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Abstract

The analysis precision of any multivariate calibration method will be severely

degraded if unmodeled sources of spectral variation are present in the unknown sample

spectra. This paper describes a synthetic method for correcting for the errors generated

by the presence of unmodeled components or other sources of unmodeled spectral

variation. If the spectral shape of the unmodeled component can be obtained and

mathematically added to the original calibration spectra, then a new synthetic

multivariate calibration model can be generated to accommodate the presence of the

unmodeled source of spectral variation. This new method is demonstrated for the

presence of unmodeled temperature variations in the unknown sample spectra of dilute

aqueous solutions of urea, creatinine, and NaC1. When constant-temperature PLS models .

are applied to spectra of samples of variable temperature, the standard errors of prediction

(SEP) are approximately an order of magnitude higher than that of the original cross-

validated SEPS of the constant-temperature partial least squares models. Synthetic

models using the classical least squares estimates of temperature from pure water or

variable-temperature mixture sample spectra reduce the errors significant y for the

variable temperature samples. Spectrometer drift adds additional error to the analyte

determinations, but a method is demonstrated that can minimize the effect of drift on
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prediction errors through the measurement of the spectra of a small subset of samples

during both calibration and prediction. In addition, sample temperature can be predicted

with high precision with this new synthetic model without the need to recalibrate using

actual variable-temperature sample data. The synthetic methods eliminate the need for

expensive generation of new calibration samples and collection of their spectra. The

methods are quite general and can be applied using any known source of spectral

variation and can be used with any multivariate calibration method.

*Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed

Martin Company, for the United States Department of’Energy under Contract DE-AC04-

94AL85000.
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Introduction

Multivariate calibration methods are now commonly used in the quantitative

spectral anal ysis of samples. Partial least squares (PLS) 1‘zand principal component

regression (PCR)2’3 are usually found to be the most powerful and generally useful of the

linear multivariate modeling methods. Classical least squares (CLS)4’S’6’7and inverse

least squares (ILS)7>8methods are also used in some cases. If all the sources of spectral

variation expected in unknown samples are captured by the calibration sample set, then

calibration models for specific analytes in the samples can be applied to the accurate and

precise analysis of unknown samples from their measured spectra. However, all these

calibration methods experience degraded prediction accuracy if the unknown sample

contains spectrally interfering components that were not present in the calibration sample

set used in the generation of the multivariate calibration model. If it is desired to

accurately predict the anal yte in these contaminated unknown samples, then the general

current procedure is to identify the interfering component, generate an entire new set of

calibration samples containing the additional interfering component, obtain their spectra,

and regenerate the multivariate model. This process can be extremely time consuming

and expensive.

In this paper, we propose a new method to synthetically correct for these

unmodeled interferents without the necessity of expensive regeneration of the calibration

samples and collection of their spectra. The new method does require that the interfering

spectral component be identified so that the spectral shape of the interferent can be

obtained. This proposed synthetic method for accommodating unmodeled interferences

is demonstrated for the quantitative analysis of dilute aqueous solutions using near-
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infrared spectral data and PLS calibrations. The unmodeled spectral component in this

example is temperature of the solution, which causes a relatively large source of an

unmodeled spectral interferent in the near-infrared spectra of the unknown samples to be

predicted.9 These methods are entirely general and can be used to correct for a variety of

sources of spectral interferents and can be applied to any multivariate calibration method.

Experimental Methods

A set of samples was generated to test the proposed method for synthetically

accommodating unmodeled interferences. These calibration samples, which have been

described previously,10 consisted of a series of dilute aqueous solutions containing urea,

creatinine, and NaCl in an aqueous solvent. This sample set represents samples with

components that might be of interest in the clinical chemistry environment. Samples

were prepared by separately weighing the three analytes and adding them to deionized

water in 50 rnL calibrated volumetric flasks. Each solute component was varied between

O and 3000 mg/dL, and 32 samples were prepared. However, one of the sample cuvettes

was broken before its spectrum could be measured. A Latin Hypercube experimental

design] 1was used to set the sample component concentrations for the calibration

samples. This orthogonal design allowed each of the three solutes to be separately varied

at 16 levels. The samples were placed in 10-mm path length quartz cuvettes, and glass

cover slips were sealed over each cuvette with an ultra-violet cured epoxy. The sample

temperatures were controlled using a HP 89090A Peltier temperature controller. A

Teflon-coated magnetic stirring rod was sealed inside each cuvette. The stirring rod was

set to rotate at 1000 rpm when the sample was in the temperature controller mounted

4



<

within the spectrometer sample compartment. The samples were allowed to temperature

equilibrate in the IR beam for eight minutes with the Ill beam on the sample. Separate

tests showed that this procedure allowed temperatures to become stable to within the

ability of the temperature controller to maintain the sample temperature within the

cuvette (i.e., 0 -0.05° C). A N2-purged background spectrum without the cuvette was

obtained after each sample spectrum. The spectra were converted to absorbance after

ratioing each sample single-beam spectrum to either its associated background single-

beam spectrum or to the average of all the air background single-beam spectra. Near-

infrared spectra of the 31 calibration samples were first collected at a constant set

temperature of 23° C. Several months later, the spectra of the 31 calibration samples

were obtained at a series of randomly selected temperatures at intervals of 10 C between

20 and 25° C. In each case, the run order of the calibration samples was randomized to

minimize the incorporation of instrument drift into the multivariate models of the

analytes.

At a separate time, spectra of pure water were obtained in a 10-mm path-length

cuvette at a series of randomized temperatures at intervals of 0.5° C between 20 and 25°

C. These spectra could be used in a CLS analysis to obtain the pure-component spectrum

of a temperature change in water.b In addition, the temperature pure-component

spectrum of water was obtained from the full set of variable temperature of the

calibration samples with the use of CLS methods. A subset of 5 constant temperature 23°

C samples was also selected from the variable temperature samples. These spectra were

used to correct bias errors in estimated concentrations that are a result of unmodeled

instrument drift between the two sets of experiments.
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The spectrometer used was a Nicolet 800 Fourier transform infrared (FT-IR)

spectrometer. It was equipped with a 75 W tungsten-halogen lamp, a quartz beam

splitter, and a liquid-nitrogen-cooled InSb detector. The spectra were collected at 16 cm-l

resolution in the near infrared spectral region (7500 – 11000 cm-l) by co-averaging 256

interferograms. The interferograms were Fourier transformed after applying Happ-Genzl

anodization. The collection of the 31 sample spectra required a total elapsed time of 8 to

10 hours because of the long time required for temperature equilibration. Therefore,

spectrometer drift was visible in the spectra. The influence of spectrometer drift was a

significant fraction of the spectral variance of the aqueous sample spectra because the

spectral changes introduced by the dilute solutes in the aqueous samples were small (- 20

mini-absorbance units total variation due to the analyte variation).

The spectral data were converted to Galactic, Inc. *.spc file format for use in the

Galactic GRAMS/32 (Version 5.1 ) Array Basic multivariate calibration software

developed at Sandia National Laboratories. The Sandia PC-based software includes

CLS, PLS, and PCR multivariate calibration methods.

Theory

Descriptions of PLS multivariate spectral calibration have been well

documented. 1’2 It is known that in order for PLS or in general any calibration method to

be accurate, all sources of interfering spectral variation expected in the samples to be

predicted must be included in the calibration sample spectra. If sources of spectral

variation that are not included in the original model are contained in the unknown sample
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spectrum to be determined, then significant prediction errors can occur. Often outlier

detection methodsl’z can detect, but not correct, this problem for the unknown samples.

If the source of the unmodeled interference can be determined, then often the

spectral shape of the interfering specie can be obtained by a variety of experimental

methods. For example, any calibration sample or unknown sample could be doped with

the identified interferent, and absorbance spectrum of the sample can be obtained before

and after doping. The spectral shape of the effect of the interferent on the sample is

simply the difference of the doped and undoped sample absorbance spectra. Best results

might be expected if the doping is performed at the concentration level expected in future

unknown samples and by doping a sample at the mid-level of the calibration design,

which generally is located at the expected mid-point or target composition of the

unknown samples.

Another method to obtain spectral shapes involves the use of CLS calibration. It

has been shown in the literature that CLS methods generate the linear least squares

estimate of the spectrum of the Beer’s Law pure components as they exist in the average

environment of the calibration samples. b Thus, an efficient method to generate an

appropriate pure-component spectrum of the unmodeled interferent would be to generate

interferent doped samples at a series of interferent concentrations. A CLS calibration

applied to the resulting spectra would yield a linear least-squares estimate of the spectral

shape of the interferent. The spectral shape of this interferent can be improved by

including a factor in the calibration to assist in modeling time-dependent spectrometer

drift. As recently described by Haaland et al.,12 it is often possible to approximate

instrument drift by including time of spectral data collection or run order in the
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calibration concentration matrix during CLS calibration. The pure-component shape

estimated for the spectral component representing time in the calibration can approximate

system drift for a monotonically drifting spectrometer. The inclusion of this parameter

has been demonstrated to improve CLS estimates of the pure-component spectra even in

the presence of severe spectrometer drift.’2

If samples are simply doped with known quantities of the unmodeled interfering

component, then the CLS analysis should be performed with mean centering applied to

both the measured spectra and the known interferent concentrations. In this manner, the

,average effect of displacement of the sample by the interferent is included in the CLS

estimated pure-component spectrum, and there is no need to know the component

concentrations of other components present in the sample.

Once the spectral shape of the unmodeled interferent has been obtained, its shape

can be synthetically added to the original calibration spectra in a random or designed

fashion over the concentration range that might be expected to be found in future

unknown sample spectra. The original multivariate calibration method (PLS in this case)

is then applied to these new interferent-modified sample spectra to obtain a new synthetic

calibration model that includes the major effects of the interferent on the calibration

spectra. Thus, the new multivariate calibration model modified by the appropriate shape

of the interferent should be able to predict the analytes of interest in the presence of the

previously unmodeled contaminant in the unknown samples. This procedure is similar to

a dry-lab method since this synthetic operation of sample spectra generation does not

require regeneration of the entire set of calibration samples in the lab.

8



. *

Results and Discussion

Near infrared spectra of the31 calibration samples arepresented in Figurel for

the constant temperature calibration spectra. These spectra closely match that of water

since the samples are primarily composed of water. In order to examine the variations in

the calibration spectra, the spectra were mean centered and displayed in Figure 2. Much

of the observed baseline variation in these mean-centered spectra is due to drift of the

spectrometer and reflects the interaction of spectrometer drift with the sample spectra.

A PLS calibration was performed on each of these two data sets independently.

The PLS model size was determined using standard methods during cross-validated

calibration removing one sample spectrum during each rotation of the cross-validation

procedure.2 The cross-validated predictions for the constant temperature PLS calibration

for urea are shown in Figure 3. The cross-validated PLS results for all three analytes are

given in Table I separately for constant and variable temperature data sets. In addition,

Table I includes the cross-validated PLS results for temperature obtained for the variable

temperature data set. This table includes the cross-validated standard error of prediction

(CVSEP), and the square of the correlation coefficient relating the estimated and

reference concentrations.

The PLS models obtained from the constant temperature data for each analyte

were applied to the variable temperature spectral data. The resulting true PLS predictions

for urea are presented in Figure 4. Thus, the detrimental effects of the unmodeled

spectral component related to temperature changes are dramaticallyy demonstrated in Fig.

4 for these data. The other components are predicted with similar poor prediction

accuracy using their respective PLS models derived from the constant temperature
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spectral data (i.e., creatinine SEP = 264 mg/dL and NaCl SEP = 173 mg/dL).

Fortunately, the prediction problems can be detected with the spectral F ratiosz calculated

using the average cross-validated sum of squared spectral residuals from the PLS model

and the sum of squared spectral residuals obtained from the prediction of each unknown

sample spectrum. Haaland and Thomas2 suggest that spectral F ratios above 3 might be

considered suspect. The spectral F ratios for each analyte obtained by applying a

constant temperature model to variable temperature data are found to vary from 50 to

700. Similarly, the Mahalanobis distances13 vary from 5 to 330 for these same PLS

predictions. These outlier results clearly demonstrate that the samples do not follow the

constant temperature PLS calibration model, and the results should not be considered

accurate.

In order to estimate the pure-component spectrum of temperature in these
.

samples, CLS calibrations were performed using two different sets of data. The first set

of samples used the entire variable temperature spectral and concentration data to obtain

CLS estimates for the pure component of temperature. The second CLS pure-component

estimate was derived from spectra of pure water with temperature varied over a 5° C

range from 20 to 25° C. Both CLS analyses included run order in the concentration

matrix of the CLS analysis in order to obtain pure-component estimates for temperature

that have reduced spectral influence from spectrometer drift.

The CLS-estimated pure-component spectra of solution temperature and system

drift based upon the 31 variable temperature sample spectra are presented separately in

Figures 5 and 6, respectively. The CLS estimate of spectral shape of temperature

obtained from the variable temperature pure-water sample spectra is nearly identicaI to

10



that presented in Figure 5. The pure spectrum of temperature indicates that the high-

frequency free OH stretching vibrations of water increase in intensity and the intensities

of the low-frequency hydrogen-bonded stretching bands decrease as the temperature

increases. These spectral changes due to temperature cause a shift of the water bands to

higher frequencies as the temperature increases. The fact that the cross-validated CLS

standard error for temperature in these data is O.110 C would indicate that temperature

has nearly a linear effect on the spectra across this temperature range. The magnitude of

the pure-component spectrum displayed in Figure 5 indicates that a 10 C change in

sample temperature will result in a 4 mini-absorbance unit change in the sample

spectrum. For the 5° C temperature range investigated here, the total spectral change due

to temperature would be 20 mini-absorbance units. Thus, a 5° C temperature change”

represents a spectral variation that is as great in magnitude as the combined effect of all

three analytes varying in the 31 calibration spectra.

The spectral shape of the drift component indicates that the linear portion of the

time-dependent spectrometer drift is simply an offset and slope change with a small

change in the purge gas content of water vapor. Including this drift component in the

CLS analysis should minimize the effect of these drift sources on the CLS spectral

estimate of solution temperature.

The two estimates of the pure-component spectrum of temperature were then

separately added back randomly to the constant temperature calibration spectra to make

two new sets of calibration spectra. Two new PLS calibration models were obtained

from these synthetically modified spectral data sets. The new PLS models were then

separately applied to prediction of the variable temperature data. The prediction results
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using the new synthetic PLS model with the pure-component of temperature derived from

all the calibration samples are shown for urea in Figure 7. The entire set of results for

both types of added pure component of temperature and each analyte are presented in

Table II. In addition to CVSEP and R2, the bias-corrected cross-validated standard error

of prediction BC-CVSEP and the estimated concentration bias are also presented in Table

II. Clearly the new synthetic method yields dramatic improvements in prediction

accuracy for all components. A comparison of the two synthetic models indicates that

the bias-comected results are slightly better for the synthetic PLS model that used the

pure component of temperature derived from the31 variable temperature samples. The

excellent performance of this synthetic PLS model is expected because the temperature

pure-component represents the effect of temperature changes on the average mixture

sample rather than that of pure water. However, there is residual bias evident in all the

prediction results. This bias is not due to a defect in the new synthetic model building

method but is rather due to the fact that the spectrometer had drifted significant y over the

several months between data collections. The 8-10 hour spectrometer drift that is

included in the constant temperature model is not adequate to correct for this long-term

spectrometer drift. The bias can be effectively removed using several methods. If a

repeat sample is measured during days of data collection for the calibration and

prediction spectra, then the difference between the repeat sample spectra collected on the

two experiment days (both at 23° C) should represent the average bias due to

spectrometer drift between the two sets of samples. The new spectral data could then be

corrected for this bias by subtracting the repeat sample spectral difference from each

sample spectrum collected on the later variable temperature sampling day. Alternative] y,
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the prediction bias could be estimated by simply predicting the analyte for each sample

and subtracting the difference in concentration estimates from the new predictions.

However, the former method is preferred since it allows retention of the very sensitive

spectral outlier tests such as spectral F ratios and Mahalanobis distance. A more precise

measure of the spectral difference can be obtained by measuring the spectra of a small

subset of samples on the calibration and prediction days and using their mean spectral

differences for the bias correction.

The prediction spectral bias due to instrument drift was estimated in this study

from a set of 5 subset samples measured in the two data sets for samples collected at the

same 23° C temperature. The results obtained using this bias correction method are

presented in Table III. Clearly, most of the bias has been removed by this procedure and

analyte predictions approach those achieved during the cross-validated calibrations. The

results in Table III would indicate that the predictions for NaCl and temperature are

furthest from the original prediction precision obtained during the original cross-validated

calibrations. A careful examination of the prediction concentration residuals shows

these errors are correlated with run order for both NaCl and temperature. These

concentration errors are plotted for NaCl in Figure 8. Apparently there are residual

effects of spectrometer drift in the variable temperature data that are not adequately

accounted for in the models. For both NaCl and temperature, the unmodeled effects

hat

of

drift in the variable temperature sample set are somewhat detrimental to the concentration

predictions. Concentration errors for urea and creatinine do not exhibit this correlated

error with time of data collection. If we remove the linear effects of drift on the error by

fitting the data with a linear least squares model relating residuals to run order, the
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corrected precision yields SEP values of 19.1 mg/dL for NaCl and 0.07° C for

temperature. These SEP values are comparable to the CVSEP values found for NaCl and

temperature in the original calibration data (see Table I). Methods to correct for these

detrimental effects of drift on the predictions without prior knowledge of the sample

concentrations will be the subject of a future paper.

The synthetically modified constant temperature spectral data can be used to build

synthetic PLS calibrations for the unmodeled component of temperature. If the

temperature pure-component spectrum derived from a CLS anal ysis of the real variable

temperature sample calibration set is added randomly to the constant temperature data

set, then the CVSEP obtained for temperature from a PLS temperature model derived

from these synthetic spectra is 0.08° C. The CVSEP for the PLS model for temperature

derived from the original variable temperature real spectral data is 0.09° C. Thus, the

cross-validated PLS prediction precision are comparable for the real and synthetic data

sets. When the PLS model for sample temperature derived from the artificial y

temperature varied data are applied to the real variable temperature data, the true

prediction SEP is 0.16° C. The bias in this case is -0.9° C, and the bias-corrected SEP is

0.13° C. Applying the model to the spectral data corrected for the mean difference of the

5 subset samples yields an SEP of temperature of 0.13° C (the comparable temperature

SEP using the pure component derived from pure water is 0.15° C). The prediction

precision for a constant temperature repeat sample measured 8 times in rapid succession

is 0.05° C (Al o), which is the same as the stated precision of the HP Peltier temperature

controller. Thus, the synthetic data is capable of generating a useful calibration model for

temperature that has a precision that approaches that of the temperature model derived
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from the real variable temperature data. This synthetic method is, therefore, capable of

building useful calibration models not only to eliminate the detrimental effects of

unmodeled components but is also able to predict the concentration of the unmodeled

component.

Conclusions

We have shown that when unmodeled spectral components are present in the

unknown sample spectra, then full regeneration of the calibration samples is not required

if the shape of the unmodeled interferent can be obtained by independent means. This

new synthetic procedure to correct quantitative multivariate spectral models can greatly

reduce the time, effort, and expense of regenerating the entire sample set and spectral

data. The very simple procedure of adding the shape of the interferent to the original

spectral calibration data will be adequate in many cases to properly account for the

interferent in the model. The new method should work for those cases where the effect

of the interferent is constant and linear over the concentration range of the interferent in

the unknown samples. If the interferent spectral shape is not constant over the

concentration range in the unknown samples, then several methods could be proposed to

accommodate this non-linear behavior also. For example, a calibration sample could be

doped with variable amounts of the interferent, and a CLS analysis could be used that

included not only the linear concentration components, but terms linear in the square of

the concentrations (or even higher order terms). The resulting linear, quadratic, etc. pure-

component estimates could be added to the original calibration spectra to approximate the

shapes of the nonlinear effects in the analysis. This method has been successfully used in
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CLS analyses in the past by the author14 and has been reported in the literature15’lG. Both

the results of the linear and quadratic pure-component spectra could then be added to the

original calibration spectra to compensate for both the linear and nonlinear spectral

components of the interferent. In this latter case, the t%nctional form of the nonlinearity

does not have to be known or assumed since the shape information in the eigenvectors

will adequately describe the effect of the unmodeled component nonlinearities.

The added advantage of this new synthetic method for accommodating

unmodeled interferents is that a multivariate model can also be derived from the synthetic

data to allow prediction of the concentration of the interferent in the unknown samples.

This feature has broad implications since not only can the effects of unmodeled chemical

species now be included in the model, but also the effects of other non-chemical sources

of spectral change can be modeled and predicted. We have shown in this paper that

temperature effects can be included in the model without the requirement that the

temperature be varied during calibration. Other sources of non-chemical sample

variations that this new method should be able to accommodate include purge gas

variations in H20 and C02 content, spectrometer drift, spectral differences between

spectrometers, and changes in nonlinearities of the system. In addition, we have

demonstrated the new method with PLS, but it should be applicable to any multivariate

method such as PCR, CLS, IT-S, or even artificial neural networks. Thus, our new

synthetic method has widespread and general potential applications.
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Figure Captions
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1.

2.

3.

4.

5.

6.

7.

8.

Near-infrared spectra of31 constant-temperature calibration samples of urea,

creatinine, and NaCl in water in 10 mm pathlength cuvettes.

Mean-centered near-infrared spectra of31 constant-temperature calibration

samples.

Cross-validated PLS prediction results urea based upon 31 constant-temperature

calibration samples. Solid line is line of identity.

Predictions for urea for 31 variable-temperature samples using a PLS model built

on 31 constant-temperature calibration sample data. Solid line is line of identity.

CLS estimated pure-component spectrum of temperature from31 calibration

samples based upon 31 variable-temperature calibration samples.

CLS estimated pure-component spectrum of linear system drift from31

calibration samples based upon 31 variable-temperature calibration samples.

Prediction of temperature of the variable-temperature sample spectra using a PLS

model based upon synthetic temperature-augmented constant-temperature sample

spectra. Dotted line is linear least squares fit of the data.

NaCl prediction residuals as a function of run order froms ynthetic temperature-

augmented constant-temperature calibration PLS model applied to the variable-

temperature sample spectra. The solid line is the linear-least squares fit to the

data.
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Table I: Cross-validated PLS calibration results for constant and variable

temperature aqueous solutions.

Constant Temperature Variable Temperature

Component CVSEP R2 CVSEP R2

Urea 17.3 0.9996 14.9 0.9997

Creatinine 13.3 0.9997 19.4 0.9994

NaCl 17.8 0.9996 29.4 0.9989

Temperature 0.087 0.9975

Table II: PLS prediction results for temperature-augmented constant temperature

calibrations applied to variable temperature spectra.

Temperature shape from mixtures Temperature shape from water

Component SEP BCSEP Bias R2 SEP BCSEP Bias R2

.Urea 69 19.2 66.4 0.9947 47.6 28.6 38.4 0.9975
Creatinine 46.1 21.1 -41.2 0.9969 42.5 32.1 -28.5 0.9973

NaCl 62.8 34.9 52.6 0.9951 46.3 33.5 32.5 0.9973

,Temperature 0.156 0.127 -0.094 0.9914 0.145 0.147 -0.0063 0.9926

Table HI: PLS prediction results for temperature-augmented constant temperature

calibrations applied to variable temperature spectra corrected for mean spectral bias.

Temperature shape from mixtures ~ Temperature shape from water

Component SEP BCSEP Bias R2 SEP BCSEP Bias R2

Urea 19.5 19.2 4.9 0.9996 26 19.2 -17.9 0.9992

Creatinine ! 20.9 21.1 -2.2 0.9994 29.1 21.1 -20.4/ 0.9988

NaCl ~ 37.5 34.9 15.1 0.9982 34.6 34.9 4.5 i 0.9985

TemDeraturd 0.133 0.127 -0.045 0.9937 0.128 0.127 -0.028 I 0.9942
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