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Abstract 1 Introduction

In the past decade, introduction of high speed intercon-

Large scale InfiniBand clusters are becoming increas- Nects like InfiniBand, Myrinet and Quadrics has escalated
ingly popular, as reflected by the TOP 500 Supercomputerthe trends incluster computingwith MPI being thede-
rankings. At the same timéat treehas become a popular chtoprogrammlng model. InflnlBanq in partlcular is being
interconnection topology for these clusters, since itwo ~ Widely accepted as the next generation interconnect, due to
multiple paths to be available in between a pair of nodes. its open standard and high performance. Large scale In-
However, even with fat tree, hot-spots may occur in the net-finiBand clusters are becoming increasingly popular, as re-
work depending upon the route configuration between endflected by the TOP 500 [1] Supercomputer rankings. At
nodes and communication pattern(s) in the application. To the same timefat tree [5] has become a popular intercon-
make matters worse, the deterministic routing nature of In- Nection topology for these clusters, since it allows mistip
finiBand limits the application from effective use of muétip ~ Paths to be available in between a pair of nodes. However,
paths transparently and avoid the hot-spots in the network. €ven with fat tree, hot-spots may occur in the network de-
Simulation based studies for switches and adapters to im-Pending upon the route configuration between end nodes
plement congestion control have been proposed in the liter-and communication patterns in the application. To make
ature. However, these studies have focussed on providinghatters worse, the determinstic routing nature of InfiniBan
congestion control for the communication path, and not on limits the application from effective use of multiple paths
utilizing multiple paths in the network for hot-spot avoid- transparently and avoid the hot-spots in the network. Sim-
ance. In this paper, we design an MPI functionality, which ulation based studies for switches and adapters to imple-
provides hot-spot avoidance for different communications Ment congestion control have been proposed in the litera-
without a priori knowledge of the pattern. We leverage fure [15, 6, 10]. However, these studies have focussed on
LMC (LID Mask Count) mechanism of InfiniBand to cre- Providing congestion control for the communication path,
ate multiple paths in the network and present the designand not on utilizing multiple paths in the network for hot-
issues (Scheduling po"cieS, Se|ecting number of patm_, sc SpOt avoidance. This leads to the f0||0WIng Cha||en9882
ability aspects) of our design. We implement our design
and evaluate it with Pallas collective communication and
MPI applications. On an InfiniBand cluster with 48 pro-
cesses, collective operations like MPI All-to-all Persbna 5 \what are the design issues at the MPI level in utilizing
ized and MPI Reduce Scatter show an improvement of 27%  these mechanisms efficiently?
and 19% respectively. Our evaluation with MPI applica-
tions like NAS Parallel Benchmarks and PSTSWM on 64 3. How much benefit can be achieved compared to the
processes shows significant improvement in execution time  current state of the art MPIl implementation?
with this functionality.

1. What are the mechanisms available for utilizing multi-
ple paths in InfiniBand?

In this paper, we address these challenges. We design an
MPI functionality which provides hot-spot avoidance for
Keywords: MPI, Clusters, Hot-spot, Congestion Con- different communication patterns, without apriori knowl-
trol, InfiniBand edge of the pattern. We leverage LMC (LID Mask Count)
mechanism of InfiniBand to create multiple paths in the net-
work, and study its efficiency in creation of contention free
*This research is supported in part by DOE grants #DE-FC02- routes. We also present the design issues (scheduling poli-

06ER25749 and #DE-FC02-06ER25755; NSF grants #CNS-020334 cies, selecting number of paths, scalability aspects)casso
#CNS-0509452; grants from Intel, Mellanox, Cisco systebisyx Net- ated with our MP!I functionality

worx and Sun Microsystems; and equipment donations froel, IMel- . . ’ . . .
lanox, AMD, Apple, Appro, Dell, Microway, PathScale, IBMi\&rStorm We implement our design and evaluate it with micro-

and Sun Microsystems. benchmarks, Pallas collective communication and with MPI




applications. On an InfiniBand cluster with 64 processes, by the subnet manager. Since InfiniBand is destination
we observe an average improvement of 23% for displacedbased routing, each switch in the network has a routing
ring communication pattern amongst processes. For col-table corresponding to the LIDs of the destination. How-
lective operations like MP1 All-to-all Personalized and MP  ever, InfiniBand is deterministic routing, and decisions to
Reduce Scatter, we observe an improvement of 27% andoute messages adaptively cannot be taken by the interme-
19% respectively. Our evaluation with NAS Parallel Bench- diate switches. Instead, InfiniBand provides a mechanism,
marks [2] shows an improvement of 6-9% in execution time in which each port can be assigned multiple LIDs, to exploit
for the FT Benchmark, with class B and class C size us- multiple paths in the network. Leveraging this mechanism
ing 32-64 processes for evaluation. For other NAS Parallel for avoiding hot-spots is the focus of this paper.
Benchmarks, we do not see a degradation in performance

compared to the original design. Using PSTSWM [4], we 2.2 Overview of MPI Protocols

see animprovement of 4%, compared to the original design.

The rest of the paper is organized as follows. I_n section gerandrendezvousThese protocols are handled by a com-
2, we present th_e b_ackground of ourwork_. In section 3, we ponent in the MPI implementation callgdogress engine
present_the_motlvatlon of our V\_/ork. _In section 4, we present In the eager protocol, the message is pushed to the receiver
the design issues of our functionality at the MPI layer . In gjqe regardiess of its state. In the rendezvous protocol, a

section 5, we present the performance evaluation using %handshake takes place between the sender and the receiver
large scale InfiniBand cluster. We present the related Workvia control messages before the data is sent to the receiver

in section 6. We conclude and present our future dwecuonsside. Usually, Eager protocol is used for small messages

in section 7. and Rendezvous protocol is used for large messages.

2 Background For small messages, a copy based approach benefits over
In this Section' we provide background information for the cost of the handshake. For the |al‘ge messages, it is ben-

our work. We provide a brief introduction of InfiniBand €ficial to perform exchange of buffer addresses. This is a

followed by Message Passing Interface (MPI). Lastly, we requirement for RDMA (Remote Direct Memory Access)
provide a brief introduction to fat tree interconnectiot-ne Mechanism, which allows remote data to be read/written

MPI defines two types of communication protocasa-

works. with kernel bypass. The application buffer(s) need to be
. - pinned, so that the operating system does not swap them
2.1 Overview of InfiniBand during communication. In this paper, we use this mecha-

The InfiniBand Architecture (IBA) [7] defines a switched nism for large messages. Using multiple paths, we divide
network fabric for interconnecting processing nodes and the application buffer intstripesfor efficient use of multi-
I/0 nodes. An InfiniBand network consists of switches, ple paths.
adapters (called Host Channel Adapters or HCASs) and links
for communication. For communication, InfiniBand sup- 2.3 Fat Tree Topology

ports different classes of transport services (Reliable-Co Fat Tree is a general purpose interconnection topology,

nection, Unreliable Connection, Reliable Datagram andyphich is used for effective utilization of hardware resarc
Unreliable Datagram). In this paper, we focus on the re- yeqted to communication. In a fat tree based intercon-
liable connection model. In this model, each process-pairhection network, leaf nodes represent processors, interna
creates a unique entity for communication, caltpteue  h4es represent switches, and edges correspond to bidirec-

pair. Each queue pair consists of two queuss)d queue  iqng) jinks between parents and children. In a traditional
andreceive queueThe requests to send the data to the peer

are placed on the send queue, by using a mechanism called
descriptor A descriptor describes the information neces-
sary for a particular operation. For RDMA (Remote Di-
rect Memory Access) operation, it specifies the local buffer
address of the peer buffer and access rights for manipula-
tion of remote buffer. InfiniBand also provides a mecha-
nism, where different queue pairs can share their receive
gueues, calleghared receive queuaechanism. The com-
pletions of descriptors are posted on a queue caltad-
pletion queue This mechanism allows a sender to know
the status of the data transfer operation. Different mecha-
nisms for notification are also supported (polling and asyn-
chronous).

From the network management perspective, InfiniBand
defines an entity callesubnet managewhich is responsi- Figure 1. A Fat Tree with Four Switches
ble for discovery, configuration and maintenance of a net-
work. Each InfiniBand port in a network is identified by binary tree, the bandwidth at different levels of the networ
one or more local identifiers (LIDs) , which are assigned is not constant. Due to this configuration, congestion may

P> Processing Element

Switch

Switch




occur near the root of the tree. Figure 1 shows an exam-
ple of fat tree with 4 processing elements connected with

4 switches. The physical links are represented by the solid

lines. Some of the possible paths between processing ele-
ment P1 and P3 are shown by dotted lines of different dot

formats. Please note that the other possible paths (whéch ar

not min-hop) are not shown for clarity.

3 Motivation

In this section, we present the motivation of our work.
We take a cluster with a fat-tree switch and execute an MPI
program using this switch to understand the contention and
occurence of hot-spots in the network. Figure 2 represents
the switch topology used for our evaluation. Each switch  Figure 3. Communication Steps in Displaced Ring Com-
block consists of 24 ports. The leaf switches (referredto as  munication
leaf blocks from here onwards) have 12 ports available to
be used by the end nodes, the other 12 ports are connected
to the spine switches (referred to as spine blocks from here . . L . .
onwards). In the figure, blocks 1 - 12 are leaf blocks; blocks significant I|nl§ contention is observed. The I|n_k contentio
13- 24 are spine blocks. The complete switch has 144 portsObserved. durlng t.he step 12. (egch process dom_g mter-b!ock
available for end nodes. Each block is a crossbar in itself. communication) is shown in Figure 4, with thicker solid

Please note that in the figure, we have not shown all blocks“ne_S representing more contentions. '_I'he quantitative eva
and their internal connections for clarity. uation is shown in Figure 5. From Figure 4, we can see

that some links are over-used to a degree from four to
144 Port Switch zero. As the degree of link usage increases, the band-
""""""""""""""""""""""""""""""""""""""""""""""""" : width is split amongst the communication instances using
------------ > 12 Spine Blocks § the link(s), making thenmot spots In our example, paths

To Spine Blocks using block 13 split bandwidth for four different communi-

’ cation instances making the set of links using this block hot
S T R S R N B > spots. In Figure 5, we show the results of our evaluation.
LI T 1 i On the x-axis and y-axis, we show the process ranks. The
bandwidth achieved during communicationsafnk, and
rank, is shown with a square generated by drawing lines
for the process ranks (shown as an example with the inter-
section of dotted lines in Figure 5. The darker the squares,
the worse is the bandwidth achieved in comparison to the
best bandwidth (The best bandwidth is achieved by the pro-
cesses doing intra-block communication). We notice that
as inter-block communication increases, the correspgndin
squares become darker.

Available To End Node

Figure 2. 144-port InfiniBand Switch Block Diagram

To demonstrate the contention, we take a simple MPI
program, which performs ring communication with neigh-
bor rank increasing at every step. The communication pat-
tern is further illustrated in the Figure 3 (only stepl and
step2 are shown for clarity). Executing the program with n
processes takes n-1 steps. ketk; denote the rank of the
ith process in the program. andep; denote the jth step
during execution. Atstep;, an MPI process withrank;
communicates with MPI procesank; ;. This communi-
cation pattern is referred to &RC (Displaced Ring Com-
munication)for the rest of the paper.

We take an instance of this program with 24 processes
and schedule MPI processes witimkg - rank;; on nodes
connected to block 1 aneink;s - rankss on block 2. We
use MVAPICH?, a popular MPI over InfiniBand as our T
MPI implementation for the evaluation of DRC. Since each Process Rank
block is a crossbar in itself, no contention is observed for
intra-block communication. However, as the step iteration  Figure 5. Displaced Ring Communication, 24 Processes
increases, the inter-block communication increases and a

Procesfs Rank
|
_.I

. Even though, there are sufficient links for an independent
MVAPICH/MVAPICH? [9] are currently used by more than 430 or- 44 of communication between block 1 and 2 (using spine
ganizations worldwide. It has enabled several large InfiniBclusters to . - . .
obtain top 500 ranking. A version is also available in angraéed manner ~ 010Cks), DRC is not able to Ut||_|ze them in a contention free
with OpenFabrics-Gen2 stack manner. The usage of these links is highly dependent upon
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Figure 4. Link Usage with Displaced Ring Communication

the path configuration done by the subnet manager. This
route configuration done by the subnet manager may benefit
one communication pattern and show contention for other
patterns, leaving un-utilized links in the network. At the
same time, the deterministic routing nature of InfiniBand

e Increasing number of paths leads to increased memory
utilization. In the existing framework, we did not ad-
dress the memory scalability issue, due to the presence
of only one path/end port. We address the this problem
using InfiniBand’s shared receive queue mechanism.

does not allow us to use these links efficiently. Inthe Figure o . existing frame-work is based on MVAPICH, introduced
the unused paths are shown with a dotted line. We notice;, the motivation section. We call our enhanced design,

that paths using switch blocks 16 and 18 are left un-utilized |35 (Hot-Spot Avoidance MVAPICH). Next, we present
(The other un-utilized Ilnlks are nq'g shpwn in the flgurg). the overall design of HSAM.

Under such a scenario, the utilization of the links is the i
responsibility of the MPI implementation. Hence, design- 4.1 Overall Design
ing an efficient MPI library, with effective use of multiple Figure 6 represents the overall design of HSAM. In the
paths is critical to hot-spot avoidance. In the next section figure, we can see that besides MPI Protocol Layer and In-
we explore the LMC mechanism provided by InfiniBand finiBand Layer, our design consists of three major compo-
for creation of multiple paths between a pair of nodes. We nents:Communication Schedulegcheduling Policigsand
leverage this mechanism to design an MPI taking advantageCompletion Filter The Communication Scheduler is the
of these paths in an efficient manner and provide hot-spotcentral part of our design. It accepts protocol messages
avoidance for different communication patterns, without a from the MPI Protocol Layer, and stripes them across mul-
priori knowledge of the pattern. tiple paths. In order to decide how to stripe, the Communi-
cation Scheduler uses information provided by the Schedul-
ing Policies component. Scheduling Policies can be static

In [8], we presented an initial framework using multi- that are determined at initialization time. They can also be
rail networks and presented different scheduling polifses ~ dynamic and adjust themselves based on input from other
their efficient utilization. We leverage this framework for components of the system. Since a single message may be
designing hot-spot avoidance functionality. However, the striped and sent as multiple messages through the Infini-
existing framwork suffers from following limitations: Band Layer, we use the Completion Filter to process com-
pletion notifications and to inform the MPI Protocol Layer
upon completions of all stripes.

4.2 Leveraging Multiple Paths Using LMC

4 Hot-Spot Avoidance MPI over InfiniBand

e A key functionality missing in the existing framework
is to leverage the LMC mechanism for hot-spot avoid-
ance. Using the subnet manager to configure disjoint

paths and their efficient usage is a major functionality,  |n the motivation section, we have noted that some of
which is added to the existing framework the paths became hot-spots, while other paths are left un-
The existing framework assumes the presence of Oneutilized in the network. One important mechanism to effi-
path to be utilized per end port. In the motivation sec- ciently use the available paths is by changing the routing
tion, we observed the presence of multiple un-utilized table of each switch block. Using this mechanism, con-
paths per end port. Utilizing very few of these paths tention free paths can be created for a particular commu-
may not significantly help to avoid hot-spots. How- nhication pattern. The subnet manager allows a user to input
ever, utilization of all the existing paths has practical its own routing table for different switches, which can be
implications due to startup costs, and accuracy in the used for communication. However, this mechanism suffers

estimation of path bandwidth. We study this issue in from the fact that the optimization can be done only for a
detail in our design and evaluation. single communication pattern. At the same time, presence



upon the data delivery to the remote destination’s adapter.
This provides a relatively accurate estimation of the time
spent in the network. To begin with, we stripe the messages
evenly on all paths. The weights of each paths is adjusted
in accordance with the completion times of the stripes. Up-
dated paths can then be used for followup iterations. A de-
tailed discussion of weight adjustment and efficiency o thi
policy discussed in our previous work [8]. We call this pol-
icy asadaptive stripingpolicy.

This policy helps us in avoiding hot-spots as much as
possible. To begin with, the adaptive striping policy be-
haves like even striping. However, on using a path with hot-
spot, the stripe delivery time increases considerablycesin
the paths are adjusted accordingly, this policy is able to
avoid the hot-spots. At the same time, if the hot-spots dis-
appear, this policy adjusts the weights accordingly. Hence
this policy benefits in the presence of hot-spots, however
does not lead to performance degradation in their absence.

MPI Protocol Layer

Rendezvous
Protocol
Messages

Eager
Protocol
Messages

Completion

Input from other system components Notification

Completion
Filter

Scheduling
Policies

Communication
Scheduler

Multiple
Paths

Completion
Notification

InfiniBand Layer

Figure 6. Overall Architecture [8]

of other jobs in the network, exact scheduling of each MPI
task can complicate the generation of user-assisted gputin

tables.

To overcome the above limitations, we leverage the LID
(Local Identifier) Mask Count (LMC) mechanism of Infini-
Band, which allows multiple paths to be created between a
pair of nodes. Using an LMC value af we can create”

4.4 Selecting Number of Paths

In our previous work with multi-rail InfiniBand net-
works, we used one path of communication/end port. How-
ever, in the motivation section, we observed that there are
multiple paths available for communication between every

paths, with 7 (128) being the maximum value allowed for pair of processes, even though there is only one physical
LMC. We use OpenSM, a popular subnet manager for In- port available at the end node. Using the maximum value
finiBand to configure these paths. Usimgce-routemech- of LMC allowed by InfiniBand specification, we can create
anism of InfiniBand, we calculate the exact path (set of 128 virtual paths. However, some of the paths may physi-
switch blocks and ports) taken by each pair of source andcally overlap with each other. For a two-stage Fat Tree, as
destination LID for different values of LMC. We notice that shown in the motivation section, we observe that there are
the subnet manager is able to configure paths utilizing dif- only twelve disjoint physical paths. Hence, using a max-
ferent spine blocks in the switch. Hence, LMC mechanism imum of twelve paths would suffice our need for hot-spot
provides us as many contention free paths as possible. Howavoidance. As per the InfiniBand specification connection
ever, efficient utilization of these paths is dependent uponmodel, a queue pair/path is needed to use them simultane-
the scheduling policy for data transfer. In the next segtion ously. Once a path is specified for a queue pair, it cannot be
we discuss the scheduling policies used for evaluation. changed during the communication (An exception is Au-
tomatic Path Migration for InfiniBand, which is beyond the
scope of this paper). However, there are some practical con-
siderations in leveraging all the paths simultaneously:

e Sending a message stripe through each path requires
posting a corresponding descriptor. Hence, this may
lead to significant startup overhead with increasing

number of paths. _ o
e For each message stripe, a completion is generated on

the sender side. With increasing number of paths, more
completions need to be handled, which can potentially
delay the progress of the application.

The accuracy of path bandwidth is significantly depen-
dent upon the discovery of the completions, as men-
tioned in the scheduling policies sections. With in-
creasing number of paths, the accuracy may vary sig-
nificantly.

4.3 Scheduling Policies

Different scheduling policies can be used by the Com-
munication Scheduler to decide the paths to use for mes-
sage transmission. We categorize different policies into t
classesstatic schemeanddynamic schemes

e In static schemes, the policy and its parameters are de-
termined at initialization time and do not change dur-
ing the execution of MPI applications.

e In dynamic schemes, we can switch between different
policies or change parameters during the program exe- o
cution.

Even Striping: For static schemes, the weight distribution

of each path is fixed and does not change depending upon
the feedback of different components in MPI Layer. In our

design, we use this mechanism to design a striping policy e

for large messages, which stripes messages evenly across
all paths used for communication. We refer to this policy as
even striping

Adaptive Striping: In this policy, we leverage the com-

The memory usage increases with increasing number
of paths. We handle this issue in the scalability section
later.

Hence, a judicious selection of number of paths is impera-
tive to performance and memory utilization of the MPI li-

pletion notification mechanism of InfiniBand to calculate brary. Inthe next section, we discuss the memory utilizatio
path bandwidth. The completion notification is generated aspect of our design.
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4.5 Scalability Aspects of HSAM design with MPI applications. We use NAS Parallel Bench-

In the previous section, we discussed that increasing™arks [2] and PSTSWM [4], a shallow water modeling ap-
number of paths leads to more memory utilization. In Plication, for our evaluation.
essence, the memory utilization per path can be represented
as follows: 5.1 Experimental Testbed

MeMgp = MEMgp— contewt +NEs ¥ MEM gge +NE, ¥ MEM e Our testbed clgster consists of 64 nod_es; 32 nodes with
1) Intel EM6AT architecture and 32 nodes with AMD Opteron
wheremem,, is the connection memory usage per path, architecture. Each node with Intel EM64T architecture is
ne, and ne, are number of send and receive work @ dual socket, single core with 3.6 GHz, 2 MB L2 cache
queue elementsimem., and mem, . are the sizes of and 2 GB DDR2 533 MHz_main memory. Each node Wi_th
each send queue and receive queue elements respectiveffMD Opteron architecture is a dual-socket, single core with
MeMgp-—context 1S the size of each QP context, correspond- 2-8 GHz, 1 MB L2 cache and 4 GB DDR2 533 MHz main
ing to each path in our design. memory. Qn each of these systems, the 1/O bus is x8 PCI-
To make our design more scalable, we use the sharedEXpress with Mellanox MT25208 dual-port DDR Mellanox
receive queue mechanism of InfiniBand [11] to handle the HCAs attached to 144-port DDR Flextronics switch. The
scalability aspect for receive queue. In the previous de-firmware version is 5.1.400. We have used Open Fabrics

sign [11], receive queues corresponding to different pro- Enterprise distribution (OFED) version 1.1 for evaluation
cesses was shared. We allow different paths for the samén €ach of the nodes and OpenSM as the subnet manager,
set of processes to be attached to the shared receive queudistributed with this version.

As a result the memory usage can be represented as:

5.2 Performance Benefits of HSAM with Collec-
MEMgp = MEMgp—context + NEs * MEMsqe ) tive Communication

Although our current design focusses only on reducing  Figure 7 shows the ping-pong latency achieved using
the memory usage for receive queue, additional methods? processes by a 4-byte message with increasing value of
such as setting up connections only as needed (on-demandMC. The motivation is to understand the impact of in-
connection management) have also been shown to significreased routing table size (present on each switch block),
cantly reduce memory usage and can be used in conjunctiofwith increasing value of LMC, since the number of entries
with our design. In future, we plan to address these issuesin the table grow exponentially. We notice that increasing

) LMC does not impact the latency. The figure also repre-
5 Performance Evaluation sents the performance, when both processes are located on

In this section, we evaluate the performance of HSAM same block (1-hop) and different blocks (3-hops). We no-
(Hot-spot avoidance MVAPICH) and compare its perfor- tice that 3-hops increases the latency by 0.25 us, an irereas
mance with the current version of MVAPICH (referred to of around 0.12 us every switch block.
as Original for the rest of the section). We use 1 process In Figure 8, we show the performance of MPI Alltoall
per node (hence 48 process run is referred to as 48x1). OuPersonalized for 48 processes. We compare a combina-
evaluation consists of two parts. In the first part, we show tion of HSAM parameters; number of paths, striping pol-
the performance benefit we can achieve compared to thecy, LMC use with original implementation. In our design,
original MPI implementation using collective communica- the completion filter waits for the completion of all stripes
tion. In the second part, we provide an evaluation of our before notifying the application with the completion. The
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time is dominated with the slowest stripe, even though otherpresented the results for 24 processes case. Figure 13 shows
stripes may have finished earlier, and as a result the benethe results for 24 processes with HSAM. We can clearly no-
fit from using hot-spot free path is nullified. Hence, using tice that the corresponding dark spots in the original case
even striping does not improve the performance comparedare much lighter with HSAM. We are able to improve the
to the original implementation. For rest of the evaluation, average bandwidth by 21%.
we only focus on adaptive striping policy with HSAM. Us-
ing qqaptive striping with HSAM improves the performance 5§ 3 performance Benefits at Application Level
significantly (both 2 paths and 4 paths). ) ) )
However, using 8 paths, we see a performance degrada-. In th!s section, we present the results for MPI applica-
tion in comparison to the original design. We have noticed tions with HSAM. We use NAS Parallel Benchmarks [2]
that inaccuracy in estimation of path bandwidth is due to @d PSTSWM [4]. For NAS Parallel Benchmarks, we fo-
a combination of factors mentioned in the design section. €US on the FT benchmark, which uses MPI All-to-all per-
Particularly, pulling off multiple completions from the e sonalized _for communication. We use class B and clags C
pletion queue adds significantly to the inaccuracy. However Problem size for evaluation. For PSTSWM, we use medium
we see an improvement in performance with 4 paths com-Problem size for evaluation. Although not mclu_ded in the
pared to the two paths case and an improvement of 259PapPer, we have not seen perform_ance degradation for rest of
with 4 paths compared to the original case. Hence, for mostt"€ NAS Parallel Benchmarks using HSAM.
of our evaluation, we use 4 paths by default and the adaptive Figure 15 shows the results for FT benchmark, Class B
scheduling policy for our evaluation. problem size, for 16, 32, and 64 processes. We compare the
Figure 10 shows the results for Reduce—ScattercolIectivepencor'ﬁr.‘ance Of HSAM's adaptive striping with the ongr-
operation. This operation consists of a reduce operation,"& Policy. Using 16 processes, we do not see any im-
followed by a scatter operation. In our evaluation of MP| Provement, since the contention in the network is negligi-

Reduce, HSAM does not show an improvement. However, ble. However, with 32 processes, we see an improvement
. . . . . . 0, 1 0, 1
during the scatter operation, link contention increasgs si  ©f 8% With HSAM and 6% with 64 processes, compared to

nificantly. As a result, HSAM is able to show improvement the original design. Figure 16 shows the results for Class
from the original case. We see an improvement of 19% for C Problem size with FT benchmark. With 32 processes, we
the Reduce-Scatter operation. Figure 9 shows the resultS€€ an improvement of 9%. .The increased Improvement is
for MPI Allreduce. MVAPICH uses Hypercube based algo- attributed to the mpreased size of data _transfer during MPI
rithm for large messages. As a result, the contention gener-fA‘”'to'a" phase. With 64 processes, an improvement of 8%
ated in the network is negligible. HSAM does not improve 'S 0bserved, compared to the original design.

the performance, although no degradation incurred either. ~ Figure 17 shows the results for 36, 48 and 64 processes

Figure 11 and 12 show the results for displaced ring com- respectively with PSTSWM. We notice that using HSAM,

munication, explained in the motivation section. We com- W€ ¢&n improve the performance for 64 processes by around

pare HSAM's adaptive policy with the original implemen- 4%. For rest of the combinations, we do not see significant

tation. We notice that using HSAM and the adaptive policy, performance improvement.

the spots compared to the original policy achieve much bet-

ter bandwidth. The average bandwidth improves by 23% 6 Related Work

compared to the original implementation. The points near Many researchers have focused on providing MPI sup-
the diagonal are also much wider implying the benefits of port for multi-rail networks [8, 3, 12]. In our previous wqrk
HSAM and adaptive striping. In the motivation section, we we have designed MPI-2 one sided communication using
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Figure 15. NAS Parallel Benchmarks, FT, Class B Figure 16. NAS Parallel Benchmarks, FT, Class C
100 T of congestion in the network. However, these works are
m Original, 1 Path . . . .
HSAM, 4 Paths, Adaptive simulation based and have focussed on congestion control
. [ for the existing path of communication, rather than utilgi
g o0 the presence of multiple paths in the network. Hence, de-
s = | signing software based solutions to perform hot-spot avoid
VNI i ance is imperative for upcoming large scale InfiniBand net-
E works. In this paper, we have presented an MPI functional-
T RN BN . ity for hot-spot avoidance and shown benefits for different
communication patterns for MPI applications.
0

36x1 48x1 64x1 7 Conclusions and Future Work

In this paper, we have designed an MPI functionality
which provides hot-spot avoidance for different communi-
cation patterns, without a-priori knowledge of the pattern

S ) We have leveraged LMC (LID Mask Count) mechanism

erogeneity and network faults with asynchronous recov- syydied its efficiency in creation of contention free routes
ery of previously failed paths has also been presented [13]\ve have also presented the design issues (scheduling poli-
However, the above works have focused on design and evalgjes, selecting number of paths, scalability aspects)casso
uation with multi-rail networks on the end nodes (multiple ated with our MPI functionality. We have implemented our
ports, multiple adapters), rather than the network. design and evaluated it with collective communication and
Congestion control has been studied with simulations by MPI applications. On an InfiniBand cluster with 64 pro-
multiple researchers[15, 6, 10]. It has also been propased acesses, we have observed an average improvement of 23%
a part of the IBA specification [7]. In [10], the researchers for displaced ring communication pattern. For collective
proposed a notification mechanism to the subnet managecommunication like MP1 All-to-all Personalized and MPI
for reducing the static rate of the affected connectionte pe Reduce Scatter, we have observed an improvement of 27%
form congestion control. The above works have proposedand 19% respectively. Our evaluation with NAS Parallel
explicit congestion natification mechanisms (forward con- Benchmarks has shown an improvement of 6-9% in exe-
gestion notification and backward congestion notification) cution time for FT Benchmark, with class B and class C
to allow the switches and channel adapters to become awar@roblem size. Using PSTSWM, a shallow water modeling

Figure 17. Performance Evaluation with PSTSWM



application, we have seen an improvement of 4%, compared[15] S. Yan, G. Min, and I. Awan. An Enhanced Congestion

to the original design.

As a part of future work, we plan to evaluate our design
with very large scale InfiniBand clusters. We plan to study
the interaction of different jobs for communication and-par
titioning them logically for minimal interaction of the et
in the network. As the InfiniBand products become mature,
we plan to study the proposed explicit congestion naotifica-
tion mechanisms for congestion control on large scale In-
finiBand clusters.
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