skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of Irradiation and Post-Irradiation Annealing on the Thermal Conductivity/ Diffusivity of Monolithic SIC and SIC/SIC Composites

Book ·
OSTI ID:909696

Laser flash thermal diffusivity measurements were made on high-purity monolithic CVD-SiC (impurity concentration <5 wppm) and 2D f-SiC/PyC/ICVI-SiC composite samples (plain weave Hi-Nicalon (Trademark) fabric layers with 0-90 layup made by the isothermal chemical vapor infiltration process and with either a “thick” 1.0 µm or a “thin” 0.11 µm PyC fiber coating) before and after irradiation in the HFIR reactor (250 to 800°C, 4-8 dpa-SiC) and after post-irradiation annealing composite samples to 1200°C. Thermal conductivity in SiC is controlled by phonon transport. Point defects introduced into SiC during neutron irradiation are effective scattering centers for phonons, and as a consequence the thermal conductivity is sharply reduced. For irradiation temperatures below ~800°C, the accumulation of point defects (in SiC mostly single or small clusters of interstitials and isolated vacancies) saturates when the interstitial-vacancy recombination rate equals the defect production rate. For saturation conditions, the relative reduction in the SiC thermal conductivity decreases in a manner similar to its swelling reduction with increasing irradiation temperature. Examination of SiC swelling data at various irradiation temperatures and doses indicates that saturation occurs for ~2 dpa-SiC at 200°C and decreases continuously to ~0.4 dpa-SiC at 800°C. Based on a model that assumes a uniform distribution of the phonon scattering defects, the calculated defect concentration for unirradiated CVD-SiC was less than 1 appm, which is consistent with the manufacturer’s value of <5 wppm impurities. The defect concentrations estimated for the irradiated CVD-SiC samples decreased continuously from ~25,000 to 940 appm as the irradiation temperature increased from 252 to 800°C. The small intrinsic defect concentration in comparison to the rather large extrinsic irradiation-induced defect concentrations illustrates why CVD-SiC makes an ideal irradiation damage monitor.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
909696
Report Number(s):
PNNL-SA-40902; AT6020100; TRN: US0703959
Resource Relation:
Related Information: Fusion Materials Semiannual Progress Report for Period Ending December 31, 2003, 35:18-19
Country of Publication:
United States
Language:
English