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I Summary

This report summarizes progress in the second year of this project. The objective is to
develop methods and software to predict the spatial configuration, properties and temporal
evolution of microbial colonies in the subsurface. To accomplish this, we integrate models
of intracellular processes, cell-host medium exchange and reaction-transport dynamics on
the colony scale. At the conclusion of the project, we aim to have the foundations of a
predictive mathematical model and software that captures the three scales of these systems
— the intracellular, pore, and colony wide spatial scales.

In the second year of the project, we refined our transcriptional regulatory network
discovery (TRND) approach that utilizes gene expression data along with phylogenic
similarity and gene ontology analyses and applied it successfully to E.coli, human B cells,
and Geobacter sulfurreducens. We have developed a new Web interface, GeoGen, which
is tailored to the reconstruction of microbial TRNs and solely focuses on Geobacter as one
of DOE’s high priority microbes. Our developments are designed such that the frameworks
for the TRND and GeoGen can readily be used for other microbes of interest to the DOE.

In the context of modeling a single bacterium, we are actively pursuing both
steady-state and Kinetic approaches. The steady-state approach is based on a flux balance
that uses maximizing biomass growth rate as its objective, subjected to various
biochemical constraints, for the optimal values of reaction rates and uptake/release of
metabolites. For the kinetic approach, we use Karyote, a rigorous cell model developed by
us for an earlier DOE grant and the DARPA BioSPICE Project.

We are also investigating the interplay between bacterial colonies and environment
at both pore and macroscopic scales. The pore scale models use detailed representations for
realistic porous media accounting for the distribution of grain size whereas the
macroscopic models employ the Darcy-type flow equations and up-scaled advective-
diffusive transport equations for chemical species. We are rigorously testing the
relationship between these two scales by evaluating macroscopic parameters using the
volume averaging methodology applied to pore scale model results.



Il TRN Discovery and Analysis

A Overview

A key component of this project is the development and application of tools for TRN
discovery. The application of those tools aims at the optimization of the use of microbes in
energy production and environmental remediation. In particular, our systems microbiology
TRN discovery tools will provide approaches to predict microbial behavior and ultimately
to enable the computer-aided design of mutants for prescribed functions that can be
performed in an environmentally safe manner. The TRND system is designed to interpret,
and ultimately guide, gene expression experiments (Fig. 1). We have developed a robust
methodology to use known TRN information as a training set and augment it by
discovering new transcription factor (TF)/gene regulatory interactions by integrating a
variety of approaches via a Bayesian framework, as discussed in the paragraphs below, in
the appendices, and in our publications cited herein.

The TRN we seek to discover is a list of genes for each of which a set of TFs with
up/down regulation is provided. This approach also provides the gene-gene regulation
network as the genes that encode the components of each TF are also included in our
TRNs. We use multiple methodologies to suggest enhanced TRNs. The result of each
methodology is weighed proportional to its success rate using the corresponding training
set. This approach goes beyond studies that focus on gene-gene networks as it provides
more detailed information (such as gene A is up regulated by TF B) that can be tested
experimentally and used in medical and biotechnical applications. We demonstrate that
methodologies such as gene ontology and phylogenic similarity provide better results when
a preliminary set of TF/gene interactions is used instead of a training set of gene-gene data.

Our TRND Web-based system accepts gene expression microarray data on a
microbe of interest as input and yields its TRN as output. This TRN can then be used as
input to a second, integrated workflow that creates a Fortran-readable, mathematical cell
reaction-transport model of transcription/translation/post-translational processes and
analyzes the model to determine factors (e.g., extracellular conditions or mutations) that
support distinct types of cell behaviors (e.g., intracellular levels of RNA, proteins, and
other genomic and proteomic components). TRND, the database, and the methods it uses
are described below.
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Fig. 1 Responsive genes from a gene-expression experiment initiate a query to extract an a priori TRN
(training set) from our GenDat database. This preliminary TRN is used by our TF-based microarray
interpreters and bioinformatics modules as a training set. The results of the individual modules are integrated
via a Bayesian approach to discover TF/gene regulatory interactions. Results and the training set are also
made available through our new database GeoGen which was developed to facilitate a higher level of
collaboration between experimental and computational groups working on Geobacter species.

B FTF Module

Fast Transcription Factor (FTF) module (Sun et al. 2007; Tuncay et al. 2006; Qu et al.
2007) was initially developed by us for the DARPA BioSPICE project, and was refined,
tested, and integrated into TRND last year. The FTF method is aimed at the construction of
TF profiles from expression data. Considering the well-known noise in the data, the FTF
algorithm uses a blending of the expression profiles of many genes to compute these TF
profiles. Errors in a user-supplied preliminary TRN are corrected by our algorithm. In FTF,
regulation of many genes by a given TF allows an integration of many gene responses to
yield a given TF profile (TF activity versus time or across conditions). Use of the
constructed TF profiles overcomes limitations of other methods wherein it is assumed that
the profile of a TF’s activity is represented by that of its encoding gene’s RNA expression.

Network discovery requires many automated trials of possible TF/gene
interactions; thus the FTF algorithm was designed to be extremely efficient. The essential
equation on which FTF is based was arrived at empirically after extensive numerical
experimentation with synthetic expression data and a known TRN, TF activities, and
specified noise. The FTF equation takes the form

an _Tns = % H (mir - mis)binsyin
i=1

where T =activity of TF n at condition or time I, m/ =microarray response for gene i
transcript at condition r, b,, = +1/—1for gene i up/down regulated by TF n, b, =0 for no
regulation, H(x) =+1 for x>0 or x<0, = 0 for x = 0, and ¥, =2"% /(M (2% —1)), for
L. = number of TFs controlling gene i, and M, = number of genes TF n regulates as
determined by the training set b. If there are N, experimental times or conditions, then
r=12,...N

one can write N x (N, +1)/2 equations for the N activities T for

n ! ge !



each of the N, TFs. TF activities are obtained from the solution of the above equations

via a least squares approach to integrate all the expression data in an objective fashion.

Given TF profiles constructed as above, a measure of the reliability of a given
TF/gene regulatory interaction is determined by correlating the predicted TF profile with
the observed gene’s RNA expression microarray response. For example, if a TF
upregulates a given gene, then the predicted TF profile and the observed microarray
response for that gene are likely to be positively correlated. Such arguments are used to
correct supplied TF/gene interactions and also to discover additional TF/gene interactions.
Scores for FTF predicted interactions are calculated by taking the linear (Pearson)
correlation between the predicted TF activities and gene expression data. A synthetic
example that illustrates FTF is provided in Appendix A. Applications to E.coli and human
B cell data (for which there are extensive gene expression data sets) are summarized in
Appendices C and D, respectively.

C Gene Ontology Module

In this TRN construction approach, we use the biological process ontology developed by
the Gene Ontology (GO) Consortium (www.geneontology.com) and hypothesize that the
likelihood that a gene pair is regulated in the same manner increases with the similarity of
their GO descriptions. GO analysis was proposed by Wu et al. (2005) who applied it to
find functional modules in E.coli. Each GO term is placed in a directed acyclic graph. The
GO similarity score between two genes is based on the number of shared ancestors. As a
gene might be assigned multiple GO terms, we seek the maximum similarity score
between all possible combinations.

To discover TF/gene interactions, our innovation is to reformulate the GO approach
as follows. For a system of N__. genes, there are Ngene x(N —1)/2 gene-gene pairs. In

gene gene

order to score the gene A/TF B interaction, we first seek all genes regulated by TF B in the
preliminary TRN or training set. Then we calculate the gene-gene similarity score for the
gene of interest with each gene regulated by TF B. We assign the maximum of these scores
to the gene A/TF B interaction. Although this appears to be a rough estimation of the
TF/gene score, our computational experiments have shown that this score clearly
distinguishes the probability distributions of the training and random sets of TF/gene
interactions (Tuncay et al. 2006; Sun et al. 2006). We have also used this methodology for
G.sulfurreducens as shown in Sect. V.

D Phylogenic Similarity Module

Phylogenic similarity analysis, also proposed by Wu et al. (2005), is based on the
hypothesis that two genes, from different but related organisms, with large phylogenic
similarity score are likely to be in the same functional operon, regulon or pathway. Our
innovation compared to previous approaches is the hypothesis that “two genes have high
phylogenic similarity score, then they would be regulated in the same manner by the same
set of TFs.” Based on this hypothesis, we extend the preliminary TRN by calculating
phylogenic similarity for gene-gene pairs following the methodology proposed by Wu et
al. (2005) (referred to as “likelihood of neighboring profiles” in their work). We have
extended the number of genomes used in the analysis from 134 to 229 and used the E.coli
TRN as the training set, in contrast to the gene-gene pair training set used by Wu et al.
(2005). Details of the methodology are provided in Appendix B.



E Multi-Method Integration

Given that the TRNs of interest involve many genes and TFs, they are vast and complex.
Thus, any one of the methods cited above will not introduce sufficient information to
reconstruct the TRN. To address this challenge, we have developed and tested an algorithm
for integrating the information from many TRN construction methods. Our algorithm is as
follows. TRN construction method k provides a score R* for every possible TF/gene
interaction. An experimentally-verified partial TRN from GenDat is used as the training
set to determine ftrk(Rk), the fraction of the known interactions in each of a number of

intervals of R¥; similarly fr:md(Rk) is obtained for randomly chosen TF/gene pairs. If the
ratio f*(R*)/f* (R¥)>>1, interactions with a score R are highly likely to be correct.

These Bayesian ratios are computed for each method and TF/gene pair. The sum of the
log,  of these ratios is taken as a multi-method confidence measure S, for gene i and TF
n:
N e fx (Rk)
Sin - Z Wk Ioglo{ fi (Rk)]'
rand in

k=1
Here, N, is the number of TRN construction methods and w_is a weighting factor

which we presently set to 1, but which could be optimized using a larger training set. Any
TF/gene interaction with a sufficiently high log-sum confidence is accepted, resulting in an
integrated predicted TRN. If a method fails to have a prediction for a TF/gene pair, it is
excluded from the above calculation.

F The Nonlinear Dynamical Systems Analysis Module

Given the TRN for a microbe of interest, the question still remains regarding how one can
derive its full biological implication. To address this challenge, we have developed a
dynamical systems analysis module, NDS. NDS accepts a TRN, a list of simple or
composite TFs, and the encoding genes of the TFs or TF components as input. NDS then
automatically creates a Fortran-readable set of transcriptional/translational/post-
translational reaction-transport, cell-model equations. In turn, the latter is analyzed to
identify conditions (e.g., the extracellular medium or mutations) under which various
distinct motifs of microbial behaviors are manifested (e.g., specialization in one versus
another carbon or oxidation source). We have tested this module using data on human
epithelial cells; it was shown that these cells can display dramatic transition as extracellular
conditions pass through critical values. Also, it was shown that hysteretic behaviors can be
manifest — i.e., over a given range of conditions a cell can display two or more distinct
behaviors. Which state is occupied is determined by the initial state of the cell, described
by levels of RNA and protein population. In this project, this will allow us to identify
regions of extracellular conditions (e.g., temperature, O, concentration, nutrient
availability, and solid phase composition) that optimize remediation or energy production.

G The TRND Network Discovery Web-Enabled System

Our objective in establishing TRND was to enable a semi-automated workflow that
integrates the methods reviewed above in a Web-based format. The input to TRND is a
user’s gene expression data. Users can also add/edit TRN information and have access to a



database of available TRN information (see Sect. Il for details). TRND interfaces allow
for a range of microarray data formats. To start the computation/analysis, TRND extracts a
preliminary TRN from our GenDat database (see Sect. Il1). Then the user is offered the
choice of methods to use in reconstructing the TRN. Extensive editing functionalities are
implemented to allow the user to upgrade the preliminary TRN. A visual tutorial is
provided on TRND use that is downloadable from our sysbio.indiana.edu Web portal.

H TRND Testing and Validation

In the course of developing the individual modules and the TRND system described above,
we have carried out studies to test and validate our techniques and software, gain
experience with picking confidence cutoffs, reaction-transport and other parameters, and
contribute scientific results. The choice of test/validation biological systems was dictated
by (1) the availability of a large set of high-quality, gene-expression, microarray data and
(2) the availability of an extensive training set of experimentally verified TF/gene
regulatory and process-rate information. Given this validation of the TRND system (see
the Appendices), we are applying it to Geobacter (see Sect. 1V). The first test case was
E.coli as it is believed to have the most well-understood TRN (Appendix C). The second
test case was the human B cell as there is abundant high-quality data (336 data sets
obtained on the same microarray platform) and adequate TF/gene regulatory information
(9,500 TF/gene interactions) in GenDat (see Sect. I11). These test cases helped us explore
the advantages and weaknesses of the bioinformatics modules explained above.

111  The GenDat, TRND Results, and GeoGen Databases

A Overview

Three databases have been created as part of our efforts in cellular regulatory network
discovery. (1) GenDat is a database of TRN information for multiple species and cell lines.
It is designed to provide training sets of experimentally verified TF/gene regulatory
interaction information for use with our TRN construction system, TRND. GenDat enables
TRND to provide a seamless, semi-automated workflow that yields a TRN given the gene
expression data. (2) The TRND Results database provides TRND-predicted regulatory
networks to the research community. (3) GeoGen is designed to integrate transcriptional
regulatory information from across the Geobacter project; therefore, the objective is to
provide a user-friendly interface to a database of TRN (and ultimately other cell
regulatory) information on Geobacter species. GeoGen has a subset of the features in
GenDat and TRND Results but is reorganized for greater ease of use, and it allows
designated project collaborators to edit the database. GeoGen is designed to include
computational results from multiple research groups and allows access to binding site
information, a feature that doesn’t exist in TRND Results and GenDat databases, and large
datasets of predictions can be input by our systems manager. In summary, GeoGen
provides an integration of efforts on Geobacter to facilitate the activities of both
experimental and computational teams.

B GenDat and TRND Results

GenDat (sysbio.indiana.edu/trnd/) is our MySQL database of experimentally verified TRN
information. This database holds gene, TF, and TF/gene interaction information. It



archives aliases and is drawn from a variety of sources. Associated tables contain sets of
predicted TF/gene interactions. GenDat provides the training sets for our TRN discovery
workflow, TRND (see Sect. II). In contrast to other databases, it (1) provides up/down
regulatory interactions explicitly (i.e., the user is referred to the citations), (2) contains
complete entries for specific pathways of interest, (3) can be downloaded to form a large
training set, and (4) provides the TRN information in a format that can readily be used in
an automated TRN discovery workflow, as in Fig. 1.

TRND Results is a database of transcriptional regulatory information predicted by
of our TRND system. Users may access predictions on a microbe or cell type of interest.
The information is organized according to the multiple methodologies used, for each
TF/gene interaction and a confidence score is provided. An integrated multi-method
confidence score is also provided so that users can choose the level of confidence they
wish to adopt to screen out less reliable predictions. Individual methods for which
predictions are provided include gene ontology (GO), phylogenic similarity, FTF and
correlation analysis.

C GeoGen: Addressing Geobacter Project Integration

GeoGen is an interface and database designed to coordinate computational predictions and
experimentally derived results on Geobacter. GeoGen facilitates the integration of results
from diverse sources and allows the comparison between the results of the various
approaches to network discovery. Predictions generated through computational methods
include those from our TRND workflow. Additional experimentally verified information
from the literature and computer-generated results will be added by authorized users on a
continuous basis.

The entry and editing of data requires a deeper knowledge of the experimental data
quality. For example, if incorrect information from GeoGen is used as part of a training set
in a subsequent TRN construction, then results would be contaminated. To avoid the
propagation of erroneous information from one source to another, not all collaborators
should be able to edit all types of data. The present policy on data entry and editing is to
allow selected collaborators to enter individual TF/gene interactions through the GeoGen
Web interface. Large datasets (e.g., as generated computationally or from a survey of the
literature) will be entered by us via our parsers, which will also help to avoid large-scale
contamination of the database due to misunderstandings about data formats.

All Geobacter collaborators can extract data from GeoGen via a Web interface.
Users may extract various types of information:

(1) all TFs regulating one gene,

(2) all genes regulated by one TF,

(3) the TRN as a downloadable Excel spreadsheet.

(4) TRN information selected by method, multiple methods, and information

source.

GeoGen is designed to contain a spectrum of additional information:

¢ Dbinding sites, including multiple sites on a given gene for a specific TF
GSU numbers
nature of the regulation (up/down) for a given TF/gene pair
source of the information
a measure of quality for the information



All these options have been fully implemented and we are in the process of adding a
greater volume of data. As the needs of the Geobacter project arise, we shall add new types
of information and ways of selectively harvesting the information.

GeoGen Database

Strain Methods
p PK | strainiD PK | methodID
name name
I T
Interactions
< PK | interactioniD
Genehlias Gene - Links
ke P Organisms TF FK3 | genelD
aliaslD PK | genelD FK2 |tfD PK | linkiD
—> pPK |orglD | g——PK [tID FK1 | methodID
FK1 | genelD FK1 |orglD — reg FK1 | fieldiD
name FK2 | strainiD name FK2: JorgiD evidence iD
il FK1 :tr::nlﬂ score type
ane quality name
A whao
source i
Field
MadeBy PK | fieldID
PK |madelD
| name
FK1 | genelD BindingSite
FK2 |tfiD
TEAlGs PK | bindingSitelD
PK |aliasID FK1 | interactioniD
sequence
FK1 [tfiD location
name source

Fig. 2 GeoGen organization diagram. The database allows easy access to TF/gene interaction information
from diverse sources (both experimental and computational).

GeoGen is available at http://sysbio.indiana.edu/geogen. We have tested GeoGen
on Explorer 7 (Windows XP), Safari (OS X) and FireFox (all OSs). Since the objective of
GeoGen is to provide an integrative function for the Geobacter project, we plan to evolve
it in ways that are identified by a consensus of Geobacter project users.

The structure of GeoGen is shown schematically in Fig. 2. GeoGen is written in
MySQL. Using database conventional definitions, symbols in the organization chart are as
follows:

PK=primary key
FK1=foreign key one
FK2=foreign key two
FK3=foreign key three

GeoGen presently contains TF/gene interactions from sources indicated by ()
while those with (*) will be added once we receive feedback on this report:



homology-based TRN information from our analysis

TRND multi-method predictions

Information from the literature™*%%°,

Computationally derived files of possible TF/gene interactions obtained by other
research groups.

As shown in the screenshot in Fig. 3, access to GeoGen requires a user name and a
password. Authorized users can add/revise TRN data through a Web interface. It is the
user’s responsibility to ensure that revisions and additions are correct. A user can only
modify or delete information he/she entered. If data is owned by another user, they can
request that it be deleted or changed. Such requests, like many other features of GeoGen,
are initiated by a click of the mouse. These features are designed both for convenience and
for the minimization of data-entry errors.

To protect the information in GenDat, several measures will be taken. We shall
keep daily backups of the database in case of hardware failure, human error, or input of
incorrect data. The backups are stored on our local RAID system and on Indiana
University’s mass storage facility, making loss of information essentially impossible.

+ o o @

! «Reconstruction of regulatory and metabolic pathways in metal-reducing 5-proteobacteria.”
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elements in the metal-reducing bacterial family Geobacteraceae.”
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Systems Biology Karyote CellX Roulette TRND TRND Results Poisson Boltzmann GeoGen

(&' Syeteme Bialogy Login Pontal,

CENTER FOR CELL AND VIRUS THEORY, INDIANA UNIVERSITY

Systems Biology Login

| User Name |

L 1

| Password |

L 1]

\ Login | Clear |

New User

Fig. 3 GeoGen is a secure Web site. We create free accounts for interested researchers.

Once the user is logged on, four options are available as shown in the screenshot of
Fig. 4. A user can search for a given TF or gene, view all TFs or genes, or add/revise data
if authorized. As shown in Fig. 5, the search option leads to a menu where the user can
decide to search for a gene, a TF, or, alternatively, view all regulatory information from a
user-specified set of methods/sources. Users can enter a gene name or GSU number to
search for a gene or a TF (Fig. 6) and the corresponding experimentally verified and
computationally predicted regulatory network. New method/user categories can easily be
added by our system administrator (contact M. Trelinsky at mtrelins@indiana.edu or email
ortoleva@indiana.edu).

Systems Biology Karyote CellX Roulette TRND TRND Results Poisson Boltzmann — GeoGen

o Geoen

CENTER FOR CELL AND VIRUS THEORY, INDIANA UNIVERSITY

GeoGen Wizard - Main

The following wizard will help you build your query for our GeoGen database.

Please select from the following choices:

Search

View All TFs

View All Genes
Add/Revise The Data

Fig. 4 Screenshot showing that a user can search by gene or a TF, view a list of TFs and genes, or add/revise
data.

11



Systems Biology Karyote CellX Roulette TRND TRND Results Poisson Boltzmann — GeoGen

GeoGen

CENTER FOR CELL AND VIRUS THEORY, INDIANA UNIVERSITY

GeoGen Wizard - Look Up

Please narrow your search with one of the choices provided:

Enter A Gene Name And View All Regulating Transcription Factors
Enter A Transcription Factor Name And View All Genes Regulated
View All Regulatory Information

Go Back

Fig. 5 Search option leads to a in which a user can choose to search by a gene or TF. Alternatively, all
available regulatory information can be displayed.

Systems Biology Karyote CellX Roulette TRND TRND Results Poisson Boltzmann GeoGen

GeoGen

GENTER FOR GELL AND VIRUS THEQRY, INDIANA UNIVERSITY

GeoGen Wizard - Gene Search

Please enter a gene or GSU number (the required format is GSUXX¥X) to search for in the box below.

[ ][ Proceea> ]
[ ]

Fig. 6 User can enter gene name or GSU number (recommended) to search for a gene or TF.

Systems Biology Karyote CellX Roulette TRND TRHD Results Poisson Bolizmann GeoGen

GeoGen

CENTER FOR CELL AND VIRUS THEQRY, INDIANA UNIVERSITY

GeoGen Wizard - Filter By Method(S)

Please narrow your search by selecting a combination of methods on the left and click add.

Experimeantal

Fig. 7 Since GeoGen stores data from multiple sources (experimental or computational results of multiple
research groups), a user can choose a combination of sources/methodologies available.
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Systems Biology Karyote CellX Roulette TRND TRND Results Poisson Boltzmann  GeoGen

CENTER FOR CELL AND VIRUS THEOQRY, INDIANA UNIVERSITY

GeoGen Wizard - Binding Site Information

Please specify your preference for binding site information.

Would you like to view binding site information?

Fig. 8 Binding site information-viewing preference page

Systems Biology Karyote Cell X Roulette TRND TRND Results Poisson Boltzmann GeoGen

GENTER FOR GELL AND VIRUS THEQRY, INDIANA UNIVERSITY

GeoGen Wizard - View Results

You may narrow your search further by clicking on a gene of TF.

6 interactions found

Gene TF Method Regulation Exp Evidence [Score  |Quality |Source
G5U0609 TF_GSU3089 |Merged Unknown Yes 3124 3 CCVT
GS5U0609 TF_GSU3421 |GOgeo Up MNo 10 2 CCVT
GSU0609 TF_GSU3088 |GQgeo Unknown Yes 10 3 CCVT
GSU0609 TF_GSU3053 |GQOgeo Unknown No 10 2 CCVT
GSU0609 TF_GSU0000.1|GQgeo Down No 10 2 CCVT
G5U0609 TF_GSU3089 |PHYLOgeo Unknown Yes 847.815|3 CCVT
Go Back

Fig. 9 TF/gene interactions resulting from a user’s query
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GeoGen Wizard - View Results

Y¥ou may narrow your search further by clicking on a gene of TF.

3 interactions found

Binding

e BIS Source

Exp
Gene ITF Method Regulation Bt Score  |Quality | Source Binding Sequence

GSU1584 BirA Experimental| Down No |0 3  [Rodionov. Genome Biology. rGreaaCC{N141-aGTTGACAA |78 HodooviCeinelEaeu )

2004,5:R90 2004,5:R90
GsU1584 | TF_GSU1935 Merged Unknown No 2535 |2 CCVT - - -
GSU1584 | TF_GSU1935|PHYLOgeo Down No 806.125(2 CCVT - - -
Go Back

Fig. 10 View of TF-binding information for user-specified gene and TF
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D Identified Caveats in the Discovery of TRNs

Two main issues hampering TRN discovery are data quality and translational and post-
translational modifications of TF-gene expression profiles.

Data Quality: if a TF/gene interaction is predicted as a result of a single expression
experiment comparing wild and mutated strains, the quality of this information may not be
very high due to omnipresent microarray data uncertainty and the likelihood that the TRN
of the wildtype itself is not well understood for a given gene. Thus, if TF T up-regulated
gene G in the wildtype under the conditions of the reference experiment, a relatively lower
expression level in the mutant could be misinterpreted as a down regulation of G by TF T
in the mutant if only the expression ratio is used in the analysis. Similarly, the quality of
computational predictions has a large degree of variation. Hence, most computationally-
generated TF/gene interactions are accompanied by a score for the method. Its quality can
be assessed via a Bayesian approach wherein the probability that an interaction with a
given score in the training set is compared with that for a TF/gene pair chosen at random.
Such Bayesian measures are provided with all TF/gene interactions predicted by our group.
For this reason, we introduced an integer data field that indicates data quality. Hence, users
can not only choose a combination of sources (experimental and computational), but also
select a data quality cutoff they wish to impose. Quality factors we use presently are
temporary and we seek feedback from collaborators to have a consensus for quality. For
the computer-generated predictions, we suggest using a quality scale based on Bayesian
ratios.

(Post-)Translational Modifications: It is a common misconception that TF activity can be
represented by the expression of the TF-encoding gene. However, translational and post-
translational processes can break the correlation between TF and gene expression profiles.
Thus, the common notion of a gene-gene regulatory network should be viewed with
caution. This leads to the potential misuse of data from the literature. A statement in the
literature that gene A is regulated by TF X may be missing the fact that gene A is regulated
by TF Y which was over-expressed due to an enhanced transcription of gene B that
encodes TF X — i.e., the regulation of gene A by TF X is actually indirect. Mixing direct
and indirect regulatory information in any TRN construction work must be done with great
care and can lead to erroneous conclusions. We shall add a new field to discriminate
between direct and indirect regulation if there is an expression of interest.

E Upcoming GeoGen Upgrades
A number of features that can readily be added to GeoGen will be included after receiving
feedback on the present version. Examples for discussion include the following:

e options to include multiple Geobacter strains and to merge TRNs from different
strains according to a user-controlled algorithm
external links to provide further information for genes and TFs
Excel headers showing the sources of the data
greater filtering selection of data sources, e.g., by user method and confidence
statistics and graphics on the TRN assembled according to the user-specified filter
spider Web-like network images for the user-assembled TRN
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e automated training set construction for TRND input to generate an augmented TRN
based on user-supplied gene expression data

e advanced network analysis modules that can identify subnetworks that lead to
dramatic behavioral transitions due to biochemical feedback (e.g., associated with
the existence of multiple steady states for the same microenvironment, oscillatory
states for time-independent microenvironment, and the tendency toward
asymmetric division).

IV  Gsulfurreducens TRN Construction

We are attempting to assemble a TRN for G.sulfurreducens of broad enough scope to
enable computer-aided design of DOE-relevant systems. Progress to date and data sources
are as follows.

A Homolog-Based TRN Training Set

A first-pass G.sulfurreducens TRN was created by identifying genes which are
homologous to those in E.coli and B.subtillis. For example, suppose a TF up-regulates a
given operon in E.coli in which genes g1, g2 and g3 are located. If there are homologs of
the TF and these genes (in a single operon) in G.sulfurreducens, and all genes are
transcribed in the same direction, then we assume that the same TF/gene interactions are
likely to occur in G.sulfurreducens. In Table 1, we present the list of TFs that were
common in E.coli, B.subtilis, and G.sulfurreducens. With this, we produced a preliminary
TRN of 277 genes, 30 TFs, and 518 interactions (Table 2). Sources of the interaction
information were EcoCyc for E.coli and http://dbtbs.hgc.jp for B.subtilis.

TFs from E.coli TFs from B.subtilis
DnaA GSU0000.1 DnaA GSU0000.1
HyfR  GSU0359 HrcA GSU0031
ZraR-P GSU0372 Spo0A GSU1037
IcIR GSU0514 PhoP GSU1102
NtrC-P GSU1003 PyrR  GSU1270
PhoB-P GSU1102 AcoR GSU1320
FhlIA° GSU1129 PerR GSU1379
NarL GSU1293 SigF GSU1525
Fur GSU1379 SigL Gsuis8s7
LexA GSU1617 BirA GSU1935
NagC GSuU1702 BkdR GSU2915
KdpE-P GSU2484 SigD  GSU3053
IscR GSU2571 SiocA  GSU3089

CynR GSU2787
CusR GSU2946
ModE GSU2964
NikR  GSU2980
ArcA  GSU3118
NarP  GSU3229
Fnr GSU3421

Table 1 TFs common in G.sulfurreducens and E.coli or B.subtilis.
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TF_GSU0000.1 5 TF_GSU1702 2
TF_GSU0031 2 TF_GSU1887 7
TF_GSU0359 13 TF_GSU1935 2
TF_GSU0372 22 TF_GSU2484 9
TF_GSU0514 2 TF_GSU2571 4
TF_GSU1003 69 TF_GSU2787 5
TF_GSU1037 4 TF_GSU2915 3
TF_GSU1102 12 TF_GSU2946 8
TF_GSU1129 10 TF_GSU2964 22
TF_GSU1270 6 TF_GSU2980 5
TF_GSU1293 2 TF_GSU3053 39
TF_GSU1320 3 TF_GSU3089 89
TF_GSU1379 7 TF_GSU3118 51
TF_GSU1525 10 TF_GSU3229 7
TF_GSU1617 3 TF_GSU3421 95

Table 2 Number of genes regulated by each TF in the preliminary TRN.

All G.sulfurreducens genes have been entered into the GenDat and GeoGen
databases, with annotations from TIGR. The TFs and interactions in the preliminary
network obtained from homology have also been entered. In GenDat, the TFs are labeled
as belonging to organism “Geobacter homolog” to differentiate them from experimentally
verified TFs and interactions belonging to “G.sulfurreducens” (which are entered
continuously as they become available).

B GO and Phylogenetic Similarity Analyses

A GO analysis (as described in Sect. Il) was carried out, producing similarity scores for
every possible gene-gene pair. This scoring indicates how closely genes are related in the
gene ontology tree. These scores were then used with the preliminary homolog-based
network (noted above) to obtain GO scores for all possible TF/gene pairs. A summary of
the results is shown in Fig. 11 while the detailed TRN is in GeoGen. Application of our
GO approach to E.coli shows that it provides TF/gene interactions with a high level of
confidence.

We also performed a phylogenic similarity analysis based on the hypothesis that
two genes with high phylogenic similarity score (they exist in a similar set of bacteria, in
similar locations), then they would be regulated in the same manner by the same set of
TFs. Our results for E.coli support this hypothesis so that, as with GO, we felt confident
that it could be used to augment our preliminary G.sulfurreducens TRN. To calculate the
phylogenic similarity scores, we first constructed a vector for each gene, the dimension of
the vector being the number of genomes used in the analysis (229 as of December 2006).
Then we use BLASTP to identify orthologous genes of a target genome in the reference
genomes. If there is an orthologous gene in the i™ genome, then the i entry in this vector
is assigned the order of the orthologous gene in the i™ genome. If an orthologous gene does
not exist in the i™ genome, then this entry is taken to be zero. Once such a vector for each
gene is constructed, we compute a phylogenic similarity measure for each gene pair using
the expression provided in Appendix B. In Fig. 12, we show that TF/gene interactions in
the preliminary network have significantly higher scores than a random TF/gene score. In
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order to test whether GO and phylogenetic scores are correlated, for each GO score
(between 2 and 13), we calculated the percentage of TF/gene pairs that scored higher than
500 in the phylogenetic similarity analysis. Fig. 13 shows that as GO scores increase, the
probability of high phylogenetic scores increase as well.

|+ random -@- training set |

Probability Density Function

0.00 L
0

Fig. 11 Probability distributions for the GO scores for the TF/gene interactions in the preliminary TRN and
all possible TF/gene pairs. These results suggest that, as also shown for E.coli and human B cell the
hypothesis that genes that share more ancestors in the gene ontology tree are more likely to be regulated by
the same set of TFs.
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Fig. 12 Probability distributions for the phylogenic similarity scores for the TF/gene interactions in the
preliminary TRN and all possible TF/gene pairs. As in Fig. 11, a statistically significant difference between
the probability density functions are observed.
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Fig. 13 Among the set of TF/gene interactions with a given GO score, we calculated the fraction of TF/gene
interactions that scored higher than 500. The graph shows that high GO scores imply high phylogenetic
scores.

C Assembling and Reformatting Available Expression Data for G.sulfurreducens

Information on the experiments listed on the Geobacter project Web site has been
collected in an Excel spreadsheet and divided into various groups based on the control
strain and experimental conditions. We have downloaded gene expression data for the
experiments in the largest group (Group 1 with 20 experiments). The data has been
reviewed critically and processed to prepare it for input to our TRND network construction
system (sysbio.indiana.edu). This has involved writing scripts for a number of file formats
to determine which genes had bad data versus those that were not differentially expressed;
we also combined that information with the expression ratios for differentially expressed
genes. Finally, a single file containing expression ratios for all G.sulfurreducens genes in
the Group 1 experiments was constructed. 18 sets of expression data that were obtained
using the same control cells were identified. Experiment numbers, source and condition are
provided in Table 3.

If Significance Analysis of Microarrays (SAM) related files were available, we
used the SAM analysis to create the list of differentially expressed genes and the associated
expression ratios. We only kept genes with at least two reliable data in biological replicate
experiments. If Linear Models of Microarray Data (Limma) files were available, we used
the Limma analysis tool and set the cutoff p-value at 0.05 to calculate the differentially
expressed genes. If neither SAM nor Limma files were available, we used the provided list
of differentially expressed genes which may have been derived from a table in a paper. The
final number of genes was 3,537. However, the majority of the genes were only expressed
in a small fraction of experiments.

D Inconsistencies in the Microarray Data

Although descriptions for experiments 0035-GSUL and 0063-GSUL (Table 3 below) seem
identical, our review of the expression data showed large variations between University of

18



Massachusetts and TIGR platforms. We also observed a significant variation between two
experiments under identical conditions from the same laboratory (0056-GSUL and 0076-
GSUL with amplified RNA). We removed 0076-GSUL from our analysis as suggested by
University of Massachusetts researchers. The number of experiments was significantly
fewer than that we used to demonstrate TRND on E.coli (65 experiments) and human B
cells (336 experiments). First we made an attempt to include all genes, regardless of the
number of experiments in which they were differentially expressed. The probability
distributions of our FTF score for TF/gene interactions in the random and training sets
were indistinguishable, in sharp contrast with our results using FTF on E.coli or human B
cells. This suggests that either the data or this all-gene approach yields no TRN
information. As our Bayesian multi-method integration approach uses the ratio of these
probability distributions (see Sect. Il: Multi-Method Integration), this result means that
useful information cannot even be obtained from expression data in this case even when
integrated with GO or other method.

E Microarray Information Content Improved by Gene Elimination

To address the aforementioned microarray data difficulties, we decided to only include
genes with greater than 5 data points/conditions to avoid contamination of predictions with
unreliable data correlations. Fig. 14 shows that 10% of the genes were not differentially
expressed in any of the experiments, 18%, 24%, and 20% were expressed in one, two and
three experiments, respectively. Analysis of the data showed that only 241 genes were
differentially expressed in more than 5 experiments. We applied FTF to this limited
(“significant”) data. In this case, a clear difference between probability distributions for
random and training sets was observed (Fig. 15). This result shows that our methodology
for analyzing expression data applies to G.sulfurreducens and predictions for a greater
number of genes and TFs will be made as the number of expression datasets increases.
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Fig. 14 Majority of genes (93%) were differentially expressed in less than 6 experiments. Therefore they had
to be excluded from the expression analysis. However, they were included in GO and phylogenetic similarity
analysis.
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Probability Distribution Function

Score

Fig. 15 Probability distributions for FTF scores for the TF/gene interactions in the preliminary TRN and all
possible TF/gene pairs. This result was obtained using only 241 genes which were differentially expressed in
6 or more experiments. These results, although obtained with a very limited number of genes and TF/gene
interactions, are similar to those obtained for E.coli and B cells (Appendices C and D). Therefore, we
anticipate that as number of expression data sets increase, we will obtain more reliable results for a growing
number of genes.
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Fig. 16 Probability distributions for the final scores for the TF/gene interactions in the preliminary TRN and
all possible TF/gene pairs. When we apply 2.0 as the threshold 785 TF/gene interactions are predicted. The
results are available at http://sysbio.indiana.edu/geogen.
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F Multi-Method Integration for G.sulfurreducens

The GO, phylogenic similarity and FTF results were used with the homology-based, first-
pass training set to obtain a predicted TRN via our multi-method integration approach.
This result, along with the individual scores that were used for the integration, is posted at
our GeoGen Web page (http://sysbio.indiana.edu/geogen). Fig. 16 shows a clear
distinction between the random and training sets. Scores for 84,435 TF/gene pairs were
calculated. Only 2,548 TF/gene pairs were assigned scores for the three methodologies due
to the limited availability of expression data. The highest scoring 169 TF/gene interactions
are not in the training set provided in Appendix E. While a computational method can
generate thousands of predictions, only by accompanying each of them with a score/quality
measure can one know the subset that is credible. Thus, we conclude:

1. Our approach has great promise for delivering a G.sulfurreducens TRN, and

2. all TRN information in GeoGen should, we suggest, be accompanied with a score

and a Bayesian ratio graph so that its credibility can be evaluated.
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Experiment
0006-GSUL
0010-GSUL
0015-GSUL
0016-GSUL
0021-GSUL
0022-GSUL
0023-GSUL

0024-GSUL
0025-GSUL*

0027-GSUL
0028-GSUL

0029-GSUL

0030-GSUL
0035-GSUL
0047-GSUL
0056-GSUL™*
0063-GSUL

0075-GSUL

Source
C.E. Nunez
L. DiDonato
G. Reguera
G. Reguera

B. Methe, K.P.
Nevin

B. Methe, K.P.
Nevin

K. Juarez-Lopez
K. Juarez-Lopez
A. Esteve-Nunez

M.V. Coppi
R.A. O’Neil

K.P. Nevin, D.
Holmes

K.P. Nevin

G. Reguera
B.C. Kim

R. DiDonato
B. Postier

B. Postier

Experimental Strain/Condition
rpoS (GSU1525) knockout

relA (GSU2236) knockout

rpoE (GSUO0721) knockout

Cells from a biofilm grown on
Fe(lll)oxide-coated surfaces
Medium lacking ammonia so cells have
to fix nitrogen in order to grow
Fe(l1l) citrate used as the electron
acceptor

flp-1(GSU3421) knockout
flp-2(GSU1992) knockout
Fumarate-limited growth

sfrAB (GSU0509+GSU0510) knockout
Fe(Il) removed after steady state
achieved

Cells growing on the surface of an
electrode within a Geobattery operating
in potentiostat mode

Phosphate removed after steady state
achieved

Temperature of 25C

omcF (GSU2432) knockout
Fumarate-limited growth
Temperature of 25C

Medium lacking ammonia so cells have
to fix nitrogen in order to grow

Notes

Control cells were
planktonic (in solution)
Done at TIGR.

Original ratios were
inverted to put the desired
condition in the
denominator

Cells were harvested as
growth rate began to drop
(at maxDensity*0.75)

Usual temperature is 30C.
Done by TIGR.

Different acetate and
fumarate concentrations
than in 0025-GSUL
Usual temperature is 30C.
Done at UMass.

Exp. title says the RNA
was amplified. Done at
UMass.

Table 3 Summary of available experimental data as of December 2006. The control condition for all
experiments was the wild type strain with acetate as the electron donor, fumarate as the electron acceptor,
and acetate as the limiting nutrient. Data sets marked with * were inverted (from a over b to b over a). The
last three experiments were performed on University of Massachusetts arrays whereas the rest were
performed on TIGR arrays.
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V Cell-Environment Interaction

Three main avenues have been investigated to connect supra-pore scale environmental
conditions to microbial cell metabolism: substrate abundance, energetic regulation, and
differences reflected in intrinsic genetic potential at the modulon level.

An existing project examining the physiology of marine Roseobacters (Dr. M. A.
Moran, UGA, lead PI) provided the opportunity for the Meile group to participate in a
comparative genome analysis of Silicibacter. No significant variation in genetic potential
related to redox sensing at the modulon level related was apparent between closely related
organisms (Silicibacter pomeroyi, Silicibacter sp. M1040, Jannaschia Sp. CCS1) that
inhabit distinct ecological niches. As a consequence, this avenue was not pursued further.
A manuscript involving C. Meile has been submitted to Applied and Environmental
Microbiology (Moran et al. in revision).

A second research avenue considered the role of free energy yield in determining
the dominant metabolic pathways as it was suggested earlier that H, concentrations reflect
the active microbial processes (e.g., Hoehler et al. 1998). In collaboration with Dr. S. B.
Joye (University of Georgia at Athens, lead PI), we correlated energy yields based on
substrate and product concentration measurements with measured process rates
(acetogenesis, H, based methanogenesis, H, based sulfate reduction, acetate based
methanogenesis and acetate based sulfate reduction) in a seafloor brine system. We found
that the free energy of reaction and the corresponding measured process rates correlate
poorly, illustrating potential limitations of this approach in the field. A manuscript is in
preparation (Joye et al. in prep.).

As a consequence of the limitations to the above two approaches, we have focused
on the simulation of a set of chemical substances that are known to be of importance in
microbial metabolism. These substances can be tracked at the field scale, allowing us to
compare model predictions and experimental measurements. We are currently developing
models at three levels to accomplish this: metabolism of a single bacterium and reaction-
transport modeling at the pore and field scales.

A Cellular metabolism formulation

We are pursuing two complementary avenues: A steady-state approach and a fully kinetic
approach. For the steady-state approach, we have adapted the work by Mahadevan et al.
(2006). In their metabolic network reconstruction that is based on genome analysis, they
use a constraint-based modeling approach to estimate steady state intracellular fluxes and
metabolite exchange with the environment. Mathematically, this approach can be
formulated as a linear programming problem where the metabolic fluxes or reaction rates
(f), in a network described by a stoichiometric matrix S, satisfy S*f = 0 (i.e., steady state)
and adhere to a given set of physiological constraints on the magnitude of the fluxes. The
solution (values for f) is then determined by optimizing for a specific biological function
(for example maximum biomass growth). We have implemented the model of Mahadevan
et al. (2006) in Matlab to estimate the metabolic fluxes under different conditions, e.g.,
acetate uptake fluxes. This allows us to estimate — for a given limiting substrate uptake
flux — growth rates and uptake or release of metabolites accounted for in the model.

The complementary approach we have recently initiated uses Karyote and focuses
on a kinetic description of the TCA cycle. Focusing on availability and use of acetate
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(Table 4), Karyote predicts the concentrations of enzymes and metabolites within the cell.
This approach has the benefit of resolving the dynamic nature of cell processes, but
requires a great deal of knowledge about the metabolism of the organism of interest. While
extensive studies have yet to be performed on the complete list of metabolic enzymes,
limited data does exist to describe enzymes of importance in the uptake and use of acetate.
In G.sulfurreducens, the utilization and fate of acetate can be described by three distinct
and separate sections of metabolism (Table 4). The first steps involve the uptake and
activation of acetate by the cell. The conversion of acetate into acetyl-CoA can occur by
two different mechanisms. One is the direct conversion by phosphate transacetylase and
acetate kinase. The alternative enzyme in acetate activation is acetyl-CoA transferase,
which produces acetyl-CoA and succinate from succinyl-CoA and acetate. Next, the
acetyl-CoA can be utilized by citrate synthase in the TCA cycle for ATP generation or it
can be wused by pyruvate-ferredoxin oxidoreductase to produce pyruvate for
gluconeogenesis. Previous modeling studies have demonstrated that the fate of most
acetate in the cell is through ATP generation (Mahadevan et al. 2006). The remaining
acetate is used for cell growth. The flux of acetate from pyruvate through 2-
phosphoglycerate, which is incorporated into biomass, can hence be used to determine
cellular growth rates, which can be incorporated into larger (pore or macro-) scale models.
We are currently in the process of implementing the reactions provided in Table 4.

References for Kinetic

Process/Enzyme Reaction Parameters

Acetate Activation

Galushko et al. 2000

Acetate Kinase

ATP + Acetate > ADP + Acetyl-P

Phosphate Transacetylase

Acetyl-P + COASH - Pi + Acetyl-CoA

Galushko et al. 2000

Acetyl-CoA Transferase

Succinyl-CoA + Acetate - Acetyl-CoA + Succinate

Galushko et al. 2000

TCA Cycle

Succinate Dehydrogenase

Succinate + NADP+ = Fumarate + NADPH

Galushko et al. 2000

Fumarase

Fumarate - Malate

Galushko et al. 2000

Malate Dehydrogenase

NAD+ + Malate = Oxaloacetate + NADH

Galushko et al. 2000

Citrate Synthase

Oxaloacetate + acetyl-CoA - CoASH + Citrate

Bond et al. 2005

Aconitase

Citrate - Isocitrate

Galushko et al. 2000

Isocitrate Dehydrogenase

Isocitrate + NADP+ > CO, + NADPH + 2-oxoglutarate

Galushko et al. 2000

Oxoglutarate
oxidoreducatase

2-oxoglutarate + CoA > CO, + Succinyl-CoA

Galushko et al. 2000

Gluconeogenesis

Pyruvate Ferredoxin
Oxidoreductase

Acetyl-P + CO, = Pyruvate

Gebhardt et al. 1985

Pyruvate phosphate
Dikinase

ATP + Pi + pyruvate > AMP + PP + PEP

Schwitzguebel et al. 1979

Enolase

PEP > 2PG

Weese, et al. 2005

Table 4 Enzyme and reactions relating to acetate modeled in Karyote. While a large portion of the Kinetic
parameters used came directly from Geobacter, some data is being obtained from other organisms.
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B Reaction-Transport Model Developments

Pore Scale

To investigate the interplay between transport of chemicals and cellular functioning, we
have implemented a 2-D representation of the pore scale using a finite element approach in
COMSOL. We compute the flow field in a 6mm x 3mm domain, by imposing a pressure
gradient and using periodic boundary conditions along the flow direction (Fig. 17). We
then include expressions for the evolution of substrate concentrations and compute
biomass distribution both in solution and attached to grain surfaces, subject to growth,
death, sorption, and transport in the fluid phase. Growth and acetate uptake are computed
either via a Monod-type dependency and growth efficiency, taking into account minimum
acetate requirements, or using the results from the linear programming approach (see
above). Preliminary results at this small scale indicate that under typical flow and
production/consumption conditions, relatively small variation in substrate and biomass
distribution at the pore scale is to be expected. Spatial heterogeneity of these distributions,
however, can become significant in the presence of moving fronts (based on scenarios
motivated by large scale model simulations; see below). This work has been part of a
poster presentation at the Academy of the Environment meeting at the University of
Georgia, and an invited talk at the American Society of Limnology and Oceanography
(King and Meile 2006; Meile et al. 2007).

xioé

04

flow m/s A,
Fig. 17 Representation of flow velocities in a 2-D porous medium (~ 6mm by 3mm). Colors and streamlines
depict fluid flow whereas white areas illustrate the grains within the system. The arrow represents the
dominant flow direction along the imposed pressure gradient. The domain is periodic and represents a torus,
i.e., outflow on the left and top is inflow at the right and bottom, and vice versa.

Large Scale

To provide pore scale simulations with a larger scale context, we are implementing
reaction-transport models that are based on volume averaged properties. We compute
concentration fields in porous media using a finite element approach, and use operator
splitting method to achieve a modular code design (Appendix F). The governing equations
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solved are ¢%:V(D*§Ci)—§-(¢\70i)+¢Ri for solutes, and %:Ri for solids,

where C is expressed per volume of solute or solid phase, respectively, D* is the dispersion
tensor parameterized after Scheidegger (1961), v is the flow velocity and R is the net
reaction rate per volume of a given phase, resulting from an arbitrary, user-defined set of
reactions.

Building on a scenario of subsurface phenol contamination, we are currently
investigating the impact of using a comprehensive reaction network. We are therefore
expanding the set of processes taken into account in Watson et al. (2005) who considered
primary reactions (i.e., reactions related to the breakdown of organic matter or contaminant
derived electron donor) and sorption processes, by including secondary reactions — those
that describe the interaction between reduced substances produced in the primary reactions
(Fig. 18).
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Fig. 18 Large scale (40m by 400m) simulations for a phenol contamination site following the scenario in
Watson et al. (2005), after 13 yrs, including secondary reactions. (a) Concentration fields (mM) of select
chemical using the full reaction network (clockwise: phenol, acetate, dissolved reduced iron, sorbed reduced
iron, nitrate and oxygen). (b) Net rates (mol m™ s™) of production and consumption for O, (top row; log
scale) and Fe(Il) (bottom row; linear scale) for primary reactions only (left) vs. a reaction scheme including
primary, secondary and sorption reactions (right). The more comprehensive reaction network predicts zones
of both net iron production and consumption.
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VI

Conclusions

TRN results on E.coli, B cell and G.sulfurreducens show that our TRND approach
is now mature and it can be applied to microbes of interest to the DOE.

We now have a fairly broad metabolic and transcriptional regulatory network for
G.sulfurreducens.

We have made progress in modeling both pore and macroscopic scale reaction-
transport models. We will expand on our initial pore scale model by investigating a
more comprehensive reaction network, in particular the role of surface associated
processes.

We shall finalize our new pore scale model to resolve the three-dimensional nature
of the porous media. We are currently working on the incorporation of a 3-D
Stokes flow field with a comprehensive reaction network in Fortran.

We shall complete the installation of our nonlinear dynamical systems analysis
module as an additional site on our portal (syshio.indiana.edu). Thus, with TRN
information and associated transcription, translation and post-translational data as
input, this workflow will allow one to discover conditions for which cell
genomic/proteomic behavior will support one set of pathways, as well as conditions
at which dramatic pathway switching will occur.
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Appendix A: Construction of TF Activities

To test FTF we generated a TRN that consists of 1,000 genes and 100 TFs. The properties
of the TRN are shown in Fig. Al. The synthetic expression data was generated by

assumed random TF activities. Expression data for gene i was generated using
Nre

m; :Zmean' . Here, m/is the expression level of gene i in experiment r, T, is the
n=1

activity of TF n in experiment r, N, is the number of TFs, and Q,, is a measure of the

binding affinity of TF j and gene i. Values of Q,, were allowed to change 20 fold and were

generated randomly (in the logarithmic scale). Our synthetic examples with large TRNs
show that, despite the simplicity of the FTF approach, the constructed TF activity profiles
are reliable. For example, for a TRN that has the properties shown in Fig. Al, even when
we eliminate 50% of the TRN to create a “preliminary TRN”, 90% of the constructed TF
activities have a correlation coefficient of at least 0.70 with the TF activities used to
generate the synthetic expression data (when 20 or more microarray experimental
conditions were used). Fig. A2 shows the dependence of the results on the number of
experiments. This graph shows that, for practical reason, it is not feasible to recover the
full network. Fig. A3a shows the effect of network structure on the results. As the network
gets denser, the percentage of the network that can be recovered decreases. Fig. A3b
illustrates the dependence of the percentage of recovery on the degree of incompleteness in
the preliminary TRN. As anticipated, more complete preliminary TRNs allow a higher
percentage of the unknown part of the network to be recovered using expression data.
These results suggest that in a real world application such as E.coli (for which we have
probably less than 40% of the TRN — based on the number of TF/gene interactions known
and expected number of TFs), one can not expect to construct the full TRN using
expression data alone, regardless of the number of expression datasets available.
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Fig. Al Properties of TRNs used in the synthetic examples. Networks that consist of 1,000 genes and 100
TFs are generated using the probability distribution for the number of genes regulated by a given TF shown
in (a). The corresponding probability distribution for the number of regulators per gene is shown in (b). The
average number of regulators per gene is 3.62, 5.22, and 7.02 for Networks 1, 2 and 3, respectively. Equal

likelihood is chosen for up versus down regulation.
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Fig. A2 Reconstruction of TRNs. We have used the Network 1 of Fig. A1 and generated synthetic expression
data. Then, we eliminated 50% of the network (randomly), and used FTF to reconstruct the deleted network.
Fig. a) shows the percentage of the deleted network recovered as a function of success rate, a measure of the
likelihood that an interaction is correct, as estimated from the training set (known interactions). As the
number of microarray experiments increases, a higher percentage of the network can be reconstructed.
However, full reconstruction requires too many experiments. Fig. b) shows success rate as a function of the
absolute value of the linear correlation between the constructed TF activity profiles and gene expression data.
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Fig. A3 Effect of TRN properties. We used Networks 1, 2 and 3 of Fig. 3 to generate 100 synthetic
expression data sets, and eliminated 50% of the TF/gene interactions in the TRN. Shown is the percentage of
the deleted network recovered as a function of success rate. As the number interactions increases, the
percentage of the network that can be recovered decreases. b) Same as a) except we used Network 1 and
eliminated 25%, 50%, and 75% of the network. As expected, higher percentage of the deleted network is
recoverable when a more complete network is known.
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Appendix B: Phylogenic Similarity Analysis

We first construct a vector for each gene in E.coli, the dimension of the vector being the
number of genomes used in the analysis (in this study 229). We applied BLASTP to
identify probable orthologous genes of a target genome in 229 reference genomes. The
most significant BLASTP hit from each reference species was considered the true ortholog
of the target species if the expectation value was less than 1.0e-10 (McCue et al. 2001). If
there is an orthologous gene in the i™ genome, then the i entry in this vector is assigned
the order (location) of the orthologous gene in the i genome. If an orthologous gene does
not exist in the i genome, then this entry is taken to be 0. Once such a vector for each
E.coli gene is constructed, we compute a phylogenic similarity measure for each gene pair.
Given two vectors X; =[X;, X5, *+, Xi550] fOr gene i and similarly X ; for gene j, we use the
following phylogenic similarity measure for a gene pair:

229

Si;)HY = _Zlog[P(Xik’Xjk )] (B1)

Here P(X,,X;), the likelihood of genes i and j, is calculated from

=(1-py)2-py) if x,=0and x; =0 (B2)
P(Xik’xjk) = pik(l_ pjk) if Xik =0 and Xik =0
=(1- pu) Py if x, =0 and x; #0
d(Xik’Xjk)(ZNk_d(xikixjk)_l)
Nk(Nk _1)

= Py Py if x;, #0and x; #0

where

P, is the probability that gene i is present in genome k.

N, is the total number of genes in reference genome k

d (X, Xj) = abs(X, — X;) -
To calculate p, , we grouped 229 reference genomes into subgroups based on information
gathered from pathema.tigr.org and us.expasy.org/sprot/hamap/bacteria.html. It is
assumed that p, is identical within each subgroup for each gene. Then p,, is taken to be

the number of genomes that has an orthologous gene to the total number of genomes in the
subgroup.
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Appendix C: Application to E.coli

We used expression data obtained from NIH GEO (GSE7, GSE8, GSE9 - 65 datasets) and
a training set of TF/gene interaction from EcoCyc (www.ecocyc.org). EcoCyc includes
E.coli operons, promoters, TFs, and TF binding sites and describes the mechanisms of
transcriptional regulation of E.coli genes. It contains the most complete description of the
genetic network of any organism. EcoCyc and RegulonDB (Salgado et al. 2004) are
curated to ensure that their data content is the same. The preliminary TRN used in this
study included 984 genes, 144 TFs, and 2007 TF/gene interactions. Out of the 2,007
TF/gene interactions, 1,124 were up regulation, 766 were down regulation, 5 were
uncertain, and 112 were dual regulation (both up/down). All methodologies provided in
Sect. 1.3 were used to calculate the final score (Sect. I11.4) for all possible TF/gene
interactions.  All  bacterial sequence information was downloaded from
ftp://ftp.ncbi.nih.gov/genomes/Bacteria. The probability distributions of the integrated
confidence score for the training and complete TF/gene sets are shown in Fig. C1. We
applied a threshold of 1.3 to this score to find the most likely TF/gene interactions. The
suggested TRN includes 3,694 new TF/gene interactions. After we performed the
calculations we found 206 more TF/gene interactions in the RegulonDB (Salgado et al.
2004) and EcoCyc databases that were not included in the training set. 44 out of 206
regulatory interactions were predicted by our methodology. Out of 44 interactions, the
nature of the regulation was correctly predicted for 33 of them. Regulation type couldn’t be
obtained for 7 interactions. The p-value for predicting at least 44 out of 206 TF/gene
interactions to be less than 1.0e-50 (expected proportion=3.5e-04, number observed=44,
sample size=3,694). We also used the gene expression data to further test the suggested
TRN as follows. We obtained approximate TF activities for both the training and
suggested TRNs. Then, for each gene we calculated the linear correlation coefficient
between the expression data and the sum of TF activity profiles (all TFs affecting the gene,
accounting separately up versus down regulation). Higher scores indicated better
consistency between expression data and TRN. The average scores for the training TRN
and the suggested TRN were 0.47 and 0.54, respectively, showing an improvement in the
overall consistency of the TRN with gene expression profiles. When the same number of
interactions is introduced randomly, average score drops to 0.43 (average of 1,000 Monte
Carlo simulations).
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Appendix D: Application to B Cell

336 sets of expression data on B cells, gathered by Basso et al. (2005), were obtained from
the NIH Gene Expression Omnibus (GSE2350). The data includes normal purified cord
blood (5 samples), germinal center (10 samples), memory (5 samples) and naive (5
samples) B cells, B cell chronic lymphocytic leukemia (34 samples), diffuse large B cell
lymphomas (68 samples), Burkitt lymphoma (27 samples), follicular lymphoma (6
samples), primary effusion lymphoma (9 samples), mantle cell lymphoma (8 samples),
hairy cell lines (16 samples), and 5 lymphoblastic cell lines. Detailed information on the
experimental conditions is provided in Basso et al. (2005). 443 TFs and 4032 TF/gene
interactions for 1,335 of the genes were found in GenDat.

First, the Gene Ontology method was used to predict and score interactions. Fig.
D1 compares the probability distributions of GO scores for the random (all TF/gene pairs)
and training set (TF/gene pairs from GenDat). The statistical significance of the difference
was evaluated by the chi square test which resulted in a p-value much smaller than 0.0001
(using six bins). Therefore, the hypothesis “the likelihood that a gene pair is regulated in
the same manner increases with the number of shared ancestors in the GO tree” is
supported by our results.

We also applied the FTF method to the B cell data. The probability distributions for
the correlation between the constructed TF activities and expression data are shown in Fig.
D2 for training and random sets. As with the GO scores, the statistical significance of the
results was evaluated by the chi square test, which resulted in a p-value much smaller than
0.0001 (using six bins).

Finally, we applied the correlation method to the B cell data. Fig. D3 shows the
probability distributions for the random and training sets, confirming the hypothesis
“higher gene-gene correlation implies greater likelihood of co-regulation.”

These three methods were combined and the probability distributions of the
integrated confidence scores for the training and random sets are shown in Fig. D4. We
applied a threshold of 1.8 to this score to identify the most likely TF/gene interactions, i.e.,
to construct the final predicted TRN. To facilitate the use of our results by others, they are
posted at sysbio.indiana.edu/trndresults (see also Tuncay et al. 2006). The preliminary
TRN included 1,335 genes and 2,164 TF/gene interactions. In the final TRN, there were
14,616 TF/gene interactions that scored higher than the threshold. The number of genes
with at least one TF/gene interaction was 2,164.

38



0.3 4

0.25

0.2

Probability Distribution
&

2.00

ProbabilityEistrihuﬂg‘n
o 4]
=1 =]

o
4]
o

25

3N ]

=y

Probability Distribution
w

0.5

-0.5

0
FTF Score

0.5

——Random Set
— —Training Set
5 8 11 14
GO Score
——Random Set
— —Training Set

— Random Set

— =Training Set

0.25

0.5

Correlation Score

0.75

39

Fig. D1 Comparison of the probability
distributions of GO similarity scores of the
training set (dashed) and the random set
(solid). The training set consists of all known
TF/gene interactions for those genes with GO
terms assigned. The random set consists of
all possible TF/gene interactions for those
genes with GO terms assigned. It is seen that
higher GO similarity score implies higher
likelihood of a TF/gene interaction,
particularly when the GO similarity score is
larger than 9.

Fig. D2 Probability distribution of FTF
scores for the training set (dashed) and the
random set (solid). The x-axis is the
interaction score while the y-axis here and in
Figs 3 to 7, shows the probability density
(i.e., probability per score interval) and not
probability fraction, thus values can be
greater than one but the integrated area is
equal to one.

Fig. D3 Probability distribution of correlation
scores of the training set (dashed) and the
random set (solid) based on the gene/gene to
TF/gene score transformation of C2.3.
Although this method is based on linear
correlation, it requires a preliminary TRN
which clearly improves the results.
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Validation 1: P130 and E2F4

After we prepared the preliminary TRN and obtained the enhanced TRN using the
methodology described above, we located a manuscript by Cam et al. (2004) on
transcription factors P130 and E2F4. In the following, we compare our predictions with
their experimental results. The E2F family of TFs, which includes E2F1 to E2F7, regulates
cell proliferation. P130 is a tumor repressor protein that falls into the pRB protein family,
also known as pocket proteins. Pocket proteins directly inhibit E2F and recruit other
factors to down regulate gene expression. E2F activity is also regulated through direct
interactions with cyclin A, SP1 and P53 (Johnson 1998). All naturally occurring pocket
family mutants isolated from human tumors lack the ability to bind and negatively regulate
E2F. Cam et al. (2004) used genome-wide analysis of TF occupancy (via chromatin
immunoprecipitation on microarrays - ChlP-on-Chip) for E2F4 and P130. Three arrest
conditions were studied: quiescent and contact inhibited T98G cells and P16™*** induced
arrest of U20S cells. 272 genes were found to be targeted by E2F4, P130, or both under
any of the three conditions of growth arrest (Table 1, Cam et al. 2000). 171 of these target
genes were found in the B cell expression data. At least 88% of the P130 and E2F4 targets
were common to all 3 arrest conditions.

In the preliminary TRN, 12 genes were regulated by E2F4 (2 of them were found in
Cam et al. 2004) and 43 genes were regulated by P130 (4 of them were found in Cam et al.
2004). 3 genes were coregulated by P130 and E2F4. Therefore, not only were the training
sets for these TFs small, they also overlapped a very small set of those reported by Cam et
al. (2000). TRND vyielded 419 and 750 TF/gene interactions for E2F4 and P130,
respectively. 50 (for E2F4) and 55 (P130) target genes that scored higher than the
threshold were also reported in Cam et al. (2004). The p-value for this success rate (using a
binary probability distribution) is much less than 1.0e-30. Co-regulation by P130 and E2F4
was an outcome of this study, despite the poor training sets. Fig. D5a is a scatter graph for
expression of genes E2F4 and RBL2 (which codes for P130). The correlation coefficient is
found to be -0.36. Fig. D5b shows the scatter graph for the activities of TFs E2F4 and
P130. The correlation coefficient is calculated to be -0.80. Therefore, although E2F4 and
RBL2 expression patterns were not highly correlated, due to post-translational
modifications, the activities of these two TFs were found to be related, and a common set
of targets were identified.
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Fig. D5 a) Scatter graph of E2F4 and RBL2 expression levels. The linear correlation coefficient is -0.36.
Clearly, there is little relationship between the two sets of expression data. b) Scatter graph of the predicted
E2F4 and P130 TF activities. The linear correlation coefficient is found to be -0.80. The training sets of E2F4
and P130 included 12 and 43 interactions, respectively. Only three of the genes were co-regulated by both
TFs.

Validation 2: C-MYC

B cell expression data was also used by Basso et al. (2005) who made predictions for the
TF C-MYC and compared the results with those available at www.myccancergene.org. Our
training set for the C-MYC TF included 44 genes, 22 of them were identified as C-MYC
targets at www.myccancergene.org. TRND provided 542 C-MYC targets, 190 of these
predictions were identified as C-MYC targets at www.myccancergene.org. In this
particular case, the correlation between MYC expression and our predicted TF C-MYC
activity was fairly high, 0.49. Therefore, the assumption of representing C-MYC activity
by the MY C expression pattern is justified. As a result, all three methods (TRND, Basso et
al. 2005, and gene-gene correlation) yield similar results, though TRND shows a slight
improvement over the others (Table 1). Comparison to E2F4 and P130 results illustrates
that the success of a method in one subset of the TRN may not extrapolate to others,
although TRND seems to be more generally applicable than other methods.

N TRND  Bassoetal. Correlation

552 190 171 148 Table l_)l For each method, the number
of predicted C-MYC targets (out of the

402 146 132 115 top N) that are identified at

321 118 107 97 mycancergene.org.

205 81 76 62

134 55 55 42

89 40 42 28
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Appendix E: Results for G.Sulfurreducens

Table E1 Top 169 TF/gene interactions in our TRND analysis that were not in the preliminary TRN. Final
score was obtained as explained in Multi-Method Integration (Sect. II). As seen in Fig. 14, a very small
fraction of TF/gene pairs scored higher than 3.0. If the nature of regulation could not be decided, a question
mark is used. At least two methodologies out of three (GO, phylogenetic similarity, and FTF) were required
to be considered as a potential TF/gene interaction. Since expression data was available for only 241 genes
(with more than 6 usable data points), the weight of expression data in the predictions is very limited.

Transcription Factor Gene Final Score Regulation
TF_GSU0359 GSU0338 3.939 up
TF_GSU1129 GSU0338 3.939 up
TF_GSU2964 GSU0338 3.939 up
TF_GSU0359 GSU0342 3.768 up
TF_GSU1129 GSU0342 3.768 up
TF_GSU2964 GSU0342 4.017 up
TF_GSU0359 GSU0343 3.36 up
TF_GSU1129 GSU0343 3.36 up
TF_GSU2964 GSU0343 3.36 up
TF_GSU0359 GSU0344 4.054 up
TF_GSU1129 GSU0344 4.215 up
TF_GSU2964 GSU0344 4528 up
TF_GSU0359 GSU0345 3.921 up
TF_GSU1129 GSU0345 3.939 up
TF_GSU2964 GSU0345 3.939 up
TF_GSU0359 GSU0346 3.876 up
TF_GSU1129 GSU0350 4.02 up
TF_GSU2964 GSU0350 4.02 up
TF_GSU1129 GSU0351 5.047 up
TF_GSU2964 GSU0351 4.725 up
TF_GSU2484 GSU1102 3.262 up
TF_GSU1003 GSU1250 3.124 ?
TF_GSU3421 GSU1250 3.124 ?
TF_GSU1037 GSuU1272 3.262 Down
TF_GSU3089 GSuU1272 3.262 ?
TF_GSU1037 GSU1273 3.313 down
TF_GSU3089 GSU1273 3.313 ?
TF_GSU0372 GSU1989 3.262 up
TF_GSU0372 GSU1990 3.124 up
TF_GSU1887 GSU2448 3.313 ?
TF_GSU1887 GSU2449 3.124 ?
TF_GSU1102 GSU3118 3.262 up
TF_GSU0359 GSU3429 4.06 up
TF_GSU1129 GSU3429 3.939 up
TF_GSU2964 GSU3429 3.939 up
TF_GSU1129 GSU3430 3.993 up
TF_GSU2964 GSU3430 3.993 up
TF_GSU1129 GSU3431 4.06 up
TF_GSU2964 GSU3431 4.06 up
TF_GSU0359 GSU3432 3.939 up
TF_GSU1129 GSU3432 3.939 up
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TF_GSU2964
TF_GSU0359
TF_GSU1129
TF_GSU2964
TF_GSU0359
TF_GSU1129
TF_GSU2964
TF_GSU0359
TF_GSU1129
TF_GSU2964
TF_GSU0359
TF_GSU1129
TF_GSU2964
TF_GSU0359
TF_GSU1129
TF_GSU2964
TF_GSU0359
TF_GSU1129
TF_GSU2964
TF_GSU0359
TF_GSU1129
TF_GSU2964
TF_GSU3053
TF_GSU3089
TF_GSU3089
TF_GSU3053
TF_GSU1102
TF_GSU1037
TF_GSU3089
TF_GSU0359
TF_GSU1003
TF_GSU1129
TF_GSU2964
TF_GSU3118
TF_GSU3421
TF_GSU0359
TF_GSU1003
TF_GSU1129
TF_GSU2964
TF_GSU3118
TF_GSU3421
TF_GSU0359
TF_GSU1003
TF_GSU1129
TF_GSU2964
TF_GSU3118
TF_GSU3421
TF_GSU0372
TF_GSU1003
TF_GSU3421

GSU3432
GSU3433
GSU3433
GSU3433
GSU3434
GSU3434
GSU3434
GSU3439
GSU3439
GSU3439
GSu3441
GSu3441
GSu3441
GSU3443
GSuU3443
GSU3443
GSU3444
GSU3444
GSU3444
GSU3445
GSU3445
GSU3445
GSuU0111
GSuU0111
GSU0112
GSU0113
GSU0149
GSU0152
GSU0152
GSU0340
GSU0340
GSU0340
GSU0340
GSU0340
GSU0340
GSu0347
GSu0347
GSu0347
GSu0347
GSU0347
GSU0347
GSU0348
GSU0348
GSuU0348
GSuU0348
GSuU0348
GSuU0348
GSU0598
GSU0598
GSU0598

3.939
3.921
3.921
3.921
3.876
3.993
3.993
3.674
3.738
3.738
3.674
3.674
3.674
3.674
3.674
3.674
3.993
3.993
3.993
3.939
3.939
3.939
3.124
3.218
3.09

3.307
3.124
3.216
3.216
3.87

3.87

3.87

3.87

3.87

3.87

5.097
4.781
5.115
4.794
5.358
4.02

5.115
4.781
5.115
5.115
5.358
4.02

3.262
3.262
3.262

up
up
up
up
up
up
up
up
up
up
up
up
up
up
up
up
up
up
up
up
up
up

up
down

up
up
up
up
down

up
up
up
up
down
down
up
up
up
up
down
down

up
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TF_GSU0372
TF_GSU1003
TF_GSU3421
TF_GSU0372
TF_GSU1003
TF_GSU3421
TF_GSU1102
TF_GSU0372
TF_GSU1003
TF_GSU3421
TF_GSU3089
TF_GSU1003
TF_GSU2964
TF_GSU3421
TF_GSU0372
TF_GSU1003
TF_GSU3421
TF_GSU2787
TF_GSU2964
TF_GSU0372
TF_GSU1003
TF_GSU3421
TF_GSU0372
TF_GSU1003
TF_GSU3421
TF_GSU0372
TF_GSU1003
TF_GSU3421
TF_GSU3089
TF_GSU1102
TF_GSU3089
TF_GSU0372
TF_GSU1003
TF_GSU3421
TF_GSU3089
TF_GSU0372
TF_GSU1003
TF_GSU3421
TF_GSU0372
TF_GSU1003
TF_GSU3421
TF_GSU1037
TF_GSU3089
TF_GSU3089
TF_GSU2484
TF_GSU3089
TF_GSU3089
TF_GSU1525
TF_GSU0372
TF_GSU1003

GSU0599
GSU0599
GSU0599
GSuU0941
GSuU0941
GSuU0941
GSU1099
GSU1129
GSU1129
GSU1129
GSU1178
GSu1221
GSU1293
GSU1293
GSU1296
GSU1296
GSU1296
GSU1348
GSU1348
GSU1443
GSU1443
GSU1443
GSU1653
GSU1653
GSU1653
GSU1655
GSU1655
GSU1655
GSU1828
GSuU1878
GSU1906
GSU1940
GSU1940
GSU1940
GSU2025
GSu2041
GSuU2041
GSu2041
GSuU2042
GSU2042
GSU2042
GSU2049
GSU2049
GSU2091
GSuU2145
GSu2371
GSU2445
GSU2458
GSU2492
GSU2492

3.124
3.124
3.124
3.124
3.124
3.124
3.325
3.124
3.124
3.124
3.154
3.379
3.257
3.257
3.262
3.262
3.262
3.379
3.379
3.124
3.124
3.124
3.262
3.262
3.262
3.124
3.124
3.124
3.36

3.307
3.593
3.124
3.262
3.262
3.199
3.262
3.262
3.262
3.124
3.124
3.124
3.216
3.216
3.218
3.262
3.926
3.262
3.262
3.124
3.124

up
up
down

up

up
down

up

up
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TF_GSU3421
TF_GSU0372
TF_GSU1003
TF_GSU3421
TF_GSU1887
TF_GSU1003
TF_GSU3118
TF_GSU3421
TF_GSU1037
TF_GSU3089
TF_GSU3089
TF_GSU2484
TF_GSU1270
TF_GSU1525
TF_GSU1525
TF_GSU1102
TF_GSU0372
TF_GSU1003
TF_GSU3421
TF_GSU0372
TF_GSU1003
TF_GSU3421
TF_GSU0359
TF_GSU1003
TF_GSU1129
TF_GSU2964
TF_GSU3118
TF_GSU3421

GSU2492
GSU2524
GSU2524
GSU2524
GSU2588
GSuU2719
GSuU2719
GSU2719
GSuU2874
GSuU2874
GSuU2879
GSU2946
GSU3058
GSU3068
GSuU3074
GSU3138
GSuU3217
GSu3217
GSu3217
GSuU3418
GSU3418
GSuU3418
GSU3436
GSU3436
GSU3436
GSU3436
GSU3436
GSU3436

3.124
3.262
3.262
3.262
3.379
3.776
3.776
3.776
3.732
3.732
3.795
3.313
3.124
3.307
3.325
3.307
3.262
3.262
3.262
3.124
3.124
3.124
3.921
3.993
3.939
3.939
3.993
3.993

Down
Down
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Appendix F: Large Scale Finite Element Model

The flow equation is given by:
2662+ p %2 =2 (Gp - ) (F.1)
ot ot 7
where p, p, B,¢, u,t,k, p,g are fluid density [M L%, reference density, compressibility
B=-1I(V,aV,lop) [(M L™ TH™M, porosity [-], dynamic viscosity [M L* T,
permeability [L?], pressure [M L™ T], and gravitational acceleration [L T™], respectively

and V is the gradient operator [L™]. Using a Darcy approximation, fluid velocity v [L T™]
IS given by:

k= _
¢V=—;(Vp—pg) (F.2)
The solute transport equations is:
S5 (DVC) -V (#C) + R (F.3)

where C is the solute concentration in the fluid [M L®]. The diffusion tensor [L* T is
defined by:

X . A
D; =dD"5; +(a, _aT)l_J+aT |V|§ij (F.4)

vl
where D", 5, ,a; are tortuosity corrected in situ molecular diffusion coefficient [L2T

11, Kronecker symbol, and longitudinal and transverse dispersivities [L]. For solids, the
governing equation is:
a¢, =R, (F.5)
da '
where C and R are the solid concentration and reaction rate in the solid matrix [M L™].
The governing equations are split into transport and reaction components (Fig F1).
A Galerkin finite element approach is used to discretize the transport equations. As the
transport of different chemical species is considered independent of each other, this allows
sequential, uncoupled solution. This is done using an iterative conjugate gradient solver.
The impact of reaction rates on the concentration fields is then calculated at each
computational node using robust solvers for systems of coupled ordinary differential
equations.

46



transport k:

c . o

o finite ol P t reaction| | &
T inite elements ODE solver -E
N conjugate gradient solver g
© @
- | — ~|
c |.__loop over species loop over nodes ‘E"

‘ ) loop over time Q)

Fig. F1 Schematic of the large scale modeling approach. After model initialization, which includes a
definition of the model scenario, the temporal evolution of the concentration field is computed using operator
splitting. The transport of solutes is calculated on a finite element grid while the impact of kinetic reactions is
implemented through solving a system of ordinary differential equations at each node.
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