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ABSTRACT

We outline the structure of a new approach at multi-component system fault diagnostics which utilizes detailed
system simulation models, uncertain system observation data, statistical knowledge: of system parameters, expert
opinion, and component reliability data in an effort to identify incipient component performance degradations of
arbitrary number and magnitude. The technique involves the use of multiple adaptive Kalman filters for fault
estimation, the results of which are screened using standard hypothesis testing procedures to define a set of
component events that could have transpired. Latin Hypercube sampling is then used to determine the likelihood of
each of these feasible component events in terms of uncertain component reliability data and filter estimates. The
capabilities of the procedure are demonstrated through the analysis of a simulated small magnitude binary component

fault in a boiling water reactor balance of plant. The results show that the procedure has the potential to be a very

effective tool for incipient component fault diagnosis.

L. INTRODUCTION

The ability to accurately and efficiently detect and diagnose failures and performance degradations in nuclear
power systems is essential for their safe and efficient operation. These systems are typically composed of literally
thousands of individual components that may interact in a very complex fashion. Although these components and the

systems and subsystems they compose are in general very reliable, some level of random failure and/or degradation is
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to be expected.

Typically, catastrophic component or system faults leave very pronounced signatures on monitored process
variables and are thus relatively simple to detect yet potentially difficult to diagnose. Small to moderate component
failures and degradations are generally much more difficult to detect than catastrophic failures and potentially a
significant challenge to diagnose. When component performance degrades slightly it may not always be readily
apparent that a problem exists or the degradation may only manifest itself during certain plant maneuvers. Although
such small component or system performance degradations may not pose an immediate challenge to the safety of the
system as a whole, they can reduce the overall system efficiency, result in unexpected and costly maintenance
outages, or eventually reduce the system safety margins. As nuclear power plants continue to age, the question of
system safety, reliability, and efficiency takes on even greater importance due to age- and environment-related stress
and wear that may result in a higher incidence of unexpected component degradations of varying magnitudes. These
random component failures and performance degradations can have a significant deleterious effect on the overall
performance of a nuclear power plant through the assumption of higher operating and maintenance costs, thus
inducing a competitive handicap in today’s already brutally competitive electric power industry. Also, because
explicit credit is taken for extended capacity factors in marketing certain advanced reactor designs, advanced
algorithms for component fault detection and diagnosis should also play a critical role in the next generation of
nuclear power plants. It is therefore crucial that suitable techniques are available for the detection and diagnosis of

not only large-scale system faults but also numerous small, simultaneous component degradations.

We present a new approach at system diagnostics that makes an effective use of all available information for the
purpose of off-line analyses of systems data for diagnosing single or multiple component faults of arbitrary
magnitude. Given the detection of a possible system anomaly, a set of feasible component states, each characterized
by a unique joint probability density function representative of a salient set of system/component attributes, can be
hypothesized based on pertinent system observations and a-priori statistical knowledge. These density functions can
then be utilized with fault magnitude- and system state-dependent distribution functions characterizing uncertain
component failure rates to obtain the expected value of the likelihood of each hypothesized component state. Because
of the complexity of the problem, a stratified Monte Carlo sampling procedure must be utilized to obtain the desired
likelihoods. By approaching the fault diagnosis problem in this fashion we are able to make explicit use of all
available information including system measurements, detailed engineering system models, a priori statistical
information related to measurements and nominal component states, a posteriori statistical information, component
reliability data, expert opinion, and the powerful computing resources now widely available. Our diagnostics
framework thus allows us to transform sometimes disparate and conflicting pieces of system information into

statistically meaningful diagnostic knowledge.

Due to the broad scope of the technique, only the general structure and demonstration of the capabilities of the
fault diagnosis procedure will be presented here. A general conceptual interpretation of the component fault process
as well as a presentation of the salient probabilistic expressions for component fault diagnosis is outlined in Section

II. Section III then outlines the basic concepts involved in the solution of the probabilistic expressions of Section II

while Section IV presents an illustrative example of the capabilities of the new procedure. A summary and
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conclusions are then presented in Section V.
II. PROBABILISTIC EXPRESSIONS FOR FAULT DIAGNOSIS

A. General System Description

We consider a general physical system characterized by a set of directly or indirectly observable system state
variables x, e.g., system power, pressure, etc. The system is comprised of N physical components, each of which is
described via some continuous component characteristic cv, e.g., valve flow areas, pump characteristics, etc., the
value of which defines the state ¢ of the component. The combination of the individual component states then defines

the component state ¢ of the system. The functional relationship between system and component state can be

expressed as:
* = f(x(2),c(2) (1)

which indicates that the system state is a functional of component state.

The components comprising the system are influenced by random faults, which we assume behave in a Markov
fashion. Thus, although the system state is defined to behave deterministically for a constant component state, the
functional relationship of Eq. (1) indicates that the joint system/component state will in general behave in a stochastic
fashion due to the influence of random component faults. Thus, the trajectory of the system in phase space is
characterized by state transitions (&, c', #) — (x,c, ) . This type of system behavior can be visualized as in
Figure 1.a where each “track” in the universe S of all possible tracks represents the system behavior corresponding to
a given component state. Note that there are an infinite number distinct tracks, any one of which the system could
realize at any given time. In general, the problem of system fault diagnosis is then to determine which of this
infinituin of tracks the system is following at a given time. However, if one has either a direct or indirect (noisy)
system observation of the formy = h (x (¢)) + U, then in practice one need only diagnose the correct track from a
subset ™ of the entire universe S. This is because only certain component states, the feasible component states, could

result (to a sufficient level of certainty) in a system/component state that could account for the observed system

behavior.




B. Salient Probabilistic Expressions

Successful diagnosis of component fauits in a system of the type thus described can be accomplished by first
defining and then solving a pertinent set of probabilistic expressions describing the temporal “flow” of probability.
System diagnosis involves asking the following question: What is the probability that the system is in system state x

and component state ¢ given (uncertain) system observation(s) y? The answer to this is contained in the following

Bayesian expression:1

p(c,t/y) = '[ p(xgst)p(x’t/y) dx (2)

p (x’ c’ t)

m
ce {c}

where ¢ € {c} ~ denotes a component state ¢ in the feasible set {c¢}™ contained within $. The next task is to
determine a suitable set of requisite joint and conditional density functions. It can be shown!? that, starting from the
Chapman-Kolmogoroff equation, one can derive an expression for the joint density function p (x, ¢) that embodies

the system characteristics described in the previous section as:
t

p(x,ec,t) = Ip'(u, ¢, 0) exp {—J. I'(x,c,s) ds} d[x-g(u,c,t)]du
0

t t (3)
+J. d’cJ. S[x—-g(v,c,t—*c)]exp{—J. I"(x,c,s)ds}
0

T
*j W(c/c,x,T)p(u,c,t) dc'du (01

where g (u,c,t) is the solution to Eq. (1) at time 7 with initial condition x(0)=u and component state c,
W(c/c',x,t) is the probability per unit time of the system undergoing a transition from ¢’ — ¢ , sometimes
referred to as the component state transition rate, and T" (x, ¢, 1) = IW (¢’/¢,x,t)de’ is the probability per unit
time of a transition from state ¢. It is important to note that the component transition rates W (¢/c', x, 1) are a
function of the individual component characteristic transition rates WL ¢/ cv’) , which are themselves uncertain
quantities, and system state x. Also, W| ¢/ cv’) in general is obtained as a synthesis of both historical observation
data and expert opinion.> If one has an appropriate mathematical model of the system, Eq. (1), a set of representative
component transition rates, and an expression for the probability density p(x/y), then in principle it is possible to
determine the probability associated with each feasible component state ¢, thus solving the diagnosis problem as

previously defined.
1I1. SOLUTION TECHNIQUE

In most practical situations the direct solution of Egs. (2) and (3) is far from tractable. However, we can extract
the desired information from these equations in the following fashion: Assume that, given a system observation y at

- . - . [ m
the time a fault is detected, one can obtain a finite, representative set of component states ¢ € {c} , each defined




via a unique joint density function in cv and g( u, cv, tJ , where the gL u, cv, tJ corresponding to each
ce {c} ™ are equally probable. This can be accomplished by utilizing specially designed adaptive extended
Kalman filters (EKF),! each utilizing an appropriate phenomenological system model, to test (hypothesize) every
possible combination of component fault/no-fault conditions. This procedure is accomplished not by hypothesizing a
specific component fault magnitude, but rather by introducing an appropriate uncertainty into each individual model
in such a way as to elicit the proper (unknown) adjustment in parameters corresponding to the observed manifestation

of the component fault(s). The choice of uncertainty and computational procedures are outlined in Reference 1.

There are, for most problems, a large number L of possible fault/no-fault combinations, where L is defined as the

number of m simultaneous component faults in an N component system:

N N
!
L= 20 C(N,m) = 20 ;ﬁNﬂ__’;)_' =2 (4)

thus, the problem dimensionality may quickly become unwieldy. However, if one is willing to consider a reduced
number m,,,, of maximum simultaneous component faults, then the problem dimensionality may be reduced by the
corresponding reduction factor RF:

m

N max
RF= Y C(Nm)/ Y C(Nm). (5)
m=0

m=0

Typically, m,,,, can be taken to be 3 or 4 without a significant loss of accuracy.

The multiple filtering procedure thus outlined yields a set of joint density functions for the component/system
e v \4 . . . .
characteristics ¢ and x[ c ), each of which will produce an (approximately) equally-likely match between
s v v \% )
computed and observed system characteristics, i.e., p| ¥{ ¢, /y|=plx c2)/ yJ = ... = p(x(c L /y )i One
can then “screen” this set of joint density functions via suitable hypothesis testing procedures! to determine which set
of density functions constitutes a component state significantly different (statistically) from the a priori component
states (in terms of both a priori and a posteriori density functions). In this manner we obtain a set of feasible
component states ¢ € {c} m, each defined via an uncertain set of system/component state attributes based on the

current system observation. A set of algorithms for the solution of the above described problem has been developed

and is detailed in Reference 1.

After the set of feasible component states and associated attributes has been uncovered we must then determine a
suitable W (¢/c’, x, t) corresponding to each feasible ¢ € {c} ™ in order to solve for plefy). If the individual
transition rates are known exactly, then for each point in the (x( cv\), cv) continuum that defines each feasible
component state, one could solve for p(c/y) based on WL cv/ ¢ ’,x,t| using standard Boolean algebraic
expressions."' However, because the values of ¢ and x( c ) are uncertain (described via the density functions
obtained via the multiple adaptive filtering procedure) and because, for each [x ¢’ ) cv] combination in the
continuum of possibilities, the individual transition rates W) c’/c ’,x,t | are uncertain (typically described by a
lognormal distribution function®), one must obtain a suitable estimator of the likelihood plely) of each feasible

component state ¢ € {c¢} based on the uncertain information that is available. This can be accomplished by




completely sampling, for every c€ {c m, each initial distribution [x(cv’), cv'] , each final distribution
vy v v, K )

[x ¢ e ] , and for each of these [(x , € ] pairs, completely sampling each lognormal

distribution corresponding to the individual W} ¢ /¢ ’, x,t |. It can be shown! that the application of traditional

Monte Carlo techniques for problems involving even a small number of components would be intractable, requiring

A%
c j,c ,ixle

>10° histories. However, Latin Hypercube sampling (LHS),5 a stratified sampling technique, does allow for a suitable
sampling procedure to be designed! to yield a tractable solution to the above described problem.

Once we complete the above procedure for determining the likelihood of each ¢ € {c} m, it is then possible to
obtain a set of marginal density functions that describe the probability density of each individual component
characteristic ¢’ based on all available system information. This marginalization is accomplished by sampling a
random number & € [0, 1] and choosing feasible component state J such that:

J-1 J
pe/y) SE< 3 pley/y) . 6
=1 j=1

J

For each feasible component state thus chosen, we then completely sample the joint distributions of component/
system state characteristics (via LHS) and accumulate (bin) the individual values of component characteristics, thus
effectively “weighting” each component characteristic density function by its associated likelihood. If this procedure
is performed a suitable number of times, one can then construct a marginal density function for each individual
component characteristic based on all available information including uncertain system observations, uncertain state-

dependent component reliability data, and system models.

IV. ILLUSTRATIVE EXAMPLE

To illustrate the usefulness of the component diagnostic technique, we attempt to diagnose a simulated transient
in the balance of plant (BOP) of a boiling water reactor. The system of interest consists of a high pressure turbine fed
via a main steam admission valve and exhausting wet steam to a steam dryer. The saturated steam from the dryer
passes through a reheater, which is fed bleed steam via a tap in the main steam line, and into a low pressure turbine.
Steam is also bled from the low and high pressure turbines, combined with condensed steam from the reheater, and
passed through a series of high and low pressure feedwater heaters. A simple non-linear time-lag representation
consisting of 11 non-linear differential equations is used to represent the system.l The manifestation of a simulated
transient resulting from a simultaneous increase of 10% in reheater steam valve flow area and a 5% decrease in low
pressure turbine bleed on five system observations y (with 1% white noise superimposed) is represented in Figures 2
through 7. Nine component characteristics, presented in Table 1, are to be considered (component characteristic c;
and cZ faulted in the transient represented by Figures 2 through 7). Note that component characteristics need not
correspond to an actual physical quantity related to a given component, e.g., valve flow area, rather they may simply
be descriptive of the overall operability of the combination of many components, e.g., turbine efficiencies. If every
possible fault/no-fault combination were to be considered, the problem would involve [see Eq. (4)] L=512 hypotheses
(filter runs) to determine the set {¢}™. However, we consider the possibility that no more than m,,,,=3 simultaneous

component faults are likely, resulting in L=130 fault/no-fault hypothesis to consider, corresponding to a reduction

factor RF=3.9.




Upon execution of the procedures outlined in Section III, 10 feasible, unique component states were discovered,
the fault sequences for which are presented in Table 2. The LHS sampling procedure was carried out! using 10
batches of 4.4x10°> histories (total) per batch, resulting in an estimate for the likelihood of each feasible component
state, also presented in Table 2. We note that the correct fault sequence is identified (via the multiple filter/hypothesis
testing prdcedure) twice (c3 and ¢g), the component characteristic estimates for which are presented in Table 3. Each
estimate for the 9 component characteristics corresponds to the mean of a normal distribution with associated
standard deviation. It is important to note that whether or not a fault is declared for a specific component will depend
on both the a priori uncertainty and a posteriori uncertainty (uncertainty in estimate). A fault will not necessarily be
declared simply because some deviation from nominal appears in the estimate - the deviation must be statistically
significant. We note from Table 3 that the specially designed filters do an excellent job of identifying the correct
magnitude of the small component faults (¢g). Table 4 presents a comparison of the feasible component state

probabilities computed using representative point (mean) values for all pertinent variables instead of completely

Table 1. Component State Variables

Component Characteristics
Variable Component Description
c‘ll H.P. Bleed Taps & Assoc. Piping High Pressure Steam Bleed (%)
c; L.P. Bleed Taps & Assoc. Piping Low Pressure Steam Bleed (%)
c; Main Steam Valve Main Steam Admission Valve Flow Area (m?)
CZ Reheat Steam Valve Reheat Steam Valve Flow Area (mz)
c;’ Reheater Heat Transfer Coefficient - Reheater (J/kg-K)
c; H.P. Feedwater Heater Heat Transfer Coefficient - HP. FWH (J/kg)
c; L.P. Feedwater Heater Heat Transfer Coefficient - L.P. FWH (J/kg)
c‘é H.P. Turbine High Pressure Turbine Efficiency (%)
c; L.P. Turbine Low Pressure Turbine Efficiency (%)
Table 2. Feasible Component States and Associated Likelihoods
Component Characteristics®
Feasible plely) v v v v v v v v v
State 3 €2 | €3 | C4 | S | % | ¢7 | 8 | %9
€y 0.825% * 4.7x102%% NF NF NF NF F NF NF F NF
¢, |0.834% +42x102% | NF | NF | NF | NF | F | NF | F F | NF
c; |65364% +£1.5x10'%| NF | F | NF | F | NF | NF | NF | NF | NF
cy 1.621% + 4.9x102%% NF NF NF F F NF NF NF NF
cs [0.037% +£52x103% | NF | NF | NF | NF | F F | NF | NF | NF
cg |9651% +2.8x10°% | NF | F | NF | F | NF | NF | NF | NF | NF
c;  [<10° % NF | F | NF | F F | NF | NF | NF | NF
cg [2.591% +2.7x102% | F | NF | NF | F | NF | NF | NF | NF | NF
¢y [0.637% £ 3.3x102% F NF NF NF F NF NF NF NF
c1o |18.44% £ 1.7x10'% | F F NF | NF | NF | NF | NF | NF | NF

a. NF=No Fault Detected; F=Fault Detected




sampling the distributions. This comparison shows that Monte Carlo sampling is indeed very important due to the
uncertainty in the available information. Three of the 9 marginal density functions, obtained via the procedure
outlined in Section III, using 1000 random Monte Carlo samples of Eq. (6) and 20 LHS of each joint density function
per random sample, are presented in Figures 7 through 9. Note that Figures 7 and 8 seem to indicate a significant
probability that ¢, and ¢, have deviated from assumed nominal values, while Figure 9 indicates little likelihood of
such a deviation in ¢, . Figures of this type could prove to be quite useful for the continuous monitoring of
component performance.

Table 3. Estimated Component Characteristics For Correct Fault Sequences

Feasible Component State ¢ | Feasible Component State ¢¢
Component True Value Esti 4 :
Characteristic (After Fault) stimated Estimated
Characteristics Characteristics
c‘l’ 8.8000x10° 8.8793x10! + 4.4x102 8.8018x10% + 4.4x102
c; 2.2150x101 2.2951x10! +9.9x1072 2.2022x10! + 3.8x10™!
c‘3' 5.2471x1072 5.2492x10°2 + 5.8x10 5.2438x10°% + 6.2x107!
cZ 7.338x107* 6.9249x10% £ 1.1x107 7.4280x10°* + 2.3x107
c‘s’ 7.9564x10% 7.9586x10% + 3.1x10% 7.9562x10* + 3.9x10*
c; 7.5900x10° 7.5986x10° + 3.8x10° 7.5933x10° + 3.7x10°
c‘7’ 8.0300x10° 8.0333x10° + 3.7x10% 8.0275x10° + 3.7x10°
c;’ 8.6000x10" 8.6061x10! + 3.7x10° 8.6213x10! £ 3.7x10'!
c‘g’ 8.3000x10! 8.3458x10! + 1.1x107! 8.3007x10! £ 2.1x107!

Table 4. Feasible Component State Likelihoods - Point Estimate vs. Sampled

Feasible Component States Probabilities (%)

C1 ) 3 €4 s C6 €7 €8 €9 ‘10

Point 0. 0. 81.529 0. 0. 0.0122 | <10 | 0.0051 0. 18.344
Estimate

Sampled | 0.825 0.834 | 65.364 | 1.621 0.037 9.651 <107 2.591 0.637 | 18.440
Estimate

V. SUMMARY AND CONCLUSIONS

We have outlined the basic structure of a unique scheme for component fault diagnosis based on multiple
adaptive Kalman filtering and Latin Hypercube sampling. Upon detection of a given fault, a series of specially
designed adaptive Kalman filters is employed to effectively test every possible component fault/no-fault combination
(or a subset of). The filters utilize special phenomenological system models, each possessing a unique uncertainty
structure, to obtain best estimates for the various hypothesized faults. The joint density functions provided by the
multiple adaptive EKFs are then screened via hypotheses testing techniques to determine which joint density

functions characterize a unique set of component attributes, or feasible component states, significantly different from




nominal. The defining attributes of these states are then used with the nominal state attributes (joint density functions)
and uncertain component reliability data to determine the probability, or likelihood, of each feasible component state

by performing a LHS of the distributions.

The diagnosis procedure was applied to a simulated transient involving binary faults of small magnitude in the
BOP of a boiling water reactor. The results demonstrate both the ability of the specially designed adaptive EKFs to
uncover the correct fault magnitudes from relatively noisy system signals and the usefulness of the LHS procedure in
obtaining the likelihood of each significant, feasible fault hypothesis. We also demonstrate how all of the data may be
combined using a marginalization procedure to obtain representative marginal probability density functions for each

of the component characteristics of interest.

The new scheme has the potential to provide a robust method for small, multiple component fault diagnosis.
Although not suitable for real time analysis, this scheme could be very useful as an off-line analysis tool for
diagnosing incipient component faults and thus aid in the efficient scheduling of preventative maintenance

procedures.
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