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Abstract

Approximately five years ago scientists discovered that modern UNLX workstations connected
with ethernet and fiber networks could provided enough computational performance to compete
with the supercomputers. As this concept became increasingly popular, the need for distributed
queuing and scheduler systems became apparent. Systems such as DQS from Florida State
Universtiy were developed and worked very well. Today however, supercomputers such as
Argonne National Laboratory's IBM SP system can provide more CPU and networking speed
than can be obtained from these networks of workstations. Nevertheless, because modern super
computers look like clusters of workstations developers felt that the scheduling systems
previously used on clusters of workstations should still apply. After trying to apply some of
these scheduling systems to Argonne's SP environment it became obvious that these two
computer environments have very different scheduling needs. Recognizing this need, and
realizing that no one has addressed it, we at Argonne developed a new scheduling system. The
approach taken in creating this system was unique in that user input and interaction were
encouraged throughout the development process. Thus a scheduler was built that actually
workes the way the users want it to.

Background

The Mathematics and Computer Science Division of Argonne National Laboratory purchased a
128-node SP system in order to study parallel computing, scalable I/O, and several other
advanced computing areas. The SP system has many types of users whose various jobs often
have conflicting requirements. In order to come up with a fair way to schedule these different
jobs, several popular scheduling systems were considered. After studying these scheduling
systems and actually trying a few, it was determined that none of them could actually suit the
needs of our user community. The problem was that these systems had been developed for
clusters of high-end workstations connected by fast networks. The authors of these systems had
considered all the best ways to schedule jobs on such a distributed system, including scheduling
[/O-intensive jobs with CPU-intensive jobs, and many other popular, optimistic scheduling
schemes. These schedulers can do all sorts of complex tasks-- but nor the simple tasks that our
users wanted! After explaining this predicament to my managers, [ was told either to find a
scheduling system that could satisfy our user community or to schedule their jobs by hand round-
the-clock. Not being much of a night person, I opted to write my own scheduling system in
which the user community could define its requirements.
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Building the Ultimate Scheduler

Before beginning to write a new scheduler, I thought a lot about what exactly a scheduling
system should provide. There are three basic goals that almost any scheduling system strives
for: fairness, simplicity (ease of understanding), and efficient use of available resources. These
three goals are obviously in conflict; some compromise was needed that would make the users

happy. After a fair amount of research, a list of features making up the “Ultimate Scheduler”
was developed.

This “Ultimate Scheduler” would:

Provide optimum performance (e.g., [/O-bound and CPU-bound jobs together)
Be fair

Support different job classes (interactive vs. batch)

Support various message-passing libraries

Use static or dynamic partitioning of the machine

Utilize time or space slicing, gang scheduling, or sign-up sheet mechanisms
Schedule different computation models (task farm vs. parallel processing)
Manage other system resources (e.g., /O subsystems)

Provide priority scheduling for special jobs

Several of these items really depend upon how the users of a machine expect to be able to use it.

Several nice scheduling systems are available today that try to address these issues. A few of the
more popular are

¢ DQS from Florida State University

o Condor from The University of Wisconsin
s IBM LoadLeveler

e NQS

The problem with these systems is that they all primarily focus on managing multiple queues of
nonparallel jobs for networks of workstations. They were developed in the age of the "free
supercomputing” movement. This was not too long ago when high-end workstations connected
by fast networks could provide as much computational power the supercomputers, at a fraction
of the cost. Many of these scheduling systems do more than scheduling. Figure 1 shows the
main pieces of a complete scheduling system. Several of the available scheduling systems have
implemented the various pieces of this diagram in a tightly coupled fashion. Sucha
configuration greatly reduces the extensibility of the system. For this reason a scheduling
system that would meet our goals addresses only scheduling and attempts to get the other pieces
from either the machine vendors or other developers wherever possible.

-
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Figure 1: A compete scheduling system

The ANL Scheduler Requirements

Argonne’s users and management had their own set of requirements that these systems could not
fully address. The first was that users had to be able to request a set of nodes for any type of use.
ANL users have several different modes of operation. Some need to be able to do task farming
where the SP is used as if it were a large collection of unconnected workstations. Others want to
run parallel jobs using various message-passing libraries. They need to be able to run jobs
interactively and in batch mode. Interactive use allows users to actually log onto the nodes and
run their codes by hand. This facilitates debugging and simple use of the machine for less
sophisticated users. Batch use allows for large production runs and unattended runs during the
night or weekends. Given these different job types, it was important not to statically partition the
machine into different-sized “pools” of nodes. A 127-node job should be able to run with a 1-
node job as should a 65-node job with a 63-node job. These different jobs have equal
importance so the number of requested resources and duration or usage had to drive the queuing
policy, not the "types" of jobs.

Addressing the Requirements

Several of the members of the Mathematics and Computer Science Division at ANL are
researching new message-passing systems, so the scheduler had to be able to make use of any of
them. Addressing this requirement was difficult because of a software limitation but led to one
of the key concepts of the scheduler. To use the IBM SP high-performance switch, the users had
to have exclusive access to it. To provide users of the switch exclusive access to the nodes, there
had to be a fair alternative to SP users who weren’t necessarily using the switch or doing parallel
programming for that matter. It turned out the only fair thing to do was to provide any user
exclusive access to any number of nodes they requested. For several reasons this approach
turned out to be an advantage in the scheduler development. Exclusive access meant that any
user would have optimal cache performance, access to all the memory, and access to the full
CPU and /O potential of each node for benchmarking performance. Unfortunately, exclusive
access has a major drawback. If users have exclusive access, what is to keep them from holding
the resource and not letting other jobs on the system? There had to be a way to provide
exclusive access to the machine and still provide a deterministic run time for any given job. This
is the other key concept in the ANL scheduling system. Users have to provide a run time in
wall-clock node/minutes (like in the days of mainframe computing). Having exclusive access to
the nodes allows them to do this since they will be able to better predict the run time of their
jobs. These key concepts, exclusive access and user-provided run times allow for this different




approach to scheduling. One other problem remains. What prevents a user from scheduling a
job that requires all the resources for a very long time? It quickly became apparent that a new
resource accounting mechanism was needed. Using the system-generated accounting statistics
of CPU and I/O usage was not sufficient. A user who “forgot” to use exclusively scheduled time
would not be “charged” anything since no resources were consumed. The accounting system had
to be based on wall-clock time scheduled, not resources used. When users are given their
account, they are given a number of resource-units to use on the machine (in the case of ANL,
wall-clock minutes). Once they have used all their units, they are not allowed to submit any
more jobs to the queue. This effectively prevents users from asking for more time on the
machine than they actually need.

An Attempt at Fairness
Based on the two key scheduler concepts, a FIFO queue was the first queuing method that was

implemented. The ANL users ran a variety of jobs on the system. Figure 2 shows the typical
resource requirements that were observed.

umber R ed Duration of Use
1 - 8 nodes 8 - 48 hours
16 - 32 nodes 1 - 8 hours
64 - 128 nodes 30 minutes - 3 hours

Figure 2: Typical resources required on the SP

Realizing the limitations of a FIFO queue, I designed the scheduler to be modular so that new or
different user requirements could drive the scheduling policy without requiring a complete
rewrite of the code. Modularity also provided the capability to plug in different queuing
algorithms. Users were involved in developing and creating the scheduler policy from the
beginning. Rather than try to come up with the optimal computer-science solution, a simple
FIFO solution was applied, and users were encouraged to make suggestions for its improvement.
Users could see the current scheduling algorithm and the job queue and could watch the queuing
of jobs in operation. Many users quickly became acquainted with the problems the scheduler
was trying to solve and suggest improvements in its operation. Having this user interaction
helped in debugging the scheduler, and thus its development became a community project.

It quickly became apparent to all that a FIFO queue was extremely inefficient. What typically
happened was that on our 128-node system a job requiring only a few nodes would start, leaving
the next job in the queue which required 128 nodes waiting. Thus, a large number of nodes
remained idle until the first job finished and the second job could start. A new scheme was
quickly devised. It was dubbed FIFO with backfilling. Backfilling provides a way to fill in the
idle nodes with other jobs further down the queue provided that they do not cause the first job in
the queue to wait any longer for the nodes they require. Here is an example of a typical queue of
jobs and backfilling in action:




Step 1: 128 nodes are idle with the following queue of jobs.
User A needs 32 nodes. There are 128 available, so it is allowed to start.

User Name Number of Nodes Number of Minutes Job Status
User A 32 120 Startable
User B 64 60 Waiting
User C 24 180 Waiting
UserD 32 120 Waiting
User E 16 120 Waiting
UserF 10 480 Waiting
User G 4 30 Waiting
User H 32 120 Waiting

Step 2: 96 nodes are idle and 32 are in use with the following queue of jobs.
User B needs 64 nodes. There are 64 available, so it is allowed to start.

User Name Number of Nodes Number of Minutes Job Status
User A 32 120 Running
User B 64 60 Startable
UserC 24 180 Waiting
User D 32 120 Waiting
UserE 16 120 Waiting
User F 10 430 Waiting
User G 4 30 Waiting
User H 32 120 Waiting

Step 3: 32 nodes are idle and 96 are in use with the following queue of jobs.
User C needs 24 nodes. There are 32 available so it is allowed to start.

User Name Number of Nodes Number of Minutes Job Status
User A 32 120 Running
UserB 64 60 Running
User C 24 180 Startable
UserD 32 120 Waiting
User E 16 120 Waiting
User F 10 480 Waiting
User G 4 30 Waiting
User H 32 120 Waiting

Step 4: 8 nodes are idle and 120 are in use with the following queue of jobs.

User D needs 32 nodes. Since there are only 8 nodes available, it is not able to start. Now the
backfill algorithm has to determine how long User D is blocked, or in other words how long it
will be before enough nodes will be available for User D to run. To do this, it looks at the list of
running jobs and determines how long it will be until enough of them have finished for User D to
start. User A will be finished in 120 minutes, User B in 60 minutes and User C in 180 minutes.
From this list the algorithm determines that when user B finishes in 60 minutes there will be
enough nodes available for User D to start; therefore, User D should have to wait 60 minutes at
the longest. With this information the algorithm now looks for a job that can use the 8 available
nodes for 60 minutes or less. Users E and F require too many nodes, so they cannot backfill.
User G requires 4 nodes for 30 minutes, which will not delay the start of User D, so it is allowed
to start.




User Name Number of Nodes Number of Minutes Job Status

User A 32 120 Running
UserB 64 60 Running
User C 24 180 Running
User D 32 120 Blocked
UserE 16 120 Cannot Backfill
User F 10 480 Cannot Backfill
User G 4 30 Startable
User H 32 120 Waiting

Now suppose that User F needs 8 nodes instead of 10. There are 8 nodes are idle and 120 in use.
User D needs 32 nodes and there are only 8 nodes available, so it is not able to start. Now the
Backfill algorithm has to determine how long User D is blocked, or in other words how long it
will be before enough nodes will be available for User D to run. To do this, it looks at the list of
running jobs and determines how long it will be until enough have them have finished for User D
to start. User A will be finished in 120 minutes, User B in 60 minutes and User C in 180
minutes. From this list the algorithm determines that when User B finishes in 60 minutes there
will be enough nodes available for User D to start; therefore User D should have to wait for 60
minutes at the longest. With this information the algorithm now looks at the queue of jobs
looking for a job which can use the 8 available nodes for 60 minutes or less. Users E requires
too many nodes so it cannot backfill. User F requires 8 nodes for 480 minutes which is longer
than the time User D is blocked for; but when User B finishes, it will release 64 nodes, which is
more than User D needs. The backfill algorithm determines that there will still be enough nodes
for User D to start in 60 minutes if it starts User F, so User F is started.

User Name Number of Nodes Number of Minutes Job Status
User A 32 120 Running
UserB : 64 60 Running
User C 24 180 Running
User D 32 120 Blocked
User E 16 120 ~ Cannot Backfill
UserF . 8 480 Startable
User G 4 30 Waiting
User H 32 120 Waiting
Keep It Simple

A common drawback to many of the available scheduling systems is that they can be quite
complicated to use, and for many naive users, quite intimidating. To avoid this problem 1
desgined a minimal set of commands with functions similar to the UNIX commands they mimic
or to their names. These simple commands can be used to build up more elaborate tools if the
users wish to do so. The following list shows the complete set of user commands and a brief
explanation of their functionality:

sphelp - list user commands and their functions

spfree - return the number of free nodes

sppause - pause a job waiting in the queue so that it will not be started
spunpause - unpause a job waiting in the queue

spq - show the jobs currently on the system and waiting in the queue
sprelease - release a node back to the free pool

spsubmit - submit a job to queue
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spusage - return a current snap-shot of the resource file

spwait - block until a specific job has completed

spwhat - return what type of job could be run if submitted now
spwhen - tells when a specific job will start given the current queue
getjid - return the user job ID on a scheduled node.

Summary

By focusing on user requirements I was able to design a simple scheduler. The key design points
to the ANL SP scheduler are that it provides exclusive access to the nodes the user is allocated
and that users provide runtimes in wall-clock minutes so that anyone can determine when a job
will start. Having enough information to understand the queuing mechanism and being given the
tools to follow its progress in real time, our users continue to help in the debugging and
enhancement of the scheduler. It is surprising that many of today’s advanced scheduling systems
do not support these features.
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