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Abstract

Large scale InfiniBand clusters are becoming increas-
ingly popular, as reflected by the TOP 500 Supercomputer
rankings. At the same time,fat treehas become a popular
interconnection topology for these clusters, since it allows
multiple paths to be available in between a pair of nodes.
However, even with fat tree, hot-spots may occur in the net-
work depending upon the route configuration between end
nodes and communication pattern(s) in the application. To
make matters worse, the deterministic routing nature of In-
finiBand limits the application from effective use of multiple
paths transparently and avoid the hot-spots in the network.
Simulation based studies for switches and adapters to im-
plement congestion control have been proposed in the liter-
ature. However, these studies have focussed on providing
congestion control for the communication path, and not on
utilizing multiple paths in the network for hot-spot avoid-
ance. In this paper, we design an MPI functionality, which
provides hot-spot avoidance for different communications,
without a priori knowledge of the pattern. We leverage
LMC (LID Mask Count) mechanism of InfiniBand to cre-
ate multiple paths in the network and present the design
issues (scheduling policies, selecting number of paths, scal-
ability aspects) of our design. We implement our design
and evaluate it with Pallas collective communication and
MPI applications. On an InfiniBand cluster with 48 pro-
cesses, collective operations like MPI All-to-all Personal-
ized and MPI Reduce Scatter show an improvement of 27%
and 19% respectively. Our evaluation with MPI applica-
tions like NAS Parallel Benchmarks and PSTSWM on 64
processes shows significant improvement in execution time
with this functionality.

Keywords: MPI, Clusters, Hot-spot, Congestion Con-
trol, InfiniBand
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1 Introduction
In the past decade, introduction of high speed intercon-

nects like InfiniBand, Myrinet and Quadrics has escalated
the trends incluster computing, with MPI being thede-
factoprogramming model. InfiniBand in particular is being
widely accepted as the next generation interconnect, due to
its open standard and high performance. Large scale In-
finiBand clusters are becoming increasingly popular, as re-
flected by the TOP 500 [1] Supercomputer rankings. At
the same time,fat tree [5] has become a popular intercon-
nection topology for these clusters, since it allows multiple
paths to be available in between a pair of nodes. However,
even with fat tree, hot-spots may occur in the network de-
pending upon the route configuration between end nodes
and communication patterns in the application. To make
matters worse, the determinstic routing nature of InfiniBand
limits the application from effective use of multiple paths
transparently and avoid the hot-spots in the network. Sim-
ulation based studies for switches and adapters to imple-
ment congestion control have been proposed in the litera-
ture [15, 6, 10]. However, these studies have focussed on
providing congestion control for the communication path,
and not on utilizing multiple paths in the network for hot-
spot avoidance. This leads to the following challenges:

1. What are the mechanisms available for utilizing multi-
ple paths in InfiniBand?

2. What are the design issues at the MPI level in utilizing
these mechanisms efficiently?

3. How much benefit can be achieved compared to the
current state of the art MPI implementation?

In this paper, we address these challenges. We design an
MPI functionality which provides hot-spot avoidance for
different communication patterns, without apriori knowl-
edge of the pattern. We leverage LMC (LID Mask Count)
mechanism of InfiniBand to create multiple paths in the net-
work, and study its efficiency in creation of contention free
routes. We also present the design issues (scheduling poli-
cies, selecting number of paths, scalability aspects) associ-
ated with our MPI functionality.

We implement our design and evaluate it with micro-
benchmarks, Pallas collective communication and with MPI
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applications. On an InfiniBand cluster with 64 processes,
we observe an average improvement of 23% for displaced
ring communication pattern amongst processes. For col-
lective operations like MPI All-to-all Personalized and MPI
Reduce Scatter, we observe an improvement of 27% and
19% respectively. Our evaluation with NAS Parallel Bench-
marks [2] shows an improvement of 6-9% in execution time
for the FT Benchmark, with class B and class C size us-
ing 32-64 processes for evaluation. For other NAS Parallel
Benchmarks, we do not see a degradation in performance
compared to the original design. Using PSTSWM [4], we
see an improvement of 4%, compared to the original design.

The rest of the paper is organized as follows. In section
2, we present the background of our work. In section 3, we
present the motivation of our work. In section 4, we present
the design issues of our functionality at the MPI layer . In
section 5, we present the performance evaluation using a
large scale InfiniBand cluster. We present the related work
in section 6. We conclude and present our future directions
in section 7.

2 Background
In this section, we provide background information for

our work. We provide a brief introduction of InfiniBand
followed by Message Passing Interface (MPI). Lastly, we
provide a brief introduction to fat tree interconnection net-
works.

2.1 Overview of InfiniBand
The InfiniBand Architecture (IBA) [7] defines a switched

network fabric for interconnecting processing nodes and
I/O nodes. An InfiniBand network consists of switches,
adapters (called Host Channel Adapters or HCAs) and links
for communication. For communication, InfiniBand sup-
ports different classes of transport services (Reliable Con-
nection, Unreliable Connection, Reliable Datagram and
Unreliable Datagram). In this paper, we focus on the re-
liable connection model. In this model, each process-pair
creates a unique entity for communication, calledqueue
pair. Each queue pair consists of two queues;send queue
andreceive queue. The requests to send the data to the peer
are placed on the send queue, by using a mechanism called
descriptor. A descriptor describes the information neces-
sary for a particular operation. For RDMA (Remote Di-
rect Memory Access) operation, it specifies the local buffer,
address of the peer buffer and access rights for manipula-
tion of remote buffer. InfiniBand also provides a mecha-
nism, where different queue pairs can share their receive
queues, calledshared receive queuemechanism. The com-
pletions of descriptors are posted on a queue calledcom-
pletion queue. This mechanism allows a sender to know
the status of the data transfer operation. Different mecha-
nisms for notification are also supported (polling and asyn-
chronous).

From the network management perspective, InfiniBand
defines an entity calledsubnet manager, which is responsi-
ble for discovery, configuration and maintenance of a net-
work. Each InfiniBand port in a network is identified by
one or more local identifiers (LIDs) , which are assigned

by the subnet manager. Since InfiniBand is destination
based routing, each switch in the network has a routing
table corresponding to the LIDs of the destination. How-
ever, InfiniBand is deterministic routing, and decisions to
route messages adaptively cannot be taken by the interme-
diate switches. Instead, InfiniBand provides a mechanism,
in which each port can be assigned multiple LIDs, to exploit
multiple paths in the network. Leveraging this mechanism
for avoiding hot-spots is the focus of this paper.

2.2 Overview of MPI Protocols

MPI defines two types of communication protocols;ea-
gerandrendezvous. These protocols are handled by a com-
ponent in the MPI implementation calledprogress engine.
In the eager protocol, the message is pushed to the receiver
side regardless of its state. In the rendezvous protocol, a
handshake takes place between the sender and the receiver
via control messages before the data is sent to the receiver
side. Usually, Eager protocol is used for small messages
and Rendezvous protocol is used for large messages.

For small messages, a copy based approach benefits over
the cost of the handshake. For the large messages, it is ben-
eficial to perform exchange of buffer addresses. This is a
requirement for RDMA (Remote Direct Memory Access)
mechanism, which allows remote data to be read/written
with kernel bypass. The application buffer(s) need to be
pinned, so that the operating system does not swap them
during communication. In this paper, we use this mecha-
nism for large messages. Using multiple paths, we divide
the application buffer intostripesfor efficient use of multi-
ple paths.

2.3 Fat Tree Topology

Fat Tree is a general purpose interconnection topology,
which is used for effective utilization of hardware resource
devoted to communication. In a fat tree based intercon-
nection network, leaf nodes represent processors, internal
nodes represent switches, and edges correspond to bidirec-
tional links between parents and children. In a traditional

Switch

SwitchSwitch

Switch

P3 P4P1 P2

P Processing Element

Figure 1. A Fat Tree with Four Switches

binary tree, the bandwidth at different levels of the network
is not constant. Due to this configuration, congestion may

2



occur near the root of the tree. Figure 1 shows an exam-
ple of fat tree with 4 processing elements connected with
4 switches. The physical links are represented by the solid
lines. Some of the possible paths between processing ele-
ment P1 and P3 are shown by dotted lines of different dot
formats. Please note that the other possible paths (which are
not min-hop) are not shown for clarity.

3 Motivation
In this section, we present the motivation of our work.

We take a cluster with a fat-tree switch and execute an MPI
program using this switch to understand the contention and
occurence of hot-spots in the network. Figure 2 represents
the switch topology used for our evaluation. Each switch
block consists of 24 ports. The leaf switches (referred to as
leaf blocks from here onwards) have 12 ports available to
be used by the end nodes, the other 12 ports are connected
to the spine switches (referred to as spine blocks from here
onwards). In the figure, blocks 1 - 12 are leaf blocks; blocks
13 - 24 are spine blocks. The complete switch has 144 ports
available for end nodes. Each block is a crossbar in itself.
Please note that in the figure, we have not shown all blocks
and their internal connections for clarity.

2
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144 Port Switch

Available To End Node

12 Leaf Blocks

12 Spine Blocks

To Spine Blocks

1 3

14

Figure 2. 144-port InfiniBand Switch Block Diagram

To demonstrate the contention, we take a simple MPI
program, which performs ring communication with neigh-
bor rank increasing at every step. The communication pat-
tern is further illustrated in the Figure 3 (only step1 and
step2 are shown for clarity). Executing the program with n
processes takes n-1 steps. Letranki denote the rank of the
ith process in the program. andstepj denote the jth step
during execution. Atstepj, an MPI process withranki

communicates with MPI processranki+j . This communi-
cation pattern is referred to asDRC (Displaced Ring Com-
munication)for the rest of the paper.

We take an instance of this program with 24 processes
and schedule MPI processes withrank0 - rank11 on nodes
connected to block 1 andrank12 - rank23 on block 2. We
use MVAPICH 1, a popular MPI over InfiniBand as our
MPI implementation for the evaluation of DRC. Since each
block is a crossbar in itself, no contention is observed for
intra-block communication. However, as the step iteration
increases, the inter-block communication increases and a

1MVAPICH/MVAPICH2 [9] are currently used by more than 430 or-
ganizations worldwide. It has enabled several large InfiniBand clusters to
obtain top 500 ranking. A version is also available in an integrated manner
with OpenFabrics-Gen2 stack

Step1

Step2

Figure 3. Communication Steps in Displaced Ring Com-
munication

significant link contention is observed. The link contention
observed during the step 12 (each process doing inter-block
communication) is shown in Figure 4, with thicker solid
lines representing more contentions. The quantitative eval-
uation is shown in Figure 5. From Figure 4, we can see
that some links are over-used to a degree from four to
zero. As the degree of link usage increases, the band-
width is split amongst the communication instances using
the link(s), making themhot spots. In our example, paths
using block 13 split bandwidth for four different communi-
cation instances making the set of links using this block hot-
spots. In Figure 5, we show the results of our evaluation.
On the x-axis and y-axis, we show the process ranks. The
bandwidth achieved during communication ofrankx and
ranky is shown with a square generated by drawing lines
for the process ranks (shown as an example with the inter-
section of dotted lines in Figure 5. The darker the squares,
the worse is the bandwidth achieved in comparison to the
best bandwidth (The best bandwidth is achieved by the pro-
cesses doing intra-block communication). We notice that
as inter-block communication increases, the corresponding
squares become darker.
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k

Figure 5. Displaced Ring Communication, 24 Processes

Even though, there are sufficient links for an independent
path of communication between block 1 and 2 (using spine
blocks), DRC is not able to utilize them in a contention free
manner. The usage of these links is highly dependent upon
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Figure 4. Link Usage with Displaced Ring Communication

the path configuration done by the subnet manager. This
route configuration done by the subnet manager may benefit
one communication pattern and show contention for other
patterns, leaving un-utilized links in the network. At the
same time, the deterministic routing nature of InfiniBand
does not allow us to use these links efficiently. In the Figure,
the unused paths are shown with a dotted line. We notice
that paths using switch blocks 16 and 18 are left un-utilized.
(The other un-utilized links are not shown in the figure).

Under such a scenario, the utilization of the links is the
responsibility of the MPI implementation. Hence, design-
ing an efficient MPI library, with effective use of multiple
paths is critical to hot-spot avoidance. In the next section,
we explore the LMC mechanism provided by InfiniBand
for creation of multiple paths between a pair of nodes. We
leverage this mechanism to design an MPI taking advantage
of these paths in an efficient manner and provide hot-spot
avoidance for different communication patterns, without a-
priori knowledge of the pattern.

4 Hot-Spot Avoidance MPI over InfiniBand
In [8], we presented an initial framework using multi-

rail networks and presented different scheduling policiesfor
their efficient utilization. We leverage this framework for
designing hot-spot avoidance functionality. However, the
existing framwork suffers from following limitations:

• A key functionality missing in the existing framework
is to leverage the LMC mechanism for hot-spot avoid-
ance. Using the subnet manager to configure disjoint
paths and their efficient usage is a major functionality,
which is added to the existing framework

• The existing framework assumes the presence of one
path to be utilized per end port. In the motivation sec-
tion, we observed the presence of multiple un-utilized
paths per end port. Utilizing very few of these paths
may not significantly help to avoid hot-spots. How-
ever, utilization of all the existing paths has practical
implications due to startup costs, and accuracy in the
estimation of path bandwidth. We study this issue in
detail in our design and evaluation.

• Increasing number of paths leads to increased memory
utilization. In the existing framework, we did not ad-
dress the memory scalability issue, due to the presence
of only one path/end port. We address the this problem
using InfiniBand’s shared receive queue mechanism.

Our existing frame-work is based on MVAPICH, introduced
in the motivation section. We call our enhanced design,
HSAM (Hot-Spot Avoidance MVAPICH). Next, we present
the overall design of HSAM.

4.1 Overall Design
Figure 6 represents the overall design of HSAM. In the

figure, we can see that besides MPI Protocol Layer and In-
finiBand Layer, our design consists of three major compo-
nents:Communication Scheduler, Scheduling Policies, and
Completion Filter. The Communication Scheduler is the
central part of our design. It accepts protocol messages
from the MPI Protocol Layer, and stripes them across mul-
tiple paths. In order to decide how to stripe, the Communi-
cation Scheduler uses information provided by the Schedul-
ing Policies component. Scheduling Policies can be static
that are determined at initialization time. They can also be
dynamic and adjust themselves based on input from other
components of the system. Since a single message may be
striped and sent as multiple messages through the Infini-
Band Layer, we use the Completion Filter to process com-
pletion notifications and to inform the MPI Protocol Layer
upon completions of all stripes.

4.2 Leveraging Multiple Paths Using LMC

In the motivation section, we have noted that some of
the paths became hot-spots, while other paths are left un-
utilized in the network. One important mechanism to effi-
ciently use the available paths is by changing the routing
table of each switch block. Using this mechanism, con-
tention free paths can be created for a particular commu-
nication pattern. The subnet manager allows a user to input
its own routing table for different switches, which can be
used for communication. However, this mechanism suffers
from the fact that the optimization can be done only for a
single communication pattern. At the same time, presence
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Figure 6. Overall Architecture [8]

of other jobs in the network, exact scheduling of each MPI
task can complicate the generation of user-assisted routing
tables.

To overcome the above limitations, we leverage the LID
(Local Identifier) Mask Count (LMC) mechanism of Infini-
Band, which allows multiple paths to be created between a
pair of nodes. Using an LMC value ofx, we can create2x

paths, with 7 (128) being the maximum value allowed for
LMC. We use OpenSM, a popular subnet manager for In-
finiBand to configure these paths. Usingtrace-routemech-
anism of InfiniBand, we calculate the exact path (set of
switch blocks and ports) taken by each pair of source and
destination LID for different values of LMC. We notice that
the subnet manager is able to configure paths utilizing dif-
ferent spine blocks in the switch. Hence, LMC mechanism
provides us as many contention free paths as possible. How-
ever, efficient utilization of these paths is dependent upon
the scheduling policy for data transfer. In the next section,
we discuss the scheduling policies used for evaluation.

4.3 Scheduling Policies
Different scheduling policies can be used by the Com-

munication Scheduler to decide the paths to use for mes-
sage transmission. We categorize different policies into two
classes:static schemesanddynamic schemes.

• In static schemes, the policy and its parameters are de-
termined at initialization time and do not change dur-
ing the execution of MPI applications.

• In dynamic schemes, we can switch between different
policies or change parameters during the program exe-
cution.

Even Striping: For static schemes, the weight distribution
of each path is fixed and does not change depending upon
the feedback of different components in MPI Layer. In our
design, we use this mechanism to design a striping policy
for large messages, which stripes messages evenly across
all paths used for communication. We refer to this policy as
even striping.

Adaptive Striping: In this policy, we leverage the com-
pletion notification mechanism of InfiniBand to calculate
path bandwidth. The completion notification is generated

upon the data delivery to the remote destination’s adapter.
This provides a relatively accurate estimation of the time
spent in the network. To begin with, we stripe the messages
evenly on all paths. The weights of each paths is adjusted
in accordance with the completion times of the stripes. Up-
dated paths can then be used for followup iterations. A de-
tailed discussion of weight adjustment and efficiency of this
policy discussed in our previous work [8]. We call this pol-
icy asadaptive stripingpolicy.

This policy helps us in avoiding hot-spots as much as
possible. To begin with, the adaptive striping policy be-
haves like even striping. However, on using a path with hot-
spot, the stripe delivery time increases considerably. Since
the paths are adjusted accordingly, this policy is able to
avoid the hot-spots. At the same time, if the hot-spots dis-
appear, this policy adjusts the weights accordingly. Hence,
this policy benefits in the presence of hot-spots, however
does not lead to performance degradation in their absence.

4.4 Selecting Number of Paths
In our previous work with multi-rail InfiniBand net-

works, we used one path of communication/end port. How-
ever, in the motivation section, we observed that there are
multiple paths available for communication between every
pair of processes, even though there is only one physical
port available at the end node. Using the maximum value
of LMC allowed by InfiniBand specification, we can create
128 virtual paths. However, some of the paths may physi-
cally overlap with each other. For a two-stage Fat Tree, as
shown in the motivation section, we observe that there are
only twelve disjoint physical paths. Hence, using a max-
imum of twelve paths would suffice our need for hot-spot
avoidance. As per the InfiniBand specification connection
model, a queue pair/path is needed to use them simultane-
ously. Once a path is specified for a queue pair, it cannot be
changed during the communication (An exception is Au-
tomatic Path Migration for InfiniBand, which is beyond the
scope of this paper). However, there are some practical con-
siderations in leveraging all the paths simultaneously:
• Sending a message stripe through each path requires

posting a corresponding descriptor. Hence, this may
lead to significant startup overhead with increasing
number of paths.

• For each message stripe, a completion is generated on
the sender side. With increasing number of paths, more
completions need to be handled, which can potentially
delay the progress of the application.

• The accuracy of path bandwidth is significantly depen-
dent upon the discovery of the completions, as men-
tioned in the scheduling policies sections. With in-
creasing number of paths, the accuracy may vary sig-
nificantly.

• The memory usage increases with increasing number
of paths. We handle this issue in the scalability section
later.

Hence, a judicious selection of number of paths is impera-
tive to performance and memory utilization of the MPI li-
brary. In the next section, we discuss the memory utilization
aspect of our design.
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4.5 Scalability Aspects of HSAM
In the previous section, we discussed that increasing

number of paths leads to more memory utilization. In
essence, the memory utilization per path can be represented
as follows:

memqp = memqp−context+nes∗memsqe+ner∗memrqe

(1)
wherememqp is the connection memory usage per path,
nes and ner are number of send and receive work
queue elements,memsqe and memrqe are the sizes of
each send queue and receive queue elements respectively.
memqp−context is the size of each QP context, correspond-
ing to each path in our design.

To make our design more scalable, we use the shared
receive queue mechanism of InfiniBand [11] to handle the
scalability aspect for receive queue. In the previous de-
sign [11], receive queues corresponding to different pro-
cesses was shared. We allow different paths for the same
set of processes to be attached to the shared receive queue.
As a result the memory usage can be represented as:

memqp = memqp−context + nes ∗ memsqe (2)

Although our current design focusses only on reducing
the memory usage for receive queue, additional methods
such as setting up connections only as needed (on-demand
connection management) have also been shown to signifi-
cantly reduce memory usage and can be used in conjunction
with our design. In future, we plan to address these issues.

5 Performance Evaluation
In this section, we evaluate the performance of HSAM

(Hot-spot avoidance MVAPICH) and compare its perfor-
mance with the current version of MVAPICH (referred to
as Original for the rest of the section). We use 1 process
per node (hence 48 process run is referred to as 48x1). Our
evaluation consists of two parts. In the first part, we show
the performance benefit we can achieve compared to the
original MPI implementation using collective communica-
tion. In the second part, we provide an evaluation of our

design with MPI applications. We use NAS Parallel Bench-
marks [2] and PSTSWM [4], a shallow water modeling ap-
plication, for our evaluation.

5.1 Experimental Testbed

Our testbed cluster consists of 64 nodes; 32 nodes with
Intel EM64T architecture and 32 nodes with AMD Opteron
architecture. Each node with Intel EM64T architecture is
a dual socket, single core with 3.6 GHz, 2 MB L2 cache
and 2 GB DDR2 533 MHz main memory. Each node with
AMD Opteron architecture is a dual-socket, single core with
2.8 GHz, 1 MB L2 cache and 4 GB DDR2 533 MHz main
memory. On each of these systems, the I/O bus is x8 PCI-
Express with Mellanox MT25208 dual-port DDR Mellanox
HCAs attached to 144-port DDR Flextronics switch. The
firmware version is 5.1.400. We have used Open Fabrics
Enterprise distribution (OFED) version 1.1 for evaluation
on each of the nodes and OpenSM as the subnet manager,
distributed with this version.

5.2 Performance Benefits of HSAM with Collec-
tive Communication

Figure 7 shows the ping-pong latency achieved using
2 processes by a 4-byte message with increasing value of
LMC. The motivation is to understand the impact of in-
creased routing table size (present on each switch block),
with increasing value of LMC, since the number of entries
in the table grow exponentially. We notice that increasing
LMC does not impact the latency. The figure also repre-
sents the performance, when both processes are located on
same block (1-hop) and different blocks (3-hops). We no-
tice that 3-hops increases the latency by 0.25 us, an increase
of around 0.12 us every switch block.

In Figure 8, we show the performance of MPI Alltoall
Personalized for 48 processes. We compare a combina-
tion of HSAM parameters; number of paths, striping pol-
icy, LMC use with original implementation. In our design,
the completion filter waits for the completion of all stripes,
before notifying the application with the completion. The
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time is dominated with the slowest stripe, even though other
stripes may have finished earlier, and as a result the bene-
fit from using hot-spot free path is nullified. Hence, using
even striping does not improve the performance compared
to the original implementation. For rest of the evaluation,
we only focus on adaptive striping policy with HSAM. Us-
ing adaptive striping with HSAM improves the performance
significantly (both 2 paths and 4 paths).

However, using 8 paths, we see a performance degrada-
tion in comparison to the original design. We have noticed
that inaccuracy in estimation of path bandwidth is due to
a combination of factors mentioned in the design section.
Particularly, pulling off multiple completions from the com-
pletion queue adds significantly to the inaccuracy. However,
we see an improvement in performance with 4 paths com-
pared to the two paths case and an improvement of 25%
with 4 paths compared to the original case. Hence, for most
of our evaluation, we use 4 paths by default and the adaptive
scheduling policy for our evaluation.

Figure 10 shows the results for Reduce-Scatter collective
operation. This operation consists of a reduce operation,
followed by a scatter operation. In our evaluation of MPI
Reduce, HSAM does not show an improvement. However,
during the scatter operation, link contention increases sig-
nificantly. As a result, HSAM is able to show improvement
from the original case. We see an improvement of 19% for
the Reduce-Scatter operation. Figure 9 shows the results
for MPI Allreduce. MVAPICH uses Hypercube based algo-
rithm for large messages. As a result, the contention gener-
ated in the network is negligible. HSAM does not improve
the performance, although no degradation incurred either.

Figure 11 and 12 show the results for displaced ring com-
munication, explained in the motivation section. We com-
pare HSAM’s adaptive policy with the original implemen-
tation. We notice that using HSAM and the adaptive policy,
the spots compared to the original policy achieve much bet-
ter bandwidth. The average bandwidth improves by 23%
compared to the original implementation. The points near
the diagonal are also much wider implying the benefits of
HSAM and adaptive striping. In the motivation section, we

presented the results for 24 processes case. Figure 13 shows
the results for 24 processes with HSAM. We can clearly no-
tice that the corresponding dark spots in the original case
are much lighter with HSAM. We are able to improve the
average bandwidth by 21%.

5.3 Performance Benefits at Application Level

In this section, we present the results for MPI applica-
tions with HSAM. We use NAS Parallel Benchmarks [2]
and PSTSWM [4]. For NAS Parallel Benchmarks, we fo-
cus on the FT benchmark, which uses MPI All-to-all per-
sonalized for communication. We use class B and class C
problem size for evaluation. For PSTSWM, we use medium
problem size for evaluation. Although not included in the
paper, we have not seen performance degradation for rest of
the NAS Parallel Benchmarks using HSAM.

Figure 15 shows the results for FT benchmark, Class B
problem size, for 16, 32 and 64 processes. We compare the
performance of HSAM’s adaptive striping with the origi-
nal policy. Using 16 processes, we do not see any im-
provement, since the contention in the network is negligi-
ble. However, with 32 processes, we see an improvement
of 8% with HSAM and 6% with 64 processes, compared to
the original design. Figure 16 shows the results for Class
C problem size with FT benchmark. With 32 processes, we
see an improvement of 9%. The increased improvement is
attributed to the increased size of data transfer during MPI
All-to-all phase. With 64 processes, an improvement of 8%
is observed, compared to the original design.

Figure 17 shows the results for 36, 48 and 64 processes
respectively with PSTSWM. We notice that using HSAM,
we can improve the performance for 64 processes by around
4%. For rest of the combinations, we do not see significant
performance improvement.

6 Related Work

Many researchers have focused on providing MPI sup-
port for multi-rail networks [8, 3, 12]. In our previous work,
we have designed MPI-2 one sided communication using
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Figure 15. NAS Parallel Benchmarks, FT, Class B
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Figure 16. NAS Parallel Benchmarks, FT, Class C
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Figure 17. Performance Evaluation with PSTSWM

multi-rail InfiniBand networks [14]. Handling network het-
erogeneity and network faults with asynchronous recov-
ery of previously failed paths has also been presented [13].
However, the above works have focused on design and eval-
uation with multi-rail networks on the end nodes (multiple
ports, multiple adapters), rather than the network.

Congestion control has been studied with simulations by
multiple researchers [15, 6, 10]. It has also been proposed as
a part of the IBA specification [7]. In [10], the researchers
proposed a notification mechanism to the subnet manager
for reducing the static rate of the affected connection to per-
form congestion control. The above works have proposed
explicit congestion notification mechanisms (forward con-
gestion notification and backward congestion notification)
to allow the switches and channel adapters to become aware

of congestion in the network. However, these works are
simulation based and have focussed on congestion control
for the existing path of communication, rather than utilizing
the presence of multiple paths in the network. Hence, de-
signing software based solutions to perform hot-spot avoid-
ance is imperative for upcoming large scale InfiniBand net-
works. In this paper, we have presented an MPI functional-
ity for hot-spot avoidance and shown benefits for different
communication patterns for MPI applications.

7 Conclusions and Future Work
In this paper, we have designed an MPI functionality

which provides hot-spot avoidance for different communi-
cation patterns, without a-priori knowledge of the pattern.
We have leveraged LMC (LID Mask Count) mechanism
of InfiniBand to create multiple paths in the network, and
studied its efficiency in creation of contention free routes.
We have also presented the design issues (scheduling poli-
cies, selecting number of paths, scalability aspects) associ-
ated with our MPI functionality. We have implemented our
design and evaluated it with collective communication and
MPI applications. On an InfiniBand cluster with 64 pro-
cesses, we have observed an average improvement of 23%
for displaced ring communication pattern. For collective
communication like MPI All-to-all Personalized and MPI
Reduce Scatter, we have observed an improvement of 27%
and 19% respectively. Our evaluation with NAS Parallel
Benchmarks has shown an improvement of 6-9% in exe-
cution time for FT Benchmark, with class B and class C
problem size. Using PSTSWM, a shallow water modeling
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application, we have seen an improvement of 4%, compared
to the original design.

As a part of future work, we plan to evaluate our design
with very large scale InfiniBand clusters. We plan to study
the interaction of different jobs for communication and par-
titioning them logically for minimal interaction of the paths
in the network. As the InfiniBand products become mature,
we plan to study the proposed explicit congestion notifica-
tion mechanisms for congestion control on large scale In-
finiBand clusters.
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