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Abstract

The issues of verification, calibration, and validation of computational fluid dynamics (CFD)
codes has been receiving increasing levels of attention in the research literature and in engineering
technology. Both CFD researchers and users of CFD codes are asking more critical and detailed
questions concerning the accuracy, range of applicability, reliability and robustness of CFD codes
and their predictions. This is a welcomed trend because it demonstrates that CFD is maturing from
a research tool to the world of impacting engineering hardware and system design. In this
environment, the broad issue of code quality assurance becomes paramount. However, the
philosophy and methodology of building confidence in CFD code predictions has proven to be
more difficult than many expected. A wide variety of physical modeling errors and discretization
errors are discussed. Here, discretization errors refer to all errors caused by conversion of the
original partial differential equations to algebraic equations, and their solution. Boundary
conditions for both the partial differential equations and the discretized equations will be discussed.
Contrasts are drawn between the assumptions and actual use of numerical method consistency and
stability. Comments are also made concerning the existence and uniqueness of solutions for both
the partial differential equations and the discrete equations. Various techniques are suggested for
the detection and estimation of errors caused by physical modeling and discretization.of the partial
differential equations.
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L Introduction

The issue of verification, calibration, and validation of computational fluid dynamics (CFD)
codes has been receiving increasing levels of attention in the research literature and in discussions
of engineering technology. Both CFD researchers and users of CFD codes are asking more critical
and detailed questions concerning the accuracy and range of applicability of CFD code predictions.
This is a welcomed trend because it shows that CFD is maturing from a research exercise to a
useful tool that impacts engineering hardware and systems. The National Research Council
committee chaired by Dr. Richard Bradley [1], summarized the pertinent stages of CFD
development as: Stage IV, “Learning to Use Effectively”; and Stage V, “Mature Capability”, as
Most analysis done without supporting experimental comparisons. By this definition, most of us
would agree that CFD is definitely not in Stage V.

A clear parallel can be drawn between the state-of-the-art in CFD today and the status of
numerical simulation of electrical analog circuits of the past. Until twenty or thirty years ago, the
response of complex analogue circuits was determined by bread-board experiments. Since that
time, the numerical simulation capability, in both hardware and software, for solving ordinary
differential equations has completely changed the technology. Designers now do little or no bread-
board experiments, but numerically simulate the response of circuits. Ordinary differential equation
(ODE) codes are clearly in Stage V. Today the key issues in circuit simulation are related to
characterization of electrical components as a function of voltage, current, temperature, humidity,
electric field, etc. Progress to Stage V for ODE solvers has been extremely rapid for two reasons.
First, the mathematical complexity of solving ODEs is generally miniscule relative to partial
differential equations (PDEs). Second, the complexity of fluid flow physics and the variety of
geometries dwarf that of electrical circuits.

_ During the last few years new concepts and terminology have arisen that take advantage of the
increased capability of numerical simulations. Terminology such as “virtual prototyping™ and
“virtual testing” is now being used by those in engineering development to describe numerical
simulation for design, evaluation, and “testing” of new hardware and even entire systems. This
trend is driven by increasing competition in many markets, such as aircraft, automobiles, engines,
and consumer products. The need to decrease the time and cost of bringing products to market is
intense. Another reason for this new trend is the high cost and time required for testing laboratory
or field components and complete systems. An important, sometimes dominant, element of testing
are the safety aspects of the product or system. The potential legal and liability costs of hardware
failures can be staggering to a company, the environment, or the public. Examples of levels of
impact are: wave induced structural failure of an offshore oil platform, fire spread in a high-rise
office building or hotel, or pressure vessel failure of a nuclear power plant, detonation of a nuclear
weapon in an accidental fire. On the opposite end of the spectrum consider the impact of an
inaccurate or misleading numerical simulation in a research paper at a conference. The effect is
typically nil because before the simulation information is used in engineering design or hardware,
more correct results will become available.

The terminology, philosophy and methodology of building CFD code predictions is proving to
be a very difficult and complex issue. The issues have been discussed and debated in the literature
and among various engineering societies for several years. The Institute of Electrical and
Electronics Engineers (IEEE) [2] and the American Nuclear Society [3] first studied the
terminology of code verification and validation. A NASA ad hoc committee was formed and they
produced a detailed definition of code calibration and validation [4]. In 1993 the International




Organization for Standardization (ISO)[5] and the American Institute of Aeronautics and
Astronautics Committee on Standards also became involved in the debate. Because of the far
reaching effects on hardware design, commercial software, government contracting, product
liability, etc., this issue must be argued in these forums. (For a review of the history and
perspectives on this issue, see Ref. [6])

The present paper avoids the debate on terminology and concentrates on the fundamentals of
mathematical modeling of fluid dynamics and numerical solutions. For the purposes of the present
discussion, the general terminology of code verification & validation (V&V) will be used. A wide
variety of physical modeling errors and discretization errors are discussed. Here, discretization
errors refer to all errors caused by conversion of the original partial differential equations to
algebraic equations, and their solution. Boundary conditions for both the partial differential
equations and the discretized equations will be discussed. Contrasts are drawn between the
assumptions and actual use of numerical method consistency and stability. Comments are also
made concerning the existence and uniqueness of solutions for both the partial differential
equations and the discrete equations. Various techniques are suggested for the detection and
estimation of errors caused by physical modeling and discretization of the partial differential
equations.

Sources of Simulation Error

To build a logical, consistent and workable framework for the meaning of CFD quality
assurance terminology, one must understand that CFD has a more diverse foundation and wider
range of applications than analytical methods. Most researchers and users of CFD codes view CFD
as an extension, or outgrowth, of traditional analytical methods in mathematical physics. Analytical
methods, i.e., closed form, exact or approximate solutions to the equations of interest, are built on
well defined, very reproducible, and rigorous methods of mathematical analysis. As is well
known, the dominant shortcoming of analytical methods is that they address a much narrower
range of fluid dynamics than computational methods. The accuracy of analytical predictions fun-
damentally depends on the accuracy of the mathematical model of the physics; the rigor of the
mathematical methods is rarely an issue. CFD prediction accuracy, on the other hand, additionally
depends on the equivalence of the discrete model to the continuum model and the accuracy of the
solution to the discrete model.

To better understand the accuracy of CFD predictions, the fundamental sources of errors, or
inaccuracies, must be identified and addressed. Error sources in numerically simulating physical
phenomena described by partial differential equations can be grouped into four broad categories:
* Physical modeling errors
» Discretization errors
* Programming errors

» Computer round-off errors

The present paper delineates and discusses physical modeling and discretization errors, but
omits a discussion of programming and computer round-off errors. The first two categories are
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subdivided further in the following sections and each is discussed. The above categories are
appropriate for any phenomena described by partial differential equations, e. g., heat conduction,
solid dynamics, structural dynamics, electrodynamics, and neutron transport. The present dis-
cussion, however, will be limited to continuum fluid dynamics with emphasis on Newtonian
fluids. Other approaches in fluid dynamics, such as molecular dynamics, direct simulation Monte
Carlo, and lattice gas methods, are not considered in this paper.

Physical Modeling Errors

Physical modeling errors are those caused by inaccuracies in the mathematical model of the
physics, completely separate of numerical issues. These errors are further subdivided into three
additional categories associated with: the partial differential equations describing the flow; the
auxiliary, or closure, physical models; and the boundary conditions for the partial differential
equations. All three of these sub-categories are discussed to stress the evaluation of physical
modeling limitations, as opposed to numerical solution limitations, when conducting a CFD
simulation. Too often, difficulties in detecting and eliminating CFD simulation errors, whether in
code V&V activities or in day-to-day simulations, are due to a failure to consider each error source.

Partial Differential Equations of Fluid Dynamics

The governing equations for fluid flow can be formulated with various assumptions and the
analyst is usually interested in using the simplest form that is appropriate for the problem being
solved. The starting point for the following discussion is the compressible form of the unsteady
Euler equations and then the governing equations are expanded to include more physics. As the
complexity of the physics increases, more information is required in the modeling. The following
list is not. comprehensive, but does address the more common areas of fluid dynamics.

Inviscid Flow: The partial differential equations that govern the flow of a compressible,
inviscid, continuum fluid can be developed from the conservation laws of mass, momentum, and
energy. The resulting equations are expected to be valid for all flows except when the size of the
flow region of interest is of the same order as a characteristic length of the molecular structure, i.
e., mean free path. These same equations can be developed with the Chapman-Enskog expansion
method from the kinetic theory of gases [7]. The first term in the expansion gives the Euler
equations while the second term in the expansion gives the Navier-Stokes equations. The
Chapman-Enskog approach is valid for flows that are collision-dominated and is not appropriate
for rarefied flows as previously indicated. These equations are completed with and limited by the
models for the fluid thermodynamic properties and the equation of state employed.

Viscous Flow: The Navier-Stokes equations include the viscous and heat conduction
properties of the fluid and require information on the transport property coefficients for the shear
viscosity, bulk viscosity, and the thermal conductivity. These equations have the same limitations
as the inviscid equations, in addition to limitations of the models for the transport properties. The
Navier-Stokes equations can be used to determine the flow structure in weak shock waves where
good agreement with experimental data has been obtained for low Mach numbers [8]. The Navier-
Stokes equations for a liquid with no-slip boundary conditions can be used to determine the flow in
small channels of height larger than approximately 10 molecular diameters [9]. For gases at low
density, slip and temperature jump boundary conditions are required. At lower densities, the
continuum approach becomes unsalvageable.




Incompressible Flow: This is a special case of the previously discussed governing equations
where the fluid density is assumed approximately constant. There are many CFD codes that only
include the incompressible form of the Navier-Stokes equations. In this case there is an additional
restriction beyond those discussed above; the Mach number for fluid flows must be sufficiently
small, typically M < 0.2 for less than 1% density change, such that density changes can be
neglected. For liquids, the density changes are small as long as there are no large fluid temperature
variations.

Gas with Vibrationally Excited Molecules: For gases at elevated temperatures the vibrational
energy levels of the molecules becomes excited and this results in the specific heats of the gas
becoming a function of temperature. This effect becomes important at temperatures above about
800K. This additional physics requires a vibrational rate equation if nonequilibrium effects are
important or at high gas densities an equilibrium assumption can be used. For flow in a hypersonic
wind tunnel nozzle, this additional physics is required for accurate flow predictions. A good
example of this type of model is given in the paper by Canupp, Candler, Perkins, and Erickson
[10]. '

Inert Gas Mixtures: The governing equations for a mixture of perfect gases are developed
from the theory of gas kinetics [7] and these equations are well known. The gas mixture equations
are nearly the same as the Navier-Stokes equations except a conservation of species equation is
obtained for each species, the energy equation has an additional term due to diffusion of species,
and the viscosity and thermal conductivity transport properties of the mixture are required. In
addition, the diffusion velocity of the species is required. The complete theory accounts for
diffusion due to concentration, temperature and pressure gradient in the flow. As this theory is
rather complex and computationally expensive, most CFD codes use some approximations, such
as; binary diffusion coefficients are used rather the multi-component diffusion coefficients, thermal
and pressure diffusion are neglected, or approximate mixture rules for determining the viscosity
and thermal conductivity of the gas mixture are employed. Significant errors can occur if the
appropriate physics is not included; for example, expansion of gas mixtures in a rarefied jet [11]
requires that pressure diffusion effects be included in the diffusion model.

Chemically Reacting Gas: For gas mixtures with chemical reactions, the inert gas mixture
equations are appropriate when a production term is added to the conservation of species
equations. The production terms are readily determined after the chemical model has been
specified. The chemical model requires that the chemical species be determined and the chemical
reactions must be identified. For each chemical reaction used in the model, the forward and
backward reaction rates must be known. For air, a reasonable chemical model has been determined
while for other gas mixtures the chemical models range from well established to poorly known.
The chemically reacting gas model is required for air when the gas temperature is greater than
approximately 2000K and the density is sufficiently low that the reaction rate times are less than the
characteristic flow times. At higher densities the chemical equilibrium assumption can be employed
and the conservation of species equations are replaced with conservation equations for the chemical
elements if the element composition of the mixture varies spatially.

Turbulent/Transitional Flow: The previous flow models have assumed the Reynolds number
is sufficiently low that the flow is laminar. The theory for predicting when the flow transitions to
turbulent is an area of significant fluid dynamics research. Even reliable engineering techniques for
predicting transition is lacking. A large number of turbulence models have been developed, with




the greatest effort devoted to the incompressible case. As a result of turbulence, the governing
equations have additional terms. In the conservation of momentum equation, Reynolds stress terms
are added. In the conservation of energy equation, a new term results from the diffusion of the total
energy due to turbulent motion. In the conservation of species equation, a new term results from
the turbulent mass transfer. The modeling of these additional turbulent correlation terms is
performed at different levels of approximation which can require algebraic expressions to the
solution of additional partial differential equations. For turbulent reacting flows, Probability
Density Function (PDF) methods or other techniques appear to be required to.obtain reasonable
accuracy. The evaluation of accuracy and limitations of the various models is an ongoing activity of
the turbulence modeling community.

Additional Physical Phenomena: There are additional physical phenomena of increasing
complexity that can be included in flow models, such as; thermal nonequilibrium, ionized flows,
radiative transfer in gases, and multi-phase mixtures. These areas are not addressed because they
introduce an increased level of complexity with modeling questions in addition to those already
discussed which are beyond the scope of this paper. This is not to say that present CFD
simulations in these areas are useless; we simply recognize that the physical model unknowns and
errors in these numerical simulations can dominate the discussion instead of complementing it.

The above list of physical modeling errors, or inaccuracies, deals with fluid physics. There are
two other primary areas characterizing the partial differential equations; temporal nature and spatial
dimensionality. Most CFD practitioners think of these as unrelated, but recent work is pointing out
that they are more closely related than generally thought. It is common for a CFD analyst to
presume that a steady-state solution exits, or that unsteady solution phenomena can be ignored. Of
course, it is well known that above a critical Reynolds number some steady flows become
unsteady. This behavior occurs for a test problem described by Pironneaun[12] for a two-
dimensional channel flow with an infinite periodic array of cylindrical obstructions where the
critical Reynolds number based on the channel half-width is 150. Above this critical Reynolds
number the flow becomes unsteady and remains laminar.

A classical flow that demonstrates both unsteady and steady behavior is low Reynolds number
flow perpendicular to a long circular cylinder. For Reynolds numbers less than 49 the flow has
been shown experimentally to be steady and two-dimensional [13]. For Reynolds numbers
between 49 and 180, only two-dimensional, unsteady flow exists. For Reynolds numbers above
180, it has been suggested and argued that only three-dimensional, unsteady flow exists. Recent
impressive computational work by Mittal and Balachnadar [14] has shed light on this issue. They
computed the flow at a Reynolds number of 525 using both a two-dimensional and a three-
dimensional simulation. They found that both solutions converged to a periodic solution, but the
mean drag coefficient for the 2-D simulation was 1.44 and the 3-D simulation produced a value of
1.24. Experimental measurements yield a value very near their 3-D simulation value. The point of
this example is two fold. First, a 2-D unsteady physical modeling assumption would seem to be
appropriate and reasonable computational results are produced, but they have little relationship to
nature. Second, be reminded this is a very simple flow lacking much of the complex flow physics
discussed above. With the change of one parameter (Reynolds number), over a relatively small
range, three fundamentally different flow fields, i. e., solutions to the Navier-Stokes equations,
emerge. ’

For flow geometries that appear to be two-dimensional, the usual assumption is made that the
two-dimensional form of the governing equations is appropriate. It has been shown by Rudy [15]
that three-dimensional steady solutions are required for laminar, hypersonic flow over a two-




dimensional compression corner with a large deflection. In the test problem of Pironneau [12], at
Reynolds numbers above the critical value the flow is unsteady and two-dimensional. However, at
Reynolds numbers greater than 600 the flow becomes three-dimensional and remains unsteady.
Knowledge of these steady/unsteady and 2-D/3-D boundaries is rarely known, especially for the
unbounded variety of flow geometries that can be imagined. In fact, the following generalization is
probably true: the vast majority of high Reynolds number flows encountered in engineering and
technology are all unsteady, 3-D flows.

Auxiliary Physical Models

Auxiliary physical models complete the equation set needed to describe the flow of interest.
These auxiliary models may be given by very simple algebraic equations, or by nonlinear partial
differential equations.

Equation of State: The simplest equation of state is the relation for a perfect gas where the
pressure is a function of the density, temperature, and molecular weight. The molecular weight is
considered constant for this case. For air, this relation begins to become inaccurate at temperatures
above approximately 700K, where vibrational excitation of the molecules begins. The perfect gas
relation is valid at low pressures and becomes inaccurate at a pressure above approximately 10
atmospheres. For a gas mixture of ideal gases, the equation of state remains of the same form
except the molecular weight is determined from the mass fraction and molecular weight of all of the
species. If the gas model uses the species conservation equations, then the equation of state should
provide accurate results. If the gas is assumed in chemical equilibrium, then errors can be
introduced into the equation of state if the equilibrium assumption is not satisfied.

Thermodynamic properties: The thermodynamic properties of many individual chemical
species have been calculated with the theory of statistical thermodynamics from a first principles
approach. The specific heat at constant pressure, enthalpy, and internal energy are usually
determined as a function of temperature. These results are tabulated for a large number of species
over certain temperature ranges and the results are usually considered to be accurate for chemical
species that have been studied. Errors can be introduced as these properties are approximated with
curve fits. A review of the thermodynamic properties of an 11-species air model has been given by
Gupta, et. al [16]. The mixture thermodynamic properties can be determined from the species
thermodynamic properties and the gas mixture composition. If the gas is assumed to be in chemical
equilibrium and the element composition fixed, then the composition is required to be determined
only once for a range of temperatures and densities. Curve fits of the thermodynamic properties of
equilibrium air have been developed by Tannehill [17] and Liu and Vinokur [18]. Again errors can
be introduced with curve fit approximations. A difficulty occurs with the Tannehill curve fits as
there are some discontinuities in these results which can result in numerical convergence problems.

Transport properties: The basic governing equations require a model for the stress tensor. For
gases the stress tensor is the Newtonian form while the physical behavior of some liquids can be
more complex and require a non-Newtonian stress model. For example, for polymeric liquids the
non-Newtonian constitutive equations are reviewed in the article by Bird [19]. For the simplest
Newtonian flow models the shear viscosity, bulk viscosity, and the thermal conductivity for the
fluid are required. For a mixture of perfect monatomic gases, the bulk viscosity coefficient is zero
and this is the usual assumption used in CFD codes. This assumption is not appropriate. for
acoustic motions and in the interior of shock waves. For air and a perfect gas assumption, the
viscosity is usnally approximated with the Sutherland law. The relation is appropriate for




temperatures between 100K and 2000K. At lower temperatures, Keyes’ viscosity relation should
be used. The thermal conductivity is typically obtained from the assumption of a constant Prandtl
number and a constant specific heat. Errors in the thermal conductivity start to occur at
temperatures above approximately 700K. For flows with a mixture of chemical species, the
viscosity, frozen thermal conductivity, and binary diffusion coefficients are determined from the
kinetic theory of gases. Curve fits for these properties for air species have been given by Gupta, et.
al. [16]. These properties are assumed to be of reasonable accuracy but an estimate of the error in
these results is not available. The transport properties of the gas mixture are usually determined
from approximate mixture rules rather than the complete relation from the kinetic gas theory. For
air with sublimation products of graphite, for example, Ryabov [20] has determined that the error
in the mixture viscosity is less than 5%, while the error in the frozen thermal conductivity is less
than 10%. Ryabov indicates that the Kendall approximation for binary diffusion coefficients gives
errors less than 11.5%. The impact of these errors on flow results does not appear to have been
evaluated. '

Chemical model, reactions, and rates: The accuracy of chemical models is usually determined
by the research devoted to the particular gas model. Also, many models for a gas or gas mixtures
are a simplification of a more complete model in order to obtain reasonable computation times. For
air, sufficient knowledge is available to decide the appropriate species to include and what reactions
are necessary. There are generally large errors in the reaction rates for the various chemical
reactions, but several models have evolved as standards for air. The accuracy of these chemical
models decreases at the higher temperatures. When the flow of a new gas or gas mixture is being
calculated, the chemical model needs careful evaluation to determine if reasonable results are being
obtained.

Turbulence model: The accuracy of turbulence models must be determined with experimental
results for a wide range of Reynolds numbers, shear layer geometries, and pressure gradients.
Recently, direct numerical simulation (DNS) has provided useful information for model evaluation.
The DNS results have been limited to low Reynolds number flows (< 1000) and to simple flow
geometries. The evaluation of turbulence models requires a variety of experiments which test the
ability of the model to simulate turbulent flows of increasing flow complexity. Presently, turbu-
lence models can be best evaluated with the benchmark test cases developed at the Stanford Con-
ferences on turbulent flows [21]. These experiments have been carefully picked as the best
available as far as their accuracy and specification of flow conditions required to preform numerical
simulations. Also, a variety of experiments are required to test gas models for different levels of
complexity; for example, incompressible flow, compressible flow, hypersonic flow, multi-com-
ponent gas mixtures, reacting gas mixtures, two-phase flow, etc. Many codes use wall functions to
remove the requirement of a fine grid near walls, as the wall function approach can reduce the
required number of mesh cells by a factor of two. For some flows, for example, near boundary
layer separation, the velocity profile near a wall is not adequately represented with a logarithmic
region. For this case, the wall function approach can introduce significant errors even if the first
grid point away from the wall has been carefully located at an appropriate y-plus value. The
evaluation of accuracy and limitations of turbulence models is a major research activity that
involves the turbulence modeling community and experimentalists.

Boundary Conditions for the Partial Differential Equations

The boundary conditions required for the solution of the governing partial differential equations
arising in fluid dynamics have not received the development and attention that is needed. As




pointed out by Oliger and Sundstrom [22] nearly twenty years ago, discretization of the boundary
conditions have been studied before the appropriate boundary conditions have been established for
the partial differential equations. Only after difficulties with computational boundary conditions
have arisen has there been interest in understanding the appropriate boundary conditions that
should be used. The paper by Oliger and Sundstrom is one of the few investigations that treat
determination of the boundary conditions for fluid dynamics equations (mostly inviscid flows) to
ensure a well-posed problem. As these authors point out, one can not expect reasonable numerical
solutions uniess the correct PDE boundary conditions have been approximated. It seems this lack
of attention to what are the correct boundary conditions to the partial differential equations has
worsened in the last twenty years; however, just recently the tide seems to be turning [23].

There are three types of boundaries that occur: wall boundaries, open boundaries, and free
surfaces. The boundary conditions at these boundaries can take various forms.

Wall Boundary Conditions: These conditions generally have clear physical significance and
the appropriate boundary conditions are easier to determine. For example, for continuum flow at a
rigid wall, one could have the most common, and simplest conditions; the velocity components are
zero and the gas and wall temperature are at the same specified value. One additional, slightly more
complex boundary condition requires information from the flow solution, 1. e., the interior of the
solution domain. An example is zero pressure gradient at the wall. For near noncontinuum flows,
there is velocity slip and temperature jump at a wall that must be modeled. It is more difficult to
specify the appropriate wall boundary conditions for the chemical species equations as the
heterogeneous chemical reactions of the gas species at the wall must be modeled. Some related
questions are: What are the appropriate wall boundary conditions when vibrational nonequilibrium
effects are included in the gas model with a separate vibrational temperature? How accurate does a
porous wall have to be modeled? Can the flow through a porous wall be assumed to be continuous
or at what size do the many individual jets have to be modeled?

Two additional error sources related to wall boundary conditions are, first, inaccurate wall
geometry, and second, discontinuities or mathematical singularities. Inaccurate wall geometry
refers to the difference between the actual physical geometry and its computational representation,
i.e., fidelity of the computational to the physical geometry. Examples of these are the following:
physical hardware not accurately fabricated to specifications; inaccurate CAD/CAM solid modeling;
and lack of surface roughness knowledge for a turbulent flow simulation. Discontinuities in the
boundary conditions occur, for example, where a wall can change from solid to porous with a step
change in the surface normal velocity. There is also a discontinuity at the intersection of a sliding
wall and a fixed wall, for example, the classic driven-cavity problem. The stagnation point on an
axisymmetric blunt body is a mathematical singularity in the cylindrical coordinate system. For the
partial differential equations these singularities can easily be written and understood; for the
discrete form of the equations, such smgularmes can introduce numerical dlfﬁculues and errors if
not handled corrcctly

Open Boundary Conditions: These are conditions that are specified along a boundary, or
portion of a boundary, where there is “free” (i. e., unrestricted) inflow and/or outflow. We
describe this type of boundary as free, simply to distinguish it from inflow or outflow through a
porous wall discussed above. These types of boundary conditions typically result from a
requirement that numerical solutions be obtained over a limited region of the flow. In this sense,
errors associated with these boundaries could be considered to be associated with boundary
conditions for the discretized formulation. Even with this view, one can still ask the question; what




are the exact boundary conditions for the partial differential equations on an open boundary? Or,
the inverse question: what errors are introduced by the physical model assumptions of specified
conditions for the partial differential equations on an open boundary?

Even though these boundary conditions are commonly required by the finite size€ computational
domain, this need not be the case. For example, if one were simulating the flow over a model in a
wind tunnel, then the exact inflow boundary conditions must be given by a complete specification
of all dependent variables in the partial differential equations and auxiliary equations at, say, the
beginning of the test section. These specified flow quantities might not be consistent with the
partial differential equations and rapid changes can occur in the computation of flow downstream
from the inflow boundary. All of these variables would have to be measured spatially and possibly
temporally if, for example, turbulence quantities were needed. This level of detailed knowledge, or
calibration, of wind tunnels does not exist for the vast majority of facilities around the world.

It was recently stated by Sani and Gresho [23], and we fully agree, that boundary conditions at
open boundaries are often the most difficult and elusive aspect of mathematical modeling. The
number of physical boundary conditions required, and allowed, at an open boundary is determined
from an evaluation of the characteristics of the governing partial differential equations. The number
of physical boundary conditions must be the same as the number of characteristics of the governing
equations entering the computational domain. If the flow is locally supersonic, there is no upstream
influence and accurate boundary conditions can be specified without much difficulty. Inflow, more
specifically upstream, boundary conditions can typically be much closer to the region of interest
than outflow, or downstream, boundary conditions. For subsonic flow over an isolated body, the
boundary conditions should be applied at infinity where the flow is uniform and known. If the
downstream location of the computational boundary is not located sufficiently far downstream,
some of flow may be entering the computational domain and the correct formulation is very
nebulous. More will be said on this topic when discretization errors are discussed.

Free Surface Boundary Conditions: This is a more general case than the wall case and the
development of the appropriate physical relations has been presented by Batchlor [24]. The general
approach considers the relations that must be satisfied at the boundary between two media. At this
interface the temperature of the two materials is the same and the heat flux normal to the boundary
is equal on both sides. A balance of stress at the boundary with the effect of surface tension taken
into account results in two transition relations. In addition, the tangential component of velocity is
continuous across a material boundary separating a fluid and another media and there can be mass
transport at the boundary. The boundary condition relations require a value of the surface tension
for the materials involved. Also, these boundary conditions can become difficult to apply if the
interface becomes unstable with large movement. For example, it is well known that the Rayleigh-
Taylor instability occurs when a heavy fluid is above a light fluid in a gravitational field.

Discretization Errors

Discretization errors are those caused by the discretization of the partial differential equations,
the auxiliary physical models, and the continuum boundary conditions, and the subsequent
solution of these discrete equations. Errors generated by or associated with each of these sub-

categories is now discussed. Techniques for detecting or quantifying some of these erTors are .
discussed in the next section.
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Discretization of the Partial Differential Equations

The reformulation of the partial differential equations into algebraic equations that accurately
represent the original equations is a bigger, more problematic, mathematical step than is generally
recognized. Formal mathematical analysis of the relationship of differential and difference
equations (Lax equivalence theorem) states that if the numerical method is consistent and stable,
then the solution to each system is equal [25, 26]. A discretization method is consistent if it can be
analytically shown that as the discretization size approaches zero, the difference equations are equal
to the differential equations. This can be written as

Consistency Definition: AlimO D = 0D
_)

where 3,® represents the system of finite difference equations (which includes any method for
discretizing the the partial differential equations), 0P represents the original system of partial
differential equations of the mathematical model, and A represents the size of all discretized
independent variables. A numerical method is stable if it can be analytically shown that as the
solution is marched in time, or is iteratively solved, the solution remains bounded. One can write
this as

Stability Definition: lim_|®}-3|<N
n—pee

where @} r%prcsents all dependent variables of the system of equations at time n for a fixed mesh
size of A, @, represents arbitrary initial values of the dependent variables, and N is an arbitrary
constant. ' ‘

It can be proven mathematically that the above conditions are necessary and sufficient for the
solution of the discretized system of equations to be identical to that of the partial differential
equations. This proof is the foundation of the numerical solution of partial differential equations. If
it were as simple as this, however, the state of the art in CFD would be further along than it is after
thirty years of intensive research. The difficulties and hindrances to progress are diverse; some are
mathematical in nature, some are practical issues, and some are implementation issues. In the
following we attempt to categorize these issues. ‘

Approximate Consistency and Stability Analyses: Consistency and stability proofs of
numerical methods are predominantly developed for very simple model problems, never on a “real”
problem. The model equations are always linearized equations and uncoupled from any other
equations. For example, the most commonly used are the wave equation, the heat conduction
equation, and the viscous Burger’s equation in one spatial dimension. These simple, linearized,
uncoupled, one dimensional equations do not exhibit the astounding spectrum of solutions
exhibited by the Navier-Stokes equations (vortices cannot exist in one-dimension, for example). If
additional complex physics such as gas mixtures, turbulence, and reacting flow are included, it is
clearly seen that these model equations are far removed from real world problems. The reason for
the elimination of these real world complexities, of course, is that the difference equations resulting
from the analysis are nonlinear, just as the original partial differential equations, and can not be
analyzed. '

Additional, but related, simplifications of consistency and stability analyses are elimination of:
mixed classification partial differential equations, non-uniform grids, and boundary conditions.
Consistency and stability analyses are never done on differential, or difference, equations with




mixed classification, e. g., hyperbolic and elliptic. These mixed zones, however, very commonly
exist. For example, in every supersonic flow problem modeled by the steady Navier-Stokes
equations hyperbolic and elliptic regions exist adjacent to one another. In the extremely rare event
that a multi-dimensional stability analysis is conducted, the structured grid is always assumed to be
uniformly spaced. This assumption does not correspond to real world problems. Boundary
condition type and geometry can influence the stability of numerical methods. Only those analyses
that include the discrete boundary conditions along with the discrete equations can provide the
correct behavior of the numerical scheme. See for example, the book by Morton and Mayers [27]
for references to work on the effect of boundary conditions on stability.

Proof Applies Only in the Limit: The matching of solutions between difference and differential
equations for consistent and stable methods applies only in the limit. The practical problem, of
course, is that all numerical solutions obtained are never at the limit; they are always finite.
Although this is obvious, it bears keeping in mind that the proof is a theoretical construct; equality
is never attained. Examples of the mismatch between the two models are in order. The
mathematical character of the difference equations can be very different from the differential
equations. Consider inviscid supersonic flow; the numerical domain of dependence of the
difference equations must include the domain of dependence of the differential equations. This
mismatch can have varying effects in the discrete solution. As a second example, it has been found
by Yee et al [28] that finite difference solutions can exhibit a much wider range of dynamical
behaviour than their continuum counterparts. They have found that “the use of linearized analysis
as a guide to studying strongly nonlinear PDE’s is insufficient and can lead to misleading results.”
And finally, “In particular, when one tries to stretch the maximum limit of the linearized allowable
time step for highly coupled...nonlinear systems, most likely all of the different types of spurious
asymptotes (e.g. spurious steady states, periodic orbits, limit cycles, or chaotic phenomena) can be
achieved in practice depending on the initial conditions.”

For flow over slender bodies at angle of attack, the vortex patterns can be symmetric or
asymmetric depending on the angle of attack and flow conditions. How the difference equations
are written in discrete form can be important in determining what solution is obtained, as shown by
Levy, Hesselink, and Degani [29]. These authors have shown that how- the left hand side of each
difference equation is formulated in the solution procedure impacts whether the steady-state result
is symmetric or asymmetric. The left hand sides of the difference equations are zero when the
steady-state solution is obtained but they can influence the solution obtained from the difference
equations. These studies indicate that the steady-state solution is not unique and there are at least
two solutions that can satisfy the right hand side of the difference equations. If the difference form
of the left hand side is not symmetric, spurious asymmetric results can be obtained.

Conservation of mass, momentum and energy are so ingrained in us that we assume they are
always true, whether a process occurs in nature or is simulated in a computer code. On any
discretized grid, however, conservation cannot be assumed just because the original partial
differential equations conserve mass, momentum and energy. Loss of conservation can be caused
by a wide variety of inaccuracies and/or errors in the numerical simulation. For example, the
following can cause loss of conservation: lack of iterative convergence either for a steady state
solution or a time varying solution, numerical limiters in differences schemes, artificial diffusion
schemes, skewness of the structured or unstructured grid, etc. A related question is: does the
numerical simulation conserve mass, momentum, and energy regardless of the grid size? This test
is rarely applied in the verification of computer codes. Control volume methods that are constructed
properly are the only numerical schemes that have global conservation. Other schemes have
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conservation only in the limit when step sizes go to zero; as a result, they never do in any actual
solution.

Spatial and Temporal Resolution: This category of error is the most well recognized of the
discretization errors and is unquestionably the most important. This error, also referred to as
truncation error, is due to finite resolution in the spatial and temporal discretization. In the past,
finite difference analyses rarely attempted to estimate the magnitude of this error on the results
computed. Finite element methods seem to have a better record of addressing this issue. A strong
initiative by indiViduals such as P. J. Roache, K. N. Ghia, F. M. White, C. J. Freitas and others
has raised (forced) the importance of at least addressing the issue of grid convergence in CFD
solutions. It is the opinion of the present authors that the enforced discipline was desperately
needed for the maturation of numerical simulations. Because of the importance of this topic and
because effective measures can be taken to control it, this matter will be addressed in detail in the
following section on detection and quantification of errors.

Discretization of the Auxiliary Physical Models

If the auxiliary physical model equations are linear algebraic expressions, which can be solved
directly, then the errors are of the computer round-off type and are very small. An example is the
equation of state for a perfect gas. If the algebraic expressions are nonlinear in the unknowns, then
some iterative technique is required and errors can occur if the iteration is not completely converged
each time it is used. Equilibrium chemical composition requires iterative solution of nonlinear
equations and errors result in the mass fraction of the chemical species if convergence is not
adequate.

Thermodynamic and transport properties for real gases are approximated with table look-up or
curve fits. The required accuracy of the approximations to these properties has not been established
and, surprisingly, for many cases in the past, the approaches resulted in large errors. Clearly these
errors can be reduced with more accurate techniques but the data storage requirements are
significantly increased with possible increases in computer time. The errors in the approximation of
the individual properties of the chemical species must be compatible with the errors being
introduced in the techniques being used to approximate the gas mixture properties. Careful
evaluation-of accuracies required for thermodynamic and transport properties used in flow
simulations and the impact on fluid dynamic predictions have not been performed. The standard
approach is to use reasonable approximations that result in shorter computation time, but the impact
on solution errors has not been determined.

Probably the most important auxiliary model used in CFD is the use of turbulence models. For
algebraic models, the primary error source is the determination of some flow field feature needed
in the calculation, e. g., the magnitude of a turbulent length scale. The reliable determination of the
required flow field feature has proven to be difficult for a wide variety of shear layer geometries.
By far the most difficult, however, is the calculation of turbulent transport variables using two-
equation turbulence models. The discretization error of these type PDE’s has been dlscussed
above, and will be addressed again in the following section.

Discretization and Implementation of Boundary Conditions

The boundary conditions for the difference equations, whether they be for wall, open, or free
surfaces, must provide the same independent information as provided for the PDE’s. Over-




specification of the discrete boundary conditions (BC’s) will cause divergence of the iterative, or
temporal, solution. Under-specification of the BC’s will cause the solution not to converge, i. €.,
wander about, or to converge to different solutions.depending on arbitrary features, such as initial
conditions, relaxation parameters, etc. This perfect balance between over- and under-specification
of knowledge on boundaries is much more difficult to obtain for difference equations than it is for
PDEs. We have not found a good explanation for this feature. We suggest the reason, however, is
that in the continuum mathematics the PDE’s are perfectly coupled to the boundaries; no
discrepancy, inconsistency, or mismatch is tolerated. In the difference equations, however, the
coupling is weak and it depends on a variety of numerical parameters, such as the numerical
algorithm, differencing scheme, grid size, and smoothing parameters. Recent work in numerical
boundary conditions, [23, 301, support our explanation.

Implementation of Dirichlet boundary conditions are usually straightforward. Neumann and
mixed boundary conditions require that a difference method be used at the boundary. This method
is usually of the same order accuracy as the PDE differencing method so that a globally consistent
order scheme is obtained. However, only a grid refinement study will establish that the overall
order of the complete numerical scheme is as expected. It should be noted that very few researchers
have demonstrated the overall, or global, order of their simulation.

The most difficult type of boundary condition to implement is the open BC. The entire issue of
inflow and outflow boundary conditions in now being studied in much more depth than in the past.
An excellent summary, and we believe required reading on the subject, of open boundary
conditions for incompressible Navier-Stokes equations is given by Sani and Gresho [23]. This
paper shows that there are more questions than answers on the implementation of open boundary
conditions, even for the relatively simple physics of steady, incompressible laminar flow.
Concerning open boundary conditions, they state “Nature is usually silent, or in fact perverse, in
not communicating the appropriate ones.” Also, “The boundary conditions on such open portions
of the boundary are a necessary evil ... We believe that there are no ‘true’ open boundary
conditions, thus explaining Nature’s silence. We also believe and may demonstrate herein that
perhaps nowhere else do theory and practice seem to clash so much.” Sani and Gresho also
introduced the term “fuzzy boundary conditions” to suggest the existence of numerical BC’s that
produce good numerical solutions, but if one tries to take the limit as A — 0 of these BC’s, one
obtains unacceptable BC’s for the PDE’s.

If the inflow boundary condition is to represent undisturbed flow at infinity, then the inflow
boundary conditions should be applied sufficiently upstream so that the flow in the region of
interest is not significantly influenced by the inflow BC location. For subsonic outflow, the
boundary condition location should be varied to determine the impact on the flow in the region of
interest. For exterior flow over a body, the continuum freestream boundary conditions are imposed
at infinity while the freestream conditions are imposed at a finite distance in numerical simulations
which results in errors being introduced. Gresho has coined the phrase “manufactured boundary
conditions” to clearly point out that the conditions specified at these locations are “dreamt-up” by
the analysts and not provided by Nature.

- The vast majority of effort in the formulation and implementation of numerical boundary
conditions has been directed toward steady flow conditions. As CFD matures, the need for reliable
and accurate unsteady boundary conditions will become more important in the prediction of real
world flows. It is expected that the development of these type BC’s will be even more challenging
than the presently used steady BC’s.




Solution of the Discrete Equations

The error in the solution of the discrete equations is referred to as the discrete solution error.
The error associated with the solution can be defined as the difference between the exact solution to
the discrete equations and the approximate solution obtained. An example of this type error is the
difference between the exact and approximate iterative solution of the nonlinear discretized
equations for the steady state Navier-Stokes equations. Often one reads in papers that the iteration
procedure has been performed until there is a small change in the variables between the iterations.
This type of test will not always produce accurate results as the convergence rate could be slowing
down but the solution is not converged. The correct approach is to set each difference equation
equal to a residual. At the start of the iteration, the dependent variables do not satisfy the difference
equation and the residual is non-zero. As the iteration proceeds, the residual for all difference
equations and at all spatial locations is driven to machine zero. Although this level of solution
accuracy is probably not required for all simulations, it is highly recommended that this iterative
convergence be demonstrated on coarse grid solutions.

For transient flow simulations, at each time step the difference equations must be iterated to
convergence where the iterative error must be much smaller than the temporal discretization error.
When the temporal and spatial step sizes are decreased, the iterative solution at each time step could
require that more iterations be performed to obtain smaller iterative errors. Some numerical
schemes can require no iterations when an ADI scheme is used, while many iterations are required
when a Jacobi iterative solution is used. The solution technique used for the sparse matrix solver
determines the iterations required. The iterative behavior at each time step also depends on how the
governing equations are solved; for example, (1) with a segregated approach where each dependent
variable is solved from a separate difference equation and is solved one at a time, (2) with a
coupled approach where all dependent variables are solved for simultaneously from all of the
difference equations. The behavior of the iterative solution technique at each time step must be
understood so that no significant iterative errors are not introduced into the solution procedure.

Detection and Estimation of Errors

The following section discusses suggestions for methods to detect and quantify certain types of
physical modeling, discretization, and programming errors. Some of these methods are similar to
the types of error control methods incorporated in modern software packages for solving ordinary
differential equations. Modern ODE solvers are extraordinarily adaptive at controlling accuracy and
are very robust; a capability CFD code developers should strive to achieve also.

Physicai Modeling Errors

To detect when an incompressible flow solution is beginning to deviate from the physical
modeling assumption because of compressibility effects, a relatively simple test could be inserted
into the code. For example, an average value of the speed of sound in the fluid analyzed could be
an input parameter for the code. When the local fluid speed at any grid point became larger than
say, 0.2, of the input speed of sound, then a warning would be issued to the uset. Similar types of
automatic error detection tésts could be incorporated into a code to detect if the following types of
physical modeling errors become larger than a specified input value at any point in the flow:




» Thermodynamic equilibrium assumption becomes in error

« If a chemically reacting gas model is required

¢ Thermodynamic .and transport properties are evaluated outside their range of validity
Discretization and Programming Errors

- Analytical solutions to the PDE’s of interest provide an extremely valuable tool in
demonstrating code verification. At the present time, use of analytical solutions in code verification
seems to be distinctly out of favor in the CFD community. There are a surprisingly large number of
exact and approximate analytical solutions to the Euler and Navier-Stokes equations [31-34].
Possibly the reason for lack of familiarity with analytical solutions among many CFD researchers
and practitioners is the modern concentration on numerical solutions in graduate school training.

During the last several years a novel approach has been used to obtain exact solutions to the
Navier-Stokes equations [35]. In their approach, a specific form of solution function is assumed to
satisfy the PDE of interest. This function is inserted into the PDE and all the derivatives are
analytically computed using symbolic manipulation software, such as MACSYMA™. The equation
is simplified, and all remaining terms resulting in inequality between both sides of the equation are
grouped into a forcing function term. This term is then considered to be simply added to the
original PDE so that the assumed solution function satisfies the new PDE exactly. For example, in
the Euler or Navier-Stokes equations this term can be considered to be a source term. The
boundary conditions for the PDE are simply considered to be either the value of the solution
function on the boundary (Dirichlet condition), or a Neumann condition that can be analytically
computed from the solution function.

“To verify the CFD code, the computed body force term and boundary conditions are
programmed into the code and a numerical solution computed. This procedure verifies, albeit for a
very narrow range of physical modeling, a large number of numerical features in the code, for
example; numerical method, differencing technique, spatial transformation techniques, grid spacing
technique, and coding accuracy. Shih, Tan and Hwang [36] have taken this approach a step further
and applied it to the incompressible Navier-Stokes equations for laminar, two-dimensional flow.
They have obtained an impressive exact solution to the classical lid-driven cavity problem for an
arbitrary Reynolds number. It is highly recommended that incompressible Navier-Stokes codes be
verified with this exact solution.

The largest contributor to numerical solution error, and the one that has caused the most
unreliability and lack of confidence in CFD solutions, is that due to inadequate grid resolution. It is
ironic that the quantification of this error is also the most straightforward. We believe the reason
for this grid error/easy estimation paradox is simple: cost. The computer cost, and to a lesser extent
personnel time cost, to carefully conduct the error estimation analysis is probably a factor of 4 for
2-D problems and a factor of 8 for 3-D problems beyond an “acceptable” solution. If one considers
that the acceptable solution is usually at the limit of computer time or budgetary constraints already,
it follows why these estimates are rarely done. We submit that our blunt assessment of the situation
and the reason for its existence is supported by simply examining the state-of-the-art in ODE
solvers. ODE solvers suffered the same paradox during their early years, but they are now the
shining example for accuracy and reliability for numerical solutions. The reason they have
progressed so rapidly in this regard is because the computer power required for their solution is
usually minimal compared to the solution of PDE’s. The initiatives of Roache, et. al., on




assessment of numerical error, as mentioned earlier, is forcing CED to become more accountable.

Spatial discretization error is estimated using Richardson’s classical method, also known as
“deferred approach to the limit” and “iterated extrapolation” [37]. Using Richardson’s
extrapolation, one can write '

Deyact = Da + AAP + higher order terms

exact

where @, is the exact solution to the PDE, @, is the numerical solution obtained using a grid
size of A, o is a constant that is determined from the numerical solution, and p is the order of the
numerical method. It is important to note that Richardson’s method applies not only to computed
dependent variables at all grid points, but also to solution functionals. Solution functionals are
integrated and differentiated quantities such as body lift and surface heat flux, respectively. At least
two numerical solutions are required to estimate discretization error using Richardson’s method.
The fine grid solution need not be twice the number of grid points (in each coordinate direction) as
the coarse grid, but this is common practice and it provides a more accurate estimate. Roache [38]
has developed a Grid Convergence Index (GCI), based on Richardson’s extrapolation, that
converts error estimates obtained from any grid refinement ratio into an equivalent grid doubling
estimate. He argues that using the GCI would help standardize the accuracy evaluation of grid
refined solutions.

Careful use and estimation of error using Richardson’s method has been documented only by a
few researchers [39-42]. In most cases it has been found that two solutions are insufficient to
properly use Richardson’s method. The reason three or-more solutions are required is that from the
first two solutions it may be found that the demonstrated order of accuracy from the calculations
does not match the formal accuracy of the method. This can be caused by one of two reasons.
First, numerical difficulties or errors, such as excessive grid stretching, inaccurate implementation
of boundary conditions, and coding errors, cause a degradation in the overall accuracy of the
method. Second, it can be found that insufficient grid resolution was used on the first two, or
more, solutions such that formal accuracy is not attained until finer grids are used. Until computed
accuracy from two individual solutions matches previously demonstrated accuracy of the code,
Richardson’s method cannot be used to estimate error.

A final observation is made that has apparently not been pointed out in the literature concerning
the use of Richardson’s method. By examining the grid convergence plots of the researchers that
have carefully used Richardson’s method an interesting, but unsettling, feature is observed.
Figures 1 and 2 are grid convergence plots taken from Blottner [41] and Walker & Oberkampf
[42], respectively. Note that both of these plots demonstrate the numerical method is second order
accurate. It is seen that the grid fineness required to obtain the demonstrated accuracy of the code is
also a grid that produces relative errors on the order of 1% to 0.1%. In other words, to
demonstrate accuracy using Richardson’s method one must compute solutions that have relative
errors on the order of 1% to 0.1%. This is a very sobering result if solutions of only +10% are
desired in production CFD solutions.

I mmary an nclusion

A discussion of the sources of errors that result from the computational fluid dynamic approach
is presented. The validation issue of determining the errors resulting from the governing partial




diffetential equations, boundary conditions, and auxiliary physical models has been addressed.
From this discussion it is observed that the present approach in CFD is to use reasonable physical
approximations in the modeling, but the impact of these assumptions on the errors introduced into
CFD simulations is generally unknown. Also, modeling assumptions such as, two-dimensional
steady flow are often made and in some cases are physically wrong. Confidence in the accuracy of
the governing equations can be increased by using results from first principle physics solutions in
validating the models being used. The validation of the governing equations requires carefully
developed experiments to test the various modeling assumptions employed.

Verification of the numerical solution of the governing equations requires that the discretization
errors be estimated and controlled. A discussion of the sources of discretization errors that result
from the difference form of the governing equations, boundary conditions, and auxiliary physical
models has been addressed. With attention to performing adequate grid refinement studies, one
believes that accurate numerical solutions can be obtained to CFD governing difference equations if
sufficient computer resources are available. However, one might obtain an accurate result but not
the physically correct solution. The possibility of multi-solutions to the dxfference equations has
not been adequately investigated in the CFD community.

Approaches for detection and estimation of errors are suggested. In many cases we know the
limitation of the physical models, and codes could be used to tell the user when these limitations
have been exceeded. We are strong supporters of careful grid refinement studies using the
Richardson extrapolation method to estimate the errors in numerical solutions. These studies are
very costly, especially for three-dimensional flows. It was pointed out that the grid resolution
required for the valid use of Richardson's method produces results which are far beyond the
accuracy needs of most engineering design requirements.
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