skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: DNA repair: Dynamic defenders against cancer and aging

Journal Article · · Public Library of Science

You probably weren't thinking about your body's cellular DNA repair systems the last time you sat on the beach in the bright sunshine. Fortunately, however, while you were subjecting your DNA to the harmful effects of ultraviolet light, your cells were busy repairing the damage. The idea that our genetic material could be damaged by the sun was not appreciated in the early days of molecular biology. When Watson and Crick discovered the structure of DNA in 1953 [1], it was assumed that DNA is fundamentally stable since it carries the blueprint of life. However, over 50 years of research have revealed that our DNA is under constant assault by sunlight, oxygen, radiation, various chemicals, and even our own cellular processes. Cleverly, evolution has provided our cells with a diverse set of tools to repair the damage that Mother Nature causes. DNA repair processes restore the normal nucleotide sequence and DNA structure of the genome after damage [2]. These responses are highly varied and exquisitely regulated. DNA repair mechanisms are traditionally characterized by the type of damage repaired. A large variety of chemical modifications can alter normal DNA bases and either lead to mutations or block transcription if not repaired, and three distinct pathways exist to remove base damage. Base excision repair (BER) corrects DNA base alterations that do not distort the overall structure of the DNA helix such as bases damaged by oxidation resulting from normal cellular metabolism. While BER removes single damaged bases, nucleotide excision repair (NER) removes short segments of nucleotides (called oligonucleotides) containing damaged bases. NER responds to any alteration that distorts the DNA helix and is the mechanism responsible for repairing bulky base damage caused by carcinogenic chemicals such as benzo [a]pyrene (found in cigarette smoke and automobile exhaust) as well as covalent linkages between adjacent pyrimidine bases resulting from the ultraviolet (UV) component of sunlight. NER can be divided into two classes based on where the repair occurs. NER occurring in DNA that is not undergoing transcription (i.e., most of the genome) is called global genome repair (GGR or GGNER), while NER taking place in the transcribed strand of active genes is called transcription-coupled repair (TCR or TC-NER). We will explore NER in more detail below. Mismatch repair (MMR) is another type of excision repair that specifically removes mispaired bases resulting from replication errors. DNA damage can also result in breaks in the DNA backbone, in one or both strands. Single-strand breaks (SSBs) are efficiently repaired by a mechanism that shares common features with the later steps in BER. Double-strand breaks (DSBs) are especially devastating since by definition there is no intact complementary strand to serve as a template for repair, and even one unrepaired DSB can be lethal [3]. In cells that have replicated their DNA prior to cell division, the missing information can be supplied by the duplicate copy, or sister chromatid, and DSBs in these cells are faithfully repaired by homologous recombination involving the exchange of strands of DNA between the two copies. However, most cells in the body are non-dividing, and in these cells the major mechanism for repairing DSBs is by non-homologous end joining (NHEJ), which as the name implies involves joining two broken DNA ends together without a requirement for homologous sequence and which therefore has a high potential for loss of genetic information.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Director, Office of Science. Office of Biological andEnvironmental Research. Life Sciences Division; National Institutes ofHealth
DOE Contract Number:
DE-AC02-05CH11231; NIHP01 CA92584, R01CA63503
OSTI ID:
900790
Report Number(s):
LBNL-60023; R&D Project: 864C4D; BnR: 400412000; TRN: US200711%%562
Journal Information:
Public Library of Science, Vol. 4, Issue 6; Related Information: Journal Publication Date: 06/13/2006
Country of Publication:
United States
Language:
English