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Section one:  
Yield improvement and energy savings using phosphonates as additives in kraft 

pulp: Industry overview and diffusion potential 

 

1. Introduction 

While a Kraft pulping process including the expanded use of phosphonates appears 

promising in a limited number of mill settings from a technical process perspective, this 

portion of the overall study aims to examine the market applicability of this innovation.  

In the following sections, we examine the feasibility of this new potential process within 

the framework of the innovation adoption and diffusion literature.  Buyers of industrial 

process innovations often resist adoption because: 1. the value of these advances to the 

firm are obscured by technical and market uncertainties, 2. the risk associated with 

adoption is heightened as current operations are disrupted, 3. the task is complicated by 

organizational pressures to meet short term financial performance objectives, and 4. the 

difficulty in linking advanced technologies to market opportunity is insurmountable 

(Anderson et al. 1987, Christensen 1997, Dougherty and Hardy 1996, O’Connor 1998, 

Veryzer 1998).  While these obstacles remain, a growing line of research has developed 

exploring the factors influencing the adoption and diffusion of an innovation - the 

innovation itself, how information about the innovation is communicated, time, the 

social/organization system into which the innovation is being introduced, etc. (Rogers, 

1995).  The market-based applicability component of this research aims to investigate 

how these major factors interact to facilitate or impede the adoption of this, and similar, 

innovations by Kraft mills in North America. 

The market research study presented below employs a combination of secondary data 

collection, exploratory interviews, and internet-based survey efforts. Our approach to this 

study attempts to balance qualitative and quantitative research following a Sequential 

Exploratory Strategy as put forward by Creswell (2003a, 2003b). This process involves 

qualitative data collection in an effort to validate measurement constructs and surface 

additional dimensions impacting the research (Phase I).  This technique has been used to 

explicate the processes that characterize a wide variety of marketing-related activities 

such as service encounters; personal selling; retail activity; marketing channels; and 
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pricing (Sherry 1991). Following this effort quantitative data was collected in an attempt 

to explicitly test causal linkages between predictor and dependent constructs of 

technology adoption (phase II).  Finally, based on these findings, we attempt to provide 

some conclusions as to the potential impact of this technology on yields, costs, and 

environmental/energy performance of the industry.  

 

2. Overview of the industry  

The U.S forest products industry is a world leader in the production of pulp and 

paper, producing 35 % of the global pulp output and almost a third of the world’s paper. 

Domestically, it is the third largest manufacturing sector. End-consumers and businesses 

use its product on a daily basis and the sector employs half a million Americans. It is 

characterized by commodity-pricing and intense competition on cost and the mostly 

incremental innovation processes reflect the maturity of the sector.  

Currently, the U.S. pulp and paper industry is recovering from a major economic 

downturn and the ensuing consolidation phase, brought on by the development of 

overcapacity in the late 1990s. At this time, many industry benchmarks start looking 

more positive – physical output and profits have started increasing and higher capacity 

utilization rates indicate that the sector has made a turn-around. But the industry 

continues facing challenges, in particular with regard to energy and material use. The 

most important issues the industry has to confront are international competition, energy 

price hikes and increasingly stringent environmental regulation. 

a) Physical output, capacity utilization and employment 

The U.S. pulp and paper industry is a major global player: In 1997, American pulp 

and paper mills accounted for more than a third of worldwide pulp production and 16% 

of all mills across the world (EPA 1997). The industry had a gross output of $ 155.2 

billion in 2005 (BEA 2006). The production capacity utilization rates in the entire paper 

industry stood at 75% in 2005, with 84% for pulp and paper mills and converted paper 

products at 64% capacity (US Census Bureau 2007). Compared to the US average of 

70%, the primary pulp and paper sector was performing relatively well. However, the 
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pulp and paper industry is very capital intensive, i.e., the capacity usage rates closely 

predicts the rentability of the capital (Buongiorno and Calmel 1988). High capacity 

utilization rates are a more important predictor of profits than in other sectors. 

 

Table 1: Physical Output of Paper Products, 1998 and 2002. Source: EIA, May 2006b 

Physical  1998 2002 

    Paper Products (Thousand Tons) 87,375 82,679 

      Total paper  40,606 37,684 

      Total paperboard  45,171 43,659 

      Wet Machine Board  81.6 42.6 

      Building paper  688.6 524.4 

      Insulating Board 827.4 767.5 

 

 In fact, the high utilization rate at this moment is not a consequence of sustained 

demand, but actually reflects capacity reductions in response to weak markets. In fact, the 

industry suffered a major economic downturn during the last decade. Physical output fell 

by 5.4% between 1998 and 2002, with the paper segment the most strongly affected 

(Table 1). This downturn is visible in the capacity utilization rates, which were as high as 

95% for the primary pulp and paper mill segment in 1997, but had fallen to 83% by the 

year 2000 (US Census Bureau 2007). To maintain profitability, pulp and paper 

manufacturers had no choice but to reduce capacity by closing the least profitable mills 

(BEA 2005a).  

In a cross OECD comparison, the U.S. pulp and paper sector had a slightly lower 

than average productivity increase of 1.008 per year (Hseu and Shang 2005). Reflecting 

the capacity cutback in the industry, the value of shipments in paper manufacturing 

decreased from $ 168 billion in 1998 to $ 156 billion in 2002 (in 2000 $). This translated 

into a slight decrease in the share of shipment value in all of manufacturing, from 4.2 % 
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to 3.9 %. Capacity adjusted value of production decreased from $ 172 billion to $ 160 

billion during the same time (BEA 2005b). Currently, gross output is slowly recovering 

after the downturn in 2001 (Table 2).  

 

Table 2: Gross Output of Paper Products. Source: BEA, 2006 

Paper products - Gross Output  

Year 2000 2001 2002 2003 2004 2005 

Billion $ 162.4 153.6 151.4 148.1 150.8 155.2 

 

While production seems back on track, employment in the industry continues to 

decrease: According to industry sources, 70,000 jobs have been lost in the pulp and paper 

industry since 1997, following the closure of 101 pulp and paper mills (AF&PA 2005). 

The entire U.S. American paper products industry (including downstream industry) has 

lost 124,000 jobs between 2000 and 2005 (BEA 2006).  

b) Industry structure 

The pulp and paper industry is characterized by high fragmentation. The largest 

company, International Paper, controls a mere 11% of the market (Benway 2006). A 

good measure of industry concentration is the Herfindahl-Hirschman Index (HHI), which 

is obtained by squaring each company’s market share and then adding up the results. 

Linerboard, recycled board and corrugating medium all have low concentration values of 

less than 1,000 on the HHI (Urmanbetova 2004). Bleached board used to have a moderate 

HHI close to the 1,000 level, but recent mergers have catapulted the HHI close to 2,000. 

Values larger than 1,800 indicate high concentration (DOJ 2007). 

Overall, while the industry remains quite fragmented, there has been a recent 

consolidation trend, driven by volatile prizes. Pulp and paper products are commodities. 

Export prices follow demand procyclically (Rusko 2005) and price volatility and 

competition in the market are extremely high. Anticipating growing exports to Asia, pulp 

and paper manufacturers had been adding capacity during the 1980s and early 1990s. 
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When real exports stayed well below expectations, prices fell to historically low levels in 

the mid-1990s. On the one hand, given this environment, any innovation providing 

significant cost reductions should be welcome. One the other hand, innovations requiring 

major production interruptions may be disadvantaged. 

One way pulp and paper companies have reacted to price volatility is by 

specialization (Benway 2006). A company occupying a specialized market niche 

generally can count on more stable prizes. In the last decade, mergers and capacity 

reduction were the other prevalent strategy to deal with price volatility and excess 

capacity. Recent years have seen major restructuring in the industry, especially in the 

linerboard and bleached board sector, where the three largest companies – Smurfit-Stone, 

Weyerhaeuser and International Paper – now control a third of the market (Utichelle 

2000). All three companies have closed their least productive mills after the acquisitions 

or mergers. Linerboard prices are forecast to attain a minimum price of $ 530 per ton in 

2007 (Scotia Capital 2007), up from $ 340 in 1998. Pesendorfer (2003) found that 

horizontal mergers in the paper industry in the 1980s were profitable, with merging firms 

increasing efficiency. In the last decade, the industry fell back on this time-tested pattern.   

c) Innovativeness and productivity 

The pulp and paper industry is a mature sector, whose innovative activity is primarily 

concentrated among suppliers rather than pulp and paper firms themselves. This is 

especially true in the context of industry consolidation and recession in the late 1990s, 

when internal R&D budgets experienced a sharp drop (TAPPI 2001). Historically, the 

pulp and paper industry evolved in innovative spurts, which in turn generated structural 

change (Toivanen 2004): In the early development stages of the industry, technical 

innovations created barriers of entry at several instances. Monopolistic or oligopolistic 

conditions reigned for a certain period of time, until patents expired, other firms caught 

up through imitation and standardization and government regulation undercut the 

concentration of market power. This generally resulted in a stronger focus on economies 

of scale and scope and on lowering production costs during the middle part of the last 

century, following a typical product life cycle. Structurally, consolidation and increased 

reliance on specialized machinery and material producers for innovation accompanied 
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this process. In line with these findings, Bengston and Strees (1986) showed that 

intermediate inputs in the pulp and paper industry are non-neutral. Technical change of 

input materials has a positive effect on productivity.  

The externally driven innovation mode of the pulp and paper industry is not solely a 

U.S. phenomenon. Diaz-Balteiro et al. (2006) found that there is no significant link 

between innovative activity and efficiency for Spanish pulp and paper mills, indicating 

that these firms rely on the acquisition of external knowledge embodied in machinery and 

materials. Overall, productivity increases in the U.S. pulp and paper industry appear to be 

determined more strongly by technical change than by efficiency increases. In a cross 

OECD comparison, the U.S. had average productivity increases, the lowest efficiency 

increase of all countries and above average technical change rates over the period of 1991 

to 2000 (Hseu and Shang 2005). This means that technical innovation is the main driver 

of productivity growth in this sector.  

Little of this technical change is radical, a typical characteristic of mature industries. 

In fact, when facing environmental regulation of dioxin emissions, the pulp and paper 

industry displayed a strong inclination towards incremental innovation (Norberg-Bohm 

and Rossi 1998). In a survey of Georgia pulp and paper firms, Youtie et al. (2006) found 

that innovation in the industry is mostly supply-chain and business-process oriented and 

not so much knowledge oriented. Part of this preference for incremental innovations 

stems from a static regulatory regime, but it also results from industry structure, in 

particular capital intensity, and the fact that existing production practices have not been 

challenged excessively by environmental regulations. There still seems leeway for 

improvement, before switching to a completely different technology.  

The diffusion of radical technical innovations has not always followed the same paths 

or timelines across pulp and paper-producing countries. Recycled wood-fiber use first 

took off in Scandinavian and European countries before gaining importance in the U.S. 

and Canada, as did chlorine free bleaching. Consumer preferences and regulatory 

incentives are some of the important reasons for these differing pathways (Reinstaller 

2005).  
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Currently, industry research appears to grant the most attention to energy and 

environmental performance, as well as product quality and production cost. The Agenda 

2020 Compact between the forestry products industry and the Department of Energy 

defined six strategic areas for innovation, focusing on raw material supply, 

manufacturing costs, human capital, energy efficiency, environmental performance and 

new product development (TAPPI 2001).  

3. Resource Use, Energy Use and Pollutant Discharge 

The pulp and paper industry requires large amounts of energy, water and raw 

materials. It is also a major emitter of greenhouse gases and air and water pollutants toxic 

to humans and/or ecosystems. The last twenty years have seen major efforts by the 

industry to reign in energy and water consumption, as well as to address pollution issues. 

Currently, the possible advent of a carbon-constrained economy, combined with rising 

energy prices, constitute the biggest challenge for the sector. 

a) Resource use and pollutant discharge 

Since its beginnings, the industry has made major progress in reducing the use of 

virgin wood fiber and water, but remains a major consumer of both. In a paper mill, 

roughly 200 tons of water are needed to produce 1 ton of paper (Garner 2002). 

Freshwater consumption, however, is much smaller, because most mills today operate in 

closed circuits: they clean and reuse the water used during pulping, decreasing their 

production costs in the process. In fact, between the mid-1970s and the mid-1990s, the 

amount of water consumed to produce a ton of paper was reduced by 65% (Encyclopedia 

of American Industries 2007).  

Recycled fiber use has become widespread in the industry, both because larger 

amounts have become available on the market and because the industry has realized that 

provisions of virgin fiber might be limited in the future due to environmental regulations 

or simply supply constraints. The use of recycled fiber has important implication for kraft 

pulping, the most widely used method of pulping in the U.S. Its importance is likely to 

increase in the future, driven by the greater use of recycled paper fibers (Encyclopedia of 

American Industries 2007). These fibers are weaker than virgin wood fibers and as their 

share in mill input rises, chemical pulp gains importance as an ingredient to obtain 
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greater overall strength. Kraft pulp is also blended with weaker mechanical pulp to 

provide the desired strength.  

The pulp and paper industry also emits a substantial amount of greenhouse gases and 

pollutants toxic to humans and/or ecosystems. Most of these pollutants are emitted to the 

air and some are discharged via water releases. In 2004, pulp and paper mills released 

228.5 million pounds of chemicals reportable under the Pollution Prevention Act of 1990 

(EPA 2004). In 1994, the sector emitted 31.6 million cubic tons of CO2 (EIA 2000). A 

third of these emissions or 11 million metric tons of carbon (MMTC) come from 

electricity use, most of the rest is due to cogeneration from natural gas (8.3 MMTC), coal 

(7.8 MMTC) and residual fuel oil (3.7 MMTC). Overall, most criteria air pollutant 

emissions stem from energy use, but a considerable share of hazardous material air and 

water pollution is associated with chemical use. The sector’s carbon intensity stood at 

11.88 MMTC per quadrillion Btu.1  

More stringent environmental regulations and a possibly carbon-restrained economy 

increase the likelihood of even higher portions of combined heat and power generation at 

pulp and paper mills in the future (Khrushch et al. 1999). Likewise, generation from 

biomass will gain importance. More stringent environmental regulation may also create 

additional incentives for introducing emission reducing process and equipment 

innovations. 

b) Energy use 

At 275 thousand GWh of primary energy use in 2002, pulp and paper production 

ranked 4th among all industry sectors (EIA 2006a). Only chemicals (737 thousand GWh), 

petroleum and coal products (693 thousand GWh) and primary metals (304 thousand 

GWh) – all heavy, energy-intensive industries – used more energy than pulp and paper 

production. Energy use is driven by boilers needed for process steam and onsite 

electricity generation. An overview of the forest products2 industry’s energy footprint 

                                                 
1 Does not include emissions from black liquor and biomass gasification, which are considered carbon 
neutral. 
2 Note: EERE does not differentiate between the wood products and the pulp and paper industry, so the 
actual percentage could be different. Another source (EIA 2005) indicates, however, that if at all different, 
heating process energy use is higher for pulp and paper than for wood products, where machine drives are 
more important energy consumers. 
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(EERE 2006) shows that process heating (steam systems, heat exchangers, condensers, 

fired heaters, heat pumps) accounts for roughly 80% of process energy use in the 

machine drives account for another 19% of process energy use. Any innovation reducing 

the temperature or time required for cooking processes could mean major reductions in 

overall energy use. 

Energy costs hold a considerable share in the total expenditures of a pulp or paper 

mill. The industry spent about $ 3.05 billion on electricity purchases in 2002 and a total 

of $ 7.2 billion for all energy expenditures (EIA 2002). Pulp milling counts among the 

most energy-intensive manufacturing sector, with 56 thousand BTU consumed per dollar 

of value of shipment in 2002 (idem). Only alkalies and chlorine, fertilizer, lime and 

cement production are as energy-intensive or more so.  

Considering these numbers, it is not surprising that the pulp and paper industry is the 

largest co-generator in the U.S. manufacturing industry, with almost 50 billion kWh 

generated on site in 1998 (EIA 2004). In the kraft pulp process, the lignin-rich black 

liquor remaining after the pulping process is burnt to recover added chemicals and to 

generate steam. Most mills use both biomass and fossil fuels for co-generation. Between 

1972 and 1997, the industry has increased its share of cogeneration by almost 40% 

(AF&PA 1997).  

Apart from biomass generation, mills draw most of their energy needs from natural 

gas and oil. They also buy electricity. In 2002, the sector was the fourth largest consumer 

both of natural gas, at 490 billion cubic feet, and electricity, at 65.5 billion kWh (EIA 

2002). It also used 18 million bbl of residual and distillate fuel oil. It can be expected that 

the price of these fossil fuels will remain at sustained levels in the near future. Globally, 

demand for oil is growing at a ratio of approximately 1.6 % per year (OECD/IEA, 2002). 

Demand growth coincides with intensifying energy dependence throughout the OECD 

(OECD/IEA, 2003) and increasing uncertainty about the longevity of oil supplies and 

access to these supplies. In a similar fashion, average industrial prices for natural gas 

have increased by 50% between 2001 and 2006, from $ 5.24 per Thousand Cubic Feet in 

2001 to $ 7.89 (EIA 2007). The production method most vulnerable to higher energy 

prices is kraft pulping, because it has significantly higher energy needs than all other 
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types of pulping (Table 4). Rising prices for primary fuels and electricity will likely result 

in further increases in co-generation activities. Price signals may also focus managers 

attention on energy efficient process and machinery innovations. 

The industry has already made some progress in reducing its energy use. Between 

1973 and 1991, it attained an annual percentage decrease of 0.9% in electricity 

consumption.  While the industry is becoming less energy intensive, the reductions 

(weighted for production mix) are not as large as in most other OECD countries (Farla et 

al. 1999). This suggests that there is still leeway for energy efficiency improvements. 

This is also indicated by an energy assessment carried out by researchers at the Georgia 

Institute of Techonology (Jacobs Greenville / IPST 2006), who found that state of the art 

mills use about a quarter less energy than the average mill and advanced technologies 

could drive energy savings up to more than 40%.  In terms of fossil fuel use, this 

translates into a 46% consumption gap between top and average performers and up to 

75% savings compared to the status quo for advanced technologies.  

Industry analysts see energy prices as the main driver of change at this point (Jopson 

2004). Many firms already implement a number of energy management strategies. 

Energy efficiency programs have typically focused on technical improvements in the 

machinery, for instance through steam and heat recovery, ameliorated insulation or 

Figure 1: Energy intensity for different types of pulping processes. Adapted from 
Garner 2002 
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variable speed drives (CADDET 2001). Increased co-generation and fuel-switching are 

also classic strategies. Consistent energy management can lead to roughly 5-15%  

improvements in energy and water use, as well 1% raw material savings (Garner 2002). 

Process improvements constitute the second pathway for improved energy efficiency. 

Given that process heating is the main driver of energy use in pulp and paper mills, it 

represents an ideal target for process improvements. Cooking, evaporation and drying 

represent 60 to 80% of the steam required in the entire kraft pulping process (CADDET 

2001). A third pathway for energy efficiency improvements is energy benchmarking and 

purchasing management (Francis et al. 2002). 

The high capital cost of energy efficiency investments can be an obstacle to such 

investments. In fact, there is often a gap between actual investments and those that appear 

to be profitable: both consumers and firms under-invest in energy efficiency, implicitly 

assuming high discount rates (De Canio 1998, Golove and Eto 1996). This phenomenon 

is called the efficiency gap. In the business sector, an important cause of underinvestment 

are the hidden costs and the risks inherent in such investments. Installing energy efficient 

equipment can require changing the entire production process and may result in major 

disruption of production.  

In that sense, any innovation that does not require excessive change of equipment, but 

instead focuses on changing inputs, might not suffer from an equally large diffusion 

barrier. With regard to pulp mills, it can be expected that the diffusion barrier for input 

innovation (e.g., chemicals, materials etc) is lower than the one for equipment innovation. 

Changed inputs generally require little or no changes to production processes compared 

to installing new equipment. In line with this argument, many R&D projects already 

focus on innovations not requiring changes in equipment. In particular, hopes have been 

set in biotechnology as a means of energy conservation in pulp and paper production 

(Bajpai and Bajpai 1998).  

It is important to realize that most technical improvements are not installed for the 

sake of energy performance alone, but are often linked to other objectives, such as yield 

or environmental performance. In fact, energy saving technologies that also grant other 

benefits, such as improved process control, better environmental performance or higher 
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product quality are more likely to gain acceptance among pulp and paper manufacturers 

(Nilsson et al. 1996). 

4. Outlook for the diffusion of innovation in the kraft pulping sector 

The literature on technology innovation distinguishes between the invention, 

innovation and diffusion stages (Utterback and Abernathy 1975, Nelson and Winter, 

1977, Gort and Klepper 1982). Invention describes the act of coming up with a new 

product or process. Diffusion means the dissemination of a product beyond a small group 

of original suppliers and users (innovation) and ultimately, the adoption of a technology 

by the majority of firms and consumers. Consumer behavior, regulatory barriers, but also 

internal institutional barriers in firms can hinder diffusion of new technologies.  

While this research borrows substantially from prior technology research, specifically 

the works of Chandy and Tellis (1998) and Grewal et al. (2001) focusing on “radical” 

innovations, these frameworks have been expanded to examine issues specific to the 

“non-radical” nature of this important technology and to explicitly address the unique 

environment associated with the kraft pulping process.  Rather than relying on a single 

research approach, we employed a mixed research design in this project, attempting to 

mix the best of qualitative and quantitative research. Philosophically, mixed research 

takes an eclectic, pragmatic, and commonsense approach, suggesting that the researcher 

mix quantitative and qualitative in a way that works best for the given research question 

being studied in a particular context. Mixed research uses both deductive and inductive 

methods, obtains both quantitative and qualitative data, attempts to corroborate and 

complement findings, and takes a balanced approach to research.   

Specifically, we employed a mixed method design in that we use a qualitative 

research paradigm for one phase and the quantitative research paradigm for a different 

phase of the study.  We employ this technique primarily due to the fact that certain 

variables cannot be defined with indicators prior to conducting the study, because the 

information to do this is lacking. The purpose of Phase I of the study is to help identify 

this information.  Therefore in this phase, we are not primarily interested in measuring 

variables, but rather identifying variables or clusters of variables that help explain a 

chemical technologies adoption in the paper industry and/or reasons for its success or 
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failure. In that case, the researcher will often try to find indicators that make the variables 

measurable. By better understanding these themes we can now give an operational 

definition of the strength of adoption likelihood, the integration of consolidation activities 

between merged firms, or the degree to which process innovations are disruptive on a 

scale. This enables us to measure through a quantitative study the degree of adoption 

likelihood, and the most important contributing factors to it. 

5. Phase I – Qualitative Interviews and Identification of Themes Associated with 

Incremental Process Adoption in the Pulp and Paper Industry 

For the qualitative portion of the study we employed a “grounded theory” approach in 

that our goal was the development of inductive, "bottom-up," theory that is "grounded" 

directly in the empirical data (Galser and Strauss 1967, Strauss and Corin 1987), in this 

case preliminary interviews with kraft pulp/paper personnel involved in process 

technology adoption within their mill.  Interviews were conducted between February and 

April 2004.  Following standard interview protocol, data was collected at four company 

sites, and it is believed that a reasonable level of data saturation was reached through 

these interviews.  Based in large part on the work of Higgins & Hogan exploring internal 

diffusion of high technology industrial innovations, interviews were scheduled across 

multiple functions with each mill, including engineering, general management, marketing 

and procurement, and research and development staff.  For the purposes of this phase of 

the project, we searched for kaft pulp & paper mills within reasonable proximity of St. 

Paul, Minnesota in an effort to reduce cost and ensure exposure to mills utilizing 

significant aspen furnish. Accordingly, we identified mills in Minnesota, Wisconsin, 

Michigan and Ontario (Canada) for interviews. The mills were: 

1. SAPPI, Minnesota Pulp & Paper Division, Clouquet, MN 

2. Boise Paper Solutions, International Falls, MN 

3. Domtar Industries Inc., Nekoosa, WI 

4. International Paper Company, Kakuna, WI 

 

Within this methodology, data analysis typically proceeds through a process of open 

coding (i.e., reading transcripts line-by- line and identifying and coding the concepts 
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found in the data), axial coding (i.e., organizing the concepts and making them more 

abstract), and selective coding (i.e., focusing on the main ideas, developing the story, and 

finalizing the grounded theory).  The grounded theory process is "complete" when 

theoretical saturation occurs, when no new concepts are emerging from the data.  Table 

xxx provides a summary of the themes emerging from this process. 
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Table 3.  Themes from Qualitative Data  
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6. Phase II – Quantitative Survey Data of Innovation in the Pulp and Paper 

Industry 

In combination with the qualitative study described above, we developed a 

quantitative questionnaire utilizing a combination of previously validated multi-attribute 

scales and unique measures related to the kraft pulp industry to accomplish the 

technology adoption assessment objectives of the study.  The survey was administered in 

August of 2005 and resulted in 43 responses from the North American Pulp and paper 

industry, representing a response rate of approximately 15% of mill personnel surveyed. 

Specifically, constructs explored through Phase II data collection are organized into 

environment, technological, and organizational dimensions.  The intent is to understand 

the relationships between the constructs, gauge their relative contribution to technology 

adoption, and surface industry-specific catalysts and/or barriers impacting the adoption of 

incremental process innovations, specifically the adoption of phosphonate additives.   

 

a)  Overview of constructs  

Environmental Constructs: 

We explore environmental influences on technology adoption through the 

constructs of market turbulence, technology turbulence, and sector competitiveness and 

consolidation. Preliminary research in the area of technology adoption in the pulp and 

paper industry has identified positive relationships between each of the above constructs 

and adoption. 

Technological Constructs: 

Innovations that contain a high degree of new knowledge compared to a current 

technology, and ones that represent a clear departure from existing practices are generally 

considered to be radical innovations (Dewar and Dutton 1986), whereas those that can be 

adopted with only minor changes in business practices are considered incremental (Nord 

and Tucker 1987).  Given this definition, it becomes clear that classifying phosphonate 

additives neatly into one category or the other is contingent on the operational context of 

the adopter.  Similar to radical/incremental innovations, new technologies also have the 
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potential to operate as both a product and process innovation depending on the strategic 

intent of adaptors and how the technology is used by the organization.  While the vast 

majority of recent research has focused on radical product innovation, we hypothesize 

that the majority of kraft mills adopting phosphonate additives will do so within the 

context of incremental process adoption, representing an under researched area of study. 

Organizational Constructs: 

The impact of organizational factors influencing technology adoption are 

operationalized by the constructs of organizational size, institutional pressures toward 

innovation, self governance (autonomy), future market focus, and innovativeness.  While 

much of this work has been conducted in a high-tech environment focused on radical new 

products, we remain interested in exploring these constructs in the pulp and paper setting. 

 

b)  Respondent Profile 

Data was collected through an electronic survey during May 2005, resulting in a total 

of 43 responses (15 % response rate) from Kraft pulping mills in North America. Over 

half of respondents (56 percent) identified themselves as technical or research and 

development (R&D) employees; those working as engineers and in the production areas 

encompassed 12 and 14 percent of total respondents, respectively. Finally, 14 percent of 

respondents are mill managers and the remainder  work in sales and marketing. As 

presented also in Figure 2, the majority of respondents represent mills within United 

States (78.57 percent) and the rest (21.43 percent) are located in Canada. 

In terms of mill size, only 2 mills reported mill employment of less than 250 

employees.  About 80 percent of them have between 250 and 1500 employees with the 

largest category being mill size of 250 – 499 employees. The remaining 17 percent of 

companies have more than 1500 employees.  Regarding their professional experience, 

over half of total respondents (53 percent) have more than 25 years working within the 

pulp and paper industry, and 19 percent have between 20 and 25 years of experience.  

Thus, the sample represents significant knowledge of the industry with over 90 percent of 

respondents having 10 years or more experience in the industry. 
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Figure 2: Profile of Respondents         
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c)  Incremental and Radical Process Innovation 

Respondents were asked to rate the importance to their organization of adopting a 

chemical or mechanical process technologies. More specifically, they were asked to rate 

the importance of adopting each technology type if it is characterized by an incremental 

process innovation or by a radical process innovation. On a 7-point interval scale, where 

1 equals “Not at all Important” and 7 equals “Very Important”, respondents considered 
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that adopting incremental process innovations is significantly important for their 

organization.  This result is  true for both chemical and mechanical types of technologies.  

As shown in Table 4, incremental innovation for chemical processes was rated at 5.7 and 

for mechanical processes was rated at 5.51, both significantly higher than the scale’s 

neutral value of “4”.  When considering the importance of adopting radical process 

innovations, respondents considered them neither important nor unimportant for both, the 

chemical and the mechanical, technologies. Radical innovation for chemical processes 

was rated at 3.67 and for mechanical processes was rated at 3.81, both are not 

significantly different than the scale’s neutral value of “4”. 

The above results are in concert with the actual budget allocations made by these 

companies on each of these types of technologies and process innovations within the last 

two years. As presented in Table 5 below, the majority of this budget was destined to 

incremental innovations in both, the chemical processes (i.e. 41.63 percent), and the 

mechanical processes (i.e. 36.63 percent).  During the past two years, radical innovations 

just received about one fifth of this total budget, including 9.65 percent allocated to 

chemical technologies and 12.09 percent allocated to mechanical types of technologies.  

 

Table 4. Comparison of Project Types by Importance 

Importance of Technology Projects: N Mean 

Sig. 1  

(2-
tailed) 

Std. 
Error 

  Chemical Process Improvement 
Technology          

      Incremental Innovation  43 5.70 0.001 0.168 

      Radical Innovation 43 3.67 0.193 0.246 

  Mechanical Process Improvement 
Technology         

      Incremental Innovation  43 5.51 0.001 0.168 

      Radical Innovation 43 3.81 0.425 0.231 
1 Significance based on difference from scale neutral value of 4. 
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By taking a closer look to the lower and upper bounds, it is useful to consider the 

percentages of budget allocation in terms of median values as opposed to mean values 

alone. This is especially important to radical innovations in the mechanical processes 

improvement technology, where a median value of 5 percent possibly represents a more 

accurate assessment of central tendency compared to its mean value of 12.09 percent.  

 

Table 5. Comparison of Technology Budget across Project Types 

% Technology budget spent on (last 2 years): Mean Median 
Lower 
Bound 

Upper 
Bound 

  Chemical Process Improvement Technology      

      Incremental Innovation  41.63 40 35.32 47.93 

      Radical Innovation 9.65 10 6.37 12.93 

  Mechanical Process Improvement 
Technology     

      Incremental Innovation  36.63 35 30.02 43.23 

      Radical Innovation 12.09 5 6.62 17.56 

 

d)  Factors affecting technology adoption 

Technology adoption was examined through a series of regression analyses for both 

incremental and radical innovations. The technology adoption variable (i.e. dependent 

variable) in our model is the product of the budget (as a mean percentage) identified to a 

specific innovation, multiplied by the number of projects within each specific innovation 

(i.e. incremental or radical). Thus, adoption is specified as 

 

 Technology Adoption X = (% of the budget destined to innovation X) *  
(Number of X innovation projects) 

 

            Where: X could be either incremental or radical. 
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Table 6 below presents the results of our analysis on the adoption of incremental 

technologies. One important organizational aspect that drives incremental innovation 

(0.407; p-value= 0.002) is the way a firm faces innovation opportunities, by taking risk, 

cannibalizing current product offerings and taking the lead within the industry.  The “firm 

learning” capacity or knowledge shows also as a significant coefficient influencing the 

adoption of incremental innovations (-0.232; p-value= 0.064).  

Furthermore, an important number of paper companies currently face 

consolidation situations and it is hypothesized that recent merger activities and the degree 

of integration of activities post-merger might positively impact innovation within the 

firm. We assess the influence that these mergers have on the company’s technology 

adoption rates by considering several potential organizational aspects that are affected by 

mergers. Specifically, we are interest if (a) Technology/Production processes; (b) Pricing 

decisions; and (c) New product development process, after a merger influence the rate 

incremental innovations are adopted. Results indicate that pricing decisions and new 

product development process, both, significantly affect the adoption of incremental 

technologies.  

Finally, at 90% confidence level, project champions and the size of the mills, 

both, were also important in the adoption of this type of technologies. 

 

Table 6. Regression Coefficients for Model of Incremental Technology Adoption 

Model:  Incremental Tech Adoption (Adj. R2 = .488) B 
Std. 
Error Sig. 

(Constant) 3.968 1.859 0.045 

Firm Innovativeness 0.407 0.115 0.002 

Firm Learning -0.232 0.118 0.064 

Technology/Production processes recently merged 0.308 0.213 0.164 

Pricing decisions recently merged 0.592 0.318 0.076 

New product development recently merged -0.716 0.354 0.056 

Mill size (number of employees) -0.491 0.265 0.078 

Importance of project champions -0.438 0.249 0.093 
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Several other factors were also considered in the analysis, nevertheless, through the 

stepwise regression analyses, no significant effects were detected.  One example is the 

level of autonomy that a mill has from its corporate office, which does not seem to affect 

the rate, in which either incremental nor radical, innovations are adopted.  

When we specifically considered the adoption of radical technologies as opposed 

to incremental ones, several others factors present significant effects.  For example, as 

shown in Table 7, considering the satisfaction of future customers’ needs and wants is a 

key factor companies ponder when adopting radical technologies (0.443; p-value= 

0.030). The way a firm faces innovation opportunities, by taking risk, cannibalizing 

current product offerings and taking the lead within the industry, also are significantly 

important when adopting radical innovations (0.158; p-value= 0.026). Likewise, the size 

of the mill is considered important when adopting radical technologies; however, neither 

the technological turbulence of the industry, the role of project champions nor the 

influence of sales systems after a recent merge, influence in any way the adoption of 

radical technologies. 

 

Table 7. Regression Coefficients for Model of Radical Technology Adoption 

Model: Radical Tech Adoption (Adj. R2 = .316) B 
Std. 
Error Sig. 

(Constant) -10.287 3.353 0.006 

Firm Future Customer Focus 0.443 0.190 0.030 

Firm Innovativeness 0.158 0.066 0.026 

Sales systems recently merged 0.394 0.212 0.077 

Information systems recently merged -0.324 0.199 0.117 

Mill size (number of employees) 0.622 0.265 0.029 

Technology Turbulence in industry 0.191 0.112 0.104 

Importance of project champions 0.283 0.201 0.173 
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7. Utility-based System Design Analysis 

Another primary objective of this research was to examine the trade-offs associated 

with the potential benefits of using phosphonates as additives.  Toward this end we 

conducted a conjoint analysis of four product attributes each having three levels of 

possible outcomes.  Conjoint Analysis is a procedure for measuring, analyzing, and 

predicting customers’ responses to new products and to new features of existing products. 

It enables us to decompose customers’ preferences into “part-worth” utilities associated 

with each option of each product attribute. We can then recombine the part-worths to 

predict customers’ preferences for any combination of attribute options, to determine the 

optimal product concept or to identify market segments that value a particular product 

concept highly.    

This technique is particularly useful in that the analysis is conducted at the individual 

level and the performance gains associated with using the product can be thought of as a 

series of trade-offs.  Based on a set of orthogonal product profiles, sixteen cost/benefit 

scenarios related to the use of phosphonates as additives in the pulping process were rated 

by respondents.  In close consultation with research colleagues, profiles were developed 

using the following criteria: 

 

Cook Time (at 170 degrees C) is reduced by either: 

•••• 40 minutes 

•••• 30 minutes 

•••• or, 20 minutes 

Yield Improvement is either: 

•••• 1-2 percent 

•••• 2-3 percent 

•••• or, 3-4 percent 

Bleaching Chemical Cost Savings of either: 

•••• 30 percent (from current costs) 

•••• 20 percent (from current costs) 

•••• or, 10 percent (from current costs) 
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Price paid to suppliers for the phosphonate is either: 

•••• $6 per air dry metric tonne (ADMT) of pulp production 

•••• $8 per air dry metric tonne (ADMT) of pulp production 

•••• or, $10 per air dry metric tonne (ADMT) of pulp production 

 

Preliminary, average part-worth estimates are provided below.  The average part-

worth of each attribute option across the selected respondents gives a good indication of 

the attribute options that are attractive to the selected group of customers as a whole. 

 

Table 8: Average Part-Worth Utilities 

Criteria Average part-worth 

Cook Time  

  40 minute reduction 12.72 

  30 minute reduction 10.34 

  20 minute reduction 0 

Yield Improvement  

  3-4 percent 29.04 

  2-3 percent 7.28 

  1-2 percent 0 

Bleaching Cost Savings  

  30 percent 6.72 

  20 percent 8.78 

  10 percent 0 

Price  

  $6 per ADMT 17.12 

  $8 per ADMT 8.66 

  $10 per ADMT 0 

  

While part-worth utilities are not comparable between attributes, the differences between 

part-worth utilities within attributes can be compared to differences in other attribute 

categories.  For example, the difference between $10 per ADMT and $8 per ADMT is 
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valued, on average, by respondents similarly to the difference between bleaching cost 

savings of 10% and 20%.  Therefore, yield improvement, particularly at improvements in 

the 3-4% range (against the benchmark of 1-2 %) are valued at more than two times the 

value of 40 minute reductions in cook time and three times the value of a 20% reduction 

in bleach savings (against their respective benchmarks). 

8. Market potential   

In order to assess the potential market impact of phosphonate additives, it is important 

to gain an overview of the mills prospectively amenable to phosphonate addition.  As a 

final step in the analysis, we identified firms in which the technology examined is 

applicable.   

A list of promising pulp and paper mills was compiled using the 2004 Lockwood Post 

Directory of Pulp and Paper Mills (Beuingen et al. 2004).  This industry directory lists 

every pulp and paper manufacturer in the US and Canada, including contact information, 

mill size, production volume, and different attributes about the mills’ production.  The 

two primary selection criteria were the use of a kraft pulping process and of hardwood 

species. The addition of phosphonates did not work equally well for softwood species. 

Consequently, mills using solely this wood type were eliminated from the list.  

The list was further narrowed down to only those mills located within the natural 

range of aspen, the wood species for which the results looked most promising. In North 

America, aspen ranges in a continuous path from the Atlantic coast as far south as 

Virginia up through Canada reaching Alaska and the Arctic Circle (Johnson 1999). The 

initial determination was based on Isenberg’s (1981) Aspen growth range map, which 

indicated aspen growth primarily in Canada and the northern U.S. states, including both 

the east and west coasts. To account for potential range shifts, this map was checked 

against the Aspen range depicted in a more recent map of the distribution of all forest 

types (U.S. Department of the Interior 2006). No significant shifts were found.  

The location of aspen growth patterns was then checked against the locations of each mill 

and mills outside the Aspen range were eliminated from the list. In total, the final list 

included 43 mills. 26 of these mills were located in the United States and 17 in Canada. A 

database was assembled containing contact data, volume of soft and hardwood pulps 
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used, total capacity, digesters used, power generation and amount of power purchased by 

the mill, if any. The mills were then called one by one to determine whether Aspen was 

part of the species mix used for kraft pulping. The phone calls followed a standardized 

script indicating the purpose of the product and inquiring after the size of the mill, the 

total capacity and production volume, to confirm the data found in the Lockwood Post 

Directory. The contacts were also informed that any information provided would not be 

disclosed in the final report; the information was only being used for a market analysis.  

The contacts were then asked to describe the wood species mix of hardwoods used in the 

mill and the percentage of each species in the total wood mix.  If the mill was found to 

use aspen, data was collected on the quantity of aspen used, its percentage in the total 

wood mix and the actual tonnage of aspen used, if known.    

Both making contact to and obtaining meaningful information from the mills was 

difficult. Although the most recent edition of the Lockwood Post Directory was used, in 

the time since its publishing in 2004 a number of mills seem to have closed. Several of 

the mills were concerned about trade secret information. Table 9 gives an overview of the 

responses. 

 

Table 9. Results of Aspen Inquiry 

 

Only 5 mills of those willing to respond were found to use aspen. One of the Canadian 

mills did not specify the quantity, but less than 5% of the hardwood mix at this particular 

mill is aspen. Another mill in Canada was not able to give an exact number, because the 

amount of aspen used varies widely from year to year, depending on specialized customer 

 
Mills within 
aspen range 

Mills not using 
aspen 

Mills using 
aspen 

Mill not 
responding 

Mills that 
could not be 

reached 

US 26 7 2 2 15 

Canada 17 1 3 0 14 

Total 43 8 5 2 29 
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orders. The third Canadian mill specializes in aspen, which makes up 75% of their hard 

wood mix. They use up to 250 thousand metric tons of aspen a year.  

One of the U.S. mills also uses a substantial amount of aspen, namely 600 to 650 

thousand cords per year. Given that a standard dry cord of aspen wood approximates 

1860 – 2400 lbs, the mill uses anywhere between 500,000 and 700,000 metric tons of 

aspen per year.  The other U.S. mill employs 40% aspen in their hard wood mix. While 

this mill did not specify the quantity of aspen processed, it should be in the order of 300 

thousand tons per year. This number was estimated from the total hardwood kraft pulp 

output of 375 thousand metric tons a year and a typical Aspen pulp yield of 51% (Ahmed 

et al. 1998).  

In hope of obtaining more information, industry associations were contacted. In 

Canada, PAPRICAN, the Pulp and Paper Research Institute of Canada was contacted. 

According to researchers at Paprican, 10 Canadian mills use aspen in hardwood kraft 

pulping, consuming approximately 3000 metric tons per day. This sums up to more than a 

million tons of aspen used for kraft pulping in Canada alone. In an effort to gain similar 

information for the U.S. market, the Technical Association of the Pulp and Paper Industry 

(TAPPI) was contacted.  TAPPI did not have the information available, but suggested a 

few other organizations that may have access to this data.  These organizations included 

Pulp & Paper Online, Paper Age, RISI and the Institute of Paper Science and Technology 

as well as the Center for Paper Business and Industry Studies departments at Georgia 

Tech. These organizations were then contacted and asked similar questions about aspen 

use in the US, unfortunately to no avail. 

While the total number of responding mills in the primarily seems low (12 mills), 

the percentage response rate was in fact 28%. Judging by the numbers for Canada, there 

should be several more U.S. mills using aspen than we were able to verify. We will 

therefore use two estimates, a lower bound estimate for the confirmed aspen use in US 

mills and an upper bound estimate, extrapolating from the percentage of Canadian mills 

processing aspen (59%) and their average use rates (300 tons per mill per day). Given 

that Aspen is a more predominant species in Canada than in the U.S. regions within its 

range, the number obtained is likely optimistic. 
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Table 10 below shows that even under the lower bound estimate, almost 2 million 

metric tons of aspen are processed each year by North American pulp and paper mills, 

yielding at least 0.97 million metric tons of bleached hardwood kraft pulp, assuming a 

standard yield of 51%. Adding phosphonates can improve yield from 4 to 7%. This 

would result in additional yield between 80 thousand metric tons and 130 thousand tons 

for the lower bound estimate for the US and Canada combined. Assuming the higher 

number of mills in the U.S., production would increase between 110 thousand and 190 

thousand tons per year, at constant inputs.  

 

Table 10. Aspen use and pulp outputs 

 
Number  
of mills 

Aspen used 
per year* 

Hardwood kraft  
production  
at 51% yield* 

 
Hardwood kraft  
production at 4-7 %  
yield improvement* 

Canada 10 1.1 0.56 0.61 - 0.64 
US  lower bound  
(conf.) 2 0.8 0.41 0.44 - 0.46 
US upper bound  
(estim.) 15 1.6 0.82 0.88 - 0.93 
*million metric tons 

    

Alternatively, keeping outputs constant, mills could reduce aspen inputs by 4 to 7%. The 

decreased supply cost of aspen could amount to at least 4 million $, assuming lower 

bounds for both cord weight and U.S. production. To this cost reduction would be added 

the avoided energy cost from the 15 to 35 minutes cook time reduction. 
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Table 10. Aspen use and pulp outputs 

 
Constant 
output* 

Reduced 
aspen input* 

Cost reduction at 
$60/dry cord** 
7% yield 
improvement 

Cost reduction at 
$60/dry cord**, 4% 
yield improvement 

Canada 0.561 1.02 - 1.06 $ 8.8 - 26.4 million $ 2.4 to 3.1 million 
US lower bound 
(conf.) 0.408 0.74 - 0.76 $ 6.4 - 19.2 million $ 1.8 to 2.3 million 
US upper bound 
(estim.) 0.816 1.49 - 1.54 $ 12.9 - 38.5 million $ 3.5 to 4.6 million 
*million metric tons     
**1 dry cord = 0.843 to 1.089 metric tons     
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Section two: 

Yield improvement and energy savings using phosphonates as additives in kraft pulp:  

technical evaluation and optimization 

 

In this study seven different commercial phosphontes and number of custom made 

phosphonste products and product mixtures were evaluated. All of the products were provided by 

our industrial collaborator Solutia. The two phosphontes showing the best response as additives 

in the Kraft digerster were Dequest 2016 [HEDP ; (1-hydroxyethylidine)- diphosphonic acid ] 

and Dequest 2066 [DTPMPA; diethylene triamine penta (methylene phosphonic acid)]. 

Information on chemical names, characterisitcs and properties of all the phosphontes used can be 

found at the Dequest web site: http://www.dequest.com/pages/sitemap.asp 

 

1. Evaluation of different wood species  

 

One of the objectives of this study was to evaluate different wood species, using a 

selection of commercial phosponates in the Kraft digester. A total of four hardwood species and 

one commercial chip mixture (southern hardwood) were evaluated using eight different 

phosphonate products. In addition, we studied three softwood species and one commercial mixed 

softwood batch (Table 1). This study was performed using a M/K lab digester. All the 

hardwoods showed some yield improvement at given lignin removal level (KAPPA number); for 

softwoods only pine and fir responded positively with respect to yield improvement (1-2%). In 

addition, all the hardwoods showed increase in reaction speed (KAPPA number at given H-

factor), while the softwoods demonstrated little to no improvement in reaction speed. All wood 

species showed improvement in bleaching response at given lignin content. As will be discussed 

later, the improved bleaching response clearly is due to effective removal of transition metals 

from the pulp fiber. The best response to addition of phosphontes into the digester was observed 

using aspen chips. For aspen significant yield improvement (4-7%) and/or increased 

delignification (up to 7 points at an addition rate of 0.2% HEDP) were observed. The eight  

phosphonates tested showed different response; in most cases Dequest 2016 (HEDP) was the 

superior additive. Please see Table 1 for a detailed summary.  
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Table 1: Response of selected wood species to phosphonate addition to the Kraft digester 

Wood 
Species  

Phosphona
te tested 

KAPPA 
number 
reduction at 
given H-factor 

Yield 
improvement 
at given 
KAPPA 

Bleaching 
improvement 
at same 
starting KA 

Comments  

Aspen 2016, 2086 
2066, 2096 
6004, 2054 
7000, 3000 

Up to 7 points 
(0.2%) 
Up to 10 points 
(0.4%) 

4-7%  2-3 points Considerably better response 
than AQ, 2016 best 
performing 

Alder 2016, 2086 
2066, 2096 
6004, 2054 
7000, 3000 

Up to 2 points 
at high KA 

~ 1% at high 
KA 

1.5 Points AQ performed equal or better 
than any of the phosphonates  

Birch  2016 3 points 1-2% NA  
Maple 2016 Up to 4 points 

at higher KA 
1-2 points  1 point   

mixed 
southern 
Hardwood 

2016 Up to 1 point 1-2%  Similar in yield improvement 
than AQ, but less effective in 
increasing lignin removal  

Pine 2016 
2006 

No change  1-2% 2-3 points Yield same as AQ addition  

Spruce 2016 No change No change 2-3 points  
Fir 2016, 2086 

2066, 2096 
6004, 2054 
7000, 3000 

1 point at high 
AA 

~ 2% for 2054 3 points 2054 better in yield than AQ 

Mixed 
Softwood 
 

2016, 2086 
2066, 2096 
6004, 2054 
7000, 3000 

No change No change  2-3 points  

 

For aspen, addition of HEDP at levels of 0.1-0.2% (on wood) resulted in significantly 

faster lignin removal rate. At 170  0 C cooking time savings of 15 - 35 minutes could be 

achieved.  For all aspen cooks a yield improvement at given H-factor (cooking time) was 

observed (Figure 1).  A better variable to consider for yield than H-factor is KAPPA number. 

The KAPPA number vs. pulp yield (Figure 2) clearly shows that HEDP is effective in achieving  

 

higher total pulp yield at a given KAPPA number (lignin content). It also becomes evident that 

this effect is more pronounced at higher degree of delignification (long cooking time, low KA 

number). 
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Figure 1:  
Yield versus H-factor (cooking time) for aspen 
chips with and without addition of 0.2 % HEDP 
in the digester 

Figure 2:  
Yield at given level of lignin removal for Aspen 
chips ; comparison between control and HEDP 
(0.2%)  addition into Kraft digester  

  

 

2. Fiber Properties  

Fiber properties play an important role in establishing properties of the final paper 

product. Any changes in pulping technology will have to be implemented in a way that does not 

negatively affect fiber properties. Besides basic strength properties, beatability, brightness and 

opacity, pulp drainage is of importance since it affects papermachine speed and energy used for 

drying.  

 

Physical properties and freeness were determined for numerous pulp samples. In all 

instances a slight improvement of physical properties could be observed. Table 2 shows response 

of aspen control and HEDP treated pulps to beating in a PFI mill. Tensile index, Burst index and 

Tear index either remained the same or showed a very small improvement with phosphonates in 

the digester. The Zero-span tensile showed up to 8 % improvement for the phosphonate pulps. 

These finding are supported but the fact that pulp viscosity also increased. Freeness of  

 

phosphonate treated pulps was comparable to freeness values found for the control. We feel 

confident that no negative effect on papermaking properties is to be expected for the 

phosphonate treated pulps. 
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Table 2: Physical properties of aspen pulps with and without Phosphonate addition to the 
digester. 

Pulp PFI mill CSF Bulk Tensile Bursting Tearing 
Zero 
Span Brightness 

  revolutions ml cm3/g N×m/g kPa×m2/g mN×m2/g N/cm %ISO 
   Control 0 692 2.33 19.0 0.66 3.60 77.9 31.4 
  2,500 606 1.44 46.4 2.32 8.37 79.8 29.8 
  5,000 491 1.24 56.7 3.66 9.18 82.1 27.7 
  7,500 422 1.20 64.3 4.02 8.93 82.5 26.8 
  10,000 338 1.15 71.9 4.75 9.04 84.3 25.8 
   
Na4HEDP 0 688 2.28 20.5 0.74 4.18 80.5 36.3 

0.20% 2,500 584 1.35 48.7 2.83 7.95 85.8 34.6 
  5,000 482 1.21 58.0 3.41 8.88 85.2 33.7 
  7,500 406 1.17 65.1 4.18 8.96 89.6 32.0 
  10,000 339 1.10 72.8 4.90 9.63 91.3 30.8 

 

3. Effect of Phosphonates on Brightness and Bleaching  

 

Due to the chelating abilities of phosphonates 

improved metal removal (Figure 3) resulting in up 

to four points of brightness increase at given degree 

of delignification for the unbleached pulps out of 

the digester.  The metal removal also resulted in 

improvements in bleaching response for all wood 

species tested. Table 3 demonstrates chemical 

savings for a traditional DEDED bleaching 

sequence after using Dequest  2016 or 2066 in the 

digester. In this experiment chlorine dioxide 

charge was reduced for the pulps with the 

phosphonate addition (by 0.3%), attempting to achieve the same brightness. Table 4 shows 

response of aspen pulps with and without phosphonates to a DEopP sequence. Here the chemical 

charges were kept constant. The results illustrate that with the same chemical charge final 

brightness is significantly higher. Another set of experiments selected pulps with the same lignin 

content for an ECF bleaching sequence. Even though starting KAPPA number was only 0.4 

points lower for the pulps treated with HEDP in the digester the starting brightness was one point 

higher out of the digester. The  brightness advantage was carried through all 4 stages (Table 5). 
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Figure 3: Change in metal content for 
aspen pulps with and without HEDP 
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Numerous other experiments were performed and even in cases where no effect of phosphonates 

on lignin content was observed (for example for softwoods) a positive effect on bleaching 

response could be observed. 

 

Table 3:  HW-DEDED aspen wood chips      

    Control 2016(0.2%) 2016 (0.1%) 2066 (0.2%) 

 Ini. KAPPA no.  22.5 16 18.1 18.6  

 Ini. Brightness, %  29.2 34.4 33.1 33.7  

 D1: ClO2, %  1.3 1 1 1  

  Residual, g/l 0.006 0.006 0.003 0.006  

  End pH  2.95 3.21 3.61 3.73  

  Brightness, % 44.75 53.66 51.25 53.7  

 E1: NaOH, %  2 2 2 2  

  End pH  11.84 11.8 11.87 11.87  

  Brightness, % 57.74 61.98 60.2 62.2  

 D2: 
ClO2, % 

 0.5 0.4 0.5 0.5  

  Residual, g/l 0.067 0.085 0.006 0.006  

  End pH  3.93 4.21 4.21 4.22  

  Brightness, % 83.27 84.1 83.7 84.8  

 E2: NaOH, %  2 2 2 2  

  End pH  11.8 11.78 11.72 11.74  

  Brightness, % 82.63 83.38 83.8 84.6  

 D3: ClO2, %  0.2 0.2 0.2 0.2  

  Residual, g/l 0.07 0.073 0.036 0.03  

  End pH  5.17 5.38 4.42 4.32  

  Brightness, % 90.53 90.59 89.9 90.7  
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Table  4:. HW-DEopP, aspen wood chips 

  

    Control 2016(0.2%) 216(0.1%0 2066 (0.2%) 

 Ini. KAPPA no.  24.5 17.06  18.1 18.6 

 Ini. Brightness, %  28.3 35.2  33.1 33.7 

 ***D: ClO2, %  1 1  1 1 

  Residual, g/l 0.003 0.003  0.003 0.006 

  End pH  3.72 3.53  3.61 3.73 

  Brightness, % 38.4 53.81  51.25 53.7 

 Eop: NaOH, %  3 3  3 3 

  O2 pressure, psi 30 30  30 30 

  H2O2, %  0.5 0.5  0.5 0.5 

  Residual, g/l 0.046 0.118  0.122 0.18 

  KAPPA 

no. 

 5.6 4.5  5.3 4.4 

  End pH  11.75 11.83  11.67 11.66 

  Brightness, % 71.22 79.23  78.8 79.15 

 P: H2O2, %  0.6 0.6  0.6 0.6 

  Residual, g/l 0.007 0.011  0.08 0.24 

  End pH  11.66 11.71  11.67 11.62 

  Brightness, % 79.5 83.43  84.7 85.65 

 

Table 5: Bleaching experiments Maple pulps, same starting lignin content 

BRIGHTENSS % ISO Control 2066 (2%) 

Initial KAPPA 15.6 15.2 

Initial brightness 35.6 36.2 

D0  

 0.8% ClO2 63 0C, 25 minutes 
52.6 53.6 

Eop  

(0.3% P) 80 0 C. 45 minutes, 1.07% NaOH 
70 72 

D1 

 0.6% ClO2 , 0.2% NaOH, 71 0 C, 100 minutes 
86.0 86.4 

D2  

0.2% ClO2, 750 C 130 minutes, 0.1% NaOH 
89.4 90.1 
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4. Fundamental understanding of reaction mechanisms 

a. Pulp composition  

One of the goals of this project was to gain understanding of the fundamental reactions 

involved in modifications observed with addition of phosphonates to a traditional Kraft process. 

Towards this goal we performed detailed carbohydrate analysis of pulps processed with and 

without addition of HEDP. Commercial aspen chips were processed to produce Kraft pulps with 

and without the addition of HEDP (0.1-0.4 % on chips). Three different H factors (705, 853 and 

1000) were used, resulting in a KAPPA number range from 14 to 26. The pulps were analyzed 

for their carbohydrate and lignin content. Three sets of carbohydrate analysis were performed; 

set 1 and 2 were direct repeats (same pulp samples) the 3rd set consisted of pulps from separate 

runs.  

 

Comparing glucose content at given yield we can see that the control has a distinctly 

lower glucose content than the HEDP treated samples (Figure 4 and 5). This comparison shows 

the same trend irrespectively if screened or unscreened yield are used as the basis for comparison 

(compare Figure 4 with Figure 5). Glucose in pulp samples originates either from cellulose or 

glucomannans. We found approximately 2 % mannose in the original aspen chips, but none in 

any of the pulp samples, indicating that the glucomannans were dissolved in the pulping process. 

This effect was expected, since glucomannans are easily hydrolyzed under alkaline conditions. 

The lack of mannans verifies that all the glucose in the pulp is derived from cellulose. The main 

hemicellulose type in hardwoods are xylans. Xylans consist mainly of xylose and show a 

distinctly stronger resistance to alkaline pulping. Comparison of xylose levels does not show a 

significant difference between the HEDP treated samples and the control (Figure 4 and 5 – lower 

set of data on the graph). 

 

At the same time, as expected, the Klason lignin content at given yield is lower for the 

HEDP treated samples than for the control (Figure 6).  As noted before HEDP promotes the 

preferential removal of lignin from the wood sample, retaining larger amounts of cellulose. 

Comparison of KAPPA number with Klason lignin content shows data scattered around the 

theoretical values (theoretically KAPPA number X 0.13 = Klason lignin)(Figure 7).  
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For comparison three samples processed with Anthraquinon as pulping additive were 

included into the analysis. The glucose content at given yield for these samples appears to be 

close to the results found for the HEDP pulps (Figure 5). The xylose content is in the same range 

than the control or the HEDP pulps. In addition the lignin content at given yield clearly is in the 

same range than the lignin content for HEDP samples. HEDP as well as Anthraquinon are 

promoting preferential removal of lignin during the cook, preserving the cellulose content, while 

hemicellulose content is not significantly changed. 

 

b. Hexeneuronic acids  

One potential reason for differences in KAPPA number, especially for hardwood pulps could be 

differences in formation of Hexeneuronic acid groups (HexuA groups) (Figure 8). The unsaturated 

residues consume KMnO4 in the KAPPA number measurement, resulting in over-estimation of 

Fig. 5: Pulp compsition vs unscreened yield 
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actual KAPPA number values. The content of HexuA groups in Kraft pulp is strongly influenced by 

the cooking conditions. In general, HexuA groups formed at given KAPPA numbers decrease as the 

cooking temperature or time is reduced, which can be achieved by increasing the concentration of 

OH- and/or HS- in cooking liquors. AQ is found to slightly reduce the formation of HexuA groups.  

       

O

C

OH

O xylan

O O

H OH

 
Figure 8: The structure of Hexeneuronic acid  

HexuA groups in Kraft pulp can be quantified by a UV/Visible photometric method and results 

are presented in Table 5. HexuA group contents determined for the different pulps vary from 47 to 

51µmol/g pulp. At any given H-factor level both Na4HEDP and Na5DTPMP treated pulps show 

slightly higher HexuA contents than the control, while the AQ treated pulp is slightly lower. It is 

confirmed that the HexuA group content is mildly decreased as H-factor increases, due to a greater 

decomposition of xylan at longer cooking time. Comparing HexuA’s at a given KAPPA number 

pulps from runs with HEDP appear to have a slightly larger value than control or AQ pulps. 

Nevertheless, the differences are very small, and there certainly is no evidence that the reduced 

KAPPA number with phosphonates might be caused by lower levels of HexeA’s. This finding 

agrees with Figure 6, showing a linear relation ship between KAPPA number and lignin content.   

Table 6  HexuA contents determined by the UV/Visible method 

Pulp H-factor  HexuA 
(charge, %)  KAPPA  (µmol/g pulp)  

 Control(0.0) 558 25.3 48.95 
 853 17.0 48.02 
 Na4HEDP(0.2) 558 17.4 50.78 
 853 15.0 50.27 
 Na5DTPMP(0.2) 853 16.6 48.18 
 AQ(0.1) 853 17.8 47.75 
 

c. Solid-state (SS) NMR 

Aspen pulp samples from different cooks (with and without phosphonate addition, 

different H-factors, different KAPPA numbers) were characterized using SS-NMR. Some sample 

Na
+ 
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spectra of CP/MAS 13C-NMR at 400MHz are illustrated in Figure 9 (two aspen pulp samples and 

aspen wood). Assignments of principal resonances in the spectra are summarized in Table 7. 

Signals occurring between 60 and 110ppm are attributed primarily to carbohydrate carbon atoms, 

while including contributions from lignin side-chains and Lignin-Carbohydrate functionalities. 

Resonances in the region of 110 to 160ppm are indicative of lignin structures. In addition, the 

most characteristic peak for the methoxyl group at 56ppm is contributed by lignin. Prominent 

signals for hemicelluloses appear at 173ppm for the carbonyl group and at 20ppm for the methyl 

group.  

 

Table 7 Assignments of peaks in the CP/MAS 13C-NMR spectra of wood and pulp samples 

δ, ppm  Lignin (S=Syringyl, G=Guaiacyl)  Cellulose and hemicelluloses 

173.0  Cα=O (trace)  C=O in acetyl and -COOH groups of xylan 

153.0~148.0  S 3/5 (4-O-R) (downfield)  

  S 3/5 (4-O-H), G 3/4 (upfield)  

135.0~132.0  Condensed structures:  

  S 1/4 (4-O-R), G 1 (4-O-R) (downfield)  

  S 1/4 (4-O-H), G 1 (4-O-H) (upfield)  

ca. 120.0  G 6  

ca. 114.0  G 2/5  

ca. 110.0  S 2/6  

105.0~103.0    C-1 in cellulose (downfield) and hemicelluloses  

88.0    C-4 (crystalline) 
84.0  Cβ in β-O-4  C-4 (amorphous) 
73.0 (strong)  Cα-OH in β-O-4  C-2,3,5 in cellulose and hemicelluloses 

ca. 65.0  Cγ-OH  

64.0    C-6 in cellulose (crystalline) 

56.0  Aryl methoxyl C  
50.0~15.0    Aliphatic C not attached to oxygen 
20.0    Methyl C in acetyl groups of xylan 

 

Signals of carbon atoms from carbohydrates (both cellulose and hemicelluloses) can be 

assigned . Carbon-1 occurs at ~105ppm in the most downfield range of 60~110ppm. Carbon-4 is 

the next, at 88~84ppm, followed by the doublet at ~73ppm of C-2, 3, 5 in the six-member ring. 

The aliphatic C-6 shows up in the most upfield area, i.e., at 64 ppm with an upfield shoulder. 

Crystallinity is known in nature as a major characteristic of cellulosic microstructure. In SS 13C-
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NMR spectra, the crystallinity of cellulose can be measured by the integral ratio of the C-4 peak 

at 88ppm (crystalline) over the C-4 peak at 84ppm. Results  (Table 8) show that the crystallinity 

increases steadily from 0.58 of the wood sample to 0.84~0.85 of the pulp samples. Little 

difference between the control, Na4HEDP, and AQ treated pulps is noticeable. It is known that 

amorphous areas in cellulose are preferentially attacked and dissolved during Kraft pulping, 

giving rise to the crystallinity increase with growing yield losses. 

 
                                300            250            200            150           100             50               0   ppm 

 

Figure 9: CP/MAS 13C-NMR spectra of : (a) the aspen wood, (b) the control and (c) 
Na4HEDP(0.2%) treated pulps at H-factor 853. 
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Table 8:  Integration (total 100) of peaks in the CP/MAS 13C-NMR spectra 
of wood and pulp samples 

Chemical shift, δ Wood Pulp 
(ppm)   Control Na4HEDP(0.2%) AQ(0.1%) 
173.0 0.8 0.3 0.0 0.0 
153.0~148.0 2.0 0.8 0.0 0.0 
135.0~132.0 1.6 1.1 0.0 0.0 
105.0~103.0 15.8 16.1 15.9 16.3 
88.0 4.8 6.3 6.3 6.2 
84.0 8.4 7.5 7.4 7.4 
73.0 42.5 44.4 46.3 46.3 
64.0 14.6 14.9 15.3 15.7 
56.0 5.3 2.1 0.0 0.0 
35.0~10.0 1.9 0.7 0.0 0.0 
Ratio (

ppmatI
ppmatI

84__
88__ ) 0.57 

 
0.84 
 

0.85 
 

0.84 
 

KAPPA number n/a 20.5 14.2 16.9 
                    Note: All pulps cooked at H-factor 853; I=Integration 
 

d. Free Phenolic Group 

The phenolic group is one of the most significant functional groups that affect both 

physical and chemical properties of the lignin polymers. The phenolic group is able to ionize 

under alkaline conditions and thus improve the solubility of the lignin in aqueous systems, an 

important factor in pulping. Lignin chemical reactivity in various modification processes is 

strongly influenced by its phenolic hydroxyl groups. During lignin degradation new phenolic 

groups are generated. Thus, the quantitative measurement of phenolic hydroxyl groups supplies 

relevant information concerning the lignin structure and reactivity as well as the extent of lignin 

degradation. The phenolic groups in Kraft lignin (aspen) were determined using the UV 

spectroscopy method, based on the difference in absorption of phenolic units in neutral and in 

alkaline solution. The cleaving of alkyl-aryl ether linkages during the Kraft cook leads to 

formation of new phenolic end groups. The phenolic hydroxyl content in the residual lignin 

increases during the cook. Dissolved lignin from aspen Kraft cook has 2.1-3.9 mmol/g phenolic 

hydroxyl groups present (Table 9). 
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Table 9  Free Phenolic Group for Control and HEDP cooks 
H-

Factor 
KAPPA 

# Total content 
H-

Factor 
KAPPA 

# Total content 
  HEDP OH (tot) - HEDP   Control OH (tot) - Control 
            

600 22.11 2.1635 600 24.03 2.3146 
700 28.35 2.1304 700 21.70 2.2499 
800 19.69 2.7523 800 19.98 2.8528 
900 16.34 2.3810 900 18.54 2.7351 

1000 15.78 2.4192 1000 18.15 3.2171 
1100 14.40 2.7660 1100 17.71 2.8588 
1200 13.69 2.0868 1200 16.70 3.9125 

 
By cleaving the majority of the phenylpropane-ß aryl ether structures, the Kraft pulp 

lignin has been changed as compared to the native lignin in wood. The residual lignin is believed 

to be more branched compared to the native lignin. The lower amount of phenolic groups in the 

black liquor lignin of HEDP cooks compared to control cooks, (Figure 10) could indicate that the 

HEDP lignin have been less degraded. The fact that these lignins were isolated from black liquor 

means that they were soluble in the alkali system of our pulping liquor. This indicates that HEDP 

is promoting lignin removal from the cell wall before it has reacted to the same extent than the 

lignin in the control runs. This theory is supported by the molecular weight distributions we 

found for these lignins (see the Molecular weight determination section).  

 

  
Figure 10: Free Phenolic Group Ave. vs. H-
Factor: Control and HEDP cooks 

Figure 11:  Free Phenolic Group Ave. vs. 
KAPPA Number: Control and HEDP cooks 
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The discrepancy of free phenolic group between control and HEDP cooks appears to be 

more visible when the H-factor increases (Figure 10). Phenolic groups vs. KAPPA number 

(Figure 11) indicate that at given KAPPA number, the cooks treated by HEDP have lower free 

phenolic groups compared to the control ones. For KAPPA number below 20, there is a 

significant difference between control and HEDP cooks in term of amount of phenolic units. 

However when the KAPPA number is above 20 the difference becomes negligible 

 

e. S/G Ratio 

The nature of lignin differs on the microscopic level. Hardwood lignin and softwood 

lignin structures are also different. The lignin in the middle lamella of softwoods has higher p-

hydroxyphenyl units and contains less free phenolic hydroxyl groups than in the secondary wall  

Softwood does not have large number of Syringyl units. On the other hand, lignin in hardwood 

has a high content of syringyl units in the secondary walls and ray cells, whereas the middle 

lamella contains a guaiacyl-syringyl lignin. In contrast, the vessel contains a guaiacyl lignin in 

both the secondary wall and the middle lamella. We observed that softwoods showed no or little 

response to the addition of phosphonates in the Kraft process. Therefore it was speculated that 

the amount of Syringyl present or the Syringyl/Guaiacyl ratio could be the determining factor for 

response to phosphonates addition. S/G ratio for pulps cooked to different lignin content with 

and without HEDP was determined.  

 

Table 10. S/G ratio for different wood chip 

Wood chip S/G ratio1 
S/G 

ratio2 S/G ratio ave 
      

Aspen 2.99 2.99 2.99 
birch 3.82 3.12 3.47 
maple 3.65 3.32 3.49 

 

Table 10 shows S/G ratio for different wood chip. The aspen starting material S/G ratio is 2.99, 

birch and maple are considerably higher. Softwoods on the other hand are known to have mainly 

G units. This indicates that the S/G ratio of the starting material does not impact the response in 

the cooks. In addition to the starting material we examined S/G ratio of pulps with and without 

phosphonate treatment in the digester. It is known that S units react more readily, so a decrease 
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S/G ratio ave. vs. Kappa Number
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in S/G ratio is expected as the cooking proceeds.  Figure 12 and Table 11 show that the S/G ratio 

of HEDP cooks is slightly higher at given lignin content compared to the control cooks. This 

means that the phosphonates are capable of promoting removal of guaiacyl units from lignin.  

 

Table 11:  S/G ratio for Control and HEDP cooks 
H-

Factor 
KAPPA 

# S/G ratio ave 
H-

Factor 
KAPPA 

# S/G Ratio ave 
  HEDP HEDP   Control Control 
         

600 22.11 0.78 600 24.03 0.64 
700 28.35 0.77 700 21.70 0.92 
800 19.69 1.34 800 19.98 1.14 
900 16.34 2.10 900 18.54 0.86 

1000 15.78 1.25 1000 18.15 1.11 
1100 14.40 1.13 1100 17.71 0.49 
1200 13.69 1.25 1200 16.70 1.20 

 

 

 

 

 

 

 

 

 

 

Figure 12 : S/G ratio at different levels of lignin removal for control and  
HEDP treated aspen pulps.  
 

a) Black Liquor Lignin Molecular Weights  

Average Molecular weight (Mw) and its distribution are an essential aspect to distinguish the 

polymeric properties of lignin as well as its condensed structures.  We used different methods to 

determine the molecular weight (Mw) of black liquor lignin for both HEDP and controls cooks. 

The most successful attempt measured the average Mw using caustic (0.1N) as solvent. The 

molecular weights of black liquor lignin from runs treated with HEDP are slightly higher 
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compared to the control pulp (Table 12 and Figure 13, 14). The relation between Mw and H-

factor is not linear. The control cooks trend shows that the Mw increases up to H-factor 900 and 

decreases at higher H-factors. While HEDP samples show more constant Mw against H-factor. 

Comparing average molecular weight at given level of lignin removal indicate that at low 

KAPPA numbers black liquor lignin has a higher average molecular weight for cooks with 

HEDP in the digester. This finding agrees with the earlier presented results on free phenolic 

groups. HEDP appears to be capable of removing lignin at higher molecular weight levels ( less 

degradation).  

 
Table 12 Lignin Molecular Weight average using NaOH as solvent 
  H-

Factor 
KAPPA 

# 
Mw ave.   H-Factor KAPPA # Mw ave. 

              
Control 600 24.03 12011 HEDP 600 22.11 12342 
  700 21.7 12180   700 28.35 12443 

  800 19.98 12689   800 19.69 12233 
  900 18.54 12430   900 16.34 12585 
  1000 18.15 12203   1000 15.78 12273 
  1100 17.71 12217   1100 14.4 12302 
  1200 16.7 11846   1200 13.69 12266 

 
 

Figure 13: Average Molecular weight Mw at 
given H-factor  for aspen  

Figure 14 Lignin Molecular Weight vs KAPPA 
Number for aspen pulps.  
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5. Dispersion properties 

Effect of addition of phosphonates on lignin dispersion was studied using aspen black liquor 

lignin. For this purpose a solution of 10 g/l of lignin was prepared using NaOH Dequest 2016 

was added. Both solutions were acidified slowly, precipitated lignin was centrifuged off, washed 

and oven dried. Interestingly it could be seen that especially at higher pH levels lignin 

precipitation is considerably more pronounced in systems that contain phosphonates (Figure 15). 

If this effect is present in the original black liquors it could mean that lignin is removed from the 

solution by precipitation, thereby changing dissolved solid content of the black liquor. Since we 

observed reduced lignin content in pulp fibers it is assumed that lignin is not precipitated onto 

fibers but can be removed effectively in the subsequent washing stage.  
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Figure 14: Lignin precipitation in black liquor 
systems  

 
Fig. 15: Turbidity of lignin solution with 
increasing amount of HEDP 
 

 

To confirm the above described findings we performed lignin precipitation studies at pH 8 

using increasing amounts of phosphonates, determining lignin precipitation by monitoring Turbidity 

of the solution. Turbidity is defined as measurement of “the clarity of an otherwise clear liquid by 

using colorimetric scales or the cloudy or hazy appearance in naturally clear liquid caused by a 

suspension of colloidal liquid droplets or fine solids”. HEDP (pH 11.5 at the original active acid 

concentration) is picked for the exploration, since other phosphonates perform essentially the same 

in terms of dispersing. 
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      A homogeneous lignin solution is composed of non-dissolved but well dispersed lignin particles 

along with dissolved lignin as solutes. Typically, any change in turbidity or solubility is related to 

dispersing state alteration of the stable system. As Figure 15 shows, at pH 8.0 and room temperature 

turbidity increases constantly from 0.04 to 0.12NTU as HEDP increases from 0 to 700ppm in 

solution. 

 

6. Penetration of cooking Liquor into chips 

 

  An attempt was made to characterize liquor penentration into wood chips and determine 

if there is a significant impact on liquor penetration into the chips with phosphonate addition. 

Test samples were prepared by adding 20 g samples of chips into bags (bags hade large number 

of holes) and place them into the same pressure vessel (room temperature, 50 psi).  Samples were 

removed from the vessel at different times, chips were removed from the bag and free draining 

liquor was removed before weighing the chips. Even with several repeat runs standard deviations 

were high. 

 

For Aspen chips there is a slightly faster penetration of HEDP containing liquor visible at 

short retention times (up to 10 weight % more, Figure 15)). Given longer retention times the 

difference becomes smaller and finally is not visible any more (60 minutes).  The softwood chips 

did not show this effect (Figure 16). Even though the Dequest liquors were slightly above the 

control, the difference is considerably lower for the softwood chips  (within 2%) than for the 

aspen chips. Considering the above mentioned variability of the test procedures none of the 

differences can be shown to be statistically significant.  
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7. Fate of Phosphonates in the Digester 

Phosphonates are known to be resistant to heat and other harsh conditions, so we fully 

expected that they survive the Kraft cooking process. Experiments using variety of set-ups were 

used to design a reliable quantitative testing procedure using.  31P NMR was selected as the most 

effective tool. HEDP shows only one distinct peak at 19.8 ppm in a 31P NMR spectrum (see 

Figure 17). This peak is clearly visible in black liquor even after cooking times of up to four 

hours; nevertheless some minor peaks in lower regions are observed, but the majority of HEDP 

survives the cooking procedure. Nevertheless, not all phosphonate can be found in the liquor, a 

substantial amount are found to be absorbed onto the pulp. Amount of phosphonate adsorbed 

depends strongly on type of phosphonate used. Recirculation of black liquor will allow reduction 

of phosphonate addition rate.  

 
 
 

 
 

 

 

 

Figure 16: 
31P NMR spectrum of HEDP in black liquor 
 
 

Fig. 16: Pulping Liquor uptake Mixed Softwood

110

115

120

125

130

135

140

145

150

0 10 20 30 40 50 60 70

MINUTES

Li
qu

or
 A

bs
or

pt
io

n 
[%

]

Control
Dequest

Figure 15 : Pulping liquor uptake commercial Aspen chips, 

80

85

90

95

100

105

110

115

120

125

0 10 20 30 40 50 60 70

MINUTES

LI
Q

U
O

R
 A

B
S

O
R

P
TI

O
N

 [%
 O

F 
D

R
Y

 
W

E
IG

H
T]

Control
Dequest



 

 56 

 

8. Effect of phospohonate blends and addition levels  

Nearly a dozen phosphonate products were evaluated using aspen chips, the material most 

responsive to phosphonate addition  in the pulping process. The pulping conditions used were:   

H-factor 1000, AA 18.0% and sulfidity 25.0% (as Na2O). 

 
    Table 14  Pulp kappa number of individually-used phosphonate cooking at H-factor 1000, all 
phosphonates were supplied by Solutia (Dequest products)  
 

  Charge, % 
      Phosphonate (abbrev.) 0.00(Control) 0.03 0.20 0.50 
      D2006(Na5ATMP)**  21.2 18.1 16.4 
      D2016(Na4HEDP)  21.6 16.2 15.2 
      D2054(K6HDTMP)  21.3 20.4 17.2 
      D2060S(DTPMP)  19.6 17.9 16.5 
      D2066(Na5DTPMP) 20.8 19.4 17.8 15.0 
      D2086  19.8 16.9 15.8 
      D3000S  21.0 17.9 15.5 
      D6004  20.2 18.0 16.8 
      D7000(PBTC)  21.7 21.3 19.8 
      D2066A(Na3DTPMP)*** 17.0 16.0 14.0 13.3 

 
 

The Kappa number reduction is small at 0.03% addition levels, but becomes increasingly 

significant (3.6~5.8 points) at 0.50% charge. D2016 (Na4HEDP), D2066,  (Na5DTPMP), 

D2066A, D2060S, D2086 and D3000S seem to be superior in improving delignification. In 

addition, seven phosphonate blends were evaluated against both the control and each other at the 

same cooking conditions but varied H-factors. As illustrated in Table 15, D83A and D83B turned 

out to be the most effective blends, achieving kappa number decreases of up to 8 points and the 

highest pulp brightness. D83A outperformed D83B, attaining higher screened yields and lower 

rejects at both H-factor levels tested. By comparing the component ratio in D83A and  
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D83B, the result confirm that D2016 (Na4HEDP) shows a clear advantages over D2086 in Kraft 

pulping. Phosphonate responds was based on their original components. There does not seem to 

be a synergistic effect in blending different products.   

 

Table 15  Cooking results of phosphonate blends 
 

      Items assessed 

H-factor Phosphonate Charge Kappa number Screened yield Rejects ISO brightness 

 (w/w) (%)  (%) (%) (%) 

   705   Control 0.0 24.8 50.5 4.8 28.3 

    D78 (1:1, D2006:D2066) 0.2 18.6 52.7 3.0 31.8 

    D80 (1:1, D2006:D2086) 0.1 21.3 52.6 2.6 31.0 

    D83A (2:1, D2016:D2086) 0.2 17.6 52.7 2.2 33.5 

    D83B (1:2, D2016:D2086) 0.2 17.6 51.3 4.7 35.9 

    D84 (1:1, D2054:D2086) 0.2 17.9 52.5 2.5 31.1 

    D86 (1:1, D2086:D2066A) 0.1 20.3 50.2 3.8 29.3 

    D87 (1:1, D2054:2066A) 0.1 19.9 50.4 7.1 33.5 

   853   Control 0.0 23.2 52.6 2.8 29.0 

    D78 (1:1, D2006:D2066) 0.2 18.2 53.3 2.2 31.4 

    D80 (1:1, D2006:D2086) 0.1 20.0 53.0 2.3 30.9 

    D83A (2:1, D2016:D2086) 0.2 15.3 54.1 1.5 33.7 

    D83B (1:2, D2016:D2086) 0.2 16.7 52.5 2.6 35.2 

    D84 (1:1, D2054:D2086) 0.2 16.7 52.7 1.6 31.4 

    D86 (1:1, D2086:D2066A) 0.1 18.8 52.4 1.6 29.9 

    D87 (1:1, D2054:2066A) 0.1 19.1 53.1 1.5 32.1 
  Note: Chip solids 56.0%; an average of two replicates reported for the control 

9. Conclusions:  

Phosphonates as additives in the Kraft pulping process have the potential to increase yield, 

speed of reaction and bleaching response. While only hardwood, and specifically aspen, show a 

significant yield improvement all wood species tested showed increased bleaching response. The 

increased response to bleaching is caused by lower lignin content and/or lower levels of 

transition metals in the pulp processed with phosphonates. For almost all wood species HEDP is 

the most effective phosphonate, including number of blends. HEDP does survive the Kraft 

pulping process and recirculation of black liquor offers one option to reduce the overall addition 

level. Approximately 0.15-0.2 % phosphonate (on dry wood basis) are needed to significantly 

improve pulping conditions. Black liquor lignin recovered after the pulping stage shows higher 

phenolic group content and slightly higher average Mw. This finding indicates that phosphonates 
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are capable of aiding lignin removal at lower degree of degradation, resulting in increased speed 

of reaction.   

In collaboration with Solutia Inc. (our industry collaborator) we are attempting to move 

forward to mill trials. Several European mills are currently adding very small amounts of 

phosphonate to the digester. While the addition levels are to small to show significant changes to 

yield we are hopeful that data collected at these trial will provide additional information and will 

allow us to move forward with a mill trail using higher levels of HEDP.  

 

10. Milestone Status Table:  

ID 
Number 

Task / Milestone Description 

1 Evaluation of different wood species 

2 Characterization of fundamental background  

2.1 Dispersion properties 

2.2 Penetration into wood chips  

2.3 Characterization of residual lignin 

2.4 Characterization of black liquor lignin  

2.5 Comparison of phosphonate responses 

2.6 Optimization of process 

2.7 Fate of phosphonates in the process 

3.  Market study  

3.1 Secondary Literature review 

3.2 Model development  

3.3 Interview with mill personal 

3.4 Survey design and implementation 

3.5 Economic feasibility assessment  

4. Analysis and final report 
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11. Approved Budget Data:  

 

Phase / Budget Period DOE Amount Cost Share Total 

 From To    

Year 1 4/1/03 3/31/04 $157,680 $ 41,145 $ 198,825 

Year 2 4/1/04 3/31/05 $106,682 $ 42,190 $ 148,872 

Year 3 4/1/05 3/31/06 $105,956 $ 43,277 $ 149,233 

Year 4 NA     

Year 5 NA     

Totals $ 370,318 $ 126,612 $ 496,930 

 


