skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Genotyping and Bioforensics of Ricinus communis

Thesis/Dissertation ·
DOI:https://doi.org/10.2172/900882· OSTI ID:900882
 [1]
  1. Univ. of California, Davis, CA (United States)

The castor bean plant (Ricinus communis) is a member of the family Euphorbiaceae. In spite of its common name, the castor plant is not a true bean (i.e., leguminous plants belonging to the family, Fabaceae). Ricinus communis is native to tropical Africa, but because the plant was recognized for its production of oil with many desirable properties, it has been introduced and cultivated in warm temperate regions throughout the world (Armstrong 1999 and Brown 2005). Castor bean plants have also been valued by gardeners as an ornamental plant and, historically, as a natural rodenticide. Today, escaped plants grow like weeds throughout much of the southwestern United States, and castor seeds are even widely available to the public for order through the Internet. In this study, multiple loci of chloroplast noncoding sequence data and a few nuclear noncoding regions were examined to identify DNA polymorphisms present among representatives from a geographically diverse panel of Ricinus communis cultivated varieties. The primary objectives for this research were (1) to successfully cultivate castor plants and extract sufficient yields of high quality DNA from an assortment of castor cultivated varieties, (2) to use PCR and sequencing to screen available universal oligos against a small panel of castor cultivars, (3) to identify DNA polymorphisms within the amplified regions, and (4) to evaluate these DNA polymorphisms as appropriate candidates for assay development (see Figure 1). Additional goals were to design, test and optimize assays targeting any DNA polymorphisms that were discovered and to rapidly screen many castor cultivars to determine the amount of diversity present at that particular locus. Ultimately, the goal of this study was to construct a phylogeographic tree representing the genetic relationships present among Ricinus communis cultivars from diverse geographic regions. These research objectives were designed to test the hypothesis that cultivated varieties of Ricinus communis from various geographic regions can be distinguished from one another based on differences present at the genetic level. In addition, the present study sought to determine the amount of diversity present among Ricinus communis cultivars.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
900882
Report Number(s):
UCRL-TH-226437; TRN: US200711%%627
Country of Publication:
United States
Language:
English