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Abstract. We show that Sorensen’s [35] implicitly restarted ArnoIdi method (including its block

extension) is simultaneous iteration with an implicit projection step to accelerate convergence to the
invariant subspace of int crest. By using the geometric convergence theory for simultaneous iteration
due to Watkins and Elsner [43], we prove that an implicitly restarted Arnoldi method can achieve a
super-linear rate of convergence to the dominant invariant subspace of a matrix. Moreover, we show
how an IRAM computes a nested sequence of approximations for the partial Schur decomposition
associated with the dominant invariant subspace of a matrix.
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1. Introduction. A classical method of solution for the large-scale eigenvalue
problem is simultaneous iteration [6, 9, 26, 27, 30, 37, 40]. Simultaneous iteration was
originally introduced by Bauer [7], who called the method T’reppeniteration (staircase

iteration). It is a straightforward method for computing the eigenvalues of largest
modulus of a matrix A and is a generalization of the power method in that a sub-
space of size larger than one is employed. Unfortunately, the rate of convergence
of simultaneous iteration is linear. For many large eigenvalue problems, this rate is
prohibitive.

This article shows that an implicitly restarted Arnoldi method (IRAM) (includ-
ing its block extension) is simultaneous iteration in disguise. In particular, we are
concerned with the convergence of @i (A)2 where 2 is a Krylov subspace and @i (.)
is a polynomial. The relationship with simultaneous iteration is demonstrated by
exploiting the well-known connection [25, 39, 42] with the QR algorithm. By appeal-

ing to the results in [43], a possible super-linear rate of convergence for an IRAM is
established. Moreover, we show how an IRAM computes a nested sequence of approx-

imations for the partial Schur decomposition associated with the dominant invariant
subspace of a matrix. This practical convergence theory is possible by appealing to
the results in [40] that were developed for simultaneous iteration with a projection

step. Our numerical experiments will show an IRAM converges significantly faster
than classical simultaneous iteration.

We feel that the strength of the relationship outlined in this article is two-fold.
First, it shows that IRAMs should be considered as simultaneous iteration methods.
This allows us to use the convergence theory developed for simultaneous iteration.
The resulting convergence theory is in contrast to the standard theory for ArnoIdi

methods. Standard theory considers the degree of approximation to eigenvalues and
eigenvectors as a function of increasing Arnoldi iterations (size of the Krylov sub-
space). Instead, our theory considers the degree of approximation to an orthonormal
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representation of the invariant subspace as a function of the number of restarts, or

equivalently, simultaneous iterations. Second, it demonstrates why robust software
can be developed for the large-scale eigenvalue problem using IRAMs. Robust soft-
ware exists for simultaneous iteration because it is a backward stable algorithm. This

stability is a direct result of an exclusive reliance on unitary transformations. Golub
and Wilkinson [12] also examine the many practical difficulties involved when com-

puting invariant subspaces. They conclude that working with an orthonormal basis of
approximate Schur vectors is a better-behaved numerical process. Within the context

of simultaneous iteration, Stewart [40] also arrives at the same conclusion.
Section 2 discusses the eigenvalue problem and Schur decompositions. Section

3 introduces the Arnoldi reduction and its computation. The relationship between
an IRAM and simultaneous iteration is derived in Section 4. Section 5 describes a

geometric convergence theory of an IRAM. A relationship between an IRAM and

Stewart’s [40] generalization of the Rayleigh–Ritz method to non-Hermitian matrices
is the subject of Section 6. Section 7 discusses some practical issues associated with
an IRAM. The results of some numerical experiments comparing classical simulta-
neous iteration with an IRAM are given in Section 8. Finally, the quality of the
approximation to an invariant subspace of A computed by an IRAM is considered in
section 9.

We conclude this section with the basic notation to be used in this article. We
employ Householder not at ional conventions. Capital and lower-case letters denote
matrices and vectors, respectively, while lower-case Greek letters denote scalars.

The transpose of a vector x is denoted by XT, and the complex conjugate of XT
is denoted by XH. The norms used are the Euclidean and Frobenius, denoted by II . JI
and II. IIF, respectively. The range of a matrix A is denoted by 72(A).

A matrix of lower bandwidth b will be called a banded upper Hessenberg matrix.
We drop “upper” when the context is clear. Omission of the word band implies that
the block size is one. We say that a banded Hessenberg matrix is unreduced if all the

elements on the bth subdiagonal are nonzero.

2. The Eigenvalue Problem. Let A be a complex matrix of order n. We are

interested in computing the k << n dominant (those of largest magnitude) eigenvalues
and associated invariant subspace of

(2.1) Ax = AX.

The eigenvalues and eigenvectors of A are denoted by Jj and Xj, respectively, for
j = 1,..., n. For the remainder of our article, we suppose that IJII > IA21 ~ -.. ~ J~n/.

The following decomposition proves central to the eigenvalue algorithms consid-
ered in this article. Its value is in providing us with a canonical form for which stable
algorithms may be developed. For us, a stable algorithm computes the exact Schur

decomposition of nearby matrix.
THEOREM 2.1. (Schur Decomposition) IfA G C“ ‘n, then there exists a unitary

Z E C“xn such that

(2.2) ZHAZ = T,

where T is an upper triangular matm”z. The eigenualues can appear in any order along

the diagonal.

Proof. See [11,page 313]. II
Let D be a diagonal unitary matrix. Then (ZD)HAZD = DHTD has diagonaI

blocks equal to those of T. Thus, apart from the eigenvalues of multiplicity larger than
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CONVERGENCE OF IMPLICIT RESTARTING 3

one, the decomposition is essentially unique, given soAmeordering of the eigenvalues.

Denote the leading principal ma~ix of order k of T by Tk. Let Zk be the corresponding
columns of Z. Then AZk = ZkTk is a partial Schur decomposition of A of order k.

When A is Hermitian T is a diagonal matrix, and hence the eigenvalues are real
numbers.

The full decomposition is computed by the practical QR algorithm in the EIS-

PACK [34] and LAPACK [1] software packages. Instead simultaneous iteration at-

tempts to compute a partial SchurAdecomposition for A with the the dominant eigen-
values located on the diagonal of Tk.

3. Partial Reduction to Band Hessenberg Form. The first step of the
practical QR algorithm is to reduce A to upper Hessenberg form via Householder
transformations. This done, as is well known, so that each step of the QR iteration

performed on the Hessenberg matrix only involves order n2 work. This is in contrast
to the order n3 work that would be required during each step of a QR iteration on A
(assuming that A is a dense matrix).

Unfortunately, for large eigenvalue problems, Householder transformations cannot
be used as they destroy any sparsity or structure in A. We say an eigenvalue problem is

large if the dense QR algorithm is prohibitive, in storage and/or efficiency. Instead, the

Arnoldi reduction [2] only requires knowledge of A through a matrix-vector product.
lMoreover, it allows us to sequentially reduce A to upper Hessenberg form, producing
the leading portion of the an upper Hessenberg matrix at every step. When the matrix
A is Hermitian, the Lanczos reduction [17] is recovered.

Since our concern is in the solution of eigenvalue problems in which A is not only
large but expensive to apply, block Arnoldi reductions [31, 32] are considered. In
many instances, the cost of computing a few matrix vector products is commensurate
with that of one matrix vector product. Moreover, in exact arithmetic, an unblocked
Arnoldi reduction cannot detect the multiplicity of an eigenvalue. A blocksize enables
the reduction to compute multiplicities less than or equal to the blocksize.

Let b > 0, an integer, be the block size and let Ej ~ [ e(j_l)6+l -.. ejb ]
where the jth canonical basis vector is ‘denoted by ej. We say that

(3.1) AVj = Vj Hj + Fi E;

is a block Arnoldi reduction of length j when V3HAVj = Hj is a banded upper

Hessenberg matrix, V~Vj = Ij.b, and V~Fj = O. It follows that Hj is the projection
of A onto the column span of Vj. The j - b columns of Vj are an orthonormal basis

for the block Krylov subspace

K:(A, UI) z {UI, AUI, . ~., A~-lUl}

where U1 is a full rank matrix with b columns. Note that if A = AH, then Hj is a
block tridiagonal matrix.

In order to introduce notation that will be needed, we rewrite (3.1) as

[

G1,l . . . . . . Gl,j

AVj=[Ul . . . Uj]
G2,1 “-. : ;

“.

o . . . Gj,j _ 1 Gj,j

+Uj+IGj+I,jE;
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where U j+ I Gj+l, j is the QR factorization of Fj. The reduction is advanced by one
step (or its length incremented) by the following three operations:

1. W = AUj+l

2. Gi,j+l= U~Wi=l,..., j+l

3. Fj+l = W – ~~~~ UiGi,j+l

A direct implementation of the second and third steps will not, in general, produce
an orthogonal set of Arnoldi vectors. We refer the reader to [18] for details on an

efficient and robust implement ation. See [13] for references and information on a
block Lanczos reduction implemented via a three term block recurrence.

3.I. Computing an Approximate Partial Schur Decomposition. Suppose
that liIj Z = ZT is a Schur decomposition ordered so that the eigenvalues of T are
in descending order of magnitude along the diagonal. PostmultipJying (3.1) with Z
gives

(3.2) llAvjz - vjzT/1 = llFjEfzll= l(Gj+l,jEfzll.

Because E~Z is a matrix with j . b columns consisting of the last b rows of Z, the
quality of an approximate partial Schur decomposition is determined by noting that
if

is small then an approximate partial Schur decomposition of order k for the dominant
invariant subspace is computed. In fact, if Hj zk = zk?k is an order k partiaI Schur
decomposition for Hj, then

(A i- M)vjzk = vjzk~k

where

impIying that we have computed an exact partial Schur decomposition for a matrix
near A.

If approximate eigenvectors a~e of interest, they can be computed from the partial
Schur decomposition Hj zk = ZkTk because

(3.3) Av.jZkY – vjzky8 = FjE~zky

where Tk y = y8. We call Vj Zky a Ritz vector and ~ a Ritz value. Note that the

first Schur vector is always an eigenvector.

4. Connection with Simultaneous Iteration. As explained in our introduc-
tion, there is a well-known connection between simultaneous iteration and the QR
algorithm. This section will show a similar high-level connection between an IRAM
and simultaneous iteration. The following elementary but technical resultl is needed
for this connection. It is a generalization of the special case ~(~) = A shown in [20].
A similar result was proved in Lemma 1 of [24] for the Lanczos reduction.

1I thank Chris Beattie for suggesting this result to me during a workshop held in the spring of
1995
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LEMMA 4.1. Suppose that an integer p satisjies 1 ~ p < m, and let r = m – P.

Let AVm = VmHm + F~E~ be a length r + p Arnoldi reduction, where H~ ~S an

unreduced band upper Hessenberg matm”x. If

then

(4.2) @p(A)Vr = Vna@P(Hrn) [ EI - ~. E, ]

Proof The proof is by mathematical induction. Define m ~ r +p. The subscripts
are suppressed on V~ and Hm for the proof. Since @l (A)V = V@l (H) + F~E~,
where @l(A) = A — rl, the base case for p = 1 is established. Assume the lemma’s
truth for polynomials @j (A) of degree j < p. Let &+l (A) = (} – rP+l)@P (2). With
the induction hypothesis, it follows that

14P+1(A)V = (A – Tp+l~)I&(A)V

{

= (A - T,+II) V4P(H) + ~+’+,(JWmE:T&dH)
j=l }

= V(H – rP+ll)&(H) +F~E~@P(H)

which establishes Equation (4. 1).

Since H is unreduced, @j_ I (H) is a band Hessenberg matrix of lower bandwidth
(j – 1) ~b. Thus E~@j-I(H)El = O for 1 = 1,.. .,m – j, and the last matrix on the
right-hand side of Equation (4.1) is zero through its first r. b columns. Equation (4.2)
is established. ❑

In words, Equation (4.2) shows that tiP(A) applied to the first r. b columns of V~
is equivalent to the basis representation given by the first r. b columns of V~ 4P (H~ ).

Suppose that p steps of the QR algorithm are performed on H~ with the p < m
shifts rl, . . . , rP resulting in

(4.3) HmW = WH$.

Note that W is a Hessenberg matrix of lower bandwidth p ~b because it is a product
of p unitary matrices each of lower bandwidth b each computed during a step of the
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QRalgorithm. IfWl denotes theinitial r. bcolumns of W, W2thenextb columns
and W3 the remaining columns, equating the first r.b columns of (4.3) results in

Post-multiplying Equation (3.1) with W 1 and using (4.4), we obtain

(4.5) AV.W1 = V.H.W1 + F. E~Wl,

= VrnWIH$ + Vnw2G:+1,rE; + FmE:wI,

E V~H~ + F> E;,

where

Note the use of the identity E% WI = [ O ..- 0 E: WI E, ] in Equation (4.6).

We remark that (4.3) through (4.6) define a restart of the Arnoldi reduction via a QR
algorithm. An IRAM is a sequence of implicit restarts that are terminated when the
partial Schur decomposition of interest is sufficiently well approximated. The restart
is implicit because it relies upon the implicitly shifted QR algorithm. Moreover, a
scheme is provided for the restart that does not require explicit application of A.

The following theorem establishes a direct relationship between simultaneous it-
eration and the QR algorithm. It is a partial or truncated version of Theorem 3.1 in

[39, p. 353].
THEOREM 4.2. Assume the hypothesis of Lemma 4.1 and the notation in equa-

tion (4.4)–(4.6). If the QR algom”thm computed on H~ with the p shifts T1, . . . . TP

results in H~W = WH$ then

where ~ is an upper triangular matrix of order r . b.

Prooj From Lemma 4.1 it suffices to show that the QR factorization of

for some upper triangular ~, of order r . b. But this is a consequence of the link

between the QR algorithm and simultaneous iteration because

~p(H.) = WR

is a QR factorization [39, p.353]. The result follows from equating the initial r b

columns of this equality and letting ~. denote the leading sub-matrix of order r. b of
R. II

The theorem allow us to link simultaneous iteration wit~ an IRAM. If p = 1,

til (A) = A, r = 1 and b >1 then (4.7) becomes AV1 = V~Rl and classical simul-
taneous iteration is recovered. From (4.5) it follows that an IRAM is simultaneous
iteration in disguise because V~ is computed.

We remark that if p = m, the previous discussion gives that implicitly restarting
with m — 1 shifts produces
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If QR = H; – TmI, then

(4.9) (A - rJ)U~ = U~QR+ F;.

The right-hand side of (4.9) defines a new starting block of vectors (after orthogo-

nalization) for a subsequent block Arnoldi reduction. Thus we can implicitly apply
polynomials of degree m in A. This was first established in [3].

.5. Convergence of an lRAM. Sorensen [35] gave some convergence results
for an IRAM (blocksize of one). For non-symmetric A, a linear rate of convergence
was given for a fixed @P(.) per restart. He also showed that for symmetric A, using

the unwanted m – k eigenvalues as shifts during each implicit restart resulted in
convergence to k eigenvalues (of A).

Traditional convergence theory [14, 15, 28, 28] for Arnoldi reductions investigates
the quality of K;(A, U1 ) to approximate eigenvectors of A as j increases. However,

with the connection between an IRAM and simultaneous iteration in hand, a more

elegant and powerful theory is possible. A comprehensive geometric convergence

theory for the shifted QR algorithm is presented by Watkins and Elsner [43] within the

more general framework of generic GR algorithms. A GR algorithm is a generalization
of the QR algorithm where where the QR factorization of A – rI is replaced with

a GR factorization G is a nonsingular matrix. The convergence theory is based on
the idea that a GR algorithm is a nested sequence of non-stationary simultaneous
iterations.

Theorem 5.1 in [43] shows the convergence of non-stationary simultaneous it-
eration. We specialize this theorem to our case of simultaneous iteration. Recall
the notation established in section 2 and 4. In addition, let &(.) denote @P(.) (the
polynomial in A implicitly applied) used at the i-th restart of an IRAM.

THEOREM 5.1. Let A be a simple matrix of order n. Let r . b << n where b
and r are positive. Define the invariant subspaces 2 = Span(xl, . . . . x..b) and U =

Span(xr.b+l, . . . . Xn). Let@i =@; .- .~l and suppose that @i(Aj) # Oforj = 1,.. .,r. b
and let

(5.1)
m=q=r.b+,,...,n [@i(~j)l

pi =
minj=l,.,.,r.~ l@i(Aj)l

If V is a subspace of dimension r . b satisfying V (l 24 = {O

constant C such that

then there exists a

dist(@~(A)V, Z) ~ Cpi

for all i.

The distance between the subspaces [8, 11] V and 2 may be shown to be equal
to <1 – \lV~ Z112 where the columns of V and Z provide an orthonormal basis for V
and 2. For increasing values of i, the approximating subspace @i (A)V aligns itself
with Z and hence the distance between the two subspaces goes to zero.

Because of the relationship between an IRAM and simultaneous iteration estab-
lished in the last section, the dist (@i (A) V, Z) ~ O and the eigenvalues of leading

block of H~ of order r ~b computed after i restarts are approximations to }1, . . . . ~r.b.
An expression for the constant C is given by Watkins and Elsner. They show

that
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where X is the matrix of eige.nvectors for A. The size of C is large whenever the

eigenvectors form an ill-conditioned basis and/or the starting subspace V is nearly

orthonormal to Z.

We remark that the hypothesis on A is only done for notational and elaborative

purposes. The paper [43] considers the more general case of an arbitrary matrix.

For a stationary iteration (0; (.) = q$l(.)i) where l@i(Aj)l ~ [@i(&+l)l for j =
1 , . . . . n — 1 and ~i < 1, then @i (A)V converges to Z at the linear rate pl. This is an
alternate proof of Theorem 5.1 in [35].

In Example 5.3 following Theorem 5.1 in [43], a possible super-linear rate of
convergence is demonstrated. Suppose that @i(&) ~ O for j = k + 1,..., n and
@~(~j)~dj(# O) forj= l,..., k for all i. It follows then that for e >0 there exists

an i. so that pi < e for i > ie and hence pi ~ Kci for some constant K. Because the
bound on the ratio of the iterates is c, p; ~ O super-linearly since this holds for all

positive c.

FinaIly, we remark that a that a shift strategy that leads to cubic and quadratic
convergence rates of convergence of the QR algorithm cannot be adopted for an IRAM.
The shift strategy requires information available only when a full Hessenberg reduction
is at hand.

6. Simultaneous Iteration with a Projection Step. Stewart [40] introduced
a projection step for simultaneous iteration on non-Hermitian matrices. The iteration

1. AU1 = QR QR factorization
2. C = Q~AQ
3. CZ = ZT Schur decomposition
4. UI ~ QZ

is continued until the first k columns AU1 — U1 T are small in norm at which point
a partial Schur decomposition for a nearby matrix has been computed. We note that
the above algorithm iterates on the Krylov subspace K! (A, U1 ) and hence r = m = 1

and b denotes the number of columns of U1. The Schur decomposition computed in
step 3 is ordered so that the eigenvalues appear in descending order of magnitude
along the diagonal of T. Step 4 is a Rayleigh-Ritz step via the Schur vectors Z, and
under some mild conditions, the j-th column of U1 converges to the j-th Schur vector

associated with the j-largest (in magnitude) eigenvalue at a rate of l~b+l /~~ 1. We
emphasize that the convergence of UI is not accelerated—only ordered so that the
initial columns contain the best approximations to the dominant invariant subspace.

For non-trivial block Krylov subspaces K: (A, U1 ) Theorem 4.2 shows that an
IRAM is simultaneous iteration with a projection step. In analogy to Stewart’s ex-
plicit projection computed via a Schur decomposition, an IRAM employs an implicitly
shifted QR algorithm so that the columns of V$ contain increasingly better approx-
imations to the desired partial Schur decomposition. If l@i(&)l > l@i(~j+l)l for
j= l,..., r . b, all i, and pi < 1 then Stewart’s convergence theory ~mplies that the

l-th (1 ~ 1 ~ r . b) column of V~ converges at the rate

(6.1)
maxj=r.t,+lj...,n l@i(~j)l

IQ,(A,)l

during an IRAM. Hence, an IRAM computes a nested sequence of orthonormal bases
for the dominant invariant subspace.
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TABLE 8.1

Computing the partial Schur decomposition corresponding to the 4 dominant eigenvalues of a
convection-diffusion matrix oj order 2,500.

km Matvec Restarts b

Subit 4 1 17,664 552 16

IRAM 4 16 253 23 1

IRAM 4 8 288 35 2

Subit 4 1 16,800 350 24

IRAM 4 24 230 12 1

IRAM 4 12 264 16 2

IRAM 4 8 330 35 3

IRAM 4 6 376 45 4

IRAM 4 200 199 0 1

7. Some Practical Issues. The question of a near-optimal shift strategy that
achieves super-linear convergence is still the work of research. However, it is clear
from Theorem 5.1 that a polynomial @~ that minimizes pi for the discrete min-max
problem (5. 1) is required. However, there is additional flexibility, namely, changing
the value of b, r and m for smaller values of pi. Hence, we can consider pi as a function
of b, r and m to improve convergence to the partial Schur decomposition of order k.

The value b is selected so that eigenvalues up to multiplicity b can be resolved.
Increasing the value of m improves the amount of information available to select the
polynomial implicitly applied thus leading a decrease in p;. On the other hand, in-
creasing the value of r and/or b leads to an improved convergence rate if the numerator
in (5.1) decreases.

An exact shift scheme was proposed by Sorensen. This is the default scheme used
by ARPACK [19]. An exact scheme uses a number of the unwanted eigenvalues of
H~ for the @(-) implicitly applied. As explained in [19, p. 71], the value of r is

increased from the initial value of k as approximations to the eigenvalues of A satisfy
the acceptance criterion. As explained in the previous paragraph, this has the effect
decreasing the numerator in (5.1). The recent paper [36] discusses such an adaptive

strategy for the symmetric eigenvalue problems. However, if the value of m is too
small to allow r to be increased, an exact shift scheme leads to slow convergence. For
symmetric eigenvalue problems, the roots of Leja polynomials [3, 5, 4] are successfully
used for small m along with a deflation scheme that allows r=to be increased from a
value of one as satisfactory eigenvalue-eigenvector approximations emerge.

Recent papers have elucidated the virtues of other restart polynomials. These
include the roots of Chebyshev polynomials [30], Harmonic Ritz values [22, 21, 24, 33],
refined shifts [16].

8. Numerical Experiments. We present results for computing the 4 dominant
eigenvalues and invariant subspace for the two-dimensional model convection-diffusion
problem

–Au(z, y) + 4UC(Z, V) + .5UY(*,14) = ~U(~,y),
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on the unit square [0, 1] x [0, 1] with zero boundary conditions. The problem is dis-
cretized by using centered finite differences where the mesh size h = 1/(50+1) results

in a matrix of order 2,500. Table 8.1 lists the results of some MATLAB experiments
(IEEE double precision floating point arithmetic is used). Subit refers to a classical
simultaneous iteration along with a projection at each restart for unscrambling the

Schur vector approximations.
Each computed dominant partial Schur decomposition of order 4 gave a residual

no larger than 10-3 and all experiments produced Ritz values that agreed to at least
four significant digits. The first three lines of the table give results in terms of the
number of restarts and matrix-vector products used when using m-b = 16 vectors. The

next five lines list the same output when m. b = 24 and the final line indicates the total

number of matrix vector products needed when b = 1 and m is run out until the partial

Schur decomposition is approximated. This final experiment gives an indication of
the minimum number of matrix-vector products needed. When b = 1, IRAM uses the
strategy for increasing r from k as the eigenvalues satisfy the acceptance criterion to

a maximum of 8; for b = 2 and b = 4, the value of r stayed fixed at m – 4 and for
b=3wasfixedatr =5.

Some other conclusions resulting from the experiments of Table 8.1 are:
●

●

●

●

The simultaneous iteration results always performed an extra m matrix-vector
products per restart needed for the projection step. This projection is not
needed at every restart. Hence the minimum number of matrix-vector prod-
ucts needed is half the number listed.
Decreasing the blocksize requires a larger value of acceptance tolerance to be
used so that the four dominant eigenvalues are computed to four significant
digits.
If A is efficiently applied to the block of vectors, then the number of matrix-
vector products should be divided by the blocksize. Hence simultaneous iter-
ation may be feasible.
Decreasing the acceptance tolerance and/or increasing k (number of eigenval-

ues to computes) hinders the efficiency of simultaneous iterat ion. This effect is
less pronounced as b decreases. IRAM with a blocksize of one has an amazing
ability to compute partial Schur decompositions with small backward error.

In summary, if storage considerations and/or the cost of orthgonalizations prevent
a large Arnoldi reduction from being computed, an IRAM does not require a substan-
tial number more matrix-vector products. This was also noted by Morgan [23].

9. Approximations Drawn from an Arnoldi Reduction. In this section,
we give a brief discussion of the quality of the approximation to a partial Schur decom-
position produced by an IRAM. It serves to underscore the limitations of computing
an approximate partial Schur decomposition with a small residual.

Suppose that r. b is at least as large as the size of the partial Schur decomposition
needed. Since AVr = VrHr + F. E:, an IRAM is attempting to drive IIGr+l,r 1{ to
zero so that V. approaches a Schur representation of an invariant subspace. Suppose
we complete this Arnoldi reduction to the fulI one:

(9.1)
[ 1A[V, W]=[Vr W] ~+;:E; ~ .

r,

Using the generalization of Theorem 5.1 in [43], Watkins and Elsner show the rate
of convergence of IIGr+l ,r II is asymptotic with that of simultaneous iteration on the
subspace spanned by the columns of Vr. Thus when IIG,+I,,I] is small, the 7?(Vr)
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is nearly an invariant subspace for A. However, the accuracy of VT as an invariant
subspace depends upon the sensitivity of A’s invariant subspaces.

Stewart [38] considers how accurate V, is to an invariant subspace of A for small
llGr+l,rll. He considers whether an orthonormal matrix Y deviating little from In can

be found so that VTY is an invariant subspace for A. Stewart chooses

where, because both 1~ + PHP and In-r + PP~ are Hermitian positive definite

matrices, the square roots are uniquely defined. The answer to whether the column
space of Vr is an accurate approximation to an invariant subspace of A becomes that

of analyzing the interaction of P with H., M, Gr+l,r and C. The following result
explains the situation.

THEOREM 9.1. Suppose that AV, = Vr Hv + F. E: is a length r block A rnoldi

reduction. Suppose the reduction is completed to a band Hessenberg decomposition of

A given by Equation (9. 1), where \lGr+l,r]l = ]IF.11. Let

& = sep(Hr, C) ~ ~$
IIXH. - CXII=

IIXIIF ‘

and denote ,&+l E llG~+l,rll, % = IICII.

If 40~+ly, < &, there is a matrix P that satisjies the bound

so that the columns of Zr = (Vr + WP)(I + PHP)–li2 are an unitary basis for an

invariant subspace of A.
Proof The conclusion now follows directly from Theorem 4.1 of Stewart [38]. Cl
The size of ~, measures the amount of coupling between the 7’?(VT) and 77,(W).

The reciprocal of S, measures the sensitivity of the 71(Zr) as an invariant subspace.
It may be shown that

sep(Hr, C) ~ ~ilnlAk(Hr) – ~[(C)l.

Varah [41] shows that if the matrices involved are highly nonnormal, the smallest
difference between the spectrums of H. and C. may be an overestimate of the true
separation.

Theorem 9.1 shows the dependence of ,BT+l upon y. and & in determining the
quality of the 7?(Vr ) as an eigenspace of A. Since V: Z, = (I+ PH P) - li2, Stew-
art [38] shows that the singular values of P are the tangents of the canonical, or
principal, angles [8, 10, 38] between the two spaces spanned by the columns of V,

and Z,, respectively.
Traditional convergence theory for Arnoldi reductions investigates the quality of

K:(A, U1 ) to approximate eigenvectors of A as j increases. Saad [28] considered
the distance between a Ritz vector drawn from a block Lanczos reduction to an
eigenvector. He extended his result to a b = 1 Arnoldi reduction in [29] with the
assumption that A is diagonalizable. Jia [14] removed this restriction. One of Jia’s
main conclusions is that although a Arnoldi reduction may produce an approximation
to an eigenvalue of A, the associated eigenvector may not be well approximated by the
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reduction. This situation occurs when the eigenvector is sensitive to perturbations
or, in other words, is ill conditioned. The resolution of this dilemma is to instead
consider the convergence of an orthonormal representation of the invariant subspace.
An IRAM allows us to do this by varying b, r, and m.

10. Conclusions. We showed that an IRAM (including its block extension) is
simultaneous iteration. Convergence theory and numerical experiments confirmed

that @i (A)K~ (A, Ul) tends to the dominant invariant subspace of order r . b at a
substantially faster rate than AiK~’b(A, Ul) if l~,.~ I > l~r.~+l 1. The theory also

demonstrates that the convergence is not uniform; the invariant subspace of order 1

is better approximated than the subspace of order t!+ 1 for 1 ~ i ~ r. b – 1.

Acknowledgments. I thank Steve Wright for a careful reading of the manuscript .x

REFERENCES

[1] E. ANDERSON, Z. BAI, C. BISCHOF, J. DEMMEL, J. DONGARRA, J. D. CROZ, A. GREENBAUM,
S. HAMMARLING, A. MCKENNEY, S. OST~OUCI+OV, AND D. SORENSEN, LAPA Ch’ Users’
Guide, SIAM, Philadelphia, second cd., 1995.

[2] W. E. ARNOLDI, The principle oj minimized iterations in the solution oj the mat% eigenvalue
~roblem, Quart. J. Applied Mathematics, 9 (1951), pp. 17–29.

[3] J. BAGLAMA, D. CALVETTI, AND L. REICHEL, Iterative methods for the computation oj a jew
eigenva[ues Oj a large sgmmetm’c matrix, BIT, 36 (1996), pp. 400–440.

[4] — Fast /ejapoints, ETNA, 7 (1998), pp. 124–140.
[5] J. BA;LAMA, D. CALVETTI, L. REICHEL, AND A. RUTTAN, Computation .j a jew close eigenoal-

ues oj a large matrix with application’ to liquid crysta[ modeling, Journal of Computational
Physics, 146 (1998), pp. 203–226.

[6] Z. BAX AND G. W. STEWJART,SRRIT— A FORTRAN subroutine to calculate the dominant
invariant subspace oj a nonsymmete-ic matrix, ACM Trans. LMathematical Software, 23
(1997), pp. 494-513.

[7] F. L. BAUER, Das Verfahren der Treppeniteration und ve.wandte Ve.fahrsn zur- L..ung alge-

braischer Eigenwertproblem, Z. Angew. ,Mat. Phys., 8 (1957), pp. 214-235.
[8] F. CHATELIN, Eigenv.lues oj Matrices, Wiley, 1993.

[9] 1. S. DUFF AND J. A. SCOTT, Computing selected eigenoalues of large sparse unsymmetric
matrices using wbspace iteration, ACM Trans. Mathematical Software, 19 (1993), pp. 137–
159.

[10] G. H. GOLUB AND C. F. V. LOAN, Matrix Computations, Johns Hopkins University Press,
Baltimore, second cd., 1989.

[11] — Matriz Computations, Johns Hopkins University Press, Baltimore, third cd., 1996.

[12] G. H. ‘GOLUB AND J. H. WILKINSON, I/[-conditioned eigensystems and the computation oj the
Jordan canonical form, SIAM Review, 18 (1976), pp. 578–619.

[13] R. G. GRIMES, J. G. LEWIS, AND H. D. SIMON, A shifted block Lanczos algorithm for solving
sparse symmetric generalized eigenproblems, SIAM J. Matrix Analysis and Applications,
15 (1994), pp. 228–272.

[14] Z. JIA, The convergence of generalized Lanczos method. for large unsgmmetric eigenproblem.,
SIAM J. Matrix Analysis and Applications, 16 (1995).

[15] —, Generalized block Lanczos methods for large unsymmetric eigenproblems, Numerische
Mathematik, 80 (1998), pp. 239–266.

[16] —, Polynomial characterizations of the approximate eigenvectors by the rejined arno[di
method and an implicitly restarted rejned arnoldi algorithm, Linear Algebra and Its Ap-

plications, 287 (1998), pp. 191–214.
[17] C. LANCZOS, An iteration method jor the solution oj the eigenva[ue problem of linear differential

and integrat operators, J. Research of the National Bureau of Standards, 45 (1950), pp. 255–
282. Research Paper 2133.

[18] R. B. LEHOUCQ AND K. J. MASCHHOFF, Block Arnoldi method, in Templates for the Solution
of Algebraic Eigenvalue Problems: A Practical Guide, Z. Bai, J. Demmel, J. Dongarra,
A. Ruhe, and H. V. der Vorst, eds., SIAM, To be published.

[19] R. B. LEHOUCQ, D. C. SORENSEN, AND C. YANG, ARPA CK USERS GUIDE: Solution .j Large
Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia,
PA, 1998.



●
●

CONVERGENCE OF IMPLICIT RESTARTING 13

[20] K. MEERBERGEN AND A. SPENCE, Implicitly restarted Amoldi Withp@imt;~n f~~ the shijt-
invert transformation, Mathematics of computation, 218 (1997), pp. 667–689.

[21] R. MORGAN AND M. ZENG, Harmonic projection methods foT largenon-symmetric eigenvalue
problems, Numerical Linear Algebra with Applications, 5 (1998), pp. 33–55.

[22] R. B. MORGAN, Computing interior eigenvalues oj large matrices, Linear Algebra and Its
Applications, 154/156 (1991), pp. 289-309.

[23] — On restarting the Arnoldi method jor large nonsymmetric eigenitalue problems, Math-
ematics of Computation, 65 (1996), pp. 12 13–1 230.

[24] C. C. PAIGE, B. N. PARLETT, AND H. A. VAN DER VORST, Approximate solutions and eigenvalue
bounds from Krylov subspaces, Numerical Linear Algebra with Applications, 2 (1995),
pp. 115–134.

[25] B. N. PARLETT, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, N. J.,
1980.

[26] H. RUTIHAUSER, Computational aspects of F.L. Bauer’s simultaneous iteration method for

symmetric matrices, Numerische Mathematik, 13 (1969), pp. 4–13.
[27] —, Simultaneous iteration method for symmetric matrices, Numerische Mathematik, 16

(1970), pp. 205-223.
[28] Y. StiD, Variations on Arnoldi’s method for computing eigenelements of large unsymmetric

matrices, Linear Algebra and Its Applications, 34 (1980), pp. 269-295.
[29] — Projection methods jor solving large sparse eigenvalue problems, in Matrix Pencil Pro-

ceedings, B. Kfigstr6m and A. Ruhe, eds., vol. 973 of Lecture Notes in Mathematics,
Springer-Verlag, Berlin, 1982, pp. 121–144.

[30] — Chebysheu acceleration techniques for solving nonsymmetm”c eigenvalue problems,
Mathematics of Computation, 42 (1984), pp. 567-588.

[31] M. SADKANE, A block Arnoldi-C’hebyshev method jor computing the leading eigenpairs oj large
sparse unsymmetric matm’ces, Numerische Mathematik, 64 (1993), pp. 181–193.

[32] J. A. SCOTT, An Arnoldi code for computing selected eigenvalues oj sparse real unsymmetric

[33] G.

[34] B.

[35] D.

[36] A.

[37] G.

matrices, ACM Trans. Mathematical Software, 21 (1995), pp. 432–475.
L. G. SLEHPEN AND H. VAN DER VORST, A Jacobi-Davidson iteration method joT linear

eigenoalue problems, SIAM J. Matrix Analysis and Applications, 17 (1996), pp. 401–425.
T. SMITH, J. M. BOYLE, J. J. D. B. S. GARBOW, Y. IKEBE, V. C. KLEMA, AND C. B.

MOLER, EISPA Ch’ Guide, Springer–Verlag, Berlin, second ect., 1976. Volume 6 of Lecture

Notes in Computer Science.
C. SORENSEN, Implicit application oj polynomial jilters in a k-step Arnoldi method, SIAM

J. Matrix Analysis and Applications, 13 (1992), pp. 357-385.
STATHOPOULOS, Y. SAAD, AND K. Wu, Dynamic thick restarting of the Davidson, and the

implicitly restarted Arnoldi methods, SIAM J. Scientific Computing, 19 (1998), pp. 227–

245.
W. STEWART, Accelerating the orthogonal iteration jor the eigenvectors oj a Hermitian
matriz, Numerische Mathematik, 13 (1969), pp. 362–376.

[38] —, Error and perturbation bounds for subspaces associated with certain eigenualue prob-

lems, SIAM Review, 15 (1973), pp. 727–764.
[39] —, Introduction to Matrix Computations, Academic Press, San Diego, California, 1973.

[40] — Simultaneous iteration jor computing inuariant subspaces of non-Hermitian matrices,
N;merische Mathematik, 25 (1976), pp. 123-136.

[41] J. M. VARAH, On the separation of two matrices, SIAM J. Numerical Analysis, 16 (1979),
pp. 216–222.

[42] D. S. WATKINS, Understanding the QR algorithm, SIAM Review, 24 ( 1982), pp. 427-439.

[43] D. S. WATKINS AND L. ELSNER, Convergence of algorithms of decomposition tgpe jor the eigen-
value problem, Linear Algebra and Its Applications, 143 (1991 ), pp. 19–47.


