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ABSTRACT

Published and new data for chemical and isotopic samples from wells and springs
on Kilauea Volcano and vicinity are presented. These data are used to understand
processes that determine the chemistry of dilute meteoric water, mixtures with sea water,
and thermal water. Data for well and spring samples of non-thermal water indicate that
mixing with sea water and dissolution of rock from weathering are the major processes that
determine the composition of dissolved constituents in water. Data from coastal springs
demonstrate that there is a large thermal system south of the lower east rift of Kilauea.
Samples of thermal water from shallow wells in the lower east rift and vicinity have rather
variable chemistry indicating that a number of processes operate in the near surface. Water
sampled from the available deep wells is different in composition from the shallow thermal
water, indicating that generally there is not a significant component of deep water in the
shallow wells. Data for samples from available deep wells show significant gradients in
chemistry and steam content of the reservoir fluid. These gradients are interpreted to
indicate that the reservoir tapped by the existing wells is an evolving vapor-dominated
system.

INTRODUCTION

The purpose of this study is to use chemical and isotopic data to identify processes
that determine the chemistry of well and spring samples (Figure 1) across the wide
spectrum of water compositions found on Kilauea Volcano and vicinity. This information
was developed for use by the U.S. Department of Energy in its preparation of an
Environmental Impact Statement for the Hawaii Geothermal Project. Water chemistry on
Kilauea is determined by multiple processes starting with those that occur as a result of the
normal island hydrologic cycle (Sorey and Colvard, 1994; Takasaki, 1994). Near the
shore, wells tap a basal fresh-water zone overlying sea water intruded from the ocean. The
fresh water is from precipitation that infiltrates the land. At the interface between the fresh
water and sea water, there is a zone that is a mixture of fresh and saline water. Because
fresh water is less dense than sea water, the first order theory relating the thickness of the
fresh water lens to the height of the water table above sea level is given by the Ghyben-
Herzberg formula for a hydraulic balance between sea water and fresh water. Fresh water
is also found at high elevations as perched water along low-permeability geologic contacts
or as dike-impounded water.

The chemistry of the dilute meteoric water is determined in part by the composition
of precipitation, and in part by water-rock interaction. Precipitation carries dissolved
atmospheric gases (particularly carbon dioxide) and small amounts of salts (mostly as ions
of sodium, chloride, and some sulfate) from sea spray, and this is generally the source of
these constituents in dilute meteoric water. Locally, precipitation may also carry elevated
sulfate derived from oxidation of gaseous emissions from Kilauea Volcano (Scholl and
Ingebritsen, 1994). Upon infiltrating the land, additional carbon dioxide from the soil zone
dissolves in the water and raises its acidity. This slightly acid water reacts with the
minerals in volcanic rock to form bicarbonate and to dissolve sodium, magnesium,
calcium, and silica (e.g. Feth and others, 1964; Garrels and MacKenzie, 1967; Nathenson




and Thompson, 1990). This dilute meteoric water will be referred to in this report as dilute
water. The dilute water produced by this process may also mix with sea water. The
chemistry of a mixed water containing even a small fraction of sea water is mostly
determined by the constituents in sea water because of the high salinity of sea water.

In addition to the normal processes of island hydrology, thermal processes also
affect the chemistry of water. Magma intrudes at shallow levels and is erupted at the
surface within Kilauea's rift zones and summit caldera. The interaction of magma and hot
rock with water and the addition of gases released from the magma to the water produces a
large range of water compositions. Since sea water makes up much of the source water for
this system in the lower east rift zone, the starting composition is saline rather than dilute.
Reactions of fluid and rock at elevated temperature, of a fluid that is initially saline, causes
some constituents to precipitate, some to increase by dissolution of minerals in the rock,
and has almost no effect on other constituents.

The organization in this report for discussing samples from wells and springs is
from shallow to deep and from non-thermal to thermal. First, data for spring and shallow
well samples of dilute water and mixtures of dilute and sea water are discussed. In the
following sections, data on thermal water from shallow wells and springs are discussed.
Particular wells and springs are chosen to represent trends that are confirmed by samples
from nearby locations, and particular samples are chosen based on quality,
representativeness, and completeness of analysis. In a few cases, isotopic data from one
sample are used with chemical data from another sample, because only silica and salinity
were determined for some isotope samples. The concluding section discusses data from
deep wells that sample the geothermal reservoir.

Data obtained in this study and from available literature are given in Tables 1-5.
The shallow well data have been divided according to temperature (greater than or less than
30°C); however, detailed considerations below show that some wells with temperatures
less than 30°C actually contain water that has been part of the thermal system. Some
published analyses that have significant quality problems (e.g. poor balances or notably
anomalous values of some constituents) have been included in the tables for completeness.
The column Data Source includes the primary source first (or primary sources first and
second), and repeat publications of the same analysis are listed as additional references.
Differences between values reported in primary references and subsequent publications are
resolved by taking values listed in primary references. Data are reported in the literature in
units of mg/L. and mg/kg or ppm. For waters with significant total dissolved solids, the
amounts reported in different units are not the same. Most laboratory procedures involve
measurements in units of mass per unit volume (Hem, 1985, p. 55). The expression of
analyses with high total dissolved solids in units of mass per unit mass then requires a
measurement of solution density. Some people apparently decided that mg/kg or ppm are
more appropriate units than mg/L and have simply reported data that were obtained in mg/L.
as mg/kg; e.g. McMurtry and others (1977) reproduce Swain's (1973) data with units
given as ppm when the data were originally published as mg/L. Given the ambiguities of
reporting, we have chosen to assume that all analyses are in mg/L. Thus, analyses that




have total dissolved solids similar to that of sea water at 34,500 mg/L can have a systematic
bias of 3 % in dissolved constituents. The new analyses reported in this study are in mg/L.

CHEMISTRY OF SHALLOW WATER SAMPLES

Shallow well and spring samples of dilute meteoric water and mixtures with sea
water are discussed by groups for the area of Hilo and vicinity and the area from Ka Lae to
Pahala (Figure 1). Discussion of various groups is necessary to illustrate the range of
effects on water chemistry because no one data set shows all characteristics. Coastal
springs south of Kilauea Crater and near the lower east rift are discussed next. Some of
these springs are thermal and others not, but they all show significant mixture with sea
water. The chemical composition of shallow well waters within the east rift and between
the east rift and the coast are discussed last.

Hilo to Keaau area

The chemical data for samples from the Hilo to Keaau area (Figure 2) show the full
range of behavior for non-thermal waters (Figure 3). The modified Schoeller diagrams
used in this report utilize meq/L for dissolved species and mmol/L for silica. The
advantage of this presentation is that it shows both relative and absolute amounts available
for reactions. The dilute waters (3603-01, 3702-01, and 3804-01) have chloride
concentrations that range from 1.6 to 7.3 mg/L, about what one finds in rain water (0.8 -
10.7 mg/L, Table 2; see also Scholl and Ingebritsen, 1994). Two analyses are shown for
Waiakea 4 (4203-04); one (1972) with chloride concentration of 6.5 mg/L and the other
(1978) with 39.8 mg/L.. The 1972 analysis has similar chemistry to the dilute waters. The
1978 analysis is enriched in Na, Cl, and Mg, elements that are most concentrated in sea
water. Thus, this well appears to be able to tap dilute water or a mixture with some added
sea water. All of the other samples shown on Figure 3 have as their major determinant of
chemistry the dilution of sea water as shown by the join lines being parallel to the lines for
the analysis for sea water. Two samples from Keaau Orchard 2 (3900-02) show varying
amounts of dilution of sea water, except silica and bicarbonate concentrations which are
nearly the same in both samples.

Silica in the mixed waters is much higher than in sea water and shows no
relationship to chloride concentration. Silica is also relatively uncorrelated with bicarbonate
concentration (Figure 4), even though the latter varies by a factor of two. The high-
concentration sample of Waiakea 4 (4203-04) shows a significantly lower silica for the
same bicarbonate concentration (Figure 4). The samples from Waiakea (4304-02 and -03)
have chloride concentrations of 12,500 and 6,250 mg/L compared to 19,000 mg/L for sea
water. For the silica versus bicarbonate behavior to be explained as a mixing relationship
between dilute water and sea water, the dilute water would have to have a higher silica
concentration than has been found. This indicates that carbon dioxide is available to
continue the dissolution of minerals after mixing. Silica concentrations are not particularly
high, and there is no indication of a thermal anomaly from the silica data.




In addition, magnesium data can be used to assess the thermal characteristics of
water in Hawaii. In most thermal waters, magnesium is very low or absent, and a plot of
magnesium versus chloride can be useful for understanding geochemical processes
involving mixing and thermal modifications (Cox and Thomas, 1979). The data are shown
in Figure 5 along with a dilution line calculated from values for sea water. On a log-log
plot, a dilution line is straight whereas a mixing line is a curve at small amounts of the high-
concentration end member. The advantage of a dilution model is that it explains most of the
behavior of water containing varying amounts of sea water without having to make any
assumptions concerning the dilute end member. Down to a chloride concentration of 81
mg/L, the high-concentration samples follow the dilution line for sea water on the
magnesium versus chloride plot (Figure 5). The lack of deviation from a simple dilution
relationship indicates that dissolution of minerals in rock is not sufficient to noticeably
affect the magnesium concentration. This is not the case for samples from wells at Pearl
Harbor, Oahu that interact with marine calcareous deposits in the cap rock to add
magnesium (Visher and Mink, 1964). The two samples for Waiakea 4 (4203-04) show
the effect of mixing where the concentration of the dilute end member becomes important.

Limited isotopic data are available for this area (Figure 6). Sea water as represented
by Standard Mean Ocean Water (SMOW) would be at (0,0) in Figure 6 (Craig, 1961).
Values for a sea-water sample collected at Isaac Hale Park are slightly heavier than SMOW
possibly because of higher evaporation in summer, but the sample contains less chloride
than normal sea water and may also be somewhat diluted by fresh water. Values fora
sample from the southern edge of Hilo Bay are within analytical uncertainty for defined
values for SMOW. For comparison purposes, we will use the ocean water of Hem (1985)
for dissolved constituents and SMOW for isotopes. Lower deuterium values for Haena
spring (3889-S2) suggest that some of the recharge comes from higher elevation water
such as that found in one dilute sample from Keaau (Shipman) well (3804-01), and this
interpretation can be established more clearly in other areas.

Pahoa area and Hawaiian Paradise well

Wells in the Pahoa area are close to the east rift of Kilauea Volcano (Figure 7), and
waters from these wells are generally quite dilute (Figure 8). Water samples from
Hawaiian Shores 1 and 2 (3185-01 and 02) contain a slight amount of sea water as shown
from the pattern in Figure 8. Hawaiian Paradise well (3588-01) is 9 km north of the most
northerly Pahoa area well (Figure 2), and its chemistry shows a clear signature of added
sea water. Chloride values for the Hawaiian Shores wells are intermediate between the
more dilute waters and the sea-water dilution line, and data for the Hawaiian Paradise well
are nearly on the dilution line (Figure 9). Silica is independent of bicarbonate concentration
(Figure 10). There is a suggestion of an increase in silica with temperature (Figure 11),
although the relationship is weak. Temperature does not show any relationship with
chloride concentration. It may be that the increase in temperature and silica reflects some
conductive and/or convective heating from the thermal anomaly on the east rift. Pahoa
Battery 2A and 2B (2986-01 and 02) are closest to the east rift and have slightly anomalous
sulfate concentrations (Figure 12) suggesting the possible addition of sulfate from
oxidation of sulfur-rich gases associated with magmatic volatiles. Deuterium isotopes are




generally in the range of -14 to -18 %, although one sample from Keonepoko Nui (3188-
01) is -22 %o (Figure 13).

Kaalualu to Punaluu area

The chemical data for the samples from Kaalualu to Punaluu area (Figure 14) show

-patterns similar to the Hilo area group (Figure 15). Data for four coastal springs are shown
on Figure 15 with broken lines, and they show a considerable range for dilution of sea
water. Repeat samplings a year apart for Kamehame Hill crack (0829-S1) and Kawa
Spring (0631-S1) have quite similar chemistries (Table 2). Data for higher-elevation dilute
waters from Haao Tunnel (0537-01) and New Mountain House Tunnel (0936-01) have no
sea-water signature. Maximum measured chloride concentration of Haao Tunnel (0537-01)
is 8.55 mg/L, within the range to be expected for rain water. The sulfate concentration of
16.3 mg/L is high, and this may indicate some addition of a sulfur compound beyond that
in rain water.

Silica and bicarbonate concentrations are remarkably similar for the concentrated
waters (Figure 16), and this constancy indicates continued reaction after mixing with sea
water. The magnesium concentration once again follows the dilution line (Figure 17),
indicating no noticeable effect on magnesium concentration from reaction with minerals in
rock.

Isotopic data for the samples containing diluted sea water span a broader range of
values than has been measured on samples of the higher-elevation dilute waters (0537-01
and 0936-01) immediately upslope (Figure 18). This can be seen more clearly in a plot of
deuterium versus chloride (Figure 19). Sea water (assumed 0 %o deuterium, 19,000 mg/L
chloride) can mix with dilute water with isotopic values shown on Figure 19 to produce the
values found in 0631-S1, 0831-03, and 0830-S1. The isotopes for Kamehame Hill crack
(0829-S1) and for Kaalualu Spring 1 (8836-S1) require dilute waters with deuterium
values of -29 and -33 %o (Figure 19), lighter than found in the low-elevation (700 to 1000
m) dilute water. Average deuterium compositions of rainfall versus elevation suggest that
such light isotopes come from rain water at higher elevations (Scholl and others, 1993).

Pahala area

The four wells in the Pahala area are nearly on a straight line above the group of
three springs along the coast (Figure 14). The pattern of water chemistry is similar to that
for other areas (Figure 20). The data for the sample from the Palima well (1128-02)
indicates a small amount of sea water based on the elevated amounts of Na and Cl and the
slightly elevated Mg concentration compared to the dilute samples (Figure 20). Two
samplings for Pueo Spring (0926-S1) show a range of concentrations (Figure 20), but
repeat samplings for Waiapele crack (0926-S2) and Waioala Spring (0927-S1) have similar
chemistries. Silica concentrations are relatively constant, but bicarbonate concentrations
have a wider range than for the last group of springs (Figure 21). Magnesium
concentrations follow the dilution trend for the spring samples, with the sample for the
Palima well (1128-02) being intermediate between the low- and high- concentration waters




(Figure 22). The diluted sea water shows a somewhat narrow range of calcium (Figure
20), and the variation of calcium with chloride (Figures 23) deviates from the dilution line
at higher chloride concentrations than was found in the magnesium versus chloride trends
for these waters (Figure 22) and for the previous group (Figure 17). This deviation is
probably related to the higher bicarbonate concentrations being balanced by increased
calcium concentrations compared to the dilution trend.

Isotope values for the spring samples are uniformly lower than those for the dilute
waters (Figure 24), indicating recharge at higher elevations. The value for the Palima well
(1128-02) is at low end of the range. The isotopic data for the Palima well are from a 1974
sample in McMurtry and others (1977), and the chemistry is from a 1974 sample from
Thomas and others (1979). The reported salinity for the isotope sample was 0.01 per cent,
which is similar to the measured dissolved solids for the chemistry sample of 110 mg/L.
Assuming that the chemistry was similar, the low values for the isotopes in the Palima well
coupled with its small sea water content indicate that this well samples a water that is
dominantly dilute and originated as precipitation at a higher elevation than the waters
sampled by wells 1128-01 and 1229-01 (Scholl and others, 1993).

Puu Elemakule to Apua Point area

The springs in this area are generally south of Kilauea Crater (Figure 25) and
include the thermal spring (42°C, 1420-S1) Puu Elemakule (Na Puu o na Elemakule on
topographic maps). Chemistry data for the springs generally follow the sea water dilution
trend for major elements other than silica and bicarbonate (Figure 26). Magnesium and
bromide versus chloride follow the dilution trend (Figures 27 and 28) even though Puu
Elemakule (1420-S1) is a thermal spring, and magnesium content should be reduced at
high temperature. Sulfate data for Kaaha, West crack (1518-S1) and Kaaha, East crack
(1617-S1) north east along the coast from Puu Elemakule show that sulfate is higher than
expected from the dilution trend for these two springs (Figure 29). Calcium is also higher
than the dilution trend for most of the springs (Figure 30). Measured spring temperature
versus silica shows that only Puu Elemakule (1420-S1) is clearly thermal (Figure 31), but
some other springs could also be anomalous based on silica (Figure 32) and their slightly
higher temperatures than expected for non-thermal springs issuing at sea level (generally
around 18-22°C), Silica versus bicarbonate shows that higher silica concentrations tend to
correlate with higher bicarbonate and that bicarbonate concentrations are above 100 mg/L
for a number of springs (Figure 32).

Isotopic data allow grouping among these springs. Deuterium versus oxygen-18
shows that isotopes are shifted from the meteoric water line, with Puu Elemakule showing
the largest shift (Figure 33). Deuterium versus chloride clarifies this relationship by
showing how mixing with sea water affects the isotopes (Figure 34). Apua Point crack
(1511-S1) appears to have an isotopic content of dilute water that is different from all other
springs in this area, though the heaviest value is suspect. Halape crack (1615-S1) and
Halape Iki spring (1615-S2) appear to have the same and lighter diluting water than for
Apua Point crack (solid line). A still lighter diluting water (broken line) is found for Kalue
crack (1617-S2), Kaaha, East crack (1617-S1), and Kaaha, West crack (1518-S1). The




range in isotope values for the dilute water, though not as large as for the springs in the
Pahala area (Figure 24), indicates that some of the flow paths are longer than others. The
longer flow paths would permit the addition of thermal energy and carbon dioxide to these
waters.

The data for Puu Elemakule (1420-S1) can be interpreted in two ways. The mixing
line (shown as a broken line) of Figure 34 passes through the data point with heavier
isotopes. Assuming that the lighter data point should be heavier, Puu Elemakule is then on
the same mixing trend as the Kalue and Kaaha crack samples. Alternatively, giving equal
weight to the two data points would make the mixing line pass through a deuterium value
of -35 %o at zero chloride. Using the equation for the global meteoric water line relating
deuterium (8D) and oxygen-18 (3!830) compositions ( 8D = 8 8130 + 10%o; Craig, 1961),
the value of oxygen-18 for zero chloride can be calculated from the deuterium values at zero
chloride in Figure 34. Using these values, the mixing lines on Figure 35 have been drawn.
The calculated mixing line for Halape crack and Halape Iki spring (solid line in Figure 35)
passes through the data and indicates that the isotopes of the dilute water are on the
meteoric water line. The isotope values for Puu Elemakule, Kalue, and Kaaha are all
slightly shifted to heavier values from the mixing line (broken line in Figure 35), although
the difference is within analytical uncertainty. If we use the alternative mixing line for Puu
Elemakule, the measured values for this spring are shifted by 0.5 %o from the calculated
mixing line. This amount of shift would tend to indicate that the water has undergone high-
temperature reaction with rock, although this interpretation is tenuous based on the lack of
any noticeable change in magnesium concentration from that produced by diluting sea
water. These differing interpretations can only be resolved with more precise isotopic data.

Springs from Pohoiki to Cape Kumukahi area

Springs along the coast from Pohoiki to Cape Kumukahi (Figure 7 and Figure 36)
are a significant thermal anomaly with a surprising coherence that indicates there is a
significant regional flow of thermal water that discharges along the coast (Iovenitti, 1990).
Chemical data for the springs follow a sea-water dilution trend except for silica and
bicarbonate (Figure 37). Magnesium versus chloride shows slight depletion from the sea-’
water dilution trend (Figure 38) even though spring temperatures range to 37°C. Calcium
is slightly enriched compared to the sea-water dilution trend (Figure 39). Silica
concentrations range to a high value of 98 mg/L and are independent of bicarbonate
concentration (Figure 40).

The character of the thermal water is shown by plots of temperature versus silica
and chloride (Figures 41 and 42). Increasing temperature correlates with increasing silica
indicating a hot end-member with high silica. Temperature also shows a correlation with
increasing chloride indicating that the hot end-member is a saline water. The consistency of
both trends indicates that there is a single end~-member with high temperature and high silica
and chloride concentrations that mixes with cold, dilute water. Surprisingly, the most
concentrated sample of this end-member does not seem to differ in any significant way
from diluted sea water in the major element concentrations except for silica and bicarbonate
(Figure 37).




The consistency of the proposed mixing process also appears in the stable isotope
data (Figures 43, 44, and 45). Assuming that the high-salinity water is isotopically-
unshifted ideal sea water (0 %o deuterium and oxygen-18), the deuterium versus chloride
plot permits the extrapolation to zero chloride to find the deuterium isotope composition of
the cold, dilute water (Figure 44). Using the equation for the meteoric water line, the
deuterium value obtained permits the oxygen-18 versus chloride mixing line to be
calculated (Figure 45). The oxygen-18 data have less scatter than the deuterium data, and
both lines are consistent with mixing a dilute meteoric water with sea water. The same
mixing line is also shown on the deuterium versus oxygen-18 plot (Figure 43). Although
these mixing lines are consistent with the saline end-member being isotopically unshifted
sea water, they do not rule out the possibility of a shift either by high-temperature reaction
with rock or by boiling (see below). If the saline end-member is much more concentrated
than the most concentrated spring sample obtained, there could easily be an isotopic shift
that could not be detected with the existing data. However, the lack of any noticeable effect
on major-ion chemistry other than silica and bicarbonate tends to indicate that temperatures
are not very high.

The systematic variations of chloride and silica with temperature (Figures 41 and
42) indicate that it should be possible to use the spring data to estimate reservoir
temperature from the warm-spring or boiling-spring mixing models (Truesdell and
Fournier, 1977; Fournier, 1981). McMurtry and others (1977) also applied these mixing
models to some thermal waters on the east rift and to Pohoiki and Allison springs. Figure
46 shows silica versus enthalpy along with a mixing line assuming a cold water at 22°C and
50 mg/L silica. Figure 47 shows the extrapolation of this mixing line. For the warm-
springs mixing model, the enthalpy of the reservoir fluid would be determined by the
intersection with the curve for the quartz-conductive geothermometer of Fournier and Potter
(1982a). The point of closest approach to the curve is at point C. The silica at point C for
warm-spring mixing is around 720 mg/L with a corresponding reservoir temperature of
314°C. However, the mixing relation for silica versus chloride (Figure 48) indicates that
silica calculated at the chloride concentration of sea water (19,000 mg/L) would only be
240 mg/L. Although there is considerable uncertainty in the slopes from Figures 47 and
48, the high value of silica required by the point of closest approach in Figure 47 compared
to what would be available based on sea-water chloride in the reservoir fluid makes the
warm springs mixing model unlikely. The failure of the mixing line to intersect the quartz
geothermometer curve makes this a doubly unlikely solution.

A more reasonable solution is obtained from the boiling-spring mixing model. For
the boiling springs mixing model, the spring is assumed to have mixed with cold water
after having boiled to 100°C at point E on Figure 47. The original enthalpy of the boiled
water is derived from the quartz-adiabatic geothermometer relation at point F. The silica
concentration at an enthalpy of 419.0 j/g (100°C) at point E in Figure 47 is 245 mg/L with a
corresponding enthalpy at point F of 773.4 j/g for a calculated source fluid temperature of
182°C. The steam fraction for boiling from 182°C to 100°C is 0.157, and the chloride
concentration in such a boiled fluid starting sea-water chloride of 19,000 mg/L would be
22,500 mg/L.. Based on the silica versus chloride mixing relation in Figure 48, the
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corresponding silica concentration is 275 mg/L compared to the inferred concentration in
the boiled fluid of 245 mg/L. These two methods of calculating silica concentration give
similar results, and their agreement indicates that this is a reasonable model.

Chalcedony controls silica solubility at temperatures below 200°C, and the
temperature of 182°C is low enough that chalcedony is the most likely phase controlling
silica solubility in these springs. A diagram similar to Figure 47 can be prepared based on
chalcedony solubility (Fournier, 1981). The warm-springs mixing model does not apply in
this case, because the possible intercept would be much greater than 200°C. The solution
for the boiling springs mixing model using chalcedony yields a calculated source fluid
temperature of 165°C. The steam fraction for boiling from 165°C to 100°C is 0.123, and
the chloride concentration in such a boiled fluid starting at sea-water chloride of 19,000
mg/L would be 21,700 mg/L. Based on the silica versus chloride mixing relation in Figure
48, the corresponding silica concentration is 267 mg/L. compared to the inferred
concentration in the boiled fluid of 245 mg/L.. The comparison for the chalcedony
calculation is slightly better than for quartz, and the lower temperature of 165°C from
chalcedony solubility seems more compatible with the nearly unmodified chemistry of the
fluids compared to the composition of their sea-water source. The probable sequence is
that a source fluid at 165°C could supply water near sea water composition that boils to
100°C and loses its steam. This boiled water then mixes with dilute water to produce the
compositions found in the springs.

The isotopic and chloride composition of sea water at 165°C that boils to 100°C can
be calculated using the methods in Truesdell and others (1977). Mixing lines for this high-
chloride boiled end-member are shown as the upper lines on the isotope diagrams (Figures
43, 44, and 45), and they are consistent with the proposed process. The 165°C
temperature of this source fluid is low enough to explain the lack of significant modification
of the major element compositions of this fluid from that of sea water. An additional factor
may be that, because of the large scale of the flow system, the rocks have lost their capacity
for affecting anything other than the silica in the resulting fluid. The low temperature of the
source fluid compared to temperatures at great depth in some east rift drill holes indicates
that the flow system operates on the periphery of the geothermal reservoir rather than
interacting with the deeper reservoir. The springs occur over a distance of 7 km along the
coast, indicating that the 165°C source must be a relatively large volume. Because of the
large extrapolations involved from the measured enthalpy and silica to the inferred
conditions for the source fluid, this interpretation should be regarded with caution until
confirmed by further drilling. If the silica concentration is determined by some other
process than equilibrium with a pure silica phase (e.g., Nathenson and Thompson, 1990),
the extrapolation to intercept the chalcedony curve with the boiling-springs mixing model
would not be valid, and the entire system could be much lower in temperature but would
still be extensive.

Wells within the east rift zone between the east rift zone and the coast

' Samples from wells within and south of the east rift zone (Figure 7 and Figure 36)
show minor to major amounts of sea water addition and minor to major modifications of




sea water chemistry. The only consistent characteristic of thermal waters beyond measured
temperature are high amounts of dissolved silica. Most other constituents show extremely
variable relationships. Similarities in chemical patterns serve to divide these well waters
into two groups, each with similar chemical patterns, and other waters with different
patterns. The first group with similar chemical patterns is Malama Ki (2783-01), Allison
(2881-01), and Pulama (2102-01). Malama Ki and Allison are located south of the lower
east rift (Figure 36), and Pulama is located south of the middle east rift (Figure 7).
Chemical data for samples from these wells show a pretty close correspondence with
diluted sea water, except for silica and bicarbonate (Figure 49). The two samples for
Allison (2881-01) show significant increase in the saline component from 1975 to 1982.
The sulfate in the 1982 sampling is the same as in 1975, and it seems likely that the 1982
value is incorrect. Magnesium is close to the sea-water dilution line, but it appears to be
somewhat depleted for Malama Ki and Allison and somewhat enriched for Pulama (Figure
50). Water from Pulama and the 1975-sample from Allison contain only a small
component of sea water and are dominantly dilute water. Calcium is enriched for all three
wells (Figure 51), and this may reflect ion exchange of magnesium for calcium in water-
rock reaction. Potassium is also enriched compared to sea-water dilution for Malama Ki
and Allison (Figure 52).

Silica, bicarbonate, and temperature show rather variable relations for Malama Ki
and Allison (Figures 53 and 54). Unfortunately, not all analyses have all three components
measured. For Malama Ki, silica ranges from 54 to 144 mg/L and bicarbonate from 128 to
262 mg/L.. Temperatures range only from 52 to 56°C, not very different from temperatures
measured in the well in 1974 to 1976 of 51-55°C (Epp and Halunen, 1979). If the true
silica is over 100 mg/L, some of the variability in silica concentrations could be from
polymerization if samples were not diluted. The low silica values for Allison of 24 and
24.1 mg/L are not easily explained, especially when the measured temperature is 38°C;
however, McMurtry and others (1977) obtained a value of 53 mg/L., that seems more
consistent with other data. Silica, bicarbonate, and measured temperature for Pulama are
consistent with it being a slightly thermal water.

Isotopic data for these three wells are shown in Figure 55. The sample for Allison
(2881-01) had a salinity of 7.5 per cent that of sea water (McMurtry and others, 1977), and
its position near the meteoric water line is reasonable. The mixing line shown has been
placed to pass through sea water and the sample from Allison. Salinities for McMurtry and
others Malama Ki (2783-01) samples are roughly 60 per cent that of sea water, and they are
consistent with the position of the Malama Ki data more than half way on the mixing line
toward sea water. The most recent analysis is more dilute, but it is essentially on the same
mixing line. Its chloride concentration is 25 per cent that of sea water, which is in
reasonable agreement with its position at 40 per cent along the line. The cold water
intercept at -19 %o deuterium and -3.6 %o oxygen-18 is quite different from the cold water
intercept for the coastal springs of -13.5 %o and -2.9 %o (Figure 43). This difference
indicates that these two wells intercept a flow path that is quite different from that feeding
the coastal springs (Scholl and others, 1993). The higher bicarbonate contents in the well
samples also indicate some difference in chemical process from the coastal springs. The
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isotopes for the Pulama well are also significantly different than the intercep: with the
meteoric water line, but that well is located quite a distance southwest (Figure 7).

Although the isotopic content of samples from Malama Ki (2783-01) and Allison
(2881-01) shows that the dilute water is different from that in the springs along the coast, it
is possible that the same hot, saline water feeds both the wells and the springs. The higher
bicarbonate in Malama Ki and Allison would require the addition of carbon dioxide and
further reaction with rock compared to the coastal springs, but this would be possible if the
water sampled in the wells has a longer transit time through the flow system compared to
water sampled from the coastal springs. Temperature versus chloride for the well samples
is consistent with such a model (Figure 56), but it does not require that this be the case.

The second group of wells with similar chemistry is Puna Thermal TH 3 (2982-
01), Puna Geothermal MW 2 (2883-07), and Keauohana 1 (2487-01). TH 3 and MW 2
are located within 1.5 km of each other (Figure 36), but Keauohana is located about 11 km
west and is south of the rift (Figure 7). The distinguishing characteristic for the second
group is that magnesium and calcium are nearly equal (in meq/L) instead of magnesium
being much greater than calcium as in the first group (Figures 57 and 49).
Correspondingly, magnesium is significantly depleted compared to the sea-water dilution
line (Figure 58). Potassium is enriched compared to sea-water dilution (Figure 59), similar
to the first group. Calcium is also enriched compared to sea-water dilution (Figure 60),
except for the less saline sample from Puna TH 3 (2982-01). The sea water component in
these fluids is confirmed by bromide versus chloride following the dilution line (Figure
61). Silica and bicarbonate values for Keauohana 1 (Figure 62) are similar to those for
normal ground water, but temperature (to 28.5°C; Table 2) and magnesium depletion
(Figure 58) indicate that it probably has a slight thermal signature (Iovenitti, 1990). Puna
Thermal TH 3 (2982-01) has undergone significant changes in chemistry, with two
representative analyses shown in Figure 57. Temperatures of samples range from 74° to
95°C, and the measured temperatures show a maximum temperature of 93°C at the water
level at a depth of 170 m and a sharp reversal to temperatures ranging from 45° to 62°C
within the next 40 m (Epp and Halunen, 1979). This sharp temperature reversal implies
adjacent cold and hot water flows that are likely to result in variations in chemistry. Silica
concentrations are variable though bicarbonate is relatively constant (Figure 62). The last
sampling of Puna Geothermal MW 2 (2883-07) showed an increase in temperature from
56.5 °C in September 1992 to 66.9°C in April 1993 (two points on Figure 63). MW 2 has
also shown significant changes in chemistry, though it is more dilute than Thermal Test
Hole 3 (Figure 57). ~

Isotopic data are consistent with mixing between sea water and dilute meteoric
water (Figure 64, 65, and 66). The 1991 and 1992 data for Puna Thermal TH 3 (2982-01)
and MW 2 (2883-07) define the upper mixing line on Figure 64. Plots of isotopes versus
chloride are consistent with this mixing line (Figures 65 and 66). The lower values for
isotopes for Puna Thermal TH 3 on Figure 64 are from McMurtry and others (1977).
These data define a different mixing line than the more recent data. McMurtry and others
(1977) report salinities for their samples of 0.65 to 0.72 per cent, and the placement of the
data on the lower mixing line in Figure 64 results in a calculated salinity of about 0.79 per
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cent. The data are consistent with mixing a dilux meteoric water and a water having the
isotopic composition of sea-water. The intercept is similar to values for Keauohana 1
(2487-01). However, the flow paths are probably quite different, because Keauohana 1 is
11 km from Puna Thermal TH 3 (Figure 7). The intercepts along the meteoric water line
for the two mixing lines are -10 and -16 %o in deuterium, and these values bracket the
values for the cold water intercept for the coastal springs of -13.5 %o. The 1993 values for
MW 2 (2883-07) are intermediate between the two mixing lines and correspond to the
isotopes in the coastal springs. These changes in isotopic compositions over time indicate
that the flow system for the dilute water may be localized and responsive to variations in
recharge, whereas large-scale ground-water systems tend to have little variation of isotopes
over time compared to surface waters.

The oxygen-18 versus chloride plot (Figure 66) includes data from Buddemeier and
others (in Shupe and others, 1976). No deuterium data are available for these samples.
Comparison of the values in Figure 66 with values obtained in this study and with the
values from McMurtry and others (1977) in Figure 64, indicates a large difference between
values reported by Buddemeier and others and earlier and later measurements. A
systematic comparison of all values from Buddemeier and others with values for samples
from the same wells reported by McMurtry and others and with values from this report
show that Buddemeier and others values are systematically low by about 3 %e. Thus the
values from Buddemeier and others cannot be used to compare with values found by
others.

The depletion of magnesium compared to the sea-water dilution line for Puna
Thermal TH 3 (2982-01) and Puna Geothermal MW 2 (2883-07) make them unlike the
water sampled in the coastal springs (Figure 58 and 38). In addition, the temperature
versus chloride relationship (Figure 67) shows that they are much hotter at a given chloride
concentration than shown by the mixing line for the coastal springs. Thus if these wells
sample the mixed fluid that is sampled in the coastal springs, there would have to be
significant addition of thermal energy and continued reaction with rock to produce the
characteristics of fluids sampled in the wells.

Just to the northwest of the two wells discussed above (Figure 36) are Puna
Geothermal MW 1 (2983-01) and MW 3 (2983-02). The chemistry of these wells is
essentially identical to each other (Figure 68) but quite different from other shallow wells
because of the large amount of sulfate compared to chloride (Figure 49, 57, 69, 70).
Amounts of Mg, Ca, and Na relative to chloride are much higher than for sea water, and
the cations are largely balanced by suifate. Bicarbonate is no higher than in a non-thermal
water, but silica and temperature are relatively high for MW 1 and 3 (2983-01 and 02,
Figures 71 and 72). Magnesium and sulfate are quite high compared to sea-water dilution
(Figures 73 and 74). Even though chloride is only 20 mg/L, bromide is essentially on the
sea water dilution line, although somewhat depleted (Figure 75). The chloride is probably
high enough to reflect a small component of sea water rather than being from rainfall.
Boron is anomalously high compared to other well samples in and near the east rift (Figure
76). (Other boron data in Figure 76 are slightly off the sea-water mixing line and probably
indicate addition of boron from a geothermal source for 2783-01, 2982-01, and 2883-07




but may also reflect analytical difficulties for this element. Data for repeat samplings of
other locations show variability of around 20 %.) Deuterium isotopes in samples for MW
1 and 3 are similar to those found in the coastal springs, possibly indicating a similar cold
recharge water (2983-01 and 02, Figure 77). The high sulfate and anomalous boron and
temperature for these samples are consistent with steam heating of local meteoric water as
the mechanism to produce the chemistry of waters in MW 1 and 3. The sulfate would be
produced by oxidation of hydrogen sulfide, and boron is naturally carried in the steam
phase. The isotopes depart from the meteoric water line (though the difference may not be
significant), which is consistent with adding a steam phase whose isotopes are to the left of
the meteoric water line.

The Kapoho (Airstrip) well (3081-01) is further east along the north edge of the rift
(Figure 36). The chemistry is shown on Figure 69 along with that for Pulama (2102-01)
for comparison, and it is basically that of diluted sea water with added sulfate, calcium, and
sodium. Temperature and silica are elevated, but bicarbonate is not (Figures 71 and 72).
Magnesium is riearly on a sea-water dilution line (Figure 73), but sulfate is quite elevated
(Figure 74). Isotopes bracket those found in the coastal springs (Figure 77), but the
deuterium value of -12 %o may not be representative based on the close agreement of its
oxygen-18 isotopes with the other samples. Although not as elevated as in Puna
Geothermal MW 1 and MW 3, the high sulfate in the Kapoho (Airstrip) well may indicate
that it is also steam heated.

Green Lake (3080-S1), Kapoho Crater well (3080-01), and Kapoho Shaft (3080-
02) are located further east on the rift (Figure 36), and the samples have similar chemical
patterns (Figure 70). Magnesium and calcium are elevated and bicarbonate is high
compared to most other samples. Silica and temperature are only slightly elevated (Figures
71 and 72). Sulfate and bromide are essentially on or below a sea-water dilution line
(Figures 74 and 75) indicating a significant component of sea water. Green Lake is more
dilute than the well samples (Figure 70) indicating that rain is probably falling on the lake
and mixing with water similar to that found in the wells; however, the isotopes for the lake
samples indicate that there is substantial evaporation also affecting the lake water (Figure
77). The similar temperature of the lake water and well samples is only coincidence as the
lake has cool water input from rain, cooling from evaporation, and heating from solar
radiation. The difference in isotopes for the two samples of the Kapoho Crater well is large
enough to be significant and probably indicates rather local and rapid recharge of cold
water.

A useful comparison for the chemistry of the Kapoho Crater wells is to that for the
Volcano TH 4 well (2714-01, Figure 25) shown in Figure 70. The three Volcano TH
wells all have quite similar chemistries, and the data for only one are shown on Figure 70.
Unlike the Kapoho Crater well and shaft, the Volcano TH wells have no sea water mixed
in, only constituents from rainfall and subsequent reaction with rock . Silica for the
samples from the Volcano TH wells are only 50-54 mg/L, but bicarbonate concentrations
are 126-154 mg/L. These high bicarbonate concentrations indicate a significant component
of carbon dioxide input to the water that is then dissolving minerals in the rock. The
resulting chemistry is similar to but more dilute than that for the Kapoho Crater well and
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shaft. The major difference is that the relative proportion of sodium to bicarbonate in the
Volcano TH 4 well sample is much lower, and this difference indicates that magnesium and
calcium are much easier to dissolve from rock than is sodium. This partially explains the
pattern found in many samples of modifications to magnesium and calcium concentrations
in diluted sea water with little change in sodium concentrations. This pattern combined
with the dominance of sodium in sea water over other cations makes it difficult to modify
sodium concentrations from diluted sea water.

CHEMISTRY OF WATER SAMPLES FROM AND BEHAVIOR OF DEEP WELLS

The deep wells drilled on the east rift (Figure 7 and Figure 36) show a complex
pattern of chemical and physical behavior that indicate at least four processes in the
geothermal reservoir. The reservoir contains parts that are single phase liquid, two-phase
steam and water, and single phase steam. The basic chemical processes in the reservoir are
sea-water dilution, reaction with rock to modify diluted sea water, boiling of possibly
undiluted sea water, and additional reaction with rock at high temperatures. These various
processes are illustrated by data for different wells (Figure 78 and 79). Well HGP-A has a
significant production history while other wells have only been briefly tested. The
evolution of the chemistry of HGP-A provides important information when compared to
the short term data available for other wells.

Well HGP-A was completed in 1976 and produces a two-phase mixture of steam
and water (Thomas, 1987). Various tests were conducted from 1976 to 1981, and
~ continuous production occurred from June 12, 1981 to September 4, 1981 and from
December 11, 1981 to December 11, 1989, except during brief shut downs for plant
maintenance (Thomas, 1987; Thomas, 1990). Measurements of flow and steam fraction
were not made during much of this period; however, it is estimated that the flow decreased
no more than 2.2 %/year (Thomas, 1990). The long-term data for the chemistry of fluids
from HGP-A show a substantial increase in chloride concentration (Figure 80). The early
testing data involve various types of samples resulting in variable concentrations, but the
production data were generally collected under a standard set of conditions. Some of the
low chloride concentrations in the production data are from analyses in the literature that
have been recalculated to a total fluid basis, and those data have not been removed from the
plot. Because the production data were collected under a standard set of conditions and
they show a systematic evolution of chloride concentration with time, the following
discussion will focus only on the production data. Chloride concentrations rose sharply
from about 1600 mg/L to 3700 mg/L in the period June-September, 1981, and were only
2800 mg/L when production was restarted in December, 1981 (Figure 80).

The evolution of chloride with time in HGP-A fluid is not just a mixing
relationship, but there is a change in chemistry that involves an evolution of chemical
processes. Figure 78 is a modified Schoeller diagram for representative samples from
HGP-A chosen mostly on the basis of completeness of analysis and representative values
of chloride concentration. These data are also given in Table 6. Sodium and chloride
closely approach sea-water dilution (Figure 81), and their behavior is the basis for
proposing sea-water dilution as the base process for HGP-A fluids. Fluid samples show a




nearly complete depletion of magnesium and sulfate compared to diluted sea water (Figure
78). Magnesium depletion is expected in high-temperature thermal waters, and it appears
that much of the magnesium was deposited with sulfate (Thomas, 1987). As the chloride
increases, the ratio of Ca:Na evolves from less than that for diluted sea water to more than
that for diluted sea water. This evolution can be seen in Figure 82, where calcium
concentrations vary from below that for sea-water dilution, to some that approximate sea-
water dilution, to significantly above what can be obtained from sea-water dilution. A
mixing process between fluids with differing calcium and chloride concentrations can
explain the path of evolution of calcium versus chloride only if there are three end-member
fluids. A more reasonable interpretation based on the similar data for other wells (further
discussed below) is that the evolution involves sampling fluids through a chemical gradient
that depends on other variables such as degree of boiling and/or temperature. Because
there are no published data concerning steam fraction, enthalpy, or isotopes of produced
fluids, it is not possible to further define the process.

Unlike calcium, potassium concentrations follow a mixing relationship, but one that
is significanty different from sea-water dilution (Figure 83). As potassium is a reactive
species that is important in several geothermometers, this relationship indicates that fluid is
able to dissolve potassium in reacting with rock and may provide valid information on
geothermometer temperatures. Nearly all samples for HGP-A follow a mixing line that
might indicate that the well essentially obtained most of its liquid from a reservoir at a
single temperature, but the last (most concentrated) samples deviate from the mixing
relationship. Much of the data for lithium also follows a mixing relationship that differs
significantly from sea-water dilution, but the last (most concentrated) HGP-A samples also
deviate from the mixing relationship (Figure 84). Thus the latest produced fluids may be
tapping a lower-temperature liquid.

An important constituent for geothermometry is silica, and Figure 85 shows the
available data obtained during production. Most of the values near 450 mg/L are for
samples recalculated to a total fluid basis. Most of the samples are around 825 mg/L,
although the first samples produced in each production period are above 1000 mg/L. Data
for various tests before production are quite variable in silica with many samples having
values around 200 mg/L,; it seems likely that some of these samples may not have been
adequately preserved before analysis as these values are much too low for a high-
temperature reservoir. In order to apply the silica geothermometer to fluids from HGP-A,
the amount of added steam must be taken into account. Based on the reported separator
conditions and steam fraction, the enthalpy of produced fluids from HGP-A is equivalent to
a temperature of 346°C if the fluid started as liquid water (Table 6). This temperature is
higher than is available in most of the well where measured temperatures are about 300-
320°C from 1250 m to around 1800 m but increase to almost 370°C at 1900 m (Thomas,
1987). Thus the well fluid appears to obtain extra enthalpy either by tapping a steam zone
or by boiling and obtaining energy from lowered rock temperature as a boiling front moves
out into the formation. An approximate measure of the silica temperature is provided by the
quartz adiabatic geothermometer that assumes the concentration of silica in the separated
liquid has been produced by boiling from the reservoir temperature to 100°C (maximum
steam loss). There is a slight error because the produced fluid was only boiled to 184°-
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187°C, but the approximation is further corrected below. Quartz adiabatic temperatures
range from 261°C to 272°C for representative fluid samples (Table 6) and would seem to
indicate that most of the liquid should be coming from a relatively high level in the well
where temperatures are lower.

Other geothermometers generally confirm that the liquid came from equilibrium
with rock at 250-270°C, but these calculated temperatures must be regarded with some
caution. Na-K-Ca temperatures are generally around 255°C although two values are 15°C
and 30°C lower. Based on the behavior of K and Ca, there is significant water-rock
interaction for these two elements, indicating possible equilibration between water and
rock. However, Na is determined by diluting sea water, and this behavior violates one of
the assumptions of the geothermometer: that amounts of dissolved constituents are
determined by dissolution of rock. However, the increase in K and changes in Ca
concentration are enough to change the Na-K-Ca temperature from 174°C for sea water (not
in equilibrium with rock) to values well over 220°C. Na-K temperatures are somewhat
higher than Na-K-Ca, but the geothermometer is suspect based on the same argument as
for Na in the Na-K-Ca geothermometer. K-Mg temperatures are consistently higher than
any others, and Mg-Li temperatures are consistently low enough to be dismissed. Both K
and Li are increased by water-rock interaction while Mg is decreased by deposition of
hydrothermal minerals. Magnesium content is low enough that one is concerned about
precision and accuracy for the analyses. However, lowering the amount of magnesium
increases both the K-Mg and Mg-Li temperatures, and the two geothermometers cannot be
brought into agreement by adjusting values for magnesium. This comparison indicates that
K, Mg, and Li systematics are not compatible for this water, and neither geothermometer is
quite appropriate because of their dependence on magnesium contents.

Returning to the silica geothermometer as apparently the most consistent, we can
use it to estimate the amount of steam in the produced fluids that comes from isoenthalpic
boiling of liquid water and that which is added. The steam at the well head beyond that
produced by isoenthalpic boiling is added steam produced by reservoir boiling, frequently
by an approximately isothermal process at a distance from the well feeds. The basic notion
is to assign an amount of steam produced at separator conditions to have been boiled
directly from liquid water in the well feed. This amount of steam is added to the liquid
phase produced at separator conditions to calculate the enthalpy and the equivalent
downhole temperature of the source liquid. Silica at reservoir conditions can be calculated
by adding the steam to the produced liquid to correct the measured silica concentration for
steam loss. The silica at reservoir conditions is then used to calculate the reservoir
temperature using the quartz conductive geothermometer. By an iterative calculation, the
amount of steam needed to make the two temperatures the same can be easily determined.
The remaining steam at the wellhead is known as added steam (Truesdell and others,
1989). -

Two complications arise in this calculation for samples from the Hawaii wells.
Temperatures of some of the wells are quite high, and the usual formulas for quartz
solubility (e.g. Fournier, 1981) are not valid at such high temperatures. To deal with this
problem, Fournier and Potter (1982a) presented a revised quartz geothermometer;
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however, even that formulation is only valid to 330°C. Although none of the calculations
for added steam yield temperatures above 318°C, the revised formula cannot deal with
effect of high dissolved solids contents found in Hawaii wells. To deal with this second
complication, we use the quartz solubility formula of Fournier and Potter (1982b) and the
method of accounting for the effect of dissolved constituents of Fournier (1983). The
density of water as a function of temperature and salinity are needed for the calculation, and
we use the tables of Potter and Brown (1977). Since the wells are generally around 2 km
deep, we assume that reservoir fluids were initially at 200 bars pressure. This procedure
was also utilized to calculate quartz adiabatic temperatures rather than the conventional
formula.

The downhole temperature in HGP-A for the boiled fluid (BF in Table 6) is 279°C
for the sample collected on 12/5/83. The added steam is 0.27; or of the total steam (0.43)
produced at the separator conditions, 0.16 is steam produced from the boiled fluid and 0.27
is added steam. The calculated downhole temperature of 279°C is close to the quartz
adiabatic temperature of 264°C showing that the error of the quartz adiabatic temperature
associated with the inconsistency between its assumed boiled temperature of 100°C and the
actual separator temperature of 184°C is small. The calculated downhole silica
concentration is 640 mg/L, and values close to this were found in a number of downhole
samples in the early testing of HGP-A (Table 3).

The relatively low temperature for the boiled fluid of 279°C at reservoir conditions
suggests that the fluid is produced from a relatively high level in the well where
temperatures are lower. This may also help explain why first-produced fluids have a much
higher silica content than later fluids. Assuming either a two-phase or a steam phase zone
lower in the well, shut-in conditions would allow high-level liquid that filled the well to
flow down the well during shut in. Assuming that this lower zone has limited permeability
and higher temperature, a small amount of fluid could dissolve silica at higher temperature.
This hotter fluid would come out early in the production until either the steam or two-phase
zone reestablished itself, and the result would be an initial spike in silica concentrations as
the well is turned on. A silica concentration of 1200 mg/L (Table 3 and Figure 85) yields a
quartz adiabatic temperature of 290°C, which is closer to the higher temperatures measured
deeper in the well. This suggests that equilibration of reservoir fluid is relatively rapid, as
one would expect at these high temperatures.

Water chemistry data for other deep wells on the east rift show variations that help
constrain the characteristics of the reservoir (Figure 79). Lanipuna 1 (2883-02) is south of
HGP-A (2883-01) and Lanipuna 6 (2883-05) is east (Figure 36). Data for Lanipuna 1
show that it is similar to the most concentrated samples from HGP-A (Figure 78). Sodium
and chloride are below values for sea water indicating that there is some dilute water in the
sampled water. The three sodium values that plot below the sea-water dilution line (Figure
81) are partly an analytical artifact, because each of these analyses is low in total cations
compared to anions. Because sodium and chloride are so dominant in the cation/anion
balance, the difference from the dilution line is partly because of the failure of the analyses
to balance. If the chloride values are adjusted to force a perfect balance, there is still a
suggestion that sodium is lower than the dilution line. Calcium is more strongly enriched




in Lanipuna 1 than in HGP-A (Figure 82). Potassium is significantly closer to the sea-
water dilution line than for HGP-A (Figure 83), and lithium is slightly closer (Figure 84).
Silica concentrations may be unrealistically low based on comparison between cation and
silica geothermometer temperatures (Table 6). Although more concentrated than HGP-A
fluids, the fluids from Lanipuna 1 appear to be lower temperature based on the lower
potassium content and lower cation temperatures. Although measured temperatures in the
well were quite high (>363°C at 2557 m, Thomas, 1987), the chemical data indicate that
fluids were probably produced from a shallower entry at lower temperature.

Data for the shallower well Lanipuna 6 provide a useful comparison of the effects
of lower temperature. Boron in Lanipuna 6 is essentially on the sea-water dilution line
compared to elevated boron levels in other wells (Figure 86). Although calcium is slightly
more enriched in fluid from Lanipuna 6 than in Lanipuna 1 (Figure 82), sulfate is much
less depleted (Figure 87) and there is still significant magnesium in the fluid (Figure 79).
Potassium in Lanipuna 6 is much closer to the sea-water dilution line than in Lanipuna 1
(Figure 83). Geothermometer temperatures are lower than for Lanipuna 1 (Table 6). The
comparison between Lanipuna 6 and 1 indicates that lower temperatures result in less
sulfate and magnesium depletion and less enrichment of potassium. The calcium
enrichment seems not to be very temperature dependent (once above some minimum
temperature?) but is related to chloride concentration or, more likely, the relative salinity of
the water.

Water chemistry for deep wells Kapoho State 1A and 3 provides information on
fluids hotter than those found in HGP-A. Chloride concentrations in samples from
Kapoho State 1A range from below that of sea water to above sea water (Figure 81).
Mostly this is the effect of concentration as liquid is boiled in the well, and the down hole
concentration is less than that of sea water. Sodium values appear to be less than that
obtained from sea-water dilution, but the analyses also have a systematic bias similar to that
for Lanipuna 1. Adjusting the chloride concentrations to force a perfect balance, the values
are systematically below the sea-water dilution line but by a smaller amount than shown in
Figure 81. Magnesium and sulfate are strongly depleted in fluids from Kapoho State 1A
(Figure 79). Calcium is less enriched in Kapoho State 1A than Lanipuna 1 and 6 (Figure
82). Potassium and lithium are significantly enriched in Kapoho State 1A, confirming its
high-temperature origin (Figures 83 and 84). Silica concentrations are high but variable
(Figure 85). The quartz adiabatic geothermometer temperature is 271°C for the listed value
for silica of 900 mg/L in Table 6. A value of 1000 mg/L. may be more representative (Table
3), and the corresponding quartz adiabatic temperature of 280°C is listed in Table 6. Cation
geothermometers indicate temperatures of 300-330°C. The enthalpy of produced fluids
cannot be accounted for by isoenthalpic boiling of liquid water, and either steam or thermal
energy must be added to explain the produced enthalpy. Using a silica concentration of
1000 mg/L, the added steam calculation indicates a reservoir temperature of 310°C and
added steam of 0.79 (Table 6). The down hole concentration of chloride for a measured
chloride of 19645 mg/L would be 15,700 mg/L.. This is somewhat greater than the lowest
measured chloride of 13000 mg/L (Table 3), and this difference may indicate that the well
has another feed zone of lower salinity that becomes important at the higher well head
pressure of 44.1 bar at which that sample was obtained (Table 5). The calculated chloride
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concentration is below the chloride content of sea water, indicating that the source fluid has
some dilute water mixed with sea water.

Water chemistry data for samples from Kapoho State 3 indicate that it is strongly
concentrated fluid compared to sea water with chloride concentrations in produced fluids
two to three times that in sea water (Figures 79 and 81). The higher magnesium content
than in other deep-well fluids is probably related to the low pH of fluids in Kapoho State 3.
Sodium is significantly depleted compared to fluid boiled from sea water (Figure 81), and
calcium shows strong enrichment. Potassium is essentially on the same mixing line as
HGP-A fluids and is significantly enriched compared to sea water (Figure 83). Lithium is
more enriched than in HGP-A fluids (Figure 84). Silica concentrations are high but
somewhat variable (Figure 85) with some of the range caused by data from different
separation pressures. The fraction of steam in produced fluids was calculated using a
representative enthalpy of 2209 j/g (950 Btu/Ib). The quartz boiled-fluid temperature of
318°C s higher than the Na-K-Ca and Na-K geothermometers (Table 6). The K-Mg
geothermometer temperature is low and the Mg-Li temperature is very low compared to the
quartz boiled-fluid temperature. Produced fluids have an enthalpy greater than what can be
produced from liquid water unless steam and or thermal energy is added. The calculated
down hole chloride concentration is 30,300 mg/L or 60 % higher than that in sea water,
and this indicates that the fluid has undergone significant boiling in the formation. Whether
it started as a mixed water before boiling cannot be established; however its similarities to
fluid from Kapoho State 1A, which clearly has some dilution, indicates that its initial
chloride concentration was probably less than that of sea water.

Water chemistry data for samples from Kapoho State 8 and 9 are quite dilute
compared to the deep wells discussed above (Table 6). Well head pressures under
production for the sample collected from well Kapoho State 8 were 104.5 bars. A
minimum reservoir temperature of 314 °C can be calculated assuming that water in the
reservoir existed at the pressure measured at the well head. The well head enthalpy for KS-
8 corresponds to 350°C saturated steam. The silica concentration in the total fluid was 24
mg/kg. This amount of silica corresponds to a temperature of 342°C (Table 6) if carried in
saturated steam from the silica solubility formula of Fournier and Potter (1982b). Thus the
dilute chemistry of the fluid from KS-8 combined with a rather high amount of dissolved
silica is explained by the fluid having been 340-350°C saturated steam in the reservoir. As
the fluid came up the well with constant enthalpy, liquid water was condensed from the
steam and the silica preferentially went into the liquid phase. Limited data are available for
wells Kapoho State 1 and 2 (Table 5), however both produced dry steam before being
plugged.

The data sets from the various wells permit some tentative conclusions concerning
the state of the reservoir in this part of the rift. The high flows from wells Kapoho State 8
and 9 indicate that the production of high enthalpy fluids probably involves tapping a zone
that has steam as the pressure controlling phase. This steam is being produced in the
reservoir in a boiling zone that was probably tapped by well Kapoho State 3 because of the
high chloride concentrations found in that well. The boiling that takes place in the reservoir
is caused by a leakage of steam to the surface, a process that is slowly dewatering the




system. Although there can be boiling in the reservoir in response to production, the
behavior of the wells as a group indicates that there was substantial pre-exploitation boiling
to produce high flows of nearly pure steam. To be able to distinguish reservoir boiling
from pre-exploitation boiling, detailed time histories of flow and produced enthalpy would
be necessary but are not available for the only well with a long production history. To keep
such a system from collapsing due to cold water recharge, it is likely that permeabilities
surrounding the reservoir are low either because of mineral deposition (from removal of
magnesium and sulfate) or from the pattern of dike intrusion or a combination of the two.
The reservoir has significant gradients in chemistry related to temperature and degree of
boiling of reservoir fluids. The liquid present in the reservoir is a mixture of sea water and
dilute water that has had its chemistry modified in major ways by interaction with rock at
high temperature. Surrounding the reservoir, some of the fluids are hot but may receive
their thermal energy dominantly by conduction from the high-temperature reservoir at
depth. The proposed configuration closely resembles the vapor-dominated system of
White and others (1971) except that the strong gradients of temperature in this reservoir
indicate that this system is probably in the early stages of evolution from a hot-water
dominated system.

Reservoir liquid has some characteristics that are simply a more evolved version of
characteristics found in shallow wells, but the most diagnostic characteristic to differentiate
reservoir fluids is the depletion of sulfate. Figure 87 shows sulfate versus chloride data for
deep-well fluids. The hottest fluids show the strongest depletion of sulfate. Few samples
from shallow wells or springs show a similar depletion. The 1982 high-chloride sample
from Allison (2881-01) is depleted in sulfate compared to the 1975 low-chloride sample
(Figure 49), but the 1982 sulfate value is suspect because of the poor balance. Also the
1982 sample shows little magnesium depletion (open triangle, Figure 50) compared to the
large depletion in sulfate, and the difference in depletions tends to reinforce doubt in the
sulfate value. Puna Thermal TH 3 (2982-01) is the only other sample of water from a
shallow well on or near the east rift that shows a significant depletion in sulfate (Figure 88)
and magnesium (Figure 58). If deep fluid is part of the fluid in TH 3, there would also
have to be meteoric water and some unmodified sea water. Given that temperatures in
TH 3 are up to 93°C, it is entirely possible that some component of deep water is mixed in.
The lack of any signature of fluids sampled by the deep wells in the other shallow wells
indicates that little liquid from the deep reservoir appears to leak to the near surface. Fluids
sampled by the shallow wells may still have a component of water from a deep liquid, but it
is not the liquid found in the deep wells. This is consistent with the generally closed nature
of a reservoir developing a steam zone due to leakage of steam over geologic time. The
springs sampled along coast below the lower east rift show no evidence of any of the fluids
sampled by the deep wells.

CONCLUSIONS

The chemistry of dilute ground water is determined by precipitation containing
sulfate, chloride and some of the sodium and by addition of calcium, magnesium, silica,
bicarbonate, some of the sodium, and possibly sulfate from reaction with minerals in
volcanic rock. Mixtures of this dilute meteoric water with sea water result in water
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chemistry that is dominated by the constituents in sea water except for bicarbonate and
silica. The amounts of silica and bicarbonate in mixed waters indicate that carbon dioxide
is available for further reaction with rock after mixing. Some shallow ground-water
samples have higher than normal bicarbonate concentrations (~ 50 mg/L), and these high
concentrations (up to 100 mg/L) probably indicate that some areas have anomalously high
partial pressures of carbon dioxide. The component of dilute meteoric water in some mixed
waters at low elevations has isotopic compositions that indicate a higher elevation source
(McMurtry and others, 1977; Scholl and others, 1993), and this indicates that some of the
ground-water flow systems are of large extent.

Sampling and analyses of coastal springs indicates that more springs have a thermal
component than previously known. Both thermal and non-thermal coastal springs
approximately follow sea-water dilution for major elements except silica and bicarbonate.
In the springs south of Kilauea Crater, silica increases with bicarbonate. In the thermal
springs near the lower east rift, bicarbonate is constant, and silica increases with
temperature and chloride concentration. This characteristic has been used in the boiling-
spring mixing model to propose a possible source fluid at 165°C. Because the
extrapolations used in this model are large, the derived temperature should be treated with
some caution. However, it is clear that the large areal extent of these thermal springs and
their high discharge rates implies that they involve a large thermal anomaly. Comparison of
the chemical data for the thermal springs with samples obtained from deep wells within the
east rift show that the wells do not tap a similar fluid; however it does seem likely that the
thermal springs involve a heat source associated with the rift.

Samples from shallow wells within the east rift and between the east rift and the
coast have rather variable water chemistry. This variability is caused by a number of
different mechanisms producing the chemistry of water sampled by shallow wells. Malama
Ki (2783-01), Allison (2881-01), and Pulama (2102-01) are basically diluted sea water
except for silica and bicarbonate. Pulama has only a slight indication of being a thermal
water, whereas Malama Ki and Allison are clearly thermal. Although Malama Ki and
Allison do not sample the same mixed water as found in the coastal thermal springs, they
could have some component of the same saline, hot water. Although Puna Thermal TH 3
(2982-01), Puna Geothermal MW 2 (2883-07), and Keauohana 1 (2487-01) are grouped
together based on depletion of magnesium compared to the sea-water dilution, Keauohana
1 has only a slight signature of being thermal. The sample from Puna Thermal TH 3 is the
only sample from a shallow well to show sulfate and magnesium depletion as found in the
deep wells on the lower east rift, and it may have a component of deep fluid. Puna
Thermal TH 3 and Geothermal MW 2 are both hotter than their chloride concentrations
would indicate if they receive their thermal energy from the same saline, hot water as found
in the coastal springs from Pohoiki to Cape Kamukahi. The chemistry of water sampled
from Puna Geothermal MW 1 and MW 3 (2983-01 and 02) and Kapoho (Airstrip) well
(3081-01) appears to be dominated by steam heating of local ground water. The chemistry
of water sampled by the Kapoho Crater and Shaft (3080-01 and 02) has very high
bicarbonate indicating a high partial pressure of carbon dioxide.




The deep wells on the east rift tap a reservoir with significant gradients of water
chemistry. The basic processes are driven by boiling and reaction with rock as a steam
zone has been created in the reservoir. Most deep wells show that they started as diluted
sea water with substantial modification from reaction with rock at high temperatures. The
relative proportions of sea water and dilute water vary significantly between various wells.
Most wells that produce a two-phase mixture of steam and water have added steam beyond
what would be produced from isoenthalpic boiling of liquid water from depth. Some wells
produce nearly pure steam. Well KS-8 taps high-temperature (340-350°C) steam that
condenses liquid water as it flows up the well. Wells KS-8 and 9 have very little dissolved
solids other than silica in the liquid phase sampled at the surface, and this confirms that the
fluid in the reservoir was high-temperature steam. The basic model for the reservoir tapped
by the deep wells is that of an evolving vapor dominated system that has not encompassed
sufficient volume to smooth gradients of temperature and fluid saturation. There seems to
be no direct connection between fluids in this reservoir and the saline, hot fluid found in the
coastal springs. The source of the saline, hot fluid that provides the heat for the coastal
springs may be conductive heating of sea water near the margins of the deep reservoir
sampled by deep wells on the east rift or a more open reservoir at lower temperature than
that found by deep wells on the east rift. Fluids sampled by the deep wells are depleted in
sulfate compared to sea-water dilution whereas fluids from shallow thermal wells are not.
This characteristic shows that thermal water from shallow wells generally does not contain
a component of fluid from the deeper reservoir sampled by the deep wells.
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Table 1. Location data for springs, wells, shafts, and tunnels. Locations for wells are from
Hawaii State files. Some locations for wells as reported in the literature differ from the
modern location, and these locations are also given in the table. Locations for springs are
from this report. ID numbers for springs are assigned based on usual methodology used in
Hawaii for wells, but the numbering has been developed for this report.

1D Name Latitude - Longitude Elavation Depth Data
No. o o+ meters meters Source

Thermal and non-thermal springs

0436-S1 Kau cane field spring near Haao 19 04 58 155 36 51 632.5

0631-S1 Kawa Spring 19 06 51 155 31 45 1.5

0829-S1 Kamehame Hill crack 19 08 36 155 29 03 6.1

0830-S1 Punaluu beach spring 19 08 09 155 30 30 1.8

0926-81 Pueo spring near Palima Point 19 09 35 155 26 47 0.6

0926-S2 Waiapele crack 19 09 55 155 26 22 0.6

0927-S1 Waioala Spring 19 09 10 155 27 11 1.8

1420-S1 Puu Elemakule spring 19 14 24 155 20 00 0.0

1511-S1 Apua Point crack 19 15 47 155 11 52 7.6

1518-S1 Kaaha, West crack 19 15 54 155 18 11 6.1

1615-S1 Halape crack, large pool 19 16 27 155 15 29 4.6

1615-8S2 Halape Iki spring at beach 19 16 24 155 15 44 0

1617-S1 Kaaha, East crack 19 16 00 155 17 47 6.1

1617-S2 Kalue crack 19 16 06 155 17 20 6.1

2634-S1 Ainapo Trail crack 19 26 27 155 34 49 3922.8

2735-S1 Mauna Loa Cabin crack 19 27 53 155 35 07 4038.6

2780-S1 Pohoiki Spring 19 27 40 154 50 45 1.5

2780-S2 Allison Spring 19 27 55 154 50 21 ~1 4

2880-S1 Campbeli spring 19 28 00 154 S50 17 1.5

2934-S1 Jaggar's Cave crack 19 29 46 155 34 47 3968.2

2979-S1 Vacationland, Roney 19 29 38 154 49 30 3.0

2979-S2 Burgess pool, Kapoho Beach Lots 19 29 31 154 49 31 3.0

3080-S1 Green Lake, near shore 19 30 19 154 50 31 6.1

3080-S1 Green Lake, near center 19 30 20 154 50 32 6.1 2.5

3178-81 Lighthouse spring, Cape Kumukahi 19 31 15 154 48 34 1.5

3889-S1 Haena spring at road above lake 19 38 43 154 59 19 4.6

3889-S2 Haena spring above beach 19 38 50 154 59 09 0.6

8836-S1 Kaalualu spring 1 18 58 28 155 36 54 0.6

8836-S2 Kaalualu spring 2 18 58 30 155 36 54 c.6

8837-S1 Kaailualu spring 3 18 58 32 155 37 01 0.6

Shallow wells > 30°C

2686-02 Puna Thermal TH 2 19 26 33 154 56 48 315.5 169.5

2783-01 Malama Ki 19 27 28 154 53 01 83.5 97.2

2783-01 Malama Ki 19 27 30 154 53 00 83.5 897.2 4

2881-01 Aliison (Pohoiki Puna) 19 28 19 154 51 10 40.2 42.7 4

2883-07 Puna Geothermal MW 2 19 28 36 154 53 30 179.2 195.1
. 2982-01 Puna Thermal TH3 19 29 13 154 52 55 171.6 210.3

2983-01 Puna Geothermal MW 1 19 29 08 154 53 39 185.9 219.5

2983-02 Puna Geothermal MW 3 19 29 10 154 583 40 185.9 219.5

3081-01 Kapoho (Airstrip) 19 30 24 154 51 59 87.5 102.7

3081-01 Kapoho (Airstrip) 19 30 30 154 52 23 87.5 102.7 4

3081-02 Puna Thermal TH 4 19 30 39 154 51 19 78.2 88.4
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1D Name Latitude  Longitude Elevation Depth Data
No. o v ° " meters meters Source
Shallow welis, shafts, and tunnels < 30°C

0335-01 Naalehu 1 19 03 47 155 35 43 227.4 273.1
0533-01 Honuapo Mill 19 05 40 155 33 05 6.7 10.4
0533-01 Honuapo Mill 19 05 30 155 33 00 6.7 10.4 4
0533-02 Honuapo 1 19 05 59 155 33 0Ot 28.7 39.6
0533-03 Honuapo 3 19 05 57 1585 33 02 27.1 38.1
0537-01 Haao Tunnel 19 05 27 155 37 27 701.0
0632-01 Honuapo2 19 06 02 155 32 59 31.4 42.7
0830-01 Punaluu 19 08 28 155 30 28 8.7 6.1
0831-01 NinoleGUTH 1 19 08 29 155 31 11 37.5 53.0
0831-02 Ninole A 19 08 32 155 31 08 39.0 52.4
0831-03 Ninole B 19 08 32 155 31 09 39.0 52.4
0936-01 New Mountain House Tunnel 19 09 30 155 36 57 1036.3
1128-01 Pahala Shaft 19 11 57 155 28 49 235.9 166.7
1128-01 Pahala Shaft 19 12 40 155 25 40 235.9 166.7 4
1128-02 Palima 19 11 08 155 28 08 4
1128-02 Palima 19 11 08 155 28 16 92.7 114.3
1229-01 Pahala 19 12 25 155 29 22 338.9  285.9
1331-01 Alili Tunnel 19 13 57 155 31 17 883.9
2102-01 Pulama 19 21 07 155 02 12 70.1 76.2
2102-01 Pulama 19 21 15 155 02 15 76.1 76.2 4
2487-01 Keauohana 1 19 24 56 154 57 19 229.2 244.4
2487-01 Keauohana 1 19 24 53 154 57 20 229.1 244.4 4
2487-02 Keauohana?2 19 24 57 154 57 18 229.2 244.8
2714-01 VolcanoTH4 19 27 43 155 14 55 1159.0 100.3
2715-02 Volcano TH3 19 27 55 155 15 02 1170.0 108.7
2815-01 Volcano TH 1 19 28 02 155 15 12 1180.0 114.3
2986-01 Pahoa Battery 2A 19 29 25 154 56 46 214.9 230.1
2986-02 Pahoa Battery 2B 19 29 24 154 56 47 216.7
2986-02 Pahoa Battery 2B 19 29 33 154 57 00 218.7 4
PVFW Pahoa Village Fresh Water 6
3080-01 Kapoho Crater 19 30 16 154 50 21 11.6 14.0
3080-02 Kapoho Shaft 19 30 17 154 50 21 11.8 14.0 4
3080-02 Kapoho Shaft 19 30 16 154 50 21 11.6 14.0
3185-01 Hawaiian Shores 1 (Beaches) 19 31 13 154 55 68 122.5 135.9
3185-02 Hawaiian Shores 2 19 31 26 154 55 44 115.8 131.1
3188-01 Keonepoko Nui 19 31 05 154 58 03 183.8 198.1
3500-01 WaiPahoehoe 19 35 17 155 00 49 94.8 110.0
3588-01 Hawaiian Paradise 1 19 35 47 154 58 34 44.2 51.2
3603-01 Olaa3 19 36 32 155 03 13 ng
3702-01 Olaa Shaft 19 37 57 155 02 00 67.1 61.9
3802-01 Keaau1 19 38 02 155 02 02 65.5 137.2
9-A Olaa mill Well 19 38 10 155 02 05 67.1 137.2 4
3802-02 Keaau2 19 38 03 155 02 02 65.5 137.2
3802-03 Keaau Mill 1 19 38 04 155 02 02 85.2 115.5
3802-04 Keaau Mill 2 19 38 06 155 02 02 65.2 113.1
3802-05 Keaau Mill 3 19 38 07 155 02 02 65.2 114.3
3804-01 Keaau (Shipman) 19 38 12 155 04 15 168.2 212.8
3900-01 Keaau Orchard 1 19 39 37 155 00 43 28.0 41.8
3900-02 Keaau Orchard2 19 39 34 155 00 45 29.0 44.8
4003-01 Panaewa 1 19 40 35 155 03 55 62.8 93.3
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ID Name Latitude  Longitude Elevation Depth Data
No. ° ot meters meters Source
4003-02 Panaewa?2 - 19 40 40 155 03 52 61.3 92.1
4202-01 Hilo Airport 19 42 48 155 02 45 18.0 23.2
4203-02Z Waiakea TH 2 19 42 23 155 03 52 12.5 16.8 1,3
4203-02 Waiakea TH 2 19 42 23 155 03 52 12.5 16.8
4203-03 Waiakea TH 3 19 42 30 155 03 48 12.5 17.1
4203-04 Waiakea 4 19 42 22 155 03 51 14.3 61.3
Hilo Electric Well{Waiakea) 19 42 28 155 03 52 16.8 61.0 4
4203-05 Kanoelshua 1 19 42 22 155 03 50 15.2 61.0
4203-06 Kanoeiehua 2 19 42 23 155 03 49 15.2 61.0
4203-07 Kanoelehua 3 19 42 24 155 03 50 15.2 61.0
4203-10 Helco Kan 6-2 19 42 22 155 03 47 16.8 64.0
4211-01 Olaa Flume Tunnel 19 42 01 155 11 18 597.4
4304-01 Waiakea 19 43 37 155 04 18 3.7 6.1
4304-02 Waiakea 19 43 37 155 04 18 3.1 8.2
4304-03 Waiakea 19 43 37 155 04 18 3.1 7.9
4306-01 Piihonua A 19 43 18 155 06 18 84.7 129.5
4706-01 Papaikou 19 47 15 155 06 13 112.5 129.5
Deep wells
2317-01 Kilauea Volcano Summit Borehole 19 23 44 155 17 21 1099.1 1257.9
28600-01 True Mid-Pacific Redrill 4 " 19 26 32 155 00 19 458.1 1626.1
2685-01 Ashida 1 19 26 59 154 55 32 244.4 2529.8
2883-01 HGP-A 19 28 31 154 53 43 182.9 1967.5
2883-02 Lanipuna 1 19 28 16 154 53 33 182.9- 2557.0
2883-03 Kapoho State Gecthermal 1 19 28 47 154 53 39 188.7 2222.0
2883-04 Kapoho State Geothermal 2 19 28 55 154 53 22 219.2 2622.8
2883-05 Lanipuna 6 19 28 44 154 53 04 182.9 1510.6
2883-06 Kapoho State 1A 19 28 48 154 53 37 189.0  1982.7
2883-09 Kapoho State Geothermai 3 19 28 43 154 53 39 186.8 2257.3
2883-11 Kapoho State 8 19 28 48 154 53 28 192.0 1060.1.
2883-13 Kapoho State 9 19 28 154 53
Seawater, Hilo 19 44 26 155 00 51 0.0 17
Seawater 13,16,2
Seawater Hem (1985)
Seawater, Isaac Hale Park 19 27 37 154 50 43 0.0
Rain and stream samples
2513-C F. Trusdell's cistern, Voicano 19 25 53 155 13 24 1097.3
2616-C Griggs cistern, Volcano 19 26 26 155 16 26 1237.0
2815-C D. Thomas's cistern, Volcano 19 28 18 155 15 43 1220.7
2835-C Mauna Loa Cabin cistern 19 28 10 155 35 04 4038.8
2909-C Glenwood cistern, Picnic area 19 29 28 155 09 14 701.0
3228-C Red Hill Cabin cistern 19 32 00 155 28 02 3048.0

HVO kitchen tap, from Keaau
3810-R  Waiakea Stream at gaging station 19 38 30 155 10 29 591.3
4308-R  Wailuku River at Piihonua Bridge 19 43 05 155 08 27 288.0

Permafrost crack water

Stream discharge 0.18 cfs

Wailuku River not flowing

Permafrost crack water

Rain-Cloud Physics Observ., Hilo

Rain-Cloud Physics Observ., Hilo

&b 0ooo
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1D Name Latitude  Longitude Elevation Depth Data

No. ot " ot " meters meters Source
Rain-Cioud Physics Observ., Hilo 4
Rain-Cloud Physics Observ., Hilo 4
Rain at Kalapana Station 10
Rainwater 13
Rainwater Sample, Kalapana Station 10
Rainwater Sample, Airstrip 10
Rainwater Sample, Airstrip 10
Rainwater Sample, Isaac Hale Park 10
Rainwater Hilo Coast-weight avg. 19 43 1556 03 9.1 12,calc.
Rainwater Hilo Coast-gen. samp. 19 43 155 03 9.1 12
Rainfall @ HVO 4/24-4/27 19 25 25 155 17 27 1242.9 9
Rainfall @ HVO 5/3-6/1 19 25 25 155 17 27 1242.9 9
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Figure 1. Map of southern part of island of Hawaii with sample locations reported in this
study. _
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Figure 4. Silica versus bicarbonate for samples of Figure 3.
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Figure 5. Magnesium versus chloride for samples of Figure 3. Dilution line shown differs
from mixing line at low concentrations.
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Figure 6. Deuterium (8D) versus oxygen-18 (8180) in parts per thousand (%o) relative to
SMOW for samples of Figure 3. Data for repeat samplings shown. Global meteoric
water line is from Craig (1961).
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Figure 9. Magnesium versus chloride for samples of Figure 8. Dilution line shown differs

from mixing line at low concentrations.
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Figure 13. Deuterium (8D) versus oxygen-18 (3180) in parts per thousand (%o) for

samples of Figure 8. Data for repeat samplings shown. Global meteoric water line is

from Craig (1961).
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Figure 14. Map of area from Pahala to Kaalualu showing sample locations.
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Figure 16. Silica versus bicarbonate for samples of Figure 15.
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Figure 17. Magnesium versus chloride for samples of Figure 15. Dilution line shown

differs from mixing line at low concentrations.
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Figure 18. Deuterium (8D) versus oxygen-18 (3180) in parts per thousand (%o) for
samples of Figure 15. Data for repeat samplings shown. Global meteoric water line is
from Craig (1961).
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Figure 19. Deuterium versus chloride for samples of Figure 15. Data for repeat samplings
shown. Mixing lines are from assumed sea water and passing through data point for
8836-S1 and between data points for 0829-S1 and project to deuterium values for zero

chloride.
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Figure 21. Silica versus bicarbonate for samples of Figure 20.
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Figure 22. Magnesium versus chloride for samples of Figure 20. Dilution line shown

differs from mixing line at low concentrations.
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Figure 23. Calcium versus chloride for samples of Figure 20. Dilution line shown differs
from mixing line at low concentrations.




Pahala area

102

-
o
i
¥

DEUTERIUM (%.)
[P

MWL

0926-S1

0926-S2

0927-S1

1128-02

1128-01

1229-01

OXYGEN-18 (%.)

Figure 24. Deuterium (3D) versus oxygen-18 (3180) in parts per thousand (%o) for
samples of Figure 20. Data for repeat samplings shown. Global meteoric water line is
from Craig (1961).
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Figure 27. Magnesium versus chloride for samples of Figure 26. Dilution line shown
differs from mixing line at low concentrations.
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Figure 28. Bromide versus chloride for samples of Figure 26. Data for repeat samplings

shown. Dilution line shown differs from mixing line at low concentrations.
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Figure 29. Sulfate versus chloride for samples of Figure 26. Dilution line shown differs

from mixing line at low concentrations.
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Figure 30. Calcium versus chloride for samples of Figure 26. Dilution line shown differs

from mixing line at low concentrations.
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Figure 31. Temperature versus silica for samples of Figure 26. Data for repeat samplings

shown.




SILICA (mg/L)

70

60

50

40

30

20

10

Puu Elemakule to Apua Point area

A°®
A
O
L 2
"
50 100 150
BICARBONATE (mg/L)

Figure 32. Silica versus bicarbonate for samples of Figure 26.
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Figure 33. Deuterium (8D) versus oxygen-18 (5180) in parts per thousand (%o) for
samples of Figure 26. Data for repeat samplings shown. Global meteoric water line is
from Craig (1961).
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Figure 34. Deuterium versus chloride for samples of Figure 26. Data for repeat samplings
shown. Mixing lines are from assumed sea water and passing through data groups
discussed in text to project to deuterium value for zero chloride.
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Figure 35. Oxygen-18 versus chloride for samples of Figure 26. Data for repeat
samplings shown. Mixing lines are from assumed sea water and passing through

values calculated using the global meteoric water line and deuterium intercepts from

Figure 34.
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Figure 38. Magnesium versus chloride for samples of Figure 37. Dilution line shown

differs from mixing line at low concentrations.
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Figure 39. Calcium versus chloride for samples of Figure 37. Dilution line shown differs

from mixing line at low concentrations.
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Figure 40. Silica versus bicarbonate for samples of Figure 37.
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Figure 41. Temperature versus silica for samples of Figure 37. Data for repeat samplings
shown.
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Figure 42. Temperature versus chloride for samples of Figure 37. Data for repeat
samplings shown.
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Figure 43. Deuterium (3D) versus oxygen-18 (8180) in parts per thousand (%o) for
samples of Figure 37. Data for repeat samplings shown. Global meteoric water line is
from Craig (1961). Mixing lines based on deuterium and oxygen-18 versus chloride
plots are shown for water with isotopic content of sea water (assumed 0, 0 %o) and for
boiled sea water (0.8, 4.2 %o).
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Figure 44. Deuterium versus chloride for samples of Figure 37. Data for repeat samplings
shown. Mixing lines are from assumed sea water and boiled sea water and pass
through data group to project to deuterium value for zero chloride.
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Figure 45. Oxygen-18 versus chloride for samples of Figure 37. Data for repeat
samplings shown. Mixing lines are from assumed sea water and boiled sea water and
pass through value calculated using the global meteoric water line and the deuterium
intercept from Figure 44.




124

Pohoiki to Cape Kumukahi

100

90 +

80 4 d 2780-St

70 + * 2880-S1
- 1 -
E’ 60 % 2979-S1
< 50T A 2979-S2
1]
= +4
3 40 A 3178-S1

30 + ———— Mixing

2 e Qtz-cond.

10 + =TT

0 + : :
0 50 100 150 200

ENTHALPY (j/g)

Figure 46. Silica versus enthalpy for samples of Figure 37. Data for repeat samplings
shown. Mixing line is from assumed cold water and passing through center of data
shown.
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Figure 47. Silica versus enthalpy for samples of Figure 37. Mixing line is from Figure
46. Silica solubility is from Fournier and Potter (1982a). Point C is where intercept
might be for warm-spring mixing model if mixing line had a lower slope. Points E, F,
and G define relations for boiling spring mixing model.
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Figure 48. Silica versus chloride for samples of Figure 37. Data for repeat samplings
shown. Mixing line is from assumed cold water and passing through center of data
shown.
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Figure 50. Magnesium versus chloride for samples of Figure 49. Dilution line shown

differs from mixing line at low concentrations.
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Figure 51. Calcium versus chloride for samples of Figure 49. Dilution line shown differs
from mixing line at low concentrations.
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Figure 52. Potassium versus chloride for samples of Figure 49. Dilution line shown
differs from mixing line at low concentrations.
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Figure 53. Silica versus bicarbonate for samples of Figure 49 and repeat samplings of
Malama Ki (filled diamond).
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Figure 54. Temperature versus silica for samples of Figure 49, repeat samplings of
Malama Ki (open diamond), and McMurtry and others (1977) sample for Allison.
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Malama Ki, Allison, and Pulama
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Figure 55. Deuterium (3D) versus oxygen-18 (8180) in parts per thousand (%o) for
McMurtry and others (1977) samples for wells of Figure 49. Global meteoric water
line is from Craig (1961).
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Figure 56. Temperature versus chloride for samples of Figure 49 with repeat samplings
shown. Line is for mixing relation of temperature (actually enthalpy) versus chloride
for coastal springs south of east rift.
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Figure 58. Magnesium versus chloride for samples of Figure 57. Dilution line shown
differs from mixing line at low concentrations.
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Figure 59. Potassium versus chloride for samples of Figure 57. Dilution line shown
differs from mixing line at low concentrations.
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Figure 60. Calcium versus chloride for samples of Figure 57. Dilution line shown differs
from mixing line at low concentrations.
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Figure 61. Bromide versus chloride for samples of Figure 57. Dilution line shown differs
from mixing line at low concentrations.
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Figure 62. Silica versus bicarbonate for samples of Figure 57.
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Figure 63. Temperature versus silica for samples of Figure 57.




142

TH 3, MW 2, and Keauohana 1

0
5 4+
MWL
—~ -10 +
a3 s 2082-01
=
e )
= 15 + A 2883-07
i
5 o
w 2487-01
o .90 +
————— Mixing
25 4+
-30
-6 -5 -4 -3 2 -1 0

OXYGEN-18 (%)

Figure 64. Deuterium (D) versus oxygen-18 (3180) in parts per thousand (%o) for
samples for wells of Figure 57. Data for repeat samplings shown. Global meteoric
water line is from Craig (1961). Mixing lines are from sea water and passing through
deuterium at zero chloride from the deuterium versus chloride for 1991-92 data and
through deuterium versus oxygen-18 for data from McMurtry and others (1977).
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Figure 65. Deuterium versus chloride for samples of Figure 57. Upper mixing line
obtained from this plot and lower mixing line from deuterium versus oxygen-18 plot.
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Figure 66. Oxygen-18 versus chloride for samples of Figure 57. Data for repeat
samplings shown. Upper mixing line is from assumed sea water and passes through
value calculated using the global meteoric water line and intercept from Figure 65, and
lower mixing line is from deuterium versus oxygen-18 plot. Data of Buddemeier and
others is from Shupe and others (1976).
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Figure 67. Temperature versus chloride for samples of Figure 57. Repeat samplings
shown. Line is for mixing relation of temperature (actually enthalpy) versus chloride
for coastal springs south of east rift.
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Figure 71. Silica versus bicarbonate for samples of Figures 68, 69, and 70.
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Temperature versus silica for samples of Figures 68, 69, and 70.
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Figure 73. Magnesium versus chloride for samples of Figures 68, 69, and 70. Dilution
line shown differs from mixing line at low concentrations.
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Figure 74. Sulfate versus chloride for samples of Figures 68, 69, and 70. Dilution line

shown differs from mixing line at low concentrations.




153

MW 1, MW 3, Kapoho Crater, and Green Lake

100
. Sea Water
10 +
- o 2983-01
(o]
£ s 2083-02
w 14+
(o]
s A 3080-01
2
a o 3080-S1
0.1 +
¢ — Dilution
0.01 : t ; :
1 10 100 1000 10000 100000
CHLORIDE (mg/L)

Figure 75. Bromide versus chloride for samples of Figures 68, 69, and 70. Dilution line
shown differs from mixing line at low concentrations.
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Figure 76. Boron versus chloride for samples with boron data of Figures 49, 57, 68, 69,
and 70: Malama Ki (2783-01), Puna Thermal TH 3 (2982-01), Puna Geothermal MW
2 (2883-07), Keauohana 1 (2487-01), Puna Geothermal MW 1 (2983-01), Puna
Geothermal MW 3 (2983-02), Kapoho Crater (3080-01), and Green Lake (3080-S1).
Symbeols are the same as in previous plots except for Puna Thermal TH 3 (2982-01)
shown here with a plus rather than a diamond. Repeat samplings (not shown) of 2487-
01 and 3080-01 are at boron detection limit of <0.02 mg/L.
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Figure 77. Deuterium (D) versus oxygen-18 (3180) in parts per thousand (%o) for
samples for wells of Figures 68, 69, and 70. Data for repeat samplings shown.

Global meteoric water line is from Craig (1961). Evap. line uses empirical slope of 5

from Craig (1961).
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Figure 87. Sulfate versus chloride for HGP-A during a period of flow in 1984 and for
other deep wells in its vicinity. Solid line shown is for sea water dilution.
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Figure 88. Sulfate versus chloride for wells of Figure 57. All data are shown for Puna
Thermal TH 3 (2982-01).




