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DISCLAIMER

“This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, makes any warranty, expressed or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would
not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.”
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ABSTRACT

This report summarizes the work performed by Hybrid Power Generation Systems, LLC
during the October 2002 to December 2002 reporting period under Cooperative
Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy
Technology Laboratory (DOE/NETL) entitled “Solid Oxide Fuel Cell Hybrid System for
Distributed Power Generation”. The main objective of this project is to develop and
demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid
Oxide Fuel Cell (SOFC) and a turbogenerator.

The following activities have been carried out during this reporting period:
e Conceptual system design trade studies were performed
e Part-load performance analysis was conducted
e Primary system concept was down-selected
¢ Dynamic control model has been developed
e Preliminary heat exchanger designs were prepared

e Pressurized SOFC endurance testing was performed
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EXPERIMENTAL

All experimental work currently performed on the program is contained in subtask
1A.2.2, Barrier Resolution -- Pressurized SOFC. The test stand constructed and the
test methods used to perform the experimental work for this task has been described in
the Quarterly Technical Progress Report for the July 2001 to September 2001 reporting
period.

RESULTS AND DISCUSSION
1. TASK 1A.1 - SYSTEM DESIGN

1.1 SUBTASK 1A.1.1 — DESIGN CONCEPT DEVELOPMENT.

1.1.1 Conceptual System Design Trade Studies

The trade studies have focused on identifying the most promising system design based
on performance, capital cost and system reliability considerations. Four system
candidates were considered as possible system solutions. The approach undertaken in
the trade studies consists of the following steps:

(1) The efficiency of all systems is analyzed as functions of system parameters;
(2) A local maximum of the resulting efficiency function is determined;

(3) System components are identified for the candidate concepts (some components
may be shared between the candidates);

(4) System cost and reliability models are created;
(5) The reliability and capital cost of the systems is documented;

(6) The system design point is adjusted if necessary to improve system reliability
and/or cost at the acceptable expense of system efficiency;

(7) Steps (1) through (6) are repeated until an optimized system design is found for
each candidate;

The system with the “best” optimized solution is down selected.

1.1.2 Efficiency Screening Calculations

The system efficiencies of each of the four configurations were analyzed in detail to
determine their dependence on the system parameters. The dependence of system
efficiency on system parameters for each concept was determined through a Design of
Experiments approach in conjunction with regression analysis of the resulting data. An
Aspen Plus steady-state performance model was created for each system concept to
compute the system efficiency for each point in the design of experiment.

The regression analysis yielded an empirical relationship between the system
parameters and the overall system efficiency for each of the four concepts considered.
In addition, regressions of other system parameters were also developed for formulating
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system constraints. The optimal value of the system parameters were determined from
the efficiency functions for all four systems by optimizing the efficiency function subject
to system constraints.

1.1.3 Concept Down-Selection

Preliminary component requirements were determined for each system configuration
based on the system efficiency analyses. Components were then selected, and the
system parameters re-calculated based on the component information. Reliability and
cost models for the four systems are currently under development. The models are
based on the component lists developed during the efficiency optimization analyses.
Individual component reliability and mean time between failures will be estimated based
on GE’s experience with each type of component. The system reliability will then be
determined by the system operational sequence. The cost model uses vendor and GE
cost data to roll-up the first cost data for each system. Further trade-offs between the
four systems will be conducted to determine the optimal system configuration based on
the results of the performance, reliability and costs analyses.

1.1.4 System Part-Load Analysis

1.2 CONTROL SYSTEM

1.2.1 System Control Approach

The control system will provide the operator with the ability to automatically step
through the startup sequence, regulate to commanded load demand points, step down
through the normal shutdown sequence, perform basic health monitoring of the system,
and handle emergency shutdown of the system. A dynamic model of the system has
been developed using GE Hybrid Power Generation System’s proprietary library of fuel
cell system component models, and will be used to design and evaluate various control
strategies prior to hardware implementation. The design of efficient controls for the fuel
cell system requires consideration of many factors, significantly:

e With potentially wide load fluctuations, the controller should be able to
maximize efficiency in different operational regions. These include conditions
that occur during startup, steady state operation and shutdown.

e The controller should be able to regulate power and voltage during steady
state operation and maximize efficiency at setpoint.

e The controller should be able to minimize thermal stress and fatigue and limit
component duty cycles that adversely affect the lifetime of the equipment.

In addition to the basic control functions, the controller will provide built-in test
(BIT) and health monitoring around the system. The BIT will monitor sensors
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throughout the system and trigger alarms to shutdown the system if a sensor exceeds
the specified operating range. Corrective and protective action will be programmed into
the BIT to handle various failure modes or unscheduled events.

Figure 1 shows the design for control process that is being used for control
system development. The controls task is currently in the Controls Requirements
Definition process block. During this stage of the process subsystem and system
models are being developed and analyzed, the control loop analysis is being conducted
to determine the dominant dynamic interactions in the system, and preliminary controls
requirements are being formalized. The fourth quarter of 2002 has been primarily
focused on building the dynamic system model and negotiating with other task teams on
requirements for the system and various subsystems.

Control Requirements Definition
*Model Development
¢ N *Subsystem Analysis
*Control Loop Analysis
+Cell Monitoring

v

Preliminary Control Design
*Simulation Based Design
< > *Assume Component Performance

“Design for Control”

SySt.em *Controllability of System Addressed Sensor and Actuator Evaluation
Design * *Sensor Trade Studies
-FMEA *Sensor Testing
E Control Evaluation and Development *Actuator Trade Studies
-BEvent *Control Design Trade Studies *Actuator Testing
Ledger *Focus Control Design for Application v
*Built-In Test and Health Monitoring
*Final Control Design for Phase I Sensor and Actuator Development
*Develop Sensor Requirements *Sensor Development
*Develop Actuator Requirements *Actuator Development

v
Control System Integration
P *Rapid Prototyping System Implementation of Control Strategy
*Hardware Selection and Procurement
*Software Development
*Hardware/Software Implementation

Figure 1: Controls Design Process

1.2.2 Control System Development

A dynamic system model of the conceptual system has been assembled using
GE Hybrid Power Generation Systems’ (HPGS) proprietary Fuel Cell Dynamic
Component Library. The dynamic system model was improved to increase execution
speed during Q4. This model will be used to determine significant dynamic interactions
within the system, perform various component and system level trade studies, and to
develop the control system design. The model will be updated to allow dynamic issues
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to be addressed as the system design changes and matures. This approach minimizes
costs by reducing hardware tests and the risk of damaging components.

Work has continued during Q4 in the area of feedback controls development.
This work was primarily focused on the SOFC and fuel processor subsystem during Q4
since much of the control system complexity is driven from this subsystem. Work has
continued on the supervisory controls in the following areas:
o Key independent variables
e Key System Constraints

e System Startup

e System Operating Modes and Transitions

2. TASK 1A.2 — TECHNICAL BARRIER RESOLUTION

21 SUBTASK 1A.2.1 — HIGH-TEMPERATURE HEAT EXCHANGERS

The conceptual system design requires four heat exchangers that operate at high
temperatures. Preliminary designs of these heat exchangers were presented in the
previous quarterly report. In this task, the focus is on the development of a high
temperature heat exchanger to understand the feasibility of using such a heat
exchanger in the hybrid design.

The thermal design of a high temperature heat exchanger was completed based on the
performance requirements of the demonstration system. The specifics of this design
are presented in Table 1A.2.1.

Several options for hardware, testing, and analysis were formulated (see Table 1A.2.2).
Two different heat exchangers from two partner suppliers were identified as suitable
candidates for this unit. The first is a plate fin heat exchanger design made of Inconel
625 with stainless steel fins. The second heat exchanger is a welded plate fin design
with all parts made of Inconel 625. As reported earlier, Inconel 625 provides adequate
structural properties at temperatures as high as 750 °C. For temperatures higher than
750 °C, Hanes 230 may be used, however, Haynes is seen as prohibitively expensive.

Both heat exchangers will be tested for their performance. Performance maps will be
generated for a range of system power level. Performance maps will be used to
evaluate the system analysis models.

The heat exchanger’s life and reliability will be assessed through coupon testing.
Several pieces of Inconel 625 will be tested in a controlled environment of a furnace for
their oxidation properties at high temperatures. Continuous testing will be conducted for
durations up to 3000 hours. Coupons will be taken out of the furnace at intermediate
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stages of 1000, 2000, and 3000 hours and will be investigated for the oxidation level as
function of time.

In addition to coupon testing, analyses will be conducted to evaluate the life of the heat
exchanger at the system level thermal requirements. The analyses will include
structural analysis for pressure containment and creep life assessment.

2.2 SUBTASK 1A.2.2 - PRESSURIZED SOFC
In the last quarter, progress has been made in the following two areas:

e Degradation and endurance test
e Performance mapping with methane
The results from these tests are summarized below.

2.2.1 Degradation mechanism analysis

Two approaches are being taken to understand the performance degradation
mechanisms for SOFC cells operated at elevated pressures. The frist is to examine cell
microstructure, interconnect oxidation thickness, and possible chromium vapor
contamination in the cathode after 800 hours of testing. The second is to analyze
interconnect oxidation kinetics and possible chromium vapor poisoning mechanisms
under pressure. In conjunction, pressure effects on degradation rates are being
characterized with more endurance tests.

To support this approach, an RJ026 cell test was planned for 300 hours
operation at 2 atmospheres, followed by another 300 hours of operation at 1
atmosphere. The goal was to compare the impact of operating pressure on the
degradation rate. The results of this test are shown in Figure 2. It is noted that the
degradation rate of RJ026 cell at 2 atmosphere for the first 200 hours is very similar to
the degradation of AJO82, tested before. Before the RJ026 cell test reached 300 hours,
a power outage occurred in the test cell, resulting in a loss of air and fuel flow to the cell
for approximately 40 minutes. After this incident, the degradation rate of the cell
accelerated appreciably. The test was subsequently aborted.

02-71847 (4)-1 v1-6



Figure 2 Degradation of RJ026 comparing to AJO82 at 2 atm and 800°C.
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2.2.2 Performance Mapping
Performance mapping for this quarter has been focused on methane addition to

fuel stream.

A cell was first operated with 64%H, balance with 36%N, as a

performance reference point. Then water and methane were added to the fuel stream
while hydrogen was kept constant as shown in Figure 3. As 20% water replacing part of
nitrogen, cell voltage was lower than that with dry hydrogen.
added in to replace more nitrogen, the cell voltage increased a little, especially at higher
current density (or higher fuel utilization). Very similar results were observed when the
operating pressure was increased to 2 atm as shown in Figure 4.
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Figure 3: Effect of water (20%) and addition of 9.6% methane on performance at 1 atm.
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Figure 4: Effect of water (20%) and addition of 9.6% methane on performance at 2 atm.

The cell was also held for a few hours at 2 atm with about 17% CH4. The cell
was also tested under 10A with a hydrogen flow of 71 cc/min. If only hydrogen were
assumed as fuel, then the fuel utilization was greater than 100%. This indicates
methane participated in the electrochemical reaction either through reforming or direct-
oxidation. The cell voltage was noisy during this period, probably due to issues related
to water delivery. The degradation rate with methane addition seems faster than that

with dry hydrogen as fuel (Figure 5).
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Figure 5. Performance degradation with methane and water at 2 atm, 800°C

CONCLUSIONS

A Design of Experiments approach was used in conjunction with multiple regression
analysis to determine the empirical relationship of key system parameters on the overall
system efficiency for the four system configurations considered in the system trade
study subtask. This relationship was used to determine the system parameters that
lead to an optimal system efficiency. The computed optimum system efficiency is then
used as one criteria for down-selecting to the most desired system configurations.
Other system down-selection criteria include reliability and cost. A dynamic model of
the system has been developed to enable the design and evaluation of various control
strategies prior to hardware implementation. This dynamic model will be used
extensively to incorporate design for control as part of the system trade studies.

Preliminary thermal designs have been completed for all the high temperature heat
exchangers in the baseline system. Suitable candidate heat exchanger units were
identified for performance testing and subsequent feasibility analysis.

A test lasting over 250 hours at 2 atmospheres was completed to aid with the
determination of the SOFC stack performance degradation mechanism. Power
interruption part way through the test is likely to have impact the results from the test, as
witnessed by an increase degradation rate after the event. The test was subsequently
aborted and chemical analysis of the sample is underway. Performance mapping on
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the fuel cell at pressure is underway. Tests with the addition of water and methane
have been completed.
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