

U. of Chicago Grant No. DE-FG02-ER61588 (Richard C. Reba, M.D., Principal Investigator)
Final Technical Report

The long-term objective is to develop blood-brain barrier (BBB) permeable m₂-selective (relative to m₁, m₃, and m₄) receptor-binding radiotracers and utilize these radiotracers for quantifying receptor concentrations obtained from PET or SPECT images of human brain. In initial studies, we concluded that the lipophilicity and high affinity prevented (R,S)-I-QNB from reaching a flow-independent and receptor-dependent state in a reasonable time. Thus, it was clear that (R,S)-I-QNB should be modified. Therefore, during the last portion of this funded research, we proposed that more polar heterocycles should help accomplish that. Since reports of others concluded that radiobromination and radiofluorination of the unactivated phenyl ring is not feasible (Newkome et al., 1982), we, therefore, explored during this grant period a series of analogues of (R)-QNB in which one or both of the six-membered phenyl rings is replaced by a five-membered thienyl (Boulay et al., 1995), or furyl ring.

The chemistry specific aims were to synthesize novel compounds designed to be m₂-selective mAChR ligands capable of penetrating into the CNS, and develop methods for efficient radiolabeling of promising m₂-selective muscarinic ligands. The pharmacology specific aims were to determine the affinity and subtype-selectivity of the novel compounds using competition binding studies with membranes from cells that express each of the five muscarinic receptor subtypes, to determine the ability of the promising non-radioactive compounds and radiolabeled novel compounds to cross the BBB, to determine the biodistribution, in-vivo pharmacokinetics, and in-vitro kinetics of promising m₂-selective radioligands and to determine the distribution of receptors for the novel m₂-selective radioligands using quantitative autoradiography of rat brain, and compare this distribution to the distribution of known m₂-selective compounds.

THE FUNDAMENTAL ASPECT OF THE RESEARCH HAS BEEN THE CHEMISTRY PORTION. THEREFORE, SOME DETAILS OF THE CHEMISTRY REPORT ARE PROVIDED (January 1996-March 1999).

During this last funded research period, we have prepared the following:

- a. 11 heterocyclic analogues of QNB
- b. The enantiomers of 3-quinuclidinols were prepared.
- c. Ethyl 2-(5-bromo-, 5-iodo- or 5-methylthienyl) glyoxalates were prepared from ethyl oxalyl chloride and aluminum chloride in carbon disulfide and 2-bromo-, 2-iodo- or 2-methylthiophene.
- d. Ethyl (R,S)-alpha-hydroxy-alpha-2-(5-bromo-, 5-iodo- or 5-methylthienyl)-alpha-2-thienyl-acetates were prepared from ethyl heteroaryl glycolates and 2-thienylmagnesium bromide.
- e. Resolution of (R,S)-alpha-hydroxy-alpha-2-(5-bromo- or 5-iodothienyl)-alpha-2-thienylacetic acid. The racemic acids were obtained from the hydrolysis of their ethyl esters by treatment with excess sodium carbonate in water-ethanol. The racemic bromo- or iodo-acid derivative was added to quinine dissolved in boiling ethyl acetate, and maintained at room temperature overnight. The salt which crystallized was filtered and, after 5 recrystallizations from n-butanol, had a constant melting point. The bromo-derivative salt rotation is -53.50 and its acid (acid was liberated with 5 N hydrochloric acid) rotation is -13.40. The iodo-substituted salt rotation is -51.66 and its acid rotation is -12.84. The mother liquor from the first crystallization of the iodo-derivative-quinine salt was evaporated to dryness under reduced pressure and residue was

DOE Patent Clearance Granted

Mark P. Dvorscak

Mark P. Dvorscak
(630) 252-2393
E-mail: mark.dvorscak@ch.doe.gov
Office of Intellectual Property Law
DOE Chicago Operations Office

2-28-03

Date

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

U. of Chicago Grant No. DE-FG02-ER61588 (Richard C. Reba, M.D., Principal Investigator)
Final Technical Report

recrystallized five times from ethyl acetate-hexane. The iodo-salt rotation is -46.34 and its acid +12.84.

This overall project, Development of Gamma-Emitting Receptor Binding Radiotracers for Imaging the Brain has been supported to a great extent during a 17 year period by the DOE OER(DOE ER-61588; DOE ER-60649; DOE ER-60039, 1982-1999). Approximately 90 full publications have resulted from this work. We believe our small research group was remarkably productive. The full details of the chemistry work and the pharmacologic and pharmacokinetic characterization are presented in our publications. The publications listed below acknowledge support from DOE.

RESULTS INDICATING PROGRESS TOWARDS THE SPECIFIC AIMS.

PUBLISHED REPORTS OF WORK SUPPORTED BY THIS GRANT AWARD (Only since 1991, when the work was divided after Dr. Reba, the PI, moved to the University of Chicago).

Baumgold, J, Cohen, VI, Paek, R, and Reba, RC, Muscarinic receptor subtype selectivity of novel heterocyclic QNB analogues. *Life Sci.* 48: 2325-2329, 1991.

Baumgold J, Ling P, Reba RC: Use of *ex-vivo* binding to measure the brain concentrations of putative radioligands. *Nucl Med Biol* 19:513-516, 1992.

Baumgold J, Pryzbyc RL, Reba RC: 3-alpha-chlorimperialine: an m₂-selective muscarinic receptor antagonist that penetrates into brain. *Eur J Pharmacol* 251: 315-317, 1994.

Boulay, SF, Sood, VK, Rayeq, MR, McRee, RC, Cohen, EI, Cohen, VI, Zeeberg, BR, Reba, RC, Autoradiographic evidence that quinuclidinyl 4-(bromophenyl)-2-thienylglycolate (QBPTG) displays *in-vivo* selectivity for the muscarinic m₂ subtype. *Neuroimage* 2: 209-213, 1995.

Boulay SF, Gitler MS, Sood VK, Cohen VI, Zeeberg BR, Reba RC: Comparison of the *in-vivo* rat brain regional pharmacokinetics of [³H] QNB, (R,S)-[¹²⁵I]-4-QNB and (R,R)[¹²⁵I]-4-IQNB binding to the muscarinic acetylcholine receptor relationship to the regional subtype composition. *Receptor* 5: 207-218, 1995.

Boulay SF, McRee C, Cohen VI, Sood VK, Zeeberg BR, Reba RC: Specific binding component of the "inactive" stereoisomer (S,S)-[¹²⁵I]IQNB to rat brain muscarinic receptors *in-vivo*. *Nuclear Medicine & Biology* 23: 211-219, 1996.

Boulay, SF, Sood, VK, Rayeq, MR, Zeeberg, BR, Eckelman, WC, Autoradiographic evidence that (R)-3-quinuclidinyl (S)-4-fluoro-methylbenzilate ((R,S)-FMeQNB) displays *in-vivo* selectivity for the muscarinic m₂ subtype. *Nucl Med Biol*, 23: 889-896, 1996.

U. of Chicago Grant No. DE-FG02-ER61588 (Richard C. Reba, M.D., Principal Investigator)
Final Technical Report

Boulay, SF, Sood, VK, Rayeq, MR, Cohen, VI, Zeeberg, BR, Reba, RC, Autoradiographic evidence that 3-quinuclidinyl 4-fluoro-benzilate (FQNB) displays in-vivo selectivity for the m₂ subtype. Neuroimage 3: 35-39, 1996.

Cohen, VI, Gibson, RE, Fan, LH, De la Cruz, R, Gitler, MS, Hariman, E, Reba, RC, Synthesis and muscarinic cholinergic receptor affinities of 3-quinuclidinyl alpha-(alkoxyalkyl)-alpha-aryl-alpha-hydroxy acetates J Med Chem. 34: 2989, 1991.

Cohen, VI, Gibson, RE, Fan, LH, De la Cruz R, Gitler, MS, Hariman, E, Reba, RC, Synthesis and receptor affinities of new 3-quinuclidinyl alpha-heteroaryl-alpha-aryl-alpha-hydroxy acetates. J Pharm Sci. 81: 326-329, 1992.

Cohen, VI, Baumgold, J, Jin, B, De la Cruz, R, Rzeszotarski, WJ, Reba, RC, Synthesis and structure-activity relationship of some 5-[[[(dialkylamino)alkyl]-1-piperidinyl]acetyl]-10,11-dihydro-5H-benzo[b,e][1,4]diazepin-11-ones as m₂-selective antimuscarinics. J Med Chem 36,162-165, 1993.

Cohen VI, Jin B, Reba RC: The synthesis of substituted 1,5-benzodiazepines. Journal of Heterocyclic Chem 30:835-837, 1993.

Cohen VI, Jin B, Reba RC: Facile and general synthesis of 2-, 3-, or 4-[(dialkyl-amino)alkyl]- pyridines and -piperidines. Liebigs Ann Chem 809-810, 1993.

Cohen, VI, Jin, B, Gitler, MS, De la Cruz, R, Rzeszotarski, WJ, Zeeberg, BR, Baumgold, J, Reba, RC, Synthesis of some dibenzodiazepinone derivatives as potent and m₂-selective antimuscarinic compounds. J Heterocyclic Chem 31: 787-791, 1994.

Cohen, VI, Jin, B, Gitler, MS, De la Cruz, RA, Boulay, SF, Sood, VK, Zeeberg, BR, Reba, RC, Novel potent and m₂-selective antimuscarinic compounds which penetrate the blood-brain barrier. Eur J Med Chem. 30: 61-69, 1995.

Cohen VI, Zeeberg BR, Boulay SF, Sood VK, Rayeq MR, Danesh RA, McPherson DW, Reba RC. In vivo competition studies of Z-(-,-)-[125I]IQNP against 3-quinuclidinyl 2-(5-bromo-thienyl)-2-thienylglycolate (BrQNT) demonstrating in vivo m₂ muscarinic subtype selectivity for BrQNT. J Molecular Neuroscience. 11(1): 1-9, 1998.

Cohen VI, Jin BY, Cohen EI, Zeeberg BR, Reba RC. Synthesis of some substituted dibenzodiazepinones and pyridobenzodiazepinones. J Heterocyclic Chem 35 (3): 675-686, 1998

Cohen VI, Jin B, McRee RC, Boulay SF, Cohen EI, Sood VK, Zeeberg BR, Reba RC. In vitro and in vivo m₂ muscarinic subtype selectivity of some dibenzodiazepinones and pyridobenzo- diazepinones. Brain Research 10: 861(2): 305-315, 2000.

Diksic M, Reba RC (Eds): Radiopharmaceuticals and Brain Pathophysiology Studied with PET and SPECT, CRC Press, Inc., Boca Raton, FL, 1991.

U. of Chicago Grant No. DE-FG02-ER61588 (Richard C. Reba, M.D., Principal Investigator)
Final Technical Report

Gibson, RE, Moody, T, Schneidau, TA, Jagoda, EM, Reba, RC, The *in-vitro* dissociation kinetics of (R,R)-[¹²⁵I]4-IQNB is reflected in the *in-vivo* washout of the radioligand from rat brain. *Life Science* 50: 629-637, 1992.

Gitler, MS, Reba, RC, Cohen, VI, Rzeszotarski, WJ, Baumgold, J, A novel m₂-selective muscarinic antagonist: binding characteristics and autoradiographic distribution in rat brain. *Brain Research* 582: 253-260, 1992.

Gitler, MS, De la Cruz, R, Zeeberg, BR, Reba, RC, [³H]QNB Displays *in-vivo* selectivity for the m₂ subtype. *Life Science* 55: 1493-1508, 1994.

Gitler, MS, Boulay, SF, Sood, VK, McPherson, DW, KnapRuss, FF, Zeeberg, BR, Reba, RC, Characterization of *in-vivo* brain muscarinic acetylcholine receptor subtype selectivity by competition studies against (R,S)-[¹²⁵I]IQNB. *Brain Res.* 687: 71-78, 1995.

Hiramatsu Y, Kawai R, Reba RC, Simon TR, Baum BJ, Blasberg RG: Kinetic analysis of rat parotid gland muscarinic receptors *in-vivo*: comparison with brain and heart. *Am J Physiol* 264:G541-G552, 1993.

Hiramatsu Y, Kawai R, Reba RC, Blasberg RG, Baum BJ: Kinetic analysis of rat exocrine muscarinic receptors *in-vivo*. *J Pharm & Exp Therap* 289: 1205-1212, 1994.

John CS, Saga T, Kinuya S, Le N, Jeong JM, McAfee JG, Neumann RD, Reba RC, Paik CH: Preparation and characterization of [¹²⁵I] PAB: A potential malignant melanoma imaging radiopharmaceutical. *J Nucl Med* 33: 339-890, 1992.

John CS, Saga T, Kinuya S, Le N, Jeong JM, Paik CH, Reba RC, Varma VM, McAfee JG: An improved synthesis of [¹²⁵I]N-(diethylamineoethyl)-4-iodobenzamide: A potential ligand for imaging malignant melanoma. *Nucl Med Biol* 20: 75-79, 1993.

John CS, Bowen WD, Saga T, Kinuya S, Vilner BJ, Baumgold J, Paik CH, Reba RC, Neumann RD, Varma VM, McAfee JG: A malignant melanoma imaging agent: Synthesis, characterization, *in-vitro* binding and biodistribution of I-125-(2-piperidinylaminoethyl) 4-iodobenzamide. *J Nuclear Med* 34: 2169-2175, 1993.

Kapp OH, Siemion J, Eckelman WC, Cohen VI, Reba RC: Comparison of agonist and antagonist binding in the muscarinic m₂ receptor. *Receptors & Signal Transduction* 7: 177-203, 1997.

Kapp OH, Siemion J, Kuo J, Johnson BA, Shankaran VA, Reba RC, Mukherjee J: Comparison of the interaction of dopamine and high affinity positron emission tomography radiotracer fallypride with the dopamine D-2 receptor: A molecular modeling study. *Journal of Molecular Modeling*, 7: 6-18, 2001.