and low core sigma-phase driving force. Third,

the relative concentrations of Cr, Mo and V carbide formers were refined to achieve

the maximum M2C driving force with the constraint of reasonable solution treatment

temperature. Phase status was also studied using Cr-Mo-V pseudo-ternary phase diagram

to ensure that no phase other than FCC is present at the solution treatment temperature.

Finally, the Ni, Co contents were re-optimized to accommodate the change in carbide

former concentrations. Iterating through this sequence defines an overall composition

balancing all design parameters for optimal performance. This composition design process

is described in the flow chart below. (Fig. 6.1)
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Figure 6.1. Composition design flow chart for CryoForm 70

6.2.1. Carbon content

From the total hardness dependence on carbon content, principally the carbon content

for both the case and the core can be determined according to the hardness goals. In

Wise’s total strength model, it was assumed that the volume fraction of strengthening

dispersions was the volume fraction at the final equilibrium. However, the kinetics of

M2C precipitation showed that it takes 100 hours or longer for the precipitation to reach

final equilibrium. With practical tempering time, about 80% M2C of the final volume

fraction forms. Thus the total hardness was re-calculated with V/Vf = 0.8 and computed

versus carbon content in Fig. 6.2.

It is apparent that peak hardness occurs with optimal particle radius of 1.5 nm. How-

ever, Wise had shown in Fig. 5.5 that typical secondary hardening steels (AF1410, AerMet

100, NASA1 and experimental alloy C2) obtained a precipitate radius of 2 nm or larger at

a high precipitation level of V/Vf = 0.8, and thus total hardness reduction was observed.
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Figure 6.2. Total hardness versus carbon content plot showing desired case
and core carbon content for CryoForm 70

Different levels of total hardness with various particle sizes are also plotted in Fig. 6.2

to reflect this trend. To obtain desired case carbon content in CryoForm 70, particle

size needs to be calibrated. Compositions and processing parameters of C61 and C67

were input into the strengthening model and the particle size of each was calibrated, as

displayed in Fig. 6.2. In the design for CryoForm 70, a similar M2C particle radius of 2

nm is assumed.

The hardness goal for CryoForm 70 is 1076 Hv (70 Rc) for the case and 500 Hv for the

core. Thus from the calibrated strengthening model (Fig. 6.2), a case carbon content of

0.8wt% and a core carbon content of 0.15wt% are needed with a particle radius of 2 nm

or smaller. In comparison to C61, C67, an extremely high case carbon content is required.

The resulted Ms is expected to be very low and thus special treatment is designed for the

processing.
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6.2.2. Optimization of matrix

With desired carbon content, Ni and Co concentrations were optimized to achieve required

case, core Ms temperatures and sigma-phase driving force. Initially, a rough estimation

of carbide former (Cr, Mo, V) concentrations was made for subsequent calculations. Ac-

cording to the stoichiometry of M2C, the total atomic fraction of carbide formers should

be twice the carbon atomic fraction to allow M2C precipitation only. Experience from

the design of C67 families suggested a starting composition of Fe-xNi-yCo-5.2Cr-2.5Mo-

0.15V-0.8C for the case.

The first step was to optimize Ni and Co concentrations for a case Ms of 50 ∼ 100 ◦C.

To calculateMs for multi-component system, the Ghosh-Olson model for martensite trans-

formation was employed, where systems with low temperatureMs were taken into account.

Using the Mart5 database in CMD, the case Ms contours versus Ni and Co concentrations

are plotted in Fig. 6.3. For a high Ms, high Co and low Ni concentrations are favored,

as shown by the arrow. Approximately 15wt% Co and 3wt%Ni are needed for a Ms of

90 ◦C.

Limiting sigma-phase driving force in the core is another criterion for Ni-Co content

optimization. The sensitivity of sigma-phase driving force to element concentrations was

first investigated. Fig. 6.4 and 6.5 depicted the dependence of sigma-phase driving force

on concentrations of C and all alloying elements in C69M3B model alloy (Fe-Ni-Co-4.9Cr-

2.11Mo-0.1V-0.071C) with the tempering temperature of 510 ◦C. C69M3B was chosen as

a reference alloy due to its borderline resistance to core brittleness. As sigma-phase is an

intermetallic compound composed of Fe, Cr, Mo and Ni, richer carbon decreases sigma-

phase driving force by combining more alloying elements to form carbides. High Cr and
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Figure 6.3. Ms contours for Fe-xNi-yCo-5.2Cr-2.5Mo-0.15V-0.8C alloy

Mo concentrations raise the driving force for sigma-phase formation. The addition of Ni

and Co increases sigma-phase driving force as well but their effect is weaker. The driving

force, however, is quite insensitive to V. There is little room to reduce the amount of Cr

and Mo as they are demanded for desired hardness, and the core C level is restricted by

core hardness. Thus the minimization of sigma-phase driving force is mainly accomplished

through the optimization of Co and Ni concentrations.

Fig. 6.4 b) shows that low Co and Ni concentrations are desired for sigma-phase

driving force reduction. However, this conflicts with the goal of case Ms, for which a high

Co level is needed. A tradeoff must be made to balance these two requirements and thus

a medium Co concentration was selected to meet both criteria.
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Figure 6.4. Sigma-phase driving force dependence on a)C b)Co and Ni for
Fe-Ni-Co-4.9Cr-2.11Mo-0.1V-0.071C alloy

6.2.3. Optimization of strengthening dispersions

The optimization of strengthening dispersions - Cr, Mo and V is aimed at the possible

maximum M2C driving force, possible highest case Ms and a solution treatment temper-

ature lower than 1100 ◦C. The starting composition for this step is an alloy with medium

Co concentration.

Contours of case M2C driving force, case Ms and solution treatment temperature were

calculated and plotted versus element concentrations to explore the effects of Cr, Mo and

V. The M2C driving force was calculated for incoherent M2C precipitation from a fully su-

persaturated BCC matrix. An example is shown in Fig. 6.6. M2C driving force increases

toward the Mo-rich corner. Case Ms decreases as Cr increases and it is not sensitive to

Mo concentration. Both Cr and Mo raise the solution treatment temperature. To ensure

the stoichiometry in the design, a dash line was superimposed in the graph to mark the

stoichiometric Cr-Mo content for 0.8wt% C. With the constraint of solution treatment
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Figure 6.5. Sigma-phase driving force contours versus a)Cr and Mo b)Mo
and V c)Cr and V for Fe-Ni-Co-4.9Cr-2.11Mo-0.1V-0.071C alloy

temperature, the circled region along the stoichiometric line was found to provide a M2C

driving force of 28 kJ/mol. To enlarge the area satisfying solution treatment temperature

requirement, the concentration of V needs to be decreased as the addition of V greatly

increases the solution treatment temperature. That means the concentrations of Cr and

Mo should be increased to maintain the stoichiometry. However, the raise in the Cr level
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is limited by case Ms and the Mo concentration should not exceed the limit set for alloy’s

castability. Several iterations were carried out at this step to balance conflicting design

criteria. Similar analysis was performed for element pairs of Mo, V and Cr, V.

Figure 6.6. M2C driving force, Ms and solution treatment temperature for
Fe-3.7Ni-10Co-xCr-yMo-0.15V-0.8C alloy

Candidate compositions must be examined for their phase status at solution treatment

temperature to avoid primary carbides. A pseudo-ternary phase diagram of Cr-Mo-V was

plotted at 1100 ◦C (Fig. 6.7). The diagram is called pseudo because the equilibrium tie

line compositions can not be determined from the phase boundaries although the phase

regions can be identified. The sum of Cr, Mo and V concentrations are set to satisfy the

stoichiometry in this diagram. Candidate compositions must fall into the FCCA1]1 phase
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region. After optimizing concentrations of strengthening dispersions, two good candidates

were labeled in the phase diagram to illustrate its validity.

Figure 6.7. pseudo-ternary phase diagram for Fe-3.7Ni-10Co-xCr-yMo-zV-
0.8C alloy at 1100 ◦C

6.2.4. Iterative optimization

Finally, Ni and Co concentrations were re-optimized for case Ms and sigma-phase driving

force. If significant composition modification is needed, iterative optimizations are also

conducted to refine the strengthening dispersion. Ultimately, we evaluate the overall

composition against all design parameters to achieve well balanced properties. Several

iterations were performed to achieve the design objectives.
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Table 6.2. Compositions and calculated properties of two CryoForm 70 alloys

In addition, the precipitation rate constant was calculated to ensure reasonably fast ki-

netics of precipitation at desired tempering temperatures. Solidification microsegregation

was also checked for each element using the Sheil microsegregation model.

6.3. Summary of designs

The final compositions of two designs, performed in collaboration with an undergrad-

uate MSE 390 Materials Design project team, are listed in Table 6.2. Also tabulated are

calculated properties.

Among two compositions, 390-1 presents higher case Ms while 390-2 displays a higher

M2C driving force for a higher case hardness. A case hardness of 1067 Hv and a core

hardness of 423 Hv are predicted for 390-2, which meets the hardness goals for this

design. However, 390-2 has an extremely low case Ms, which makes the formation of a full

martensite matrix more difficult. The weight fraction of microsegregation amplitude in the

designed alloys were also calculated and compared to that of the C69M3B reference alloy,

shown in Table 6.3. Both designed compositions show a comparable fraction of segregation

to that in C69M3B alloy, indicating acceptable microsegregation during solidification.
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Table 6.3. Microsegregation of designed CryoForm 70 alloys
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CHAPTER 7

Process Optimization and Characterization of CryoForm 70

Two candidate compositions for CryoForm 70 have been computationally designed

based on thermodynamics and strengthening models. They both have higher carbon level

and higher concentration of strengthening precipitate formers compared to compositions

of C67 steels. To avoid possible core brittleness, the concentration of Co was reduced to

10wt% in CryoForm 70. Due to the higher amount of several Ms reducers, CryoForm 70

presents a much lower case Ms than that in C67. Between the two candidate compositions

390-1 and 390-2, the latter was chosen for prototype because of its relatively higher M2C

driving force, higher predicted case hardness and less solidification microsegregation.

Prototype alloys were processed following the proposed processing in the system design

chart in Chapter 5. Three processes need to be optimized for desired properties: carbur-

ization, cryogenic deformation and tempering. An optimal carburizing procedure was first

determined with the assistance from DICTRA simulation for the desired 0.8wt% surface

carbon. The cryogenic deformation process was designed and optimized for improved case

martensite structure. With theoretical prediction on attainable case martensite volume

fraction, several means of cryogenic deformation were explored experimentally and one

was employed for the final implementation. A cyclic tempering procedure was developed

to maintain the martensite matrix promoted through cryogenic deformation. Microstruc-

ture characterization and hardness tests were performed after process optimization.
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7.1. Prototype fabrication

Prototype CryoForm 70 core material was produced following a typical commercial

processing route for high strength gear steels. Two 15-pound ingots were first cast using

combined Vacuum Induction Melting (VIM) and Vacuum Arc Re-melting (VAR) with

high purity materials at Special Metals Corporation in New Hartford, New York. Trace

amounts of Ti (0.015wt%) and La (0.030wt%) were added to refine grains and getter

impurities such as P and S, respectively. Ingots were then shaped into appropriate ge-

ometries for easy specimen sectioning at the Technology Processing Center of Special

Metals in Huntington, West Virginia (also known as Huntington Alloys). There ingots

were first homogenized at 1250 ◦C for 12 hours, hot rolled to 0.6” thick plate at 1050 ◦C

and air cooled to room temperature. The plates were then normalized at 1050 ◦C for 1

hour and aired cooled again to room temperature. Finally, the plates were annealed at

700 ◦C for 2 hours to relieve residual stress and soften the plate for machining.

7.2. Core martensite start temperature

The core Ms temperature of the CryoForm 70 prototype was first measured using

dilatometry. As shown in Fig. 7.1, a core Ms of 350 ◦C was obtained, which is very

consistent with the theoretical prediction (350 ◦C). This validates the Ms design and

supports feasibility for further process optimization.

7.3. Carburization

With the validation from core Ms measurement for the design, carburization optimiza-

tion was first performed to achieve the desired 0.8wt% surface carbon content. Both pack



159

Figure 7.1. Dilatometry measurement showing core Ms for CryoForm 70 prototype

and vacuum carburizing were tested and vacuum carburizing was finally chosen for full

optimization because of its controllable accurate carbon profiles produced.

7.3.1. Pack carburizing

Preliminary pack carburizing was carried out at Northwestern University to initially assess

the feasibility of the CryoForm 70 prototype. DICTRA was utilized to simulate the process

and resulting carbon content from DICTRA was compared with experimental results.

Prototype alloys were sectioned into small rectangular bars (12 × 12 × 6mm3) and

pre-oxidized at 900 ◦C for half an hour to form a thin porous iron oxide layer. Air cooled

samples were packed into a mixture of 85% charcoal and 15% Calcium Carbonate in

stainless steel bags. The bags were then closed with an open slit for gas venting. Samples

were pack carburized at 975 ◦C, 1025 ◦C and 1075 ◦C for various times (0.5 hour, 1 hour,

1.5 hours, 2 hours and 3 hours). After bags containing samples were air cooled, samples

were taken out and cleaned. Since it is impossible to directly quench samples from pack
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carburization, they were subsequently encapsulated and solutionized at 1100 ◦C for 0.5

to 1 hour, followed by oil quenching and cryogenic treatment in liquid nitrogen for 1

hour. An Argon furnace was used for solutionizing if samples were larger than the size of

encapsulating tube. This step dissolved primary carbides that formed during carburization

as the carburizing temperature was far below the designed solutionizing temperature. A

final tempering at 200 ◦C for 1 hour was subsequently performed before microstructure

observation and preliminary hardness testing.

Hardness profiles under various carburizing conditions are plotted in Fig. 7.2. As car-

burizing temperature increased, an increase in peak hardness was first observed, followed

by a drop. The increase results from increased dissolved carbon content and the drop was

due to the formation of large amount of retained austenite. Also noted is that the varia-

tion in peak hardness is not so sensitive to the temperature increase and peak hardness

varies around an average value of 750 Hv. As carburizing time was prolonged, maximum

hardness evolved in a similar manner. At 1025 ◦C, hardness at depths up to 1000µm was

first raised and then dropped to the original level. The hardened case depth, however, was

increased monotonically with longer carburization. Among all conditions, carburization

at 1025 ◦C for 1.5 hours seems to produce the highest maximum hardness. Due to the

presence of retained austenite, it is difficult to select the best condition according to just

peak hardness.

To better assess carburizing conditions, carbon content was both estimated based on

the experimental correlation between hardness and carbon content [106] and measured

using Optical Emission Spectroscopy (OES) by Bodycote Materials Testing in Skokie,

Illinois. Results are shown in Fig. 7.3. Also plotted are simulated carbon content profiles
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Figure 7.2. CryoForm 70 prototype Hardness profiles after a)975 ◦C
b)1025 ◦C and c)1075 ◦C carburizing

from DICTRA. Carburization at 1025 ◦C for 1.5 hours and 3 hours produced a surface

carbon content of 0.6wt% and 0.76wt%, respectively. But the carbon content decreased

rapidly as the depth increased, indicating that carbon diffusion from the surface to the

core was delayed. With longer time more carbon was diffused into the case but the

hardness was not necessarily raised because of retained austenite. Comparison between

experimental and simulated carbon content profiles shows there is a good match on the
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surface carbon content but disagreement is observed for subsurface carbon content. Lower

experimental values are possibly due to the formation of a Cr primary carbide film as

excess surface carbon does not diffuse quickly enough to the inside. This phenomenon,

however, is not taken into account in DICTRA simulation. It is also noticed that estimated

or measured carbon content profiles of two faces for one sample do not match with each

other, indicating the inhomogeneity of pack carburization.

Figure 7.3. CryoForm 70 prototype carbon content profiles carburized at
1025 ◦C for a)1.5 hours b)3 hours

The case microstructure of a sample with 0.76wt% surface carbon content was fur-

ther studied. X-ray diffraction shows prominent austenite peaks (labeled as A) coexisting

with distorted martensite (labeled as M) after 200 ◦C tempering (Fig. 7.4). An austen-

ite volume fraction of 55% at 10µm depth was obtained through quantitative analysis.

Optical and scanning electron microscopy (SEM) were both employed to reveal the case

microstructure (Fig. 7.5 and 7.6). 2% nital was used to etch the cross section to display

the case microstructure. Both optical and SEM images confirmed that a large amount of
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retained austenite was present at or near surface. Due to the high surface carbon content,

plate martensite also formed at or near surface.

Figure 7.4. Phase analysis of CryoForm 70 prototype using X-ray diffraction

Figure 7.5. Case microstructure of CryoForm 70 prototype through optical observation

Through pack carburizing, a surface carbon content of 0.76wt% was achieved but the

resulted steep carbon gradient was not desired. With increased carburizing temperature

or time, no rise in surface carbon content was found, suggesting the limitation of pack
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Figure 7.6. SEM image of the case microstructure in CryoForm 70 prototype

carburizing in achieving high carbon content and appropriate carbon profiles. Microstruc-

ture analysis revealed 55% retained austenite at the depth of 10µm, which may be too

much for the subsequent austenite reduction. Moreover, the non-uniformity presented in

pack carburizing makes this practice not favorable for further carburizing optimization.

It does appear that DICTRA is effective for simulating surface carbon content.

7.3.2. Vacuum carburizing

For a better controlled process and carbon content profile, vacuum carburizing was se-

lected for further carburizing optimization. After developing carburizing cycles through

simulation, two batches of carburization were performed by Midwest Thermal-Vac in

Kenosha, Wisconsin. Hardness, carbon content profiles and microstructure were studied

to illustrate the efficiency of vacuum carburizaiton. Simulated carbon content profiles

were compared with experimental results.
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High temperature is desired for fast carburization and elimination of primary carbides.

Thus the designed solution treatment temperature, 1100 ◦C, was adopted as carburizing

temperature. The same carbon flux as that for C67 was chosen by the vendor for the ease

of processing. The effective carbon flux for CryoForm 70 was determined by extracting the

effective carbon flux from experimental C67 carburization data. Required by the vendor

equipment, the boost and diffusion time must be multiples of five and sixty seconds,

respectively. Other restrictions include that the carbon content after any boost cycle

should not exceed 3 wt% to prevent carbide networks from forming.

The carburizing cycles for the fist batch implementation was developed using the

CBPWIN2 code due to its friendly interface and ease to use. In CBPWIN2, the activation

energy and pre-exponential diffusion coefficient (D0) was calculated using DICTRA with

known effective carbon flux. With the input of temperature and combinations of boost and

diffusion times, carbon content profiles after each boost and diffusion cycle were generated.

According to the restriction on maximal carbon content, the surface carbon content and

case depth, the combinations of boost and diffusion times were further adjusted and a

final recipe was selected. Simulated carbon content profiles are depicted in Fig. 7.7. The

surface carbon content after final boost and diffusion is 2.64% and 0.9%, respectively. To

accommodate further machining, a surface carbon content higher than the designed 0.8%

was accepted.

DICTRA was utilized to develop the carburizing cycles for the second batch implemen-

tation for its ability of taking into account the carbon diffusivity dependence on carbon

content. To accelerate simulation, the Carb c© optimization program previously developed

by Dr. Gao [8] for QuesTek Innovations, Inc. was first used to narrow down the suitable
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Figure 7.7. Simulated carbon content profiles by CBPWIN2 for the first practice

time range for boost and diffusion cycles. Further adjustment was then made using DIC-

TRA. Simulated carbon content profiles for the second recipe are displayed in Fig. 7.8 as

hollow symbols, labeled Vac II.

With provided carburizing cycles, vacuum carburizing was performed, followed by

Argon gas cooling and one hour freeze in liquid nitrogen. Measured carbon content profiles

using the OES technique are also plotted in Fig. 7.8, shown as solid symbols. 1.2% and

0.9% surface carbon content were obtained for the first and second batch carburization,

respectively. A 0.8% carbon content was detected at the depth of 50µm in Batch Two.

The 1.2% experimental surface carbon content from the first batch is much higher than the

simulated value from CBPWIN2 (0.9%) because CBPWIN2 underestimated the carbon

diffusivity with increasing carbon content. Fortunately, the experimental value agreed

with the prediction by DICTRA, suggesting that DICTRA is more suitable for the system
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Figure 7.8. Simulated carbon content profiles by DICTRA for the first and
second practice. Recipe for the second practice: 40s-180s-25s-295s

with variable carbon content. Comparison between simulated and experimental carbon

content profiles for Batch Two also supports this point.

Hardness profiles after liquid nitrogen treatment were measured for both batches (Fig.

7.9). Peak hardness occurs at a substantial depth below surface in both batches, support-

ing the presence of a large amount of retained austenite at or near the surface. Although

the surface carbon content in Batch Two is much lower than that in batch one, the peak

hardness is higher due to the effect of much less retained austenite, possibly associated

with the sharper composition gradient. With the total number of boost and diffusion

cycles decreased from four to two, the total amount of carbon absorbed was reduced and

thus Batch Two alloy displays a case depth half of that in batch one.
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Figure 7.9. Measured hardness profiles for both vacuum carburization batches

To measure the amount of retained austenite at the carbon level of 0.8%, samples from

batch one were ground to the depth of about 400µm, where the carbon content reached

0.8% according to DICTRA simulation. Similarly, the subsurface at 50µm depth of a

batch two sample was exposed for phase analysis. From the X-ray diffraction spectrum

(Fig. 7.10), a two phase structure - austenite and martensite- is present in the matrix

but the austenite peak is greatly diminished compared to that in pack carburization,

indicating lower austenite volume fraction. Retained austenite profiles for both batches

are presented in Fig. 7.11. At the carbon level of 0.8%, 22∼24% retained austenite was

found in both batches. This was confirmed by the optical observation (Fig. 7.12), where

light regions are austenite phase and dark areas are martensite.

7.4. Cryogenic deformation

In the CryoForm 70 prototype, a fully martensite matrix is ultimately desired for

maximized strengthening efficiency. However, at the desired 0.8% carbon level, 22∼24%
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Figure 7.10. X-ray diffraction spectrums from batch two, showing peaks
from austenite

retained austenite was identified, meaning the volume fraction of martensite is only about

76%. Before tempering can be carried out, retained austenite needs to be minimized.

Cryogenic deformation was thus developed to fulfill this goal. Theoretical calculation

based on driving force and kinetics of martensite transformation was first conducted

to predict the final martensite volume fraction that could be achieved from cryogenic

deformation. Cryogenic shot peening was first explored for austenite reduction. Other

methods including cryogenic ultrasonic surface modification and cryogenic compression

were explored later. Cryogenic compression was proven to be most effective in reducing

the amount of retained austenite.
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Figure 7.11. Retained austenite profiles for a)batch one b)batch two

7.4.1. Driving force and kinetics of martensite transformation

Following the principles introduced in Chapter 5, the thermal driving force for martensite

transformation in the CryoForm 70 prototype was calculated and plotted in Fig. 7.13.

About 2500 J/mol gain over the critical driving force at Ms (-2423 J/mol) can be obtained

by quenching the alloy to the liquid nitrogen temperature (−196 ◦C). With applied stress
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Figure 7.12. Optical image showing the microstructure containing 22∼24% austenite

that deforms the CryoForm 70 prototype, an additional 1200 J/mol driving force can be

obtained (Fig. 7.14). Fig. 7.15 displays the total driving force versus temperature together

with the thermal driving force, which illustrates the additional driving force gain resulting

from the mechanical deformation (by arrow). At LN2 temperature, this gain is about half

of the thermal driving force. However, at room temperature, the total driving force is

less than the thermal driving force at LN2. That means mechanical deformation at room

temperature does not benefit martensite transformation more than cryogenic treatment

only. Thus for maximized benefit, mechanical deformation needs to be performed at the

LN2 temperature, which gives this process the name Cryogenic Deformation.

To predict the final volume fraction of martensite after cryogenic deformation, the

material constant k in Magee’s single-parameter transformation kinetic model was fitted

based on the experimental observation that 76% martensite was formed after quenching

the alloy to liquid nitrogen. With the calibrated k = 0.00061mol/J , a final volume

fraction of 90% was then predicted for combined cryogenic treatment and mechanical
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Figure 7.13. Thermal driving force for martensite transformation in Cry-
oForm 70 prototype at 0.8% C

Figure 7.14. Mechanical driving force for martensite transformation

deformation (cryogenic deformation), shown as the red or solid line in Fig. 7.16). For

comparison, also plotted are a 80% martensite line (magenta or dotted line) resulting from

liquid nitrogen treatment and a 20% martensite line (blue or dashed line) from quenching

to room temperature.
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Figure 7.15. Total driving force for martensite transformation in CryoForm
70 prototype

Figure 7.16. Predicted volume fraction of martensite transformation in Cry-
oForm 70 carburized case

7.4.2. Cryogenic shot peening

The predicted 90% martensite volume fraction means the austenite level would be re-

duced to 10% or lower in a martensite-austenite two phase structure. Shot peening was
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chosen first to implement the mechanical deformation for its reported ability of decreasing

austenite content and for its potential availability within gear industries.

7.4.2.1. Preliminary study. A preliminary study was conducted to explore the effect

of room temperature shot peening on the austenite content. Core CryoForm prototype was

pack carburized to contain 0.6% C on the surface and then shot peened at room temper-

ature by Metal Improvement Company, Inc. in Addison, Illinois. Austenite measurement

using X-ray diffraction before and after shot peening showed an austenite reduction from

18% to 10% , indicating the feasibility of applying shot peening to the vacuum carburized

prototype.

7.4.2.2. Shot peening at −112 ◦C. Collaboration was established between Northwest-

ern University and Purdue University to carry out cryogenic shot peening utilizing the

equipment at Purdue. Graduate student Jeremy Hahn from Purdue participated in this

project. The experimental setup is shown in Fig. 7.17. Inside the chamber, the circular

table serves as the base for the sample holder. The sample was attached to the holder

by a magnet. Thermocouple wires were welded to a side of sample through a steel pipe

for real-time temperature recording. The entire holder with the sample was then screwed

onto the circular table. The position and orientation of the nozzle can be adjusted to

perform a customized peening at any angle with variable shot travel distance. In Fig.

7.17 b), the nozzle was orientated to allow vertical shot travel. The circular table can

rotate at a certain speed if needed. It was set to be immobile in this study. Conditioned

extra-hard cut wire shots with 0.032 inch diameter made of carbon steel were employed

for their high hardness of 62∼64 Rc. Shot was provided by Premier Shot Company.
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Figure 7.17. Cryogenic shot peening setup a)Shot Peener b)Inside the
chamber c) sample and sample holder d)Shots

To ensure mechanical deformation in the targeted prototype, a high applied stress and

thus a high peening intensity is desired in this process. A standard Almen strip was used

to measure shot peening intensity. This procedure is illustrated in Fig. 7.18. Peening

intensity is represented by the extent of strip warping (Fig. 7.18 b)). There are three

types of Almen strips with different thickness, among which type A with the medium

thickness is used mostly in industry and the intensity measured is recorded as inch A.

The maximal deviation that an A strip can measure is 0.025 inch so the measurement

of any more severe deformation needs the usage of the thicker C strip. As shot peening

intensity increases from zero to low (0.0074 inch A) to medium (0.0255 inch A), surface

roughness prominently increases. Combining the effect of various factors on the peening

intensity (including shot propelling force - air pressure, shot flow rate and peening time),

an intensity of 0.0075 inch C was identified to be the maximum that could be achieved

using the Shot Peener. Three levels of peening intensity, low (0.0044 inch C), medium
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(0.0064 inch C) and high (0.0075 inch C) were selected for the peening at cryogenic

temperature.

Figure 7.18. Almen strip test for intensity selection a)setup b)Almen strips
deformed with 0, 0.0074A and 0.0255A peening intensity c)Almen strip
surface conditions under different peening intensity

Several attempts showed that the temperature of samples rose rapidly during peening,

despite both the sample and sample holder being submerged into liquid nitrogen for 20

minutes to reach −190 ◦C. To maintain the sample temperature as low as possible, a cyclic

peening procedure was developed, as shown in Fig. 7.19. During the interval between

10 seconds peening, liquid nitrogen was poured over the sample and holder for another

freeze. This step was repeated every 10 seconds till a total peening time of 2 minutes

was reached. Temperature evolution of the sample during peening was displayed in Fig.

7.20 for three levels of intensity. The sample temperature started around −190 ◦C and

rose up to −84 ∼ −112 ◦C after 10s peening depending on the peening intensity. It was

brought down to the original level when the sample was cooled again. A 10s peening

then started over. The lowest average temperature after 10s peening was obtained with
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the low peening intensity, which indicated that it was easier to maintain low temperature

with decreased peening intensity.

Figure 7.19. Cryogenic shot peening procedure

Figure 7.20. Temperature evolution during cryogenic shot peening
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For each peening condition, two samples were treated following the above procedure.

A retained austenite level of 24% was confirmed in these samples before cryogenic peen-

ing. Similar analysis after peening showed only under the low peening intensity was the

amount of retained austenite slightly reduced (Fig. 7.21). The integrated intensity of

both austenite (220) and martensite (200) peaks were almost not changed, although the

austenite (220) peak was depressed and broadened. This indicates that the austenite was

deformed by peening but not transformed to martensite. No reduction in austenite level

was found in samples peened with medium and high intensities. Sample temperature rise

was proposed to be the reason. With temperature raised to −112 ◦C or higher, about 900

J/mol or more was lost in the driving force of martensite transformation, which greatly

counteracted the effect from the applied stress. Consequently, no or slight reduction in

the retained austenite level was observed.

7.4.3. Ultrasonic surface modification at cryogenic temperature

Another means of mechanical deformation process, ultrasonic surface modification (UNSM)

was tried at liquid nitrogen temperature due to its potential suitability for large scale prod-

ucts. UNSM was reported to improve fatigue strength, wear resistance and friction loss,

and to retard stress crack corrosion [107]. In UNSM, a tungsten carbide ball constantly

strikes the surface of materials at an ultrasonic frequency (20,000∼40,000 impacts per

second). The coverage of UNSM treatment can be customized by controlling the position

and motion of the ball, which is attached to a rigid arm that moves freely. This treatment

can produce 1000 to 10,000 shots per square mm on the work surface. Surface finish, hard-

ness and the magnitude of compressive residual stress can be improved through UNSM
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Figure 7.21. X-ray diffraction showing slight reduction in retained austenite
content treated with low intensity cryogenic peening

treatment. This treatment also employs mechanical stress to obtain the similar effect to

that resulted from shot peening. The operating temperature can be controlled by cooling

the specimen with a constant liquid nitrogen blast. Thus it is a good alternative for

cryogenic deformation process.

The core prototype was machined into cylinders with 16mm in diameter and 89mm in

length and vacuum carburized with batch two recipe. The surface of cylinders was then

turned to the roughness of Ra = 23µinch = 0.6µm. During turning, a layer of 50 µm was

removed to expose the surface with 0.8% carbon. A 60 ◦ 3mm center hole was drilled on
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each end of the cylinder so the specimen can rotate on a machining center during UNSM

treatment. The experimental setup is illustrated by Fig. 7.22.

Figure 7.22. Experimental setup for ultrasonic surface modification at cryo-
genic temperature

The UNSM treatment was performed by DesignMecha Co., Ltd. in Asan, ChungNam,

South Korea. Through the processing the surface hardness was increased from 61 Rc to 63

Rc. However, not much reduction in the integrated intensity of austenite peak was found.

Given that a super hard (1400 Hv) tungsten carbide ball acts as the peening media and

the liquid nitrogen temperature can be obtained, it is believed that further optimization

of this process should be able to reduce the level of retained austenite significantly.

7.4.4. Cryogenic compression

A more static cryogenic deformation process, cryogenic compression was chosen for its

ability of maintaining liquid nitrogen temperature and reaching higher stress than cryo-

genic shot peening. Olson and Azrin studied the transformation curves for a 220 ksi yield

strength 0.27C TRIP steel and obtained the correlation between the resulting martensite
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volume fraction and the true strain by applying mechanical stress at various tempera-

tures [108]. Typical transformation curves were shown in Fig. 7.23. However, their

study focused on low carbon alloys so experimental design is still needed to find out the

appropriate plastic strain level at cryogenic temperature for high carbon alloys. Prior

to experiments, required plastic strain at −196 ◦C for martensite fraction of 0.24 was es-

timated from Olson’s curves as a starting point (shown as the dash line in Fig. 7.23).

According to the transformation curve at −196 ◦C, a 0.025 true strain was needed for

additional 24% martensite.

Figure 7.23. Transformation curves for 0.27C TRIP steel [108]

Rectangular bars (3× 3× 6mm3 and 4× 4× 7mm3) were cut from the case of vacuum

carburized specimens, Batch No. 2. For easy X-ray examination, 50µm was ground off

from the case so the subsurface of 0.8% carbon was exposed. Before cryogenic compression,

24% retained austenite was confirmed at the 0.8% carbon level. The experiment setup

is presented in Fig. 7.24. Compressive stress was applied onto the specimen through
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a pair of tungsten carbide platens. The specimen was cooled in liquid nitrogen for 20

minutes before the test was started. A thin layer of plastic containing liquid nitrogen

was placed between the specimen and the upper and bottom platens. Liquid nitrogen

was continuously filled into the container to maintain the low specimen temperature. The

specimen was aligned in the way that the interface between the case and the core was

parallel to the compression axis so that both the case and the core were subject to the

compressive strain simultaneously. Although the core would yield earlier than the case,

the distortion was minimized through this alignment. A compliance test was performed

first before any specimen was tested.

Figure 7.24. Schematic experimental setup for cryogenic compression
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The specimens were taken to the total engineering strain of 5%, 7%, 8% and 9%,

respectively. The stress-strain curves of these tests are shown in Fig. 7.25. The obtained

plastic strain for test 1 to 4 was calculated to be 2%, 5%, 6% and 7%, respectively. The

serration on Curve 2 or 3 is attributed to the breaking of the plastic containing liquid

nitrogen during compression, which does not affect the continuity of the test. The agree-

ment between yield points of four curves indicated that the constant low temperature was

well maintained during the test although very small fluctuation was observed. The setup

could be improved by attaching a low temperature thermocouple wire to the specimen so

the temperature could be monitored. Neither material failure nor cracking at the core-

case interface was observed during or after the compression. However, slight distortion

occurred due to the friction on the upper and bottom surfaces of the specimen. The dis-

tortion could be reduced with the application of a low temperature lubricant. Different

levels of strain rates (0.5mm/min, 0.1mm/min and 0.05mm/min) were employed in the

test. It was found that the strain rate lower than 0.05mm/min was so slow that it was

quite difficult to maintain the low specimen temperature since the testing time was dra-

matically increased. Among three levels of strain rates, 0.05mm/min was the one inducing

minimal specimen distortion as the friction rate was reduced with the small strain rate.

Thus the rate of 0.05mm/min was chosen as the optimum for cryogenic compression.

X-ray diffraction was used to measure the austenite level after cryogenic compression

with different strain levels. Typical diffraction spectra were displayed in Fig. 7.26 where

a) is the case for 2% plastic strain and b) for 5% and higher plastic strain. A 18%

austenite was still remained in the steel for case a). In case b) only about 8% austenite

was detected, which is a quite significant reduction from the original level of 24%. Thus an
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Figure 7.25. Typical stress-strain curves of cryogenic compression

appropriate strain level was identified for successful martensite transformation under high

pressure at liquid nitrogen temperature. A summary of all successful tests can be found in

Table. 7.1. The actual specimen temperature was not recorded during the test as it was

believed to be very close to the liquid nitrogen temperature. A plastic strain higher than

3% is essential for significant austenite reduction. 5% plastic strain or larger ensures the

martensite transformation even with the uncertainty in specimen temperatures. However,

slightly less reduction in austenite was observed in test 6 with the strain level of 4.1%,

which was believed to be due to the higher specimen temperature (lower yield point)

than those in other tests. The temperature effect can be observed by comparing the yield

points of the specimens under different tests since the decrease in temperature leads to

the increase in steel’s yield point. The reduction in retained austenite was proven to be



185

insensitive to the strain rate. However, the 0.05mm/min was chosen as the optimal strain

rate for the minimized specimen distortion.

Figure 7.26. Crystal structure after cryogenic compression

Table 7.1. Summary of cryogenic compression test

7.5. Tempering response

Subsequent to cryogenic deformation through which the martensite structure in the

vacuum carburized prototype was improved, tempering was carried out to enable the
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precipitation of strengthening M2C carbides. Two parameters are to be determined,

tempering temperature and tempering time.

The M2C driving force increases as the tempering temperature decreases. However,

the lower the temperature, the lower the precipitation rate. By balancing the needs of

high driving force and fast kinetics, a tempering temperature of 479 ∼ 482 ◦C was chosen

for CryoForm 70 based on experience with the related C61, C67 steels.

To maintain the low level of retained austenite during tempering, a cyclic temper-

ing procedure was developed, as shown in Fig. 7.27. After encapsulated, the specimen

containing 8% austenite was treated at 482 ◦C for 8 hours. The specimen was then oil

quenched from the tempering temperature and cooled in liquid nitrogen for 1 hour or

longer. These treatments were then repeated until a peak hardness was found. Evolution

of case hardness at 80µm and complete hardness profiles with prolonged tempering are

presented in Fig. 7.28. With this cyclic tempering-quenching-cryogenic treatment proce-

dure, the case hardness started to pick up around 32 hour tempering and then reached a

maximum of 975±10 Hv at 56 hour tempering. Reduction in case hardness was seen with

continued tempering. Because there is a steep gradient in case carbon content and the

hardness was measured at 80µm, the carbon content corresponding to 80µm depth was

estimated to be 0.72% ± 0.2% from the experimental carbon content profile (Fig. 7.29).

Thus it can be concluded that a case hardness of 975± 10 Hv was achieved at the carbon

content of 0.72%±0.2%. From the measured hardness profiles, a core hardness of 512±2

Hv was accomplished, providing the necessary toughness for the application.

With the cyclic tempering procedure, the level of retained austenite was successfully

controlled. A very low austenite level of 1.3± 0.2 after 48 hour tempering at 482 ◦C was
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Figure 7.27. Cyclic tempering procedure for CryoForm 70

Figure 7.28. CryoForm 70 a) case hardness evolution with tempering time
b) complete hardness profiles after tempering cyclicly for 48 and 56 hours

found. Optical micrographs were taken to observe the constitution of the matrix, shown

in Fig. 7.30. Mixed plate and lath martensite was observed from the surface to the

depth of 80 ∼ 100µm; as the depth increases the amount of lath martensite increases. No

austenite regions are visible from this micrograph. At the condition for peak hardness, a

similar microstructure was observed (not shown).
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Figure 7.29. Estimation of case carbon content of CryoForm 70

Figure 7.30. CryoForm 70 microstructure after tempering cyclicly for 48 hours

The number of density of M2C carbides in the case of CryoForm 70 after 56 hour cyclic

tempering can be estimated by using the calculated M2C phase fraction and estimated

M2C particle size from the strengthening model. Thermodynamic computation shows that

the M2C phase fraction is 0.10266 at 479 ◦C with a carbon content of 0.8%. Comparison
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between predicted and achieved case hardness shows a particle radius of 2nm is the best

estimation of the precipitate size. Thus the number of density of M2C carbides is: Nv =

PhaseFraction
ParticleV olume

= 0.10266
4/3∗π∗(2∗10−9)3

= 3.06 ∗ 1024m−3 The order of magnitude is 1024, agreeing

with the experimental data from LEAP analysis of C61 steel.

7.6. Surface carbon content validation using X-ray diffraction

Currently 0.79wt% C was achieved at the depth of 50µm in the vacuum carburized

prototypes. For the subsequent processing, 50µm was first removed from the case so that

the surface with 0.79wt% C was exposed to cryogenic compression and cyclic tempering.

However, the true surface carbon content might be slightly lower since more material is

possibly removed during machining. Thus the validation of surface carbon content in cryo-

compressed prototype is needed to achieve the correlation between case hardness and case

carbon content. The surface was too small to apply the Optical Emission Spectroscopy to

measure the carbon content. As an alternative, X-ray diffraction analysis was performed

to probe the crystal structure of the surface. Past research has shown that the diffraction

peak splitting of martensite phase is strongly correlated to the carbon content as a and c

axes became distorted with increased carbon content [109]. By measuring the ratio of c

over a, the carbon content can be estimated.

The (200), (400) series of martensite peaks are good candidates for the measurement

of lattice parameters, c and a, as strong peak splitting presents between (200) and (002)

or (400) and (004). Higher order diffraction peaks are recommended for the analysis to

obtain more accurate c/a. However, due to the limitation of the diffractometer, only low

angle (200) and (002) peaks can be detected. The surface crystal structure of a cryogenic
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compressed specimen was measured first and 8% retained austenite was confirmed from

the measurement. Then with a fine scan of peaks (200) and (002), the d spacings were

calculated using pseudo-voigt peak fitting function. Since c = 2d002 and a = 2d200,

c/a = d002/d200 = 1.028 from the diffraction. Referring to the correlation between c/a

and carbon content in steels, the carbon content is estimated to be 0.68 using experimental

data in [110] or 0.64 with [111].

7.7. Summary

Compared with the carbon content estimation using the experimental carbon content

profile, the estimation using X-ray diffraction resulted in the larger uncertainty. Thus it is

summarized that the final hardness was achieved with the corresponding carbon content of

0.72%±0.2%. Plotted in Fig. 7.31 are achieved case and core hardness with corresponding

carbon contents. The current case hardness and carbon content combination agrees well

with the 2nm- radius precipitate strengthening model, demonstrating the validity of the

selected model. With the uncertainty in the case carbon content, a good agreement

has been achieved, demonstrating the effectiveness of computational composition design

and the efficiency of cryogenic deformation in improving material microstructure. With

increased case carbon content to 0.8%, it is shown that the hardness goal can be reached.

The comparison between theoretical and experimental prototype properties is sum-

marized in Table. 7.2. Agreement between calculated and experimental core Ms clearly

validates the design. The achieved case hardness of 975± 10 Hv is a 39% improvement if

compared to current commercial case hardness of 720 Hv. Substantial progress has been

made in increasing the case hardness with respect to C67 steel.
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Figure 7.31. Summary of case and core hardness with carbon contents in
CryoForm 70 prototype

Table 7.2. Summary of CryoForm 70 design

The successful design of CryoForm 70 demonstrated the effectiveness of cryogenic

deformation process in promoting case martensite transformation and the effectiveness of

computational design approach. The difficulty encountered in achieving a full martensite

matrix with high carbon content also indicates the design is approaching the theoretical

limit of surface hardness for Ni-Co secondary hardening steels.
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7.8. Next step process optimization

The potential of CryoForm 70 in possessing ultrahigh surface hardness has been

demonstrated through the achieved case hardness and microstructure. For continuous

improvement in case hardness and fatigue performance, further process optimization is

proposed herein, including the future optimization of carburization, cryogenic UNSM,

cyclic tempering and final peening.

7.8.1. Carburization

Although it is claimed that a 0.79wt% C was achieved at the surface exposed to cryogenic

compression and cyclic tempering, the estimated surface carbon content from tetragonality

was 0.68% C. Although further validation with higher accuracy is needed, it is plausible

to conclude that there is the possibility that the surface carbon content is below the

desired 0.8wt%. To avoid this uncertainty, further optimization of vacuum carburization

is needed.

7.8.2. Cryogenic ultrasonic surface modification

The ultrasonic surface modification (UNSM) treatment at cryogenic temperature has

demonstrated its ability of increasing surface hardness but not the ability of reducing the

level of retained austenite. However, it shows strong potential of being utilized for large

scale products. Thus another run of optimization aiming at improving microstructure is

desired. The pressure transmitted to the steel surface and the frequency of the pointer

vibration are the two major factors to be optimized.
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7.8.3. Cyclic Tempering

To demonstrate CryoForm 70’s ability of achieving higher case hardness than 975 Hv, it

is desired to further increase the M2C driving force during tempering. Thermodynamic

calculation performed through CMD and Thermo-Calc has shown that decreasing tem-

pering temperature brings higher M2C driving force but slower kinetics. Previous practice

demonstrated that 482 ◦C is an optimal tempering temperature for C61 and C67 steels.

It is presented in Fig. 7.32 that M2C driving force in CryoForm 70 could be increased to

about 30kJ/mol with a tempering temperature of 455 ◦C. Not to sacrifice precipitation ki-

netics too much, a combined cyclic tempering procedure at two temperatures is proposed:

482 ◦C tempering for the first 40 hours to keep a fast kinetics and 455 ◦C tempering for

the rest of time to increase M2C driving force.

Figure 7.32. Effect of temperature on M2C driving force for CryoForm 70
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7.8.4. Final UNSM or Laser Peening

For improved fatigue performance, the final peening process producing beneficial com-

pressive residual stress needs to be optimized. In this design, the extremely high hard-

ness at the surface challenges the current shot peening technique, in which cost-effective

metal/alloy shot harder than 64 Rc is not available. As the UNSM treatment is essen-

tially shot peening, it is an alternative since the tungsten carbide ball is hard enough to

deform CryoForm 70. Thus it is desired to optimize this process at room temperature

for the purpose of generating possibly larger compressive residual stress. Laser peening

is another option for the fulfillment of this task because of its ability of producing large

and deep compressive residual stresses with high intensity.



195

CHAPTER 8

Conclusions and suggestions for future work

8.1. Conclusions

A system approach has been applied to investigate the hierarchial material structures

and guide the new materials and process design for advanced secondary hardening gear

steels. Residual stress and its distribution, an indispensable link in material structures,

have been analyzed to understand its evolution during processing, its generation through

process optimization and the non-destructive measurement of its distribution using syn-

chrotron radiation. Results from residual stress study gives direction to the future process

optimization for desired residual stress distribution and improved fatigue performance in

high strength gear steels. Motivated by the advantages from beneficial residual stress

and from cryogenic deformation process, and by the demands for ultra-hard steels in

gear industry, a gear steel with enhanced surface hardness and low case Ms was suc-

cessfully designed. Process development or optimization was subsequently performed to

achieve desired properties. Combined materials and process design confirmed the feasibil-

ity of designing a super hard steel through secondary hardening mechanism and cryogenic

deformation process. The design also shows the potential of achieving higher surface

hardness.
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8.1.1. Residual stress in secondary hardening gear steels

As large compressive residual stresses are desired in Ferrium C61 and C67 secondary

hardening gear steels, residual stress evolution during carburizing, heat treatment and

peening treatment was investigated. An optimal boost time during carburization was

found for largest surface residual stress resulting from the combined effects of carbon

content gradient and the level of retained austenite. Elevated carburizing temperature

and prolonged diffusion both reduce the surface compressive residual stress as the carbon

content gradient is decreased. Compressive residual stress obtained from carburizing

and subsequent quenching relaxes during tempering with increased volume fraction of

precipitates. This relaxation, however, is insensitive to tempering temperatures as long as

carbide precipitation occurs. Fortunately, the loss of compressive residual stress can be re-

introduced through peening processes, which affect residual stress much more significantly

than carburization.

Correlation between attainable residual stress and material surface hardness was es-

tablished. Estimated from this correlation, a -1.3 or -1.7 GPa surface residual stress was

expected for C61 and C67 steels through shot peening, respectively. With shot peening

provided by the third party, -1.4 GPa surface residual stress was achieved in C61 steel,

suggesting further potential of shot peening in generating desired residual stress. A peen-

ing intensity of 0.034 inch A (0.010 inch C) was proposed for C67 steel to obtain a 0.2 mm

compressive depth. However, due to the lack of equally hard or harder shot media, laser

peening was instead applied and -1.5 GPa residual stress was achieved on the surface.

There is still room for further process optimization for higher compressive residual stress.



197

Surface conditions in shot and laser peened Pyrowear 53 was studied to illustrate sur-

face roughening and possible surface defects that occurred during shot and laser peening.

Both processes cause surface roughening. Surprisingly, surface roughness of laser peened

Pyrowear 53 was higher than that of its shot peened counterpart, which was believed

to be due to the inappropriate high power density adopted in laser peening. Similarly,

surface roughness in laser peened C67 was higher than that in shot peened C61. However,

microcracks or micro-notches or surface pitting were not revealed in C61 and C67 steels

as they were in Pyrowear 53, indicating the suitability of both shot and laser peening for

C61 and C67 steels. When optimizing both processes, a tradeoff must be made between

achieving large residual stresses and obtaining high surface roughness.

A novel non-destructive synchrotron radiation technique was implemented and applied

to the analysis of residual stress distribution in carburized steels for the first time through

collaboration with the Advanced Photon Source, Argonne National Laboratory. Residual

stress depth profiles in shot peened C61, ground and laser peened C67, shot and laser

peened Pyrowear 53 were successfully measured. Large residual stresses of -1.4∼-1.5

GPa near the surface in C61 and C67 steels show that shot and laser peening are both

effective in producing beneficial residual stresses. The greater compressive depth obtained

in laser peening indicates laser peening is more favorable for subsurface fatigue resistance.

Residual stress profiles in Pyrowear 53 assisted the root cause identification of material

behavior in RCF testing. The rougher surface with pitting in laser peened Pyrowear 53

counteracted the benefits from larger and deeper compressive residual stress and thus led

to the earlier failure in laser peened steel than in its shot peened counterpart.
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By probing residual stress distribution under wear tracks, surface residual stress re-

laxation was discovered in both C61 and C67 steels after the RCF screening test with 5.4

GPa Hertzian pressure. Diffraction peak sharpening after the RCF test indicates signif-

icant material alteration during cyclic contact loading, supported by the microstructural

change observed in the material’s cross sectional images. Residual stress relaxation needs

to be taken into account when considering fatigue life from the combined effect of applied

stress and residual stress. The fact that residual stress and microstructure both change

under such a high contact load suggests that the RCF test with 5.4 GPa Hertzian pressure

is not a good indicator for the normal material service life.

8.1.2. Design of the ultra-hard gear steel: CryoForm 70

An ultra-hard gear steel, CryoForm 70, aiming at super high surface hardness of 70 Rc

and at the demonstration of the effective cryogenic deformation process, was designed

utilizing the system approach. Based on thermodynamics and strengthening models in

Ni-Co secondary hardening steels, two candidate compositions were designed, meeting

the hardness goals for both case and core materials. Other design parameters include

case and core Ms, case solutionizing temperature and core sigma phase driving force. A

surface carbon content of 0.8wt% was first set to achieve desired surface hardness. To

maximize the strengthening effect from M2C carbides, concentrations of carbide formers

(Cr, Mo and V) were balanced for efficient carbon consumption during tempering. Co

concentration was reduced greatly to decrease the core sigma phase driving force. A

core carbon content of 0.1wt% was determined for required core strength and toughness.

One candidate composition was chosen for prototype fabrication with higher predicted
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case hardness and lower solidification microsegregation. Trace amount of Ti and La were

added when fabricating prototypes for grain refining and impurity gettering.

The high carbon and alloy content necessary for high hardness resulted in expected

dramatic reduction in case Ms (58 ◦C in CryoForm 70 prototype), which verifies the

CryoForm 70 prototype is a good candidate for the assessment of the novel cryogenic de-

formation process. The process combining mechanical deformation and cryogenic treat-

ment was developed to improve the volume fraction of martensite in the case prior to

tempering. Calculations regarding theoretical thermal and mechanical driving force for

martensite transformation and transformation kinetics predicted 90% martensite volume

fraction through cryogenic deformation treatment. Three means of cryogenic deformation,

cryogenic shot peening, cryogenic ultrasonic surface modification (UNSM) and cryogenic

compression, were attempted. Cryogenic compression was demonstrated to be the best

candidate for promoting case martensite volume fraction from 76% to 92%.

A cyclic tempering procedure involving intermediate quenching and cryogenic treat-

ment was developed to further enhance the martensite volume fraction resulting from

cryogenic compression treatment. Peak case hardness of 975 ± 10 Hv (68.5 ± 0.1 Rc) at

0.74 ± 0.5% carbon content was achieved after 56 hour cyclic tempering at 482 ◦C. A

core hardness of 512 ± 2 Hv was obtained, promoting sufficient core toughness. Other

processes optimized include simulation aided carburization, through which the vacuum

carburizing recipe was developed and optimized. Desired 0.8wt% carbon was achieved at

the depth of 50µm in the prototype.

The measured core Ms of 350 ◦C for the prototype agrees with the theoretical pre-

diction very well, validating this computational design. The fact that the achieved case
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hardness is only 8% below predicted value suggests that the system approach is quite

effective for the design of unusual secondary hardening steels. A 39% improvement in

hardness was obtained if compared to current commercial steel hardness value of 720 Hv,

and 8% increase in hardness with respect to Ferrium C67 steel.

8.2. Suggestions for future work

8.2.1. Residual stress in high strength gear steels

Further process optimization for higher compressive residual stresses is desired for Ferrium

C67 steel since current residual stress levels are still below the predicted attainable values.

To achieve large compressive residual stress without inducing high surface roughness, dual

laser peening is proposed based on the study of dual shot peening. In dual laser peening,

the first pass employs a high power density laser with a large laser spot to provide a

large surface compressive residual stress and a great compressive depth. The second pass

operating at a much lower power density with a smaller laser spot further increases the

surface residual stress level and smooths the surface. It is suggested that the practice

of dual laser peening and its optimization should be accomplished through collaboration

with a laser peening service provider, such as Metal Improvement Company, Inc. in

Livermore, California. Alternatively, desired residual stresses in C67 can be achieved by

taking advantage of ultrasonic surface modification (UNSM) treatment. The tungsten

carbide ball with super high hardness (about 1400 Hv) used in UNSM is an ideal peening

medium for residual stress production in hard steel alloys. The peening intensity can be

adjusted by modifying the ball striking pressure and its vibrating frequency. Collaboration

can be established with DesignMecha Co. Ltd. in South Korea. The proposed two means
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of generating compressive residual stress are suitable for the newly designed CryoForm 70

as well.

Based on the non-destructive synchrotron technique for residual stress distribution

analysis, a modified experimental setup is desired for the measurement in a real gear with

complex geometry. In the case that the tooth root is too thick for the high energy beam to

penetrate, the thinner tooth tip may be considered as substitute. The orientation of the

gear with respect to the beam can also be adjusted to find the shortest path for radiation.

8.2.2. Design of the ultra-hard gear steel: CryoForm 70

With the available CryoForm 70 prototype, further process optimization is desired to

achieve better material properties. First, vacuum carburization needs to be optimized for

accurate surface carbon content. For cryogenic deformation process, cryogenic ultrasonic

surface modification (UNSM) shows its potential as the candidate for the application

in large scale products. Thus a second run of cryogenic UNSM should be performed,

targeting the improvement in case martensite volume fraction. Two stage cyclic tempering

with two temperatures is expected to further enhance the M2C carbide driving force

without sacrificing precipitation rate. For final residual stress generation, the development

of dual laser peening or optimization of UNSM is proposed.

Preliminary microstructure validation can be performed using Atom Probe Microanal-

ysis with the current tempered CryoForm 70 prototype. A thin slice could be cut from

the case of the prototype and made into an atom probe tip for data collection. A detailed

atom probe analysis is desired after the accomplishment of enhanced surface hardness

through further process optimization.
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APPENDIX

Surface residual stress analysis by conventional X-ray

1. X-ray facility and operation parameters

Surface residual stress was analyzed using the Orange diffractometer in J. B. Cohen

X-ray Laboratory at Northwestern University (Fig. .1). Detailed operation parameters

were displayed in Table .1.

Figure .1. Diffractometer for surface residual stress analysis at Northwest-
ern University

2. Experimental procedure of residual stress measurement

2.1. Beam alignment

The optics of the diffractometer should be checked before the measurement. Zero positions

of theta, two theta and chi are of most importance. First, use the level to set the chi to
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Table .1. Operation parameters of Orange diffractometer

zero. Second, scan in theta-two theta mode without sample around 0 deg at low energy

to find the position of the two theta peak. That position is zero two theta. Third, bring

the sample in, cutting the beam in half. Fourth, scan in theta mode around 0 deg and

determine the peak position, which is the zero of theta. Repeat Steps Three and Four until

the zero position of theta doesn’t change any more. During this process, the statistical

effect of counting should be taken into account.

2.2. Sample alignment

Instrument misalignment can lead to large deviation in experimental results. Among

several causes of misalignment, sample position is the most significant. The peak shift it

causes can even change the sign of the measured residual stress. If the diffracting volume

is not located at the center of the diffractometer, there is a relative peak shift between

chi = 0 and chi. This effect is shown in Fig. .2.

According to Noyan, Cohen [63] and Cullity [61], for cubic materials and small angles,

the following equation holds:

ahkl − a0

a0

= − ∆x

RGC

•
(

cos θ2

sin θ
+

cos θ2

θ

)
(.1)
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Figure .2. The effect of the sample displacement on the peak shift when
sample is tilted

where ahkl is the lattice parameter calculated from peak (hkl), a0 is the true lattice

parameter by extrapolation, ∆x is the sample displacement from the center, RGC is the

radius of the diffractometer, cos θ2

sin θ
+ cos θ2

θ
is called the Nelson-Riley function.

Eq. .1 can be used to measure ∆x by X-ray diffraction. Determine ahkl for various

reflections at chi = 0 and plot the data versus the Nelson-Riley function. The slope of this

line is equal to − ∆x
RGC

, which directly leads to the determination of sample displacement.

The extrapolated value of a at θ = 90◦ is considered as the true lattice parameter, a0.

If the slope is positive, the sample displacement is negative, which means the sample is

behind the center of the diffractometer, away from the X-ray source and the detector. If

the slope is negative, the sample is in front of the center. With the assistance of a dial

indicator, the diffracting volume of the sample can be accurately located at the center of

diffractometer.
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Three Bragg peaks, (110) (200) and (211), are used to determine the lattice parameter.

Therefore, the deviation of the sample off the diffractometer center is obtained. The

accuracy of the alignment can reach 0.0005 inch.

2.3. Data collection and analysis

Data of θ/2θ scan at Bragg peak (211) at six chi positions were collected: chi = 0, 18.43◦,

26.57◦, 33.21◦, 39.23◦, 45◦. Choosing high angle peak (211) is because the measurement

of residual stress is more accurate at high angles than low angles [63]. A biaxial stress

condition without shear components is assumed on the surface. Therefore, the chi tilting

toward the opposite direction is not necessary. On the other hand, the current diffrac-

tometer configuration does not allow the opposite chi tilting. A typical (211) peak is

shown in .3 below. Due to the 2θ limit (158◦) of the diffractometer, a 3/4 peak is ob-

tained. To increase the statistical accuracy, a small step size and long counting time are

adopted.

Peak position is determined using a Gaussian fit provided by data analysis software

- Origin. Several functions can be utilized to fit the data, such as Gaussian, Modified

Lorentzian, Pearson VII and Pseudo-Voigt function. A parabola fit to the top 85% of a

peak can also be used to find the peak. Past studies have shown that a Pseudo-Voigt

function performs best overall. It converges reliably and gives more flexibility in peak

shape than the Gaussian. The program PEAKFIT by Robert Winholtz [112] is a good

tool to fit data with Pseudo-Voigt function. However, the background line needed for the

Pseudo-Voigt fit can not be determined by this program since the peak is incomplete.
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Therefore, a Gaussian fit (smooth curve in Fig. .3) with a flat background is taken to

determine the peak position.

Figure .3. (211) peak used to measure residual stress, step size 0.05 deg,
counting time 20s

After the determination of peak position, curves d versus sinψ2 and d−d0
d0

versus sinψ2

are worked out, in which d0 is assumed as d-spacing at ψ = 0 obtained from d versus sinψ2

data. The uncertainty in results caused by taking d-spacing at ψ = 0 as the unstressed

value d0 is neglected here [63]. According to Eq. .2, the macro-residual stress is obtained

by multiplying the slope of d−d0
d0

versus sinψ2 curve with E
1+ν

. The error is calculated from

the error of peak position and the linear fit deviation. A worked out example is given in

next section.

d− d0

d0

= σ sinψ2 − ν

E
(σ11 + σ22) (.2)

where σ is the angular combination of σ11 and σ22.

2.4. An example of diffraction data analysis

Sample: C61 after quenching and liquid nitrogen treatment
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Step1: Determine peak position from the diffraction data by a Gaussian fit function

in the Origin software. Results are shown in Table .2.

Table .2. Peak positions at different psi angles

Step2: Calculate d-spacing of peak (211) at each psi angle using Bragg’s Law. The

error is given by Eq. .3. Results are presented in Table .3. Fit the data linearly and get

the d-spacing at ψ = 0 (Fig. .4). Use that value as d0 which is proven by Noyan and

Cohen to be feasible. In this case, d0 = 1.17365± 5.38474E − 5 from Fig. .4. The good

linear fit indicates that there is no shear stress component.

∆d =
λ cosθ
2 sin2

θ

∆θ (.3)

Step3: Calculate d−d0
d0

for each value of sinψ2. Results are displayed in Table .4. The

error is given by Eq. .4. Plot d−d0
d0

versus sinψ2, shown in Fig. .5. A linear relationship

presents between d−d0
d0

and sinψ2. From Eq. .2, the slope of this line is related to the

macro stress.

∆
d− d0

d0

= ∆
d

d0

=
∆d

d0

− d(∆d0)

d2
0

(.4)
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Table .3. d-spacing versus sinψ2

Figure .4. d-spacing versus sinψ2

Table .4. d−d0
d0

versus sinψ2

Step4: The macro stress is calculated by using Eq. .5, where B is the slope of the line

d−d0
d0

versus sinψ2, E is Young’s modulus and ν is Poisson’s ratio. The error is calculated
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Figure .5. d−d0
d0

versus sinψ2

from the error of the slope. In this case, B = −0.00431 ± 1.46615E − 4 and we assume

E
1+ν

is 168GPa for steels. Therefore, the macro stress of this sample is −724± 24.6 MPa.

σ = B • E

1 + ν
(.5)
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