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Abstract

Recent laser wakefield acceleration experiments have demonstrated the generation of 

femtosecond, nano-Coulomb, low emittance, nearly monokinetic relativistic electron 

bunches of sufficient quality to produce bright, tunable, ultrafast x-rays via Compton 

scattering. Design parameters for a proof-of-concept experiment are presented using a 

three-dimensional Compton scattering code and a laser-plasma interaction particle-in-

cell code modeling the wakefield acceleration process; x-ray fluxes exceeding 2210 -1s

are predicted, with a peak brightness > 1020 photons / (mm2 x mrad2 x s x 0.1% 

bandwidth).

* Current address: Lincoln Laboratory, MIT, Lexington, MA 02420

PACS: 41.75.Jv, 52.38.-r, 41.60. Cr, 41.60.-m, 41.50.+h
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1. Introduction

The generation of bright, ultrafast, tunable, hard x-rays from truly tabletop systems is a 

research goal of considerable interest, currently pursued by a number of groups 

worldwide. Such novel x-ray sources would have a wide variety of applications, ranging 

from dynamic diffraction studies of laser-pumped materials on the femtosecond time-

scale, to time-resolved molecular dynamics [1-4] and advanced biomedical imaging [5].

Amongst different proposed schemes to generate ultrafast x-rays, such as laser-driven 

Kα sources [2,6-8], high-harmonic generation [9], or free-electron lasers [10], Compton 

scattering possesses a unique set of valuable characteristics, including compactness, 

wide tunability, femtosecond time-scale, and the potential for high brightness. This 

method has already been demonstrated using picosecond and femtosecond lasers 

synchronized to an rf linear accelerator (linac) [11-15]. Intense picosecond x-ray beams 

can be obtained in that case using head-on interaction geometries. The duration of the 

x-ray pulses depends on size of the interaction area, which fully depends on the size of 

the laser and particle beams as well as the angle of interaction. Different crossing 

techniques can then be used to keep the electron-photon superposition area small 

enough and produce subpicosecond x-ray pulses [16]; however, the x-ray flux becomes

strongly diminished if the entire electron beam does not overlap with the laser pulse to 

produce the Compton scattering radiation.

Recently, three different groups [17-19] have demonstrated the successful production of 

high charge (nC), high energy (> 50 MeV), nearly monokinetic ( / 10%γ γ∆ ≤ ) laser-

produced plasma electron bunches using terawatt-class, few Joules, 30 fs chirped-pulse 

amplification (CPA) laser systems. These electron beams have a low divergence angle 
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(few mrad), and the source size is very small (few µm); thus, the normalized emittance 

is comparable to, or better than, that obtained in conventional high-brightness linacs. 

Furthermore, the electron pulse duration is extremely short, of the order of a few tens of 

femtoseconds; this unique set of characteristics opens the path toward practical, 

compact, high brightness hard x-ray sources such as the all-optical Compton scattering 

scheme discussed in this paper.

The design parameters of a proof-of-principle experiment are presented, whereby hard 

x-rays are generated by colliding ultrashort electron bunches obtained via laser 

wakefield acceleration (LWFA) with laser pulses produced by a TW-class chirped-pulse 

amplification (CPA) laser, as shown schematically in Fig. 1. The advantages of using 

laser acceleration to produce the relativistic electrons are manifold: first, the ~ 1 nC 

electron bunches produced in this manner are extremely short, thus leading to intense 

femtosecond x-ray flashes by using of the entire electron bunch charge; second, the 

electrons can be synchronized with the Compton scattering drive laser with great 

accuracy; third, LWFA is a high-gradient process, allowing for a very compact system; 

finally, sufficiently low emittance and monokinetic beams can produce bright, broadband 

x-ray pulses that could be used for a number of interesting applications, including 

femtosecond Laue diffraction.

In Compton scattering, the basic interaction relies on the double Doppler upshift of 

incident photons by relativistic electrons: for head-on collisions, the energy of the 

scattered x-rays is given by 2
04xω γ ωh ; h , where 2

01 /eV m cγ = + is the relativistic 

factor of the electrons accelerated to a potential V, and 0ω is the frequency of the 

incident light. For example, for 800 nm light produced by a Ti:Al2O3 laser, the incident 



4

photon energy is 1.55 eV; a 50 MeV electron beam will generate 60 keV x-rays for 

head-on collisions. In addition, for the same interaction geometry, the x-ray pulse 

duration is essentially equal to the electron bunch length, thus offering the potential to 

generate femtosecond x-ray flashes; this particular interaction geometry offers other 

advantages over crossed beams setups, including better overlap and higher x-ray dose, 

as well as improved performance against timing jitter. Because the interaction is based 

on the relativistic Doppler effect, however, the electron beam quality plays an important 

role in the brightness of the x-rays. 

In this paper, the properties of the electron beam used for the Compton scattering 

calculations are derived from three-dimensional (3D) particle-in-cell (PIC) simulations 

that fit the experimental data of the more recent LWFA experiments [17]. The brightness 

scaling of Compton scattering and other salient theoretical features are then briefly 

outlined, and the 3D time and frequency domain Compton scattering code structure is 

discussed; this code has been extensively benchmarked against recent Compton 

scattering experiments performed at Lawrence Livermore National Laboratory (LLNL) 

using a 150 MeV linac and a high-brightness S-band photoinjector. Finally, the two 

codes are interfaced to predict the properties of the x-ray pulses that a Compton 

scattering source driven by laser wakefield acceleration will produce experimentally, 

and conclusions are drawn.

2. Electron beam parameters

Three-dimensional (3D) particle-in-cell (PIC) simulations using the code “Virtual Laser 

Plasma Laboratory” [20,21] were used to closely match the data of the recent LWFA 
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experiments [17]; these LWFA parameters are shown in Table 1. The few percent 

energy spread of the electron beam results from the highly nonlinear interaction of the 

laser with the plasma. As the pulse propagates in the plateau region of a gas jet, it self-

focuses and undergoes longitudinal compression by plasma waves. This decreases the 

effective radius of the laser pulse and increases the laser intensity by one order of 

magnitude. This compressed laser pulse is now resonant with the plasma wave and it 

drives a highly nonlinear wakefield: the laser ponderomotive potential expels the plasma 

electrons radially and leaves a cavitated region behind (this is referred to as the 

‘cavitation’ or ‘blow-out’ regime). In this regime, the 3D structure of the wakefield 

resembles a plasma bubble. As the electron density at the walls of the bubble becomes 

large, wave-breaking occurs and electrons are injected and accelerated inside the 

bubble. As the number of trapped electrons increases, the bubble elongates. Its 

effective group velocity decreases, and electrons start to dephase with respect to the 

accelerating field. This dephasing causes electron self-bunching in phase space, which 

results in the monoenergetic peak in the energy spectrum.

Table 1 LWFA parameters from Ref. [17].

Drive laser pulse wavelength 800 nm

Drive laser pulse energy 1 J

Drive laser pulse duration 21 fs

Plasma density 1.0 x 1018 cm-3

Electron bunch charge 0.5 nC

Electron bunch duration 12 fs
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Electron bunch energy 170 MeV

Relative energy spread 5 %

Electron bunch divergence 10 mrad

3. Brightness scaling, basic Compton scattering physics

In Compton scattering, the Doppler upshifted frequency of the scattered radiation can 

be readily determined by considering energy-momentum conservation: 

0 0
0 0

s sm cu k m cu kµ µ µ µ+ = +h h , where 0uµ is the electron 4-velocity before the interaction, 

0kµ is the 4-wavenumber of the incident photon, and where suµ and skµ are the 

corresponding quantities after the scattering event. Using the normalization of the 4-

velocity, 2 2 1u uµ
µ γ= − = −u , and the photon mass shell condition, or vacuum dispersion 

relation, 0k k µ
µ = , one finds that: ( )0 0 0

0
s

Ck u k k uµ
µ µ µ µ+ =D . In vector form, this result can 

be expressed as:

( ) ( )
0

0 0 0 0

0 0 0 0

,
ˆs

k C s C

kk
k

γ
γ

− ⋅
=

+ − ⋅ +
u k
n u kD D

(1)

where ˆ sn is the direction of observation. In the case where recoil is negligible, we have 

0 1CkD = , and one recovers the well-known Doppler effect:

0 0

0 0 0

cos ,
cos

sk u
k u

γ ϕ
γ θ

−
=

−
(2)
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where ϕ and θ are the incidence and scattering angles, respectively. For head-on 

collisions, ϕ π= , and the maximum Doppler upshift is obtained along the electron 

velocity, at 0θ = : ( ) ( ) 2
0 0 0 0 0 0 0/ 4sk k u u kγ γ γ= + − ; .

The local number of x-ray photons scattered per unit time and volume is given by the 

product of the electron beam 4-current, ( ) ( ) /ej x ecn x uµ ν ν µ γ= , and the incident photon 

4-flux, ( ) ( ) /x cn x kµ ν λ ν µ ωΦ = :

( ) ( ) ( ) ( ) ( )
4

4 .x
e

d N x cj x x n x n x u k
d x ec

ν µ µ
µ ν ν ν λ ν µ

ν

σ σ
γω

= Φ = (3)

Here, ( )/ ,u dx cdµ µ τ γ= = u is the electron 4-velocity, ( )/ ,k cµ ω= k is the incident 

photon 4-wavenumber, and 2
08 / 3rσ π= is the Compton scattering cross-section, 

expressed in terms of the classical electron radius, 2 2 15
0 0 0/ 4 2.8178 10 mr e m cπε −= = × .

Near the focal region, the electron beam density can be described by

( ) ( )

2
0

2
0

3 2 222

1( , , ) exp ,
1 1

e
e

f b fb

u zt
N c rn r z t

k z r k zc r

  −  γ  = − − 
∆τ   + +π ∆τ       

(4)

where /eN q e= is the number of electrons in the bunch, ∆τ is the bunch duration, br is 

the radius at focus, and where the inverse beta-function is given in terms of the 
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normalized emittance, ε , beam focal radius, and energy, 0γ , by 1 2
0/f f bk r−= β = ε γ . 

Similarly, the photon density of the focusing and diffracting laser pulse is described by

( )

2

2

3 2 2
2 2
0 0

0 0

1, , exp 2 2 ,

1 1
2

ztN rcn r z t
tz zc tw w

z z

λ
λ

 
  +   = − −  ∆   π     +∆  +     

       

(5)

where 0/N Wλ = ωh is the total number of photons in the laser pulse, t∆ is the pulse 

duration, and is related to the bandwidth as 2t∆ ∆ω = , in the case of a Fourier 

transform-limited pulse, 0w is the 21/ e focal radius, and 2
0 0 0/z w= π λ is the associated 

Rayleigh length.

The on-axis flux can then be derived analytically from Eq. (3):

( ) ( ) 2 2
22

/0
02

0

8 1 , , exp ,
3

dte dx x

d

r N N tdN N e
dt w

− ∆τλ
  + β ξ η µ − =  ∆τ ∆τ π∆τ   

; F (6)

where we have defined the normalized inverse beta-function, / 2 2fk c tη = ∆ , the 

normalized inverse Rayleigh length, 0/ 2 2c t zµ = ∆ , 2 2
0/ 2 /br wξµ η = , the overlap 

function,
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( )
( )

2 2

2 2
2

1
, , exp ,

1

  η + ξµ
− Φ   ηµ + ξµη  η + ξµ   ξ η µ =  ηµ + ξµη  µ
µ + ξµη + ξ η 

F (7)

and the integrated dose,

( ) ( )
2

0
02

0

8 1 , , .
3x e

rN N N
w λ

π
+ β ξ η µ; F (8)

Equation (6) shows that the x-ray pulse duration is essentially equal to that of the 

electron bunch for head-on collisions.

The details of the derivations leading to the results given above can be found in Ref. 

[22].

Starting from Eq. (3), the peak brightness can also be derived under the assumption 

that the energy spread and emittance remain small:

( )

( )

2 2

2 2-15 2 2 2
0 0

2 2 2 2 2
0

1 1

2 2 2

2 2 22 2 2

4 10 1ˆ exp 2
2 2 1

1 11 1
11 1 .

2 1

e
x

N N rB
w u u

e e

u

λ

⊥ ⊥

η µ

⊥

  γ× χ − δω + δγ χ = +  π ε ∆τ χ∆ χ χ − ∆    

      
η Φ − − µ Φ −         η µχ − δω + δγ χ        × − Φ +  χ χ − ∆ µ − η δω + δγ χ   

© ¬
ª ­
ª ­
ª ­
ª ­« ®

(9)
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Here, 2
0 0/ 4xχ = ω γ ω is the normalized Doppler-upshifted frequency, 0/δω = ∆ω ω is the 

relative spectral width of the drive laser pulse, and 02 /δγ = ∆γ γ is the scaled relative 

energy spread; 0 0/bu r u⊥∆ = ε γ ε; .

This result clearly underscores the importance of the electron beam quality: the x-ray 

brightness is proportional to that of the electron bunch. In particular, the x-ray brightness 

scales inversely quadratically with the physical emittance, 0/ε γ , and linearly with the 

electron bunch focused current density. Therefore, the ultrashort, high charge, low 

emittance electron beams produced by laser wakefield acceleration are good 

candidates to drive compact Compton scattering x-ray sources, provided their energy 

spread is sufficiently low.

4. Three-dimensional time and frequency domain x-ray code

A very detailed description of the three-dimensional time and frequency domain x-ray 

code used here to model the main characteristics of the radiation produced by colliding 

a relativistic electron bunch produced by LWFA with an intense laser pulse is given in 

Ref. [23]; in the present paper, a brief overview is given for completeness.

Starting from the local number of x-ray photons scattered per unit time and volume, as 

expressed in Eq. (3), one can obtain the radiated x-ray density per unit solid angle by 

using the differential scattering cross-section:

( ) ( )
5

4 .x
e

x x

u kd N d c n x n x
d x d d

ν
ν

λ µ µ
µ

σ
=

Ω Ω γω
(10)
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The local spectral brightness can be derived by using the Doppler-shifted x-ray 

frequency, which is given by Eq. (2) in the Thomson limit; we then have

( ) ( )
6

4 1 ,x
e x

x x x x

d N d c n x n x
d x d d d λ µ µ

µ

 σ κ = − ⋅ δ ω − ω  Ω ω Ω ω κ   

k
β (11)

where cκ γ
ω

= − ⋅
ku and ˆx xκ γ= − ⋅u n are the electron light-cone variables with respect 

to the incident and scattered photons, respectively.

For realistic electron and laser beams, Eq. (11) must be integrated over the entire

phase space of each beam to yield the corresponding x-ray brightness, within the 

context of an incoherent superposition. A general expression for the differential cross 

section in Eq. (11) can be derived by first transforming the wave vector of incident 

photon into the electron rest frame; the corresponding rest frame differential cross 

section can then be transformed back into the lab frame.

In its most general form, the program calculates the number of photons scattered into a 

given solid angle and within a range of scattered frequencies at each time step by 

summing over all incident wave-vectors within the laser pulse, which accurately models 

the laser pulse phase space. This is performed for all the electrons in the bunch, which 

are represented by a series of macro-particles with a charge-to-mass ratio equal to 

0/e m . Furthermore, the zeroth-order (no laser) electron motion through the laser focus 

is assumed to be ballistic, which is a good assumption given the fact that the relativistic 

plasma wavelength of the electron bunch is much longer than all other scale lengths. 

Within this context, the input to the code is a table listing the 6-dimensional position and 



12

momentum coordinates of each macro-particle at a given time; from that data, the 

macro-particles are ballistically propagated until they are subjected to the incident laser 

pulse, and scattering occurs. The temporal information of the x-ray pulse is calculated 

from the time of the interaction at each time step in conjunction with the time of flight of 

the produced photon to the detector at a specified distance to the interaction. Spatial 

information of the scattered x-ray pulses can be determined by performing this 

calculation for several different observation angles.

The three-dimensional code described above has been thoroughly benchmarked 

against ongoing Compton scattering experiments at LLNL [11,24-25]. For example, Fig. 

2 shows the excellent agreement obtained between the three-dimensional codes and 

the experimentally measured angular x-ray energy distribution. The integrated x-ray 

doses agree to within 10%. This deviation is attributed to the accuracy with which the 

various moments of the electron and laser phase spaces can be measured, including, 

energy, energy distribution, emittance, focal spot size, beta-function, Rayleigh range, 

and charge. For more detail, we refer the reader to reference [23].

5. X-ray simulations

As mentioned above, the input to the code is a table listing the 6-dimensional position 

and momentum coordinates of each macro-particle at a given time; for the simulations 

given here, that input is provided by the PIC code describing the LWFA process. 

Figures 3 and 4 show the LWFA electron phase space, as simulated by the PIC code. 

The phase space is highly correlated, probably because of the strong nonlinear 

electromagnetic fields present in the laser-driven plasma wakefield, as seen in Fig. 4. 
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The electron bunch produced by LWFA is also extremely short; thus, 180-degree 

Compton scattering will provide equally short x-ray flashes, of great potential interest to 

the users community; this is confirmed by the simulations, which show that a high 

photon dose can be produced: 91.65 10× photons, in the particular case simulated here, 

with a peak flux exceeding 2310 photons/s. The x-ray spectrum shown in Fig. 5 is quite 

broad; this is due to the small spot size and relatively large divergence of the LWFA 

electron beam, which is also reflected in the x-ray beam, as shown in Fig. 6 (bottom); 

such broad spectra are ideal for ultrafast Laue diffraction experiments. The electron 

bunch temporal shape is faithfully reproduced in the x-ray pulse, as seen in Fig. 6 (top), 

which opens the possibility of preparing specific electron beam pulse shapes for 

different x-ray applications; in particular, double-pulsing the source on the femtosecond 

time-scale appears feasible, in principle. At this point, it is important to note that in the 

present simulations, no effort was made to capture and manipulate the LWFA beam 

prior to x-ray production; depending upon the quantity of interest to the users, different 

configurations could be proposed: for example, relatively narrow-band x-rays can be 

produced by increasing the electron beam size, while decreasing its divergence; on the 

other hand, for some other applications the x-ray source size could be minimized, at the 

expense of spectral purity. Under the electron beam conditions simulated here, the peak 

x-ray brightness exceeds 1020 photons / (mm2 x mrad2 x s x 0.1% bandwidth), which 

represents a very high value for such a compact system; the average brightness 

remains modest, but multi-Joule, 1kHz laser systems are currently under development, 

and could yield a path to improved average brightness, useful for advanced biomedical 

imaging and other advanced applications.
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6. Conclusions

Following the recent demonstration of efficient, high quality electron beam acceleration 

in a laser wakefield, three-dimensional simulations have been performed to generate an 

accurate picture of the electron beam phase space, and to predict the x-ray output of 

LWFA-based Compton scattering experiments, where the electron beam collides with a 

fraction of the drive laser pulse to produce a very bright, femtosecond x-ray flash. Our 

study, using fully benchmarked codes, shows that high dose ( 910> photons/shot), high 

peak brightness [> 1020 photons / (mm2 x mrad2 x s x 0.1% bandwidth)] x-ray pulses 

could be produced following that approach. As the LWFA electron beam is extremely 

short, the maximum photon flux predicted by the code exceeds 2310 photons/s, and 

opens a path to ultrafast Laue diffraction experiments, taking advantage of the 

broadband x-ray spectrum generated by Compton scattering. Finally, we note that the 

maximum x-ray energy produced in these simulations approaches 1 MeV, thus 

indicating that femtosecond positron pulses could also be generated by increasing 

either the LWFA electron beam energy or by frequency-multiplying the laser pulse used 

for Compton scattering to exceed the pair production threshold, and reach sufficiently 

large pair production cross-section in dense metallic targets.
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Figure captions

Fig. 1 Schematic of a Compton scattering x-ray experiment using LWFA electrons. The 

energy of the x-rays, xωh , depends on the angle between the laser and electron beams, 

ϕ, as well as on the angle of observation from the electron beam direction, θ, and the 

electron energy, 2
0m cγ . 

Fig. 2 Comparison between the observed angular x-ray distribution (blue line), the 3D 

code (green line), for LLNL linac Compton scattering experiments (see Refs. [24] and 

[25]). The red line outlines the 1/γ energy-integrated cone.

Fig. 3 LWFA phase space, as simulated by 3D PIC code. Top: electron beam energy 

spectrum.  Bottom: temporal electron pulse profile.

Fig. 4 LWFA transverse electron beam phase space, as simulated by 3D PIC code.

Fig. 5 On-axis x-ray spectrum, simulated by the three-dimensional time and frequency 

domain Compton scattering code, using the three-dimensional PIC code-generated 

electron beam phase space as an input.

Fig. 6 Top: temporal x-ray pulse shape, as simulated by the three-dimensional time and 

frequency domain Compton code, using the three-dimensional PIC code-generated 

electron beam phase space as an input. The temporal x-ray pulse (blue line) is 
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superimposed on the temporal electron distribution to show the close correlation. 

Bottom: x-ray angular energy distribution.
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Fig. 2
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Fig. 3
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Fig. 4
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Fig. 5
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Fig. 6
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